WorldWideScience

Sample records for scattered continuous radiation

  1. Scattered Radiation Emission Imaging: Principles and Applications

    Directory of Open Access Journals (Sweden)

    M. K. Nguyen

    2011-01-01

    Full Text Available Imaging processes built on the Compton scattering effect have been under continuing investigation since it was first suggested in the 50s. However, despite many innovative contributions, there are still formidable theoretical and technical challenges to overcome. In this paper, we review the state-of-the-art principles of the so-called scattered radiation emission imaging. Basically, it consists of using the cleverly collected scattered radiation from a radiating object to reconstruct its inner structure. Image formation is based on the mathematical concept of compounded conical projection. It entails a Radon transform defined on circular cone surfaces in order to express the scattered radiation flux density on a detecting pixel. We discuss in particular invertible cases of such conical Radon transforms which form a mathematical basis for image reconstruction methods. Numerical simulations performed in two and three space dimensions speak in favor of the viability of this imaging principle and its potential applications in various fields.

  2. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A

    2013-01-01

    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  3. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  4. Transition radiation and transition scattering

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1982-01-01

    Transition radiation is a process of a rather general character. It occurs when some source, which does not have a proper frequency (for example, a charge) moves at a constant velocity in an inhomogeneous and (or) nonstationary medium or near such a medium. The simplest type of transition radiation takes place when a charge crosses a boundary between two media (the role of one of the media may be played by vacuum). In the case of periodic variation of the medium, transition radiation possesses some specific features (resonance transition radiation or transition scattering). Transition scattering occurs, in particular, when a permittivity wave falls onto an nonmoving (fixed) charge. Transition scattering is closely connected with transition bremsstrahlung radiation. All these transition processes are essential for plasma physics. Transition radiation and transition scattering have analogues outside the framework of electrodynamics (like in the case of Vavilov-Cherenkov radiation). In the present report the corresponding range of phenomena is elucidated, as far as possible, in a generally physical aspect. (Auth.)

  5. Inelastic electron scattering and radiative pion capture to the lowest 1+ and 2+ isovector levels in A=12 nuclei. Continuity-equation effects

    International Nuclear Information System (INIS)

    Eramzhyan, R.A.; Gmitro, M.; Kaipov, T.D.; Kamalov, S.S.; Mach, R.

    1983-01-01

    Continuity equation for the nuclear electric charge and convection current has been used in an analysis of nuclear transition densities in 12 C. The results differ considerably from the former derivations. Standard M1 and calculated E2 nuclear transition densities are fixed which provide an accurate description of the electron scattering data. Such a nuclear structure imput is used in the radiative pion capture calculations

  6. Scattered radiation from applicators in clinical electron beams

    International Nuclear Information System (INIS)

    Battum, L J van; Zee, W van der; Huizenga, H

    2003-01-01

    In radiotherapy with high-energy (4-25 MeV) electron beams, scattered radiation from the electron applicator influences the dose distribution in the patient. In most currently available treatment planning systems for radiotherapy this component is not explicitly included and handled only by a slight change of the intensity of the primary beam. The scattered radiation from an applicator changes with the field size and distance from the applicator. The amount of scattered radiation is dependent on the applicator design and on the formation of the electron beam in the treatment head. Electron applicators currently applied in most treatment machines are essentially a set of diaphragms, but still do produce scattered radiation. This paper investigates the present level of scattered dose from electron applicators, and as such provides an extensive set of measured data. The data provided could for instance serve as example input data or benchmark data for advanced treatment planning algorithms which employ a parametrized initial phase space to characterize the clinical electron beam. Central axis depth dose curves of the electron beams have been measured with and without applicators in place, for various applicator sizes and energies, for a Siemens Primus, a Varian 2300 C/D and an Elekta SLi accelerator. Scattered radiation generated by the applicator has been found by subtraction of the central axis depth dose curves, obtained with and without applicator. Scattered radiation from Siemens, Varian and Elekta electron applicators is still significant and cannot be neglected in advanced treatment planning. Scattered radiation at the surface of a water phantom can be as high as 12%. Scattered radiation decreases almost linearly with depth. Scattered radiation from Varian applicators shows clear dependence on beam energy. The Elekta applicators produce less scattered radiation than those of Varian and Siemens, but feature a higher effective angular variance. The scattered

  7. Measuring scatter radiation in diagnostic x rays for radiation protection purposes

    International Nuclear Information System (INIS)

    Panayiotakis, George; Vlachos, Ioannis; Delis, Harry; Tsantilas, Xenophon; Kalyvas, Nektarios; Kandarakis, Ioannis

    2015-01-01

    During the last decades, radiation protection and dosimetry in medical X-ray imaging practice has been extensively studied. The purpose of this study was to measure secondary radiation in a conventional radiographic room, in terms of ambient dose rate equivalent H*(10) and its dependence on the radiographic exposure parameters such as X-ray tube voltage, tube current and distance. With some exceptions, the results indicated that the scattered radiation was uniform in the space around the water cylindrical phantom. The results also showed that the tube voltage and filtration affect the dose rate due to the scatter radiation. Finally, the scattered X-ray energy distribution was experimentally calculated. (authors)

  8. Scaling, scattering, and blackbody radiation in classical physics

    International Nuclear Information System (INIS)

    Boyer, Timothy H

    2017-01-01

    Here we discuss blackbody radiation within the context of classical theory. We note that nonrelativistic classical mechanics and relativistic classical electrodynamics have contrasting scaling symmetries which influence the scattering of radiation. Also, nonrelativistic mechanical systems can be accurately combined with relativistic electromagnetic radiation only provided the nonrelativistic mechanical systems are the low-velocity limits of fully relativistic systems. Application of the no-interaction theorem for relativistic systems limits the scattering mechanical systems for thermal radiation to relativistic classical electrodynamic systems, which involve the Coulomb potential. Whereas the naive use of nonrelativistic scatterers or nonrelativistic classical statistical mechanics leads to the Rayleigh–Jeans spectrum, the use of fully relativistic scatterers leads to the Planck spectrum for blackbody radiation within classical physics. (paper)

  9. Some aspects of transition radiation and scattering theory

    International Nuclear Information System (INIS)

    Ginzburg, V.L.; Tsytovich, V.N.

    1978-01-01

    Some aspects of transition radiation and transition scattering theory are considered. The transition radiation in vacuum is analysed in the presence of a strong magnetic field. It is shown, that the constant electro-magnetic field makes vacuum similar to the uniaxial ferrodielectric. The appearance of the transition radiation in the nonstationary medium is discussed when its properties in the medium change abruptly in time. It is obtained, that both types of the transition radiation for nonrelativistic particles (on an abrupt boundary of the two media interface and under an abrupt change in time of the medium properties) differ quantitatively (on the order of the value). The role of the radiation transition and scattering in plasma physics has been elucidated from different points. Four most important features of these processes are pointed out. Particularly, essential is shown to be the type of the transition scattering when one plasma wave, being the dielectric constant wave transforms into another one also a plasma wave. In the processes of the transition scattering an essential part is played by the effects of the space dispersion, particularly when the scattering takes place on the small velocity particles. Finally besides transition scattering there exists in plasma or in some cases prevails a Thomson scattering. In this case an important role in plasma is played by the interference between the Thomson and the transition scattering

  10. Induced Compton-scattering effects in radiation-transport approximations

    International Nuclear Information System (INIS)

    Gibson, D.R. Jr.

    1982-02-01

    The method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions

  11. Induced Compton scattering effects in radiation transport approximations

    International Nuclear Information System (INIS)

    Gibson, D.R. Jr.

    1982-01-01

    In this thesis the method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions

  12. Radiation scattering techniques

    International Nuclear Information System (INIS)

    Edmonds, E.A.

    1986-01-01

    Radiation backscattering techniques are useful when access to an item to be inspected is restricted to one side. These techniques are very sensitive to geometrical effects. Scattering processes and their application to the determination of voids, thickness measuring, well-logging and the use of x-ray fluorescence techniques are discussed. (U.K.)

  13. Scatter radiation intensities around a clinical digital breast tomosynthesis unit and the impact on radiation shielding considerations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kai, E-mail: kyang11@mgh.harvard.edu; Li, Xinhua; Liu, Bob [Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114 (United States)

    2016-03-15

    Purpose: To measure the scattered radiation intensity around a clinical digital breast tomosynthesis (DBT) unit and to provide updated data for radiation shielding design for DBT systems with tungsten-anode x-ray tubes. Methods: The continuous distribution of scattered x-rays from a clinical DBT system (Hologic Selenia Dimensions) was measured within an angular range of 0°–180° using a linear-array x-ray detector (X-Scan 0.8f3-512, Detection Technology, Inc., Finland), which was calibrated for the x-ray spectrum range of the DBT unit. The effects of x-ray field size, phantom size, and x-ray kVp/filter combination were investigated. Following a previously developed methodology by Simpkin, scatter fraction was determined for the DBT system as a function of angle around the phantom center. Detailed calculations of the scatter intensity from a DBT system were demonstrated using the measured scatter fraction data. Results: For the 30 and 35 kVp acquisition, the scatter-to-primary-ratio and scatter fraction data closely matched with data previously measured by Simpkin. However, the measured data from this study demonstrated the nonisotropic distribution of the scattered radiation around a DBT system, with two strong peaks around 25° and 160°. The majority scatter radiation (>70%) originated from the imaging detector assembly, instead of the phantom. With a workload from a previous survey performed at MGH, the scatter air kerma at 1 m from the phantom center for wall/door is 1.76 × 10{sup −2} mGy patient{sup −1}, for floor is 1.64 × 10{sup −1} mGy patient{sup −1}, and for ceiling is 3.66 × 10{sup −2} mGy patient{sup −1}. Conclusions: Comparing to previously measured data for mammographic systems, the scatter air kerma from Holgoic DBT is at least two times higher. The main reasons include the harder primary beam with higher workload (measured with total mAs/week), added tomosynthesis acquisition, and strong small angle forward scattering. Due to the

  14. Stationary radiation of objects with scattering media

    International Nuclear Information System (INIS)

    Vasil'eva, Inna A

    2001-01-01

    The radiation observed inside or outside a stationary radiator with a scattering medium is a sum of components, each being determined by, first, the primary radiation from some part of the radiator and, second, the probability of this radiation reaching the region where it is observed. In this review, general and rather simple relations between these components are discussed. These relations, unlike the components themselves, are independent of the specific optical characteristics of the object as well as of its geometry, inhomogeneity, etc. In deriving the relations, the situations in which geometrical optics is either applicable or inapplicable to radiation in a scattering medium are considered. For the case where geometrical optics does apply, stationary relations are derived from the probabilistic stationarity condition for radiation passing through the medium, i.e., from the fact that all radiation emitted in a stationary regime disappears with probability unity. Equilibrium relations are derived from the stationary relations in the particular case of a thermal radiator in an isothermal cavity. To derive the stationary relations in the geometrical optics approximation, we obtain general solutions of the linear equation of transfer using the Green function approach. If geometrical optics cannot be applied to a scattering and radiating medium, only relations for the components of outgoing thermal radiation are obtained, and the generalized Kirchhoff law, obtained by Levin and Rytov using statistical radio-physics methods, is employed. In this case, stationary relations are also derived from a probabilistic stationarity condition; the equilibrium relations follow from the stationary ones as well as from the equilibrium condition for radiation in the isothermal cavity. The quantities involved in all the relations obtained are a subject of experimental and computational spectroscopic studies. Examples of current and potential applications are given. The relations

  15. Scattering of Non-Relativistic Charged Particles by Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2017-11-01

    The cross-section is computed for non-relativistic charged particles (like electrons and ions) scattered by electromagnetic radiation confined to a finite region (like the focal region of optical laser beams). The cross-section exhibits maxima at scattering angles given by the energy and momentum conservation in multi-photon absorption or emission processes. For convenience, a potential scattering is included and a comparison is made with the well-known Kroll-Watson scattering formula. The scattering process addressed in this paper is distinct from the process dealt with in previous studies, where the scattering is immersed in the radiation field.

  16. Scattering in an intense radiation field: Time-independent methods

    International Nuclear Information System (INIS)

    Rosenberg, L.

    1977-01-01

    The standard time-independent formulation of nonrelativistic scattering theory is here extended to take into account the presence of an intense external radiation field. In the case of scattering by a static potential the extension is accomplished by the introduction of asymptotic states and intermediate-state propagators which account for the absorption and induced emission of photons by the projectile as it propagates through the field. Self-energy contributions to the propagator are included by a systematic summation of forward-scattering terms. The self-energy analysis is summarized in the form of a modified perturbation expansion of the type introduced by Watson some time ago in the context of nuclear-scattering theory. This expansion, which has a simple continued-fraction structure in the case of a single-mode field, provides a generally applicable successive approximation procedure for the propagator and the asymptotic states. The problem of scattering by a composite target is formulated using the effective-potential method. The modified perturbation expansion which accounts for self-energy effects is applicable here as well. A discussion of a coupled two-state model is included to summarize and clarify the calculational procedures

  17. Light scattering reviews 9 light scattering and radiative transfer

    CERN Document Server

    Kokhanovsky, Alexander A

    2014-01-01

    This book details modern methods of the radiative transfer theory. It presents recent advances in light scattering (measurements and theory) and highlights the newest developments in remote sensing of aerosol and cloud properties.

  18. Non perturbative method for radiative corrections applied to lepton-proton scattering

    International Nuclear Information System (INIS)

    Chahine, C.

    1979-01-01

    We present a new, non perturbative method to effect radiative corrections in lepton (electron or muon)-nucleon scattering, useful for existing or planned experiments. This method relies on a spectral function derived in a previous paper, which takes into account both real soft photons and virtual ones and hence is free from infrared divergence. Hard effects are computed perturbatively and then included in the form of 'hard factors' in the non peturbative soft formulas. Practical computations are effected using the Gauss-Jacobi integration method which reduce the relevant integrals to a rapidly converging sequence. For the simple problem of the radiative quasi-elastic peak, we get an exponentiated form conjectured by Schwinger and found by Yennie, Frautschi and Suura. We compare also our results with the peaking approximation, which we derive independantly, and with the exact one-photon emission formula of Mo and Tsai. Applications of our method to the continuous spectrum include the radiative tail of the Δ 33 resonance in e + p scattering and radiative corrections to the Feynman scale invariant F 2 structure function for the kinematics of two recent high energy muon experiments

  19. On the omnipresent background gamma radiation of the continuous spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Banjanac, R.; Maletić, D.; Joković, D., E-mail: yokovic@ipb.ac.rs; Veselinović, N.; Dragić, A.; Udovičić, V.; Aničin, I.

