WorldWideScience

Sample records for scattered wave energy

  1. An analytic distorted wave approximation for intermediate energy proton scattering

    International Nuclear Information System (INIS)

    Di Marzio, F.; Amos, K.

    1982-01-01

    An analytic Distorted Wave approximation has been developed for use in analyses of intermediate energy proton inelastic scattering from nuclei. Applications are made to analyse 402 and 800 MeV data from the isoscalar and isovector 1 + and 2 + states in 12 C and to the 800 MeV data from the excitation of the 2 - (8.88MeV) state in 16 O. Comparisons of predictions made using different model two-nucleon t-matrices and different models of nuclear structure are given

  2. Effect of energy emission from evanescent electromagnetic wave at scattering by a dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Gulyaev, Yu.V. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation); Barabanenkov, Yu.N. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation)]. E-mail: yu.barab@mail.ip.sitek.net; Barabanenkov, M.Yu. [Institute of Microelectronics Technology and High Purity Materials of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Nikitov, S.A. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation)

    2005-02-21

    We present an optical theorem for evanescent (near field) electromagnetic wave scattering by a dielectric structure. The derivation is based on the formalism of angular spectrum wave amplitudes. The optical theorem shows that an energy flux at scattering is emitted in the direction of incident evanescent wave decay.

  3. High energy spin waves in iron measured by neutron scattering

    International Nuclear Information System (INIS)

    Boothroyd, A.T.; Paul, D.M.; Mook, H.A.

    1991-01-01

    We present new results for the spin were dispersion relation measured along the [ζζ0] direction in bcc iron (12% silicon) by time-of-flight, neutron inelastic scattering. The excitations were followed to the zone boundary, where they are spread over a range of energies around 300meV. 6 refs., 2 figs

  4. Determination of the S-wave scattering shape parameter P from the zero-energy wave function

    International Nuclear Information System (INIS)

    Kermode, M.W.; van Dijk, W.

    1990-01-01

    We show that for S-wave scattering at an energy k 2 by a local potential which supports no more than one bound state, the shape parameter P and coefficients of higher powers of k 2 in the effective range expansion function cotδ=-1/a+1/2 r 0 k 2 -Pr 0 3 k 3 +Qr 0 5 k 6 +..., where δ is the phase shift, may be obtained from the zero-energy wave function, u 0 (r). Thus δ itself may be determined from u 0 . We show that Pr 0 3 =∫ 0 R [β(r)u 0 2 (r)-bar β(r)bar u 0 2 (r)]dr, where r 0 is the effective range, β(r) is determined from an integral involving the wave function, and bar β(r) is a simple function of r which involves the scattering length and effective range

  5. High-energy effective action from scattering of QCD shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Ian Balitsky

    2005-07-01

    At high energies, the relevant degrees of freedom are Wilson lines - infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  6. Deuteron polarizability and S-wave π+d scattering at energies below 1 keV

    International Nuclear Information System (INIS)

    Pupyshev, V.V.

    1987-01-01

    The influence of deuteron polarizability on the S-wave π + d-scattering in a low-energy limit is explored in the framework of the variable phase method. It is shown that the nonoscillating part of the S-wave cross section of π + d-scattering has a deep and sharp minimum in the energy region ∼ 0.4 keV

  7. S-wave elastic scattering of ${\\it o} $-Ps from $\\text {H} _2 $ at low energy

    KAUST Repository

    Zhang, J. -Y.

    2018-03-08

    The confined variational method is applied to investigate the low-energy elastic scattering of ortho-positronium from $\\\\text{H}_2$ by first-principles quantum mechanics. Describing the correlation effect with explicitly correlated Gaussians, we obtain accurate $S$-wave phase shifts and pick-off annihilation parameters for different incident momenta. By a least-squares fit of the data to the effective-range theory, we determine the $S$-wave scattering length, $A_s=2.06a_0$, and the zero-energy value of the pick-off annihilation parameter, $^1\\\\!\\\\text{Z}_\\\\text{eff}=0.1858$. The obtained $^1\\\\!\\\\text{Z}_\\\\text{eff}$ agrees well with the precise experimental value of $0.186(1)$ (J.\\\\ Phys.\\\\ B \\\\textbf{16}, 4065 (1983)) and the obtained $A_s$ agrees well with the value of $2.1(2)a_0$ estimated from the average experimental momentum-transfer cross section for Ps energy below 0.3 eV (J.\\\\ Phys.\\\\ B \\\\textbf{36}, 4191 (2003)).

  8. Baryon scattering at high energies. Wave function, impact factor, and gluon radiation

    International Nuclear Information System (INIS)

    Bartels, J.; Motyka, L.; Jagellonian Univ., Krakow

    2007-11-01

    The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in γ * scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in γ * scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the γ * -initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2→4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3→4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)

  9. Baryon scattering at high energies. Wave function, impact factor, and gluon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Motyka, L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Jagellonian Univ., Krakow (Poland). Inst. of Physics

    2007-11-15

    The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in {gamma}{sup *} scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in {gamma}{sup *} scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the {gamma}{sup *}-initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2{yields}4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3{yields}4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)

  10. Medium energy nucleon-nucleus scattering theory by semi-classical distorted wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, Kazuyuki [Kyushu Univ., Fukuoka (Japan)

    1998-07-01

    The semiclassical distorted wave model (SCDW) is one of the quantum mechanical models for nucleon inelastic and charge exchange scattering at intermediate energies. SCDW can reproduce the double differential inclusive cross sections for multi-step direct processes quite well in the angular and outgoing energy regions where the model is expected to work. But the model hitherto assumed on-the-energy-shell (on-shell) nucleon-nucleon scattering in the nucleus, neglecting the difference in the distorting potentials for the incoming and the outgoing particles and also the Q-value in the case of (p,n) reactions. There had also been a problem in the treatment of the exchange of colliding nucleons. Now we modify the model to overcome those problems and put SCDW on sounder theoretical foundations. The modification results in slight reduction (increase) of double differential cross sections at forward (backward) angles. We also examine the effect of the in-medium modification of N-N cross sections in SCDW and find it small. A remedy of the disagreement at very small and large angles in terms of the Wigner transform of the single particle density matrix is also discussed. This improvement gives very promising results. (author)

  11. Inelastic neutron scattering in the spin wave energy gap of the polydomain γ-Mn(12%Ge) alloy

    International Nuclear Information System (INIS)

    Jankowska-Kisielinska, J.; Mikke, K.

    1999-01-01

    The subject of the present experiment was the investigation of the inelastic neutron scattering (INS) for energy transfers lower than and close to the energy gap of the spin wave spectrum for long wavelengths. The aim was a search for the excitations at the magnetic Brillouin zone (MBZ) boundary in polydomain Mn(12%Ge) alloy. The present measurements were performed by a 3-axis spectrometer at Maria Reactor at IEA in Swierk. We observed the INS in the polydomain Mn(12%Ge) alloy for energies smaller than and close to the energy gap value of the spin wave spectrum at room temperature. The observed intensity can be treated as a sum of intensity of neutrons scattered on spin waves around magnetic Brillouin zone centre and that of neutrons scattered on fluctuations at the zone boundary. The intensity of both components for energies 2-6 MeV was found to be of the same order. For higher energies spin waves around magnetic zone centre dominate. (author)

  12. A scattering approach to sea wave diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L., E-mail: letizia.corradini@unicam.it; Garbuglia, M., E-mail: milena.garbuglia@unicam.it; Maponi, P., E-mail: pierluigi.maponi@unicam.it [University of Camerino, via Madonna delle Carceri, 9, 62032, Camerino (Italy); Ruggeri, M., E-mail: ru.marco@faggiolatipumps.it [Faggiolati Pumps S.p.A., Z.Ind Sforzacosta, 62100, Macerata (Italy)

    2016-06-08

    This paper intends to show a model for the diffraction of sea waves approaching an OWC device, which converts the sea waves motion into mechanical energy and then electrical energy. This is a preliminary study to the optimisation of the device, in fact the computation of sea waves diffraction around the device allows the estimation of the sea waves energy which enters into the device. The computation of the diffraction phenomenon is the result of a sea waves scattering problem, solved with an integral equation method.

  13. Scattering Of Nonplanar Acoustic Waves

    Science.gov (United States)

    Gillman, Judith M.; Farassat, F.; Myers, M. K.

    1995-01-01

    Report presents theoretical study of scattering of nonplanar acoustic waves by rigid bodies. Study performed as part of effort to develop means of predicting scattering, from aircraft fuselages, of noise made by rotating blades. Basic approach was to model acoustic scattering by use of boundary integral equation to solve equation by the Galerkin method.

  14. Nodal structure and phase shifts of zero-incident-energy wave functions: Multiparticle single-channel scattering

    International Nuclear Information System (INIS)

    Iwinski, Z.R.; Rosenberg, L.; Spruch, L.

    1986-01-01

    For potential scattering, with delta/sub L/(k) the phase shift modulo π for an incident wave number k, Levinson's theorem gives delta/sub L/(0)-delta/sub L/(infinity) in terms of N/sub L/, the number of bound states of angular momentum L, for delta/sub L/(k) assumed to be a continuous function of k. N/sub L/ also determines the number of nodes of the zero-energy wave function u/sub L/(r). A knowledge of the nodal structure and of the absolute value of delta/sub L/(0) is very useful in theoretical studies of low-energy potential scattering. Two preliminary attempts, one formal and one ''physical,'' are made to extend the above results to single-channel scattering by a compound system initially in its ground state. The nodal structure will be of greater interest to us here than an extension of Levinson's theorem

  15. Scattering of accelerated wave packets

    Science.gov (United States)

    Longhi, S.; Horsley, S. A. R.; Della Valle, G.

    2018-03-01

    Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.

  16. Water wave scattering

    CERN Document Server

    Mandal, Birendra Nath

    2015-01-01

    The theory of water waves is most varied and is a fascinating topic. It includes a wide range of natural phenomena in oceans, rivers, and lakes. It is mostly concerned with elucidation of some general aspects of wave motion including the prediction of behaviour of waves in the presence of obstacles of some special configurations that are of interest to ocean engineers. Unfortunately, even the apparently simple problems appear to be difficult to tackle mathematically unless some simplified assumptions are made. Fortunately, one can assume water to be an incompressible, in viscid and homogeneous

  17. Multiple scattering of electromagnetic waves in disordered magnetic media localization parameter, energy transport velocity and diffusion constant

    CERN Document Server

    Pinheiro, F A; Martínez, A S

    2001-01-01

    We review some of our recent results concerning the single and multiple electromagnetic scattering by magnetic spherical particles. For a single electromagnetic scattering we show that the magnetic contribution alters, when compared to nonmagnetic scattering, the behavior of the cross sections and mean cosine of the scattering angle (cos omega). For ferromagnetic particles, resonances may occur even in the small-particle limit when the particle radius is much smaller than the wavelength. The resonances increase the cross sections while (cos omega) is diminished , and even may become negative. Several quantities such the Ioffe-Regel parameter for localization are calculated for the multiple scattering regime. We show that magnetic scattering favors the observation of localization of electromagnetic waves in three dimensions. Further, this is also verified for dynamical experiments, where we show that the diffusion constant can be very small. Since the magnetic permeability of the scatterers can vary significan...

  18. Wave energy

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, T.J.T. (Queen' s Univ., Belfast, Northern Ireland (UK)); White, P.R.S. (Lanchester Polytechnic, Coventry (UK)); Baker, A.C.J. (Binnie and Partners, London (UK))

    1988-10-01

    An informal discussion on various wave energy converters is reported. These included a prototype oscillating water column (OWC) device being built on the Isle of Islay in Scotland; the SEA Clam; a tapering channel device (Tapchan) raising incoming waves into a lagoon on a Norwegian island and an OWC device on the same island. The Norwegian devices are delivering electricity at about 5.5p/KWh and 4p/KWh respectively with possibilities for reduction to 2.5-3p/KWh and 3p/KWh under favourable circumstances. The discussion ranged over comparisons with progress in wind power, engineering aspects, differences between inshore and offshore devices, tidal range and energy storage. (UK).

  19. Scattering of internal gravity waves

    OpenAIRE

    Leaman Nye, Abigail

    2011-01-01

    Internal gravity waves play a fundamental role in the dynamics of stably stratified regions of the atmosphere and ocean. In addition to the radiation of momentum and energy remote from generation sites, internal waves drive vertical transport of heat and mass through the ocean by wave breaking and the mixing subsequently produced. Identifying regions where internal gravity waves contribute to ocean mixing and quantifying this mixing are therefore important for accurate climate ...

  20. Quantum scattering at low energies

    DEFF Research Database (Denmark)

    Derezinski, Jan; Skibsted, Erik

    2009-01-01

    For a class of negative slowly decaying potentials, including V(x):=−γ|x|−μ with 0quantum mechanical scattering theory in the low-energy regime. Using appropriate modifiers of the Isozaki–Kitada type we show that scattering theory is well behaved on the whole continuous spectrum...... of the Hamiltonian, including the energy 0. We show that the modified scattering matrices S(λ) are well-defined and strongly continuous down to the zero energy threshold. Similarly, we prove that the modified wave matrices and generalized eigenfunctions are norm continuous down to the zero energy if we use...... of the kernel of S(λ) experiences an abrupt change from passing from positive energies λ to the limiting energy λ=0 . This change corresponds to the behaviour of the classical orbits. Under stronger conditions one can extract the leading term of the asymptotics of the kernel of S(λ) at its singularities....

  1. Scattering of electromagnetic waves by obstacles

    CERN Document Server

    Kristensson, Gerhard

    2016-01-01

    The main purpose of Scattering of Electromagnetic Waves by Obstacles is to give a theoretical treatment of the scattering phenomena, and to illustrate numerical computations of some canonical scattering problems for different geometries and materials.

  2. Quantum scattering at low energies

    DEFF Research Database (Denmark)

    Derezinski, Jan; Skibsted, Erik

    For a class of negative slowly decaying potentials, including with , we study the quantum mechanical scattering theory in the low-energy regime. Using modifiers of the Isozaki--Kitada type we show that scattering theory is well behaved on the {\\it whole} continuous spectrum of the Hamiltonian......, including the energy . We show that the --matrices are well-defined and strongly continuous down to the zero energy threshold. Similarly, we prove that the wave matrices and generalized eigenfunctions are norm continuous down to the zero energy if we use appropriate weighted spaces. These results are used...... from positive energies to the limiting energy . This change corresponds to the behaviour of the classical orbits. Under stronger conditions we extract the leading term of the asymptotics of the kernel of at its singularities; this leading term defines a Fourier integral operator in the sense...

  3. Lattice Waves, Spin Waves, and Neutron Scattering

    Science.gov (United States)

    Brockhouse, Bertram N.

    1962-03-01

    Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)

  4. Wave propagation and scattering in random media

    CERN Document Server

    Ishimaru, Akira

    1978-01-01

    Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an

  5. High energy hadron scattering

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  6. Semiclassical wave packet treatment of scattering resonances: application to the delta zero-point energy effect in recombination reactions.

    Science.gov (United States)

    Vetoshkin, Evgeny; Babikov, Dmitri

    2007-09-28

    For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.

  7. Scattered P'P' waves observed at short distances

    Science.gov (United States)

    Earle, Paul S.; Rost, Sebastian; Shearer, Peter M.; Thomas, Christine

    2011-01-01

    We detect previously unreported 1 Hz scattered waves at epicentral distances between 30° and 50° and at times between 2300 and 2450 s after the earthquake origin. These waves likely result from off-azimuth scattering of PKPbc to PKPbc in the upper mantle and crust and provide a new tool for mapping variations in fine-scale (10 km) mantle heterogeneity. Array beams from the Large Aperture Seismic Array (LASA) clearly image the scattered energy gradually emerging from the noise and reaching its peak amplitude about 80 s later, and returning to the noise level after 150 s. Stacks of transverse versus radial slowness (ρt, ρr) show two peaks at about (2, -2) and (-2,-2) s/°, indicating the waves arrive along the major arc path (180° to 360°) and significantly off azimuth. We propose a mantle and surface PKPbc to PKPbc scattering mechanism for these observations because (1) it agrees with the initiation time and distinctive slowness signature of the scattered waves and (2) it follows a scattering path analogous to previously observed deep-mantle PK•KP scattering (Chang and Cleary, 1981). The observed upper-mantle scattered waves and PK•KP waves fit into a broader set of scattered waves that we call P′•d•P′, which can scatter from any depth, d, in the mantle.

  8. Millimeter wave scattering off a whistler wave in a tokamak

    International Nuclear Information System (INIS)

    Sawhney, B.K.; Singh, S.V.; Tripathi, V.K.

    1994-01-01

    Obliquely propagating whistler waves through a plasma cause density perturbations. A high frequency electromagnetic wave sent into such a perturbed region suffers scattering. The process can be used as a diagnostics for whistler. We have developed a theory of electromagnetic wave scattering in a tokamak where density profile is taken a parabolic. Numerical calculations have been carried out to evaluate the ratio of the power of the scattered electromagnetic wave to that of the incident electromagnetic wave. The scattered power decreases with the frequency of the incident electromagnetic wave. For typical parameters, the ratio of the power of the scattered to the incident electromagnetic wave comes out to be of the order of 10 -4 at a scattering angle of 3 which can be detected. (author). 2 refs, 1 fig

  9. Scattering theory of stochastic electromagnetic light waves.

    Science.gov (United States)

    Wang, Tao; Zhao, Daomu

    2010-07-15

    We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.

  10. Inclusion of electron correlation for the target wave function in low- to intermediate-energy e-N2 scattering

    Science.gov (United States)

    Weatherford, C. A.; Brown, F. B.; Temkin, A.

    1987-01-01

    In a recent calculation, an exact exchange method was developed for use in the partial-differential-equation approach to electron-molecule scattering and was applied to e-N2 scattering in the fixed-nuclei approximation with an adiabatic polarization potential at low energies (0-10 eV). Integrated elastic cross sections were calculated and found to be lower than experiment at energies both below and above the Pi(g) resonance. It was speculated at that time that improved experimental agreement could be obtained if a correlated target representation were used in place of the uncorrelated one. The present paper implements this suggestion and demonstrates the improved agreement. These calculations are also extended to higher energies (0-30 eV) so asd to include the Sigma(u) resonance. Some discrepancies among the experiments and between experiment and the various calculations at very low energy are noted.

  11. Energy Transfer in Scattering by Rotating Potentials

    Indian Academy of Sciences (India)

    Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave ...

  12. Stimulated Raman scattering of sub-millimeter waves in bismuth

    Science.gov (United States)

    Kumar, Pawan; Tripathi, V. K.

    2007-12-01

    A high-power sub-millimeter wave propagating through bismuth, a semimetal with non-spherical energy surfaces, parametrically excites a space-charge mode and a back-scattered electromagnetic wave. The free carrier density perturbation associated with the space-charge wave couples with the oscillatory velocity due to the pump to derive the scattered wave. The scattered and pump waves exert a pondermotive force on electrons and holes, driving the space-charge wave. The collisional damping of the decay waves determines the threshold for the parametric instability. The threshold intensity for 20 μm wavelength pump turns out to be ˜2×1012 W/cm2. Above the threshold, the growth rate scales increase with ωo, attain a maximum around ωo=6.5ωp, and, after this, falls off.

  13. SCATTERING OF SPIN WAVES BY MAGNETIC DEFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, Joseph

    1962-12-15

    The scattering of spin waves by magnetic point defects is considered using a Green's function method. A partial wave expansion for the scattering amplitude is derived. An expression for the cross section is determined that includes the effect of resonant states. Application is made to the calculation of the thermal conductivity of an insulating ferromagnet. (auth)

  14. Relativistic wave equations and compton scattering

    International Nuclear Information System (INIS)

    Sutanto, S.H.; Robson, B.A.

    1998-01-01

    Full text: Recently an eight-component relativistic wave equation for spin-1/2 particles was proposed.This equation was obtained from a four-component spin-1/2 wave equation (the KG1/2 equation), which contains second-order derivatives in both space and time, by a procedure involving a linearisation of the time derivative analogous to that introduced by Feshbach and Villars for the Klein-Gordon equation. This new eight-component equation gives the same bound-state energy eigenvalue spectra for hydrogenic atoms as the Dirac equation but has been shown to predict different radiative transition probabilities for the fine structure of both the Balmer and Lyman a-lines. Since it has been shown that the new theory does not always give the same results as the Dirac theory, it is important to consider the validity of the new equation in the case of other physical problems. One of the early crucial tests of the Dirac theory was its application to the scattering of a photon by a free electron: the so-called Compton scattering problem. In this paper we apply the new theory to the calculation of Compton scattering to order e 2 . It will be shown that in spite of the considerable difference in the structure of the new theory and that of Dirac the cross section is given by the Klein-Nishina formula

  15. Low-energy P-wave phaseshifts for positron-hydrogen elastic scattering using an adiabatic approximation

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Beker, C.A.; Farina, J.E.G.

    1981-01-01

    P-wave phaseshifts for positron-hydrogen elastic scattering are calculated using a new adiabatic approximation in which the length of the radius vector from the proton to the positron is fixed but its direction is allowed to vary. This adiabatic approximation makes possible the full inclusion in the calculation of virtual states in which angular momentum is transferred to the target H atom. The results obtained agree qualitatively with the highly accurate results of Bhatia and co-workers (Phys. Rev.; A9:219 (1974)) and are much closer to them than the results obtained using the usual adiabatic approximation in which the radius vector from the proton to the positron is fixed. (author)

  16. Energy-Dependent Partial-Wave Analysis of Pion-Deuteron Elastic Scattering in T_L=65 to 294 MeV Region

    OpenAIRE

    Noboru, HIROSHIGE; Faculty of Economics, Hannan University

    1996-01-01

    An energy-dependent partial-wave analysis of πd elastic scattering has been performed in the region T_L=65~294 MeV for currently available experimental data, including the recent vector analyzing power iT_ and composite observables τ_. We have obtained a solution which is in good agreement with the experimental data. The ^3P_1,^3P_2,^3D_3 and ^3D_2 amplitudes abtained show counter-clockwise rotating behaviors.

  17. Parametrization of the scattering wave functions of the Paris potential

    International Nuclear Information System (INIS)

    Loiseau, B.; Mathelitsch, L.

    1996-10-01

    The neutron-proton scattering wave functions of the Paris nucleon-nucleon potential are parametrized for partial waves of total angular momenta less than 5. The inner parts of the wave functions are approximated by polynomials with a continuous transition to the outer parts, which are given by the asymptotic regime and determined by the respective phase shifts. The scattering wave functions can then be calculated at any given energy below 400 MeV. Special attention is devoted to the zero-energy limit of the low partial waves. An easy-to-use FORTRAN program, which allows the user to calculate these parametrized wave functions, is available via electronic mail. (author)

  18. Wave scattering from statistically rough surfaces

    CERN Document Server

    Bass, F G; ter Haar, D

    2013-01-01

    Wave Scattering from Statistically Rough Surfaces discusses the complications in radio physics and hydro-acoustics in relation to wave transmission under settings seen in nature. Some of the topics that are covered include radar and sonar, the effect of variations in topographic relief or ocean waves on the transmission of radio and sound waves, the reproduction of radio waves from the lower layers of the ionosphere, and the oscillations of signals within the earth-ionosphere waveguide. The book begins with some fundamental idea of wave transmission theory and the theory of random processes a

  19. Velocity-space diffusion due to resonant wave-wave scattering of electromagnetic and electrostatic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, Reija

    1991-01-01

    The velocity-space diffusion equation describing distortion of the velocity distribution function due to resonant wave-wave scattering of electromagnetic and electrostatic waves in an unmagnetized plasma is derived from the Vlasov-Maxwell equations by perturbation theory. The conservation laws for total energy and momentum densities of waves and particles are verified, and the time evolutions of the energy and momentum densities of particles are given in terms of the nonlinear wave-wave coupling coefficient in the kinetic wave equation. (author)

  20. Intermediate energy proton scattering from 10B

    International Nuclear Information System (INIS)

    Lewis, P.R.; Shute, G.G.; Spicer, R.S.; Henderson, R.S.

    1990-01-01

    Differential cross sections have been measured for 200 MeV proton scattering from 10 B. Data for six low lying natural parity levels below 6 MeV excitation energy are presented. Distorted wave analysis using a density dependent nucleon-nucleon interaction has assessed model spectroscopies of these excited states. The significance of the contribution from quadrupole scattering to the elastic cross section is discussed. 49 refs., 5 tabs., 21 figs

  1. Plane-wave scattering from half-wave dipole arrays

    DEFF Research Database (Denmark)

    Jensen, Niels E.

    1970-01-01

    A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays.......A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays....

  2. Turbulence Scattering of High Harmonic Fast Waves

    International Nuclear Information System (INIS)

    M. Ono; J. Hosea; B. LeBlanc; J. Menard; C.K. Phillips; R. Wilson; P. Ryan; D. Swain; J. Wilgen; S. Kubota; and T.K. Mau

    2001-01-01

    Effect of scattering of high-harmonic fast-magnetosonic waves (HHFW) by low-frequency plasma turbulence is investigated. Due to the similarity of the wavelength of HHFW to that of the expected low-frequency turbulence in the plasma edge region, the scattering of HHFW can become significant under some conditions. The scattering probability increases with the launched wave parallel-phase-velocity as the location of the wave cut-off layer shifts toward the lower density edge. The scattering probability can be reduced significantly with higher edge plasma temperature, steeper edge density gradient, and magnetic field. The theoretical model could explain some of the HHFW heating observations on the National Spherical Torus Experiment (NSTX)

  3. Very High Energy Neutron Scattering from Hydrogen

    International Nuclear Information System (INIS)

    Cowley, R A; Stock, C; Bennington, S M; Taylor, J; Gidopoulos, N I

    2010-01-01

    The neutron scattering from hydrogen in polythene has been measured with the direct time-of flight spectrometer, MARI, at the ISIS facility of the Rutherford Appleton Laboratory with incident neutron energies between 0.5 eV and 600 eV. The results of experiments using the spectrometer, VESUVIO, have given intensities from hydrogen containing materials that were about 60% of the intensity expected from hydrogen. Since VESUVIO is the only instrument in the world that routinely operates with incident neutron energies in the eV range we have chosen to measure the scattering from hydrogen at high incident neutron energies with a different type of instrument. The MARI, direct time-of-flight, instrument was chosen for the experiment and we have studied the scattering for several different incident neutron energies. We have learnt how to subtract the gamma ray background, how to calibrate the incident energy and how to convert the spectra to an energy plot . The intensity of the hydrogen scattering was independent of the scattering angle for scattering angles from about 5 degrees up to 70 degrees for at least 3 different incident neutron energies between 20 eV and 100 eV. When the data was put on an absolute scale, by measuring the scattering from 5 metal foils with known thicknesses under the same conditions we found that the absolute intensity of the scattering from the hydrogen was in agreement with that expected to an accuracy of ± 5.0% over a wide range of wave-vector transfers between 1 and 250 A -1 . These measurements show that it is possible to measure the neutron scattering with incident neutron energies up to at least 100 eV with a direct geometry time-of-flight spectrometer and that the results are in agreement with conventional scattering theory.

  4. Quantum scattering beyond the plane-wave approximation

    Science.gov (United States)

    Karlovets, Dmitry

    2017-12-01

    While a plane-wave approximation in high-energy physics works well in a majority of practical cases, it becomes inapplicable for scattering of the vortex particles carrying orbital angular momentum, of Airy beams, of the so-called Schrödinger cat states, and their generalizations. Such quantum states of photons, electrons and neutrons have been generated experimentally in recent years, opening up new perspectives in quantum optics, electron microscopy, particle physics, and so forth. Here we discuss the non-plane-wave effects in scattering brought about by the novel quantum numbers of these wave packets. For the well-focused electrons of intermediate energies, already available at electron microscopes, the corresponding contribution can surpass that of the radiative corrections. Moreover, collisions of the cat-like superpositions of such focused beams with atoms allow one to probe effects of the quantum interference, which have never played any role in particle scattering.

  5. Migration of scattered teleseismic body waves

    Science.gov (United States)

    Bostock, M. G.; Rondenay, S.

    1999-06-01

    The retrieval of near-receiver mantle structure from scattered waves associated with teleseismic P and S and recorded on three-component, linear seismic arrays is considered in the context of inverse scattering theory. A Ray + Born formulation is proposed which admits linearization of the forward problem and economy in the computation of the elastic wave Green's function. The high-frequency approximation further simplifies the problem by enabling (1) the use of an earth-flattened, 1-D reference model, (2) a reduction in computations to 2-D through the assumption of 2.5-D experimental geometry, and (3) band-diagonalization of the Hessian matrix in the inverse formulation. The final expressions are in a form reminiscent of the classical diffraction stack of seismic migration. Implementation of this procedure demands an accurate estimate of the scattered wave contribution to the impulse response, and thus requires the removal of both the reference wavefield and the source time signature from the raw record sections. An approximate separation of direct and scattered waves is achieved through application of the inverse free-surface transfer operator to individual station records and a Karhunen-Loeve transform to the resulting record sections. This procedure takes the full displacement field to a wave vector space wherein the first principal component of the incident wave-type section is identified with the direct wave and is used as an estimate of the source time function. The scattered displacement field is reconstituted from the remaining principal components using the forward free-surface transfer operator, and may be reduced to a scattering impulse response upon deconvolution of the source estimate. An example employing pseudo-spectral synthetic seismograms demonstrates an application of the methodology.

  6. The Wave Energy Sector

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2017-01-01

    This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been...... shaped by the development, research, and teaching that we have carried out at the Wave Energy Research Group at Aalborg University over the past decades. It is our belief and experience that it would be useful writing and compiling such a handbook in order to enhance the understanding of the sector...

  7. Structure of ultrathin films of Co on Cu(111) from normal-incidence x-ray standing wave and medium-energy ion scattering measurements

    International Nuclear Information System (INIS)

    Butterfield, M.T.; Crapper, M.D.; Noakes, T.C.Q.; Bailey, P.; Jackson, G.J.; Woodruff, D.P.

    2000-01-01

    Applications of the techniques of normal-incidence x-ray standing wave (NIXSW) and medium-energy ion scattering (MEIS) to the elucidation of the structure of an ultrathin metallic film, Co on Cu(111), are reported. NIXSW and MEIS are shown to yield valuable and complementary information on the structure of such systems, yielding both the local stacking sequence and the global site distribution. For the thinnest films of nominally two layers, the first layer is of entirely fcc registry with respect to the substrate, but in the outermost layer there is significant occupation of hcp local sites. For films up to 8 monolayers (ML) thick, the interlayer spacing of the Co layers is 0.058±0.006 Aa smaller than the Cu substrate (111) layer spacing. With increasing coverage, the coherent fraction of the (1(bar sign)11) NIXSW decreases rapidly, indicating that the film does not grow in a fcc continuation beyond two layers. For films in this thickness range, hcp-type stacking dominates fcc twinning by a ratio of 2:1. The variation of the (1(bar sign)11) NIXSW coherent fraction with thickness shows that the twinning occurs close to the Co/Cu interface. For thicker films of around 20 ML deposited at room temperature, medium-energy ion scattering measurements reveal a largely disordered structure. Upon annealing to 300 deg. C the 20-ML films order into a hcp structure

  8. Scattering of elastic waves by thin inclusions

    International Nuclear Information System (INIS)

    Simons, D.A.

    1980-01-01

    A solution is derived for the elastic waves scattered by a thin inclusion. The solution is asymptotically valid as inclusion thickness tends to zero with the other dimensions and the frequency fixed. The method entails first approximating the total field in the inclusion in terms of the incident wave by enforcing the appropriate continuity conditions on traction and displacement across the interface, then using these displacements and strains in the volume integral that gives the scattered field. Expressions are derived for the far-field angular distributions of P and S waves due to an incident plane P wave, and plots are given for normalized differential cross sections of an oblate spheroidal tungsten carbide inclusion in a titanium matrix

  9. Classical wave experiments on chaotic scattering

    International Nuclear Information System (INIS)

    Kuhl, U; Stoeckmann, H-J; Weaver, R

    2005-01-01

    We review recent research on the transport properties of classical waves through chaotic systems with special emphasis on microwaves and sound waves. Inasmuch as these experiments use antennas or transducers to couple waves into or out of the systems, scattering theory has to be applied for a quantitative interpretation of the measurements. Most experiments concentrate on tests of predictions from random matrix theory and the random plane wave approximation. In all studied examples a quantitative agreement between experiment and theory is achieved. To this end it is necessary, however, to take absorption and imperfect coupling into account, concepts that were ignored in most previous theoretical investigations. Classical phase space signatures of scattering are being examined in a small number of experiments

  10. PARTICLE SCATTERING OFF OF RIGHT-HANDED DISPERSIVE WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, C.; Kilian, P.; Spanier, F., E-mail: cschreiner@astro.uni-wuerzburg.de [Centre for Space Research, North-West University, 2520 Potchefstroom (South Africa)

    2017-01-10

    Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfvén waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, well-established analytic models derived in the framework of magnetostatic quasi-linear theory can be used as a reference to validate simulation results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for use in the plasma frame. Thereby we aim at a description of particle scattering in the presence of several waves. A particle-in-cell code is employed to study wave–particle scattering on a micro-physically correct level and to test the modified model equations. We investigate the interactions of electrons at different energies (from 1 keV to 1 MeV) and right-handed waves with various amplitudes. Differences between model and simulation arise in the case of high amplitudes or several waves. Analyzing the trajectories of single particles we find no microscopic diffusion in the case of a single plasma wave, although a broadening of the particle distribution can be observed.

  11. Spin-wave and critical neutron scattering from chromium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Axe, J.D.; Shirane, G.

    1971-01-01

    Chromium and its dilute alloys are unique examples of magnetism caused by itinerant electrons. The magnetic excitations have been studied by inelastic neutron scattering using a high-resolution triple-axis spectrometer. Spin-wave peaks in q scans at constant energy transfer ℏω could, in general...

  12. S-wave scattering of fermion revisited

    International Nuclear Information System (INIS)

    Rahaman, Anisur

    2011-01-01

    A model where a Dirac fermion is coupled to background dilaton field is considered to study s-wave scattering of fermion by a back ground dilaton black hole. It is found that an uncomfortable situation towards information loss scenario arises when one loop correction gets involved during bosonization.

  13. Cloaking through cancellation of diffusive wave scattering

    KAUST Repository

    Farhat, Mohamed

    2016-08-10

    A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core-shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging. © 2016 The Author(s) Published by the Royal Society. All rights reserved.

  14. Cycloidal Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  15. SSG Wave Energy Converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Vicinanza, Diego; Frigaard, Peter

    2008-01-01

    The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level, in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low...... head hydroturbines are converting the potential energy of the stored water into power. A key to success for the SSG will be the low cost of the structure and its robustness. The construction of the pilot plant is scheduled and this paper aims to describe the concept of the SSG wave energy converter...

  16. Scattering of lower-hybrid waves by density fluctuations

    International Nuclear Information System (INIS)

    Andrews, P.L.; Perkins, F.W.

    1981-07-01

    The investigation of the scattering of lower-hybrid waves by density fluctuations in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. Assuming the fluctuations to be of long wavelength compared to the incident wave the similarity of the wave equation to the Schroedinger equation for a particle in a random magnetic field is used to derive a two-way diffusion equation for the wave energy density. The diffusion constant found disagrees with earlier findings and the source of the discrepancy is pointed out. When the correct boundary conditions are imposed this equation can be solved by separation of variables. However most of the important features of the solution are apparent without detailed algebra

  17. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  18. High energy elastic hadron scattering

    International Nuclear Information System (INIS)

    Fearnly, T.A.

    1986-04-01

    The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described

  19. Intermediate energy nucleon-deuteron scattering theory.

    Science.gov (United States)

    Wilson, J. W.

    1973-01-01

    Sloan's conclusion (1969) that terms of the multiple-scattering series beyond single scattering contribute only to S- and P-wave amplitudes in an S-wave separable model is examined. A comparison of experiments with the calculation at 146 MeV shows that the conclusion is valid in nucleon-deuteron scattering applications.

  20. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  1. Wavefield separation by energy norm Born scattering

    KAUST Repository

    Sun, Bingbing

    2017-08-17

    In Reflection Based Waveform Inversion, the gradient is computed by cross-correlating the direct and Born scattered wavefield with their adjoints applied to the data residuals. In this case, the transmitted part of the Born scattered wavefield produces high wavenumber artifacts, which would harm the convergence of the inversion process. We propose an efficient Energy Norm Born Scattering (ENBS) to attenuate the transmission components of the Born modeling, and allow it to produce only reflections. ENBS is derived from the adjoint of the Energy Norm (inverse scattering) imaging condition and in order to get deeper insights of how this method works, we show analytically that given an image, in which reflectivity is represented by a Dirac delta function, ENBS attenuates transmission energy perfectly. We use numerical examples to demonstrate that ENBS works in both the time and the frequency domain. We also show that in reflection waveform inversion (RWI) the wave path constructed by ENBS would be cleaner and free of high wavenumber artifacts associated with conventional Born scattering.

  2. Wavefield separation by energy norm Born scattering

    KAUST Repository

    Sun, Bingbing; Alkhalifah, Tariq Ali

    2017-01-01

    In Reflection Based Waveform Inversion, the gradient is computed by cross-correlating the direct and Born scattered wavefield with their adjoints applied to the data residuals. In this case, the transmitted part of the Born scattered wavefield produces high wavenumber artifacts, which would harm the convergence of the inversion process. We propose an efficient Energy Norm Born Scattering (ENBS) to attenuate the transmission components of the Born modeling, and allow it to produce only reflections. ENBS is derived from the adjoint of the Energy Norm (inverse scattering) imaging condition and in order to get deeper insights of how this method works, we show analytically that given an image, in which reflectivity is represented by a Dirac delta function, ENBS attenuates transmission energy perfectly. We use numerical examples to demonstrate that ENBS works in both the time and the frequency domain. We also show that in reflection waveform inversion (RWI) the wave path constructed by ENBS would be cleaner and free of high wavenumber artifacts associated with conventional Born scattering.

  3. Spin wave scattering and interference in ferromagnetic cross

    Energy Technology Data Exchange (ETDEWEB)

    Nanayakkara, Kasuni; Kozhanov, Alexander [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Center for Nano Optics, Georgia State University, Atlanta, Georgia 30303 (United States); Jacob, Ajey P. [Exploratory Research Device and Integration, GLOBALFOUNDRIES, Albany, New York 12203 (United States)

    2015-10-28

    Magnetostatic spin wave scattering and interference across a CoTaZr ferromagnetic spin wave waveguide cross junction were investigated experimentally and by micromagnetic simulations. It is observed that the phase of the scattered waves is dependent on the wavelength, geometry of the junction, and scattering direction. It is found that destructive and constructive interference of the spin waves generates switching characteristics modulated by the input phase of the spin waves. Micromagnetic simulations are used to analyze experimental data and simulate the spin wave scattering and interference.

  4. Electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  5. Rayleigh scattering and nonlinear inversion of elastic waves

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to kpR = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.

  6. Calculating scattering matrices by wave function matching

    International Nuclear Information System (INIS)

    Zwierzycki, M.; Khomyakov, P.A.; Starikov, A.A.; Talanana, M.; Xu, P.X.; Karpan, V.M.; Marushchenko, I.; Brocks, G.; Kelly, P.J.; Xia, K.; Turek, I.; Bauer, G.E.W.

    2008-01-01

    The conductance of nanoscale structures can be conveniently related to their scattering properties expressed in terms of transmission and reflection coefficients. Wave function matching (WFM) is a transparent technique for calculating transmission and reflection matrices for any Hamiltonian that can be represented in tight-binding form. A first-principles Kohn-Sham Hamiltonian represented on a localized orbital basis or on a real space grid has such a form. WFM is based upon direct matching of the scattering-region wave function to the Bloch modes of ideal leads used to probe the scattering region. The purpose of this paper is to give a pedagogical introduction to WFM and present some illustrative examples of its use in practice. We briefly discuss WFM for calculating the conductance of atomic wires, using a real space grid implementation. A tight-binding muffin-tin orbital implementation very suitable for studying spin-dependent transport in layered magnetic materials is illustrated by looking at spin-dependent transmission through ideal and disordered interfaces. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Reflectors to Focus Wave Energy

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    2005-01-01

    Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...... boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benefit for different wave reflector geometries and optimal geometrical design parameters are specified. On this basis inventors of WEC’s can...

  8. Scattering of wave packets with phases

    Energy Technology Data Exchange (ETDEWEB)

    Karlovets, Dmitry V. [Department of Physics, Tomsk State University, Lenina Ave. 36, 634050 Tomsk (Russian Federation)

    2017-03-09

    A general problem of 2→N{sub f} scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in (3+1) D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet σ{sub p}/〈p〉 as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the scattering amplitude. A model-independent analysis of these effects is made. Two ways of measuring how a Coulomb phase and a hadronic one change with a transferred momentum t are discussed.

  9. Determination of the effective transverse coherence of the neutron wave packet as employed in reflectivity investigations of condensed-matter structures. II. Analysis of elastic scattering using energy-gated wave packets with an application to neutron reflection from ruled gratings

    Science.gov (United States)

    Berk, N. F.

    2014-03-01

    We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.

  10. Electromagnetic wave scattering by many small particles

    International Nuclear Information System (INIS)

    Ramm, A.G.

    2007-01-01

    Scattering of electromagnetic waves by many small particles of arbitrary shapes is reduced rigorously to solving linear algebraic system of equations bypassing the usual usage of integral equations. The matrix elements of this linear algebraic system have physical meaning. They are expressed in terms of the electric and magnetic polarizability tensors. Analytical formulas are given for calculation of these tensors with any desired accuracy for homogeneous bodies of arbitrary shapes. An idea to create a 'smart' material by embedding many small particles in a given region is formulated

  11. Elastic wave scattering methods: assessments and suggestions

    International Nuclear Information System (INIS)

    Gubernatis, J.E.

    1985-01-01

    The author was asked by the meeting organizers to review and assess the developments over the past ten or so years in elastic wave scattering methods and to suggest areas of future research opportunities. He highlights the developments, focusing on what he feels were distinct steps forward in our theoretical understanding of how elastic waves interact with flaws. For references and illustrative figures, he decided to use as his principal source the proceedings of the various annual Reviews of Progress in Quantitative Nondestructive Evaluation (NDE). These meetings have been the main forum not only for presenting results of theoretical research but also for demonstrating the relevance of the theoretical research for the design and interpretation of experiment. In his opinion a quantitative NDE is possible only if this relevance exists, and his major objective is to discuss and illustrate the degree to which relevance has developed

  12. Medium energy ion scattering (MEIS)

    International Nuclear Information System (INIS)

    Dittmann, K.; Markwitz, A.

    2009-01-01

    This report gives an overview about the technique and experimental study of medium energy ion scattering (MEIS) as a quantitative technique to determine and analyse the composition and geometrical structure of crystalline surfaces and near surface-layers by measuring the energy and yield of the backscattered ions. The use of a lower energy range of 50 to 500 keV accelerated ions impinging onto the target surface and the application of a high-resolution electrostatic energy analyser (ESA) makes medium energy ion scattering spectroscopy into a high depth resolution and surface-sensitive version of RBS with less resulting damage effects. This report details the first steps of research in that field of measurement technology using medium energetic backscattered ions detected by means of a semiconductor radiation detector instead of an ESA. The study of medium energy ion scattering (MEIS) has been performed using the 40 keV industrial ion implanter established at GNS Sciences remodelled with supplementary high voltage insulation for the ion source in order to apply voltages up to 45 kV, extra apertures installed in the beamline and sample chamber in order to set the beam diameter accurately, and a semiconductor radiation detector. For measurement purposes a beam of positive charged helium ions accelerated to an energy of about 80 keV has been used impinging onto target surfaces of lead implanted into silicon (PbSi), scandium implanted into aluminium (ScAl), aluminium foil (Al) and glassy carbon (C). First results show that it is possible to use the upgraded industrial implanter for medium energy ion scattering. The beam of 4 He 2+ with an energy up to 88 keV has been focussed to 1 mm in diameter. The 5 nA ion beam hit the samples under 2 x 10 -8 mbar. The results using the surface barrier detector show scattering events from the samples. Cooling of the detector to liquid nitrogen temperatures reduced the electronic noise in the backscattering spectrum close to zero. A

  13. Damping and scattering of electromagnetic waves by small ferrite spheres suspended in an insulator

    Science.gov (United States)

    Englert, Gerald W.

    1992-01-01

    The intentional degradation of electromagnetic waves by their penetration into a media comprised of somewhat sparsely distributed energy absorbing ferrite spheres suspended in an electrical insulator is investigated. Results are presented in terms of generalized parameters involving wave length and sphere size, sphere resistivity, permeability, and spacing; their influence on dissipation of wave power by eddy currents, magnetic hysteresis, and scattering is shown.

  14. The Wave Energy Device

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Tedd, James William

    2006-01-01

    's first offshore wave energy converter. During this period an extensive measuring program has established the background for optimal design of the structure and regulation of the power take off system. Planning for full scale deployment of a 7 MW unit within the next 2 years is in progress. The prototype...

  15. Positron scattering by atomic hydrogen at intermediate energies

    International Nuclear Information System (INIS)

    Higgins, K.; Burke, P.G.; Walters, H.R.J.

    1990-01-01

    Results of an accurate calculation based upon the intermediate energy R-matrix theory are reported for elastic scattering of positrons by atomic hydrogen. T-matrix elements for both low and intermediate energy scattering are evaluated for the S e , P o , D e and F o partial wave symmetries. The low-energy elastic phaseshifts are found to be in good agreement with previous accurate variational calculations. Using an optical potential approach to include the effect of the higher partial waves, elastic and total cross sections are presented for energies ranging from near threshold to 3.7 Rydbergs. (author)

  16. Electromagnetic wave scattering by aerial and ground radar objects

    CERN Document Server

    Sukharevsky, Oleg I

    2014-01-01

    Electromagnetic Wave Scattering by Aerial and Ground Radar Objects presents the theory, original calculation methods, and computational results of the scattering characteristics of different aerial and ground radar objects. This must-have book provides essential background for computing electromagnetic wave scattering in the presence of different kinds of irregularities, as well as Summarizes fundamental electromagnetic statements such as the Lorentz reciprocity theorem and the image principleContains integral field representations enabling the study of scattering from various layered structur

  17. Scattering of Rossby and Poincare waves off rough lateral boundaries

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A; Prahalad, Y.S.; Sengupta, D.

    Unified treatment of wave scattering from a rough boundary, which was originally developed by Nakayama et al. is presented. The stationary nature of the boundary process is used to show that the wave field is also stationary, and therefore can...

  18. Low-energy pion-nucleon scattering

    International Nuclear Information System (INIS)

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    1998-01-01

    An analysis of low-energy charged pion-nucleon data from recent π ± p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f 2 =0.0756±0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P 31 and P 13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided. copyright 1998 The American Physical Society

  19. Energy from the waves

    CERN Document Server

    Ross, D

    2012-01-01

    Revised and substantially expanded to include the latest developments in the field, the second edition of this popular book provides a concise, non-technical account of the historical background and current research and development in the field of wave energy and its planned utilisation. It explains in simple terms the technology involved and describes the new inventions, devices and discoveries which led wave energy to be regarded as a significant future source of alternative power. The author recounts the major events leading up to today's development; the roles played by the principal characters involved, inventors, engineers and politicians and the inevitable struggle which all pioneers must face. The book concludes by discussing the environmental implications, the political conflicts and the problems which lie ahead. Also included, is a useful glossary of terms and a selected bibliography of important technical reports and further sources of information.

  20. Scattering of ECRF waves by edge density fluctuations and blobs

    Directory of Open Access Journals (Sweden)

    Ram Abhay K.

    2015-01-01

    Full Text Available The scattering of electron cyclotron waves by density blobs embedded in the edge region of a fusion plasma is studied using a full-wave model. The full-wave theory is a generalization of the usual approach of geometric optics ray scattering by blobs. While the latter allows for only refraction of waves, the former, more general formulation, includes refraction, reflection, and diffraction of waves. Furthermore, the geometric optics, ray tracing, model is limited to blob densities that are slightly different from the background plasma density. Observations in tokamak experiments show that the fluctuating density differs from the background plasma density by 20% or more. Thus, the geometric optics model is not a physically realistic model of scattering of electron cyclotron waves by plasma blobs. The differences between the ray tracing approach and the full-wave approach to scattering are illustrated in this paper.

  1. On scattering of electromagnetic waves by a wormhole

    International Nuclear Information System (INIS)

    Kirillov, A.A.; Savelova, E.P.

    2012-01-01

    We consider scattering of a plane electromagnetic wave by a wormhole. It is found that the scattered wave is depolarized and has a specific interference picture depending on parameters of the wormhole and the distance to the observer. It is proposed that such features can be important in the direct search of wormholes.

  2. On scattering of electromagnetic waves by a wormhole

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, A.A., E-mail: ka98@mail.ru [Dubna International University of Nature, Society and Man, Universitetskaya Str. 19, Dubna, 141980 (Russian Federation); Savelova, E.P. [Dubna International University of Nature, Society and Man, Universitetskaya Str. 19, Dubna, 141980 (Russian Federation)

    2012-04-20

    We consider scattering of a plane electromagnetic wave by a wormhole. It is found that the scattered wave is depolarized and has a specific interference picture depending on parameters of the wormhole and the distance to the observer. It is proposed that such features can be important in the direct search of wormholes.

  3. Support minimized inversion of acoustic and elastic wave scattering

    International Nuclear Information System (INIS)

    Safaeinili, A.

    1994-01-01

    This report discusses the following topics on support minimized inversion of acoustic and elastic wave scattering: Minimum support inversion; forward modelling of elastodynamic wave scattering; minimum support linearized acoustic inversion; support minimized nonlinear acoustic inversion without absolute phase; and support minimized nonlinear elastic inversion

  4. Rays, waves, and scattering topics in classical mathematical physics

    CERN Document Server

    Adam, John A

    2017-01-01

    This one-of-a-kind book presents many of the mathematical concepts, structures, and techniques used in the study of rays, waves, and scattering. Panoramic in scope, it includes discussions of how ocean waves are refracted around islands and underwater ridges, how seismic waves are refracted in the earth's interior, how atmospheric waves are scattered by mountains and ridges, how the scattering of light waves produces the blue sky, and meteorological phenomena such as rainbows and coronas. Rays, Waves, and Scattering is a valuable resource for practitioners, graduate students, and advanced undergraduates in applied mathematics, theoretical physics, and engineering. Bridging the gap between advanced treatments of the subject written for specialists and less mathematical books aimed at beginners, this unique mathematical compendium features problems and exercises throughout that are geared to various levels of sophistication, covering everything from Ptolemy's theorem to Airy integrals (as well as more technica...

  5. Proton scattering at intermediate energies

    International Nuclear Information System (INIS)

    Chaumeaux, A.; Layly, V.; Schaeffer, R.

    1977-01-01

    This article is devoted to the analysis of the most recent Saclay data of elastic and inelastic proton scattering on nuclei at incident energies around 1GeV ( 16 O, the Ca isotopes, the Ni isotopes, 90 Zr and 208 Pb). Various theories (Impulse or Glauber approximation) are comapred. It is shown that the reaction mechanism is very well understood at 1GeV and that, at these energies, absorption and distortion is small enough, so one can extract nuclear densities from the experiment. In particular, the shape of the neutron densities is given, and compared to the Hartree-Fock predictions. The uncertainties, especially in the determination of the neutron radii are discussed [fr

  6. Scattering of electromagnetic waves by a traversable wormhole

    Directory of Open Access Journals (Sweden)

    B. Nasr Esfahani

    2005-09-01

    Full Text Available   Replacing the wormhole geometry with an equivalent medium using the perturbation theory of scattering and the Born approximation, we have calculated the differential scattering cross section of electromagnetic waves by a traversable wormhole. It is shown that scattering at long wavelenghts can essentially distinguish wormhole from ordinary scattering object. Some of the zeros of the scattering cross section are determined which can be used for estimating the radius of the throat of wormholes. The known result that in this kind of scattering the linear polarization remains unchanged is verified here.

  7. Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis

    Science.gov (United States)

    Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.

  8. Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory

    Science.gov (United States)

    Zeng, Yuehua

    2017-01-01

    This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.

  9. Nonlinear Scattering of VLF Waves in the Radiation Belts

    Science.gov (United States)

    Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish

    2014-10-01

    Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.

  10. Elastic positron-cadmium scattering at low energies

    International Nuclear Information System (INIS)

    Bromley, M. W. J.; Mitroy, J.

    2010-01-01

    The elastic and annihilation cross sections for positron-cadmium scattering are reported up to the positronium-formation threshold (at 2.2 eV). The low-energy phase shifts for the elastic scattering of positrons from cadmium were derived from the bound and pseudostate energies of a very large basis configuration-interaction calculation of the e + -Cd system. The s-wave binding energy is estimated to be 126±42 meV, with a scattering length of A scat =(14.2±2.1)a 0 , while the threshold annihilation parameter, Z eff , was 93.9±26.5. The p-wave phase shift exhibits a weak shape resonance that results in a peak Z eff of 91±17 at a collision energy of about 490±50 meV.

  11. Low energy scattering with a nontrivial pion

    International Nuclear Information System (INIS)

    Fariborz, Amir H.; Jora, Renata; Schechter, Joseph

    2007-01-01

    An earlier calculation in a generalized linear sigma model showed that the well-known current algebra formula for low energy pion-pion scattering held even though the massless Nambu Goldstone pion contained a small admixture of a two-quark two-antiquark field. Here we turn on the pion mass and note that the current algebra formula no longer holds exactly. We discuss this small deviation and also study the effects of a SU(3) symmetric quark mass type term on the masses and mixings of the eight SU(3) multiplets in the model. We calculate the s-wave scattering lengths, including the beyond current algebra theorem corrections due to the scalar mesons, and observe that the effect of the scalar mesons is to improve the agreement with experiment. In the process, we uncover the way in which linear sigma models give controlled corrections (due to the presence of scalar mesons) to the current algebra scattering formula. Such a feature is commonly thought to exist only in the nonlinear sigma model approach

  12. Observation of spin-wave dispersion in Nd-Fe-B magnets using neutron Brillouin scattering

    International Nuclear Information System (INIS)

    Ono, K.; Inami, N.; Saito, K.; Takeichi, Y.; Kawana, D.; Yokoo, T.; Itoh, S.; Yano, M.; Shoji, T.; Manabe, A.; Kato, A.; Kaneko, Y.

    2014-01-01

    The low-energy spin-wave dispersion in polycrystalline Nd-Fe-B magnets was observed using neutron Brillouin scattering (NBS). Low-energy spin-wave excitations for the lowest acoustic spin-wave mode were clearly observed. From the spin-wave dispersion, we were able to determine the spin-wave stiffness constant D sw (100.0 ± 4.9 meV.Å 2 ) and the exchange stiffness constant A (6.6 ± 0.3 pJ/m)

  13. Virtual Singular Scattering of Electromagnetic Waves in Transformation Media Concept

    Directory of Open Access Journals (Sweden)

    M. Y. Barabanenkov

    2012-07-01

    Full Text Available If a scatterer and an observation point (receive both approach the so-called near field zone of a source of electromagnetic waves, the scattering process becomes singular one which is mathematically attributed to the spatial singularity of the free space Green function at the origin. Starting from less well known property of left-handed material slab to transfer the singularity of the free space Green function by implementing coordinate transformation, we present a phenomenon of virtual singular scattering of electromagnetic wave on an inhomogeneity located in the volume of left – handed material slab. Virtual singular scattering means that a scatterer is situated only virtually in the near field zone of a source, being, in fact, positioned in the far field zone. Such a situation is realized if a scatterer is embedded into a flat Veselago’s lens and approaches the lens’s inner focus because a slab of Veselago medium produces virtual sources inside and behind the slab and virtual scatterer (as a source of secondary waves from both slab sides. Considering a line-like dielectric scatterer we demonstrate that the scattering efficiency is proportional to product of singular quasistatic parts of two empty space Green functions that means a multiplicative quasistatic singularity of the Green function for a slab of inhomogeneous Veselago medium. We calculate a resonance value of the scattering amplitude in the regime similar to the known Mie resonance scattering.

  14. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering

    Science.gov (United States)

    Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik

    2018-05-01

    The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.

  15. On lower hybrid wave scattering by plasma density fluctuations

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1988-01-01

    The scattering of lower hybrid waves on plasma density fluctuations in a thin turbulent layer at the plasma periphery is studied numerically. The lower hybrid waves are supposed to be radiated by a four-waveguide grill used on the CASTOR tokamak. A great number of calculated scattered wave spectra show that the scattered spectrum shifts to larger values of the parallel-to-magnetic-field component of the wave vector (to slower waves) with increasing central plasma density and with the decreasing safety factor at the boundary. As known, this shift of the wave spectra results in a decrease in current drive efficiency. The current drive efficiency will hence decrease with growing plasma density and with decreasing safety factor. (J.U.). 2 figs., 4 refs

  16. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...

  17. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...

  18. Wave energy: a Pacific perspective.

    Science.gov (United States)

    Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen

    2012-01-28

    This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy.

  19. Cooperative scattering of scalar waves by optimized configurations of point scatterers

    Science.gov (United States)

    Schäfer, Frank; Eckert, Felix; Wellens, Thomas

    2017-12-01

    We investigate multiple scattering of scalar waves by an ensemble of N resonant point scatterers in three dimensions. For up to N = 21 scatterers, we numerically optimize the positions of the individual scatterers, to maximize the total scattering cross section for an incoming plane wave, on the one hand, and to minimize the decay rate associated to a long-lived scattering resonance, on the other. In both cases, the optimum is achieved by configurations where all scatterers are placed on a line parallel to the direction of the incoming plane wave. The associated maximal scattering cross section increases quadratically with the number of scatterers for large N, whereas the minimal decay rate—which is realized by configurations that are not the same as those that maximize the scattering cross section—decreases exponentially as a function of N. Finally, we also analyze the stability of our optimized configurations with respect to small random displacements of the scatterers. These results demonstrate that optimized configurations of scatterers bear a considerable potential for applications such as quantum memories or mirrors consisting of only a few atoms.

  20. Scattering amplitude of ultracold atoms near the p-wave magnetic Feshbach resonance

    International Nuclear Information System (INIS)

    Zhang Peng; Naidon, Pascal; Ueda, Masahito

    2010-01-01

    Most of the current theories on the p-wave superfluid in cold atomic gases are based on the effective-range theory for the two-body scattering, where the low-energy p-wave scattering amplitude f 1 (k) is given by f 1 (k)=-1/[ik+1/(Vk 2 )+1/R]. Here k is the incident momentum, V and R are the k-independent scattering volume and effective range, respectively. However, due to the long-range nature of the van der Waals interaction between two colliding ultracold atoms, the p-wave scattering amplitude of the two atoms is not described by the effective-range theory [J. Math. Phys. 4, 54 (1963); Phys. Rev. A 58, 4222 (1998)]. In this paper we provide an explicit calculation for the p-wave scattering of two ultracold atoms near the p-wave magnetic Feshbach resonance. We show that in this case the low-energy p-wave scattering amplitude f 1 (k)=-1/[ik+1/(V eff k 2 )+1/(S eff k)+1/R eff ] where V eff , S eff , and R eff are k-dependent parameters. Based on this result, we identify sufficient conditions for the effective-range theory to be a good approximation of the exact scattering amplitude. Using these conditions we show that the effective-range theory is a good approximation for the p-wave scattering in the ultracold gases of 6 Li and 40 K when the scattering volume is enhanced by the resonance.

  1. ΠN scattering at low energies

    International Nuclear Information System (INIS)

    Menezes, A.M.M.

    1985-01-01

    The pion-nucleon scattering for energies up to 300 MeV is studied by means of a theoretical model based on chiral symmetry, implemented by effective lagrangians. The interaction between the pion and the nucleon is mediated by only four particles: nucleon, delta, rho e sigma. The amplitudes associated to the delta and sigma contain free parameters, that must be extracted from experiment. The set of values obtained from fits below and above threshold disagree, indicating that, in the context of the model, a unified description in both regions is not possible. The results above threshold are sensitive to the method of unitarization employed. The method adopted in this work has a simple physical meaning and the ressonating wave associated to the delta is quite well reproduced. (Author) [pt

  2. Scattering of intermediate energy protons

    International Nuclear Information System (INIS)

    Chaumeaux, Alain.

    1980-06-01

    The scattering of 1 GeV protons appears to be a powerful means of investigating nuclear matter. We worked with SPESI and the formalism of Kerman-Mc Manus and Thaler. The amplitude of nucleon-nucleon scattering was studied as were the aspects of 1 GeV proton scattering (multiple scattering, absorption, spin-orbit coupling, N-N amplitude, KMT-Glauber comparison, second order effects). The results of proton scattering on 16 O, the isotopes of calcium, 58 Ni, 90 Zr and 208 Pb are given [fr

  3. Scattering of radio frequency waves by blob-filaments

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.

    2010-01-01

    Radio frequency waves used for heating and current drive in magnetic confinement experiments must traverse the scrape-off-layer (SOL) and edge plasma before reaching the core. The edge and SOL plasmas are strongly turbulent and intermittent in both space and time. As a first approximation, the SOL can be treated as a tenuous background plasma upon which denser filamentary field-aligned blobs of plasma are superimposed. The blobs are approximately stationary on the rf time scale. The scattering of plane waves in the ion-cyclotron to lower-hybrid frequency range from a cylindrical blob is treated here in the cold plasma fluid model. Scattering widths are derived for incident fast and slow waves, and the scattered power fraction is estimated. Processes such as scattering-induced mode conversion, scattering resonances, and shadowing are investigated.

  4. Numerical simulation of scattering wave imaging in a goaf

    Institute of Scientific and Technical Information of China (English)

    Li Juanjuan; Pan Dongming; Liao Taiping; Hu Mingshun; Wang Linlin

    2011-01-01

    Goafs are threats to safe mining. Their imaging effects or those of other complex geological bodies are often poor in conventional reflected wave images. Hence, accurate detection of goals has become an important problem, to be solved with a sense of urgency. Based on scattering theory, we used an equivalent offset method to extract Common Scattering Point gathers, in order to analyze different scattering wave characteristics between Common Scattering Point and Common Mid Point gathers and to compare stack and migration imaging effects. Our research results show that the scattering wave imaging method is more efficient than the conventional imaging method and is therefore a more effective imaging method for detecting goats and other complex geological bodies. It has important implications for safe mining procedures and infrastructures.

  5. Theoretical interpretation of medium energy nucleon nucleus inelastic scattering

    International Nuclear Information System (INIS)

    Lagrange, Christian

    1970-06-01

    A theoretical study is made of the medium energy nucleon-nucleus inelastic scattering (direct interaction), by applying the distorted wave Born approximation such as can be deduced from the paired equation method. It is applied to the interpretation of the inelastic scattering of 12 MeV protons by 63 Cu; this leads us to make use of different sets of wave functions to describe the various states of the target nucleus. We analyze the nature of these states and the shape of the nucleon-nucleus interaction potential, and we compare the results with those obtained from other theoretical and experimental work. (author) [fr

  6. Scattering at zero energy for attractive homogeneous potentials

    DEFF Research Database (Denmark)

    Derezinski, Jan; Skibsted, Erik

    2009-01-01

    We compute up to a compact term the zero-energy scattering matrix for a class of potentials asymptotically behaving as −γ|x|−μ with 0 < μ < 2 and γ > 0. It turns out to be the propagator for the wave equation on the sphere at time ....

  7. Propagation and scattering of waves in dusty plasmas

    International Nuclear Information System (INIS)

    Vladimirov, S.V.

    1994-01-01

    Wave propagation and scattering in dusty plasmas with variable charges on dust particles are considered. New kinetic theory including instant charge of a dust particle as a new independent variable is further developed. (author). 9 refs

  8. Scattering of acoustic waves by small crustaceans

    Science.gov (United States)

    Andreeva, I. B.; Tarasov, L. L.

    2003-03-01

    Features of underwater sound scattering by small crustaceans are considered. The scattering data are obtained with the use of unique instrumentation that allows one to measure quantitative scattering characteristics (backscattering cross sections and angular scattering patterns) for crustaceans of different sizes, at different frequencies (20 200 kHz) and different insonification aspects. A computational model of crustaceans is considered with allowance for both the soft tissues of the main massive part of the animal's body and the stiff armour. The model proves to be advantageous for explaining some scattering features observed in the experiments. The scattering cross sections of crustaceans measured by other researchers are presented in a unified form appropriate for comparison. Based on such a quantitative comparison, relatively simple approximate empirical formulas are proposed for estimating the backscattering cross sections of small (within several centimeters) marine crustaceans in a broad frequency range.

  9. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Louise O’Boyle

    2017-01-01

    Full Text Available Wave energy converters (WECs inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An experimental campaign to map, at high resolution, the wave field variation around arrays of 5 oscillating water column WECs and a methodology for extracting scattered and radiated waves is presented. The results highlight the importance of accounting for the full extent of the WEC behavior when assessing impacts on the wave field. The effect of radiated waves on the wave field is not immediately apparent when considering changes to the entire wave spectrum, nor when observing changes in wave climate due to scattered and radiated waves superimposed together. The results show that radiated waves may account for up to 50% of the effects on wave climate in the near field in particular operating conditions.

  10. 1D energy transport in a strongly scattering laboratory model

    International Nuclear Information System (INIS)

    Wijk, Kasper van; Scales, John A.; Haney, Matthew

    2004-01-01

    Radiative transfer (RT) theory is often invoked to describe energy propagation in strongly scattering media. Fitting RT to measured wave field intensities is rather different at late times, when the transport is diffusive, than at intermediate times (around one extinction mean free time), when ballistic and diffusive behavior coexist. While there are many examples of late-time RT fits, we describe ultrasonic multiple scattering measurements with RT over the entire range of times--from ballistic to diffusive. In addition to allowing us to retrieve the scattering and absorption mean free paths independently, our results also support theoretical predictions in 1D that suggest an intermediate regime of diffusive (nonlocalized) behavior

  11. Scattering of Electromagnetic Waves by Drift Vortex in Plasma

    International Nuclear Information System (INIS)

    Wang Dong; Chen Yinhua; Wang Ge

    2008-01-01

    In a quasi-two-dimensional model, the scattering of incident ordinary electromagnetic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (k i a || 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approximation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then k i a || 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.

  12. How a change in the interaction potential affects the p-wave scattering volume

    International Nuclear Information System (INIS)

    Jamieson, M J; Dalgarno, A

    2012-01-01

    We derive a simple expression for the change in the s-wave scattering length in terms of zero-energy wavefunctions, we generalize it to obtain an expression for the change in the p-wave scattering volume and we use both expressions to derive the first order differential equations of variable phase theory that are satisfied by the closely related accumulated scattering length and volume. We provide numerical demonstrations for the example of a pair of hydrogen atoms interacting via the X 1 Σ + g molecular state. (fast track communication)

  13. Seismic Evidence for Possible Slab Melting from Strong Scattering Waves

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2011-01-01

    Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.

  14. THE SIMULATION OF SCATTERING OF ELECTROMAGNETIC WAVES ON ANGULAR STRUCTURES.

    Directory of Open Access Journals (Sweden)

    P. A. Preobrazhensky

    2017-02-01

    Full Text Available The paper discusses the characteristics of scattering of electromagnetic waves on the angular diffraction structures. The solution of the problem is based on the method of integral equations. A comparative analysis of the scattering characteristics of structures with different shape is carried out.

  15. Scattering of Lamb waves in a composite plate

    Science.gov (United States)

    Bratton, Robert; Datta, Subhendu; Shah, Arvind

    1991-01-01

    A combined analytical and finite element technique is developed to gain a better understanding of the scattering of elastic waves by defects. This hybrid method is capable of predicting scattered displacements from arbitrary shaped defects as well as inclusions of different material. The continuity of traction and displacements at the boundaries of the two areas provided the necessary equations to find the nodal displacements and expansion coefficients. Results clearly illustrate the influence of increasing crack depth on the scattered signal.

  16. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves

    International Nuclear Information System (INIS)

    Erofeev, V. I.

    2015-01-01

    The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena

  17. Resonance scattering of Rayleigh waves by a mass defect

    International Nuclear Information System (INIS)

    Croitoru, M.; Grecu, D.

    1978-06-01

    The resonance scattering of an incident Rayleigh wave by a mass defect extending over a small cylindrical region situated in the surface of a semi-infinite isotropic, elastic medium is investigated by means of the Green's function method. The form of the differential cross-section for the scattering into different channels exhibits a strong resonance phenomenon at two frequencies. The expression of the resonance frequencies as well as of the corresponding widths depends on the relative change in mass density. The main assumption that the wavelengths of incoming and scattered wave are large compared to the defect dimension implies a large relative mass-density change. (author)

  18. Scattering for wave equations with dissipative terms in layered media

    Directory of Open Access Journals (Sweden)

    Mitsuteru Kadowaki

    2011-05-01

    Full Text Available In this article, we show the existence of scattering solutions to wave equations with dissipative terms in layered media. To analyze the wave propagation in layered media, it is necessary to handle singular points called thresholds in the spectrum. Our main tools are Kato's smooth perturbation theory and some approximate operators.

  19. Nonlinear diffuse scattering of the random-phased wave

    International Nuclear Information System (INIS)

    Kato, Yoshiaki; Arinaga, Shinji; Mima, Kunioki.

    1983-01-01

    First experimental observation of the nonlinear diffuse scattering is reported. This new effect was observed in the propagation of the random-phased wave through a nonlinear dielectric medium. This effect is ascribed to the diffusion of the wavevector of the electro-magnetic wave to the lateral direction due to the randomly distributed nonlinear increase in the refractive index. (author)

  20. Pulsating aurora from electron scattering by chorus waves

    Science.gov (United States)

    Kasahara, S.; Miyoshi, Y.; Yokota, S.; Mitani, T.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Matsuoka, A.; Kazama, Y.; Frey, H. U.; Angelopoulos, V.; Kurita, S.; Keika, K.; Seki, K.; Shinohara, I.

    2018-02-01

    Auroral substorms, dynamic phenomena that occur in the upper atmosphere at night, are caused by global reconfiguration of the magnetosphere, which releases stored solar wind energy. These storms are characterized by auroral brightening from dusk to midnight, followed by violent motions of distinct auroral arcs that suddenly break up, and the subsequent emergence of diffuse, pulsating auroral patches at dawn. Pulsating aurorae, which are quasiperiodic, blinking patches of light tens to hundreds of kilometres across, appear at altitudes of about 100 kilometres in the high-latitude regions of both hemispheres, and multiple patches often cover the entire sky. This auroral pulsation, with periods of several to tens of seconds, is generated by the intermittent precipitation of energetic electrons (several to tens of kiloelectronvolts) arriving from the magnetosphere and colliding with the atoms and molecules of the upper atmosphere. A possible cause of this precipitation is the interaction between magnetospheric electrons and electromagnetic waves called whistler-mode chorus waves. However, no direct observational evidence of this interaction has been obtained so far. Here we report that energetic electrons are scattered by chorus waves, resulting in their precipitation. Our observations were made in March 2017 with a magnetospheric spacecraft equipped with a high-angular-resolution electron sensor and electromagnetic field instruments. The measured quasiperiodic precipitating electron flux was sufficiently intense to generate a pulsating aurora, which was indeed simultaneously observed by a ground auroral imager.

  1. Platonic scattering cancellation for bending waves in a thin plate

    KAUST Repository

    Farhat, Mohamed

    2014-04-10

    We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.

  2. Platonic scattering cancellation for bending waves in a thin plate

    KAUST Repository

    Farhat, Mohamed; Chen, P.-Y.; Bagci, Hakan; Enoch, S.; Guenneau, S.; Alù , A.

    2014-01-01

    We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.

  3. Matter-wave scattering and guiding by atomic arrays

    International Nuclear Information System (INIS)

    Vaishnav, J. Y.; Walls, J. D.; Apratim, M.; Heller, E. J.

    2007-01-01

    We investigate the possibility that linear arrays of atoms can guide matter waves, much as fiber optics guide light. We model the atomic line as a quasi-one-dimensional array of s-wave point scatterers embedded in two-dimensions. Our theoretical study reveals how matter-wave guiding arises from the interplay of scattering phenomena with bands and conduction along the array. We discuss the conditions under which a straight or curved array of atoms can guide a beam focused at one end of the array

  4. Approximate scattering wave functions for few-particle continua

    International Nuclear Information System (INIS)

    Briggs, J.S.

    1990-01-01

    An operator identity which allows the wave operator for N particles interacting pairwise to be expanded as products of operators in which fewer than N particles interact is given. This identity is used to derive appproximate scattering wave functions for N-particle continua that avoid certain difficulties associated with Faddeev-type expansions. For example, a derivation is given of a scattering wave function used successfully recently to describe the three-particle continuum occurring in the electron impact ionization of the hydrogen atom

  5. P-wave scattering and the distribution of heterogeneity around Etna volcano

    Directory of Open Access Journals (Sweden)

    Toni Zieger

    2016-09-01

    Full Text Available Volcanoes and fault zones are areas of increased heterogeneity in the Earth crust that leads to strong scattering of seismic waves. For the understanding of the volcanic structure and the role of attenuation and scattering processes it is important to investigate the distribution of heterogeneity. We used the signals of air-gun shots to investigate the distribution of heterogeneity around Mount Etna. We devise a new methodology that is based on the coda energy ratio which we define as the ratio between the energy of the direct P-wave and the energy in a later coda window. This is based on the basic assumption that scattering caused by heterogeneity removes energy from the direct P-waves. We show that measurements of the energy ratio are stable with respect to changes of the details of the time windows definitions. As an independent proxy of the scattering strength along the ray path we measure the peak delay time of the direct P-wave. The peak delay time is well correlated with the coda energy ratio. We project the observation in the directions of the incident rays at the stations. Most notably is an area with increased wave scattering in the volcano and east of it. The strong heterogeneity found supports earlier observations and confirms the possibility to use P-wave sources for the determination of scattering properties. We interpret the extension of the highly heterogeneous zone towards the east as a potential signature of inelastic deformation processes induced by the eastward sliding of flank of the volcano.

  6. Scattering of quantized solitary waves in the cubic Schrodinger equation

    International Nuclear Information System (INIS)

    Dolan, L.

    1976-01-01

    The quantum mechanics for N particles interacting via a delta-function potential in one space dimension and one time dimension is known. The second-quantized description of this system has for its Euler-Lagrange equations of motion the cubic Schrodinger equation. This nonlinear differential equation supports solitary wave solutions. A quantization of these solitons reproduces the weak-coupling limit to the known quantum mechanics. The phase shift for two-body scattering and the energy of the N-body bound state is derived in this approximation. The nonlinear Schrodinger equation is contrasted with the sine-Gordon theory in respect to the ideas which the classical solutions play in the description of the quantum states

  7. The scattering properties of anisotropic dielectric spheres on electromagnetic waves

    International Nuclear Information System (INIS)

    Chen Hui; Zhang Weiyi; Wang Zhenlin; Ming Naiben

    2004-01-01

    The scattering coefficients of spheres with dielectric anisotropy are calculated analytically in this paper using the perturbation method. It is found that the different modes of vector spherical harmonics and polarizations are coupled together in the scattering coefficients (c-matrix) in contrast to the isotropic case where all modes are decoupled from each other. The generalized c-matrix is then incorporated into our codes for a vector wave multiple scattering program; the preliminary results on face centred cubic structure show that dielectric anisotropy reduces the symmetry of the scattering c-matrix and removes the degeneracy in photonic band structures composed of isotropic dielectric spheres

  8. Pitch angle scattering of relativistic electrons from stationary magnetic waves: Continuous Markov process and quasilinear theory

    International Nuclear Information System (INIS)

    Lemons, Don S.

    2012-01-01

    We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitch angle scattering of high-energy electrons into the geomagnetic loss cone.

  9. Simplified solutions of the Cox-Thompson inverse scattering method at fixed energy

    International Nuclear Information System (INIS)

    Palmai, Tamas; Apagyi, Barnabas; Horvath, Miklos

    2008-01-01

    Simplified solutions of the Cox-Thompson inverse quantum scattering method at fixed energy are derived if a finite number of partial waves with only even or odd angular momenta contribute to the scattering process. Based on new formulae various approximate methods are introduced which also prove applicable to the generic scattering events

  10. Gravitational waves from a spinning particle scattered by a relativistic star: Axial mode case

    International Nuclear Information System (INIS)

    Tominaga, Kazuhiro; Saijo, Motoyuki; Maeda, Kei-ichi

    2001-01-01

    We use a perturbation method to study gravitational waves from a spinning test particle scattered by a relativistic star. The present analysis is restricted to axial modes. By calculating the energy spectrum, the wave forms, and the total energy and angular momentum of gravitational waves, we analyze the dependence of the emitted gravitational waves on particle spin. For a normal neutron star, the energy spectrum has one broad peak whose characteristic frequency corresponds to the angular velocity at the turning point (a periastron). Since the turning point is determined by the orbital parameter, there exists a dependence of the gravitational wave on particle spin. We find that the total energy of l=2 gravitational waves gets larger as the spin increases in the antiparallel direction to the orbital angular momentum. For an ultracompact star, in addition to such an orbital contribution, we find the quasinormal modes excited by a scattered particle, whose excitation rate to gravitational waves depends on the particle spin. We also discuss the ratio of the total angular momentum to the total energy of gravitational waves and explain its spin dependence

  11. Wave energy absorption by ducks

    OpenAIRE

    Kurniawan, Adi

    2017-01-01

    We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle.

  12. Wave energy absorption by ducks

    DEFF Research Database (Denmark)

    Kurniawan, Adi

    2018-01-01

    We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle....

  13. Wave Dragon Wave Energy Converters Used as Coastal Protection

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter

    2011-01-01

    This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons....

  14. Spin wave vortex from the scattering on Bloch point solitons

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elías, R.G., E-mail: gabriel.elias@usach.cl [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, A.S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile)

    2015-12-15

    The interaction of a spin wave with a stationary Bloch point is studied. The topological non-trivial structure of the Bloch point manifests in the propagation of spin waves endowing them with a gauge potential that resembles the one associated with the interaction of a magnetic monopole and an electron. By pursuing this analogy, we are led to the conclusion that the scattering of spin waves and Bloch points is accompanied by the creation of a magnon vortex. Interference between such a vortex and a plane wave leads to dislocations in the interference pattern that can be measurable by means of magnon holography.

  15. Scattering of high energy electrons on deuteron

    International Nuclear Information System (INIS)

    Grossetete, B.

    1964-12-01

    The aim of this work is to obtain information on the neutron form factor from the study of the scattering of electrons on deuterium. The first part is dedicated to the theoretical study of the elastic and inelastic scattering. We introduce different form factors: Sachs form factor, the Pauli and Dirac form factors, they appear in the analytic expression of the scattering cross-section. We show how the deuteron form factors can be deduced from neutron's and proton's form factors. In the case of the inelastic scattering we show how the cross section can be broken into components associated to partial waves and we obtain different formulas for the inelastic cross-section based on the Breit formula or the Durand formalism. The second part is dedicated to the experiment setting of electron scattering on deuterium. The elastic scattering experiment has been made on solid or liquid CD 2 targets while inelastic scattering has been studied on a liquid target. We have used an electron beam produced by the Orsay linear accelerator and the scattered electrons have been analysed by a magnetic spectrometer and a Cerenkov detector. The results give a very low value (slightly positive)for the charge form factor of the neutron and a magnetic form factor for the neutron slightly below that of the proton [fr

  16. Impurity scattering in unconventional density waves: non-crossing approximation for arbitrary scattering rate

    International Nuclear Information System (INIS)

    Vanyolos, Andras; Dora, Balazs; Maki, Kazumi; Virosztek, Attila

    2007-01-01

    We present a detailed theoretical study on the thermodynamic properties of impure quasi-one-dimensional unconventional charge and spin density waves in the framework of mean-field theory. The impurities are of the ordinary non-magnetic type. Making use of the full self-energy that takes into account all ladder- and rainbow-type diagrams, we are able to calculate the relevant low temperature quantities for arbitrary scattering rates. These are the density of states, specific heat and the shift in the chemical potential. Our results therefore cover the whole parameter space: they include both the self-consistent Born and the resonant unitary limits, and most importantly give exact results in between

  17. Tunnel effect wave energy detection

    Science.gov (United States)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  18. Comparison of matrix methods for elastic wave scattering problems

    International Nuclear Information System (INIS)

    Tsao, S.J.; Varadan, V.K.; Varadan, V.V.

    1983-01-01

    This article briefly describes the T-matrix method and the MOOT (method of optimal truncation) of elastic wave scattering as they apply to A-D, SH- wave problems as well as 3-D elastic wave problems. Two methods are compared for scattering by elliptical cylinders as well as oblate spheroids of various eccentricity as a function of frequency. Convergence, and symmetry of the scattering cross section are also compared for ellipses and spheroidal cavities of different aspect ratios. Both the T-matrix approach and the MOOT were programmed on an AMDHL 470 computer using double precision arithmetic. Although the T-matrix method and MOOT are not always in agreement, it is in no way implied that any of the published results using MOOT are in error

  19. Influence of interface scattering on shock waves in heterogeneous solids

    International Nuclear Information System (INIS)

    Zhuang Shiming; Ravichandran, Guruswami; Grady, Dennis E.