    2014-05-01

    The background spectrum of a germanium detector, shielded from the radiations arriving from the lower and open for the radiations arriving from the upper hemisphere, is studied by means of absorption measurements, both in a ground level and in an underground laboratory. The low-energy continuous portion of this background spectrum that peaks at around 100 keV, which is its most intense component, is found to be of very similar shape at the two locations. It is established that it is mostly due to the radiations of the real continuous spectrum, which is quite similar to the instrumental one. The intensity of this radiation is in our cases estimated to about 8000 photons/(m{sup 2}s·2π·srad) in the ground level laboratory, and to about 5000 photons/(m{sup 2}s·2π·srad) in the underground laboratory, at the depth of 25 m.w.e. Simulations by GEANT4 and CORSIKA demonstrate that this radiation is predominantly of terrestrial origin, due to environmental gamma radiations scattered off the materials that surround the detector (the “skyshine radiation”), and to a far less extent to cosmic rays of degraded energy. - Highlights: • We studied the low-energy part of continuous background spectra of germanium detectors. • The study was performed at the ground level and at the shallow underground sites. • The instrumental spectrum is due to radiations of the similar continuous spectrum. • The low-energy radiation is of both terrestrial and cosmic-ray origin. • In our study, we find that this radiation is of predominantly terrestrial origin.

  20. Measurements of computed tomography radiation scatter

    International Nuclear Information System (INIS)

    Van Every, B.; Petty, R.J.

    1992-01-01

    This paper describes the measurement of scattered radiation from a computed tomography (CT) scanner in a clinical situation and compares the results with those obtained from a CT performance phantom and with data obtained from CT manufacturers. The results are presented as iso-dose contours. There are significant differences between the data obtained and that supplied by manufacturers, both in the shape of the iso-dose contours and in the nominal values. The observed scatter in a clinical situation (for an abdominal scan) varied between 3% and 430% of the manufacturers' stated values, with a marked reduction in scatter noted a the head and feet of the patient. These differences appear to be due to the fact that manufacturers use CT phantoms to obtain scatter data and these phantoms do not provide the same scatter absorption geometry as patients. CT scatter was observed to increase as scan field size and slice thickness increased, whilst there was little change in scatter with changes in gantry tilt and table slew. Using the iso-dose contours, the orientation of the CT scanner can be optimised with regard to the location and shielding requirements of doors and windows. Additionally, the positioning of staff who must remain in the room during scanning can be optimised to minimise their exposure. It is estimated that the data presented allows for realistic radiation protection assessments to be made. 13 refs., 5 tabs., 6 figs

  1. Transient radiative transfer in a scattering slab considering polarization.

    Science.gov (United States)

    Yi, Hongliang; Ben, Xun; Tan, Heping

    2013-11-04

    The characteristics of the transient and polarization must be considered for a complete and correct description of short-pulse laser transfer in a scattering medium. A Monte Carlo (MC) method combined with a time shift and superposition principle is developed to simulate transient vector (polarized) radiative transfer in a scattering medium. The transient vector radiative transfer matrix (TVRTM) is defined to describe the transient polarization behavior of short-pulse laser propagating in the scattering medium. According to the definition of reflectivity, a new criterion of reflection at Fresnel surface is presented. In order to improve the computational efficiency and accuracy, a time shift and superposition principle is applied to the MC model for transient vector radiative transfer. The results for transient scalar radiative transfer and steady-state vector radiative transfer are compared with those in published literatures, respectively, and an excellent agreement between them is observed, which validates the correctness of the present model. Finally, transient radiative transfer is simulated considering the polarization effect of short-pulse laser in a scattering medium, and the distributions of Stokes vector in angular and temporal space are presented.

  2. Magnetic X-Ray Scattering with Synchrotron Radiation

    DEFF Research Database (Denmark)

    Moncton, D. E.; Gibbs, D.; Bohr, Jakob

    1986-01-01

    With the availability of high-brilliance synchrotron radiation from multiple wigglers, magnetic X-ray scattering has become a powerful new probe of magnetic structure and phase transitions. Similar to the well-established magnetic neutron scattering technique, magnetic X-ray scattering methods have...... many complementary advantages. A brief review is presented of the history of magnetic X-ray scattering as well as recent results obtained in studies of the rare-earth magnet holmium with emphasis on instrumentational aspects. In particular, the development of a simple polarization analyzer...... to distinguish charge and magnetic scattering is described....

  3. Scattering of light and other electromagnetic radiation

    CERN Document Server

    Kerker, Milton

    1969-01-01

    The Scattering of Light and Other Electromagnetic Radiation discusses the theory of electromagnetic scattering and describes some practical applications. The book reviews electromagnetic waves, optics, the interrelationships of main physical quantities and the physical concepts of optics, including Maxwell's equations, polarization, geometrical optics, interference, and diffraction. The text explains the Rayleigh2 theory of scattering by small dielectric spheres, the Bessel functions, and the Legendre functions. The author also explains how the scattering functions for a homogenous sphere chan

  4. Distance factor on reducing scattered radiation risk during interventional fluoroscopy

    International Nuclear Information System (INIS)

    Husaini Salleh; Mohd Khalid Matori; Muhammad Jamal Mat Isa; Zainal Jamaluddin; Mohd Firdaus Abdul Rahman; Mohd Khairusalih Mohd Zin

    2012-01-01

    Interventional Radiology (IR) is subspecialty of diagnostic radiology where minimally invasive procedures are performed using an x-ray as a guidance. This procedure can deliver high radiation doses to patient and medical staff compared with other radiological method due to long screening time. The use of proper shielding, shorten the exposure time and keep the distance are the practices to reduce scattered radiation risks to staff involve in this procedure. This project is to study the distance factor on reducing the scattered radiation effect to the medical staff. It also may provide the useful information which can be use to establish the scattered radiation profile during the IR for the sake of radiation protection and safety to the medical staff involved. (author)

  5. Application of the Radiative Transfer Equation (RTE) to Scattering by ...

    African Journals Online (AJOL)

    Application of the Radiative Transfer Equation (RTE) to Scattering by a Dust Aerosol Layer. ... Incident radiation in its journey through the atmosphere before reaching the earth surface encounters particles of different sizes and composition such as dust aerosols resulting in interactions that lead to absorption and scattering.

  6. Reduction of the scattered radiation during X-ray examination with screen-film systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V N; Stavitsky, R V [Moscow Research Inst. for Roentgenology and Radiology, Moscow (Russian Federation); Oshomkov, Yu V [Mosroentgen, Moscow Region (Russian Federation)

    1993-01-01

    In diagnostic radiography, during X-ray examination, photons scattered in the patient's body are detected by the intensifying screen and decrease the image contrast. A conventional way to avoid this image degradation is to attenuate the scattered radiation by an antiscatter grid placed between the patient's body and the screen. A grid selectivity effect originates from the greater attenuation of scattered as opposed to primary radiation. Previous authors calculated the primary and scattered radiation transmission factor of photons with initial energy 30-120 keV for a number of typical grids. The primary radiation transmission factor varied from 0.34 to 0.67 and the secondary radiation factor was equal from 0.03 to 0.13. This effect results in a contrast improvement from 2 to 6, but the patient exposure increases up to a factor of 10. In this work we studied the possibility of improving the image contrast by attenuating the scattered radiation by a secondary filter placed between the patient's body and the screen and made of an appropriate material. A selectivity effect due to the secondary filter arises from two circumstances. First, tilting incidence of the scattered radiation results in the path inside the filter being greater than the primary one. Second, the average energy of the scattered radiation is less than the primary and, hence, the attenuation coefficient is greater. (author).

  7. Scatter radiation exposure during knee arthrography

    International Nuclear Information System (INIS)

    Light, M.C.; Molloi, S.Y.; Yandow, D.R.; Ranallo, F.N.

    1987-01-01

    Knee arthrography, as performed at the authors' institution, was simulated and scattered radiation exposure to a radiologist's gonads, thyroid, and eye lens was measured with a sensitive ionization chamber. Results show that radiologists who regularly conduct knee arthrography examinations can incur doses to the gonads that are less than 6% of the U.S. limits, and to the thyroid and eye that are approximately 10% of the U.S. limits. Since the scatter radiation from overhead imaging of stress views constituted most (greater than or equal to 60%) of the dose to the lens of the eye and the thyroid, spot imaging was evaluated as a substitute for overhead imaging in the assessment of the anterior cruciate ligament. This substitution resulted in no loss of clinical information and has now completely replaced overhead imaging of stress views at this institution

  8. Thomson scattering if FIR radiation

    International Nuclear Information System (INIS)

    Evans, D.E.

    1976-12-01

    The frequency spectrum of radiation scattered by collective density fluctuations of electrons in a hot plasma is influenced by ion and electron temperatures, impurity concentration and plasma effective charge, magnetic field, and the level of microturbulence. A pulsed laser suitable for measuring collective scattering in a tokamak will have infrared wavelength, power of the order of MWs and bandwidth of a few 10s of MHz. The extent to which these conditions can be met by optically pumped submillimetre lasers, including narrow band oscillators, amplifiers and superradiance - injection assemblies operated in CH 3 F and D 2 O, under development at the Culham Laboratory, is discussed. (author)

  9. Effects of Scattering of Radiation on Wormholes

    Directory of Open Access Journals (Sweden)

    Alexander Kirillov

    2018-02-01

    Full Text Available Significant progress in the development of observational techniques gives us the hope to directly observe cosmological wormholes. We have collected basic effects produced by the scattering of radiation on wormholes, which can be used in observations. These are the additional topological damping of cosmic rays, the generation of a diffuse background around any discrete source, the generation of an interference picture, and distortion of the cosmic microwave background (CMB spectrum. It turns out that wormholes in the leading order mimic perfectly analogous effects of the scattering of radiation on the standard matter (dust, hot electron gas, etc.. However, in higher orders, a small difference appears, which allows for disentangling effects of wormholes and ordinary matter.

  10. Scattered radiation in fan beam imaging systems

    International Nuclear Information System (INIS)

    Johns, P.C.; Yaffe, M.

    1982-01-01

    Scatter-to-primary energy fluence ratios (S/P) have been studied for fan x-ray beams as used in CT scanners and slit projection radiography systems. The dependence of S/P on phantom diameter, distance from phantom to image receptor, and kilovoltage is presented. An empirical equation is given that predicts S/P over a wide range of fan beam imaging configurations. For CT body scans on a 4th-generation machine, S/P is approximately 5%. Scattered radiation can produce a significant cupping artefact in CT images which is similar to that due to beam hardening. When multiple slices are used in scanned slit radiography, they can be arranged such that the increase in S/P is negligible. Calculations of scatter-to-primary ratios for first order scattering showed that for fan beams the contribution of coherent scatter is comparable to or greater than that of incoherent first scatter

  11. Several problems of the theory of transition radiation and transition scattering

    International Nuclear Information System (INIS)

    Ginzburg, V.L.; Tsytovich, V.N.

    1979-01-01

    The process of transition radiation is a very general one. It appears if some source, which does not have a proper frequency (for example a point charge, multipole etc), is moving with a constant velocity in an inhomogeneous and/or nonstationary medium. In the case of a periodic medium the transition radiation has some special peculiarities and is called the resonance transition radiation or transition scattering. Transition scattering occurs particularly in the case when some wave of dielectric permittivity acts on a nonmoving (fixed) charge. The processes of transition radiation and transition scattering have analogies outside electrodynamics similarly to the Vavilov-Cherenkov emission. The latter occurs also for a source moving with a constant velocity but in a homogeneous medium (and only if the velocity of the source exceeds the wave phase velocity in the medium). The present review is dealing with several problems of the theory of transition radiation and transition scattering. Attention is paid mainly to the formulation of the problems and to revealing characterisic features and peculiarities of the phenomena described. (Auth.)

  12. Use of implicit Monte Carlo radiation transport with hydrodynamics and compton scattering

    International Nuclear Information System (INIS)

    Fleck, J.A. Jr.

    1971-03-01

    It is shown that the combination of implicit radiation transport and hydrodynamics, Compton scattering, and any other energy transport can be simply carried out by a ''splitting'' procedure. Contributions to material energy exchange can be reckoned separately for hydrodynamics, radiation transport without scattering, Compton scattering, plus any other possible energy exchange mechanism. The radiation transport phase of the calculation would be implicit, but the hydrodynamics and Compton portions would not, leading to possible time step controls. The time step restrictions which occur on radiation transfer due to large Planck mean absorption cross-sections would not occur

  13. Validation of MCNP4A for repository scattered radiation analysis

    International Nuclear Information System (INIS)

    Haas, M.N.; Su, S.

    1998-02-01

    Comparison is made between experimentally determined albedo (scattered) radiation and MCNP4A predictions in order to provide independent validation for repository shielding analysis. Both neutron and gamma scattered radiation fields from concrete ducts are compared in this paper. Satisfactory agreement is found between actual and calculated results with conservative values calculated by the MCNP4A code for all conditions

  14. Application of the equivalent radiator method for radiative corrections to the spectra of elastic electron scattering by nuclei

    Directory of Open Access Journals (Sweden)

    I. S. Timchenko

    2015-07-01

    Full Text Available For calculating the radiative tails in the spectra of inelastic electron scattering by nuclei, the approximation, namely, the equivalent radiator method (ERM, is used. However, the applicability of this method for evaluating the radiative tail from the elastic scattering peak has been little investigated, and therefore, it has become the subject of the present study for the case of light nuclei. As a result, spectral regions were found, where a significant discrepancy between the ERM calculation and the exact-formula calculation was observed. A link was established between this phenomenon and the diffraction minimum of the squared form-factor of the nuclear ground state. Varieties of calculations were carried out for different kinematics of electron scattering by nuclei. The analysis of the calculation results has shown the conditions, at which the equivalent radiator method can be applied for adequately evaluating the radiative tail of the elastic scattering peak.

  15. Nonlinear Scattering of VLF Waves in the Radiation Belts

    Science.gov (United States)

    Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish

    2014-10-01

    Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.

  16. Characterizing the behavior of scattered radiation in multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, Artur, E-mail: artur.sossin@gmail.com [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Rebuffel, V.; Tabary, J. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Univ Lyon, INSA-Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Centre Léon Bérard, CREATIS UMR 5220 U1206, F-69373 Lyon (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)

    2017-04-01

    Scattered radiation results in various undesirable effects in medical diagnostics, non-destructive testing (NDT) and security x-ray imaging. Despite numerous studies characterizing this phenomenon and its effects, the knowledge of its behavior in the energy domain remains limited. The present study aims at summarizing some key insights on scattered radiation originating from the inspected object. In addition, various simulations and experiments with limited collimation on both simplified and realistic phantoms were conducted in order to study scatter behavior in multi-energy x-ray imaging. Results showed that the spectrum shape of the scatter component can be considered preserved in the first approximation across the image plane for various acquisition geometries and phantoms. The variations exhibited by the scatter spectrum were below 10% for most examined cases. Furthermore, the corresponding spectrum shape proved to be also relatively invariant for different experimental angular projections of one of the examined phantoms. The observed property of scattered radiation can potentially lead to the decoupling of spatial and energy scatter components, which can in turn enable speed ups in scatter simulations and reduce the complexity of scatter correction.

  17. Coherence effects in radiative scattering

    International Nuclear Information System (INIS)

    Knoll, J.; Lenk, R.

    1993-03-01

    The bremsstrahl-production of photons in dense matter is reinvestigated using the example of an exactly solvable quantum mechanical model in one space dimension. Coherence phenomena between successive radiative scatterings among the constituents lead to a modification of the production cross section in the medium relative to the incoherent quasi-free prescription used in kinetic models. Analytic expressions for the correction factor have been derived comparing the quantum rates with the corresponding incoherent quasi-free rates. The result has implications for the kinetic description of all kinds of radiative processes in nucleus-nucleus collisions, both on the level of hadron and parton dynamics. (orig.)

  18. Scatter radiation from chest radiographs: is there a risk to infants in a typical NICU?

    International Nuclear Information System (INIS)

    Trinh, Angela M.; Schoenfeld, Alan H.; Levin, Terry L.

    2010-01-01

    To evaluate the dose of scatter radiation to infants in a NICU in order to determine the minimal safe distance between isolettes. Dose secondary to scattered radiation from an acrylic phantom exposed to vertical and horizontal beam exposures at 56 kVp was measured at 93 cm and 125 cm from the center of the phantom. This corresponds to 2 and 3 ft between standard isolettes, respectively. For horizontal exposures, the dosimeter was placed directly behind a CR plate and scatter dose at 90-degrees and 135-degrees from the incident beam was also measured. Exposures were obtained at 160 mAs and the results were extrapolated to correspond to 2.5 mAs. Four measurements were taken at each point and averaged. At 125 cm and 93 cm there was minimal scatter compared to daily natural background radiation dose (8.493 μGy). Greatest scatter dose obtained from a horizontal beam exposure at 135 from the incident beam was still far below background radiation. Scatter radiation dose from a single exposure as well as cumulative scatter dose from numerous exposures is significantly below natural background radiation. Infants in neighboring isolettes are not at added risk from radiation scatter as long as the isolettes are separated by at least 2 ft. (orig.)

  19. Analysis and characterization. Nuclear resonant scattering with the synchrotron radiation

    International Nuclear Information System (INIS)

    Ruffer, R.; Teillet, J.

    2003-01-01

    The nuclear resonant scattering using the synchrotron radiation combines the uncommon properties of the Moessbauer spectroscopy and those of the synchrotron radiation. Since its first observation in 1984, this technique and its applications have been developed rapidly. The nuclear resonant scattering is now a standard technique for all the synchrotron radiation sources of the third generation. As the Moessbauer spectroscopy, it is a method of analysis at the atomic scale and a non destructive method. It presents the advantage not to require the use of radioactive sources of incident photons which can be difficult to make, of a lifetime which can be short and of an obviously limited intensity. The current applications are the hyperfine spectroscopy and the structural dynamics. In hyperfine spectroscopy, the nuclear resonant scattering can measure the same size than the Moessbauer spectroscopy. Nevertheless, it is superior in the ranges which exploit the specific properties of the synchrotron radiation, such as the very small samples, the monocrystals, the measures under high pressures, the geometry of small angle incidence for surfaces and multilayers. The structural dynamics, in a time scale of the nanosecond to the microsecond can be measured in the temporal scale. Moreover, the nuclear inelastic scattering gives for the first time a tool which allows to have directly the density of states of phonons and then allow to deduce the dynamical and thermodynamical properties of the lattice. The nuclear resonant scattering technique presented here, which corresponds to the Moessbauer spectroscopy technique (SM), is called 'nuclear forward scattering' (NFS). Current applications in physics and chemistry are develop. The NFS is compared to the usual SM technique in order to reveal its advantages and disadvantages. (O.M.)

  20. Coherent scattering of electromagnetic radiation by a polarized particle system

    International Nuclear Information System (INIS)

    Agre, M.Ya.; Rapoport, L.P.

    1996-01-01

    The paper deals with the development of the theory of coherent scattering of electromagnetic waves by a polarized atom or molecular system. Peculiarities of the angular distribution and polarization peculiarities of scattered radiation are discussed

  1. Forward-scattered radiation from the compression paddle should be considered in glandular dose estimations

    International Nuclear Information System (INIS)

    Hemdal, B.

    2011-01-01

    From major protocols on dosimetry in mammography, there is no doubt that the incident air kerma should be evaluated without backscattered radiation to the dosemeter. However, forward-scattered radiation from the compression paddle is neglected. The aim of this work was to analyse the contribution of forward-scattered radiation for typical air kerma measurements. Measurements of forward-scatter were performed with a plane-parallel ionisation chamber on four mammography units. The forward-scatter contribution to the air kerma was 2-10 % and increased with the compression paddle thickness, but also with the half-value layer value. For incident air kerma in mammography, it can be as important to consider forward scattered as backscattered radiation. If an ionisation chamber is used, the compression paddle should be in contact with the chamber; otherwise the air kerma and absorbed dose will be underestimated. If a dosemeter based on semiconductors with much less sensitivity to scattered radiation is used, it is suggested that a forward-scatter factor (FSF) is applied. Based on the results of this work, FSF=1.06 will lead to a maximum error of ∼4 %. (authors)

  2. Electromagnetic radiation and scattering from small canonical structures of double-negative metamaterials

    DEFF Research Database (Denmark)

    Arslanagic, Samel

    2007-01-01

    aspects associated with DNG materials, and was subsequently extended to investigations of the radiation and scattering from two- and three-dimensional (2D and 3D) MTM-based canonical problems in electromagnetic theory. As to the theoretical aspects of DNG materials, the sign, or more generally the branch......, cylindrical and spherical configurations to design electrically small, resonant structures such as cavities, waveguides, scatterers and radiators. These ideas are extended here to canonical antenna and scattering configurations which consist of electrically small resonant cylindrical and spherical MTM......-based structures excited by an arbitrarily located electric line source and an arbitrarily located and oriented electric Hertzian dipole, respectively. Exact analytical solutions, based on eigenfunction series, are derived and then numerically evaluated to study the radiation and scattering from these structures...

  3. Determination of the gamma radiation scattering with geometry changes in the system

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.P.; Xavier, M.; Caldas, L.V.E.

    1988-07-01

    Three different experimental systems were used for the determination of the radiation scattering due to the walls, ceiling and floor of the Calibration Laboratory. The radiation detection was made with a portable ionization chamber Victoreen model Panoramic 470. The measurements were taken with and without the use of a lead shield block between the detector and the radioactive source. The results showed that the scattering contribution increased about 80%, as the distance between detector and source was varied from 1,0 to 2,0 m. Therefore the scattering contribution determination is very important for the establishment of the standard radiation fields for instruments calibration. (author) [pt

  4. Scatter Dose in Patients in Radiation Therapy

    International Nuclear Information System (INIS)

    Schmidt, W. F. O.

    2003-01-01

    Patients undergoing radiation therapy are often treated with high energy radiation (bremsstrahlung) which causes scatter doses in the patients from various sources as photon scatter coming from collimator, gantry, patient, patient table or room (walls, floor, air) or particle doses resulting from gamma-particle reactions in the atomic nucleus if the photon energies are above 8 MeV. In the last years new treatment techniques like IMRT (esp the step-and-shoot- or the MIMIC-techniques) have increased interest in these topics again. In the lecture an overview about recent measurements on scatter doses resulting from gantry, table and room shall be given. Scatter doses resulting from the volume treated in the patient to other critical parts of the body like eyes, ovarii etc. have been measured in two diploma works in our institute and are compared with a program (PERIDOSE; van der Giessen, Netherlands) to estimate them. In some cases these scatter doses have led to changes of treatment modalities. Also an overview and estimation of doses resulting from photon-particle interactions is given according to a publication from Gudowska et al.(Gudowska I, Brahme A, Andreo P, Gudowski W, Kierkegaard J. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV. Phys Med Biol 1999; 44(9):2099-2125.). Energy dose has been calculated with Monte Carlo-methods and is compared with analytical methods for 50 MV bremsstrahlung. From these data biologically effective doses from particles in different depths of the body can be estimated also for energies used in normal radiotherapy. (author)

  5. The simple analytical method for scattered radiation calculation in contrast X-ray diagnostic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, S; Pavlovic, R [Inst. of Nuclear Science Vinca, Belgrade (Yugoslavia). Radiation and Environmental Protection Lab.; Boreli, F [Fac. of Electrical Engineering, Belgrade (Yugoslavia)

    1996-12-31

    In realization of radiation protection measures for medical staff present during diagnostic procedures, the necessary condition is knowledge of the space - energy distributions of the scattered radiation from the patient. In this paper, the simple calculation procedure for the scattered radiation field of the actual diagnostic energies is presented. Starting from the single Compton scattering model and using the justified transformations the final equations in elementary form are derived. For numerical calculations the computer code ANGIO was created. The calculated results were confirmed by detailed dosimetric measurements of the scattered field around patient (the water phantom) in SSDL in the Institute of nuclear sciences `Vinca`, Belgrade. These results are good base for assessment of irradiation. The main irradiation source for the physician and the other members of the medical team is the back scattered radiation from patient - albedo. (author). 3 figs., 3 refs.

  6. Radiation scatter apparatus and method

    International Nuclear Information System (INIS)

    Molbert, J. L.; Riddle, E. R.

    1985-01-01

    A radiation scatter gauge includes multiple detector locations for developing separate and independent sets of data from which multiple physical characteristics of a thin material and underlying substrate may be determined. In an illustrated embodiment, the apparatus and method of the invention are directed to determining characteristics of resurfaced pavement by nondestructive testing. More particularly, the density and thickness of a thin asphalt overlay and the density of the underlying pavement may be determined

  7. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.

    Science.gov (United States)

    Voit, Florian; Hohmann, Ansgar; Schäfer, Jan; Kienle, Alwin

    2012-04-01

    For many research areas in biomedical optics, information about scattering of polarized light in turbid media is of increasing importance. Scattering simulations within this field are mainly performed on the basis of radiative transfer theory. In this study a polarization sensitive Monte Carlo solution of radiative transfer theory is compared to exact Maxwell solutions for all elements of the scattering Müller matrix. Different scatterer volume concentrations are modeled as a multitude of monodisperse nonabsorbing spheres randomly positioned in a cubic simulation volume which is irradiated with monochromatic incident light. For all Müller matrix elements effects due to dependent scattering and multiple scattering are analysed. The results are in overall good agreement between the two methods with deviations related to dependent scattering being prominent for high volume concentrations and high scattering angles.

  8. Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion

    Science.gov (United States)

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Shao, Liyang

    2016-07-01

    The control of electromagnetic waves scattering is critical in wireless communications and stealth technology. Discrete metasurfaces not only increase the design and fabrication complex but also cause difficulties in obtaining simultaneous electric and optical functionality. On the other hand, discontinuous phase profiles fostered by discrete systems inevitably introduce phase noises to the scattering fields. Here we propose the principle of a scattering-harness mechanism by utilizing continuous gradient phase stemming from the spin-orbit interaction via sinusoidal metallic strips. Furthermore, by adjusting the amplitude and period of the sinusoidal metallic strip, the scattering characteristics of the underneath object can be greatly changed and thus result in electromagnetic illusion. The proposal is validated by full-wave simulations and experiment characterization in microwave band. Our approach featured by continuous phase profile, polarization independent performance and facile implementation may find widespread applications in electromagnetic wave manipulation.

  9. Scatter radiation in digital tomosynthesis of the breast

    International Nuclear Information System (INIS)

    Sechopoulos, Ioannis; Suryanarayanan, Sankararaman; Vedantham, Srinivasan; D'Orsi, Carl J.; Karellas, Andrew

    2007-01-01

    Digital tomosynthesis of the breast is being investigated as one possible solution to the problem of tissue superposition present in planar mammography. This imaging technique presents various advantages that would make it a feasible replacement for planar mammography, among them similar, if not lower, radiation glandular dose to the breast; implementation on conventional digital mammography technology via relatively simple modifications; and fast acquisition time. One significant problem that tomosynthesis of the breast must overcome, however, is the reduction of x-ray scatter inclusion in the projection images. In tomosynthesis, due to the projection geometry and radiation dose considerations, the use of an antiscatter grid presents several challenges. Therefore, the use of postacquisition software-based scatter reduction algorithms seems well justified, requiring a comprehensive evaluation of x-ray scatter content in the tomosynthesis projections. This study aims to gain insight into the behavior of x-ray scatter in tomosynthesis by characterizing the scatter point spread functions (PSFs) and the scatter to primary ratio (SPR) maps found in tomosynthesis of the breast. This characterization was performed using Monte Carlo simulations, based on the Geant4 toolkit, that simulate the conditions present in a digital tomosynthesis system, including the simulation of the compressed breast in both the cranio-caudal (CC) and the medio-lateral oblique (MLO) views. The variation of the scatter PSF with varying tomosynthesis projection angle, as well as the effects of varying breast glandular fraction and x-ray spectrum, was analyzed. The behavior of the SPR for different projection angle, breast size, thickness, glandular fraction, and x-ray spectrum was also analyzed, and computer fit equations for the magnitude of the SPR at the center of mass for both the CC and the MLO views were found. Within mammographic energies, the x-ray spectrum was found to have no appreciable

  10. Measuring main-ion temperatures in ASDEX upgrade using scattering of ECRH radiation

    DEFF Research Database (Denmark)

    Pedersen, Morten Stejner; Nielsen, Stefan Kragh; Jacobsen, Asger Schou

    2016-01-01

    We demonstrate that collective Thomson scattering of millimeter wave electron cyclotron resonance heating radiation can be used for measurements of the main-ion temperature in the ASDEX Upgrade tokamak.......We demonstrate that collective Thomson scattering of millimeter wave electron cyclotron resonance heating radiation can be used for measurements of the main-ion temperature in the ASDEX Upgrade tokamak....