    2002-01-01

    In heterogeneous media, the scattering due to interfaces between dissimilar materials play an important role in shock wave dissipation and dispersion. In this work the influence of interface scattering effect on shock waves was studied by impacting flyer plates onto periodically layered polycarbonate/6061 aluminum, polycarbonate/304 stainless steel and polycarbonate/glass composites. The experimental results (using VISAR and stress gauges) indicate that the rise time of the shock front decreases with increasing shock strength, and increases with increasing mechanical impedance mismatch between layers; the strain rate at the shock front increases by about the square of the shock stress. Experimental and numerical results also show that due to interface scattering effect the shock wave velocity in periodically layered composites decreases. In some cases the shock velocity of a layered heterogeneous composite can be lower than that of either of its components

  20. Waves energy comes to surface

    International Nuclear Information System (INIS)

    Guezel, J.Ch.

    2006-01-01

    The wave- or thalasso-energy, potentially as promising as wind energy, have started to develop in Europe. Great Britain has already a good experience in this domain but France shows also ambitions in this beginning industry with several projects in progress. This article makes an overview of the existing tide-, current- and wave-powered generators: tide mills, underwater hydro-turbines, immersed linear generators, air-compression systems, buoy systems, etc. (J.S.)

  1. Gravitational Waves and Dark Energy

    Directory of Open Access Journals (Sweden)

    Peter L. Biermann

    2014-12-01

    Full Text Available The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

  2. Distorted-wave Born approximation in the case of an optical scattering potential

    International Nuclear Information System (INIS)

    Mytnichenko, Sergey V.

    2005-01-01

    Application of the distorted-wave Born approximation in the conventional form developed for the case of a real scattering potential is shown to cause significant errors in calculating X-ray diffuse scattering from non-ideal crystals, superlattices, multilayers and other objects if energy dissipation (photoabsorption, inelastic scattering, and so on) is not negligible, or in other words, in the case of an optical (complex) scattering potential. We show how a correct expression for the X-ray diffuse-scattering cross-section can be obtained in this case. Generally, the diffuse-scattering cross-section from an optical potential is not T-invariant, i.e. the reciprocity principle is violated. Violations of T-invariance are more evident when the dynamical nature of the diffraction is more critical

  3. Transverse spin and transverse momentum in scattering of plane waves

    OpenAIRE

    Saha, Sudipta; Singh, Ankit K.; Ray, Subir K.; Banerjee, Ayan; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2016-01-01

    We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demon...

  4. Bound and scattering wave functions for a velocity-dependent Kisslinger potential for l>0

    International Nuclear Information System (INIS)

    Jaghoub, M.I.

    2002-01-01

    Using formal scattering theory, the scattering wave functions are extrapolated to negative energies corresponding to bound-state poles. It is shown that the ratio of the normalized scattering and the corresponding bound-state wave functions, at a bound-state pole, is uniquely determined by the bound-state binding energy. This simple relation is proved analytically for an arbitrary angular momentum quantum number l>0, in the presence of a velocity-dependent Kisslinger potential. The extrapolation relation is tested analytically by solving the Schroedinger equation in the p-wave case exactly for the scattering and the corresponding bound-state wave functions when the Kisslinger potential has the form of a square well. A numerical resolution of the Schroedinger equation in the p-wave case and of a square-well Kisslinger potential is carried out to investigate the range of validity of the extrapolated connection. It is found that the derived relation is satisfied best at low energies and short distances. (orig.)

  5. Pion deuteron scattering at intermediate energies

    International Nuclear Information System (INIS)

    Ferreira, E.M.

    1978-09-01

    A comparison is made of results of calculations of πd elastic scattering cross section using multiple scattering and three-body equations, in relation to their ability to reproduce the experimental data at intermediate energies. It is shown that the two methods of theoretical calculation give quite similar curves for the elastic differential cross sections, and that both fail in reproducing backward scattering data above 200MeV. The new accurate experimental data on πd total cross section as a function of the energy are confronted with the theoretical values obtained from the multiple scattering calculation through the optical theorem. Comparison is made between the values of the real part of the forward amplitude evaluated using dispersion relations and using the multiple scattering method [pt

  6. pp elastic scattering at LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, A.K.; Ferreira, E.; Kodama, T. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, C.P. 68528, Rio de Janeiro, RJ (Brazil)

    2014-11-15

    Using a unified analytic representation for the elastic scattering amplitudes of pp scattering valid for all energies above 20 GeV, the behavior of observables in the LHC collisions in the range √(s) = 2.76-14 TeV is discussed. After the precise description of dσ/dt at 7 TeV, we discuss the energy dependence of the amplitudes and expect that the proposed analytical forms give equally good predictions for the future experiments. (orig.)

  7. pp elastic scattering at LHC energies

    International Nuclear Information System (INIS)

    Kohara, A.K.; Ferreira, E.; Kodama, T.

    2014-01-01

    Using a unified analytic representation for the elastic scattering amplitudes of pp scattering valid for all energies above 20 GeV, the behavior of observables in the LHC collisions in the range √(s) = 2.76-14 TeV is discussed. After the precise description of dσ/dt at 7 TeV, we discuss the energy dependence of the amplitudes and expect that the proposed analytical forms give equally good predictions for the future experiments. (orig.)

  8. Scattering of Acoustic Waves from Ocean Boundaries

    Science.gov (United States)

    2015-09-30

    at the Target and Reverberation Experiment 2013 (TREX13),” in Proc. IEEE/OES Acoustics in Underwater Geosciences Symposium, Rio de Janeiro , Brazil...a Sandy Seabed at the Target and Reverberation Experiment 2013 (TREX13),” in Proc. IEEE/OES Acoustics in Underwater Geosciences Symposium, Rio de ... Janeiro , Brazil, July 2015. PRESENTATIONS Presenter: Isakson, M.J., Chotiros, N.P., Piper, J.N. and McNeese, A. “Acoustic Scattering from a Sandy Seabed

  9. Modeling traveling-wave Thomson scattering using PIConGPU

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander; Schramm, Ulrich; Cowan, Thomas; Bussmann, Michael [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Steiniger, Klaus; Pausch, Richard; Huebl, Axel [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universitaet Dresden (Germany)

    2016-07-01

    Traveling-wave Thomson scattering (TWTS) laser pulses are pulse-front tilted and dispersion corrected beams that enable all-optical free-electron lasers (OFELs) up to the hard X-ray range. Electrons in such a side-scattering geometry experience the TWTS laser field as a continuous plane wave over centimeter to meter interaction lengths. After briefly discussing which OFEL scenarios are currently numerically accessible, we detail implementation and tests of TWTS beams within PIConGPU (3D-PIC code) and show how numerical dispersion and boundary effects are kept under control.

  10. Theoretical comparison of light scattering and guided wave coupling in multilayer coated optical components with random interface roughness

    International Nuclear Information System (INIS)

    Elson, J.M.

    1995-01-01

    In this work, we use first-order perturbation theory to calculate and then compare the (1) angular distribution of incident light scattered from a multilayer-coated optical component and (2) the angular distribution of incident light coupled into guided waves supported by the multilayer component. The incident beam is assumed to be a monochromatic plane wave and the scattering/coupling is assumed to be caused by roughness at the interfaces of the optical component. Numerical results show that for high quality (low root mean square roughness) optical components, comparison of the relative amounts of incident energy (1) scattered out of the specular beam and (2) coupled into guided waves are comparable. It follows that the guided wave energy will further contribute to the scattered field via radiative decay or be converted to heat. Thus, this work can help provide an estimation of when guided wave coupling can occur along with the expected magnitude. (orig.)

  11. Electromagnetic and gravitational scattering at Planckian energies

    International Nuclear Information System (INIS)

    Das, S.; Majumdar, P.

    1994-11-01

    The scattering of pointlike particles at very large center of mass energies and fixed low momentum transfers, occurring due to both their electromagnetic and gravitational interactions is re-examined in the particular case when one of the particles carries magnetic charge. At Planckian center-of-mass energies, when gravitational dominance is normally expected, the presence of magnetic charge is shown to produce dramatic modifications to the scattering cross section as well as to the holomorphic structure of the scattering amplitude. (author). 20 refs

  12. Deuteron-deuteron elastic scattering at high energies

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Ali, S.

    1991-01-01

    The eikonal picture which has theoretical foundations in some areas of physics has been successful in explaining various aspects of elastic scattering at high energies. Chou and Yang first proposed a preliminary version of the eikonal model for hadron-hadron elastic scattering. The model is based on geometrical considerations in which hadrons are treated as extended objects. Elastic scattering then results from the propagation of attenuated wave function. By assuming that at high energies the scattering amplitude is purely imaginary and that the hadronic matter distribution is proportional to the charge distribution on protons, Durand and Lipes studied high energy pp scattering on the basis of this prestine model. Later on, the model was extended to other elastic reactions. However, a survey of literature shows that it has been successful only in the diffraction peak region. It has been shown that the pristine Chou-Yange model can explain the differential cross section for deuteron-deuteron elastic scattering at √s = 53 GeV in the diffraction peak region. In order to fit the large momentum transfer data, the generalized Chou-Yang model is used

  13. Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.

  14. Inelastic proton scattering at medium energy

    International Nuclear Information System (INIS)

    Love, W.G.

    1980-01-01

    Some of the most essential characteristics of the nucleon-nucleon interaction for probing nuclear structure at bombarding energies between 100 and 800 MeV are considered. With a local representation of the on-shell N-N t-matrix, data for a variety of specific transitions at IUCF and LAMPF energies are discussed with an emphasis on the nuclear structure information sampled by proton scattering. The importance of incorporating constraints on nuclear structure imposed by electron scattering is stressed. Some rather unique aspects of the (p,n) reaction at intermediate energies are discussed in terms of its energy dependence and nuclear structure sum rules. 11 figures

  15. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II: Inclusion of Exchange

    Science.gov (United States)

    Shertzer, Janine; Temkin, A.

    2003-01-01

    As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE), which can be reduced to a 2d partial differential equation (pde), was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation, which is reducible to a pair of coupled pde's. The resultant scattering amplitudes, both singlet and triplet, calculated as a function of energy are in excellent agreement with converged partial wave results.

  16. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II

    Science.gov (United States)

    Shertzer, J.; Temkin, A.

    2003-01-01

    As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE) can be reduced to a 2d partial differential equation (pde), and was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation. The resultant equation can be reduced to a pair of coupled pde's, to which the finite element method can still be applied. The resultant scattering amplitudes, both singlet and triplet, as a function of angle can be calculated for various energies. The results are in excellent agreement with converged partial wave results.

  17. Electron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Kingston, A.E.; Walters, H.R.J.

    1982-01-01

    The problems of intermediate energy scattering are approached from the low and high energy ends. At low intermediate energies difficulties associated with the use of pseudostates and correlation terms are discussed, special consideration being given to nonphysical pseudoresonances. Perturbation methods appropriate to high intermediate energies are described and attempts to extend these high energy approximations down to low intermediate energies are studied. It is shown how the importance of electron exchange effects develops with decreasing energy. The problem of assessing the 'effective completeness' of pseudostate sets at intermediate energies is mentioned and an instructive analysis of a 2p pseudostate approximation to elastic e - -H scattering is given. It is suggested that at low energies the Pauli Exclusion Principle can act to hide short range defects in pseudostate approximations. (author)

  18. Proposed electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  19. Scattering on plane waves and the double copy

    Science.gov (United States)

    Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan

    2018-01-01

    Perturbatively around flat space, the scattering amplitudes of gravity are related to those of Yang–Mills by colour-kinematic duality, under which gravitational amplitudes are obtained as the ‘double copy’ of the corresponding gauge theory amplitudes. We consider the question of how to extend this relationship to curved scattering backgrounds, focusing on certain ‘sandwich’ plane waves. We calculate the 3-point amplitudes on these backgrounds and find that a notion of double copy remains in the presence of background curvature: graviton amplitudes on a gravitational plane wave are the double copy of gluon amplitudes on a gauge field plane wave. This is non-trivial in that it requires a non-local replacement rule for the background fields and the momenta and polarization vectors of the fields scattering on the backgrounds. It must also account for new ‘tail’ terms arising from scattering off the background. These encode a memory effect in the scattering amplitudes, which naturally double copies as well.

  20. On analyticity of linear waves scattered by a layered medium

    Science.gov (United States)

    Nicholls, David P.

    2017-10-01

    The scattering of linear waves by periodic structures is a crucial phenomena in many branches of applied physics and engineering. In this paper we establish rigorous analytic results necessary for the proper numerical analysis of a class of High-Order Perturbation of Surfaces methods for simulating such waves. More specifically, we prove a theorem on existence and uniqueness of solutions to a system of partial differential equations which model the interaction of linear waves with a multiply layered periodic structure in three dimensions. This result provides hypotheses under which a rigorous numerical analysis could be conducted for recent generalizations to the methods of Operator Expansions, Field Expansions, and Transformed Field Expansions.

  1. Introduction to wave scattering, localization, and mesoscopic phenomena

    CERN Document Server

    Sheng, Ping

    1995-01-01

    This book gives readers a coherent picture of waves in disordered media, including multiple scattered waves. The book is intended to be self-contained, with illustrated problems and solutions at the end of each chapter to serve the double purpose of filling out the technical and mathematical details and giving the students exercises if used as a course textbook.The study of wave behavior in disordered media has applications in:Condensed matter physics (semi and superconductor nanostructures and mesoscopic phenomena)Materials science/analytical chemistry (analysis of composite and crystalline structures and properties)Optics and electronics (microelectronic and optoelectronic devices)Geology (seismic exploration of Earths subsurface)

  2. s -wave scattering length of a Gaussian potential

    Science.gov (United States)

    Jeszenszki, Peter; Cherny, Alexander Yu.; Brand, Joachim

    2018-04-01

    We provide accurate expressions for the s -wave scattering length for a Gaussian potential well in one, two, and three spatial dimensions. The Gaussian potential is widely used as a pseudopotential in the theoretical description of ultracold-atomic gases, where the s -wave scattering length is a physically relevant parameter. We first describe a numerical procedure to compute the value of the s -wave scattering length from the parameters of the Gaussian, but find that its accuracy is limited in the vicinity of singularities that result from the formation of new bound states. We then derive simple analytical expressions that capture the correct asymptotic behavior of the s -wave scattering length near the bound states. Expressions that are increasingly accurate in wide parameter regimes are found by a hierarchy of approximations that capture an increasing number of bound states. The small number of numerical coefficients that enter these expressions is determined from accurate numerical calculations. The approximate formulas combine the advantages of the numerical and approximate expressions, yielding an accurate and simple description from the weakly to the strongly interacting limit.

  3. Uniqueness in inverse elastic scattering with finitely many incident waves

    International Nuclear Information System (INIS)

    Elschner, Johannes; Yamamoto, Masahiro

    2009-01-01

    We consider the third and fourth exterior boundary value problems of linear isotropic elasticity and present uniqueness results for the corresponding inverse scattering problems with polyhedral-type obstacles and a finite number of incident plane elastic waves. Our approach is based on a reflection principle for the Navier equation. (orig.)

  4. Influence of low-energy scattering on loosely bound states

    International Nuclear Information System (INIS)

    Sparenberg, Jean-Marc; Capel, Pierre; Baye, Daniel

    2010-01-01

    Compact algebraic equations are derived that connect the binding energy and the asymptotic normalization constant (ANC) of a subthreshold bound state with the effective-range expansion of the corresponding partial wave. These relations are established for positively charged and neutral particles, using the analytic continuation of the scattering (S) matrix in the complex wave-number plane. Their accuracy is checked on simple local potential models for the 16 O+n, 16 O+p, and 12 C+α nuclear systems, with exotic nuclei and nuclear astrophysics applications in mind.

  5. Direct Drive Wave Energy Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  6. Stimulated brillouin scattering of electromagnetic waves in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Sen, A.

    1991-08-01

    The stimulated Brilluoin scattering of electromagnetic waves in a homogeneous, unmagnetized and collisionless dusty plasma has been investigated theoretically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the dust particles introduces a background inhomogeneous electric field which significantly influences the dispersive properties of the plasma. At the ion acoustic branch we find the usual scattering slightly modified by the charged dust grains. However, at the frequency lower than the ion acoustic branch we find a new mode of the plasma arising from the oscillations of the ions in the static structure of the dust distribution. This low frequency branch causes enhanced stimulated Brillouin scattering of electromagnetic waves in a dusty plasma. (author). 15 refs

  7. Neutron scattering investigation of magnetic excitations at high energy transfers

    International Nuclear Information System (INIS)

    Loong, C.K.

    1984-01-01

    With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures

  8. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we

  9. Scattering of waves by impurities in precompressed granular chains.

    Science.gov (United States)

    Martínez, Alejandro J; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu

    2016-05-01

    We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k→±π), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance-enabling full transmission at a particular frequency-in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities.

  10. High-energy proton scattering on nuclei

    CERN Document Server

    Klovning, A; Schlüpmann, K

    1973-01-01

    High-energy proton scattering on Be, C, Cu and Pb targets is studied using a single-arm spectrometer. The projectile momenta were 19 and 24 GeV/c, the square of the four-momentum transfer varied from t=0.1 to t =4.4 GeV/sup 2/. Momentum distributions of scattered protons are recorded in the high-momentum range. An application of multiple- scattering theory yielded agreement of calculation and experimental results to within a +or-30% uncertainty of the former. (15 refs).

  11. Medium energy hadron scattering from nuclei

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Wenes, G.

    1986-01-01

    The Glauber approximation for medium energy scattering of hadronic projectiles from nuclei is combined with the interacting boson model of nuclei to produce a transition matrix for elastic and inelastic scattering in algebraic form which includes coupling to all the intermediate states. We present closed form analytic expresions for the transition matrix elements for the three dynamical symmetries of the interacting boson model; that is for, a spherical quadrupole vibrator, a γ unstable rotor, and both prolate and oblate axially symmetric rotors. We give examples of application of this formalism to proton scattering from 154 Sm and 154 Gd. 27 refs., 5 figs., 1 tab

  12. Theorems of low energy in Compton scattering

    International Nuclear Information System (INIS)

    Chahine, J.

    1984-01-01

    We have obtained the low energy theorems in Compton scattering to third and fouth order in the frequency of the incident photon. Next we calculated the polarized cross section to third order and the unpolarized to fourth order in terms of partial amplitudes not covered by the low energy theorems, what will permit the experimental determination of these partial amplitudes. (Author) [pt

  13. Multiple scattering and stop band characteristics of flexural waves on a thin plate with circular holes

    Science.gov (United States)

    Wang, Zuowei; Biwa, Shiro

    2018-03-01

    A numerical procedure is proposed for the multiple scattering analysis of flexural waves on a thin plate with circular holes based on the Kirchhoff plate theory. The numerical procedure utilizes the wave function expansion of the exciting as well as scattered fields, and the boundary conditions at the periphery of holes are incorporated as the relations between the expansion coefficients of exciting and scattered fields. A set of linear algebraic equations with respect to the wave expansion coefficients of the exciting field alone is established by the numerical collocation method. To demonstrate the applicability of the procedure, the stop band characteristics of flexural waves are analyzed for different arrangements and concentrations of circular holes on a steel plate. The energy transmission spectra of flexural waves are shown to capture the detailed features of the stop band formation of regular and random arrangements of holes. The increase of the concentration of holes is found to shift the dips of the energy transmission spectra toward higher frequencies as well as deepen them. The hexagonal hole arrangement can form a much broader stop band than the square hole arrangement for flexural wave transmission. It is also demonstrated that random arrangements of holes make the transmission spectrum more complicated.

  14. Handbook of ocean wave energy

    CERN Document Server

    Kofoed, Jens

    2017-01-01

    This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.

  15. Neutron-triton scattering lengths for interactions reproducing low-energy trinucleon data

    International Nuclear Information System (INIS)

    Levashev, V.P.

    1981-01-01

    By solving the integral equations for four nucleons the neutron-triton scattering lengths and total cross section are calculated using different S-wave rank-one separable potentials. A number of linear correlations between the neutron-triton scattering lengths and triton binding energy are found. The scattering lengths consistent with low-energy trinucleon data. The results obtained are compared with available experimental data [ru

  16. Quantitative study of two- and three-dimensional strong localization of matter waves by atomic scatterers

    International Nuclear Information System (INIS)

    Antezza, Mauro; Castin, Yvan; Hutchinson, David A. W.

    2010-01-01

    We study the strong localization of atomic matter waves in a disordered potential created by atoms pinned at the nodes of a lattice, for both three-dimensional (3D) and two-dimensional (2D) systems. The localization length of the matter wave, the density of localized states, and the occurrence of energy mobility edges (for the 3D system), are numerically investigated as a function of the effective scattering length between the atomic matter wave and the pinned atoms. Both positive and negative matter wave energies are explored. Interesting features of the density of states are discovered at negative energies, where maxima in the density of bound states for the system can be interpreted in terms of bound states of a matter wave atom with a few pinned atomic scatterers. In 3D we found evidence of up to three mobility edges, one at positive energies, and two at negative energies, the latter corresponding to transitions between extended and localized bound states. In 2D, no mobility edge is found, and a rapid exponential-like increase of the localization length is observed at high energy.

  17. Time-dependent approach to electron scattering and ionization in the s-wave model

    International Nuclear Information System (INIS)

    Ihra, W.; Draeger, M.; Handke, G.; Friedrich, H.

    1995-01-01

    The time-dependent Schroedinger equation is integrated for continuum states of two-electron atoms in the framework of the s-wave model, in which both electrons are restricted to having vanishing individual orbital angular momenta. The method is suitable for studying the time evolution of correlations in the two-electron wave functions and yields probabilities for elastic and inelastic electron scattering and for electron-impact ionization. The spin-averaged probabilities for electron-impact ionization of hydrogen in the s-wave model reproduce the shape of the experimentally observed integrated ionization cross section remarkably well for energies near and above the maximum

  18. Very low-energy hydrogen-antihydrogen scattering

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Chamberlain, C.W.

    2003-01-01

    In view of current interest in the trapping of antihydrogen (H-bar) atoms at very low temperatures, we have carried out a calculation of s-wave hydrogen-antihydrogen scattering at very low energies, using the Kohn variational method, taking into account rearrangement scattering into the three channels that contain positronium in its ground state and lie closest to threshold. We find that our values for the elastic cross section are in good agreement with the values obtained by Jonsell et al. [2001 Phys. Rev. A 64 052712] using a distorted wave approximation. However, our values for the total rearrangement cross section are much larger than their values and we predict that cooling of H-bar by cold H would be considerably less efficient than was found to be the case by Jonsell et al.. (author)

  19. Elastic pion-nucleon P-wave scattering in soliton models

    International Nuclear Information System (INIS)

    Holzwarth, G.

    1990-01-01

    The equivalence of low-energy P-wave πN scattering in soliton models with the well-established Δ-isobar model is shown to hold even if all constraints on redundant collective variables are ignored. This provides strong support for the unusual (time-derivative) form of meson-baryon coupling in such models, and for the expectation that the soliton description of πN-scattering can be reliably extended down to pion threshold energies in a technically simple way. (orig.)

  20. Imaging moving objects from multiply scattered waves and multiple sensors

    International Nuclear Information System (INIS)

    Miranda, Analee; Cheney, Margaret

    2013-01-01

    In this paper, we develop a linearized imaging theory that combines the spatial, temporal and spectral components of multiply scattered waves as they scatter from moving objects. In particular, we consider the case of multiple fixed sensors transmitting and receiving information from multiply scattered waves. We use a priori information about the multipath background. We use a simple model for multiple scattering, namely scattering from a fixed, perfectly reflecting (mirror) plane. We base our image reconstruction and velocity estimation technique on a modification of a filtered backprojection method that produces a phase-space image. We plot examples of point-spread functions for different geometries and waveforms, and from these plots, we estimate the resolution in space and velocity. Through this analysis, we are able to identify how the imaging system depends on parameters such as bandwidth and number of sensors. We ultimately show that enhanced phase-space resolution for a distribution of moving and stationary targets in a multipath environment may be achieved using multiple sensors. (paper)

  1. Elastic scattering of low-energy electrons with Sr atoms

    International Nuclear Information System (INIS)

    Yuan, J.; Zhang, Z.; Wan, H.

    1990-01-01

    Static-exchange, plus correlation-polarization-potential calculations are performed for elastic low-energy electron scattering from Sr atoms while paying attention to the low-lying shape resonances. The correlation potential is calculated both with and without a scaling factor. A 2 D-shape resonance is produced at 1.0 eV with a parameter-free, and at 1.25 eV with a scaled, correlation potential. No 2 P-shape resonances are predicted, but evidence to support the existence of a stable negative ion Sr - in the 5s 2 5p electron configuration is given from the viewpoint of electron scattering. The bound energy of the extra electron in the negative ion is estimated by transforming the phase shift of the corresponding partial wave into the polarization quantum-defect number and extrapolating the number from positive to negative energies

  2. Multiple scattering in the nuclear rearrangement reactions at medium energy

    International Nuclear Information System (INIS)

    Tekou, A.

    1980-09-01

    It is shown that the multiple scattering mechanism is very important in the transfer of the large momenta involved in the nuclear rearrangement reactions at medium energy. In contrast to the usual belief, the reaction cross-section is not very sensitive to the high momenta components of the nuclear wave function. The multiple scattering mechanism is especially important in 4 He(p,d) 3 He reaction around 800 MeV. Here the collisions involving two nucleons of the target nucleus are dominant. The triple collisions contribution is also important. The four collision contribution is negligible in the forward direction and sizeable at large angles. Thus, using the K.M.T. approach in DWBA calculations, the second order term of the optical potential must be included. So, is it not well established that the second term of the K.M.T. optical potential is important for the proton elastic scattering on light nuclei. (author)

  3. Transmission characteristics of the kinematics of the laser-plasma shock wave in air in compton scattering

    International Nuclear Information System (INIS)

    Hao Dongshan; Xie Hongjun

    2006-01-01

    By comparing the kinematical equation of a shock wave in free air, the study of transmission characteristics of the laser plasma shock wave in Compton scattering is presented. The results show that the attenuation course of the kinematics of he laser plasma shock wave is related not only with the explosion fountainhead and the characteristics of the explosion course, total energy release, air elastic, but also with multi-photon nonlinear Compton scattering. Because of the scattering the initial radius of the shock wave increases, the attenuation course shortens, the energy metastasis efficiency rises. The results of the numerical analysis and the actual values of the shock waves in air by a way intense explosion are very tallying. (authors)

  4. Ocean Wave Energy: Underwater Substation System for Wave Energy Converters

    International Nuclear Information System (INIS)

    Rahm, Magnus

    2010-01-01

    This thesis deals with a system for operation of directly driven offshore wave energy converters. The work that has been carried out includes laboratory testing of a permanent magnet linear generator, wave energy converter mechanical design and offshore testing, and finally design, implementation, and offshore testing of an underwater collector substation. Long-term testing of a single point absorber, which was installed in March 2006, has been performed in real ocean waves in linear and in non-linear damping mode. The two different damping modes were realized by, first, a resistive load, and second, a rectifier with voltage smoothing capacitors and a resistive load in the DC-link. The loads are placed on land about 2 km east of the Lysekil wave energy research site, where the offshore experiments have been conducted. In the spring of 2009, another two wave energy converter prototypes were installed. Records of array operation were taken with two and three devices in the array. With two units, non-linear damping was used, and with three units, linear damping was employed. The point absorbers in the array are connected to the underwater substation, which is based on a 3 m3 pressure vessel standing on the seabed. In the substation, rectification of the frequency and amplitude modulated voltages from the linear generators is made. The DC voltage is smoothened by capacitors and inverted to 50 Hz electrical frequency, transformed and finally transmitted to the on-shore measuring station. Results show that the absorption is heavily dependent on the damping. It has also been shown that by increasing the damping, the standard deviation of electrical power can be reduced. The standard deviation of electrical power is reduced by array operation compared to single unit operation. Ongoing and future work include the construction and installation of a second underwater substation, which will connect the first substation and seven new WECs

  5. Scattering of matter waves in spatially inhomogeneous environments

    International Nuclear Information System (INIS)

    Tsitoura, F.; Krüger, P.; Kevrekidis, P. G.; Frantzeskakis, D. J.

    2015-01-01

    In this article, we study scattering of quasi-one-dimensional matter waves at an interface of two spatial domains, one with repulsive and one with attractive interatomic interactions. It is shown that the incidence of a Gaussian wave packet from the repulsive to the attractive region gives rise to generation of a soliton train. More specifically, the number of emergent solitons can be controlled, e.g., by the variation of the amplitude or the width of the incoming wave packet. Furthermore, we study the reflectivity of a soliton incident from the attractive region to the repulsive one. We find the reflection coefficient numerically and employ analytical methods, which treat the soliton as a particle (for moderate and large amplitudes) or a quasilinear wave packet (for small amplitudes), to determine the critical soliton momentum (as a function of the soliton amplitude) for which total reflection is observed

  6. Direct Drive Wave Energy Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Lamb, Bradford [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Prudell, Joseph [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Hammagren, Erik [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc., Charlottesville, VA (United States)

    2016-08-22

    This Project aims to satisfy objectives of the DOE’s Water Power Program by completing a system detailed design (SDD) and other important activities in the first phase of a utility-scale grid-connected ocean wave energy demonstration. In early 2012, Columbia Power (CPwr) had determined that further cost and performance optimization was necessary in order to commercialize its StingRAY wave energy converter (WEC). CPwr’s progress toward commercialization, and the requisite technology development path, were focused on transitioning toward a commercial-scale demonstration. This path required significant investment to be successful, and the justification for this investment required improved annual energy production (AEP) and lower capital costs. Engineering solutions were developed to address these technical and cost challenges, incorporated into a proposal to the US Department of Energy (DOE), and then adapted to form the technical content and statement of project objectives of the resulting Project (DE-EE0005930). Through Project cost-sharing and technical collaboration between DOE and CPwr, and technical collaboration with Oregon State University (OSU), National Renewable Energy Lab (NREL) and other Project partners, we have demonstrated experimentally that these conceptual improvements have merit and made significant progress towards a certified WEC system design at a selected and contracted deployment site at the Wave Energy Test Site (WETS) at the Marine Corps Base in Oahu, HI (MCBH).

  7. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    Science.gov (United States)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.

  8. Key features of wave energy.

    Science.gov (United States)

    Rainey, R C T

    2012-01-28

    For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays.

  9. Ion temperature via laser scattering on ion Bernstein waves

    International Nuclear Information System (INIS)

    Wurden, G.A.; Ono, M.; Wong, K.L.

    1981-10-01

    Hydrogen ion temperature has been measured in a warm toroidal plasma with externally launched ion Bernstein waves detected by heterodyne CO 2 laser scattering. Radial scanning of the laser beam allows precise determination of k/sub perpendicular to/ for the finite ion Larmor radius wave (ω approx. less than or equal to 2Ω/sub i/). Knowledge of the magnetic field strength and ion concentration then give a radially resolved ion temperature from the dispersion relation. Probe measurements and Doppler broadening of ArII 4806A give excellent agreement

  10. Plasma-screening effects upon energy levels and electron scattering from neutral and ionized caesium

    International Nuclear Information System (INIS)

    Chin, Y.J.; Radtke, R.; Zimmermann, R.

    1988-01-01

    Using interaction potentials screened with the Debye-Hueckel length, the effects of plasma shielding on energy levels and electrons scattering from neutral and ionized caesium are estimated. Both energy levels and atomic scattering cross-sections are found to be sensitive to the inclusion of screening. Relating to the scattering by the Cs + ion, a low-energy resonance near E = 0.3 Ryd is found which arises from the f-wave phase shift and reflects the individual behaviour of the scattering ion. (author)

  11. Plasma-screening effects upon energy levels and electron scattering from neutral and ionized caesium

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Y J; Radtke, R; Zimmermann, R

    1988-01-01

    Using interaction potentials screened with the Debye-Hueckel length, the effects of plasma shielding on energy levels and electrons scattering from neutral and ionized caesium are estimated. Both energy levels and atomic scattering cross-sections are found to be sensitive to the inclusion of screening. Relating to the scattering by the Cs/sup +/ ion, a low-energy resonance near E = 0.3 Ryd is found which arises from the f-wave phase shift and reflects the individual behaviour of the scattering ion.

  12. Assessing wave energy effects on biodiversity: the wave hub experience.

    Science.gov (United States)

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.

  13. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    Science.gov (United States)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  14. Wave optics simulation of statistically rough surface scatter

    Science.gov (United States)

    Lanari, Ann M.; Butler, Samuel D.; Marciniak, Michael; Spencer, Mark F.

    2017-09-01

    The bidirectional reflectance distribution function (BRDF) describes optical scatter from surfaces by relating the incident irradiance to the exiting radiance over the entire hemisphere. Laboratory verification of BRDF models and experimentally populated BRDF databases are hampered by sparsity of monochromatic sources and ability to statistically control the surface features. Numerical methods are able to control surface features, have wavelength agility, and via Fourier methods of wave propagation, may be used to fill the knowledge gap. Monte-Carlo techniques, adapted from turbulence simulations, generate Gaussian distributed and correlated surfaces with an area of 1 cm2 , RMS surface height of 2.5 μm, and correlation length of 100 μm. The surface is centered inside a Kirchhoff absorbing boundary with an area of 16 cm2 to prevent wrap around aliasing in the far field. These surfaces are uniformly illuminated at normal incidence with a unit amplitude plane-wave varying in wavelength from 3 μm to 5 μm. The resultant scatter is propagated to a detector in the far field utilizing multi-step Fresnel Convolution and observed at angles from -2 μrad to 2 μrad. The far field scatter is compared to both a physical wave optics BRDF model (Modified Beckmann Kirchhoff) and two microfacet BRDF Models (Priest, and Cook-Torrance). Modified Beckmann Kirchhoff, which accounts for diffraction, is consistent with simulated scatter for multiple wavelengths for RMS surface heights greater than λ/2. The microfacet models, which assume geometric optics, are less consistent across wavelengths. Both model types over predict far field scatter width for RMS surface heights less than λ/2.

  15. Low-energy scattering data for oxygen

    International Nuclear Information System (INIS)

    Kopecky, S.; Plompen, A.J.M.

    2014-01-01

    A survey of literature data of the scattering lengths of oxygen is performed, and these values are compared to low-energy precise total cross-section data. To check the quality of the data and the correctness of the relation between coherent scattering lengths and low-energy total cross-sections the situation is examined first for carbon. A value and uncertainty for the coherent scattering length of oxygen is recommended for use in future evaluations of 16 O. This coherent scattering length is fully consistent with the high-precision, low-energy total cross-section data. The consistency requires the use of a larger uncertainty than claimed in the most accurate cross-section papers. This larger uncertainty is nevertheless very small and well within the requirements of applications of this cross-section. The recommended value is b c ( 16 O) = 5.816±0.015 fm and the associated total cross-section for the neutron-energy range 0.5 to 2 000 eV is 3.765±0.025 b. The stated uncertainties are one standard deviation total uncertainty. (authors)

  16. High energy proton-nucleus scattering

    International Nuclear Information System (INIS)

    Beurtey, R.M.

    1977-01-01

    This paper is restricted to an overall global criticism of what has been produced, experimentally and theoretically, during the past ten years, concerning elastic proton scattering at intermediate energy: theoretical models and approximations, phenomenological analysis, criticisms and suggestions on experimental methods

  17. Energy transfer in scattering by rotating potentials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Quantum mechanical scattering theory is studied for time-dependent. Schrödinger ... the energy transferred to a particle by collision with a rotating blade. Keywords. ..... terms of the unitary group for some time-independent generator. This will ...

  18. High energy hadron-nucleus scattering

    International Nuclear Information System (INIS)

    Koplik, J.; Mueller, A.H.

    1975-01-01

    Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models

  19. Electron scattering from sodium at intermediate energies

    International Nuclear Information System (INIS)

    Mitroy, J.; McCarthy, I.E.

    1986-10-01

    A comprehensive comparison is made between theoretical calculations and experimental data for intermediate energy (≥ 10 eV) electron scattering from sodium vapour. The theoretical predictions of coupled-channels calculations (including one, two or four channels) do not agree with experimental values of the differential cross sections for elastic scattering or the resonant 3s to 3p excitation. Increasingly-more-sophisticated calculations, incorporating electron correlations in the target states, and also including core-excited states in the close-coupling expansion, are done at a few selected energies in an attempt to isolate the cause of the discrepancies between theory and experiment. It is found that these more-sophisticated calculations give essentially the same results as the two- and four-channel calculations using Hartree-Fock wavefunctions. Comparison of the sodium high-energy elastic differential cross sections with those of neon suggests that the sodium differential cross section experiments may suffer from systematic errors. There is also disagreement, at the higher energies, between theoretical values for the scattering parameters and those that are derived from laser-excited superelastic scattering and electron photon coincidence experiments. When allowance is made for the finite acceptance angle of the electron spectrometers used in the experiments by convoluting the theory with a function representing the distribution of electrons entering the electron spectrometer it is found that the magnitudes of the differences between theory and experiment are reduced

  20. Constraints on low energy Compton scattering amplitudes

    International Nuclear Information System (INIS)

    Raszillier, I.

    1979-04-01

    We derive the constraints and correlations of fairly general type for Compton scattering amplitudes at energies below photoproduction threshold and fixed momentum transfer, following from (an upper bound on) the corresponding differential cross section above photoproduction threshold. The derivation involves the solution of an extremal problem in a certain space of vector - valued analytic functions. (author)

  1. Inelastic scattering of neutrons by spin waves in terbium

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Houmann, Jens Christian Gylden

    1966-01-01

    Measurements of spin-wave dispersion relations for magnons propagating in symmetry directions in ferromagnetic Tb; it is first experiment to give detailed information on magnetic excitations in heavy rare earths; Tb was chosen for these measurements because it is one of few rare-earth metals which...... does not have very high thermal-neutron capture cross section, so that inelastic neutron scattering experiments can give satisfactory information on magnon dispersion relations....

  2. Ab initio calculation of scattering length and cross sections at very low energies for electron-helium scattering

    International Nuclear Information System (INIS)

    Saha, H.P.

    1993-01-01

    The multiconfiguration Hartree-Fock method for continuum wave functions has been used to calculate the scattering length and phase shifts over extremely low energies ranging from 0 to 1 eV very accurately for electron-helium scattering. The scattering length is calculated very accurately with wave functions computed exactly at zero energy, resulting in an upper bound of 1.1784. The electron correlation and polarization of the target by the scattering electron, which are very important in these calculations, have been taken into account in an accurate ab initio manner through the configuration-interaction procedure by optimizing both bound and continuum orbitals simultaneously at each kinetic energy of the scattered electron. Detailed results for scattering length, differential, total, and momentum-transfer cross sections obtained from the phase shifts are presented. The present scattering length is found to be in excellent agreement with the experimental result of Andrick and Bitsch [J. Phys. B 8, 402 (1975)] and the theoretical result of O'Malley, Burke, and Berrington [J. Phys. B 12, 953 (1979)]. There is excellent agreement between the present total cross sections and the corresponding experimental measurements of Buckman and Lohmann [J. Phys. B 19, 2547 (1986)]. The present momentum-transfer cross sections also show remarkable agreement with the experimental results of Crompton, Elford, and Robertson [Aust. J. Phys. 23, 667 (1970)

  3. Nonlinear Raman scattering behavior with Langmuir and sound waves coupling in a homogeneous plasma

    International Nuclear Information System (INIS)

    Bonnaud, G.; Pesme, D.; Pellat, R.

    1990-01-01

    By means of wave-coupling simulations, the typical nonlinear evolution of stimulated Raman scattering (SRS) is investigated in a homogeneous sub-quarter-critical plasma for present-day low laser irradiances and kilo-electron-volt electron temperatures. The decrease of the Langmuir energy observed after the SRS growth is found to be basically the result of the electrostatic decay instability (EDI) onset, which generates a high-amplitude ion-acoustic wave. The resulting strong modulation of the plasma density causes a conversion process that transforms the initial one-wave-vector Langmuir wave driven by SRS into a Bloch wave and induces SRS detuning and larger damping. The conditions involved herein have allowed isolation of these processes from the modulational instability; in addition, the Langmuir collapse is found not to occur owing to the high electron temperature

  4. Reciprocity in quantum, electromagnetic and other wave scattering

    International Nuclear Information System (INIS)

    Deák, L.; Fülöp, T.

    2012-01-01

    The reciprocity principle is that, when an emitted wave gets scattered on an object, the scattering transition amplitude does not change if we interchange the source and the detector—in other words, if incoming waves are interchanged with appropriate outgoing ones. Reciprocity is sometimes confused with time reversal invariance, or with invariance under the rotation that interchanges the location of the source and the location of the detector. Actually, reciprocity covers the former as a special case, and is fundamentally different from–but can be usefully combined with–the latter. Reciprocity can be proved as a theorem in many situations and is found violated in other cases. The paper presents a general treatment of reciprocity, discusses important examples, shows applications in the field of photon (Mössbauer) scattering, and establishes a fruitful connection with a recently developing area of mathematics. - Highlights: ► A frame independent generalized reciprocity theorem of scattering theory is given. ► Reciprocity for two spin/polarization degrees of freedom is detailed. ► Relationship of reciprocity to time reversal and to 180 degree rotation is discussed. ► Reciprocal and nonreciprocal settings in Mossbauer spectroscopy are studied. ► The symmetry of diffuse omega-scans is explained with the aid of reciprocity.