  11. Investigations on image improvement in radiodiagnosis under special consideration of reducing scattered radiation

    International Nuclear Information System (INIS)

    Becker, R.

    1976-10-01

    In the study, image improvement is proposed for scintiscanning, X-ray and neutron diagnosis as well as computer axial tomography. In order to reduce the scattered radiation, mainly two-dimensional radiation transport calculations are carried out, and the imaging properties are studied by simulation on a large computer. It was found, among other things, that in contrast to X-ray techniques, in diagnosis with fast neutrons the image quality can hardly be improved by screens for scattered radiation. Here the problem of scattered radiation can only be solved by using scanners with narrow beams. The new method of neutron diagnosis resulting from this is especially suited for representing structures behind bones or for the localization of bone tumors invisible to X-rays, but not for representing fatty tissue. For large depths of irradiation, the scattered radiation with neutron sources below 1 MeV gets so intensive that diagnosis becomes impossible. When fast neutrons are used are used, the method is applicable for computer axial tomography because of the narrow beams. (ORU) [de

  12. Dynamics of globular molecules: moisture effect on the Rayleigh scattering spectrum of the Moessbauer radiation

    International Nuclear Information System (INIS)

    Chesskaya, T.Yu.

    1998-01-01

    The Rayleigh scattering spectrum of the Moessbauer radiation is plotted on the model simulating globular macromolecules. The modeling results are compared with experimental data on the spectra of the Rayleigh scattering of the Moessbauer radiation for various moisture content and hydratation dependence of the elastic scattering portion

  13. Continuing medical education in radiation oncology

    International Nuclear Information System (INIS)

    Chauvet, B.; Barillot, I.; Denis, F.; Cailleux, P.E.; Ardiet, J.M.; Mornex, F.

    2012-01-01

    In France, continuing medical education (CME) and professional practice evaluation (PPE) became mandatory by law in July 2009 for all health professionals. Recently published decrees led to the creation of national specialty councils to implement this organizational device. For radiation oncology, this council includes the French Society for Radiation Oncology (SFRO), the National Radiation Oncology Syndicate (SNRO) and the Association for Continuing Medical Education in Radiation Oncology (AFCOR). The Radiation Oncology National Council will propose a set of programs including CME and PPE, professional thesaurus, labels for CME actions consistent with national requirements, and will organize expertise for public instances. AFCOR remains the primary for CME, but each practitioner can freely choose an organisation for CME, provided that it is certified by the independent scientific commission. The National Order for physicians is the control authority. Radiation oncology has already a strong tradition of independent CME that will continue through this major reform. (authors)

  14. Radiative corrections to deep inelastic muon scattering

    International Nuclear Information System (INIS)

    Akhundov, A.A.; Bardin, D.Yu.; Lohman, W.

    1986-01-01

    A summary is given of the most recent results for the calculaion of radiative corrections to deep inelastic muon-nucleon scattering. Contributions from leptonic electromagnetic processes up to the order a 4 , vacuum polarization by leptons and hadrons, hadronic electromagnetic processes approximately a 3 and γZ interference have been taken into account. The dependence of the individual contributions on kinematical variables is studied. Contributions, not considered in earlier calculations of radiative corrections, reach in certain kinematical regions several per cent at energies above 100 GeV

  15. Monte Carlo calculation of scattered radiation from applicators in low energy clinical electron beams

    International Nuclear Information System (INIS)

    Jabbari, N.; Hashemi-Malayeri, B.; Farajollahi, A. R.; Kazemnejad, A.

    2007-01-01

    In radiotherapy with electron beams, scattered radiation from an electron applicator influences the dose distribution in the patient. The contribution of this radiation to the patient dose is significant, even in modern accelerators. In most of radiotherapy treatment planning systems, this component is not explicitly included. In addition, the scattered radiation produced by applicators varies based on the applicator design as well as the field size and distance from the applicators. The aim of this study was to calculate the amount of scattered dose contribution from applicators. We also tried to provide an extensive set of calculated data that could be used as input or benchmark data for advanced treatment planning systems that use Monte Carlo algorithms for dose distribution calculations. Electron beams produced by a NEPTUN 10PC medical linac were modeled using the BEAMnrc system. Central axis depth dose curves of the electron beams were measured and calculated, with and without the applicators in place, for different field sizes and energies. The scattered radiation from the applicators was determined by subtracting the central axis depth dose curves obtained without the applicators from that with the applicator. The results of this study indicated that the scattered radiation from the electron applicators of the NEPTUN 10PC is significant and cannot be neglected in advanced treatment planning systems. Furthermore, our results showed that the scattered radiation depends on the field size and decreases almost linearly with depth. (author)

  16. Calculation of the Scattered Radiation Profile in 64 Slice CT Scanners Using Experimental Measurement

    Directory of Open Access Journals (Sweden)

    Afshin Akbarzadeh

    2009-06-01

    Full Text Available Introduction: One of the most important parameters in x-ray CT imaging is the noise induced by detected scattered radiation. The detected scattered radiation is completely dependent on the scanner geometry as well as size, shape and material of the scanned object. The magnitude and spatial distribution of the scattered radiation in x-ray CT should be quantified for development of robust scatter correction techniques. Empirical methods based on blocking the primary photons in a small region are not able to extract scatter in all elements of the detector array while the scatter profile is required for a scatter correction procedure. In this study, we measured scatter profiles in 64 slice CT scanners using a new experimental measurement. Material and Methods: To measure the scatter profile, a lead block array was inserted under the collimator and the phantom was exposed at the isocenter. The raw data file, which contained detector array readouts, was transferred to a PC and was read using a dedicated GUI running under MatLab 7.5. The scatter profile was extracted by interpolating the shadowed area. Results: The scatter and SPR profiles were measured. Increasing the tube voltage from 80 to 140 kVp resulted in an 80% fall off in SPR for a water phantom (d=210 mm and 86% for a polypropylene phantom (d = 350 mm. Increasing the air gap to 20.9 cm caused a 30% decrease in SPR. Conclusion: In this study, we presented a novel approach for measurement of scattered radiation distribution and SPR in a CT scanner with 64-slice capability using a lead block array. The method can also be used on other multi-slice CT scanners. The proposed technique can accurately estimate scatter profiles. It is relatively straightforward, easy to use, and can be used for any related measurement.

  17. Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions

    International Nuclear Information System (INIS)

    Tarvainen, Tanja; Vauhkonen, Marko; Kolehmainen, Ville; Arridge, Simon R; Kaipio, Jari P

    2005-01-01

    In this paper, a coupled radiative transfer equation and diffusion approximation model is extended for light propagation in turbid medium with low-scattering and non-scattering regions. The light propagation is modelled with the radiative transfer equation in sub-domains in which the assumptions of the diffusion approximation are not valid. The diffusion approximation is used elsewhere in the domain. The two equations are coupled through their boundary conditions and they are solved simultaneously using the finite element method. The streamline diffusion modification is used to avoid the ray-effect problem in the finite element solution of the radiative transfer equation. The proposed method is tested with simulations. The results of the coupled model are compared with the finite element solutions of the radiative transfer equation and the diffusion approximation and with results of Monte Carlo simulation. The results show that the coupled model can be used to describe photon migration in turbid medium with low-scattering and non-scattering regions more accurately than the conventional diffusion model

  18. THREE-DIMENSIONAL RADIATIVE TRANSFER MODELING OF THE POLARIZATION OF THE SUN'S CONTINUOUS SPECTRUM

    International Nuclear Information System (INIS)

    Bueno, Javier Trujillo; Shchukina, Nataliya

    2009-01-01

    Polarized light provides the most reliable source of information at our disposal for diagnosing the physical properties of astrophysical plasmas, including the three-dimensional (3D) structure of the solar atmosphere. Here we formulate and solve the 3D radiative transfer problem of the linear polarization of the solar continuous radiation, which is principally produced by Rayleigh and Thomson scattering. Our approach takes into account not only the anisotropy of the solar continuum radiation but also the symmetry-breaking effects caused by the horizontal atmospheric inhomogeneities produced by the solar surface convection. We show that such symmetry-breaking effects do produce observable signatures in Q/I and U/I, even at the very center of the solar disk where we observe the forward scattering case, but their detection would require obtaining very high resolution linear polarization images of the solar surface. Without spatial and/or temporal resolution U/I ∼ 0 and the only observable quantity is Q/I, whose wavelength variation at a solar disk position close to the limb has been recently determined semi-empirically. Interestingly, our 3D radiative transfer modeling of the polarization of the Sun's continuous spectrum in a well-known 3D hydrodynamical model of the solar photosphere shows remarkable agreement with the semi-empirical determination, significantly better than that obtained via the use of one-dimensional (1D) atmospheric models. Although this result confirms that the above-mentioned 3D model was indeed a suitable choice for our Hanle-effect estimation of the substantial amount of 'hidden' magnetic energy that is stored in the quiet solar photosphere, we have found however some small discrepancies whose origin may be due to uncertainties in the semi-empirical data and/or in the thermal and density structure of the 3D model. For this reason, we have paid some attention also to other (more familiar) observables, like the center-limb variation of the

  19. UV Irradiance Enhancements by Scattering of Solar Radiation from Clouds

    Directory of Open Access Journals (Sweden)

    Uwe Feister

    2015-08-01

    Full Text Available Scattering of solar radiation by clouds can reduce or enhance solar global irradiance compared to cloudless-sky irradiance at the Earth’s surface. Cloud effects to global irradiance can be described by Cloud Modification Factors (CMF. Depending on strength and duration, irradiance enhancements affect the energy balance of the surface and gain of solar power for electric energy generation. In the ultraviolet region, they increase the risk for damage to living organisms. Wavelength-dependent CMFs have been shown to reach 1.5 even in the UV-B region at low altitudes. Ground-based solar radiation measurements in the high Andes region at altitudes up to 5917 m a.s.l showed cloud-induced irradiance enhancements. While UV-A enhancements were explained by cloud scattering, both radiation scattering from clouds and Negative Ozone Anomalies (NOA have been discussed to have caused short-time enhancement of UV-B irradiance. Based on scenarios using published CMF and additional spectroradiometric measurements at a low-altitude site, the contribution of cloud scattering to the UV-B irradiance enhancement in the Andes region has been estimated. The range of UV index estimates converted from measured UV-B and UV-A irradiance and modeled cloudless-sky ratios UV-B/erythemal UV is compatible with an earlier estimate of an extreme UV index value of 43 derived for the high Andes.

  20. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    International Nuclear Information System (INIS)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Mueller, P.; Ulm, G.

    2009-01-01

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  1. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    Science.gov (United States)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Müller, P.; Ulm, G.

    2009-09-01

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  2. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Krumrey, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)], E-mail: Michael.Krumrey@ptb.de; Cibik, L.; Mueller, P.; Ulm, G. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2009-09-11

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  3. Experiment on direct nn scattering - The radiation-induced outgassing complication

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, S.L., E-mail: sstephen@gettysburg.edu [Gettysburg College, Gettysburg, PA 17325 (United States); Crawford, B.E. [Gettysburg College, Gettysburg, PA 17325 (United States); Furman, W.I.; Lychagin, E.V.; Muzichka, A.Yu.; Nekhaev, G.V.; Sharapov, E.I.; Shvetsov, V.N.; Strelkov, A.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Levakov, B.G.; Lyzhin, A.E.; Chernukhin, Yu.I. [Russian Federal Nuclear Center - All Russian Research Institute of Technical Physics, P.O. Box 245, 456770 Snezhinsk (Russian Federation); Howell, C.R. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G.E. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Showalter-Bucher, R.A. [Northeastern University, Boston, MA 02115 (United States)

    2012-12-01

    The first direct neutron-neutron scattering experiment using the YAGUAR pulsed reactor has yielded initial results. They show a unforeseen significant thermal neutron background as a result of radiation-induced desorption within the scattering chamber. Thermal neutrons are mostly scattering not from other neutrons but instead from the desorbed gas molecules. Analysis of the obtained neutron time-of-flight spectra suggests neutron scattering from H{sub 2} molecules. The presented desorption model agrees with our experimental value of the desorption yield {eta}{sub {gamma}}=0.02 molecules/gamma. Possible techniques to reduce the effect of the desorption background are presented.

  4. Structural-electrical coupling optimisation for radiating and scattering performances of active phased array antenna

    Science.gov (United States)

    Wang, Congsi; Wang, Yan; Wang, Zhihai; Wang, Meng; Yuan, Shuai; Wang, Weifeng

    2018-04-01

    It is well known that calculating and reducing of radar cross section (RCS) of the active phased array antenna (APAA) are both difficult and complicated. It remains unresolved to balance the performance of the radiating and scattering when the RCS is reduced. Therefore, this paper develops a structure and scattering array factor coupling model of APAA based on the phase errors of radiated elements generated by structural distortion and installation error of the array. To obtain the optimal radiating and scattering performance, an integrated optimisation model is built to optimise the installation height of all the radiated elements in normal direction of the array, in which the particle swarm optimisation method is adopted and the gain loss and scattering array factor are selected as the fitness function. The simulation indicates that the proposed coupling model and integrated optimisation method can effectively decrease the RCS and that the necessary radiating performance can be simultaneously guaranteed, which demonstrate an important application value in engineering design and structural evaluation of APAA.

  5. Determination of the scattered radiation at the Neutron Calibration Laboratory of IPEN, SP, Brazil

    International Nuclear Information System (INIS)

    Alvarenga, Tallyson; Valeriano, Caio C.S.; Caldas, Linda V.E.; Federico, Claudio A.

    2016-01-01

    With the increased use of techniques using neutron radiation, there has been a considerable growth in the number of detectors for this kind of radiation. A neutron calibration laboratory with neutron radiation ("2"4"1AmBe) was designed. In practical situations of this type of laboratory, one of the main problems is related to the knowledge of scattered radiation. In order to evaluate this scattered radiation, simulations were carried out without the presence of structural elements and with the complete room. Fourteen measuring points were evaluated in different directions at various distances. (author)

  6. Understanding the scatter radiation distribution during C-arm CT examination. A body phantom study

    International Nuclear Information System (INIS)

    Norimasa, Toshiyo; Kakimi, Akihiko; Takao, Yoshinori; Sasaki, Shohei; Katayama, Yutaka; Himoto, Daisuke; Izuta, Shinichiro; Ichida, Takao

    2016-01-01

    The purpose of this study was to understand the scatter radiation distribution during C-arm CT examination in the interventional radiography (IVR) room to show the escaped area and the radiation protective method. The C-arm rotates 200deg in 5 s. The tube voltage was 90 kV, and the entrance dose to the detector was 0.36 μGy/frame during C-arm CT examination. The scattered doses were measured each 50 cm from the isocenter like a grid pattern. The heights of the measurement were 50, 100, and 150 cm from the floor. The maximum scattered doses were 38.23 ± 0.60 μGy at 50 cm, 43.86 ± 20 μGy at 100 cm, and 25.78 ± 0.37 μGy at 150 cm. The scatter radiation distribution at 100 cm was the highest scattered dose. The operator should protect their reproductive gland, thyroid, and lens. The scattered dose was low behind the C-arm body and the bed, so they will be able to become the escaped area for staff. (author)

  7. Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings

    Science.gov (United States)

    Chen, X. W.; Zhao, C. Y.; Wang, B. X.

    2018-05-01

    Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.

  8. Effects of scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmakov, D.

    1983-01-01

    Expansion of the scattering cross sections into Legendre series is the usual way of solving neutron transport problems. Because of the large space gradients of the neutron flux, the effects of that approximation become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account the scattering anisotropy is presented. From the point od view of the accuracy and computing rate, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations. (author)

  9. Scattered radiation from applicators in clinical electron beams.

    NARCIS (Netherlands)

    Battum, L.J. van; Zee, W. van der; Huizenga, H.

    2003-01-01

    In radiotherapy with high-energy (4-25 MeV) electron beams, scattered radiation from the electron applicator influences the dose distribution in the patient. In most currently available treatment planning systems for radiotherapy this component is not explicitly included and handled only by a slight

  10. Bound states embedded into continuous spectrum as 'gathered' (compactified) scattering waves

    International Nuclear Information System (INIS)

    Zakhar'ev, B.N.; Chabanov, V.M.

    1995-01-01

    It is shown that states of continuous spectrum (the half-line case) can be considered as bound states normalized by unity but distributed on the infinite interval with vanishing density. Then the algorithms of shifting the range of primary localization of a chosen bound state in potential well of finite width appear to be applicable to scattering functions. The potential perturbations of the same type (but now on half-axis) concentrate the scattering wave in near vicinity of the origin, which leads to creation of bound state embedded into continuous spectrum. (author). 8 refs., 7 figs

  11. Influence of X-ray scatter radiation on image quality in Digital Breast Tomosynthesis (DBT)

    International Nuclear Information System (INIS)

    Rodrigues, M.J.; Di Maria, S.; Baptista, M.; Belchior, A.; Afonso, J.; Venâncio, J.; Vaz, P.

    2017-01-01

    Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging technique that was developed to solve the principal limitation of mammography, namely the overlapping tissue effect. This issue in standard mammography (SM) leads to two main problems: low sensitivity (difficulty to detect lesions) and low specificity (non-negligible percentage of false positives). Although DBT is now being introduced in clinical practice the features of this technique have not yet been fully and accurately assessed. Consequently, optimization studies in terms of choosing the most suitable parameters which maximize image quality according to the known limits of breast dosimetry are currently performing. In DBT, scatter radiation can lead to a loss of contrast and to an increase of image noise by reducing the signal-to-difference-noise ratio (SDNR) of a lesion. Moreover the use of an anti-scatter grid is a concern due to the low exposure of the photon flux available per projection. For this reason the main aim of this study was to analyze the influence of the scatter radiation on image quality and the dose delivered to the breast. In particular a detailed analysis of the scatter radiation on the optimal energy that maximizes the SDNR was performed for different monochromatic energies and voltages. To reach this objective the PenEasy Monte Carlo (MC) simulation tool imbedded in the general-purpose main program PENELOPE, was used. After a successful validation of the MC model with measurements, 2D projection images of primary, coherent and incoherent photons were obtained. For that, a homogeneous breast phantom (2, 4, 6, 8 cm) with 25%, 50% and 75% glandular compositions was used, including a 5 mm thick tumor. The images were generated for each monochromatic X-ray energies in the range from 16 keV to 32 keV. For each angular projection considered (25 angular projections covering an arc of 50°) the scatter-to-primary ratio (SPR), the mean glandular dose (MGD) and the signal

  12. Anisotropic scattering in three dimensional differential approximation of radiation heat transfer

    International Nuclear Information System (INIS)

    Condiff, D.W.

    1987-01-01

    The differential approximation is extended to account for anisotropic scattering in invariant three dimensional form. A moment method using polyadic Legendre functions establishes that pressure cross sections should take precedence over extinction cross sections for treating radiation heat transfer in an absorbing, emitting, and scattering medium, and that use of these cross sections accounts for the extent of preferred forward or backwards scattering. The procedure and principle is extended to polyadic P-N approximations

  13. Polarized scattered light from self-luminous exoplanets. Three-dimensional scattering radiative transfer with ARTES

    Science.gov (United States)

    Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.

    2017-11-01

    Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron

  14. Hyper-Rayleigh scattering and hyper-Raman scattering of dye-adsorbed silver nanoparticles induced by a focused continuous-wave near-infrared laser

    International Nuclear Information System (INIS)

    Itoh, Tamitake; Ozaki, Yukihiro; Yoshikawa, Hiroyuki; Ihama, Takashi; Masuhara, Hiroshi

    2006-01-01

    We report that hyper-Rayleigh scattering, surface-enhanced hyper-Raman scattering, and two-photon excited luminescence occur intermittently by focusing a continuous-wave near-infrared (cw-NIR) laser into a colloidal silver solution including rhodamine 6G (R6G) and sodium chloride (NaCl). On the other hand, continuous hyper-Rayleigh scattering is observed from colloidal silver free from R6G and NaCl, demonstrating that hyper-Raman scattering and two-photon excited luminescence are attributed to R6G and their intermittent features are dependent on the colloidal dispersion. These results suggest that the cw-NIR laser has three roles; the source of the nonlinear response, optical trapping of nanoparticles, and making nanoparticle aggregates possessing the high activity for the nonlinear response

  15. Multiple scattering theory of radiative transfer in inhomogeneous atmospheres.

    Science.gov (United States)

    Kanal, M.

    1973-01-01

    In this paper we treat the multiple scattering theory of radiative transfer in plane-parallel inhomogeneous atmospheres. The treatment presented here may be adopted to model atmospheres characterized by an optical depth dependent coherent scattering phase function. For the purpose of illustration we consider the semi-infinite medium in which the absorption property of the atmosphere is characterized by an exponential function. The methodology employed here is the extension of the case treated previously by the author for homogeneous atmospheres.

  16. Radiative transfer equation accounting for rotational Raman scattering and its solution by the discrete-ordinates method

    International Nuclear Information System (INIS)

    Rozanov, Vladimir V.; Vountas, Marco

    2014-01-01

    Rotational Raman scattering of solar light in Earth's atmosphere leads to the filling-in of Fraunhofer and telluric lines observed in the reflected spectrum. The phenomenological derivation of the inelastic radiative transfer equation including rotational Raman scattering is presented. The different forms of the approximate radiative transfer equation with first-order rotational Raman scattering terms are obtained employing the Cabannes, Rayleigh, and Cabannes–Rayleigh scattering models. The solution of these equations is considered in the framework of the discrete-ordinates method using rigorous and approximate approaches to derive particular integrals. An alternative forward-adjoint technique is suggested as well. A detailed description of the model including the exact spectral matching and a binning scheme that significantly speeds up the calculations is given. The considered solution techniques are implemented in the radiative transfer software package SCIATRAN and a specified benchmark setup is presented to enable readers to compare with own results transparently. -- Highlights: • We derived the radiative transfer equation accounting for rotational Raman scattering. • Different approximate radiative transfer approaches with first order scattering were used. • Rigorous and approximate approaches are shown to derive particular integrals. • An alternative forward-adjoint technique is suggested as well. • An additional spectral binning scheme which speeds up the calculations is presented

  17. Application of the 2-D discrete-ordinates method to multiple scattering of laser radiation

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.; Embury, J.F.

    1983-01-01

    The discrete-ordinates finite-element radiation transport code twotran is applied to describe the multiple scattering of a laser beam from a reflecting target. For a model scenario involving a 99% relative humidity rural aerosol we compute the average intensity of the scattered radiation and correction factors to the Beer-Lambert law arising from multiple scattering. As our results indicate, 2-D x-y and r-z geometry modeling can reliably describe a realistic 3-D scenario. Specific results are presented for the two visual ranges of 1.52 and 0.76 km which show that, for sufficiently high aerosol concentrations (e.g., equivalent to V = 0.76 km), the target signature in a distant detector becomes dominated by multiply scattered radiation from interactions of the laser light with the aerosol environment. The merits of the scaling group and the delta-M approximation for the transfer equation are also explored

  18. Effects of radiation scatter exposure on electrometer dose assessment in orthovoltage radiotherapy

    International Nuclear Information System (INIS)

    Butson, Martin J.; Yu, Peter K.N.; Cheung, Tsang; Oborn, B.M.

    2011-01-01

    During orthovoltage x-ray radiotherapy dosimetry, normal practice requires the use of a standard ionisation chamber and dedicated electrometer for dosimetry. In ideal conditions, the electrometer is positioned outside the treatment room to eliminate any effects from scatter radiation on dose measurement. However in some older designed rooms, there is no access portal for the chamber cable to run to an 'outside' position for the electrometer. As such the electrometer is positioned within the treatment room. This work quantifies the effects on measured charge when this occurs. Results have shown that with the electrometer positioned next to a solid water dosimetry stack and using a large 15 x 15 cm field at 250 kVp x-ray beam energy, charge results can deviate by up to ±17.2% depending on the polarity applied to the chamber compared to readings when the electrometer is outside the treatment room. It is assumed to be due to scatter radiation producing electrons in the amplifying circuit of the electrometer. Results are also shown when the electrometer is shielded by a 4 mm thick lead casing whilst inside the room which removes the scattering effect, providing the best case scenario when the electrometer must remain in the treatment room. Whilst it is well known that an electrometer should not be irradiated (even to scattered radiation), often small kilovoltage or orthovoltage rooms do not have a portal access for an electrometer to go outside. As such it would be recommended for a lead shield to be placed around the electrometer during irradiation if this was to occur to minimize dosimetric inaccuracies which may occur due to scattered radiation effects.

  19. Scattered radiation from dental metallic crowns in head and neck radiotherapy.

    Science.gov (United States)

    Shimozato, T; Igarashi, Y; Itoh, Y; Yamamoto, N; Okudaira, K; Tabushi, K; Obata, Y; Komori, M; Naganawa, S; Ueda, M

    2011-09-07

    We aimed to estimate the scattered radiation from dental metallic crowns during head and neck radiotherapy by irradiating a jaw phantom with external photon beams. The phantom was composed of a dental metallic plate and hydroxyapatite embedded in polymethyl methacrylate. We used radiochromic film measurement and Monte Carlo simulation to calculate the radiation dose and dose distribution inside the phantom. To estimate dose variations in scattered radiation under different clinical situations, we altered the incident energy, field size, plate thickness, plate depth and plate material. The simulation results indicated that the dose at the incident side of the metallic dental plate was approximately 140% of that without the plate. The differences between dose distributions calculated with the radiation treatment-planning system (TPS) algorithms and the data simulation, except around the dental metallic plate, were 3% for a 4 MV photon beam. Therefore, we should carefully consider the dose distribution around dental metallic crowns determined by a TPS.

  20. Astrophysical applications of Delbrück scattering: Dust scattered gamma radiation from gamma ray bursts

    International Nuclear Information System (INIS)

    Kunwar, B.; Bhadra, A.; Gupta, S.K. Sen

    2014-01-01

    A preliminary, and perhaps the first, study of astrophysical applications of Delbrück scattering in a gamma-ray emitting celestial object like a gamma-ray burst (GRB) has been made. At energies≥100 MeV the elastic scattering of gamma-ray photons off the molecular dust surrounding the GRB site is dominated by Delbrück scattering. Expressions for Delbrück-scattered gamma-ray flux as a function of time has been obtained for a few selected energies by assuming a simple model of GRB. These are compared with Compton-scattered flux. At certain situations, interestingly, the former is found to exceed the latter for the first few milliseconds of the burst. The issue of detectability of Delbrück-scattered gamma-ray echo from the cloud of a GRB is discussed. Although it is observed that the detection of such an echo is not within the capability of the presently operating gamma-ray missions such as Fermi LAT, a rough estimate shows that one can be optimistic that future generation gamma-ray telescopes might be able to see such photons' contribution to the total flux. - Highlights: ► Astrophysical application of Delbrück scattering in a GRB has been made. ► Initially, the Delbrück scattering may dominate the scattering of GeV γ-rays. ► The issue of detectability of such radiations is discussed

  1. Evaluating the scattered radiation intensity in CBCT

    Science.gov (United States)

    Gonçalves, O. D.; Boldt, S.; Nadaes, M.; Devito, K. L.