  5. Heavy ion scattering: High energy limits of RBS and ERD

    International Nuclear Information System (INIS)

    Rauhala, E.

    1994-01-01

    Elastic scattering of 7 Li ions by oxygen and 12 C, 14 N and 16 O ions by aluminum, silicon, titanium and sulfur have been studied below the Coulomb barrier energies 3-30 MeV in the angular range of 78 degrees - 170 degrees. By kinematically reversing the reactions, the recoiling of carbon, nitrogen and oxygen by 40-100 MeV 27 Al, 28 Si, 32S and 48 Ti ions into recoil angles of 20 degrees, 25 degrees, 30 degrees and 40 degrees has also been investigated. Excitation functions and angular distributions are presented. Contrary to the case of light H and He ions, the heavy ion scattering cross sections fall off rapidly above the non-Rutherford threshold energy, rendering heavy ion RBS and ERD spectrometry worthless. Both classical and wave mechanical calculations have been attempted for predicting the RBS threshold energies. Simple calculations give moderate accuracy, while the more extensive nuclear potential perturbation approach relies on parameters fitted for the particular experiment. The authors present a general classical semi-empirical model for both direct scattering (RBS) and the kinematically reversed reactions (ERD), accurately reproducing the experimental data. The model is based on parameters fitted from the present scattering experiments and from an extensive literature survey

  6. A theory of low energy π-3He elastic scattering

    International Nuclear Information System (INIS)

    Geffen, F.M.M. van.

    1991-01-01

    The main aim of this work is the construction of a first-order optical potential for the scattering of pions by 3 He at low energy with as few approximations as possible. In particular the Fermi motion is treated extremely carefully by using microscopic 3 He wave functions and by performing the complete Fermi-integral. Differential cross-sections and analyzing powers have been calculated. In a detailed comparison between the first-order optical with one which results from using the semi-factored approximation, it became clear that the latter has the following shortcomings: 1. the dependence of the subenergy on the pion-nucleus scattering angle, and 2. the independence of this energy on the relative motion of the spectator nucleons. (author). 101 refs.; 15 figs.; 3 tabs

  7. An array effect of wave energy farm buoys

    Directory of Open Access Journals (Sweden)

    Hyuck-Min Kweon

    2012-12-01

    Full Text Available An ocean buoy energy farm is considered for Green energy generation and delivery to small towns along the Korean coast. The present studypresents that the floating buoy-type energy farm appears to be sufficiently feasible fortrapping more energy compared to afixed cylinder duck array. It is also seen from the numerical resultsthat the resonated waves between spaced buoys are further trapped by floating buoy motion. Our numerical study is analyzed by a plane-wave approximation, in which evanescent mode effects are included in a modified mild-slope equation based on the scattering characteristics for a single buoy.

  8. Scattering of guided waves at delaminations in composite plates.

    Science.gov (United States)

    Murat, Bibi I S; Khalili, Pouyan; Fromme, Paul

    2016-06-01

    Carbon fiber laminate composites are increasingly employed for aerospace structures as they offer advantages, such as a good strength to weight ratio. However, impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Depending on the severity of the impact, fiber and matrix breakage or delaminations can occur, reducing the load carrying capacity of the structure. Efficient nondestructive testing and structural health monitoring of composite panels can be achieved using guided ultrasonic waves propagating along the structure. The scattering of the A0 Lamb wave mode at delaminations was investigated using a full three-dimensional (3D) finite element (FE) analysis. The influence of the delamination geometry (size and depth) was systematically evaluated. In addition to the depth dependency, a significant influence of the delamination width due to sideways reflection of the guided waves within the delamination area was found. Mixed-mode defects were simulated using a combined model of delamination with localized material degradation. The guided wave scattering at cross-ply composite plates with impact damage was measured experimentally using a non-contact laser interferometer. Good agreement between experiments and FE predictions using the mixed-mode model for an approximation of the impact damage was found.

  9. Testing, Analysis and Control of Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James

    of the incident waves upon a wave device allows the possibility of accurately tuning the power-take off mechanism (the hydro-turbines for the Wave Dragon) to capture more energy. A digital filter method for performing this prediction in real-time with minimal computational effort is presented. Construction...... of digital filters is well known within signal processing, but their use for this application in Wave Energy is new. The filter must be designed carefully as the frequency components of waves travel at different speeds. Research presented in this thesis has advanced the development of the Wave Dragon device...

  10. Control of runaway electron energy using externally injected whistler waves

    Science.gov (United States)

    Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu

    2018-03-01

    One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here, we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by the parallel electric field. By introducing a wave that resonantly interacts with runaways in a particular range of energies which is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.

  11. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik

    2006-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive...

  12. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik

    2004-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. During the last months, extensive testing has started...

  13. Key Aspects of Wave Energy

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Nørgaard, Jørgen Harck

    2012-01-01

    Diversification of renewable energy sources is fundamental to ensure sustainability. In this contest, wave energy can provide a substantial contribution as soon as the sector breaks into the market. In order to accelerate shift from a technology to a market focus and reduce technical and non...... versatility into account can improve their overall performance and the value of investments. The way installation of devices can be perceived also by local communities can also benefit from this prospective thus providing and additional tool to overcome the sector´s setbacks....

  14. Nonlinear problems in fluid dynamics and inverse scattering: Nonlinear waves and inverse scattering

    Science.gov (United States)

    Ablowitz, Mark J.

    1994-12-01

    Research investigations involving the fundamental understanding and applications of nonlinear wave motion and related studies of inverse scattering and numerical computation have been carried out and a number of significant results have been obtained. A class of nonlinear wave equations which can be solved by the inverse scattering transform (IST) have been studied, including the Kadaomtsev-Petviashvili (KP) equation, the Davey-Stewartson equation, and the 2+1 Toda system. The solutions obtained by IST correspond to the Cauchy initial value problem with decaying initial data. We have also solved two important systems via the IST method: a 'Volterra' system in 2+1 dimensions and a new one dimensional nonlinear equation which we refer to as the Toda differential-delay equation. Research in computational chaos in moderate to long time numerical simulations continues.

  15. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering was determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the frame-work of the quark-proton model

  16. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references

  17. Development of the Wave Energy Converter -Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    2Over the years wave energy has gradually been brought into focus, as it has become clear that the fossil energy resources are limited, and cause large environmental problems, e.g. CO2 pollution. On this background a number of different wave energy converters have been proposed. In Denmark the go...

  18. Signature for g bosons from medium energy proton scattering experiments

    International Nuclear Information System (INIS)

    Kuyucak, S.

    1993-01-01

    We apply the recently developed algebraic (1/N expansion) scattering formalism to medium energy proton scattering from 154 Sm and 176 Yb. The nuclear structure effects in this formalism are described by the interacting boson model generalized to arbitrary interactions and types of bosons i.e. s,d,g, etc. We find that, in the sd boson model, a consistent description of cross sections is possible only for the 0 + and 2 + states. The failure of the model with regard to the 4 + states indicates that the effective hexadecapole operator used in the sd model is inadequate. In contrast, the data for scattering to the 0 + , 2 + and 4 + states could be consistently described in the sdg boson model. The spectroscopic data for the low-lying levels usually can not distinguish between the sd and sdg models due to renormalization of parameters, and one has to look at high spin or energy data for evidence of g bosons. The inelastic proton scattering experiments, on the other hand, directly probe the wave functions, and hence could provide a signature for g bosons even in the ground band states

  19. Evanescent wave scattering at off-axis incidence on multiple cylinders located near a surface

    International Nuclear Information System (INIS)

    Lee, Siu-Chun

    2015-01-01

    The scattering characteristics of an infinite cylinder are strongly influenced by the incidence angle relative to its axis. If the incident wave propagates in the plane normal to the axis of the cylinder, the polarization of the scattered wave remains unchanged and the scattered wave propagates in the same plan as the incident wave. At off-axis incidence such that the incident direction makes an oblique angle with the cylinder axis, the scattered wave is depolarized, and its spatial distribution becomes three-dimensional. This paper presents the scattering solution for oblique incidence on multiple parallel cylinders located near a planar interface by an evanescent wave that is generated by total internal reflection of the source wave propagating in the higher refractive index substrate. Hertz potentials are utilized to formulate the interaction of inhomogeneous waves with the cylinders, scattering at the substrate interface, and near field scattering between the cylinders. Analytic formulas are derived for the electromagnetic fields and Poynting vector of scattered radiation in the near-field and their asymptotic forms in the far-field. Numerical examples are shown to illustrate scattering of evanescent wave by multiple cylinders at off-axis incidence. - Highlights: • Developed an exact solution for off-axis incidence on multiple cylinders. • Included depolarization, near-field scattering, and Fresnel effect in theory. • Derived analytic formulas for scattered radiation in the far field. • Illustrated evanescent scattering at off-axis incidence by numerical data

  20. Studies on eletron scattering by hydrogen atoms through of a correlationed wave function

    International Nuclear Information System (INIS)

    Jacchieri, S.G.

    1982-01-01

    A correlationed wave function dependent of two adjustable parameters ( α e β), aiming describe a system formed by an electron and a hydrogen atom is studied. Some elastic differential cross-sections for several values of α and β parameters, scattering angle of 2 0 to 140 0 and energies of 50 eV and 680 eV are presented. (M.J.C.) [pt

  1. Effective channel approach to nuclear scattering at high energies

    International Nuclear Information System (INIS)

    Rule, D.W.

    1975-01-01

    The description of high energy nuclear reactions is considered within the framework of the effective channel approach. A variational procedure is used to obtain an expression for the Green's function in the effective channel, which includes the average fluctuation potential, average energy, and an additional term arising from the non-commutability of the kinetic energy operator and the effective target wave function. The resulting expression for the effective channel, containing one variational parameter, is used to obtain the coupling potential. The resulting formulation is applied to the elastic scattering of 1 GeV protons by 4 He nuclei. A simple Gaussian form is used for the spin--isospin averaged proton--nucleon interaction. The variational parameter in the effective channel wave function is fixed a posteriori via the total p-- 4 He cross section. The effect of the coupling to the effective channel is demonstrated, as well as the effect of each term in the coupled equation for this channel. The calculated elastic cross sections were compared to both the recent data from Saclay and the earlier Brookhaven data for the 1-GeV p-- 4 He elastic scattering cross section. Using proton--nucleus elastic scattering experiments to study the proton--nucleon elastic scattering amplitude is discussed. The main purpose of our study is to investigate the effects on the cross section of varying, within its estimated range of uncertainty, each parameter which enters into the coupled equations. The magnitude of these effects was found to be large enough to conclude that any effects due to dynamical correlations would be obscured by the uncertainties in the input parameters

  2. Detailed calculations on low-energy positron-hydrogen-molecule and helium-antihydrogen scattering

    Energy Technology Data Exchange (ETDEWEB)

    Armour, E A G; Cooper, J N; Gregory, M R; Todd, A C [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Jonsell, S [Department of Physics, University of Swansea, Swansea SA2 8PP (United Kingdom); Plummer, M, E-mail: edward.armour@nottingham.ac.u [Computational Science and Engineering, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom)

    2010-01-01

    In this paper, we consider two scattering processes: low-energy positron-hydrogen-molecule and helium-antihydrogen scattering. In the positron-hydrogen-molecule scattering calculations, we use the Kohn variational method to calculate Z{sub eff}, the number of target electrons available to the positron for annihilation. In the helium-antihydrogen scattering calculations, we use the Rayleigh-Ritz variational method to calculate a wave function for the leptons as a function of the distance between the helium and the antihydrogen. This is used, together with the associated nuclear wave function and the wave function for {alpha} p-bar + Ps{sup -}, to calculate the cross section for the rearrangement reaction He + H-bar {yields} {alpha} p-bar + Ps{sup -}, using the T-matrix and a form of the distorted wave approximation. For both processes, positron-electron correlation is taken into account accurately using Hylleraas-type functions.

  3. Propagation and scattering of electromagnetic waves by the ionospheric irregularities

    International Nuclear Information System (INIS)

    Ho, A.Y.; Kuo, S.P.; Lee, M.C.

    1993-01-01

    The problem of wave propagation and scattering in the ionosphere is particularly important in the areas of communications, remote-sensing and detection. The ionosphere is often perturbed with coherently structured (quasiperiodic) density irregularities. Experimental observations suggest that these irregularities could give rise to significant ionospheric effect on wave propagation such as causing spread-F of the probing HF sounding signals and scintillation of beacon satellite signals. It was show by the latter that scintillation index S 4 ∼ 0.5 and may be as high as 0.8. In this work a quasi-particle theory is developed to study the scintillation phenomenon. A Wigner distribution function for the wave intensity in the (k,r) space is introduced and its governing equation is derived with an effective collision term giving rise to the attenuation and scattering of the wave. This kinetic equation leads to a hierarchy of moment equations in r space. This systems of equations is then truncated to the second moment which is equivalent to assuming a cold quasi-particle distribution In this analysis, the irregularities are modeled as a two dimensional density modulation on an uniform background plasma. The analysis shows that this two dimensional density grating, effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then contributes to the scintillation of the beacon satellite signals. Using the proper plasma parameters and equatorial measured data of irregularities, it is shown that the scintillation index defined by S4=( 2 >- 2 )/ 2 where stands for spatial average over an irregularity wavelength is in the range of the experimentally detected values

  4. Sensing small changes in a wave chaotic scattering system

    International Nuclear Information System (INIS)

    Taddese, Biniyam Tesfaye; Antonsen, Thomas M.; Ott, Edward; Anlage, Steven M.

    2010-01-01

    Classical analogs of the quantum mechanical concepts of the Loschmidt Echo and quantum fidelity are developed with the goal of detecting small perturbations in a closed wave chaotic region. Sensing techniques that employ a one-recording-channel time-reversal-mirror, which in turn relies on time reversal invariance and spatial reciprocity of the classical wave equation, are introduced. In analogy with quantum fidelity, we employ scattering fidelity techniques which work by comparing response signals of the scattering region, by means of cross correlation and mutual information of signals. The performance of the sensing techniques is compared for various perturbations induced experimentally in an acoustic resonant cavity. The acoustic signals are parametrically processed to mitigate the effect of dissipation and to vary the spatial diversity of the sensing schemes. In addition to static boundary condition perturbations at specified locations, perturbations to the medium of wave propagation are shown to be detectable, opening up various real world sensing applications in which a false negative cannot be tolerated.

  5. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  6. Collective scattering of electromagnetic waves and cross-B plasma diffusion

    International Nuclear Information System (INIS)

    Gresillon, D.; Cabrit, B.; Truc, A.

    1992-01-01

    Magnetized plasmas occuring in nature as well as in fusion laboratories are oftenly irregularly shaked by magnetic field fluctuations. The so-called ''coherent scattering'' of electromagnetic wave from nonuniform, irregularly moving plasmas is investigated in the case where the scattering wavelength is large compared to the Debye length, but of the order of the irregularities correlation length. The scattered signal frequency spectrum is shown to be a transform of the plasma motion statistical characteristics. When the scattering wavelength is larger than the plasma motion correlation length, the frequency spectrum is shown to be of a lorentzian shape, with a frequency width that provides a direct measurement of the cross-B particle diffusion coefficient. This is illustrated by two series of recently obtained experimental results: radar coherent backscattering observations of the auroral plasma, and far infrared scattering from tokamak fusion plasma. Radar coherent backscattering shows the transition from Gauss to Lorentz scattered frequency spectra. In infrared Laser coherent scattering experiments from the Tore-Supra tokamak, a particular frequency line is observed to present a Lorentzian shape, that directly provides an electron cross-field diffusion coefficient. This diffusion coefficient agrees with the electron heat conductivity coefficient that is obtained from the observation of temperature profiles and energy balance. (Author)

  7. Wave energy : from demonstration to commercialization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Wave Energy Centre is a non-profit organization dedicated to the development and marketing of ocean wave energy devices through technical and strategic support to companies and research and development institutions. WEC provides access to researchers to associated test infrastructures for testing and demonstration of wave energy structures. This presentation described the current status of wave energy. Public policies that support wave energy were also highlighted. Wave energy technology is currently in the demonstration phase, with several pilot plants and prototypes in service around the world. The first 2 offshore shoreline ocean wave current pilot plants were constructed in 2000. This presentation identified the 12 near or offshore pilot plants that were in operation by 2007. The pilot plants represent 5 basic different concepts with many different designs. The world's first commercial park was launched in 2007 in Portugal. The Pelamis wave farm uses three Pelamis P-750 machines with a capacity of 2.25 megawatts. figs.

  8. Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.

    Science.gov (United States)

    Shukla, P K; Eliasson, B; Stenflo, L

    2012-07-01

    We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.

  9. Experimental Study on the WavePiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.

    This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....

  10. S-wavescattering in chiral perturbation theory with resonances

    International Nuclear Information System (INIS)

    Jamin, Matthias; Oller, Jose Antonio; Pich, Antonio

    2000-01-01

    We present a detailed analysis of S-wavescattering up to 2 GeV, making use of the resonance chiral Lagrangian predictions together with a suitable unitarisation method. Our approach incorporates known theoretical constraints at low and high energies. The present experimental status, with partly conflicting data from different experiments, is discussed. Our analysis allows to resolve some experimental ambiguities, but better data are needed in order to determine the cross-section in the higher-energy range. Our best fits are used to determine the masses and widths of the relevant scalar resonances in this energy region

  11. Strong SH-to-Love wave scattering off the Southern California Continental Borderland

    Science.gov (United States)

    Yu, Chunquan; Zhan, Zhongwen; Hauksson, Egill; Cochran, Elizabeth S.

    2017-01-01

    Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers associated with lateral heterogeneities remains challenging. In this study, we analyze broadband waveforms recorded by the Southern California Seismic Network and observe strongly scattered Love waves following the arrival of teleseismic SH wave. These scattered Love waves travel approximately in the same (azimuthal) direction as the incident SH wave at a dominant period of ~10 s but at an apparent velocity of ~3.6 km/s as compared to the ~11 km/s for the SH wave. Back-projection suggests that this strong scattering is associated with pronounced bathymetric relief in the Southern California Continental Borderland, in particular the Patton Escarpment. Finite-difference simulations using a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling suggests a relatively low shear wave velocity in the Continental Borderland.

  12. Effect of losses on acceleration of energetic particles by diffusive scattering through shock waves

    International Nuclear Information System (INIS)

    Voelk, H.J.; Morfill, G.E.; Forman, M.A.

    1981-01-01

    The effect of local losses on the acceleration of energetic particles by shocks is discussed considering both energy losses of individual particles and damping processes for the scattering hydromagnetic waves. The calculations are all time asymptotic and steady state. For locally plane and infinitely extended shocks, the requirement for acceleration is that the loss time exceed the acceleration time. The resulting modifications of the spatial structure and of the momentum dependence of the cosmic-ray distribution are described. For acceleration to be a local effect within the Galaxy, the local scattering mean free path must be small compared to the effective overall galactic mean free path as deduced from the cosmic-ray escape time. The required strengths of the scattering wave fields are such that neutral molecular clouds do not allow acceleration; in a partially ionized, warm interstellar medium, quite large shock strengths are needed. Such strong shock discontinuities are surrounded by an ionization layer within which Alfven wave damping is presumably negligible. Given the spatial extent of the layer for strong shocks propagating into neutral interstellar clouds, the possibility of localized diffusive acceleration is investigated. The estimated strength and extent of the scattering region is not large enough to confine acceleration within the layer. Rather, it will extend across the whole cloud, whose integrated losses then determine the efficiency

  13. Problems of application of wave energy

    International Nuclear Information System (INIS)

    D'yakov, A.F.; Morozkina, M.V.

    1993-01-01

    Technical solutions of using the energy both sea waves and lake ones are analyzed. Mathematical description of wave processes and phenomena as well as techniques of selection and conversion of the wave energy are given. Wave energy electromechanical converters are considered. Great attention is paid to linear generators of electromechanical converters eddy currents in massive sections of these generators and features of their calculation. Techniques for optimization of the linear generator parameters are shown. 60 refs

  14. Ideal gas scattering kernel for energy dependent cross-sections

    International Nuclear Information System (INIS)

    Rothenstein, W.; Dagan, R.

    1998-01-01

    A third, and final, paper on the calculation of the joint kernel for neutron scattering by an ideal gas in thermal agitation is presented, when the scattering cross-section is energy dependent. The kernel is a function of the neutron energy after scattering, and of the cosine of the scattering angle, as in the case of the ideal gas kernel for a constant bound atom scattering cross-section. The final expression is suitable for numerical calculations

  15. Low-energy scattering on the lattice

    International Nuclear Information System (INIS)

    Bour Bour, Shahin

    2014-01-01

    In this thesis we present precision benchmark calculations for two-component fermions in the unitarity limit using an ab initio method, namely Hamiltonian lattice formalism. We calculate the ground state energy for unpolarized four particles (Fermi gas) in a periodic cube as a fraction of the ground state energy of the non-interacting system for two independent representations of the lattice Hamiltonians. We obtain the values 0.211(2) and 0.210(2). These results are in full agreement with the Euclidean lattice and fixed-node diffusion Monte Carlo calculations. We also give an expression for the energy corrections to the binding energy of a bound state in a moving frame. These corrections contain information about the mass and number of the constituents and are topological in origin and will have a broad applications to the lattice calculations of nucleons, nuclei, hadronic molecules and cold atoms. As one of its applications we use this expression and determine the low-energy parameters for the fermion dimer elastic scattering in shallow binding limit. For our lattice calculations we use Luescher's finite volume method. From the lattice calculations we find κa fd =1.174(9) and κr fd =-0.029(13), where κ represents the binding momentum of dimer and a fd (r fd ) denotes the scattering length (effective-range). These results are confirmed by the continuum calculations using the Skorniakov-Ter-Martirosian integral equation which gives 1.17907(1) and -0.0383(3) for the scattering length and effective range, respectively.

  16. Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves

    KAUST Repository

    Guo, Bowen; Hanafy, Sherif; Schuster, Gerard T.

    2015-01-01

    Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult

  17. Wave Induced Loads on the LEANCON Wave Energy Converter

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Beserra, Eliab Ricarte

    This report is a product of the co-operation agreement between Aalborg University and LEANCON (by Kurt Due Rasmussen) on the evaluation and development of the LEANCON wave energy converter (WEC). The work reported here has focused on evaluation of the wave induced loads on the device, based...... in the laboratory, all under the supervision of the personnel of the Wave Energy Research Group at Department of Civil Engineering, Aalborg University....

  18. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules

    Science.gov (United States)

    Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.

    2018-04-01

    Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.

  19. Low energy electron scattering from fuels

    International Nuclear Information System (INIS)

    Lopes, M. Cristina A.; Silva, Daniel G.M.; Coelho, Rafael F.; Duque, Humberto V.; Santos, Rodrigo R. dos; Ribeiro, Thiago M.

    2011-01-01

    Full text. Accurate and precise values of absolute total cross section (TCS) represent important information in many scientific and technological applications. In our case, for example, we are motivated to provide such information for electron-fuel collision processes which are specifically relevant to modeling spark ignition in alcohol-fuelled internal combustion engines. Many electron scattering TCS measurements are presently available for a diverse range of atomic and molecular targets. However, lack of data for important bio-molecular targets still remains. Disagreements between the available TCS data for the alcohols have prompted several studies of electron scattering collision of slow electrons with these molecules which are currently important in applications as bio- fuels. This relevance, which has attracted much attention, has been one of the subjects of a recent collaboration between experimental and theoretical groups in the USA and Brazil. Recently this collaboration reported first measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering by several primary alcohols. In this work we address methanol and ethanol TCSs at low energy range and report additional studies of resonant structure in ethanol using the detection of metastable states produced by electron impact excitation with high energy resolution. We have recently constructed a TCS apparatus in our laboratory at Universidade Federal de Juiz de Fora, Brazil, based on the well-known linear transmission technique. The experimental setup is based on the measurement of the attenuation of a collimated electron beam through a gas cell containing the atoms or molecules to be studied at a given pressure. It consists essentially of an electron gun, a gas cell and an electron energy analyzer composed of an array of decelerating electrostatic lenses, a cylindrical dispersive 127o analyzer and a Faraday cup. To our knowledge, there exist

  20. Low energy electron scattering from fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Cristina A.; Silva, Daniel G.M.; Coelho, Rafael F.; Duque, Humberto V.; Santos, Rodrigo R. dos; Ribeiro, Thiago M. [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Dept. de Fisica; Yates, Brent; Hong, Ling; Khakoo, Murtadha A. [California State University at Fullerton, CA (US). Physics Department; Bettega, Marcio H.F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Fisica; Costa, Romarly F. da [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Lima, Marco A.P. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE/CNPEM), Campinas, SP (Brazil)

    2011-07-01

    Full text. Accurate and precise values of absolute total cross section (TCS) represent important information in many scientific and technological applications. In our case, for example, we are motivated to provide such information for electron-fuel collision processes which are specifically relevant to modeling spark ignition in alcohol-fuelled internal combustion engines. Many electron scattering TCS measurements are presently available for a diverse range of atomic and molecular targets. However, lack of data for important bio-molecular targets still remains. Disagreements between the available TCS data for the alcohols have prompted several studies of electron scattering collision of slow electrons with these molecules which are currently important in applications as bio- fuels. This relevance, which has attracted much attention, has been one of the subjects of a recent collaboration between experimental and theoretical groups in the USA and Brazil. Recently this collaboration reported first measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering by several primary alcohols. In this work we address methanol and ethanol TCSs at low energy range and report additional studies of resonant structure in ethanol using the detection of metastable states produced by electron impact excitation with high energy resolution. We have recently constructed a TCS apparatus in our laboratory at Universidade Federal de Juiz de Fora, Brazil, based on the well-known linear transmission technique. The experimental setup is based on the measurement of the attenuation of a collimated electron beam through a gas cell containing the atoms or molecules to be studied at a given pressure. It consists essentially of an electron gun, a gas cell and an electron energy analyzer composed of an array of decelerating electrostatic lenses, a cylindrical dispersive 127o analyzer and a Faraday cup. To our knowledge, there exist

  1. Scattering of electromagnetic waves into plasma oscillations via plasma particles

    International Nuclear Information System (INIS)

    Lin, A.T.; Dawson, J.M.

    1975-01-01

    A plasma subjected to an intense electromagnetic wave can exhibit a large number of parametric instabilities. An interesting example which has received little attention is the decay of the electromagnetic wave into a plasma oscillation with the excess energy and momentum being carried off by electrons. This process has been simulated on a one-and-two-halves dimensional electromagnetic code. The incident electromagnetic wave had a frequency near the plasma frequency so that decay into a plasma oscillation and a backscattered electromagnetic wave was excluded. As expected, the threshold for this instability was very large , so it is unlikely that this instability is competitive in most laser plasmas. Nevertheless, the physical mechanism involved provides a means for absorption of laser light and acceleration of particles in a plasma containing large amplitude plasma oscillations

  2. Virtual compton scattering at low energy

    International Nuclear Information System (INIS)

    Lhuillier, D.

    1997-09-01

    The work described in this PhD is a study of the Virtual Compton scattering (VCS) off the proton at low energy, below pion production threshold. Our experiment has been carried out at MAMI in the collaboration with the help of two high resolution spectrometers. Experimentally, the VCS process is the electroproduction of photons off a liquid hydrogen target. First results of data analysis including radiative corrections are presented and compared with low energy theorem prediction. VCS is an extension of the Real Compton Scattering. The virtuality of the incoming photon allows us to access new observables of the nucleon internal structure which are complementarity to the elastic form factors: the generalized polarizabilities (GP). They are function of the squared invariant mass of the virtual photo. The mass limit of these observables restore the usual electric and magnetic polarizabilities. Our experiment is the first measurement of the VCS process at a virtual photon mass equals 0.33 Ge V square. The experimental development presents the analysis method. The high precision needed in the absolute cross-section measurement required an accurate estimate of radiative corrections to the VCS. This new calculation, which has been performed in the dimensional regulation scheme, composes the theoretical part of this thesis. At low q', preliminary results agree with low energy theorem prediction. At higher q', substraction of low energy theorem contribution to extract GP is discussed. (author)

  3. Experiments on the WavePiston, Wave Energy Converter

    DEFF Research Database (Denmark)

    Angelelli, E.; Zanuttigh, B.; Kofoed, Jens Peter

    2011-01-01

    This paper analyses the performance of a new Wave Energy Converter (WEC) of the Oscillating Water Column type (OWC), named WavePiston. This near-shore floating device is composed of plates (i.e. energy collectors) sliding around a cylinder, that is placed perpendicular to the shore. Tests...... in the wave basin at Aalborg University allowed to investigate power production in the North Sea typical wave climate, with varying design parameters such as plate dimensions and their mutual distance. The power produced per meter by each collector is about the 5% of the available wave power. Experimental...... results and survivability considerations suggest that the WavePiston would be particularly suited for installations in milder seas. An example application is therefore presented in the Mediterranean Sea, off-shore the island of Sicily. In this case, each collector harvests the 10% of the available wave...

  4. Wave scattering by an axisymmetric ice floe of varying thickness

    Science.gov (United States)

    Bennetts, Luke G.; Biggs, Nicholas R. T.; Porter, David

    2009-04-01

    The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh-Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413-443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.

  5. Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke

    2012-01-01

    This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...

  6. Dissipation of Wave Energy by Cohesive Sediments

    National Research Council Canada - National Science Library

    Kaihatu, James M; Sheremet, Alexandru

    2004-01-01

    Wave energy dissipation by bottom muds is studied. A dissipation mechanism which contains explicit expressions of wavenumber modification due to a viscous bottom fluid is incorporated into a nonlinear wave shoaling model...

  7. Exact scattering solutions in an energy sudden (ES) representation

    International Nuclear Information System (INIS)

    Chang, B.; Eno, L.; Rabitz, H.

    1983-01-01

    In this paper, we lay down the theoretical foundations for computing exact scattering wave functions in a reference frame which moves in unison with the system internal coordinates. In this frame the (internal) coordinates appear to be fixed and its adoption leads very naturally (in zeroth order) to the energy sudden (ES) approximation [and the related infinite order sudden (IOS) method]. For this reason we call the new representation for describing the exact dynamics of a many channel scattering problem, the ES representation. Exact scattering solutions are derived in both time dependent and time independent frameworks for the representation and many interesting results in these frames are established. It is shown, e.g., that in a time dependent frame the usual Schroedinger propagator factorizes into internal Hamiltonian, ES, and energy correcting propagators. We also show that in a time independent frame the full Green's functions can be similarly factorized. Another important feature of the new representation is that it forms a firm foundation for seeking corrections to the ES approximation. Thus, for example, the singularity which arises in conventional perturbative expansions of the full Green's functions (with the ES Green's function as the zeroth order solution) is avoided in the ES representation. Finally, a number of both time independent and time dependent ES correction schemes are suggested

  8. Sensitivity of wave energy to climate change

    OpenAIRE

    Harrison, Gareth; Wallace, Robin

    2005-01-01

    Wave energy will have a key role in meeting renewable energy targets en route to a low carbon economy. However, in common with other renewables, it may be sensitive to changes in climate resulting from rising carbon emissions. Changes in wind patterns are widely anticipated and this will ultimately alter wave regimes. Indeed, evidence indicates that wave heights have been changing over the last 40 years, although there is no proven link to global warming. Changes in the wave climate will impa...

  9. Low energy pion-16O scattering

    International Nuclear Information System (INIS)

    Wafelbakker, C.K.

    1981-01-01

    In spite of some outward appearances, the modern microscopic theories of the pion-nucleus (πA) interaction are not fundamentally very different from each other. They can all be derived from the same source, multiple-scattering theory. They all treat the first-order optical potential in a comparatively detailed way and in all of them it is necessary to incorporate higher-order effects in general and pion-annihilation in particular phenomenologically. Basically the same physical features can be embodied in all of them. The presentation of the theoretical scheme underlying the present thesis is designed to stress this conceptual unity of current πA theory. In this thesis the methods developed by De Kam to incorporate Pauli- and binding-corrections to the impulse-approximation first-order optical potential for 4 He are extended to a more complicated nucleus, 16 O, for the first time. In concreto two situations are considered: π- 16 O scattering at energies below nucleon-knockout threshold (13.5 MeV) - 7 and 12 MeV - and at energies 40 and 49.7 MeV, above nucleon-knockout threshold but still well within the low-energy region. (Auth.)

  10. s-wave elastic scattering of antihydrogen off atomic alkali-metal targets

    International Nuclear Information System (INIS)

    Sinha, Prabal K.; Ghosh, A. S.

    2006-01-01

    We have investigated the s-wave elastic scattering of antihydrogen atoms off atomic alkali-metal targets (Li, Na, K, and Rb) at thermal energies (10 -16 -10 -4 a.u.) using an atomic orbital expansion technique. The elastic cross sections of these systems at thermal energies are found to be very high compared to H-H and H-He systems. The theoretical models employed in this study are so chosen to consider long-range forces dynamically in the calculation. The mechanism of cooling suggests that Li may be considered to be a good candidate as a buffer gas for enhanced cooling of antihydrogen atoms to ultracold temperature

  11. Scattering of electromagnetic waves by anomalous fluctuations of a magnetized plasma

    Science.gov (United States)

    Pavlenko, V. N.; Panchenko, V. G.

    1990-04-01

    Fluctuations and scattering of transverse electromagnetic waves by density fluctuations in a magnetized plasma in the presence of parametric decay of the pump wave are investigated. The spectral density of electron-density fluctuations is calculated. It is shown that the differential scattering cross-section has sharp maxima at the ion-acoustic and lower-hybrid frequencies when parametric decay of the lower-hybrid pump wave occurs. We note that scattering at the ion-acoustic frequency is dominant. When the pump-wave amplitude tends to the threshold strength of the electric field the scattering cross-section increases anomalously, i.e. there is critical opalescence.

  12. Wave Energy Potential in the Latvian EEZ

    Science.gov (United States)

    Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.

    2016-06-01

    The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.

  13. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    to generate power. Model tests have been performed using scale models (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept....... of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate mechanical power available to the power take off....

  14. Propagation and attenuation of sound waves as well as spectrally resolved Rayleigh scattering in weakly ionized plasmas

    International Nuclear Information System (INIS)

    Kopainsky, J.

    1975-01-01

    In weakly ionized plasmas the scattering of electromagnetic waves on free electrons (Thompson scattering) can be neglected as compared with the scattering on bound electrons (Rayleigh scattering). If the scattering process can be described by a fluid dynamical model it is caused by sound waves which are generated or annihilated by the incident electromagnetic wave. The propagation of sound waves results in a shift of the scattered line whereas their absorption within the plasma produces the broadening of the scattered line. The theory of propagation of sound in weakly ionized plasmas is developed and extended to Rayleigh scattering. The results are applied to laser scattering in a weakly ionized hydrogen plasma. (Auth.)

  15. Introducing wave energy into the renewable energy marketplace

    International Nuclear Information System (INIS)

    Petroncini, S.; Yemm, R.W.

    2001-01-01

    The energy sector in Europe is going through a dynamic evolution that sees the introduction and development of renewable energy and the re-emergence of a wave energy industry. Although wave energy is currently not economically competitive with mature technologies such as wind energy, the wave energy world-wide resource of 2 TW has a potential contribution in the electricity market of 2000TWh/year. Denmark, Ireland, Portugal, Norway and the UK have been analysed in terms of wave energy resources, renewable energy market structure and political and economic support for the introduction of wave energy into the marketplace. The results have been used together with Ocean Power Delivery Ltd to develop an initial market survey for the wave energy converter Pelamis. (au)

  16. An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2004-01-01

    Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...

  17. Direct detection of near-surface faults by migration of back-scattered surface waves

    KAUST Repository

    Yu, Han; Guo, Bowen; Hanafy, Sherif; Lin, Fan-Chi; Schuster, Gerard T.

    2014-01-01

    We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps

  18. Scattered housing energy retrofit program : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    Between 1999 and 2006, home energy audits were conducted in 770 scattered houses belonging to the Toronto Community Housing Corporation (TCHC). Over the course of the project, 126 houses were retrofitted with energy saving measures based on calculations of the most cost-effective measures. This report outlined the work that was conducted by the contractor, GreenSaver over the course of the project. The report discussed the project players and project execution. It included a profile of audited houses; auditing procedure; house reports; retrofit work; contractor arranging service; and post-retrofit inspections. Comments on retrofit work not carried out were also provided. The report also discussed the results of the project, including energy savings and emission reductions and participant feedback. A summary of the energy efficiency retrofit survey was also presented along with lessons learned. These included the availability of a contingency fund; the importance of tenant involvement; and making arrangements for other repair work. It was concluded that the amount of expected energy savings on space heating bills varied from house to house, and fell between 15 and 74 per cent. The report recommended that tenants and staff in the social housing sector could benefit from a greater awareness of energy issues and its more efficient use, allowing even greater and longer lasting benefits from a project like this. 8 tabs.

  19. Controller for a wave energy converter

    Science.gov (United States)

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  20. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution.

    Science.gov (United States)

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-05-26

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.

  1. Ocean floor mounting of wave energy converters

    Science.gov (United States)

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  2. Wave energy input into the Ekman layer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper is concerned with the wave energy input into the Ekman layer, based on 3 observational facts that surface waves could significantly affect the profile of the Ekman layer. Under the assumption of constant vertical diffusivity, the analytical form of wave energy input into the Ekman layer is derived. Analysis of the energy balance shows that the energy input to the Ekman layer through the wind stress and the interaction of the Stokes-drift with planetary vorticity can be divided into two kinds. One is the wind energy input, and the other is the wave energy input which is dependent on wind speed, wave characteristics and the wind direction relative to the wave direction. Estimates of wave energy input show that wave energy input can be up to 10% in high-latitude and high-wind speed areas and higher than 20% in the Antarctic Circumpolar Current, compared with the wind energy input into the classical Ekman layer. Results of this paper are of significance to the study of wave-induced large scale effects.

  3. A semiclassical distorted wave theory of inclusive nucleon inelastic scattering to continuum

    International Nuclear Information System (INIS)

    Kawai, M.; Luo, Y.L.

    1989-01-01

    A semiclassical model is presented for the one step process of the inclusive nucleon inelastic scattering to the continuum. In the model, we use distorted waves for describing the motion of the incident and the exit nucleon, and the Thomas-Fermi model for the initial and the final states of the target nucleus. The averaged two-body cross section inside the nucleus is given by Kikuchi-Kawai expression. The model gives a closed form formula for the double differential cross section. No free parameter is included. We apply the model to the inclusive nucleon inelastic scattering from Al, Sn and Bi at 62 MeV, and Ni at 164 MeV. The angular distribution experimental data are reproduced very well except for small and large angle regions. The calculated energy spectra agree with the experimental data very well in the middle angle region and at high exit energies. (author)

  4. Development of SMM wave laser scattering apparatus for the measurements of waves and turbulences in the tokamak plasma

    International Nuclear Information System (INIS)

    Saito, T.; Hamada, Y.; Yamashita, T.; Ikeda, M.; Nakamura, M.

    1980-01-01

    The SMM wave laser scattering apparatus has been developed for the measurement of the waves and turbulences in the plasma. This apparatus will help greatly to clarify the physics of RF heating of the tokamak plasma. The present status of main parts of the apparatus, the SMM wave laser and the Schottky barrier diode mixer for the heterodyne receiver, are described. (author)

  5. Quasi-wavelet formulations of turbulence and wave scattering

    DEFF Research Database (Denmark)

    Wilson, D. Keith; Ott, Søren; Goedecke, George H.

    2009-01-01

    Quasi-wavelets (QWs) are eddy-like entities similar to customary wavelets in the sense that they are based on translations and dilations of a spatially localized parent function. The positions and orientations are, however, normally taken to be random. Random fields such as turbulence may...... types of QWs and couplings, suitable for various applicatons, can be constructed through differentiation of spherically symmetric parent functions. For velocity fluctuations, QWs with toroidal and poloidal circulations can be derived. (2) Self-similar ensembles of QWs with rotation rates scaling...... to Fourier modes, QWs can be naturally arranged in a spatially intermittent manner. Models for both local (intrinsic) and global intermittency are discussed. (5) The spatially localized nature of QWs can be advantageous in wave-scattering calculations and other applications....

  6. Protons scattering on Li isotopes at intermediate energies

    International Nuclear Information System (INIS)

    Zhusupov, M.A.; Imambekov, O.; Sanfirova, A.V.; Ibraeva, E.T.