    2018-03-01

    In this work we calculate the ratio between scattered and transmitted photons (STRR) by a water cylinder reaching a detector matrix element (DME) in a flat array of detectors, similar to the used in cone beam tomography (CBCT), as a function of the field of view (FOV) and the irradiated volume of the scanned object. We perform the calculation by obtaining an equation to determine the scattered and transmitted radiation and building a computer code in order to calculate the contribution of all voxels of the sample. We compare calculated results with the shades of gray in a central slice of a tomography obtained from a cylindrical glass container filled with distilled water. The tomography was performed with an I-CAT tomograph (Imaging Science International), from the Department of Dental Clinic - Oral Radiology, Universidade Federal de Juiz de Fora. The shade of gray (voxel gray value - VGV) was obtained using the software provided with the I-CAT. The experimental results show a general behavior compatible with theoretical previsions attesting the validity of the method used to calculate the scattering contributions from simple scattering theories in cone beam tomography. The results also attest to the impossibility of obtaining Hounsfield values from a CBCT.

  2. Radiative heat transfer in strongly forward scattering media using the discrete ordinates method

    Science.gov (United States)

    Granate, Pedro; Coelho, Pedro J.; Roger, Maxime

    2016-03-01

    The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta

  3. Scattering and Diffraction of Electromagnetic Radiation: An Effective Probe to Material Structure

    Science.gov (United States)

    Xu, Yu-Lin

    2016-01-01

    Scattered electromagnetic waves from material bodies of different forms contain, in an intricate way, precise information on the intrinsic, geometrical and physical properties of the objects. Scattering theories, ever deepening, aim to provide dependable interpretation and prediction to the complicated interaction of electromagnetic radiation with matter. There are well-established multiple-scattering formulations based on classical electromagnetic theories. An example is the Generalized Multi-particle Mie-solution (GMM), which has recently been extended to a special version ? the GMM-PA approach, applicable to finite periodic arrays consisting of a huge number (e.g., >>106) of identical scattering centers [1]. The framework of the GMM-PA is nearly complete. When the size of the constituent unit scatterers becomes considerably small in comparison with incident wavelength, an appropriate array of such small element volumes may well be a satisfactory representation of a material entity having an arbitrary structure. X-ray diffraction is a powerful characterization tool used in a variety of scientific and technical fields, including material science. A diffraction pattern is nothing more than the spatial distribution of scattered intensity, determined by the distribution of scattering matter by way of its Fourier transform [1]. Since all linear dimensions entered into Maxwell's equations are normalized by wavelength, an analogy exists between optical and X-ray diffraction patterns. A large set of optical diffraction patterns experimentally obtained can be found in the literature [e.g., 2,3]. Theoretical results from the GMM-PA have been scrutinized using a large collection of publically accessible, experimentally obtained Fraunhofer diffraction patterns. As far as characteristic structures of the patterns are concerned, theoretical and experimental results are in uniform agreement; no exception has been found so far. Closely connected with the spatial distribution of

  4. Compton scattering and electron-atom scattering in an elliptically polarized laser field of relativistic radiation power

    International Nuclear Information System (INIS)

    Panek, P.; Kaminski, J.Z.; Ehlotzky, F.

    2003-01-01

    Presently available laser sources can yield powers for which the ponderomotive energy of an electron U p can be equal to or even larger than the rest energy mc 2 of an electron. Therefore it has become of interest to consider fundamental radiation-induced or assisted processes in such powerful laser fields. In the present work we consider laser-induced Compton scattering and laser-assisted electron atom scattering in such fields, assuming that the laser beam has arbitrary elliptic polarization. We investigate in detail the angular and polarisation dependence of the differential cross-sections of the two laser-induced or laser-assisted nonlinear processes as a function of the order N of absorbed or emitted laser photons ω. The present work is a generalization of our previous analysis of Compton scattering and electron-atom scattering in a linearly polarized laser field. (authors)

  5. Research of synchrotron radiation by virtual photon and compton scattering

    International Nuclear Information System (INIS)

    Meng Xianzhu

    2005-01-01

    This paper presents a new theory to explain the synchrotron radiation. When charged particle does circular motion in the accelerator, the magnetic field of the accelerator can be taken as periodic, and equivalent to virtual photon. By Compton scattering of virtual photon and charged particle, the virtual photon can be transformed into photon to radiate out. According to this theory, the formula of photon wavelength in synchrotron radiation is found out, and the calculation results of wavelength is consonant with experimental data. (author)

  6. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-04-30

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  7. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    International Nuclear Information System (INIS)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-01-01

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the ∼10 3 - 5×10 4 W cm -2 range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  8. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    Science.gov (United States)

    Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Solomakhin, V. B.

    2012-04-01

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the ~103 — 5×104 W cm-2 range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene — ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  9. Leakage and scattered radiation from hand-held dental x-ray unit

    International Nuclear Information System (INIS)

    Kim, Eun Kyung

    2007-01-01

    To compare the leakage and scattered radiation from hand-held dental X-ray unit with radiation from fixed dental X-ray unit. For evaluation we used one hand-held dental X-ray unit and Oramatic 558 (Trophy Radiologie, France), a fixed dental X-ray unit. Doses were measured with Unfors Multi-O-Meter 512L at the right and left hand levels of X-ray tube head part for the scattered and leakage radiation when human skull DXTTR ΙΙΙ was exposed to both dental X-ray units. And for the leakage radiation only, doses were measured at the immediately right, left, superior and posterior side of the tube head part when air was exposed. Exposure parameters of hand-held dental X-ray unit were 70 kVp, 3 mA , 0.1 second, and of fixed X-ray unit 70 kVp, 8 mA, 0.45 second. The mean dose at the hand level when human skull DXTTR ΙΙΙ was exposed with portable X-ray unit 6.39 μGy, and the mean dose with fixed X-ray unit 3.03 μGy (p<0.001). The mean dose at the immediate side of the tube head part when air was exposed with portable X-ray unit was 2.97 μGy and with fixed X-ray unit the mean dose was 0.68 μGy (p<0.01). The leakage and scattered radiation from hand-held dental radiography was greater than from fixed dental radiography

  10. Leakage and scattered radiation from hand-held dental x-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2007-06-15

    To compare the leakage and scattered radiation from hand-held dental X-ray unit with radiation from fixed dental X-ray unit. For evaluation we used one hand-held dental X-ray unit and Oramatic 558 (Trophy Radiologie, France), a fixed dental X-ray unit. Doses were measured with Unfors Multi-O-Meter 512L at the right and left hand levels of X-ray tube head part for the scattered and leakage radiation when human skull DXTTR {iota}{iota}{iota} was exposed to both dental X-ray units. And for the leakage radiation only, doses were measured at the immediately right, left, superior and posterior side of the tube head part when air was exposed. Exposure parameters of hand-held dental X-ray unit were 70 kVp, 3 mA , 0.1 second, and of fixed X-ray unit 70 kVp, 8 mA, 0.45 second. The mean dose at the hand level when human skull DXTTR {iota}{iota}{iota} was exposed with portable X-ray unit 6.39 {mu}Gy, and the mean dose with fixed X-ray unit 3.03 {mu}Gy (p<0.001). The mean dose at the immediate side of the tube head part when air was exposed with portable X-ray unit was 2.97 {mu}Gy and with fixed X-ray unit the mean dose was 0.68 {mu}Gy (p<0.01). The leakage and scattered radiation from hand-held dental radiography was greater than from fixed dental radiography.

  11. Non-Directional Radiation Spread Modeling and Non-Invasive Estimating the Radiation Scattering and Absorption Parameters in Biological Tissue

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2015-01-01

    Full Text Available The article dwells on a development of new non-invasive measurement methods of optical parameters of biological tissues, which are responsible for the scattering and absorption of monochromatic radiation. It is known from the theory of radiation transfer [1] that for strongly scattering media, to which many biological tissues pertain, such parameters are parameters of diffusion approximation, as well as a scattering coefficient and an anisotropy parameter.Based on statistical modeling the paper examines a spread of non-directional radiation from a Lambert light beam with the natural polarization that illuminates a surface of the biological tissue. Statistical modeling is based on the Monte Carlo method [2]. Thus, to have the correct energy coefficient values of Fresnel reflection and transmission in simulation of such radiation by Monte Carlo method the author uses his finding that is a function of the statistical representation for the incidence of model photons [3]. The paper describes in detail a principle of fixing the power transmitted by the non-directional radiation into biological tissue [3], and the equations of a power balance in this case.Further, the paper describes the diffusion approximation of a radiation transfer theory, often used in simulation of radiation propagation in strongly scattering media and shows its application in case of fixing the power transmitted into the tissue. Thus, to represent an uneven power distribution is used an approximating expression in conditions of fixing a total input power. The paper reveals behavior peculiarities of solution on the surface of the biological tissue inside and outside of the incident beam. It is shown that the solution in the region outside of the incident beam (especially far away from it, essentially, depends neither on the particular power distribution across the surface, being a part of the tissue, nor on the refractive index of the biological tissue. It is determined only by

  12. Analysis by absorption and scattering of radiation. A current bibliography

    International Nuclear Information System (INIS)

    Bujdoso, E.

    2002-01-01

    A current bibliography with 100 references based on INIS Atomindex has been compiled on Analysis by absorption and scattering of radiation for years 1998-1999. References are arranged by first author's names. (N.T.)

  13. Calculation and Measurement of Low-Energy Radiative Moller Scattering

    Science.gov (United States)

    Epstein, Charles; DarkLight Collaboration

    2017-09-01

    A number of current nuclear physics experiments have come to rely on precise knowledge of electron-electron (Moller) and positron-electron (Bhabha) scattering. Some of these experiments, having lepton beams on targets containing atomic electrons, use these purely-QED processes as normalization. In other scenarios, with electron beams at low energy and very high intensity, Moller scattering and radiative Moller scattering have such enormous cross-sections that the backgrounds they produce must be understood. In this low-energy regime, the electron mass is also not negligible in the calculation of the cross section. This is important, for example, in the DarkLight experiment (100 MeV). As a result, we have developed a new event generator for the radiative Moller and Bhabha processes, with new calculations that keep all terms of the electron mass. The MIT High Voltage Research Laboratory provides us a unique opportunity to study this process experimentally and compare it with our work, at a low beam energy of 2.5 MeV where the effects of the electron mass are significant. We are preparing a dedicated apparatus consisting of a magnetic spectrometer in order to directly measure this process. An overview of the calculation and the status of the experiment will be presented.

  14. Scattering and radiative properties of semi-external versus external mixtures of different aerosol types

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Liu Li; Travis, Larry D.; Lacis, Andrew A.

    2004-01-01

    The superposition T-matrix method is used to compute the scattering of unpolarized light by semi-external aerosol mixtures in the form of polydisperse, randomly oriented two-particle clusters with touching components. The results are compared with those for composition-equivalent external aerosol mixtures, in which the components are widely separated and scatter light in isolation from each other. It is concluded that aggregation is likely to have a relatively weak effect on scattering and radiative properties of two-component tropospheric aerosols and can be replaced by the much simpler external-mixture model in remote sensing studies and atmospheric radiation balance computations

  15. Effects of the scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmarkov, D.

    1983-01-01

    Expansion of the scattering cross-sections into Legendre series is the usual way of solving the neutron transport problem. Because of the large space gradients of the neutron flux, the effects of that approximations become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account scattering anisotropy is presented. From the point of view of the accuracy and computing speed, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations (author) [sr

  16. Coherent scattering of CO2 light from ion-acoustic waves

    International Nuclear Information System (INIS)

    Peratt, A.L.; Watterson, R.L.; Derfler, H.

    1977-01-01

    Scattering of laser radiation from ion-acoustic waves in a plasma is investigated analytically and experimentally. The formulation predicts a coherent component of the scattered power on a largely incoherent background spectrum when the acoustic analog of Bragg's law and Doppler shift conditions are satisfied. The experiment consists of a hybrid CO 2 laser system capable of either low power continuous wave or high power pulsed mode operation. A heterodyne light mixing scheme is used to detect the scattered power. The proportionality predicted by the theory is verified by scattering from externally excited acoustic and ion-acoustic waves; continuous wave and pulsed modes in each case. Measurement of the ion-acoustic dispersion relation by continuous wave scattering is also presented

  17. Multiple Scattering of Gamma Radiation in a Spherical Concrete Wall Room

    Energy Technology Data Exchange (ETDEWEB)

    Leimdoerfer, M

    1962-12-15

    The Monte Carlo method has been applied for the calculation of the energy flux of scattered gamma radiation in a spherical room surrounded by an infinitely thick spherical wall and with a point source at the centre. Source energies were I, 2, 4, 6, and 10 MeV. The main investigation was carried out at a room radius of 500 cm but, for the 1 MeV source, the influence of varying the room radius down to 1 cm was analysed. The results contain energy distributions of the first four successive reflection components at the centre of the room and at the wall surface, as well as spatial distributions of the successive energy flux components. The neglect of reflection contributions of order five and higher was estimated to introduce an error of less than 0. 2 % of the total scattered energy flux. An analytical approximation is shown to produce a useful and easily applicable method of predicting the amount of scattered radiation in a spherical room.

  18. Multiple Scattering of Gamma Radiation in a Spherical Concrete Wall Room

    International Nuclear Information System (INIS)

    Leimdoerfer, M.

    1962-12-01

    The Monte Carlo method has been applied for the calculation of the energy flux of scattered gamma radiation in a spherical room surrounded by an infinitely thick spherical wall and with a point source at the centre. Source energies were I, 2, 4, 6, and 10 MeV. The main investigation was carried out at a room radius of 500 cm but, for the 1 MeV source, the influence of varying the room radius down to 1 cm was analysed. The results contain energy distributions of the first four successive reflection components at the centre of the room and at the wall surface, as well as spatial distributions of the successive energy flux components. The neglect of reflection contributions of order five and higher was estimated to introduce an error of less than 0. 2 % of the total scattered energy flux. An analytical approximation is shown to produce a useful and easily applicable method of predicting the amount of scattered radiation in a spherical room

  19. Radiation of ultrarelativistic charge taking into account for multiple scattering

    International Nuclear Information System (INIS)

    Yang, C.

    1977-01-01

    A brief theoretical review of characteristics of X-rays and more hard radiation formed by an ultrarelativistic charged particle passing through a plate or a stack of plates with regard for multiple scattering and the plate material absorptivity is made. Formulas for frequency- angular and frequency distributions of total radiation in the cases of a plate and of a stack of plates with large spacings as well as a stack of sufficiently thick plates are given. A calculation method for the radiation distributions in a general case of an arbitrary stack is pointed out. The frequency distribution of the total radiation consisting of bremsstrahlung and boundary effects is analyzed in detail. A problem of experimental separation of the boundary effect from the total radiation is discussed

  20. Radiative corrections to neutrino deep inelastic scattering revisited

    International Nuclear Information System (INIS)

    Arbuzov, Andrej B.; Bardin, Dmitry Yu.; Kalinovskaya, Lidia V.

    2005-01-01

    Radiative corrections to neutrino deep inelastic scattering are revisited. One-loop electroweak corrections are re-calculated within the automatic SANC system. Terms with mass singularities are treated including higher order leading logarithmic corrections. Scheme dependence of corrections due to weak interactions is investigated. The results are implemented into the data analysis of the NOMAD experiment. The present theoretical accuracy in description of the process is discussed

  1. Correlation between scatter radiation dose at height of operator's eye and dose to patient for different angiographic projections

    International Nuclear Information System (INIS)

    Leyton, Fernando; Nogueira, Maria S.; Gubolino, Luiz A.; Pivetta, Makyson R.; Ubeda, Carlos

    2016-01-01

    Studies have reported cases of radiation-induced cataract among cardiology professionals. In view of the evidence of epidemiological studies, the ICRP recommends a new threshold for opacities and a new radiation dose to eye lens limit of 20 mSv per year for occupational exposure. The aim of this paper is to report scattered radiation doses at the height of the operator's eye in an interventional cardiology facility without considering radiation protection devices and to correlate these values with different angiographic projections and operational modes. Measurements were taken in a cardiac laboratory with an angiography X-ray system equipped with flat-panel detector. PMMA plates of 30×30×5 cm were used with a thickness of 20 cm. Measurements were taken in two fluoroscopy modes (low and normal, 15 pulses/s) and in cine mode (15 frames/s). Four angiographic projections were used: anterior posterior; lateral; left anterior oblique caudal (spider); and left anterior oblique cranial, with a cardiac protocol for patients weighing between 70 and 90 kg. Measurements of phantom entrance dose rate and scatter dose rate were performed with two Unfors Xi plus detectors. The detector measuring scatter radiation was positioned at the usual distance of the cardiologist's eyes during working conditions. There is a good linear correlation between the kerma area product and scatter dose at the lens. Experimental correlation factors of 2.3, 12.0, 12.2 and 17.6 μSv/Gy cm2 were found for different projections. PMMA entrance dose rates for low and medium fluoroscopy and cine modes were 13, 39 and 282 mGy/min, respectively, for AP projection. - Highlights: • A method is presented to estimate the scatter radiation dose at operator eye height. • The method allows estimating scatter radiation dose measuring ambient dose equivalent. • Operator could exceed threshold for lens opacities if protection tools are not used. • There is a good linear correlation between kerma

  2. Clinical applications of continuous infusion chemotherapy ahd concomitant radiation therapy

    International Nuclear Information System (INIS)

    Rosenthal, C.J.; Rotman, M.

    1986-01-01

    This book presents information on the following topics: theoretical basis and clinical applications of 5-FU as a radiosensitizer; treatment of hepatic metastases from gastro intestingal primaries with split course radiation therapy; combined modality therapy with 5-FU, Mitomycin-C and radiation therapy for sqamous cell cancers; treatment of bladder carcinoma with concomitant infusion chemotherapy and irradiation; a treatment of invasiv bladder cancer by the XRT/5FU protocol; concomitant radiation therapy and doxorubicin by continuous infusion in advanced malignancies; cis platin by continuous infusion with concurrent radiation therapy in malignant tumors; combination of radiation with concomitant continuous adriamycin infusion in a patient with partially excised pleomorphic soft tissue sarcoma of the lower extremeity; treatment of recurrent carcinoma of the paranasal sinuses using concomitant infusion cis-platinum and radiation therapy; hepatic artery infusion for hepatic metastases in combination with hepatic resection and hepatic radiation; study of simultaneous radiation therapy, continuous infusion, 5FU and bolus mitomycin-C; cancer of the esophagus; continuous infusion VP-16, bolus cis-platinum and simultaneous radiation therapy as salvage therapy in small cell bronchogenic carcinoma; and concomitant radiation, mitomycin-C and 5-FU infusion in gastro intestinal cancer

  3. Anomalous resonance-radiation energy-transfer rate in a scattering dispersive medium

    International Nuclear Information System (INIS)

    Shekhtman, V.L.

    1992-01-01

    This paper describes a generalization of the concept of group velocity as an energy-transfer rate in a dispersive medium with complex refractive index when the polaritons, which are energy carriers, undergo scattering, in contrast to the classical concept of the group velocity of free polaritons (i.e., without scattering in the medium). The concept of delay time from quantum multichannel-scattering, theory is used as the fundamental concept. Based on Maxwell's equations and the new mathematical Φ-function method, a consistent conceptual definition of group velocity in terms of the ratio of the coherent-energy flux density to the coherent-energy density is obtained for the first time, and a critical analysis of the earlier (Brillouin) understanding of energy-transfer rate is given in the light of radiation-trapping theory and the quantum theory of resonance scattering. The role of generalized group velocity is examined for the interpretation of the phenomenon of multiple resonance scattering, or radiation diffusion. The question of causality for the given problem is touched upon; a new relationship is obtained, called the microcausality condition, which limits the anomalous values of group velocity by way of the indeterminacy principle and the relativistic causality principle for macroscopic time intervals directly measurable in experiment, whereby attention is focused on the connection of the given microcausality condition and the well-known Wigner inequality for the time delay of spherical waves. 22 refs

  4. Prediction of mass absorption coefficients from inelastically scattered X-radiation for specimens of less than 'infinite thickness'

    International Nuclear Information System (INIS)

    Kieser, R.; Mulligan, T.J.

    1979-01-01

    An equation is developed which describes the X-ray scatter radiation from specimens of any thickness. This equation suggests that a specimen's mass absorption coefficient can be determined from its inelastically scattered X-radiation not only when the specimen is 'infinitely thick' but also when it is of 'intermediate thickness'. Measurements have been carried out with a standard energy-dispersive X-ray spectrometer on specimens of 'intermediate thickness'. Good agreement is obtained between the mass absorption coefficients that are calculated from the scattered radiation and those obtained on the basis of tabulated mass absorption coefficients for the elements. (author)

  5. Scattering by a slab containing randomly located cylinders: comparison between radiative transfer and electromagnetic simulation.

    Science.gov (United States)

    Roux, L; Mareschal, P; Vukadinovic, N; Thibaud, J B; Greffet, J J

    2001-02-01

    This study is devoted to the examination of scattering of waves by a slab containing randomly located cylinders. For the first time to our knowledge, the complete transmission problem has been solved numerically. We have compared the radiative transfer theory with a numerical solution of the wave equation. We discuss the coherent effects, such as forward-scattering dip and backscattering enhancement. It is seen that the radiative transfer equation can be used with great accuracy even for optically thin systems whose geometric thickness is comparable with the wavelength. We have also shown the presence of dependent scattering.

  6. Prior image constrained scatter correction in cone-beam computed tomography image-guided radiation therapy.

    Science.gov (United States)

    Brunner, Stephen; Nett, Brian E; Tolakanahalli, Ranjini; Chen, Guang-Hong

    2011-02-21

    X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.

  7. Compton scatter imaging: A promising modality for image guidance in lung stereotactic body radiation therapy.

    Science.gov (United States)

    Redler, Gage; Jones, Kevin C; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C H

    2018-03-01

    Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. © 2018 American Association of Physicists in Medicine.

  8. A model-based approach of scatter dose contributions and efficiency of apron shielding for radiation protection in CT.

    Science.gov (United States)

    Weber, N; Monnin, P; Elandoy, C; Ding, S

    2015-12-01

    Given the contribution of scattered radiations to patient dose in CT, apron shielding is often used for radiation protection. In this study the efficiency of apron was assessed with a model-based approach of the contributions of the four scatter sources in CT, i.e. external scattered radiations from the tube and table, internal scatter from the patient and backscatter from the shielding. For this purpose, CTDI phantoms filled with thermoluminescent dosimeters were scanned without apron, and then with an apron at 0, 2.5 and 5 cm from the primary field. Scatter from the tube was measured separately in air. The scatter contributions were separated and mathematically modelled. The protective efficiency of the apron was low, only 1.5% in scatter dose reduction on average. The apron at 0 cm from the beam lowered the dose by 7.5% at the phantom bottom but increased the dose by 2% at the top (backscatter) and did not affect the centre. When the apron was placed at 2.5 or 5 cm, the results were intermediate to the one obtained with the shielding at 0 cm and without shielding. The apron effectiveness is finally limited to the small fraction of external scattered radiation. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Investigation of vacuum polarization in t-channel radiative Bhabha scattering

    CERN Document Server

    Karlen, D A

    2001-01-01

    We discuss the possibility of a precision measurement of vacuum polarization in t-channel radiative Bhabha scattering at a high luminosity collider. For illustration, the achievable precision is estimated for the BaBar experiment at PEP-II and for the OPAL experiment at LEP.

  10. Radiation and scattering by cavity-backed antennas on a circular cylinder

    Science.gov (United States)

    Kempel, Leo C.; Volakis, John L.

    1993-01-01

    Conformal arrays are popular antennas for aircraft and missile platforms due to their inherent low weight and drag properties. However, to date there has been a dearth of rigorous analytical or numerical solutions to aid the designer. In fact, it has been common practice to use limited measurements and planar approximations in designing such non-planar antennas. The finite element-boundary integral method is extended to scattering and radiation by cavity-backed structures in an infinite, metallic cylinder. In particular, the formulation specifics such as weight functions, dyadic Green's function, implementation details, and particular difficulties inherent to cylindrical structures are discussed. Special care is taken to ensure that the resulting computer program has low memory demand and minimal computational requirements. Both scattering and radiation parameters are computed and validated as much as possible.

  11. Combined Natural Convection and Radiation Heat Transfer of Various Absorbing-Emitting-Scattering Media in a Square Cavity

    Directory of Open Access Journals (Sweden)

    Xianglong Liu

    2014-01-01

    Full Text Available A numerical model is developed to simulate combined natural convection and radiation heat transfer of various anisotropic absorbing-emitting-scattering media in a 2D square cavity based on the discrete ordinate (DO method and Boussinesq assumption. The effects of Rayleigh number, optical thickness, scattering ratio, scattering phase function, and aspect ratio of square cavity on the behaviors of heat transfer are studied. The results show that the heat transfer of absorbing-emitting-scattering media is the combined results of radiation and natural convection, which depends on the physical properties and the aspect ratio of the cavity. When the natural convection becomes significant, the convection heat transfer is enhanced, and the distributions of NuR and Nuc along the walls are obviously distorted. As the optical thickness increases, NuR along the hot wall decreases. As the scattering ratio decreases, the NuR along the walls decreases. At the higher aspect ratio, the more intensive thermal radiation and natural convection are formed, which increase the radiation and convection heat fluxes. This paper provides the theoretical research for the optimal thermal design and practical operation of the high temperature industrial equipments.

  12. Light scattering reviews 7 radiative transfer and optical properties of atmosphere and underlying surface

    CERN Document Server

    Kokhanovsky, Alexander A

    2014-01-01

    This book describes modern advances in radiative transfer and light scattering. Coverage includes fast radiative transfer techniques, use of polarization in remote sensing and recent developments in remote sensing of snow properties from space observations.

  13. RADIATIVE TRANSFER MODELING OF THE ENIGMATIC SCATTERING POLARIZATION IN THE SOLAR Na i D{sub 1} LINE

    Energy Technology Data Exchange (ETDEWEB)

    Belluzzi, Luca [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Degl’Innocenti, Egidio Landi [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50125 Firenze (Italy)

    2015-12-01

    The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuous distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of Na i, with emphasis on the enigmatic D{sub 1} line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polarization observed in the core of the D{sub 1} line may be explained by the effect that one gets when the detailed spectral structure of the anisotropic radiation responsible for the optical pumping is taken into account. This physical ingredient is capable of introducing significant scattering polarization in the core of the Na i D{sub 1} line without the need for ground-level polarization.

  14. Velocity-space tomography of fusion plasmas by collective Thomson scattering of gyrotron radiation

    DEFF Research Database (Denmark)

    Salewski, Mirko; Jacobsen, A.S.; Jensen, Thomas

    2016-01-01

    -tonoise ratio becomes fairly low for MeV-range ions. Ions at any energy can be detected well by collective Thomson scattering of mm-wave radiation from a high-power gyrotron. We demonstrate how collective Thomson scattering can be used to measure 푓2퐷푣 in the MeV-range in reactor relevant plasmas...

  15. A small-angle scattering study of bacteriophage T7 using synchrotron radiation

    International Nuclear Information System (INIS)

    Feigin, L.A.; Svergun, D.I.; Dembo, A.T.; Ronto, G.; Toth, K.

    1989-01-01

    Structure transitions in the bacterial virus T7, due to an environment of varying ionic strength, are investigated by means of synchrotron radiation small-angle scattering. Effects of radiation damages and kinetics of the structure transition are separated. Time dependencies of the structural parameters and distribution functions are obtained and characteristic features of the structure rearrangements are described. (orig.)

  16. Light scattering by multiple spheres: comparison between Maxwell theory and radiative-transfer-theory calculations.

    Science.gov (United States)

    Voit, Florian; Schäfer, Jan; Kienle, Alwin

    2009-09-01

    We present a methodology to compare results of classical radiative transfer theory against exact solutions of Maxwell theory for a high number of spheres. We calculated light propagation in a cubic scattering region (20 x 20 x 20 microm(3)) consisting of different concentrations of polystyrene spheres in water (diameter 2 microm) by an analytical solution of Maxwell theory and by a numerical solution of radiative transfer theory. The relative deviation of differential as well as total scattering cross sections obtained by both approaches was evaluated for each sphere concentration. For the considered case, we found that deviations due to radiative transfer theory remain small, even for concentrations up to ca. 20 vol. %.