    2003-01-01

    The protons scattering differential cross section on the 6,7,8 Li nuclei are calculated within the framework the Glauber-Sitenko multiple scattering theory at intermediate energies (from 100 to 1000 MeV). In the calculations the multi-cluster wave functions (αt for 7 Li, αnp for 6 Li, and αtn for 8 Li) considering within potential cluster model have been used. Differential cross sections for 6 Li, 7 Li, 8 Li and 9 Li nuclei are similar: absolute cross sections are almost the same, diffraction minimum for large A shifting to the field of the least scattering angles that reflecting increase of the material radius. For the 11 Li the differential cross section absolute value is smaller about in two time than for the rest isotopes. At present it is reliably established, that the 11 Li nucleus has an exotic structure - the nine-nucleon core ( 9 Li) around which the two-neutron halo is rotating. The principal characteristics of the Li nuclei are presented in tabular form

  7. Accurate source location from waves scattered by surface topography: Applications to the Nevada and North Korean test sites

    Science.gov (United States)

    Shen, Y.; Wang, N.; Bao, X.; Flinders, A. F.

    2016-12-01

    Scattered waves generated near the source contains energy converted from the near-field waves to the far-field propagating waves, which can be used to achieve location accuracy beyond the diffraction limit. In this work, we apply a novel full-wave location method that combines a grid-search algorithm with the 3D Green's tensor database to locate the Non-Proliferation Experiment (NPE) at the Nevada test site and the North Korean nuclear tests. We use the first arrivals (Pn/Pg) and their immediate codas, which are likely dominated by waves scattered at the surface topography near the source, to determine the source location. We investigate seismograms in the frequency of [1.0 2.0] Hz to reduce noises in the data and highlight topography scattered waves. High resolution topographic models constructed from 10 and 90 m grids are used for Nevada and North Korea, respectively. The reference velocity model is based on CRUST 1.0. We use the collocated-grid finite difference method on curvilinear grids to calculate the strain Green's tensor and obtain synthetic waveforms using source-receiver reciprocity. The `best' solution is found based on the least-square misfit between the observed and synthetic waveforms. To suppress random noises, an optimal weighting method for three-component seismograms is applied in misfit calculation. Our results show that the scattered waves are crucial in improving resolution and allow us to obtain accurate solutions with a small number of stations. Since the scattered waves depends on topography, which is known at the wavelengths of regional seismic waves, our approach yields absolute, instead of relative, source locations. We compare our solutions with those of USGS and other studies. Moreover, we use differential waveforms to locate pairs of the North Korea tests from years 2006, 2009, 2013 and 2016 to further reduce the effects of unmodeled heterogeneities and errors in the reference velocity model.

  8. Energy in a String Wave

    Science.gov (United States)

    Ng, Chiu-king

    2010-01-01

    When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed…

  9. Scattering of electromagnetic plane waves by a buried vertical dike

    Directory of Open Access Journals (Sweden)

    Batista Lurimar S.

    2003-01-01

    Full Text Available The complete and exact solution of the scattering of a TE mode frequency domain electromagnetic plane wave by a vertical dike under a conductive overburden has been established. An integral representation composed of one-sided Fourier transforms describes the scattered electric field components in each one of the five media: air, overburden, dike, and the country rocks on both sides of the dike. The determination of the terms of the series that represents the spectral components of the Fourier integrals requires the numerical inversion of a sparse matrix, and the method of successive approaches. The zero-order term of the series representation for the spectral components of the overburden, for given values of the electrical and geometrical parameters of the model, has been computed. This result allowed to determine an approximate value of the variation of the electric field on the top of the overburden in the direction perpendicular to the strike of the dike. The results demonstrate the efficiency of this forward electromagnetic modeling, and are fundamental for the interpretation of VLF and Magnetotelluric data.

  10. Deuteron D-wave and the non-eikonal effects in tensor asymmetries in elastic proton-deuteron scattering

    International Nuclear Information System (INIS)

    Alberi, G.; Bleszynski, M.; California Univ., Los Angeles; Santos, S.; Jaroszewicz, T.

    1980-01-01

    It is shown that the tensor asymmetries in the elastic proton-deuteron scattering at medium energies are very sensitive to the non-eikonal corrections to the Glauber model. This sensitivity originates from the fact that, in double scattering, the non-eikonal corrections affect in a different way the contributions coming from the S- and D-wave parts of the deuteron wave function. This leads to considerable change of the tensor asymmetries not only in the region of the interference between single and double scatterings, but also in the region of dominance of the double scattering. It is suggested that these effects should be taken into account in any careful analysis of the proton-deuteron polarization data, which has as a goal the extraction of the NN amplitudes. (author)

  11. Elastic pp scattering in the Coulomb-nuclear interference region and low energy behaviour of p-barp scattering partial amplitudes

    International Nuclear Information System (INIS)

    Kudryavtsev, A.E.; Markushin, V.E.

    1985-01-01

    The experimental data on the low energy elastic p-barp scattering in the Coulomb-nuclear interference region and on the shift and width of the 1s level of p-barp-atom are analysed. The partial wave amplitudes for l=0.1 are extracted. The p-wave amplitude is in fair agreement with the atomic data for the 2p state and exhibits some energy structure. It is shown that the real-to-imaginary ratio of the p-barp forward elastic-scattering amplitude becomes negative in an energy interval just near p-barp-threshold

  12. Predictability of Wave Energy and Electricity Markets

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez

    2012-01-01

    The articlw addresses an important challenge ahead the integration of the electricity generated by wave energy conversion technologies into the electric grid. Particularly, it looks into the role of wave energy within the day-ahead electricity market. For that the predictability of the theoretical...... power outputs of three wave energy technologies in the Danish North Sea are examined. The simultaneous and co-located forecast and buoy-measured wave parameters at Hanstholm, Denmark, during a non-consecutive autumn and winter 3-month period form the basis of the investigation. The objective...

  13. The Indian wave energy programme- an overview

    International Nuclear Information System (INIS)

    Ravindran, M.; Jayashankar, V.; Jalihal, P.; Pathak, A.G.

    1997-01-01

    The Indian wave energy plant at Vizhinjam, Kerala has demonstrated that energy from a random source such as waves can be harnessed as electrical energy and exported via the local grid. This plant is based on the oscillating water column (OWC) principle. The research on wave energy in India has achieved a commendable status within a decade. A caisson was constructed in December 1990 at Vizhinjam and two generations of power modules have been tested as of today. The physical processes in the energy conversion are understood to a much greater extent, leading to a threefold increase in absolute power from the plant. Efforts are on to make the technology cost-effective

  14. Transmission of wave energy in curved ducts

    Science.gov (United States)

    Rostafinski, W.

    1973-01-01

    A formation of wave energy flow was developed for motion in curved ducts. A parametric study over a range of frequencies determined the ability of circular bends to transmit energy for the case of perfectly rigid walls.

  15. Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes

    DEFF Research Database (Denmark)

    Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.

    2009-01-01

    In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...

  16. THE DECISION OF FORM FOR DIFFRACTIVE STRUCTURES IN THE PROBLEM OF SCATTERING OF RADIO WAVES.

    Directory of Open Access Journals (Sweden)

    A. P. Preobrazhensky

    2017-02-01

    Full Text Available This paper considers the problem of scattering of electromagnetic waves in different diffraction structures. The solution of the scattering problem is based on the method of integral equations. On diagrams of backscattering at various frequencies of the incident wave, the decision about the form of the object is carried out.

  17. Wave propagation of spectral energy content in a granular chain

    Directory of Open Access Journals (Sweden)

    Shrivastava Rohit Kumar

    2017-01-01

    Full Text Available A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.

  18. Energy in one-dimensional linear waves

    International Nuclear Information System (INIS)

    Repetto, C E; Roatta, A; Welti, R J

    2011-01-01

    This work is based on propagation phenomena that conform to the classical wave equation. General expressions of power, the energy conservation equation in continuous media and densities of the kinetic and potential energies are presented. As an example, we study the waves in a string and focused attention on the case of standing waves. The treatment is applicable to introductory science textbooks. (letters and comment)

  19. High energy gravitational scattering: a numerical study

    CERN Document Server

    Marchesini, Giuseppe

    2008-01-01

    The S-matrix in gravitational high energy scattering is computed from the region of large impact parameters b down to the regime where classical gravitational collapse is expected to occur. By solving the equation of an effective action introduced by Amati, Ciafaloni and Veneziano we find that the perturbative expansion around the leading eikonal result diverges at a critical value signalling the onset of a new regime. We then discuss the main features of our explicitly unitary S-matrix down to the Schwarzschild's radius R=2G s^(1/2), where it diverges at a critical value b ~ 2.22 R of the impact parameter. The nature of the singularity is studied with particular attention to the scaling behaviour of various observables at the transition. The numerical approach is validated by reproducing the known exact solution in the axially symmetric case to high accuracy.

  20. Faddeev and Glauber calculations at intermediate energies in a model for n+d scattering

    International Nuclear Information System (INIS)

    Elster, Ch.; Lin, T.; Gloeckle, W.; Jeschonnek, S.

    2008-01-01

    Obtaining cross sections for nuclear reactions at intermediate energies based on the Glauber formulation has a long tradition. Only recently the energy regime of a few hundred MeV has become accessible to ab initio Faddeev calculations of three-body scattering. In order to go to higher energies, the Faddeev equation for three-body scattering is formulated and directly solved without employing a partial wave decomposition. In the simplest form the Faddeev equation for interacting scalar particles is a three-dimensional integral equation in five variables, from which the total cross section, the cross sections for elastic scattering and breakup reactions, as well as differential cross sections are obtained. The same observables are calculated based on the Glauber formulation. The first order Glauber calculation and the Glauber rescattering corrections are compared in detail with the corresponding terms of the Faddeev multiple scattering series for projectile energies between 100 MeV and 2 GeV

  1. Electron-cyclotron wave scattering by edge density fluctuations in ITER

    Science.gov (United States)

    Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas

    2009-11-01

    The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.

  2. Coherent scattering of CO2 light from ion-acoustic waves

    International Nuclear Information System (INIS)

    Peratt, A.L.; Watterson, R.L.; Derfler, H.

    1977-01-01

    Scattering of laser radiation from ion-acoustic waves in a plasma is investigated analytically and experimentally. The formulation predicts a coherent component of the scattered power on a largely incoherent background spectrum when the acoustic analog of Bragg's law and Doppler shift conditions are satisfied. The experiment consists of a hybrid CO 2 laser system capable of either low power continuous wave or high power pulsed mode operation. A heterodyne light mixing scheme is used to detect the scattered power. The proportionality predicted by the theory is verified by scattering from externally excited acoustic and ion-acoustic waves; continuous wave and pulsed modes in each case. Measurement of the ion-acoustic dispersion relation by continuous wave scattering is also presented

  3. Forward and inverse viscoelastic wave scattering by irregular inclusions for shear wave elastography.

    Science.gov (United States)

    Bernard, Simon; Cloutier, Guy

    2017-10-01

    Inversion methods in shear wave elastography use simplifying assumptions to recover the mechanical properties of soft tissues. Consequently, these methods suffer from artifacts when applied to media containing strong stiffness contrasts, and do not provide a map of the viscosity. In this work, the shear wave field recorded inside and around an inclusion was used to estimate the viscoelastic properties of the inclusion and surrounding medium, based on an inverse problem approach assuming local homogeneity of both media. An efficient semi-analytical method was developed to model the scattering of an elastic wave by an irregular inclusion, based on a decomposition of the field by Bessel functions and on a decomposition of the boundaries as Fourier series. This model was validated against finite element modeling. Shear waves were experimentally induced by acoustic radiation force in soft tissue phantoms containing stiff and soft inclusions, and the displacement field was imaged at a high frame rate using plane wave imaging. A nonlinear least-squares algorithm compared the model to the experimental data and adjusted the geometrical and mechanical parameters. The estimated shear storage and loss moduli were in good agreement with reference measurements, as well as the estimated inclusion shape. This approach provides an accurate estimation of geometry and viscoelastic properties for a single inclusion in a homogeneous background in the context of radiation force elastography.

  4. THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal.

    Science.gov (United States)

    Wang, Weitao; Cong, Zhenhua; Liu, Zhaojun; Zhang, Xingyu; Qin, Zengguang; Tang, Guanqi; Li, Ning; Zhang, Yuangeng; Lu, Qingming

    2014-07-14

    A terahertz parametric oscillator based on KTiOAsO(4) crystal is demonstrated for the first time. With the near-forward scattering configuration X(ZZ)X + Δφ, the polarizations of the pump, the Stokes and the generated THz waves are parallel to the z-axis of the crystal KTA. When the incident angle θext of the pump wave is changed from 1.875° to 6.500°, the THz wave is intermittently tuned from 3.59 to 3.96 THz, from 4.21 to 4.50 THz, from 4.90 to 5.16 THz, from 5.62 to 5.66 THz and from 5.92 to 6.43 THz. The obtained maximum THz wave energy is 627 nJ at 4.30 THz with a pump energy of 100 mJ. It is believed that the terahertz wave generation is caused by the stimulated scattering of the polaritons associated with the most intensive transverse A(1) mode of 233.8 cm(-1). Four much weaker transverse A(1) modes of 132.9 cm(-1), 156.3 cm(-1),175.1 cm(-1), and 188.4 cm(-1) cause four frequency gaps, from 3.97 THz to 4.20 THz, from 4.51 to 4.89 THz, from 5.17 to 5.61 THz and from 5.67 to 5.91 THz, respectively.

  5. Multiple exchange and high-energy fixed-angle scattering

    CERN Document Server

    Halliday, I G; Orzalesi, C A; Tau, M

    1975-01-01

    The application of the eikonal ansatz to fermion fermion elastic scattering with Abelian vector gluon exchanges is discussed. The behaviours of the elastic scattering amplitude and the elastic form factor are considered and an important mechanism for fixed angle high energy elastic scattering is identified. (6 refs).

  6. Backward elastic p3He-scattering and high momentum components of 3He wave function

    International Nuclear Information System (INIS)

    Uzikov, Yu.N.

    1998-01-01

    It is shown that owing to a dominance of np-pair transfer mechanism of backward elastic p 3 He-scattering for incident proton kinetic energies T p > 1 GeV the cross section of this process is defined mainly by the values of the Faddeev component of the wave function of 3 He nucleus, φ 23 (q 23 , p 1 ), at high relative momenta q 23 > 0.6 GeV/c of the NN-pair in the 1 S 0 -state and at low spectator momenta p 1 ∼ 0 - 0.2 GeV/c

  7. The S-wave model for electron-hydrogen scattering revisited

    International Nuclear Information System (INIS)

    Bartschat, K.; Bray, I.

    1996-03-01

    The R-matrix with pseudo-states (RMPS) and convergent close-coupling (CCC) methods are applied to the calculation of elastic, excitation, and total as well as single-differential ionization cross sections for the simplified S-wave model of electron-hydrogen scattering. Excellent agreement is obtained for the total cross section results obtained at electron energies between 0 and 100 eV. The two calculations also agree on the single-differential ionization cross section at 54.4 eV for the triplet spin channel, while discrepancies are evident in the singlet channel which shows remarkable structure. 18 refs., 3 figs

  8. Wave scattering theory and the absorption problem for a black hole

    International Nuclear Information System (INIS)

    Sanchez, N.

    1977-01-01

    The general problem of scattering and absorption of waves from a Schwarzschild black hole is investigated. A scattering absorption amplitude is introduced. The unitarity theorem for this problem is derived from the wave equation and its boundary conditions. The formulation of the problem, within the formal scattering theory approach, is also given. The existence of a singularity in space-time is related explicitly to the presence of a nonzero absorption cross section. Another derivation of the unitarity theorem for our problem is given by operator methods. The reciprocity relation is also proved; that is, for the scattering of waves the black hole is a reciprocal system. Finally, the elastic scattering problem is considered, and the elastic scattering amplitude is calculated for high frequencies and small scattering angles

  9. Diffuse Waves and Energy Densities Near Boundaries

    Science.gov (United States)

    Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.

    2007-12-01

    Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of

  10. Localization of fluctuation measurement by wave scattering close to a cut off layer

    International Nuclear Information System (INIS)

    Zou, X.L.; Laurent, L.; Rax, J.M.; Lehner, T.

    1990-01-01

    The diagnostic of plasma fluctuations in tokamaks based on the scattering of an electromagnetic wave close to a cut off layer is investigated. A linear density profile is considered. An one-dimensional exact analysis is performed. Spatial and spectral localization of scattering process close to the cut off layer is studied and a modified Bragg rule is derived. The structure of pump and of scattered waves is analyzed. The diagnostic seems to be local and sensitive for low R fluctuations

  11. The theory of electromagnetic wave scattering by density fluctuations in nonequilibrium plasma

    International Nuclear Information System (INIS)

    Pavlenko, V.N.; Panchenko, V.G.

    1993-01-01

    Scattering of electromagnetic waves by density fluctuations in a magnetized plasma in the presence of the external pump field is investigated. The spectral density of electron density fluctuations is calculated. The pump wave is supposed to decay into a lower hybrid wave and low frequency oscillations (ion-acoustic wave, modified convective cell and ion-cyclotron wave with ion-temperature anisotropy). When the pump wave amplitude tends to the threshold strength of the electric field, the scattering cross section increases anomalously, i.e. there is the critical opalescence. The differential scattering cross section dependence on the pump amplitude and ion temperature anisotropy is obtained in the region above the parametric instability threshold. For characteristic parameters of fusion and space plasmas it is shown that the pump field terms considerably surmount the thermal noise contribution to the scattering cross section

  12. Intermediate energy electron scattering from sodium and potassium

    International Nuclear Information System (INIS)

    Buckman, S.J.

    1979-06-01

    This thesis describes an experimental investigation of the interaction of fast electrons with alkali metal atoms. Several of the theoretical models which have been applied to atomic collision processes including the first Born approximation, the Glauber approximation, the optical model and the distorted wave polarized orbital approximation are discussed. The theory of electron-photon coincidence experiments is outlined and the effects of fine and hyperfine structure on the polarization state of photons emitted from an excited atom are calculated for Sodium. The results of elastic scattering measurements on Sodium and Potassium are presented and used to test several theoretical models in their description of the differential cross section at incident energies between 50 and 200eV. Absolute differential and integrated total cross sections for the Potassium resonance lines and Sodium D-lines are presented. Results of the first electron-polarized photon coincidence experiment on the Sodium D-lines are presented and compared with available theoretical calculations

  13. Levelized Cost of Energy of the Weptos wave energy converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the cost of energy calculations of a wave energy array of 90 MW, consisting of 25 x 3.6 MW Weptos wave energy converters. The calculation has been made in analogy with a publically available document presented by the UK government, covering the case of a similar size wind...

  14. Constant scattering length fits to low energy K-p interactions

    International Nuclear Information System (INIS)

    Conboy, J.E.

    1985-10-01

    The paper concerns the data on low energy K - p interactions analysed using the constant scattering length (C.S.L.) approximation. The scattering lengths are found to differ significantly from those required to fit data from previous K -1 p experiments, and these differences are discussed. The data indicate an Tspin=1 P- wave interaction, from the production angle distributions of the K-bar 0 n, Σ +- π -+ and Λπ 0 channels. However the authors have been unable to fit both the P-wave and K 0 sub(L)p data with the simple C.S.L. model. (U.K.)

  15. Coexistence of a bound state and scattering at the same energy value: a quantum paradox

    International Nuclear Information System (INIS)

    Chabanov, V.M.; Zakhar'ev, B.N.

    1998-01-01

    The example of a multi-channel system which possesses both bound (not quasi-bound !) and scattering states at the same energy value E is demonstrated. A special interaction has ability to confine waves near the origin and simultaneously admit scattering (even with transparency) at the fixed spectral point. These interaction matrices and wave functions can be continued to the whole axis. As another multi-channel peculiarity having no one-channel analogues was found a class of absolutely transparent interaction matrices without bound states

  16. Teaching on ocean-wave-energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Falnes, J. [Norges teknisk-naturvitskaplege univ., Inst. for fysikk, Trondheim (Norway)

    2001-07-01

    Ocean-wave energy utilisation has for 27 years been a university research subject, in which the author has been active from the first year. In this paper he presents some information related to his teaching on the subject during many of these years. This includes teaching on the pre-university level and, in particular, development of the wave-energy module for an educational CD-ROM on sustainable technology and renewable energy. Education of the general public is very important. On the other hand teaching of doctor students and other wave-energy researchers is also a subject of the paper. (au)

  17. Hydraulic Response of the Wave Energy Converter Wave Dragon in Nissum Bredning

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype.......This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype....

  18. Near-Shore Floating Wave Energy Converters

    DEFF Research Database (Denmark)

    Ruol, Piero; Zanuttigh, Barbara; Martinelli, Luca

    2011-01-01

    and transmission characteristics are approximated to functions of wave height, period and obliquity. Their order of magnitude are 20% and 80%, respectively. It is imagined that an array of DEXA is deployed in front of Marina di Ravenna beach (IT), a highly touristic site of the Adriatic Coast. Based on the CERC......Aim of this note is to analyse the possible application of a Wave Energy Converter (WEC) as a combined tool to protect the coast and harvest energy. Physical model tests are used to evaluate wave transmission past a near-shore floating WEC of the wave activated body type, named DEXA. Efficiency...

  19. Variability in millimeter wave scattering properties of dendritic ice crystals

    International Nuclear Information System (INIS)

    Botta, Giovanni; Aydin, Kültegin; Verlinde, Johannes

    2013-01-01

    A detailed electromagnetic scattering model for ice crystals is necessary for calculating radar reflectivity from cloud resolving model output in any radar simulator. The radar reflectivity depends on the backscattering cross sections and size distributions of particles in the radar resolution volume. The backscattering cross section depends on the size, mass and distribution of mass within the crystal. Most of the available electromagnetic scattering data for ice hydrometeors rely on simple ice crystal types and a single mass–dimensional relationship for a given type. However, a literature survey reveals that the mass–dimensional relationships for dendrites cover a relatively broad region in the mass–dimensional plane. This variability of mass and mass distribution of dendritic ice crystals cause significant variability in their backscattering cross sections, more than 10 dB for all sizes (0.5–5 mm maximum dimension) and exceeding 20 dB for the larger ones at X-, Ka-, and W-band frequencies. Realistic particle size distributions are used to calculate radar reflectivity and ice water content (IWC) for three mass–dimensional relationships. The uncertainty in the IWC for a given reflectivity spans an order of magnitude in value at all three frequencies because of variations in the unknown mass–dimensional relationship and particle size distribution. The sensitivity to the particle size distribution is reduced through the use of dual frequency reflectivity ratios, e.g., Ka- and W-band frequencies, together with the reflectivity at one of the frequencies for estimating IWC. -- Highlights: • Millimeter wave backscattering characteristics of dendritic crystals are modeled. • Natural variability of dendrite shapes leads to large variability in their mass. • Dendrite mass variability causes large backscattering cross section variability. • Reflectivity–ice water content relation is sensitive to mass and size distribution. • Dual frequency

  20. Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows

    DEFF Research Database (Denmark)

    Bekshaev, A. Ya; Angelsky, O. V.; Hanson, Steen Grüner

    2012-01-01

    between the forward- and backward-scattered momentum fluxes in the Rayleigh scattering regime appears due to the spin part of the internal energy flow in the incident beam. The transverse ponderomotive forces exerted on dielectric and conducting particles of different sizes are calculated and special......Based on the Mie theory and on the incident beam model via superposition of two plane waves, we analyze numerically the momentum flux of the field scattered by a spherical, nonmagnetic microparticle placed within the spatially inhomogeneous circularly polarized paraxial light beam. The asymmetry...

  1. Resonant Wave Energy Converters: Concept development

    International Nuclear Information System (INIS)

    Arena, Felice; Barbaro, Giuseppe; Fiamma, Vincenzo; Laface, Valentina; Malara, Giovanni; Romolo, Alessandra; Strati, Federica Mara

    2015-01-01

    The Resonant Wave Energy Converter (REWEC) is a device for converting sea wave energy to electrical energy. It belongs to the family of Oscillating Water Columns and is composed by an absorbing chamber connected to the open sea via a vertical duct. The paper gives a holistic view on the concept development of the device, starting from its implementation in the context of submerged breakwaters to the recently developed vertical breakwaters. [it

  2. Wave energy potential in Galicia (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, G.; Lopez, M.; Carballo, R.; Castro, A. [University of Santiago de Compostela, Hydraulic Engineering, E.P.S., Campus Universitario s/n, 27002 Lugo (Spain); Fraguela, J.A. [University of A Coruna, E.P.S., Campus de Esteiro s/n, Ferrol (Spain); Frigaard, P. [University of Aalborg, Sohngaardsholmsvej 57, DK 9000 (Denmark)

    2009-11-15

    Wave power presents significant advantages with regard to other CO{sub 2}-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996-2005. Taking into account the results of this assessment along with other relevant considerations such as the location of ports, navigation routes, and fishing and aquaculture zones, an area is selected for wave energy exploitation. The transformation of the offshore wave field as it propagates into this area is computed by means of a nearshore wave model (SWAN) in order to select the optimum locations for a wave farm. Two zones emerge as those with the highest potential for wave energy exploitation. The large modifications in the available wave power resulting from relatively small changes of position are made apparent in the process. (author)

  3. Scattering and absorption of electromagnetic waves by a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Fabbri, R.

    1975-01-01

    The scattering and absorption of electromagnetic waves by a spherically symmetric nonrotating black hole is studied in the Schwarzschild background, by means of the known expansion of the modified Debye potentials in partial waves. The power reflection coefficients and the phase shifts of the partial waves are evaluated at both high and low frequencies. Then the scattering and absorption cross sections of the black hole are determined. It is shown that the black hole is almost unable to absorb electromagnetic waves when the wave length of the radiation is greater than the Schwarzschild radius

  4. On the use of a Hamiltonian with projected potential for the calculation of scattering wave functions : Methods and general properties

    International Nuclear Information System (INIS)

    Colle, R.; Simonucci, S.

    1996-01-01

    The theoretical framework of a method that utilizes a projected potential operator to construct scattering wave functions is presented. Theorems and spectral properties of a Hamiltonian with the potential energy operator represented in terms of L'2(R'3)-functions are derived. The computational advantages offered by the method for calculating spectroscopic quantities, like resonance energies, decay probabilities and photoionization cross-sections, are discussed

  5. Energy-Dependent microscopic optical potential for p+{sup 9}Be elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Maridi, H. M., E-mail: h.maridi@gmail.com [Physics Department, Faculty of Science, Cairo University, Giza 12613 (Egypt); Physics Department, Faculty of Applied Science, Taiz University, Taiz (Yemen); Farag, M. Y. H., E-mail: yehiafarag@cu.edu.eg; Esmael, E. H. [Physics Department, Faculty of Applied Science, Taiz University, Taiz (Yemen)

    2016-06-10

    The p+{sup 9}Be elastic scattering at an energy range up to 200 MeV/nucleon is analyzed using the single-folding model. The density- and isospin-dependent M3Y-Paris nucleon-nucleon (NN) interaction is used for the real part and the NN-scattering amplitude of the high-energy approximation for the imaginary one. The analysis reveals that the cross-section data are reproduced well at energies up to 100 MeV/nucleon by use of the partial-wave expansion. For higher energies, the eikonal approximation give results better than the partial-wave expansion calculations. The volume integrals of the optical-potential parts have systematic energy dependencies, and they are parameterized in empirical formulas.

  6. Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities

    International Nuclear Information System (INIS)

    Bell, T.F.; Ngo, H.D.

    1990-01-01

    Recent satellite observations demonstrate that high amplitude, short wavelength (5 m ≤ λ ≤ 100 m) electrostatic waves are commonly excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and topside ionosphere where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. A new theoretical model of this phenomenon is presented, based upon passive linear scattering in a cold magnetoplasma. In this model the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. The excited short wavelength waves are quasi-electrostatic whistler mode waves, a type of lower hybrid wave, whose wave normal lies near the whistler mode resonance cone where the wave refractive index becomes very large. The amplitude of the excited electrostatic lower hybrid waves is calculated for a wide range of values of input electromagnetic wave frequency, wave normal direction, electron plasma frequency, gyrofrequency, ion composition, and irregularity scale and density enhancement. Results indicate that high amplitude lower hybrid waves can be excited over a wide range of parameters for irregularity density enhancements as low as 5% whenever the scale of the irregularity is of the same order as the lower hybrid wavelength

  7. Constraints on seismic anisotropy beneath the Appalachian Mountains from Love-to-Rayleigh wave scattering

    Science.gov (United States)

    Servali, A.; Long, M. D.; Benoit, M.

    2017-12-01

    The eastern margin of North America has been affected by a series of mountain building and rifting events that have likely shaped the deep structure of the lithosphere. Observations of seismic anisotropy can provide insight into lithospheric deformation associated with these past tectonic events, as well as into present-day patterns of mantle flow beneath the passive margin. Previous work on SKS splitting beneath eastern North America has revealed fast splitting directions parallel to the strike of the Appalachian orogen in the central and southern Appalachians. A major challenge to the interpretation of SKS splitting measurements, however, is the lack of vertical resolution; isolating anisotropic structures at different depths is therefore difficult. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves. In this study, we analyze the scattering of Love wave energy to Rayleigh waves, which is generated via sharp lateral gradients in anisotropic structure along the ray path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depend on the strength of the anisotropic contrast as well as the angle between the propagation azimuth and the anisotropic symmetry axis. We analyze data collected by the dense MAGIC seismic array across the central Appalachians. We examine teleseismic earthquakes of magnitude 6.7 and greater over a range of backazimuths, and isolate surface waves at periods between 100 and 500 seconds. We compare the data to synthetic seismograms generated by the Princeton Global ShakeMovie initiative to identify anomalous QL arrivals. We find evidence significant QL arrivals at MAGIC stations, with amplitudes depending on propagation azimuth and station location. Preliminary results are consistent with a sharp lateral gradient in seismic anisotropy across the Appalachian Mountains in the depth range between 100-200 km.

  8. Rayleigh-wave scattering by shallow cracks using the indirect boundary element method

    International Nuclear Information System (INIS)

    Ávila-Carrera, R; Rodríguez-Castellanos, A; Ortiz-Alemán, C; Sánchez-Sesma, F J

    2009-01-01

    The scattering and diffraction of Rayleigh waves by shallow cracks using the indirect boundary element method (IBEM) are investigated. The detection of cracks is of interest because their presence may compromise structural elements, put technological devices at risk or represent economical potential in reservoir engineering. Shallow cracks may give rise to scattered body and surface waves. These waves are sensitive to the crack's geometry, size and orientation. Under certain conditions, amplitude spectra clearly show conspicuous resonances that are associated with trapped waves. Several applications based on the scattering of surface waves (e.g. Rayleigh and Stoneley waves), such as non-destructive testing or oil well exploration, have shown that the scattered fields may provide useful information to detect cracks and other heterogeneities. The subject is not new and several analytical and numerical techniques have been applied for the last 50 years to understand the basis of multiple scattering phenomena. In this work, we use the IBEM to calculate the scattered fields produced by single or multiple cracks near a free surface. This method is based upon an integral representation of the scattered displacement fields, which is derived from Somigliana's identity. Results are given in both frequency and time domains. The analyses of the displacement field using synthetic seismograms and snapshots reveal some important effects from various configurations of cracks. The study of these simple cases may provide an archetype to geoscientists and engineers to understand the fundamental aspects of multiple scattering and diffraction by cracks

  9. Performance Evaluation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Pecher, Arthur

    Ocean waves provide a sustainable, power-dense, predictable and widely available source of energy that could provide about 10 % of worlds energy needs. While research into waveenergy has been undertaken for decades, a significant increase in related activities has been seen in the recent years......, with more than 150 concepts currently being developed worldwide. Wave energy conversion concepts can be of many kinds, as the energy in the waves can be absorbed in many different ways. However, each concept is expected to require a thorough development process, involving different phases and prototypes....... Guidelines for the development of wave energy converters recommend the use of different prototypes, having different sizes, which have to perform tank tests or sea trials. Thisimplicates the need of different testing environment, which shifts from being controllable to uncontrollable with the development...

  10. Probabilistic Design of Wave Energy Devices

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Kofoed, Jens Peter; Ferreira, C.B.

    2011-01-01

    Wave energy has a large potential for contributing significantly to production of renewable energy. However, the wave energy sector is still not able to deliver cost competitive and reliable solutions. But the sector has already demonstrated several proofs of concepts. The design of wave energy...... devices is a new and expanding technical area where there is no tradition for probabilistic design—in fact very little full scale devices has been build to date, so it can be said that no design tradition really exists in this area. For this reason it is considered to be of great importance to develop...... and advocate for a probabilistic design approach, as it is assumed (in other areas this has been demonstrated) that this leads to more economical designs compared to designs based on deterministic methods. In the present paper a general framework for probabilistic design and reliability analysis of wave energy...

  11. Performance Evaluation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Pecher, Arthur

    . Guidelines for the development of wave energy converters recommend the use of different prototypes, having different sizes, which have to perform tank tests or sea trials. This implicates the need of different testing environment, which shifts from being controllable to uncontrollable with the development......, with more than 150 concepts currently being developed worldwide. Wave energy conversion concepts can be of many kinds, as the energy in the waves can be absorbed in many different ways. However, each concept is expected to require a thorough development process, involving different phases and prototypes...

  12. Scattering of Electromagnetic Waves by Many Nano-Wires

    Directory of Open Access Journals (Sweden)

    Alexander G. Ramm

    2013-07-01

    Full Text Available Electromagnetic wave scattering by many parallel to the z−axis, thin, impedance, parallel, infinite cylinders is studied asymptotically as a → 0. Let Dm be the cross-section of the m−th cylinder, a be its radius and xˆm = (xm1, xm2 be its center, 1 ≤ m ≤ M , M =   M (a. It is assumed that the points, xˆm, are distributed, so that N (∆  = (1 / 2πa * ∫∆ N (xˆdxˆ[1 + o(1], where N (∆ is the number of points, xˆm, in an arbitrary open subset, ∆, of the plane, xoy. The function, N (xˆ ≥ 0, is a continuous function, which an experimentalist can choose. An equation for the self-consistent (effective field is derived as a → 0. A formula is derived for the refraction coefficient in the medium in which many thin impedance cylinders are distributed. These cylinders may model nano-wires embedded in the medium. One can produce a desired refraction coefficient of the new medium by choosing a suitable boundary impedance of the thin cylinders and their distribution law.

  13. Proton-proton elastic scattering at ultrahigh energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1981-05-30

    The authors use a geometrical model of high-energy pp elastic scattering as proposed by Chou and Yong to analyse experimental data available at present and consider the predictions of the dipole pomeron model for pp elastic scattering at ultrahigh energies. Theoretical results for differential cross sections are compared with experimental data.

  14. Physics of the ion acoustic wave driven by the stimulated Brillouin scattering instability

    International Nuclear Information System (INIS)

    Clayton, C.E.

    1984-01-01

    The ion acoustic wave excited in the stimulated Brillouin scattering (SBS) instability is probed via collective ruby-laser Thomson scattering in order to understand the low saturation level observed in the instability. Many of the features observed in the Brillouin backscattered CO 2 laser light from the underdense gas-target plasma are also observed in the Thomson scattered ruby light - from which it is learned that the ion acoustic wave grows exponentially and then saturates as the CO 2 pump power is increased. The primary advantage of the ruby Thomson scattering diagnostic is in its capability of providing simultaneous space and time resolved measurements of the ion wave amplitude. From these first such detailed measurements, it was found that the ion wave grows exponentially in space at a rate that agrees with the linear convective SBS theory. However, at higher pump powers, the ion wave saturates at an inferred amplitude of anti-n/n 0 approx. = 5 to 10%. Further increases in the pump power appear to result in an increase in the length over which the ion wave is saturated. A nearly constant SBS reflectivity in this saturated regime, however, suggests that the saturated ion wave does not contribute as much to the scattered power as would be expected from Bragg scattering theory. This apparent contradiction can be resolved if ion trapping is responsible for the saturation of the ion wave

  15. Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian.

    Science.gov (United States)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J

    2017-08-01

    Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this paper, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. The general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.

  16. Energy Capture Optimization for an Adaptive Wave Energy Converter

    NARCIS (Netherlands)

    Barradas Berglind, Jose de Jesus; Meijer, Harmen; van Rooij, Marijn; Clemente Pinol, Silvia; Galvan Garcia, Bruno; Prins, Wouter; Vakis, Antonis I.; Jayawardhana, Bayu

    2016-01-01

    Wave energy has great potential as a renewable energy source, and can therefore contribute significantly to the proportion of renewable energy in the global energy mix. This is especially important since energy mixes with high renewable penetration have become a worldwide priority. One solution to

  17. Development of the Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    The development of the wave energy converter Wave Dragon (WD) is presented. The WD is based on the overtopping principle. Initially a description of the WD is given. Then the development over time in terms of the various research and development projects working with the concept is described. Thi...

  18. Scattering of near-zero-energy electrons and positrons by H2

    KAUST Repository

    Zhang, J.-Y.

    2014-04-15

    The parameters for S-wave elastic scattering of near-zero-energy electrons and positrons by H2 molecules are calculated using the stabilization method with explicitly correlated Gaussians. The confined variational method is applied to optimize the Gaussians to describe the short-range interaction of incident e± with H2 in the fixed-nuclei approximation. For e+-H2 scattering the scattering length of previous work [Phys. Rev. Lett. 103, 223202 (2009)] is substantially improved. More importantly, for e−-H2 scattering, from first principles, the scattering length is computed as a function of the internuclear distance. In the case that the two nuclei are at the equilibrium distance the results are in a good agreement with values derived from fitting experimental total and diffusion cross sections to the modified effective range theory.

  19. Scattering of near-zero-energy electrons and positrons by H2

    KAUST Repository

    Zhang, J.-Y.; Yang, Y.-J.; Qian, Y.; Yan, Z.-C.; Schwingenschlö gl, Udo

    2014-01-01

    The parameters for S-wave elastic scattering of near-zero-energy electrons and positrons by H2 molecules are calculated using the stabilization method with explicitly correlated Gaussians. The confined variational method is applied to optimize the Gaussians to describe the short-range interaction of incident e± with H2 in the fixed-nuclei approximation. For e+-H2 scattering the scattering length of previous work [Phys. Rev. Lett. 103, 223202 (2009)] is substantially improved. More importantly, for e−-H2 scattering, from first principles, the scattering length is computed as a function of the internuclear distance. In the case that the two nuclei are at the equilibrium distance the results are in a good agreement with values derived from fitting experimental total and diffusion cross sections to the modified effective range theory.

  20. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    Science.gov (United States)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  1. Plane wave scattering by bow-tie posts

    Science.gov (United States)

    Lech, Rafal; Mazur, Jerzy

    2004-04-01

    The theory of scattering in free space by a novel structure of a two-dimensional dielectric-metallic post is developed with the use of a combination of a modified iterative scattering procedure and an orthogonal expansion method. The far scattered field patterns for open structures are derived. The rotation of the post affects its scattered field characteristic, which permits to make adjustments in characteristic of the posts arrays.

  2. Large-angle theory for pion-nucleus scattering at high energies

    International Nuclear Information System (INIS)

    Hoock, D.W. Jr.

    1978-01-01

    An approximate solution for high-energy, projectile-nucleus, multiple scattering is developed from the exact Watson series and applied to pion scattering for 12 C and 4 He. Agreement with measured differential cross sections available from the literature for the range 150 to 260 MeV pion laboratory energies is surprisingly good. The approximation method expands the propagators of the Watson series about the transverse component of the momentum transfer. Contributions of each of the first two terms to double scattering from a Gaussian potential are compared to the exact solution. The purely plane-wave propagation produces a scattering amplitude that agrees to order (k 0 a) -1 with the exact solution at the forward and backward directions at high energies. The second (off-axis) propagation term produces an amplitude that is one order smaller at forward angles and two orders smaller at 180 0 than the exact amplitude. At intermediate angles it is of the same order. The general multiple-scattering series is approximated with selection of plane-wave propagation as the fundamental process at large and small angles. This model suggests that a single nucleon accepts most of the momentum transfer for backward scattering. The resulting multiple-scattering formula agrees with the well-known high-energy eikonal theory at small angles and the backward-angle scattering formula of Chen at exactly 180 0 . A lowest-order formula that includes off-axis propagation is also derived. Predicted differential cross sections are found to be sensitive to nucleon motion and binding. For 4 He the effect of the nuclear potential on the pion kinetic energy is also examined and found to produce significant changes in the predicted cross sections

  3. Image processing to optimize wave energy converters

    Science.gov (United States)

    Bailey, Kyle Marc-Anthony

    The world is turning to renewable energies as a means of ensuring the planet's future and well-being. There have been a few attempts in the past to utilize wave power as a means of generating electricity through the use of Wave Energy Converters (WEC), but only recently are they becoming a focal point in the renewable energy field. Over the past few years there has been a global drive to advance the efficiency of WEC. Placing a mechanical device either onshore or offshore that captures the energy within ocean surface waves to drive a mechanical device is how wave power is produced. This paper seeks to provide a novel and innovative way to estimate ocean wave frequency through the use of image processing. This will be achieved by applying a complex modulated lapped orthogonal transform filter bank to satellite images of ocean waves. The complex modulated lapped orthogonal transform filterbank provides an equal subband decomposition of the Nyquist bounded discrete time Fourier Transform spectrum. The maximum energy of the 2D complex modulated lapped transform subband is used to determine the horizontal and vertical frequency, which subsequently can be used to determine the wave frequency in the direction of the WEC by a simple trigonometric scaling. The robustness of the proposed method is provided by the applications to simulated and real satellite images where the frequency is known.

  4. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  5. State estimation for wave energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Bacelli, Giorgio; Coe, Ryan Geoffrey

    2017-04-01

    This report gives a brief discussion and examples on the topic of state estimation for wave energy converters (WECs). These methods are intended for use to enable real-time closed loop control of WECs.

  6. Direct detection of near-surface faults by migration of back-scattered surface waves

    KAUST Repository

    Yu, Han

    2014-08-05

    We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps are to isolate the back-scattered surface waves, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. A deconvolution filter derived from the data can be used to collapse a dispersive arrival into a non-dispersive event. Results with synthetic data and field records validate the feasibility of this method. Applying this method to USArray data or passively recorded exploration data might open new opportunities in mapping tectonic features over the extent of the array.

  7. Analysis of the Scattering Characteristics of Sea Surface with the Influence from Internal Wave

    Directory of Open Access Journals (Sweden)

    Wei Yi-wen

    2015-06-01

    Full Text Available The internal wave travels beneath the sea surface and modulate the roughness of the sea surface through the wave-current interaction. This makes some dark and bright bands can be observed in the Synthetic Aperture Radar (SAR images. In this paper, we first establish the profile of the internal wave based on the KdV equations; then, the action balance equation and the wave-current interaction source function are used to modify the sea spectrum; finally, the two-scale theory based facet model is combined with the modified sea spectrum to calculate the scattering characteristics of the sea. We have simulated the scattering coefficient distribution of the sea with an internal wave traveling through. The influence on the scattering coefficients and the Doppler spectra under different internal wave parameters and sea state parameters are analyzed.

  8. Comparison of magnetosonic wave and water group ion energy densities at Comet Giacobini-Zinner

    Science.gov (United States)

    Staines, K.; Balogh, A.; Cowley, S. W. H.; Forster, P. M. De F.; Hynds, R. J.; Yates, T. S.; Sanderson, T. R.; Wenzel, K.-P.; Tsurutani, B. T.

    1991-01-01

    Measurements of the Comet Giacobini-Zinner (GZ) are presented to determine to what extent wave-particle scattering redistributed the initial pick-up energy of the ion population. Also examined is the difference between the ion thermal energy and the energy in the magnetic fields of the waves. In spite of uncertainty of about a factor of 2 noted in the pick-up and mass-loaded regions, it is shown that less than approximately 50 percent of the pick-up energy is converted into wave magnetic energy in the inbound pick-up region.

  9. Stimulated Raman scattering and ion dynamics: the role of Langmuir wave non-linearities

    International Nuclear Information System (INIS)

    Bonnaud, G.; Pesme, D.

    1988-02-01

    The non-linear evolution of stimulated Raman scattering by coupling of the SRS-driven Langmuir waves to ion acoustic waves is studied numerically, in a homogeneous density laser-irradiated plasma. The coupled wave amplitude behaviour is represented either by envelope equations or by complete wave-like equations. The various physical phenomena which are involved are described. This preliminary work has been presented at the 17th Anomalous Absorption Conference, held in last May, in Lake Tahoe City (USA) [fr

  10. High energy lepton-nucleon scattering

    International Nuclear Information System (INIS)

    Sciulli, F.

    1982-01-01

    The author summarizes the general expressions expected for neutrino scattering, and the formula for the electromagnetic process which is involved for minor scattering. He discusses the complications of quark binding and the historical development of fits from deep inelastic data. He also evaluates the signifigance of the results gained from the data, concluding his discussion by asking basic questions about the tests of the quark model and suggesting that there is still much to be learned about inelastic scattering, that more precision is necessary. The author is hopeful that the work now being conducted on the CFRR data will help solve some of the discrepancy

  11. Non-eikonal effects in high-energy scattering IV. Inelastic scattering

    International Nuclear Information System (INIS)

    Gurvitz, S.A.; Kok, L.P.; Rinat, A.S.

    1978-01-01

    Amplitudes of inelastically scattered high-energy projections were calculated. In the scattering on 12 C(Tsub(P)=1 GeV) sizeable non-eikonal corrections in diffraction extrema even for relatively small q 2 are demonstrated. At least part of the anomaly in the 3 - distribution may be due to these non-eikonal effects. (B.G.)

  12. Parity non-conservation in low energy scattering of nucleons by light nuclei. I. Theoretical framework

    Energy Technology Data Exchange (ETDEWEB)

    Henley, E M [Washington Univ., Seattle (USA). Dept. of Physics; Wolfenstein, L [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics

    1978-05-15

    The low-energy scattering of nucleons by /sup 2/H, /sup 3/He and /sup 4/He is analyzed for parity nonconserving effects. The asymmetry in the total cross section of longitudinally polarized projectiles is formulated in terms of the optical theorem and a distorted-wave Born approximation. For two nucleons at low energies it is only necessary to consider l = 0 to l = 1 matrix elements of the weak nucleon-nucleon potential. The asymmetries in the scattering from nuclear targets are related to the parameters of an effective weak nucleon-nucleon potential, so that they may be used to help differentiate between various proposed theoretical potentials.

  13. Investigation of high-energy inelastic neutron scattering from liquid water confined in silica xerogel

    International Nuclear Information System (INIS)

    Perelli-Cippo, E.; Andreani, C.; Casalboni, M.; Dire, S.; Fernandez-Canoto, D.; Gorini, G.; Imberti, S.; Pietropaolo, A.; Prosposito, P.; Schutzmann, S.; Senesi, R.; Tardocchi, M.

    2006-01-01

    High-energy inelastic neutron scattering (HINS) employing epithermal neutrons is a new technique under development at the VESUVIO spectrometer at ISIS, aiming to access the high-energy and low wave-vector transfer region in neutron scattering experiments at eV energies. New neutron detectors have been developed for HINS based on the resonant detector (RD). These make use of the detection of prompt gammas after neutron absorption in an analyzer foil. The RD is used in the very low angle detector (VLAD) bank, which will extend the explored kinematical region to momentum transfer -1 , whilst still keeping energy transfer >300 meV. The final VLAD will cover the scattering range 1-5 o and will be installed by the end of 2005. The results obtained with prototype VLAD detectors on polycrystalline ice and liquid water in silica xerogels provide a demonstration of the feasibility of the measurements under realistic conditions

  14. A tunable dual-wavelength pump source based on simulated polariton scattering for terahertz-wave generation

    International Nuclear Information System (INIS)

    Sun, Bo; Liu, Jinsong; Yao, Jianquan; Li, Enbang

    2013-01-01

    We propose a dual-wavelength pump source by utilizing stimulated polariton scattering in a LiNbO 3 crystal. The residual pump and the generated tunable Stokes waves can be combined to generate THz-wave generation via difference frequency generation (DFG). With a pump energy of 49 mJ, Stokes waves with a tuning range from 1067.8 to 1074 nm have been generated, and an output energy of up to 14.9 mJ at 1070 nm has been achieved with a conversion efficiency of 21.7%. A sum frequency generation experiment was carried out to demonstrate the feasibility of the proposed scheme for THz-wave DFG. (paper)

  15. Wave energy potential in Galicia (NW Spain)

    DEFF Research Database (Denmark)

    Iglesias, Gregorio; López, Mario; Carballo, Rodrigo

    2009-01-01

    Wave power presents significant advantages with regard to other CO2-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very...... harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996 - 2005. Taking into account the results of this assessment along with other relevant considerations such as the location...

  16. Assessment of wave energy resources in Hawaii

    International Nuclear Information System (INIS)

    Stopa, Justin E.; Cheung, Kwok Fai; Chen, Yi-Leng

    2011-01-01

    Hawaii is subject to direct approach of swells from distant storms as well as seas generated by trade winds passing through the islands. The archipelago creates a localized weather system that modifies the wave energy resources from the far field. We implement a nested computational grid along the major Hawaiian Islands in the global WaveWatch3 (WW3) model and utilize the Weather Research and Forecast (WRF) model to provide high-resolution mesoscale wind forcing over the Hawaii region. Two hindcast case studies representative of the year-round conditions provide a quantitative assessment of the regional wind and wave patterns as well as the wave energy resources along the Hawaiian Island chain. These events of approximately two weeks each have a range of wind speeds, ground swells, and wind waves for validation of the model system with satellite and buoy measurements. The results demonstrate the wave energy potential in Hawaii waters. While the episodic swell events have enormous power reaching 60 kW/m, the wind waves, augmented by the local weather, provide a consistent energy resource of 15-25 kW/m throughout the year. (author)

  17. Auger vs resonance neutralization in low energy He+ ion scattering

    International Nuclear Information System (INIS)

    Woodruff, D.P.

    1983-01-01

    He + ions incident on a metal surface can neutralize either by an Auger or resonant charge exchange. While the Auger process has always been thought to be dominant, recent theoretical interest in the simpler one-electron resonance process has led to suggestions that this alone can account for the neutralization seen in low energy He + ion scattering. In this paper this assertion is analysed by looking at the wider information available on charge exchange processes for He + ion scattering through comparison with Li + ion scattering, the importance of multiple scattering in both these scattering experiments and the results of ion neutralization spectroscopy. These lead to the conclusion that while resonance neutralization to produce metastable He* may well occur at a substantial rate in He + ion scattering, the dominant process leading to loss of ions from the final scattered signal is Auger neutralization as originally proposed. (author)

  18. Wave packet formulation of the boomerang model for resonant electron--molecule scattering

    International Nuclear Information System (INIS)

    McCurdy, C.W.; Turner, J.L.

    1983-01-01

    A time-dependent formulation of the boomerang model for resonant electron--molecule scattering is presented in terms of a wave packet propagating on the complex potential surface of the metastable anion. The results of calculations using efficient semiclassical techniques for propagating the wave packet are found to be in excellent agreement with full quantum-mechanical calculations of vibrational excitation cross sections in e - --N 2 scattering. The application of the wave packet formulation as a computational and conceptual approach to the problem of resonant collisions with polyatomic molecules is discussed in the light of recent wave packet calculations on polyatomic photodissociation and Raman spectra

  19. Finite energy sum rules in potential scattering

    International Nuclear Information System (INIS)

    Graham, N.; Jaffe, R.L.; Quandt, M.; Weige, H.

    2001-01-01

    We study scattering theory identities previously obtained as consistency conditions in the context of one-loop quantum field theory calculations. We prove the identities using Jost function techniques and study applications

  20. Relationship between wave energy and free energy from pickup ions in the Comet Halley environment

    Science.gov (United States)

    Huddleston, D. E.; Johnstone, A. D.

    1992-01-01

    The free energy available from the implanted heavy ion population at Comet Halley is calculated by assuming that the initial unstable velocity space ring distribution of the ions evolves toward a bispherical shell. Ultimately this free energy adds to the turbulence in the solar wind. Upstream and downstream free energies are obtained separately for the conditions observed along the Giotto spacecraft trajectory. The results indicate that the waves are mostly upstream propagating in the solar wind frame. The total free energy density always exceeds the measured wave energy density because, as expected in the nonlinear process of ion scattering, the available energy is not all immediately released. An estimate of the amount which has been released can be obtained from the measured oxygen ion distributions and again it exceeds that observed. The theoretical analysis is extended to calculate the k spectrum of the cometary-ion-generated turbulence.

  1. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering Based on the Newly Developed Self-consistent RC/EMIC Waves Model by Khazanov et al. [2006

    Science.gov (United States)

    Khazanov, G. V.; Gallagher, D. L.; Gamayunov, K.

    2007-01-01

    It is well known that the effects of EMIC waves on RC ion and RB electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. Therefore, realistic characteristics of EMIC waves should be properly determined by modeling the RC-EMIC waves evolution self-consistently. Such a selfconsistent model progressively has been developing by Khaznnov et al. [2002-2006]. It solves a system of two coupled kinetic equations: one equation describes the RC ion dynamics and another equation describes the energy density evolution of EMIC waves. Using this model, we present the effectiveness of relativistic electron scattering and compare our results with previous work in this area of research.

  2. Coherent scattering of three-level atoms in the field of a bichromatic standing light wave

    International Nuclear Information System (INIS)

    Pazgalev, A.S.; Rozhdestvenskii, Yu.V.

    1996-01-01

    We discuss the coherent scattering of three-level atoms in the field of two standing light waves for two values of the spatial shift. In the case of a zero spatial shift and equal frequency detunings of the standing waves, the problem of scattering of a three-level atoms is reduced to scattering of an effectively two-level atom. For the case of an exact resonance between the waves and transitions we give expressions for the population probability of the states of the three-level atom obtained in the short-interaction-time approximation. Depending on the initial population distribution over the states, different scattering modes are realized. In particular, we show that there can be initial conditions for which the three-level system does not interact with the field of the standing waves, with the result that there is no coherent scattering of atoms. In the case of standing waves shifted by π/2, there are two types of solution, depending on the values of the frequency detuning. For instance, when the light waves are detuned equally we give the exact solution for arbitrary relationships between the detuning and the standing wave intensities valid for any atom-field interaction times. The case of 'mirror' detunings and shifted standing waves is studied only numerically

  3. Optical model theory of elastic electron- and positron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Joachain, C.J.

    1977-01-01

    It is stated that the basic idea of the optical model theory is to enable analysis of the elastic scattering of a particle from a complex target by replacing the complicated interactions between the beam and the target by an optical potential, or pseudopotential, in which the incident particle moves. Once the optical potential is determined the original many-body elastic scattering problem reduces to a one-body situation. The resulting optical potential is, however, a very complicated operator, and the formal expressions obtained from first principles for the optical potential can only be evaluated approximately in a few simple cases, such as high energy elastic hadron-nucleus scattering, for the the optical potential can be expressed in terms of two-body hadron-nucleon amplitudes, and the non-relativistic elastic scattering of fast charged particles by atoms. The elastic scattering of an electron or positron by a neutral atom at intermediate energies is here considered. Exchange effects between the projectile and the atomic electrons are considered; also absorption and polarisation effects. Applications of the full-wave optical model have so far only been made to the elastic scattering of fast electrons and positrons by atomic H, He, Ne, and Ar. Agreements of the optical model results with absolute measurements of differential cross sections for electron scattering are very good, an agreement that improves as the energy increases, but deteriorates quickly as the incident energy becomes lower than 50 eV for atomic H or 100 eV for He. For more complex atoms the optical model calculations also appear very encouraging. With regard to positron-atom elastic scattering the optical model results for positron-He scattering differ markedly at small angles from the corresponding electron-He values. It would be interesting to have experimental angular distributions of positron-atom elastic scattering in order to check predictions of the optical model theory. (U.K.)

  4. Clustering of cycloidal wave energy converters

    Science.gov (United States)

    Siegel, Stefan G.

    2016-03-29

    A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.

  5. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate

  6. Harmonic effects on ion-bulk waves and simulation of stimulated ion-bulk-wave scattering in CH plasmas

    Science.gov (United States)

    Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; He, X. T.

    2017-08-01

    Ion-bulk (IBk) wave, a novel branch with a phase velocity close to the ion’s thermal velocity, discovered by Valentini et al (2011 Plasma Phys. Control. Fusion 53 105017), is recently considered as an important electrostatic activity in solar wind, and thus of great interest to space physics and also inertial confinement fusion. The harmonic effects on IBk waves has been researched by Vlasov simulation for the first time. The condition of excitation of the large-amplitude IBk waves is given. The nature of nonlinear IBk waves in the condition of kFeng scattering (SFS) has been proposed and also verified by Vlasov-Maxwell code. In CH plasmas, in addition to the stimulated Brillouin scattering from multi ion-acoustic waves, there exists SIBS simultaneously. This research gives an insight into the SIBS in the field of laser plasma interaction.

  7. Lamb wave scattering by a surface-breaking crack in a plate

    Science.gov (United States)

    Datta, S. K.; Al-Nassar, Y.; Shah, A. H.

    1991-01-01

    An NDE method based on finite-element representation and modal expansion has been developed for solving the scattering of Lamb waves in an elastic plate waveguide. This method is very powerful for handling discontinuities of arbitrary shape, weldments of different orientations, canted cracks, etc. The advantage of the method is that it can be used to study the scattering of Lamb waves in anisotropic elastic plates and in multilayered plates as well.

  8. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  9. Modal Ring Method for the Scattering of Electromagnetic Waves

    Science.gov (United States)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1993-01-01

    The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.

  10. Collective scattering of electromagnetic waves from a relativistic magnetized plasma

    International Nuclear Information System (INIS)

    Lu Quankang

    1998-01-01

    Recently, laser and microwave scattering has become one of the important diagnostic means for plasma. Laser and microwave correlative scattering spectrum is determined by particle-density fluctuations in a weak turbulent plasma. In a relativistic plasma, on the basis of complete electromagnetic-interaction between particles, a general expression for particle density fluctuations and spectrums of laser and microwave scattering from a magnetized plasma are derived. The laser and microwave scattering spectrums provide informations on electron density and temperature, ion temperature, resonance and nonresonance effects. (author)

  11. Bridging Three Orders of Magnitude: Multiple Scattered Waves Sense Fractal Microscopic Structures via Dispersion

    Science.gov (United States)

    Lambert, Simon A.; Näsholm, Sven Peter; Nordsletten, David; Michler, Christian; Juge, Lauriane; Serfaty, Jean-Michel; Bilston, Lynne; Guzina, Bojan; Holm, Sverre; Sinkus, Ralph

    2015-08-01

    Wave scattering provides profound insight into the structure of matter. Typically, the ability to sense microstructure is determined by the ratio of scatterer size to probing wavelength. Here, we address the question of whether macroscopic waves can report back the presence and distribution of microscopic scatterers despite several orders of magnitude difference in scale between wavelength and scatterer size. In our analysis, monosized hard scatterers 5 μ m in radius are immersed in lossless gelatin phantoms to investigate the effect of multiple reflections on the propagation of shear waves with millimeter wavelength. Steady-state monochromatic waves are imaged in situ via magnetic resonance imaging, enabling quantification of the phase velocity at a voxel size big enough to contain thousands of individual scatterers, but small enough to resolve the wavelength. We show in theory, experiments, and simulations that the resulting coherent superposition of multiple reflections gives rise to power-law dispersion at the macroscopic scale if the scatterer distribution exhibits apparent fractality over an effective length scale that is comparable to the probing wavelength. Since apparent fractality is naturally present in any random medium, microstructure can thereby leave its fingerprint on the macroscopically quantifiable power-law exponent. Our results are generic to wave phenomena and carry great potential for sensing microstructure that exhibits intrinsic fractality, such as, for instance, vasculature.

  12. Experimental measurements of lower-hybrid wave propagation in the Versator II tokamak using microwave scattering

    International Nuclear Information System (INIS)

    Rohatgi, R.; Chen, K.; Bekefi, G.; Bonoli, P.; Luckhardt, S.C.; Mayberry, M.; Porkolab, M.; Villasenor, J.

    1991-01-01

    A series of 139 GHz microwave scattering experiments has been performed on the Versator II tokamak (B. Richards, Ph.D. thesis, Massachusetts Institute of Technology, 1981) to study the propagation of externally launched 0.8 GHz lower-hybrid waves. During lower-hybrid current drive, the launched waves are found to follow a highly directional resonance cone in the outer portion of the plasma. Wave power is also detected near the center of the plasma, and evidence of wave absorption is seen. Scattering of lower-hybrid waves in k space by density fluctuations appears to be a weak effect, although measurable frequency broadening by density fluctuations is found, Δω/ω=3x10 -4 . In the detectable range (2.5 parallel parallel spectra inferred from the scattering measurements are quite similar above and below the current drive density limit. Numerical modeling of these experiments using ray tracing is also presented

  13. Prospects for ion temperature measurements in JET by Thomson scattering of submillimetre waves

    International Nuclear Information System (INIS)

    Whitbourn, L.B.

    1975-03-01

    The Thomson scattering of submillimeter waves is envisaged as a possible means for measuring the ion temperature of the JET plasma. The present discussion is principally concerned with the practical limitations imposed to the method by the availability of high power pulsed sources and sensitive detectors and noise due to plasma emission at submillimeter wavelengths (bremsstrahlung and electron cyclotron emission). Coherent scattering from plasma wave (e.g. ion acoustic waves and electron drift waves) with millimeter and submillimeter waves are considered briefly. Further suitable development of lasers and heterodyne detectors would make such measurements possible. A pulsed HCN laser associated with a detectors with a lower heterodyne noise equivalent power could then be used to advantage. For scattering with CH 3 F laser the NEP of a Josephson junction would be adequate because a relatively high level of plasma emission is expected at 496 μm [fr

  14. The scattering of E. M. waves from density fluctuations in a plasma

    International Nuclear Information System (INIS)

    Hagfors, T.

    1977-01-01

    The scattering of electromagnetic (EM) waves by a single electron is developed from first principles. The result is used to derive the relationship of the scattered power spectrum to the spacetime Fourier transform of the electron density fluctuations in a plasma. (Auth.)

  15. DANWEC - Empirical Analysis of the Wave Climate at the Danish Wave Energy Centre

    DEFF Research Database (Denmark)

    Tetu, Amelie; Nielsen, Kim; Kofoed, Jens Peter

    information on the DanWEC wave and current climate. In this paper an analysis of the wave climate of the DanWEC test site will be presented. This includes a description of the data quality control and filtration for analysis and the observations and data analysis. Relevant characteristics of the test site...... site for several Danish WECs. In 2013 DanWEC has received Greenlab funding from the EUDP programme to establish the site including more detailed information on its wave climate and bathymetry and seabed conditions. The project “Resource Assessment, Forecasts and WECs O&M strategies at DanWEC and beyond......, as for example scatter diagram (Hm0, Tz) will be analysed and wave power distribution given. Based on the data gathered so far a preliminary analysis of extreme events at the DanWEC test site will be presented. Deployment, control strategies and O&M strategies of wave energy converters are sensitive to the wave...

  16. High energy asymptotics of the scattering amplitude for the ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Keywords. Scattering matrix; asymptotic expansion; high energy; diagonal singula- ..... (see subsection 2 of § 3) with functions of the generator of dilations. A = 1. 2 d ..... ness in quantum scattering theory, Ann. Inst. Henri Poincaré, Phys. Théor.

  17. Elastic scattering of low energy γ-rays

    International Nuclear Information System (INIS)

    Whittingham, I.B.

    1978-01-01

    The current status of the theory of the elastic scattering of low energy γ rays is reviewed and a detailed analysis of the theoretical background to the recent calculation of Rayleigh scattering by W.R.Johnson and co-workers is presented

  18. Optimal control of a wave energy converter

    NARCIS (Netherlands)

    Hendrikx, R.W.M.; Leth, J.; Andersen, P; Heemels, W.P.M.H.

    2017-01-01

    The optimal control strategy for a wave energy converter (WEC) with constraints on the control torque is investigated. The goal is to optimize the total energy delivered to the electricity grid. Using Pontryagin's maximum principle, the solution is found to be singular-bang. Using higher order

  19. High energy scattering in gravity and supergravity

    DEFF Research Database (Denmark)

    B. Giddings, Steven; Schmidt-Sommerfeld, Maximilian; Andersen, Jeppe Rosenkrantz

    2010-01-01

    We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena...... and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra...... a physical scattering process, and ultraplanckian scattering exhibiting Regge behavior. These arguments sharpen the need to find a nonperturbative completion of gravity with mechanisms which restore unitarity in the strong gravity regime....

  20. Wave propagation of spectral energy content in a granular chain

    NARCIS (Netherlands)

    Shrivastava, Rohit Kumar; Luding, Stefan

    2017-01-01

    A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like

  1. Design Specifications for the Hanstholm WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Larsen, Tommy

    2012-01-01

    The WEPTOS wave energy converter (WEC) is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack-moored and ......The WEPTOS wave energy converter (WEC) is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack...

  2. Scattering of electromagnetic waves from a half-space of randomly distributed discrete scatterers and polarized backscattering ratio law

    Science.gov (United States)

    Zhu, P. Y.

    1991-01-01

    The effective-medium approximation is applied to investigate scattering from a half-space of randomly and densely distributed discrete scatterers. Starting from vector wave equations, an approximation, called effective-medium Born approximation, a particular way, treating Green's functions, and special coordinates, of which the origin is set at the field point, are used to calculate the bistatic- and back-scatterings. An analytic solution of backscattering with closed form is obtained and it shows a depolarization effect. The theoretical results are in good agreement with the experimental measurements in the cases of snow, multi- and first-year sea-ice. The root product ratio of polarization to depolarization in backscattering is equal to 8; this result constitutes a law about polarized scattering phenomena in the nature.

  3. Air Turbines for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Manabu Takao

    2012-01-01

    Full Text Available This paper describes the present status of the art on air turbines, which could be used for wave energy conversion. The air turbines included in the paper are as follows: Wells type turbines, impulse turbines, radial turbines, cross-flow turbine, and Savonius turbine. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been compared by numerical simulation and sea trial. As a result, under irregular wave conditions it is found that the running and starting characteristics of the impulse type turbines could be superior to those of the Wells turbine. Moreover, as the current challenge on turbine technology, the authors explain a twin-impulse turbine topology for wave energy conversion.

  4. Electromagnetic wave energy conversion research

    Science.gov (United States)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  5. Fundamental formulae for wave-energy conversion.

    Science.gov (United States)

    Falnes, Johannes; Kurniawan, Adi

    2015-03-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.

  6. Impact of Tidal Level Variations on Wave Energy Absorption at Wave Hub

    Directory of Open Access Journals (Sweden)

    Valeria Castellucci

    2016-10-01

    Full Text Available The energy absorption of the wave energy converters (WEC characterized by a limited stroke length —like the point absorbers developed at Uppsala University—depends on the sea level variation at the deployment site. In coastal areas characterized by high tidal ranges, the daily energy production of the generators is not optimal. The study presented in this paper quantifies the effects of the changing sea level at the Wave Hub test site, located at the south-west coast of England. This area is strongly affected by tides: the tidal height calculated as the difference between the Mean High Water Spring and the Mean Low Water Spring in 2014 was about 6.6 m. The results are obtained from a hydro-mechanic model that analyzes the behaviour of the point absorber at the Wave Hub, taking into account the sea state occurrence scatter diagram and the tidal time series at the site. It turns out that the impact of the tide decreases the energy absorption by 53%. For this reason, the need for a tidal compensation system to be included in the design of the WEC becomes compelling. The economic advantages are evaluated for different scenarios: the economic analysis proposed within the paper allows an educated guess to be made on the profits. The alternative of extending the stroke length of the WEC is investigated, and the gain in energy absorption is estimated.

  7. Lepton-nucleon scattering at high energies

    International Nuclear Information System (INIS)

    Buchmueller, W.

    1993-12-01

    Recent theoretical developments in the field of inelastic lepton-nucleon scattering are reviewed with emphasis on physics at HERA. Structure functions at small Bjorken-x are discussed in detail. Further topics are photoproduction of jets, the gluon densities in proton and photon, charm physics, electroweak processes and the search for new particles and interactions. (orig.)

  8. e--H scattering at intermediate energies

    International Nuclear Information System (INIS)

    Ghosh, A.S.

    1978-01-01

    The effect of exchange is included explicitly in the framework of simplified form of the fixed scatterer approximation as proposed by Ghosh. Inclusion of exchange is found to improve the results for the differential cross section appreciably when comparisons are made with the measured values. The computational labour involved is very reasonable. (author)

  9. Coherent transmission of an ultrasonic shock wave through a multiple scattering medium.

    Science.gov (United States)

    Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe

    2013-08-01

    We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.

  10. Influence of stimulated Raman scattering on the conversion efficiency in four wave mixing

    International Nuclear Information System (INIS)

    Wunderlich, R.; Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-01-01

    Secondary nonlinear optical effects following parametric four wave mixing in sodium vapor are investigated. The generated ultraviolet radiation induces stimulated Raman scattering and other four wave mixing process. Population transfer due to Raman transitions strongly influences the phase matching conditions for the primary mixing process. Pulse shortening and a reduction in conversion efficiency are observed. 8 refs., 3 figs

  11. Resonant scattering of energetic electrons in the plasmasphere by monotonic whistler-mode waves artificially generated by ionospheric modification

    Directory of Open Access Journals (Sweden)

    S. S. Chang

    2014-05-01

    Full Text Available Modulated high-frequency (HF heating of the ionosphere provides a feasible means of artificially generating extremely low-frequency (ELF/very low-frequency (VLF whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high-energy electrons in the plasmasphere. By ray tracing the magnetospheric propagation of ELF/VLF emissions artificially generated at low-invariant latitudes, we evaluate the relativistic electron resonant energies along the ray paths and show that propagating artificial ELF/VLF waves can resonate with electrons from ~ 100 keV to ~ 10 MeV. We further implement test particle simulations to investigate the effects of resonant scattering of energetic electrons due to triggered monotonic/single-frequency ELF/VLF waves. The results indicate that within the period of a resonance timescale, changes in electron pitch angle and kinetic energy are stochastic, and the overall effect is cumulative, that is, the changes averaged over all test electrons increase monotonically with time. The localized rates of wave-induced pitch-angle scattering and momentum diffusion in the plasmasphere are analyzed in detail for artificially generated ELF/VLF whistlers with an observable in situ amplitude of ~ 10 pT. While the local momentum diffusion of relativistic electrons is small, with a rate of −7 s−1, the local pitch-angle scattering can be intense near the loss cone with a rate of ~ 10−4 s−1. Our investigation further supports the feasibility of artificial triggering of ELF/VLF whistler waves for removal of high-energy electrons at lower L shells within the plasmasphere. Moreover, our test particle simulation results show quantitatively good agreement with quasi-linear diffusion coefficients, confirming the applicability of both methods to evaluate the resonant diffusion effect of artificial generated ELF/VLF whistlers.

  12. Competition Between Radial Loss and EMIC Wave Scattering of MeV Electrons During Strong CME-shock Driven Storms

    Science.gov (United States)

    Hudson, M. K.; Jaynes, A. N.; Li, Z.; Malaspina, D.; Millan, R. M.; Patel, M.; Qin, M.; Shen, X.; Wiltberger, M. J.

    2017-12-01

    The two strongest storms of Solar Cycle 24, 17 March and 22 June 2015, provide a contrast between magnetospheric response to CME-shocks at equinox and solstice. The 17 March CME-shock initiated storm produced a stronger ring current response with Dst = - 223 nT, while the 22 June CME-shock initiated storm reached a minimum Dst = - 204 nT. The Van Allen Probes ECT instrument measured a dropout in flux for both events which can be characterized by magnetopause loss at higher L values prior to strong recovery1. However, rapid loss is seen at L 3 for the June storm at high energies with maximum drop in the 5.2 MeV channel of the REPT instrument coincident with the observation of EMIC waves in the H+ band by the EMFISIS wave instrument. The rapid time scale of loss can be determined from the 65 minute delay in passage of the Probe A relative to the Probe B spacecraft. The distinct behavior of lower energy electrons at higher L values has been modeled with MHD-test particle simulations, while the rapid loss of higher energy electrons is examined in terms of the minimum resonant energy criterion for EMIC wave scattering, and compared with the timescale for loss due to EMIC wave scattering which has been modeled for other storm events.2 1Baker, D. N., et al. (2016), Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015, J. Geophys. Res. Space Physics, 121, 6647-6660, doi:10.1002/2016JA022502. 2Li, Z., et al. (2014), Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations, Geophys. Res. Lett., 41, 8722-8729, doi:10.1002/2014GL062273.

  13. Elastic scattering of low energy γ-rays

    International Nuclear Information System (INIS)

    Whittingham, I.B.

    1978-05-01

    Theoretical cross sections for the elastic scattering of 245, 334, 444, 779, 1086, 1112 and 1408 keV γ-rays by Pb are obtained for scattering angles up to 150 degrees. Three sets of Rayleigh scattering amplitudes have been computed using (1) the calculations of Johnson and Cheng, (2) the K shell calculations of Brown and co-workers supplemented by form factors amplitudes for higher shells, and (3) form factor amplitudes for all shells. Nuclear Thomson amplitudes have been included for all energies and, for 1408 keV, Delbruck scattering based upon the calculations of Papatzacos and Mork has been included. Nuclear resonance scattering is show to be negligble for all energies

  14. Intermediate energy proton and light-ion scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1981-01-01

    A review is presented of recent (1979-81) developments in the field of intermediate-energy proton and light-ion scattering from nuclei. New theoretical and calculational techniques of particular interest to experimentalists are discussed. Emphasis is placed on topics in nuclear structure physics - giant resonances, pion-condensation precursor phenomena, and polarization transfer (spin-flip) experiments - where intermediate energy proton and light-ion scattering has made new and unique contributions

  15. Variational divergence in wave scattering theory with Kirchhoffean trial functions

    Science.gov (United States)

    Bird, J. F.

    1986-01-01

    In a recent study of variational improvement of the Kirchhoff approximation for electromagnetic scattering by rough surfaces, a key ingredient in the variational principle was found to diverge for important configurations (e.g., backscatter) if the polarization had any vertical component. The cause and a cure of this divergence are discussed here. The divergence is demonstrated to occur for arbitrary perfectly conducting scatterers and its universal characterstics are determined, by means of a general divergence criterion that is derived. A variational cure for the divergence is prescribed, and it is tested successfully on a standard scattering model.

  16. Parametric pendulum based wave energy converter

    Science.gov (United States)

    Yurchenko, Daniil; Alevras, Panagiotis

    2018-01-01

    The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.

  17. Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    2018-01-01

    of the complex hypergeometric function 2F1 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far......In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation......-field scattering components, that is, the phase function. I include recurrence formulae for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity...

  18. Antiproton-hydrogen scattering at low-eV energies

    International Nuclear Information System (INIS)

    Morgan Jr., D.L.

    1993-01-01

    In the scattering of negative particles other than the electron by atoms at lab-frame energies around 10 eV, an elastic process termed 'brickwall scattering' might lead to a high probability for scattering angles around 180deg. For an antiproton slowing in hydrogen, this backward scattering would result in the loss of nearly all of its energy in a single collision, since it and a hydrogen atom have nearly the same mass. Such energy loss would have a significant effect on the energy distribution of antiprotons at energies where capture by the protons of hydrogen is possible and might, thereby, affect the capture rate and the distribution of capture states. In the semiclassical treatment of the problem with an adiabatic potential energy, brickwall scattering is indeed present, and with a substantial cross section. However, this model appears to underestimate inelastic processes. Based on calculations for negative muons on hydrogen atoms, these processes appear to occur for about the same impact parameters as brickwall scattering and thus substantially reduce its effect. (orig.)

  19. Extracting scattering phase shifts in higher partial waves from lattice QCD calculations

    Energy Technology Data Exchange (ETDEWEB)

    Luu, Thomas; Savage, Martin J.

    2011-06-01

    Lüscher’s method is routinely used to determine meson-meson, meson-baryon, and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from lattice QCD calculations—presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase shifts describing meson-meson scattering in partial waves with angular momentum l≤6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase shifts from lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial waves.

  20. Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics

    Science.gov (United States)

    2016-08-01

    APL PHOTONICS 1, 071301 (2016) Guided acoustic and optical waves in silicon-on- insulator for Brillouin scattering and optomechanics Christopher J...is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin...high sound velocity — makes guiding acoustic waves difficult, motivating the use of soft chalcogenide glasses and partial or complete releases (removal

  1. Eigenvalues and eigenvectors of the translation matrices of spherical waves of multiple-scattering theory

    International Nuclear Information System (INIS)

    Torrini, M.

    1983-01-01

    The exponential nature of the translation matrix G of spherical free waves has been set forth in a previous paper.The explicit expression of the exponential form of the translation matrix is given here, once the eigenvectros and the eigenvalues of G have been found. In addition, the eigenproblem relative to the matrix which transforms outgoing waves scattered by a centre in a set of spherical free waves centered at a different point is solved

  2. Deep inelastic scattering and light-cone wave functions

    International Nuclear Information System (INIS)

    Belyaev, V.M.; Johnson, M.B.

    1996-01-01

    In the framework of light-cone QCD rules, we study the valence quark distribution function q(x B ) of a pion for moderate x B . The sum rule with the leading twist-2 wave function gives q(x B ) = φ π (x B ). Twist-4 wave functions give about 30% for x B ∼0.5. It is shown that QCD sum rule predictions, with the asymptotic pion wave function, are in good agreement with experimental data. We found that a two-hump profile for the twist-2 wave function leads to a valence quark distribution function that contradicts experimental data

  3. RADAR upper hybrid resonance scattering diagnostics of small-scale fluctuations and waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Bulyiginskiy, D.G.; Gurchenko, A.D.; Gusakov, E.Z.; Korkin, V.V.; Larionov, M.M.; Novik, K.M.; Petrov, Yu.V.; Popov, A.Yu.; Saveliev, A.N.; Selenin, V.L.; Stepanov, A.Yu.

    2001-01-01

    The upper hybrid resonance (UHR) scattering technique possessing such merits as one-dimensional probing geometry, enhancement of cross section, and fine localization of scattering region is modified in the new diagnostics under development to achieve wave number resolution. The fluctuation wave number is estimated in the new technique from the scattering signal time delay measurements. The feasibility of the scheme is checked in the proof of principal experiment in a tokamak. The time delay of the UHR scattering signal exceeding 10 ns is observed. The small scale low frequency density fluctuations are investigated in the UHR RADAR backscattering experiment. The UHR cross-polarization scattering signal related to small scale magnetic fluctuations is observed. The lower hybrid (LH) wave propagation and both linear and nonlinear wave conversion are investigated. The small wavelength (λ≤0.02 cm) high number ion Bernstein harmonics, resulting from the linear wave conversion of the LH wave are observed in a tokamak plasma for the first time

  4. Anomalous resonance-radiation energy-transfer rate in a scattering dispersive medium

    International Nuclear Information System (INIS)

    Shekhtman, V.L.

    1992-01-01

    This paper describes a generalization of the concept of group velocity as an energy-transfer rate in a dispersive medium with complex refractive index when the polaritons, which are energy carriers, undergo scattering, in contrast to the classical concept of the group velocity of free polaritons (i.e., without scattering in the medium). The concept of delay time from quantum multichannel-scattering, theory is used as the fundamental concept. Based on Maxwell's equations and the new mathematical Φ-function method, a consistent conceptual definition of group velocity in terms of the ratio of the coherent-energy flux density to the coherent-energy density is obtained for the first time, and a critical analysis of the earlier (Brillouin) understanding of energy-transfer rate is given in the light of radiation-trapping theory and the quantum theory of resonance scattering. The role of generalized group velocity is examined for the interpretation of the phenomenon of multiple resonance scattering, or radiation diffusion. The question of causality for the given problem is touched upon; a new relationship is obtained, called the microcausality condition, which limits the anomalous values of group velocity by way of the indeterminacy principle and the relativistic causality principle for macroscopic time intervals directly measurable in experiment, whereby attention is focused on the connection of the given microcausality condition and the well-known Wigner inequality for the time delay of spherical waves. 22 refs

  5. The influence of the directional energy distribution on the nonlinear dispersion relation in a random gravity wave field

    Science.gov (United States)

    Huang, N. E.; Tung, C.-C.

    1977-01-01

    The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.

  6. Elastic meson-nucleon partial wave scattering analyses

    International Nuclear Information System (INIS)

    Arndt, R.A.

    1986-01-01

    Comprehensive analyses of π-n elastic scattering data below 1100 MeV(Tlab), and K+p scattering below 3 GeV/c(Plab) are discussed. Also discussed is a package of computer programs and data bases (scattering data, and solution files) through which users can ''explore'' these interactions in great detail; this package is known by the acronym SAID (for Scattering Analysis Interactive Dialin) and is accessible on VAX backup tapes, or by dialin to the VPI computers. The π-n, and k+p interactions will be described as seen through the SAID programs. A procedure will be described for generating an interpolating array from any of the solutions encoded in SAID; this array can then be used through a fortran callable subroutine (supplied as part of SAID) to give excellent amplitude reconstructions over a broad kinematic range

  7. Finite-difference modelling of anisotropic wave scattering in discrete ...

    Indian Academy of Sciences (India)

    A M Ekanem

    2018-04-05

    Apr 5, 2018 ... scattering characteristics in fractured media and thus, validate the practical utility of using anisotropic .... to fluid flow. ... account the porosity of the host rock and assumes .... The free surface boundary conditions generally.

  8. Convergent close-coupling calculations of low-energy positron-atomic-hydrogen scattering

    International Nuclear Information System (INIS)

    Bray, I.; Stelbovics, A.T.

    1993-07-01

    The convergent close coupling approach developed by the authors is applied to positron scattering from atomic hydrogen below the first excitation threshold. In this approach the multi-channel expansion one-electron states are obtained by diagonalizing the target Hamiltonian in a large Laguerre basis. It is demonstrated that this expansion of the scattering wave function is sufficient to reproduce the very accurate low-energy variational results, provided target states with l≤ 15 are included in the expansions. 10 refs., 1 tab

  9. High energy scattering in gravity and supergravity

    CERN Document Server

    Giddings, Steven B; Andersen, Jeppe R

    2010-01-01

    We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra light states of supergravity, and this serves as an important check on long-range dynamics in a context where perturbative amplitudes are finite. We also argue that these considerations have other important implications: they obstruct probing the conjectured phenomenon of asymptotic safety through a physical scattering process, and gravity appears not to reggeize. These arguments sharpen the need to find a nonpert...

  10. Probabilistic Forecasting of the Wave Energy Flux

    DEFF Research Database (Denmark)

    Pinson, Pierre; Reikard, G.; Bidlot, J.-R.

    2012-01-01

    Wave energy will certainly have a significant role to play in the deployment of renewable energy generation capacities. As with wind and solar, probabilistic forecasts of wave power over horizons of a few hours to a few days are required for power system operation as well as trading in electricit......% and 70% in terms of Continuous Rank Probability Score (CRPS), depending upon the test case and the lead time. It is finally shown that the log-Normal assumption can be seen as acceptable, even though it may be refined in the future....

  11. Acoustic Wave Dispersion and Scattering in Complex Marine Sediment Structures

    Science.gov (United States)

    2018-03-21

    slides) versus scattering from discrete particles (e.g., rocks, shells, or bubbles). Measurements are needed to 1) exploit the volume scattering theory...Developed theory and methodology to distinguish between the two major classes of volume heterogeneities, discrete particles or a fluctuation...reflection to obtain a quasi -three-dimensional map of sediment sound speed. The sound speed is obtained over a 2 km x 2 km area of high variability

  12. Spectrum of an electromagnetic light wave on scattering from an anisotropic semisoft boundary medium.

    Science.gov (United States)

    Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu

    2016-04-01

    Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric.

  13. Scattering of lower-hybrid waves by drift-wave density fluctuations: solutions of the radiative transfer equation

    International Nuclear Information System (INIS)

    Andrews, P.L.; Perkins, F.W.

    1983-01-01

    The investigation of the scattering of lower-hybrid waves by density fluctuations arising from drift waves in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. The propagation of the lower-hybrid waves is well represented by a radiative transfer equation when the scale size of the density fluctuations is small compared to the overall plasma size. The radiative transfer equation is solved in two limits: first, the forward scattering limit, where the scale size of density fluctuations is large compared to the lower-hybrid perpendicular wavelength, and second, the large-angle scattering limit, where this inequality is reversed. The most important features of these solutions are well represented by analytical formulas derived by simple arguments. Based on conventional estimates for density fluctuations arising from drift waves and a parabolic density profile, the optical depth tau for scattering through a significant angle, is given by tauroughly-equal(2/N 2 /sub parallel/) (#betta#/sub p/i0/#betta#) 2 (m/sub e/c 2 /2T/sub i/)/sup 1/2/ [c/α(Ω/sub i/Ω/sub e/)/sup 1/2/ ], where #betta#/sub p/i0 is the central ion plasma frequency and T/sub i/ denotes the ion temperature near the edge of the plasma. Most of the scattering occurs near the surface. The transmission through the scattering region scales as tau - 1 and the emerging intensity has an angular spectrum proportional to cos theta, where sin theta = k/sub perpendicular/xB/sub p//(k/sub perpendicular/B/sub p/), and B/sub p/ is the poloidal field

  14. Finite energy bounds for $\\piN$ scattering

    CERN Document Server

    Grassberger, P; Schwela, D

    1974-01-01

    Upper bounds on energy averaged pi N cross sections are given. Using low energy data and data from pi N backward scattering and NN to pi pi annihilation, it is found that sigma /sub tot/energies just above the phase-shift region. The bounds are based on assumptions similar to those underlying Froissart's bound and are equal to it asymptotically. However, at finite but large energies, they increase much slower than what might have been anticipated on purely numerological grounds. Related problems in pp and Kp scattering are also discussed. (25 refs) .

  15. Partial wave analyses of scattering below 2 GeV. Progress report, May 1, 1984-April 30, 1985

    International Nuclear Information System (INIS)

    Arndt, R.A.; Roper, L.D.

    1985-08-01

    Progress is reported in the partial wave analysis of nucleon-nucleon elastic scattering, pion-nucleon elastic scattering, and kaon plus-nucleon elastic scattering. Activities are also reported with respect to the Scattering Analysis Interactive Dial-in (SAID) facility

  16. Stress Wave Scattering: Friend or Enemy of Non Destructive Testing of Concrete?

    Science.gov (United States)

    Aggelis, Dimitrios G.; Shiotani, Tomoki; Philippidis, Theodore P.; Polyzos, Demosthenes

    Cementitious materials are by definition inhomogeneous containing cement paste, sand, aggregates as well as air voids. Wave propagation in such a material is characterized by scattering phenomena. Damage in the form of micro or macro cracks certainly enhances scattering influence. Its most obvious manifestation is the velocity variation with frequency and excessive attenuation. The influence becomes stronger with increased mis-match of elastic properties of constituent materials and higher crack content. Therefore, in many cases of large concrete structures, field application of stress waves is hindered since attenuation makes the acquisition of reliable signals troublesome. However, measured wave parameters, combined with investigation with scattering theory can reveal much about the internal condition and supply information that cannot be obtained in any other way. The size and properties of the scatterers leave their signature on the dispersion and attenuation curves making thus the characterization more accurate in case of damage assessment, repair evaluation as well as composition inspection. In this paper, three indicative cases of scattering influence are presented. Namely, the interaction of actual distributed damage, as well as the repair material injected in an old concrete structure with the wave parameters. Other cases are the influence of light plastic inclusions in hardened mortar and the influence of sand and water content in the examination of fresh concrete. In all the above cases, scattering seems to complicate the propagation behavior but also offers the way for a more accurate characterization of the quality of the material.

  17. Generalized theory of resonance scattering (GTRS) using the translational addition theorem for spherical wave functions.

    Science.gov (United States)

    Mitri, Farid

    2014-11-01

    The generalized theory of resonance scattering (GTRS) by an elastic spherical target in acoustics is extended to describe the arbitrary scattering of a finite beam using the addition theorem for the spherical wave functions of the first kind under a translation of the coordinate origin. The advantage of the proposed method over the standard discrete spherical harmonics transform previously used in the GTRS formalism is the computation of the off-axial beam-shape coefficients (BSCs) stemming from a closed-form partial-wave series expansion representing the axial BSCs in spherical coordinates. With this general method, the arbitrary acoustical scattering can be evaluated for any particle shape and size, whether the particle is partially or completely illuminated by the incident beam. Numerical examples for the axial and off-axial resonance scattering from an elastic sphere placed arbitrarily in the field of a finite circular piston transducer with uniform vibration are provided. Moreover, the 3-D resonance directivity patterns illustrate the theory and reveal some properties of the scattering. Numerous applications involving the scattering phenomenon in imaging, particle manipulation, and the characterization of multiphase flows can benefit from the present analysis because all physically realizable beams radiate acoustical waves from finite transducers as opposed to waves of infinite extent.

  18. Evaluation of a scattering correction method for high energy tomography

    Science.gov (United States)

    Tisseur, David; Bhatia, Navnina; Estre, Nicolas; Berge, Léonie; Eck, Daniel; Payan, Emmanuel

    2018-01-01

    One of the main drawbacks of Cone Beam Computed Tomography (CBCT) is the contribution of the scattered photons due to the object and the detector. Scattered photons are deflected from their original path after their interaction with the object. This additional contribution of the scattered photons results in increased measured intensities, since the scattered intensity simply adds to the transmitted intensity. This effect is seen as an overestimation in the measured intensity thus corresponding to an underestimation of absorption. This results in artifacts like cupping, shading, streaks etc. on the reconstructed images. Moreover, the scattered radiation provides a bias for the quantitative tomography reconstruction (for example atomic number and volumic mass measurement with dual-energy technique). The effect can be significant and difficult in the range of MeV energy using large objects due to higher Scatter to Primary Ratio (SPR). Additionally, the incident high energy photons which are scattered by the Compton effect are more forward directed and hence more likely to reach the detector. Moreover, for MeV energy range, the contribution of the photons produced by pair production and Bremsstrahlung process also becomes important. We propose an evaluation of a scattering correction technique based on the method named Scatter Kernel Superposition (SKS). The algorithm uses a continuously thickness-adapted kernels method. The analytical parameterizations of the scatter kernels are derived in terms of material thickness, to form continuously thickness-adapted kernel maps in order to correct the projections. This approach has proved to be efficient in producing better sampling of the kernels with respect to the object thickness. This technique offers applicability over a wide range of imaging conditions and gives users an additional advantage. Moreover, since no extra hardware is required by this approach, it forms a major advantage especially in those cases where

  19. Pitch angle scattering of an energetic magnetized particle by a circularly polarized electromagnetic wave

    International Nuclear Information System (INIS)

    Bellan, P. M.

    2013-01-01

    The interaction between a circularly polarized wave and an energetic gyrating particle is described using a relativistic pseudo-potential that is a function of the frequency mismatch. Analysis of the pseudo-potential provides a means for interpreting numerical results. The pseudo-potential profile depends on the initial mismatch, the normalized wave amplitude, and the initial angle between the wave magnetic field and the particle perpendicular velocity. For zero initial mismatch, the pseudo-potential consists of only one valley, but for finite mismatch, there can be two valleys separated by a hill. A large pitch angle scattering of the energetic electron can occur in the two-valley situation but fast scattering can also occur in a single valley. Examples relevant to magnetospheric whistler waves show that the energetic electron pitch angle can be deflected 5°towards the loss cone when transiting a 10 ms long coherent wave packet having realistic parameters.

  20. Accurate expansion of cylindrical paraxial waves for its straightforward implementation in electromagnetic scattering

    International Nuclear Information System (INIS)

    Naserpour, Mahin; Zapata-Rodríguez, Carlos J.

    2018-01-01

    Highlights: • Paraxial beams are represented in a series expansion in terms of Bessel wave functions. • The coefficients of the series expansion can be analytically determined by using the pattern in the focal plane. • In particular, Gaussian beams and apertured wave fields have been critically examined. • This representation of the wave field is adequate for scattering problems with shaped beams. - Abstract: The evaluation of vector wave fields can be accurately performed by means of diffraction integrals, differential equations and also series expansions. In this paper, a Bessel series expansion which basis relies on the exact solution of the Helmholtz equation in cylindrical coordinates is theoretically developed for the straightforward yet accurate description of low-numerical-aperture focal waves. The validity of this approach is confirmed by explicit application to Gaussian beams and apertured focused fields in the paraxial regime. Finally we discuss how our procedure can be favorably implemented in scattering problems.

  1. Systems and methods for wave energy conversion

    Science.gov (United States)

    MacDonald, Daniel G.; Cantara, Justin; Nathan, Craig; Lopes, Amy M.; Green, Brandon E.

    2017-02-28

    Systems for wave energy conversion that have components that can survive the harsh marine environment and that can be attached to fixed structures, such as a pier, and having the ability to naturally adjust for tidal height and methods for their use are presented.

  2. Underwater noise from a wave energy converter

    DEFF Research Database (Denmark)

    Tougaard, Jakob

    A recent addition to the anthropogenic sources of underwater noise is offshore wave energy converters. Underwater noise was recorded from the Wavestar wave energy converter located at Hastholm, Denmark (57°7.73´N, 8°37.23´E). The Wavestar is a full-scale test and demonstration converter...... in full operation and start and stop of the converter. Median broad band (10 Hz – 20 kHz) sound pressure level (Leq) was 123 dB re. 1 Pa, irrespective of status of the wave energy converter (stopped, running or starting/stopping). The most pronounced peak in the third-octave spectrum was in the 160 Hz...... significant noise above ambient could be detected above the 250 Hz band. The absolute increase in noise above ambient was very small. L50 third-octave levels in the four bands with the converter running were thus only 1-2 dB above ambient L50 levels. The noise recorded 25 m from the wave energy converter...

  3. Innovative Breakwaters Design for Wave Energy Conversion

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Stagonas, D.; Müller, G.

    2012-01-01

    the rubble mound breakwaters and seawalls related activity and the energy demand of small human communities. Wave loadings and overtopping on a seawall and rubble mound breakwater with front reservoir are discussed on the basis of physical 2-D model tests carried out at University of Southampton (UK...

  4. Scattering of spinning test particles by gravitational plane waves

    International Nuclear Information System (INIS)

    Bini, D.; Gemelli, G.

    1997-01-01

    The authors study the motion of spinning particles in the gravitational plane-wave background and discuss particular solutions under a suitable choice of supplementary conditions. An analysis of the discontinuity of the motion across the wavefront is presented too

  5. Introduction to wave scattering, localization, and mesoscopic phenomena

    National Research Council Canada - National Science Library

    Sheng, Ping

    1995-01-01

    ... Extension of the CPA to the Intermediate Frequency Regime Problems and Solutions References 73 77 82 84 85 87 113 4. Diffusive Waves 115 4.1 Beyond the Effective Medium 4.2 Pulse Intensity Evolution...

  6. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    OpenAIRE

    O'Boyle, Louise; Elsäßer, Björn; Whittaker, Trevor

    2017-01-01

    Wave energy converters (WECs) inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An ...

  7. Angular characteristics of the stimulated-Brillouin-scattering spectrum from a laser plasma with strong acoustic-wave damping

    International Nuclear Information System (INIS)

    Saikia, P.

    1981-01-01

    The spectrum of stimulated Brillouin scattering from an inhomogeneous moving laser plasma is analyzed. The damping of acoustic waves and scattered electromagnetic waves is taken into account. Spectra are derived for various scattering angles and for various radii of the laser beam. For all observation angles the center of the spectral line is at an unshifted frequency. As the observation angle increases, the width of the red wing in the spectrum increases. The intensity of the scattered light is very anisotropic

  8. Dark Energy and Inflation from Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Leonid Marochnik

    2017-10-01

    Full Text Available In this seven-part paper, we show that gravitational waves (classical and quantum produce the accelerated de Sitter expansion at the start and at the end of the cosmological evolution of the Universe. In these periods, the Universe contains no matter fields but contains classical and quantum metric fluctuations, i.e., it is filled with classical and quantum gravitational waves. In such evolution of the Universe, dominated by gravitational waves, the de Sitter state is the exact solution to the self-consistent equations for classical and quantum gravitational waves and background geometry for the empty space-time with FLRW metric. In both classical and quantum cases, this solution is of the instanton origin since it is obtained in the Euclidean space of imaginary time with the subsequent analytic continuation to real time. The cosmological acceleration from gravitational waves provides a transparent physical explanation to the coincidence, threshold and “old cosmological constant” paradoxes of dark energy avoiding recourse to the anthropic principle. The cosmological acceleration from virtual gravitons at the start of the Universe evolution produces inflation, which is consistent with the observational data on CMB anisotropy. Section 1 is devoted to cosmological acceleration from classical gravitational waves. Section 2 is devoted to the theory of virtual gravitons in the Universe. Section 3 is devoted to cosmological acceleration from virtual gravitons. Section 4 discusses the consistency of the theory with observational data on dark energy and inflation. The discussion of mechanism of acceleration and cosmological scenario are contained in Sections 5 and 6. Appendix contains the theory of stochastic nonlinear gravitational waves of arbitrary wavelength and amplitude in an isotropic Universe.

  9. Benefits of up-wave measurements in linear short-term wave forecasting for wave energy applications

    OpenAIRE

    Paparella, Francesco; Monk, Kieran; Winands, Victor; Lopes, Miguel; Conley, Daniel; Ringwood, John

    2014-01-01

    The real-time control of wave energy converters requires the prediction of the wave elevation at the location of the device in order to maximize the power extracted from the waves. One possibility is to predict the future wave elevation by combining its past history with the spatial information coming from a sensor which measures the free surface elevation upwave of the wave energy converter. As an application example, the paper focuses on the prediction of the wave eleva...

  10. Parity nonconservation in polarized electron scattering at high energies

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1979-10-01

    Recent observations of parity violation in inelastic scattering of electrons at high energy is discussed with reference to the process e(polarized) + D(unpolarized) → e + X. The kinetics of this process, the idealized case of scattering from free quark targets, experimental techniques and results, and relations to atomic physics of parity violation in bismuth and thallium atoms with a model independent analysis. 17 references

  11. Proton-4He elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Auger, J.P.; Gillespie, J.; Lombard, R.J.

    1975-12-01

    Differential elastic cross sections and polarizations are calculated in a multiple scattering formalism for proton- 4 He scattering for energies in the range 0.6-24GeV and for momentum transfers up to 4.0fmsup(-1). The calculations include Coulomb and spin effects. Corrections due to target-nucleon overlap and charge exchange are estimated. The results are compared with experimental data [fr

  12. Inclusive quasielastic and deep inelastic electron scattering at high energies

    International Nuclear Information System (INIS)

    Day, D.B.

    1990-01-01

    With high electron energies a kinematic regime can be reached where it will be possible to separate quasielastic and deep inelastic scattering. We present a short description of these processes which dominate the inclusive spectrum. Using the highest momentum transfer data available to guide our estimates, we give the kinematic requirements and the cross sections expected. These results indicate that inclusive scattering at high q has a yet unfilled potential. 18 refs., 13 figs

  13. VLAD for epithermal neutron scattering experiments at large energy transfers

    International Nuclear Information System (INIS)

    Tardocchi, M; Gorini, G; Perelli-Cippo, E; Andreani, C; Imberti, S; Pietropaolo, A; Senesi, R; Rhodes, N R; Schooneveld, E M

    2006-01-01

    The Very Low Angle Detector (VLAD) bank will extend the kinematical region covered by today's epithermal neutron scattering experiments to low momentum transfer ( -1 ) together with large energy transfer 0 -4 0 . In this paper the design of VLAD is presented together with Montecarlo simulations of the detector performances. The results of tests made with prototype VLAD detectors are also presented, confirming the usefulness of the Resonance Detector for measurements at very low scattering angles

  14. Elastic scattering of low energy electrons by hydrogen molecule

    International Nuclear Information System (INIS)

    Freitas, L.C.G.; Mu-Tao, L.; Botelho, L.F.

    1987-01-01

    The coherent version of the Renormalized Multiple-Centre Potential Model (RMPM) has been extended to treat the elastic scattering of low energy electrons by H2 molecule. The intramolecular Multiple Scattering (MS) effect has also been included. The comparison against the experimental data shows that the inclusion of the MS improves significantly with experiment. The extension of the present method to study electron-polyatomic molecule interaction is also discussed. (author) [pt

  15. Low energy quasi free scattering on nuclear surface

    Energy Technology Data Exchange (ETDEWEB)

    Shiyuan, S.

    1983-05-01

    The result of RGM calculation of low energy /sup 3/He(n, n)/sup 3/ He total elastic cross section does not agree well with experimental data for E/sub n/<1 MeV. This discrepancy can be improved by assuming lwo energy quasi-free scattering of particles beyond the nuclear surface.

  16. Photon distribution function for stocks wave for stimulated Raman scattering

    International Nuclear Information System (INIS)

    Man'ko, O.V.; Tcherniega, N.V.

    1997-04-01

    New time-dependent integrals of motion are found for stimulated Raman scattering. Explicit formula for the photon-number probability distribution as a function of the laser-field intensity and the medium parameters is obtained in terms of Hermite polynomials of two variables. (author). 29 refs

  17. Finite-difference modelling of anisotropic wave scattering in discrete ...

    Indian Academy of Sciences (India)

    2

    cells containing equivalent anisotropic medium by the use of the linear slip equivalent model. Our. 16 results show ...... frequency regression predicted by equation (21) can be distorted by the effects of multiple scattering. 337 ..... other seismic attributes, at least for the relatively simple geometries of subsurface structure. 449.

  18. Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves

    International Nuclear Information System (INIS)

    Katsuragawa, Naoki; Hojo, Hitoshi; Mase, Atushi

    1996-11-01

    Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves due to magnetic fluctuations is presented. One-dimensional coupled wave equations for the ordinary and extraordinary modes are solved for incident unipolar sub-cycle pulses in an inhomogeneous magnetized plasma. It is shown that the peak frequencies in the frequency-spectral signals of the mode-converted reflected waves are determined from the Bragg resonance condition in the wave numbers of the ordinary mode, the extraordinary mode and the magnetic fluctuations for relatively short-wavelength localized magnetic fluctuations. (author)

  19. ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules

    Science.gov (United States)

    Salvat, Francesc; Jablonski, Aleksander; Powell, Cedric J.

    2005-01-01

    The FORTRAN 77 code system ELSEPA for the calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules is presented. These codes perform relativistic (Dirac) partial-wave calculations for scattering by a local central interaction potential V(r). For atoms and ions, the static-field approximation is adopted, with the potential set equal to the electrostatic interaction energy between the projectile and the target, plus an approximate local exchange interaction when the projectile is an electron. For projectiles with kinetic energies up to 10 keV, the potential may optionally include a semiempirical correlation-polarization potential to describe the effect of the target charge polarizability. Also, for projectiles with energies less than 1 MeV, an imaginary absorptive potential can be introduced to account for the depletion of the projectile wave function caused by open inelastic channels. Molecular cross sections are calculated by means of a single-scattering independent-atom approximation in which the electron density of a bound atom is approximated by that of the free neutral atom. Elastic scattering by individual atoms in solids is described by means of a muffin-tin model potential. Partial-wave calculations are feasible on modest personal computers for energies up to about 5 MeV. The ELSEPA code also implements approximate factorization methods that allow the fast calculation of elastic cross sections for much higher energies. The interaction model adopted in the calculations is defined by the user by combining the different options offered by the code. The nuclear charge distribution can be selected among four analytical models (point nucleus, uniformly charged sphere, Fermi's distribution and Helm's uniform-uniform distribution). The atomic electron density is handled in numerical form. The distribution package includes data files with electronic densities of neutral atoms of the elements hydrogen to lawrencium ( Z=1

  20. Photonic Rutherford scattering: A classical and quantum mechanical analogy in ray and wave optics

    Science.gov (United States)

    Selmke, Markus; Cichos, Frank

    2013-06-01

    Using Fermat's least-optical-path principle, the family of ray trajectories through a special (but common) type of a gradient refractive index lens n(r)=n0+ΔnR /r is solved analytically. The solution gives a ray equation r(ϕ) that is closely related to Rutherford scattering trajectories; we therefore refer to this refraction process as "photonic Rutherford scattering." It is shown that not only do the classical limits correspond but also the wave-mechanical pictures coincide—the time-independent Schrödingier equation and the Helmholtz equation permit the same mapping between the scattering of massive particles and optical scalar waves. Scattering of narrow beams of light finally recovers the classical trajectories. The analysis suggests that photothermal single-particle microscopy measures photonic Rutherford scattering in specific limits and allows for an individual single-scatterer probing. A macroscopic experiment is demonstrated to directly measure the scattering angle to impact parameter relation, which is otherwise accessible only indirectly in Rutherford-scattering experiments.

  1. Plan charge exchange scattering at high energies

    International Nuclear Information System (INIS)

    Saleem, M.; Bhatti, S.; Fazal-e-Aleem; Rafique, M.

    1980-01-01

    By a phenomenological choice of the residue functions, a very good fit with experiment for the pion-nucleon charge exchange reaction at Fermilab energies is obtained on a simple Regge-pole model using a quadratic rho trajectory and energy-independent parameters

  2. Terahertz Plasma Waves in Two Dimensional Quantum Electron Gas with Electron Scattering

    International Nuclear Information System (INIS)

    Zhang Liping

    2015-01-01

    We investigate the Terahertz (THz) plasma waves in a two-dimensional (2D) electron gas in a nanometer field effect transistor (FET) with quantum effects, the electron scattering, the thermal motion of electrons and electron exchange-correlation. We find that, while the electron scattering, the wave number along y direction and the electron exchange-correlation suppress the radiation power, but the thermal motion of electrons and the quantum effects can amplify the radiation power. The radiation frequency decreases with electron exchange-correlation contributions, but increases with quantum effects, the wave number along y direction and thermal motion of electrons. It is worth mentioning that the electron scattering has scarce influence on the radiation frequency. These properties could be of great help to the realization of practical THz plasma oscillations in nanometer FET. (paper)

  3. A multiple scattering theory for EM wave propagation in a dense random medium

    Science.gov (United States)

    Karam, M. A.; Fung, A. K.; Wong, K. W.

    1985-01-01

    For a dense medium of randomly distributed scatterers an integral formulation for the total coherent field has been developed. This formulation accounts for the multiple scattering of electromagnetic waves including both the twoand three-particle terms. It is shown that under the Markovian assumption the total coherent field and the effective field have the same effective wave number. As an illustration of this theory, the effective wave number and the extinction coefficient are derived in terms of the polarizability tensor and the pair distribution function for randomly distributed small spherical scatterers. It is found that the contribution of the three-particle term increases with the particle size, the volume fraction, the frequency and the permittivity of the particle. This increase is more significant with frequency and particle size than with other parameters.

  4. Observations of short period seismic scattered waves by small seismic arrays

    Directory of Open Access Journals (Sweden)

    M. Simini

    1997-06-01

    Full Text Available The most recent observations of well correlated seismic phases in the high frequency coda of local earthquakes recorded throughout the world are reported. In particular the main results, obtained on two active volcanoes, Teide and Deception, using small array are described. The ZLC (Zero Lag Cross-correlation method and polarization analysis have been applied to the data in order to distinguish the main phases in the recorded seismograms and their azimuths and apparent velocities. The results obtained at the Teide volcano demonstrate that the uncorrelated part of the seismograms may be produced by multiple scattering from randomly distributed heterogeneity, while the well correlated part, showing SH type polarization or the possible presence of Rayleigh surface waves, may be generated by single scattering by strong scatterers. At the Deception Volcano strong scattering, strongly focused in a precise direction, is deduced from the data. In that case, all the coda radiation is composed of surface waves.

  5. Fokker-Planck description of the scattering of radio frequency waves at the plasma edge

    International Nuclear Information System (INIS)

    Hizanidis, Kyriakos; Kominis, Yannis; Tsironis, Christos; Ram, Abhay K.

    2010-01-01

    In magnetic fusion devices, radio frequency (rf) waves in the electron cyclotron (EC) and lower hybrid (LH) range of frequencies are being commonly used to modify the plasma current profile. In ITER, EC waves are expected to stabilize the neoclassical tearing mode (NTM) by providing current in the island region [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)]. The appearance of NTMs severely limits the plasma pressure and leads to the degradation of plasma confinement. LH waves could be used in ITER to modify the current profile closer to the edge of the plasma. These rf waves propagate from the excitation structures to the core of the plasma through an edge region, which is characterized by turbulence--in particular, density fluctuations. These fluctuations, in the form of blobs, can modify the propagation properties of the waves by refraction. In this paper, the effect on rf due to randomly distributed blobs in the edge region is studied. The waves are represented as geometric optics rays and the refractive scattering from a distribution of blobs is formulated as a Fokker-Planck equation. The scattering can have two diffusive effects--one in real space and the other in wave vector space. The scattering can modify the trajectory of rays into the plasma and it can affect the wave vector spectrum. The refraction of EC waves, for example, could make them miss the intended target region where the NTMs occur. The broadening of the wave vector spectrum could broaden the wave generated current profile. The Fokker-Planck formalism for diffusion in real space and wave vector space is used to study the effect of density blobs on EC and LH waves in an ITER type of plasma environment. For EC waves the refractive effects become important since the distance of propagation from the edge to the core in ITER is of the order of a meter. The diffusion in wave vector space is small. For LH waves the refractive effects are insignificant but the diffusion in wave vector space is

  6. Wave energy and its possibilities in the Danish power supplies

    International Nuclear Information System (INIS)

    Traeholt Madsen, N.; Lorenzen, S.; Haunstrup Christensen, T.

    1997-06-01

    Mathematical theory of wave forces (wave height, spectrua, energy distribution and effect) is summarized. An attempt to estimate the Danish wave power potential on the basis of previous investigations og wave effect in various regions is presented. A brief review of wave energy applications and research constitutes basis for two scenarios of wave power adjustment into the 'Green society'. Power quality, environment, economics and supply reliability are estimated. (EG) 42 refs

  7. Noncontact measurement of guided ultrasonic wave scattering for fatigue crack characterization

    Science.gov (United States)

    Fromme, P.

    2013-04-01

    Fatigue cracks can develop in aerospace structures at locations of stress concentration such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of fatigue cracks in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducers were developed for the specific excitation of the A0 Lamb mode. Based on the induced eddy currents in the plate a simple theoretical model was developed and reasonably good agreement with the measurements was achieved. However, the detection sensitivity for fatigue cracks depends on the location and orientation of the crack relative to the measurement locations. Crack-like defects have a directionality pattern of the scattered field depending on the angle of the incident wave relative to the defect orientation and on the ratio of the characteristic defect size to wavelength. The detailed angular dependency of the guided wave field scattered at crack-like defects in plate structures has been measured using a noncontact laser interferometer. Good agreement with 3D Finite Element simulation predictions was achieved for machined part-through and through-thickness notches. The amplitude of the scattered wave was quantified for a variation of angle of the incident wave relative to the defect orientation and the defect depth. These results provide the basis for the defect characterization in aerospace structures using guided wave sensors.

  8. Two-nucleon higher partial-wave scattering from lattice QCD

    Directory of Open Access Journals (Sweden)

    Evan Berkowitz

    2017-02-01

    Full Text Available We present a determination of nucleon-nucleon scattering phase shifts for ℓ≥0. The S, P, D and F phase shifts for both the spin-triplet and spin-singlet channels are computed with lattice Quantum ChromoDynamics. For ℓ>0, this is the first lattice QCD calculation using the Lüscher finite-volume formalism. This required the design and implementation of novel lattice methods involving displaced sources and momentum-space cubic sinks. To demonstrate the utility of our approach, the calculations were performed in the SU(3-flavor limit where the light quark masses have been tuned to the physical strange quark mass, corresponding to mπ=mK≈800 MeV. In this work, we have assumed that only the lowest partial waves contribute to each channel, ignoring the unphysical partial wave mixing that arises within the finite-volume formalism. This assumption is only valid for sufficiently low energies; we present evidence that it holds for our study using two different channels. Two spatial volumes of V≈(3.5 fm3 and V≈(4.6 fm3 were used. The finite-volume spectrum is extracted from the exponential falloff of the correlation functions. Said spectrum is mapped onto the infinite volume phase shifts using the generalization of the Lüscher formalism for two-nucleon systems.

  9. Deep inelastic scattering in formalism with wave functions of rest compound system

    International Nuclear Information System (INIS)

    Sisakyan, A.N.; Kvinikhidze, A.N.; Khvedelidze, A.M.

    1987-01-01

    One of the most simple examples of interaction of compound systems: deep inelastic scattering of the point particle on hadron is considered. By choosing the compound particle (hadron) rest system the corresponding cross section is expressed in terms of more usual from the view point of nonrelativistic quantum mechanics wave functions of the rest bound state. A new variant of structure functions expansion into a series in terms of the coupling constant is suggested. Each therm of a series due to correct account of the energy conservation law in any order of the perturbation theory possess spectral property. Analysis in QCD shows that in the bound state rest system (P-vector=0) the pulse approximation though satisfies the requirements of scale invariance is insufficient for correct description of elastic limit x Bj →1 by contrast to P Z →∞ system. It means that parton model is equivalent to pulse approximation only in P Z →∞ system. To obtain the leading in asymptotic region x Bj →1 terms account of component interaction in the finite state is necessary. The simplicity and physical evidence of the wave functions are attained due to the seeming complication of calculations according to the perturbation theory

  10. On stimulated scattering of laser light in inertial fusion energy targets

    International Nuclear Information System (INIS)

    Nikolic, Lj; Skoric, M.M.; Ishiguro, S.; Sato, T.

    2002-11-01

    Propagation of a laser light through regions of an underdense plasma is an active research topic in laser fusion. In particular, a large effort has been invested in studies of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) which can reflect laser energy and produce energetic particles to preheat a fusion energy target. Experiments, theory and simulations agree on a complex interplay between various laser-plasma instabilities. By particle-in-cell simulations of an underdense electron-plasma, we have found, apart from the standard SRS, a strong backscattering near the electron plasma frequency at densities beyond the quarter critical. This novel instability, recognized in recent experiments as stimulated laser scattering on a trapped electron-acoustic mode (SEAS), is absent from a classical theory of laser-parametric instabilities. A parametric excitation of SEAS instability, is explained by a three-wave resonant decay of the incident laser light into a standing backscattered wave and a slow trapped electron acoustic wave (ω p ). Large SEAS pulsations, eventually suppressed by relativistic heating of electrons, are observed in our simulations. This phenomenon seems relevant to future hohlraum target and fast ignition experiments. (author)

  11. Formation of whispering gallery modes by scattering of an electromagnetic plane wave by two cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)

    2017-03-26

    We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.

  12. Frequency and wavenumber selective excitation of spin waves through coherent energy transfer from elastic waves

    OpenAIRE

    Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo

    2017-01-01

    Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...

  13. RESONANCES IN THE ISOVECTOR P WAVE OF pi pi SCATTERING

    Czech Academy of Sciences Publication Activity Database

    Bydžovský, Petr; Surovtsev, Yu .S.; Kaminski, R.; Nagy, M.

    2011-01-01

    Roč. 26, 3-4 (2011), s. 634-635 ISSN 0217-751X. [11th International Workshop on Meson Production , Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/08/0984 Institutional research plan: CEZ:AV0Z10480505 Keywords : Pion-pion scattering * mesonic resonances * multichannel analysis Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011

  14. Wave scattering theory a series approach based on the Fourier transformation

    CERN Document Server

    Eom, Hyo J

    2001-01-01

    The book provides a unified technique of Fourier transform to solve the wave scattering, diffraction, penetration, and radiation problems where the technique of separation of variables is applicable. The book discusses wave scattering from waveguide discontinuities, various apertures, and coupling structures, often encountered in electromagnetic, electrostatic, magnetostatic, and acoustic problems. A system of simultaneous equations for the modal coefficients is formulated and the rapidly-convergent series solutions amenable to numerical computation are presented. The series solutions find practical applications in the design of microwave/acoustic transmission lines, waveguide filters, antennas, and electromagnetic interference/compatibilty-related problems.

  15. Scattering of electromagnetic waves by a graphene-coated thin cylinder of left-handed metamaterial

    Science.gov (United States)

    Pashaeiadl, Hamid; Naserpour, Mahin; Zapata-Rodríguez, Carlos J.

    2018-04-01

    In this paper we explored the scattering behavior of thin cylinders made of LHM and coated by a monoatomic graphene layer. A spectral tunability of the resonance peaks is evidenced by altering the chemical potential of the graphene coating, a fact that occurs at any state of polarization of the incident plane wave in opposition to the case of scatterers of dielectric core. On the contrary, no invisibility condition can be satisfied for dielectric environments. A singular performance is also found for cylinders with permittivity and permeability near zero. Practical implementations of our results can be carried out in sensing and wave manipulation driven by metamaterials.

  16. Study of electromagnetic wave scattering by periodic density irregularities in plasma

    International Nuclear Information System (INIS)

    Lyle, R.; Kuo, S.P.; Huang, J.

    1995-01-01

    A quasi-particle approach is used to formulate wave propagation and scattering in a periodically structured plasma. The theory is then applied to study the effect of bottomside sinusoidal (BSS) irregularities on the propagation of beacon satellites signals through the ionosphere. In this approach, the radio wave is treated as a distribution of quasi-particles described by a Wigner distribution function governed by a transport equation. The irregularities providing the collisional effect are modeled as a two dimensional density modulation on a uniform background plasma. The present work generalizes the previous work by including the spectral bandwidth (Δk/k) effect of the spatially periodic irregularities on the transionospheric signal propagation. The collision of quasi-particles with the irregularities modifies the quasi-particle distribution and give rise to the wave scattering phenomenon. The multiple scattering process is generally considered in this deterministic analysis of radio wave scattering off the ionospheric density irregularities. The analysis shows that this two dimensional density grating effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then results in the scintillation of the beacon satellite signals

  17. High-energy expansion for nuclear multiple scattering

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1975-01-01

    The Watson multiple scattering series is expanded to develop the Glauber approximation plus systematic corrections arising from three (1) deviations from eikonal propagation between scatterings, (2) Fermi motion of struck nucleons, and (3) the kinematic transformation which relates the many-body scattering operators of the Watson series to the physical two-body scattering amplitude. Operators which express effects ignored at the outset to obtain the Glauber approximation are subsequently reintroduced via perturbation expansions. Hence a particular set of approximations is developed which renders the sum of the Watson series to the Glauber form in the center of mass system, and an expansion is carried out to find leading order corrections to that summation. Although their physical origins are quite distinct, the eikonal, Fermi motion, and kinematic corrections produce strikingly similar contributions to the scattering amplitude. It is shown that there is substantial cancellation between their effects and hence the Glauber approximation is more accurate than the individual approximations used in its derivation. It is shown that the leading corrections produce effects of order (2kR/subc/) -1 relative to the double scattering term in the uncorrected Glauber amplitude, hk being momentum and R/subc/ the nuclear char []e radius. The leading order corrections are found to be small enough to validate quatitative analyses of experimental data for many intermediate to high energy cases and for scattering angles not limited to the very forward region. In a Gaussian model, the leading corrections to the Glauber amplitude are given as convenient analytic expressions

  18. Scattering of a TEM wave from a time varying surface

    Science.gov (United States)

    Elcrat, Alan R.; Harder, T. Mark; Stonebraker, John T.

    1990-03-01

    A solution is given for reflection of a plane wave with TEM polarization from a planar surface with time varying properties. These properties are given in terms of the currents on the surface. The solution is obtained by numerically solving a system of differential-delay equations in the time domain.

  19. Proton-proton elastic scattering at ultrahigh energies

    International Nuclear Information System (INIS)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem

    1981-01-01

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model. (author)

  20. Proton-proton elastic scattering at ultrahigh energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1981-05-30

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model.

  1. Invertible propagator for plane wave illumination of forward-scattering structures.

    Science.gov (United States)

    Samelsohn, Gregory

    2017-05-10

    Propagation of directed waves in forward-scattering media is considered. It is assumed that the evolution of the wave field is governed by the standard parabolic wave equation. An efficient one-step momentum-space propagator, suitable for a tilted plane wave illumination of extended objects, is derived. It is expressed in terms of a propagation operator that transforms (the complex exponential of) a linogram of the illuminated object into a set of its diffraction patterns. The invertibility of the propagator is demonstrated, which permits a multiple-shot scatter correction to be performed, and makes the solution especially attractive for either projective or tomographic imaging. As an example, high-resolution tomograms are obtained in numerical simulations implemented for a synthetic phantom, with both refractive and absorptive inclusions.

  2. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    Science.gov (United States)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  3. Low energy alpha scattering on 62Ni

    International Nuclear Information System (INIS)

    Mate, Z.; Szilagyi, S.; Zolnai, L.; Bredbacka, A.; Brenner, M.; Kaellman, K.-M.; Manngard, P.

    1989-01-01

    An anomaly could be observed in the energy dependence of the optical model potential parameters and volume integrals when these quantities were compared with those obtained at higher bombarding energies in several theoretical works. Elastic α-particle differential cross sections were measured in the present work at 12.8, 14.5, 16.3 and 18.1 MeV on 62 Ni in the angular range from 20 to 166 degrees. The angular distributions were analyzed in terms of the optical model. The energy dependence of the volume integrals was compared with the prediction of a model based on the dispersion relation between the real and imaginary parts. (author) 33 refs.; 3 figs

  4. Resonances and analyticity of scattering wave function for square-well-type potentials

    International Nuclear Information System (INIS)

    Weber, T.A.; Hammer, C.L.; Zidell, V.S.

    1982-01-01

    In this paper we extend our previous analysis of the scattering of wave packets in one dimension to the case of the square-well potential. The analytic properties of the general scattering solution are emphasized thereby making the analysis useful as introductory material for a more sophisticated S-matrix treatment. The square-well model is particularly interesting because of its application to the deuteron problem. Resonance scattering, barrier penetration, time delay, and line shape are discussed at the level of the first-year graduate student

  5. Multiple scattering of electromagnetic waves by a collection of plasma drift turbulent vortices

    International Nuclear Information System (INIS)

    Resendes, D.

    1995-01-01

    An application of the self-consistent multiple-scattering theory of electro-magnetic waves to drift turbulent vortices is presented. Using the known single-vortex solution, the integral equation describing the scattering from a finite density of drift turbulent vortices is obtained. Rather than solving this equation and then averaging, the averaging operation is taken first to obtain statistical moment equations, from which the coherent and incoherent scattering follow. These results are expressed in a Fourier basis, and the cross-section is evaluated. Limiting forms of the theory and straightforward generalizations are discussed. (Author)

  6. Scattering of polarized low-energy electrons by ferromagnetic metals

    International Nuclear Information System (INIS)

    Helman, J.S.

    1981-01-01

    A source of spin polarized electrons with remarkable characteristics based on negative electron affinity (NEA) GaAs has recently been developed. It constitutes a unique tool to investigate spin dependent interactions in electron scattering processes. The characteristics and working principles of the source are briefly described. Some theoretical aspects of the scattering of polarized low-energy electrons by ferromagnetic metals are discussed. Finally, the results of the first polarized low-energy electron diffraction experiment using the NEA GaAs source are reviewed; they give information about the surface magnetization of ferromagnetic Ni (110). (Author) [pt

  7. Do we understand elastic scattering up to LHC energies?

    International Nuclear Information System (INIS)

    Soffer, Jacques

    2013-01-01

    The measurements of high energy (bar sign)pp and pp elastic at ISR, SPS, and Tevatron colliders have provided usefull informations on the behavior of the scattering amplitude. A large step in energy domain is accomplished with the LHC collider presently running, giving a unique opportunity to improve our knowledge on the asymptotic regime of the elastic scattering amplitude and to verify the validity of our theoretical approach, to describe the total cross section σ tot (s), the total elastic cross section σ el (s), the ratio of the real to imaginary parts of the forward amplitude ρ(s) and the differential cross section dσ (s,t)/dt.

  8. Quantification of Wave Model Uncertainties Used for Probabilistic Reliability Assessments of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2015-01-01

    Wave models used for site assessments are subjected to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Four different wave models are considered, and validation...... data are collected from published scientific research. The bias and the root-mean-square error, as well as the scatter index, are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example, this paper presents how the quantified...... uncertainties can be implemented in probabilistic reliability assessments....

  9. Determination of Wave Model Uncertainties used for Probabilistic Reliability Assessments of Wave Energy Devices

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2014-01-01

    Wave models used for site assessments are subject to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Considered are four different wave models and validation...... data is collected from published scientific research. The bias, the root-mean-square error as well as the scatter index are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example it is shown how the estimated uncertainties can...... be implemented in probabilistic reliability assessments....

  10. Low energy neutron scattering for energy dependent cross sections. General considerations

    Energy Technology Data Exchange (ETDEWEB)

    Rothenstein, W; Dagan, R [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Mechanical Engineering

    1996-12-01

    We consider in this paper some aspects related to neutron scattering at low energies by nuclei which are subject to thermal agitation. The scattering is determined by a temperature dependent joint scattering kernel, or the corresponding joint probability density, which is a function of two variables, the neutron energy after scattering, and the cosine of the angle of scattering, for a specified energy and direction of motion of the neutron, before the interaction takes place. This joint probability density is easy to calculate, when the nucleus which causes the scattering of the neutron is at rest. It can be expressed by a delta function, since there is a one to one correspondence between the neutron energy change, and the cosine of the scattering angle. If the thermal motion of the target nucleus is taken into account, the calculation is rather more complicated. The delta function relation between the cosine of the angle of scattering and the neutron energy change is now averaged over the spectrum of velocities of the target nucleus, and becomes a joint kernel depending on both these variables. This function has a simple form, if the target nucleus behaves as an ideal gas, which has a scattering cross section independent of energy. An energy dependent scattering cross section complicates the treatment further. An analytic expression is no longer obtained for the ideal gas temperature dependent joint scattering kernel as a function of the neutron energy after the interaction and the cosine of the scattering angle. Instead the kernel is expressed by an inverse Fourier Transform of a complex integrand, which is averaged over the velocity spectrum of the target nucleus. (Abstract Truncated)

  11. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  12. Spectral Characterization of the Wave Energy Resource for Puerto Rico (PR) and the United States Virgin Islands (USVI)

    Science.gov (United States)

    Garcia, C. G.; Canals, M.; Irizarry, A. A.

    2016-02-01

    Nowadays a significant amount of wave energy assessments have taken place due to the development of the ocean energy markets worldwide. Energy contained in surface gravity waves is scattered along frequency components that can be described using wave spectra. Correspondingly, characterization and quantification of harvestable wave energy is inherently dictated by the nature of the two-dimensional wave spectrum. The present study uses spectral wave data from the operational SWAN-based CariCOOS Nearshore Wave Model to evaluate the capture efficiency of multiple wave energy converters (WEC). This study revolves around accurately estimating available wave energy as a function of varying spectral distributions, effectively providing a detailed insight concerning local wave conditions for PR and USVI and the resulting available-energy to generated-power ratio. Results in particular, provide a comprehensive characterization of three years' worth of SWAN-based datasets by outlining where higher concentrations of wave energy are localized in the spectrum. Subsequently, the aforementioned datasets were processed to quantify the amount of energy incident on two proposed sites located in PR and USVI. Results were largely influenced by local trade wind activity, which drive predominant sea states, and the amount of North-Atlantic swells that propagate towards the region. Each wave event was numerically analyzed in the frequency domain to evaluate the capacity of a WEC to perform under different spectral distribution scenarios, allowing for a correlation between electrical power output and spectral energy distribution to be established.

  13. Wave energy transmission apparatus for high-temperature environments

    Science.gov (United States)

    Buckley, John D. (Inventor); Edwards, William C. (Inventor); Kelliher, Warren C. (Inventor); Carlberg, Ingrid A. (Inventor)

    2010-01-01

    A wave energy transmission apparatus has a conduit made from a refractory oxide. A transparent, refractory ceramic window is coupled to the conduit. Wave energy passing through the window enters the conduit.

  14. Energy-dependent inversion of p+16O scattering data

    International Nuclear Information System (INIS)

    Cooper, S.G.

    1997-01-01

    A fast iterative procedure is developed to determine potentials by inversion from elastic cross section, analysing powers and reaction cross-section measurements covering a wide energy range. The procedure incorporates both energy and parity dependence. The method is applied to extensive p+ 16 O scattering data for an energy range from 27.3 to 46.1 MeV, giving a solution which simultaneously reproduces the data at all energies. The wide angle data is well reproduced by including parity dependence and a linear energy dependence is established for the real potential, including the parity-dependent component. The real terms agree qualitatively with potentials derived from the single channel RGM, but the central and spin-orbit imaginary components have distinct features strongly suggestive of further non-local contributions, possibly arising from channel coupling. The large data set is found essential to reduce the potential ambiguities present when fitting scattering data. (orig.)

  15. Nucleon charge exchange reaction and antiproton elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Kronenfeld, J.

    1985-02-01

    This work treats the medium energy nuclear (p,n) charge exchange reaction to analog states and the low energy elastic scattering of antiprotons and investigates the central aspects of a microscopic theory based on multiple-scattering series which are pertinent to these reactions. A two-step term of the Distorted Wave Impulse Approximation (DWIA) in treating the (p,n) reaction, was included. For the very absorptive p-bar interaction with nuclei we conjecture that a partial infinite summation, constituing a renormalization of the single scattering term of the optical potential series provides the dominant feature of this interaction. In this work the excitation of analog states is calculated and it was found that the (p,n) reaction is described fairly well by the DWIA. In the first part of the work the (p,n) reaction in the energy range 100-200 MeV was treated. The DWIA calculations were based on eikonalization. In the second part of the work the p-barA interaction with the selfconsistent scheme mentioned above, for scattering energies 30-120 MeV, was examined. (author)

  16. A comparison of three time-dependent wave packet methods for calculating electron--atom elastic scattering cross sections

    International Nuclear Information System (INIS)

    Judson, R.S.; McGarrah, D.B.; Sharafeddin, O.A.; Kouri, D.J.; Hoffman, D.K.

    1991-01-01

    We compare three time-dependent wave packet methods for performing elastic scattering calculations from screened Coulomb potentials. The three methods are the time-dependent amplitude density method (TDADM), what we term a Cayley-transform method (CTM), and the Chebyshev propagation method of Tal-Ezer and Kosloff. Both the TDADM and the CTM are based on a time-dependent integral equation for the wave function. In the first, we propagate the time-dependent amplitude density, |ζ(t)right-angle=U|ψ(t)right-angle, where U is the interaction potential and |ψ(t)right-angle is the usual time-dependent wave function. In the other two, the wave function is propagated. As a numerical example, we calculate phase shifts and cross sections using a screened Coulomb, Yukawa type potential over the range 200--1000 eV. One of the major advantages of time-dependent methods such as these is that we get scattering information over this entire range of energies from one propagation. We find that in most cases, all three methods yield comparable accuracy and are about equally efficient computationally. However for l=0, where the Coulomb well is not screened by the centrifugal potential, the TDADM requires smaller grid spacings to maintain accuracy

  17. I. Exchange currents in electron scattering from light nuclei. II. Heavy-ion scattering at intermediate and high energy

    International Nuclear Information System (INIS)

    Dubach, J.F.

    1976-01-01

    The purpose of this work is to develop a formalism that will allow one to search the wide variety of transitions presented by nuclei in order to locate situations in which the exchange-current effects are important or dominant and thus allow one to study the contributions of the meson exchanges to the electromagnetic densities within the nucleus. The nuclei studied are assumed to be described in a shell model using harmonic oscillator wave functions. The formalism needed to allow one to do a multipole analysis of these exchange currents within 1s and 1p nuclei is developed. This formalism is then applied to an examination of electron scattering from a series of light nuclei: 3 He, 6 Li, 7 Li, 9 Be, and 10 B. Three significant effects due to the inclusion of exchange currents are seen: (1) The exchange currents can often introduce new structure into the form factors. (2) At larger momentum transfer (700 to 1000 MeV/c) the exchange current contributions to the form factor dominate the simpler one-body form factor by a few orders of magnitude. (3) The exchange currents can excite E4 and M5 multipoles in the p shell which are forbidden to the simpler one-body currents. The elastic scattering of two heavy ions at intermediate and high energies (compared to the Coulomb barrier) is examined in the formalism of the WKB and ''Glauber theory'' approximations. As a concrete example, the scattering of 16 O from 60 Ni is studied assuming an optical-model potential that fits elastic scattering data at low energies. One immediate result is that the WKB approximation agrees quite well with ''exact'' numerical calculations at energies as low as 60 MeV. The Glauber theory fails below about 1 GeV but correction terms are developed that can extend the usefulness of the Glauber theory to much lower energies. The model problem of scattering from a black-sphere model of the nucleus is briefly examined

  18. Ions cross-B collisional diffusion and electromagnetic wave scattering

    International Nuclear Information System (INIS)

    Tomchuk, B.P.; Gresillon, D.

    2000-01-01

    The calculation is presented of the averaged quadratic displacement of a collisional charged particle in a magnetic field. This calculation is used to obtain the statistical presentation of the electromagnetic field scattered by these particles. These results extend the previous calculations that were restricted to non-magnetized particles (Ornstein equation, Einstein diffusion, etc.). In addition this calculation foresees effects that are absent of the Ornstein equation: a modulation of the averaged quadratic displacement function at the cyclotron frequency and a maximum of the Cross-B diffusion coefficient when the cyclotron frequency is equal to the collision frequency (Bohm diffusion)

  19. Low-energy scattering of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, R.O.; Garibotti, C.R. (Universidad Nacional de Cuyo, San Carlos de Bariloche (Argentina). Inst. Balseiro)

    1983-04-23

    The off-energy-shell T-matrix for two charged particles is studied in the low momentum limit (k->0). The T-matrix for a Coulomb interaction (Tsub(C)) is usually considered as the limit of the amplitude for a screened potential (Tsub(s)) when the screening is removed. We show that this statement is not true for small enough energies. For an attractive interaction Tsub(C) and Tsub(s) differ significantly when k->0. Tsub(c) behaves as ksup(-1/2), while Tsub(s) keeps its k/sup -1/ behaviour even when the screening is turned off. We note that this is an effect which would be observed in ion-atom collisions when one electron is ejected from the atom and captured into a continuum state of the ion.

  20. Low-energy scattering of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, R.O.; Garibotti, C.R. (Instituto Balseiro, Argentina)

    1983-04-23

    The off-energy-shell T-matrix for two charged particles is studied in the low momentum limit ( k ->0 ). The T-matrix for a Coulomb interaction (Tsub(C)) is usually considered as the limit of the amplitude for a screened potential (Tsub(s)) when the screening is removed. This statement is not true for small enough energies. For an attractive interaction Tsub(C) and Tsub(s) differ significantly when k -> 0. Tsub(C) behaves as k sup(-0.5), while Tsub(s) keeps its k/sup -1/ behaviour even when the screening is turned off. This is an effect which would be observed in ion-atom collisions when one electron is ejected from the atom and captured into a continuum state of the ion.

  1. Worlds Largest Wave Energy Project 2007 in Wales

    DEFF Research Database (Denmark)

    Christensen, Lars; Friis-Madsen, Erik; Kofoed, Jens Peter

    2006-01-01

    This paper introduces world largest wave energy project being developed in Wales and based on one of the leading wave energy technologies. The background for the development of wave energy, the total resource ands its distribution around the world is described. In contrast to wind energy turbines...... Dragon has to be scaled in accordance with the wave climate at the deployment site, which makes the Welch demonstrator device the worlds largest WEC so far with a total width of 300 meters. The project budget, the construction methods and the deployment site are also given....... a large number of fundamentally different technologies are utilised to harvest wave energy. The Wave Dragon belongs to the wave overtopping class of converters and the paper describes the fundamentals and the technical solutions used in this wave energy converter. An offshore floating WEC like the Wave...

  2. Electrical Systems for Wave Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Cecilia

    2011-07-01

    Wave energy is a renewable energy source with a large potential to contribute to the world's electricity production. There exist several technologies on how to convert the energy in the ocean waves into electric energy. The wave energy converter (WEC) presented in this thesis is based on a linear synchronous generator. The generator is placed on the seabed and driven by a point absorbing buoy on the ocean surface. Instead of having one large unit, several smaller units are interconnected to increase the total installed power. To convert and interconnect the power from the generators, marine substations are used. The marine substations are placed on the seabed and convert the fluctuating AC from the generators into an AC suitable for grid connection. The work presented in the thesis focuses on the first steps in the electric energy conversion, converting the voltage out from the generators into DC, which have an impact on the WEC's ability to absorb and produce power. The purpose has been to investigate how the generator will operate when it is subjected to different load cases and to obtain guidelines on how future systems could be improved. Offshore experiments and simulations have been done on full scale generators connected to four different loads, i.e. one linear resistive load and three different non-linear loads representing different cases for grid connected WECs. The results show that the power can be controlled and optimized by choosing a suitable system for the WEC. It is not obvious which kind of system is the most preferable, since there are many different parameters that have an impact on the system performance, such as the size of the buoy, how the generator is designed, the number of WECs, the highest allowed complexity of the system, costs and so on. Therefore, the design of the electrical system should preferably be carried out in parallel with the design of the WEC in order to achieve an efficient system

  3. Microscopic study of elastic and inelastic ALPHA-nucleus scattering at medium energies

    International Nuclear Information System (INIS)

    Dao Tien Khoa; Hoang Si Than; Do Cong Cuong; Ngo Van Luyen; Nguyen Ngoc Quynh; Nguyen Tuan Anh

    2007-01-01

    Analyses of the inelastic α + 12 C scattering at medium energies have indicated that the strength of the Hoyle state (the isoscalar O 2 + excitation at 7.65 MeV in 12 C) seems to exhaust only 7 to 9% of the monopole energy weighted sum rule (EWSR), compared to about 15% of the EWSR extracted from inelastic electron scattering data. The full monopole transition strength predicted by realistic microscopic α-cluster models of the Hoyle state can be shown to exhaust up to 22% of the EWSR. To explore the missing monopole strength in the inelastic α + 12 C scattering, we have performed a fully microscopic folding model analysis of the inelastic α + 12 C scattering at E lab =104 to 240 MeV using the 3-α resonating group wave function of the Hoyle state obtained by Kamimura, and a complex density-dependent M3Y interaction newly parametrized based on the Brueckner Hartree Fock results for nuclear matter. Our folding model analysis has shown consistently that the missing monopole strength of the Hoyle state is not associated with the uncertainties in the analysis of the α + 12 C scattering, but is most likely due to the short lifetime and weakly bound structure of this state which significantly enhances absorption in the exit α + 12 C * (O 2 + ) channel. (author)

  4. Photoabsorption and Compton scattering in ionization of helium at high photon energies

    International Nuclear Information System (INIS)

    Andersson, L.R.; Burgdoerfer, J.; Tennessee Univ., Knoxville, TN

    1993-01-01

    Production of singly and doubly charged helium ions by impact of keV photons is studied. The ratio R ph = σ ph ++ /σ ph + for photoabsorption is calculated in the photon-energy range 2--18 keV using correlated initial- and final- state wave functions. Extrapolation towards asymptotic photon energies yields R ph (ω → ∞) = 1.66% in agreement with previous predictions. Ionization due to Compton scattering, which becomes comparable to photoabsorption above ω ∼ 3 keV, is discussed

  5. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    International Nuclear Information System (INIS)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N.J.; Schooneveld, E.M.

    2008-01-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10A -1 . This opens a still unexplored region of the kinematical (q,ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure

  6. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M. [Dipartimento di Fisica ' G. Occhialini' , Universita degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Pietropaolo, A. [Dipartimento di Fisica ' G. Occhialini' , CNISM-Universita degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); NAST Center - Nanoscienze-Nanotecnologie-Strumentazione, Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy)], E-mail: antonino.pietropaolo@mib.infn.it; Andreani, C.; Senesi, R. [Dipartimento di Fisica and Centro NAST - Nanoscienze-Nanotecnologie-Strumentazione, Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy); Rhodes, N.J.; Schooneveld, E.M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire 0QX OX11 (United Kingdom)

    2008-05-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10A{sup -1}. This opens a still unexplored region of the kinematical (q,{omega}) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.

  7. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    Science.gov (United States)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N. J.; Schooneveld, E. M.

    2008-05-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10Å-1. This opens a still unexplored region of the kinematical (q, ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.

  8. The state of development of wave energy

    International Nuclear Information System (INIS)

    Duckers, L.J.

    1991-01-01

    Wave energy converters are being developed and tested in as many as ten countries. The author believes that the shore mounted converters will be economically attractive in many locations around the world. These devices are simple and easily maintained. In order to harvest the greater offshore resource floating devices such as the Clam, Duck and Whale will be needed. Urgent research and development is needed to bring these to the prototype stage. Future deployment of large arrays of these floating systems could be quickly and easily achieved in many parts of the world and they would provide considerable quantities of environmentally benign, reasonably cheap energy. (author) 6 figs., 5 refs

  9. Aquabuoy Wave Energy Converter

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Margheritini, Lucia; Frigaard, Peter

    The work reported here is part of the contract agreement between the Finavera Renewables Ocean Energy Ltd. and the Department of Civil Engineering Hydraulics and Coastal Engineering Laboratory to instrument a model in scale 1:10 to prototype of the AquaBuOY (AB) wave energy converter and to analyse...... its performances in real sea testing in Nissum Bredning, Denmark. This report is part of Fineveras contribution to ForskEl project no 6435 “AquaBuOY skala 1:10 forsøg I Nissum Bredning”....

  10. Coherent light scattering of heterogeneous randomly rough films and effective medium in the theory of electromagnetic wave multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Berginc, G [THALES, 2 avenue Gay-Lussac 78995 ELANCOURT (France)

    2013-11-30

    We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell – Garnett formula at the low-frequency limit, and the Keller formula; the latter has been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength. (coherent light scattering)

  11. Semi-analytic equations to the Cox-Thompson inverse scattering method at fixed energy for special cases

    International Nuclear Information System (INIS)

    Palmai, T.; Apagyi, B.; Horvath, M.

    2008-01-01

    Solution of the Cox-Thompson inverse scattering problem at fixed energy 1-3 is reformulated resulting in semi-analytic equations. The new set of equations for the normalization constants and the nonphysical (shifted) angular momenta are free of matrix inversion operations. This simplification is a result of treating only the input phase shifts of partial waves of a given parity. Therefore, the proposed method can be applied for identical particle scattering of the bosonic type (or for certain cases of identical fermionic scattering). The new formulae are expected to be numerically more efficient than the previous ones. Based on the semi-analytic equations an approximate method is proposed for the generic inverse scattering problem, when partial waves of arbitrary parity are considered. (author)

  12. Practical performances of MPC for wave energy converters

    DEFF Research Database (Denmark)

    Ferri, Francesco; Tetu, Amelie; Hals, J.

    2016-01-01

    Maximising the efficiency of Wave Energy Converter (WEC) is one of the important tasks toward the exploitation of the wave energy resource. Along with a proper design of the device, an important way to achieve better energy performances is to improve the wave-body interaction by applying an appro...

  13. Fluctuation and thermal energy balance for drift-wave turbulence

    International Nuclear Information System (INIS)

    Kim, Chang-Bae; Horton, W.

    1990-05-01

    Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. 16 refs., 1 tab

  14. Fluctuation and thermal energy balance for drift-wave turbulence

    International Nuclear Information System (INIS)

    Changbae Kim; Horton, W.

    1991-01-01

    Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. (author)

  15. Wave Energy Research, Testing and Demonstration Center

    Energy Technology Data Exchange (ETDEWEB)

    Batten, Belinda [Oregon State Univ., Corvallis, OR (United States)

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  16. Rayleigh scattering of a cylindrical sound wave by an infinite cylinder.

    Science.gov (United States)

    Baynes, Alexander B; Godin, Oleg A

    2017-12-01

    Rayleigh scattering, in which the wavelength is large compared to the scattering object, is usually studied assuming plane incident waves. However, full Green's functions are required in a number of problems, e.g., when a scatterer is located close to the ocean surface or the seafloor. This paper considers the Green's function of the two-dimensional problem that corresponds to scattering of a cylindrical wave by an infinite cylinder embedded in a homogeneous fluid. Soft, hard, and impedance cylinders are considered. Exact solutions of the problem involve infinite series of products of Bessel functions. Here, simple, closed-form asymptotic solutions are derived, which are valid for arbitrary source and receiver locations outside the cylinder as long as its diameter is small relative to the wavelength. The scattered wave is given by the sum of fields of three linear image sources. The viability of the image source method was anticipated from known solutions of classical electrostatic problems involving a conducting cylinder. The asymptotic acoustic Green's functions are employed to investigate reception of low-frequency sound by sensors mounted on cylindrical bodies.

  17. Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave.

    Science.gov (United States)

    Frisvad, Jeppe Revall

    2018-04-01

    In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F 1 2 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far-field scattering components, that is, the phase function. I include recurrence formulas for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity is not negligible for light entering an absorbing medium at an oblique angle. The presented theory could thus be useful for predicting scattering behavior in dye-based random lasing and in solar cell absorption enhancement.

  18. Covariant spectator theory of $np$ scattering:\\\\ Effective range expansions and relativistic deuteron wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross, Alfred Stadler

    2010-09-01

    We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.

  19. Advanced DPSM approach for modeling ultrasonic wave scattering in an arbitrary geometry

    Science.gov (United States)

    Yadav, Susheel K.; Banerjee, Sourav; Kundu, Tribikram

    2011-04-01

    Several techniques are used to diagnose structural damages. In the ultrasonic technique structures are tested by analyzing ultrasonic signals scattered by damages. The interpretation of these signals requires a good understanding of the interaction between ultrasonic waves and structures. Therefore, researchers need analytical or numerical techniques to have a clear understanding of the interaction between ultrasonic waves and structural damage. However, modeling of wave scattering phenomenon by conventional numerical techniques such as finite element method requires very fine mesh at high frequencies necessitating heavy computational power. Distributed point source method (DPSM) is a newly developed robust mesh free technique to simulate ultrasonic, electrostatic and electromagnetic fields. In most of the previous studies the DPSM technique has been applied to model two dimensional surface geometries and simple three dimensional scatterer geometries. It was difficult to perform the analysis for complex three dimensional geometries. This technique has been extended to model wave scattering in an arbitrary geometry. In this paper a channel section idealized as a thin solid plate with several rivet holes is formulated. The simulation has been carried out with and without cracks near the rivet holes. Further, a comparison study has been also carried out to characterize the crack. A computer code has been developed in C for modeling the ultrasonic field in a solid plate with and without cracks near the rivet holes.

  20. Apocrypha of standard scattering theory (SST) and quantum mechanics of the de Broglie wave packet

    International Nuclear Information System (INIS)

    Ignatovich, V.K.

    2001-01-01

    It is shown that the Standard Scattering Theory (SST) does not correspond to the principles of Standard Quantum Mechanics (SQM). A more consistent theory is formulated. Some new results are obtained. Reflection and transmission of the de Broglie wave packet by thin layers of matter is considered

  1. Resonant soft x-ray scattering and charge density waves in correlated systems

    NARCIS (Netherlands)

    Rusydi, Andrivo

    2006-01-01

    Summary This work describes results obtained on the study of charge density waves (CDW) in strongly correlated systems with a new experimental method: resonant soft x-ray scattering (RSXS). The basic motivation is the 1986 discovery by Bednorz and Müler of a new type of superconductor, based on Cu

  2. Scattering of E Polarized Plane Wave by Rectangular Cavity With Finite Flanges

    Science.gov (United States)

    Vinogradova, Elena D.

    2017-11-01

    The rigorous Method of Regularization is implemented for accurate analysis of wave scattering by rectangular cavity with finite flanges. The solution is free from limitations on problem parameters. The calculation of the induced surface current, bistatic radar cross section (RCS) and frequency dependence of monostatic RCS are performed with controlled accuracy in a wide frequency band.

  3. Quality factor due to roughness scattering of shear horizontal surface acoustic waves in nanoresonators

    NARCIS (Netherlands)

    Palasantzas, G.

    2008-01-01

    In this work we study the quality factor associated with dissipation due to scattering of shear horizontal surface acoustic waves by random self-affine roughness. It is shown that the quality factor is strongly influenced by both the surface roughness exponent H and the roughness amplitude w to

  4. On scattering of scalar waves in static space-times, particularly Schwarzschild

    International Nuclear Information System (INIS)

    Beig, R.

    1982-01-01

    This paper aims at laying foundations of a rigorous scattering theory for scalar waves in a static space-time. The treatment includes geometries which can be thought of as representing the exterior of a black hole. Schwarzschild space-time, as a particular example, is studied in more detail. (Auth.)

  5. Effects of wave function correlations on scaling violation in quasi-free electron scattering

    International Nuclear Information System (INIS)

    Tornow, V.; Drechsel, D.; Orlandini, G.; Traini, M.

    1981-01-01

    The scaling law in quasi-free electron scattering is broken due to the existence of exchange forces, leading to a finite mean value of the scaling variable anti y. This effect is considerably increased by wave function correlations, in particular by tensor correlations, similar to the case of the photonuclear enhancement factor k. (orig.)

  6. EB Frond wave energy converter - phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The EB Frond project is a wave energy programme developed by The Engineering Business (EB) from an original idea at Lancaster University. The EB Frond is a wave generator with a collector vane on top of an arm that pivots near the seabed. Phase 1 of the project demonstrated the technical feasibility of the project and provided proof of concept. Phase 2 involved further assesment of the technical and commercial viability of the concept through the development of mathematical and physical modelling methods. The work involved small-scale (1/25th) testing in wave tanks at Newcastle and Lancaster Universities and the development, verification and validation of a time domain mathematical model. The decision by EB to put on hold its renewable generation programme meant that plans to test at an intermediate scale (1/16th), assess different survival strategies in extreme wave conditions, carry out site characterisation for full-scale systems and to produce a robust economic model were not fulfilled. However, the mathematical and physical modelling work was used to develop an economic model for the Frond system. This produced a predicted unit cost of electricity by a pre-commercial 5 MW demonstration farm of about 17 pence/kWh. The report discusses the small-scale testing, test results, mathematical modelling, analysis and interpretation, survivability, the economic model and the development route to full-scale production.

  7. Elastic scattering and total cross section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.; Sanguinetti, G.

    1985-01-01

    The aim of this review is to summarize the recent progress in the field of elastic scattering and total cross section in this new energy domain. In Section 2 a survey of the experimental situation is outlined. The most significant data are presented, with emphasis on the interpretation, not the specific details or technicalities. This section is therefore intended to give a self-contained look at the field, especially for the nonspecialist. In Section 3, hadron scattering at high energy is described in an impact parameter picture, which provides a model-independent intuitive geometrical representation. The diffractive character of elastic scattering, seen as the shadow of inelastic absorption, is presented as a consequence of unitarity in the s-channel. Spins are neglected throughout this review, inasmuch as the asymptotic behavior in the very high-energy limit is the main concern here. In Section 4 some relevant theorems are recalled on the limiting behavior of hadron-scattering amplitudes at infinite energy. There is also a brief discussion on how asymptotically rising total cross sections imply scaling properties in the elastic differential cross sections. A quick survey of eikonal models is presented and their predictions are compared with ISR and SPS Collider data

  8. Neutron-proton elastic scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-e-Aleem (Punjab Univ., Lahore (Pakistan). Dept. of Physics)

    1980-09-06

    The most recent measurements of the differential and total cross sections of neutron-proton elastic scattering from 70 to 400 GeV/c have been explained by using rho as a simple pole and pomeron as a dipole. The predictions are also made regarding the energy dependence of dip and bump structure in angular distribution.

  9. A study of Bhabha scattering at PETRA energies

    International Nuclear Information System (INIS)

    Braunschweig, W.; Gerhards, R.; Kirschfink, F.J.; Martyn, H.U.; Rosskamp, P.; Kolanoski, H.; Balkwill, C.; Bowler, M.G.; Burrows, P.N.; Cashmore, R.J.; Dauncey, P.; Heath, G.P.; Mellor, D.J.; Ratoff, P.; Tomalin, I.; Yelton, J.M.; Baranko, G.; Caldwell, A.; Izen, J.M.; Muller, D.; Ritz, S.; Strom, D.; Takashima, M.; Wicklund, E.; Wu Saulan; Zobernig, G.

    1988-01-01

    We report on high statistics Bhabha scattering data taken with the TASSO experiment at PETRA at center of mass energies from 12 GeV to 46.8 GeV. We present an analysis in terms of electroweak parameters of the standard model, give limits on QED cut-off parameters and look for possible signs of compositeness. (orig.)

  10. Inverse problems and inverse scattering of plane waves

    CERN Document Server

    Ghosh Roy, Dilip N

    2001-01-01

    The purpose of this text is to present the theory and mathematics of inverse scattering, in a simple way, to the many researchers and professionals who use it in their everyday research. While applications range across a broad spectrum of disciplines, examples in this text will focus primarly, but not exclusively, on acoustics. The text will be especially valuable for those applied workers who would like to delve more deeply into the fundamentally mathematical character of the subject matter.Practitioners in this field comprise applied physicists, engineers, and technologists, whereas the theory is almost entirely in the domain of abstract mathematics. This gulf between the two, if bridged, can only lead to improvement in the level of scholarship in this highly important discipline. This is the book''s primary focus.

  11. A New Method to Extract CSP Gather of Topography for Scattered Wave Imaging

    Directory of Open Access Journals (Sweden)

    Zhao Pan

    2017-01-01

    Full Text Available The seismic method is one of the major geophysical tools to study the structure of the earth. The extraction of the common scatter point (CSP gather is a critical step to accomplish the seismic imaging with a scattered wave. Conventionally, the CSP gather is obtained with the assumption that the earth surface is horizontal. However, errors are introduced to the final imaging result if the seismic traces obtained at the rugged surface are processed using the conventional method. Hence, we propose the method of the extraction of the CSP gather for the seismic data collected at the rugged surface. The proposed method is validated by two numerical examples and expected to reduce the effect of the topography on the scattered wave imaging.

  12. A Study on Scattered Wave Amplitude Closed-Form Solution Calculation of Torsional Wave Mode by Reciprocity Theorem

    International Nuclear Information System (INIS)

    Lee, Jaesun; Cho, Younho; Achenbach, Jan D.

    2016-01-01

    Guided waves can be used for the inspection of long range pipelines. Surface corrosion is often found as a major defect type in pipelines. The reciprocity relation is a well-established theorem by which one can simplify complicated mathematical expressions. The approach has been already applied to plate and half-space structures to obtain the closed-form solutions of scattered amplitude. However, results for the case of cylindrical structures have not been reported yet. In this paper, the scattering of torsional waves, which is widely used in commercial applications, is explored by the reciprocity theorem approach. Obtaining closed-form solutions of the amplitudes of propagating waves is much simplified by using the reciprocal relation. The scattered amplitudes for elliptical and rectangular defect shapes are calculated with respect to defect depth and width, at frequencies between 0 and 500 kHz. The amplitude shows the periodic result as a function of frequency. The derived closed-form solutions can play a significant role in quantitative signal interpretation

  13. A Study on Scattered Wave Amplitude Closed-Form Solution Calculation of Torsional Wave Mode by Reciprocity Theorem

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesun; Cho, Younho [Pusan National Univ., Pusan (Korea, Republic of); Achenbach, Jan D. [Northwestern Univ., Everston (United States)

    2016-07-15

    Guided waves can be used for the inspection of long range pipelines. Surface corrosion is often found as a major defect type in pipelines. The reciprocity relation is a well-established theorem by which one can simplify complicated mathematical expressions. The approach has been already applied to plate and half-space structures to obtain the closed-form solutions of scattered amplitude. However, results for the case of cylindrical structures have not been reported yet. In this paper, the scattering of torsional waves, which is widely used in commercial applications, is explored by the reciprocity theorem approach. Obtaining closed-form solutions of the amplitudes of propagating waves is much simplified by using the reciprocal relation. The scattered amplitudes for elliptical and rectangular defect shapes are calculated with respect to defect depth and width, at frequencies between 0 and 500 kHz. The amplitude shows the periodic result as a function of frequency. The derived closed-form solutions can play a significant role in quantitative signal interpretation.

  14. Absolute determination of zero-energy phase shifts for multiparticle single-channel scattering: Generalized Levinson theorem

    International Nuclear Information System (INIS)

    Rosenberg, L.; Spruch, L.

    1996-01-01

    Levinson close-quote s theorem relates the zero-energy phase shift δ for potential scattering in a given partial wave l, by a spherically symmetric potential that falls off sufficiently rapidly, to the number of bound states of that l supported by the potential. An extension of this theorem is presented that applies to single-channel scattering by a compound system initially in its ground state. As suggested by Swan [Proc. R. Soc. London Ser. A 228, 10 (1955)], the extended theorem differs from that derived for potential scattering; even in the absence of composite bound states δ may differ from zero as a consequence of the Pauli principle. The derivation given here is based on the introduction of a continuous auxiliary open-quote open-quote length phase close-quote close-quote η, defined modulo π for l=0 by expressing the scattering length as A=acotη, where a is a characteristic length of the target. Application of the minimum principle for the scattering length determines the branch of the cotangent curve on which η lies and, by relating η to δ, an absolute determination of δ is made. The theorem is applicable, in principle, to single-channel scattering in any partial wave for e ± -atom and nucleon-nucleus systems. In addition to a knowledge of the number of composite bound states, information (which can be rather incomplete) concerning the structure of the target ground-state wave function is required for an explicit, absolute, determination of the phase shift δ. As for Levinson close-quote s original theorem for potential scattering, no additional information concerning the scattering wave function or scattering dynamics is required. copyright 1996 The American Physical Society

  15. Guided wave propagation and scattering in pipeworks comprising elbows: Theoretical and experimental results

    International Nuclear Information System (INIS)

    Bakkali, M El; Lhémery, A; Baronian, V; Chapuis, B

    2015-01-01

    Elastic guided waves (GW) are used to inspect pipeworks in various industries. Modelling tools for simulating GW inspection are necessary to understand complex scattering phenomena occurring at specific features (welds, elbows, junctions...). In pipeworks, straight pipes coexist with elbows. GW propagation in the former cases is well-known, but is less documented in the latter. Their scattering at junction of straight and curved pipes constitutes a complex phenomenon. When a curved part is joined to two straight parts, these phenomena couple and give rise to even more complex wave structures. In a previous work, the SemiAnalytic Finite Element method extended to curvilinear coordinates was used to handle GW propagation in elbows, combined with a mode matching method to predict their scattering at the junction with a straight pipe. Here, a pipework comprising an arbitrary number of elbows of finite length and of different curvature linking straight pipes is considered. A modal scattering matrix is built by cascading local scattering and propagation matrices. The overall formulation only requires meshing the pipe section to compute both the modal solutions and the integrals resulting from the mode-matching method for computing local scattering matrices. Numerical predictions using this approach are studied and compared to experiments

  16. Systematics of elastic scattering at high and intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Dias De Deus, J [Instituto de Fisica e Matematica, Lisboa (Portugal); Kroll, P [Wuppertal Univ. (Gesamthochschule) (Germany, F.R.)

    1977-01-01

    A model for elastic scattering valid in the intermediate and high-energy region is proposed. The model includes three kinds of entities: the pomeron, a universal GS pomeron; the reggeons, also universal and of GS type; and the core, a low-energy central real piece required by dispersion relations. The number of free functions and parameters is rather small. The approach supports naive duality and, in general, agrees with the results of absorptive models.

  17. Short-Term Wave Forecasting for Real-Time Control of Wave Energy Converters

    OpenAIRE

    Fusco, Francesco; Ringwood, John

    2010-01-01

    Real-time control of wave energy converters requires knowledge of future incident wave elevation in order to approach optimal efficiency of wave energy extraction. We present an approach where the wave elevation is treated as a time series and it is predicted only from its past history. A comparison of a range of forecasting methodologies on real wave observations from two different locations shows how the relatively simple linear autoregressive model, which implicitly models the cyclical beh...

  18. A nonlocal potential form for s-wave α-α scattering

    International Nuclear Information System (INIS)

    Amos, K.; Bennett, M.T.

    1997-01-01

    Low energy s-wave α-α phase shifts that agree well with the measured set, have been extracted using a nonlocal interaction formed by folding (local real) nucleon -α particle interactions with density matrix elements of the (projectile) α particle. The resultant nonlocal s-wave α-α interaction is energy dependent and has a nonlocality range of about 2 fm

  19. Mechanisms of photon scattering on nucleons at intermediate energies

    International Nuclear Information System (INIS)

    L'vov, A.I.

    1992-01-01

    The principal question for studies of photon scattering by nucleons and nuclei is the following: Can photon scattering say something new about the structure of these objects in comparisons with photo- and electroproduction investigations? There is a general reason to believe that it is indeed the case. The Hamiltonian of the electromagnetic interaction has, in general, a piece quadratic in the electromagnetic field (the so-called two-photon seagull) which is seen only in two-photon processes, such as Compton scattering. Although the longitudnal part of this seagull is constrained by the gauge invariance, its transverse part is decoupled from the electromagnetic current and cannot be found in photoabsorption processes. The seagull S μν depends on explicit degrees of freedom included into the Hamiltonian. E.g. the non-relativisitic Schroedinger equation has an effective seagull due to the kinetic energy (p - eA) 2 /2M. Its parent relativistic Dirac equation has no seagull at all but has the same low-energy consequences due to additional degrees of freedom (antiparticles). In low-energy nuclear physics, with explicit meson exchanges and meson clouds (i.e. internal polarizability of the nucleons). By explicitly including the mesons into the Hamiltonian one can remove part of the seagulls. Then the rest of them will be a signal for degrees of freedom invisible in photoabsorption at energies of the considered scale. Some seagulls are related with t-channel exchanges in Compton scattering. The π o -exchange is seen in γp-scattering but has no counterpart in photoproduction off the proton. Thus, a complementary study of one- and two-photon reactions provides a way to look in a region of higher energies where direct studies via photoproduction processes may be hard

  20. Electromagnetic wave scattering from a forest or vegetation canopy - Ongoing research at the University of Texas at Arlington

    Science.gov (United States)

    Karam, Mostafa A.; Amar, Faouzi; Fung, Adrian K.

    1993-01-01

    The Wave Scattering Research Center at the University of Texas at Arlington has developed a scattering model for forest or vegetation, based on the theory of electromagnetic-wave scattering in random media. The model generalizes the assumptions imposed by earlier models, and compares well with measurements from several forest canopies. This paper gives a description of the model. It also indicates how the model elements are integrated to obtain the scattering characteristics of different forest canopies. The scattering characteristics may be displayed in the form of polarimetric signatures, represented by like- and cross-polarized scattering coefficients, for an elliptically-polarized wave, or in the form of signal-distribution curves. Results illustrating both types of scattering characteristics are given.