  17. Influences of scattering radiation in a TLD irradiation room, 2

    International Nuclear Information System (INIS)

    Suzuki, Osamu; Suwa, Shigeo

    1985-01-01

    The influence of scattering radiation (SR) on radiation dose rate (DR) in a TLD irradiation room was assessed. A single SD from a standard TLD apparatus, i.e., an acrylic or aluminum table, was examined. The maximum DR was attained at approximately 80 cm from the radiation source. Energy spectra of SR ranged up to the energy of direct radiation beam. Circular SD at one m from the radiation source, which contributed to DR to the direct radiation beam, was almost homogeneous. SD was large near the irradiation table, and the influence of SD on DR became smaller with SD being vertically farther from the apparatus. The influence of SD on RD to the direct radiation beam became less with an increase in gamma ray energy. At one m from the radiation source, 6 - 7 % of SD contributed to DR to the direct radiation beam for 0.662 MeV of gamma ray. This figure was one half of that with NaI (Tl) scintillation detector. (Namekawa, K.)

  18. Determination of Atmospheric Aerosol Characteristics from the Polarization of Scattered Radiation

    Science.gov (United States)

    Harris, F. S., Jr.; McCormick, M. P.

    1973-01-01

    Aerosols affect the polarization of radiation in scattering, hence measured polarization can be used to infer the nature of the particles. Size distribution, particle shape, real and absorption parts of the complex refractive index affect the scattering. From Lorenz-Mie calculations of the 4-Stokes parameters as a function of scattering angle for various wavelengths the following polarization parameters were plotted: total intensity, intensity of polarization in plane of observation, intensity perpendicular to the plane of observation, polarization ratio, polarization (using all 4-Stokes parameters), plane of the polarization ellipse and its ellipticity. A six-component log-Gaussian size distribution model was used to study the effects of the nature of the polarization due to variations in the size distribution and complex refractive index. Though a rigorous inversion from measurements of scattering to detailed specification of aerosol characteristics is not possible, considerable information about the nature of the aerosols can be obtained. Only single scattering from aerosols was used in this paper. Also, the background due to Rayleigh gas scattering, the reduction of effects as a result of multiple scattering and polarization effects of possible ground background (airborne platforms) were not included.

  19. Nongray radiative heat transfer analysis in the anisotropic scattering fog layer subjected to solar irradiation

    International Nuclear Information System (INIS)

    Maruyama, Shigenao; Mori, Yusuke; Sakai, Seigo

    2004-01-01

    Radiative heat transfer in the fog layer is analyzed. Direct and diffuse solar irradiation, and infrared sky flux are considered as incident radiation. Anisotropic scattering of radiation by water droplets is taken into account. Absorption and emission of radiation by water droplets and radiative gases are also considered. Furthermore, spectral dependences of radiative properties of irradiation, reflectivity, gas absorption and scattering and absorption of mist are considered. The radiation element method by ray emission model (REM 2 ) is used for the nongray radiation analysis. Net downward radiative heat flux at the sea surface and radiative equilibrium temperature distribution in the fog layer are calculated for several conditions. Transmitted solar flux decreases as liquid water content (LWC) in the fog increases. However, the value does not become zero but has the value about 60 W/m 2 . The effect of humidity and mist on radiative cooling at night is investigated. Due to high temperature and humidity condition, the radiation cooling at night is not so large even in the clear sky. Furthermore, the radiative equilibrium temperature distribution in the fog layer in the daytime is higher as LWC increases, and the inversion layer of temperature occurs

  20. Scatter radiation breast exposure during head CT: impact of scanning conditions and anthropometric parameters on shielded and unshielded breast dose

    Energy Technology Data Exchange (ETDEWEB)

    Klasic, B. [Hospital for pulmonary diseases, Zagreb (Croatia); Knezevic, Z.; Vekic, B. [Rudjer Boskovic Institute, Zagreb (Croatia); Brnic, Z.; Novacic, K. [Merkur Univ. Hospital, Zagreb (Croatia)

    2006-07-01

    Constantly increasing clinical requests for CT scanning of the head on our facility continue to raise concern regarding radiation exposure of patients, especially radiosensitive tissues positioned close to the scanning plane. The aim of our prospective study was to estimate scatter radiation doses to the breast from routine head CT scans, both with and without use of lead shielding, and to establish influence of various technical and anthropometric factors on doses using statistical data analysis. In 85 patient referred to head CT for objective medical reasons, one breast was covered with lead apron during CT scanning. Radiation doses were measured at skin of both breasts and over the apron simultaneously, by the use of thermo luminescent dosimeters. The doses showed a mean reduction by 37% due to lead shielding. After we statistically analyzed our data, we observed significant correlation between under-the-shield dose and values of technical parameters. We used multiple linear regression model to describe the relationships of doses to unshielded and shielded breast respectively, with anthropometric and technical factors. Our study proved lead shielding of the breast to be effective, easy to use and leading to a significant reduction in scatter dose. (author)

  1. Scatter radiation breast exposure during head CT: impact of scanning conditions and anthropometric parameters on shielded and unshielded breast dose

    International Nuclear Information System (INIS)

    Klasic, B.; Knezevic, Z.; Vekic, B.; Brnic, Z.; Novacic, K.

    2006-01-01

    Constantly increasing clinical requests for CT scanning of the head on our facility continue to raise concern regarding radiation exposure of patients, especially radiosensitive tissues positioned close to the scanning plane. The aim of our prospective study was to estimate scatter radiation doses to the breast from routine head CT scans, both with and without use of lead shielding, and to establish influence of various technical and anthropometric factors on doses using statistical data analysis. In 85 patient referred to head CT for objective medical reasons, one breast was covered with lead apron during CT scanning. Radiation doses were measured at skin of both breasts and over the apron simultaneously, by the use of thermo luminescent dosimeters. The doses showed a mean reduction by 37% due to lead shielding. After we statistically analyzed our data, we observed significant correlation between under-the-shield dose and values of technical parameters. We used multiple linear regression model to describe the relationships of doses to unshielded and shielded breast respectively, with anthropometric and technical factors. Our study proved lead shielding of the breast to be effective, easy to use and leading to a significant reduction in scatter dose. (author)

  2. Examination of the component of the scattered radiation by external monitor chamber using the EGS4

    International Nuclear Information System (INIS)

    Shiota, Y.; Tabushi, K.; Kito, S.

    2005-01-01

    The output beams of the liner accelerator are radiated by an accelerated electron and a dose rate usually fluctuates. The variation affects the shape of a dose distribution in dosimetry. The external monitor chamber is often used for monitoring the variation. Generally the external monitor chamber is set above the water phantom. Therefore, if the irradiation field is small, the scattered radiation due to the external monitor chamber may affect a measurement dose. This work is to examine the component of the scattered radiation generated by external monitor chamber, and to investigate the effect on measurement dose using the EGS4 code and the Klein-Nishina formula. The shapes and the peak energies were corresponding to the spectra of EGS4 and the Klein-Nishina formula. Therefore the main interaction at the external monitor chamber is Compton scatter. The effect of the scattered radiation and the change of the dose distribution were few. However the dose decreased to about 1% under the position of the external monitor chamber. Therefore we should pay the attention to the distance between the external monitor chamber and the measurement chamber. (author)

  3. Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory

    International Nuclear Information System (INIS)

    Ma, L.X.; Tan, J.Y.; Zhao, J.M.; Wang, F.Q.; Wang, C.A.

    2017-01-01

    The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus–Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus–Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied. - Highlights: • The Muller matrix of randomly distributed, densely packed spheres are investigated. • The effects of multiple scattering and dependent scattering are analyzed. • The accuracy of radiative transfer theory for densely packed spheres is discussed. • Dependent scattering correction takes effect at medium size parameter or smaller. • Performance of dependent scattering correction

  4. Hard synchrotron radiation scattering from a nonideal surface grating from multilayer X-ray mirrors

    International Nuclear Information System (INIS)

    Punegov, V.I.; Nesterets, Ya.I.; Mytnichenko, S.V.; Kovalenko, N.V.; Chernov, V.A.

    2003-01-01

    The hard synchrotron radiation scattering from a multilayer surface grating is theoretically and experimentally investigated. The numerical calculations of angular distribution of scattering intensity from X-ray mirror Ni/C are executed with use of recurrence formulae and statistical dynamical theory of diffraction. It is shown, that the essential role in formation of a diffraction pattern plays a diffuse scattering caused by structure imperfection of a multilayer grating [ru

  5. Quantum theory of laser radiation scattering by electrons in magnetic fields

    International Nuclear Information System (INIS)

    Rochlin, H.; Davidovich, L.

    1982-01-01

    A system consisting of an electron in a static magnetic field, interacting with the quantized electromagnetic field, within the non-relativistic and electric dipole approximations (with a cutoff in momentum space) is considered. The Heisenberg equations of motion are solved exactly and the time evolution of the electric field is determined. The power spectrum of the scattered radiation is calculated, when the electromagnetic field is initially in a coherent state. The results for the line shape of the scattered radiation are shown to be valid for magnetic fields up to 10 12 G. The quantization of the electromagnetic field allows one to consider effects of the natural linewidth and its dependence on the magnetic field. The renormalization of the electron mass is included in these treatment, and the results remain finite when the cutoff goes to infinity. (Author) [pt

  6. Influence of Ceiling Suspended Screen Positioning to the Scatter Radiation Levels in Interventional Cardiology

    International Nuclear Information System (INIS)

    Arandjic, D.; Bozovic, P.; Ciraj-Bjelac, O.; Antic, V.

    2013-01-01

    The objective of this paper is to identify the effects of the ceiling suspended screen position to the scatter radiation levels in the interventional cardiology. The scatter radiation in terms of ambient dose equivalent H * (10) was measured for various positions of protective screen in the positions of the first operator, nurse and radiographer, at elevations 100-190 cm and in four different angulations of the x-ray tube. To assess the effectiveness of the protective screen, the scattered dose was also measured in the absence of any protection in all four angulations and elevations. To simulate real clinical situation the measurements were performed in the presence of 30 cm PMMA phantom using standard clinical protocol. The utility of protective screen varied for different positions and angulations. Scatter radiation levels varied in the range 70 - 3400 μSv/h for the first operator, 140 - 3200 μSv/h for the nurse and 50 - 560 μSv/h for radiographer. Ceiling suspended screens can provide a substantial level of protection (up to factor 18) in interventional cardiology, but they have to be properly managed and positioned to achieve sufficient level of protection. The guidance for optimal protection is provided in the paper.(author)

  7. Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation.

    Science.gov (United States)

    Gartmann, Thomas E; Hartweg, Sebastian; Ban, Loren; Chasovskikh, Egor; Yoder, Bruce L; Signorell, Ruth

    2018-06-06

    Low-energy electron scattering in water clusters (H2O)n with average cluster sizes of n < 700 is investigated by angle-resolved photoelectron spectroscopy using high harmonic radiation at photon energies of 14.0, 20.3, and 26.5 eV for ionization from the three outermost valence orbitals. The measurements probe the evolution of the photoelectron anisotropy parameter β as a function of cluster size. A remarkably steep decrease of β with increasing cluster size is observed, which for the largest clusters reaches liquid bulk values. Detailed electron scattering calculations reveal that neither gas nor condensed phase scattering can explain the cluster data. Qualitative agreement between experiment and simulations is obtained with scattering calculations that treat cluster scattering as an intermediate case between gas and condensed phase scattering.

  8. Isospin breaking in pion-nucleon scattering at threshold by radiative processes

    CERN Document Server

    Ericson, Torleif Eric Oskar

    2006-01-01

    We investigate the dispersive contribution by radiative processes such as (pi- proton to neutron gamma) and (pi- proton to Delta gamma) to the pion-nucleon scattering lengths of charged pions in the heavy baryon limit. They give a large isospin violating contribution in the corresponding isoscalar scattering length, but only a small violation in the isovector one. These terms contribute 6.3(3)% to the 1s level shift of pionic hydrogen and give a chiral constant F_pi^2f_1=-25.8(8) MeV.

  9. Interpolation methods for creating a scatter radiation exposure map

    International Nuclear Information System (INIS)

    Gonçalves, Elicardo A. de S.; Gomes, Celio S.; Lopes, Ricardo T.; Oliveira, Luis F. de; Anjos, Marcelino J. dos; Oliveira, Davi F.

    2017-01-01

    A well know way for best comprehension of radiation scattering during a radiography is to map exposure over the space around the source and sample. This map is done measuring exposure in points regularly spaced, it means, measurement will be placed in localization chosen by increasing a regular steps from a starting point, along the x, y and z axes or even radial and angular coordinates. However, it is not always possible to maintain the accuracy of the steps throughout the entire space, or there will be regions of difficult access where the regularity of the steps will be impaired. This work intended to use some interpolation techniques that work with irregular steps, and to compare their results and their limits. It was firstly done angular coordinates, and tested in lack of some points. Later, in the same data was performed the Delaunay tessellation interpolation ir order to compare. Computational and graphic treatments was done with the GNU OCTAVE software and its image-processing package. Real data was acquired from a bunker where a 6 MeV betatron can be used to produce radiation scattering. (author)

  10. Interpolation methods for creating a scatter radiation exposure map

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Elicardo A. de S., E-mail: elicardo.goncalves@ifrj.edu.br [Instituto Federal do Rio de Janeiro (IFRJ), Paracambi, RJ (Brazil); Gomes, Celio S.; Lopes, Ricardo T. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Oliveira, Luis F. de; Anjos, Marcelino J. dos; Oliveira, Davi F. [Universidade do Estado do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Física

    2017-07-01

    A well know way for best comprehension of radiation scattering during a radiography is to map exposure over the space around the source and sample. This map is done measuring exposure in points regularly spaced, it means, measurement will be placed in localization chosen by increasing a regular steps from a starting point, along the x, y and z axes or even radial and angular coordinates. However, it is not always possible to maintain the accuracy of the steps throughout the entire space, or there will be regions of difficult access where the regularity of the steps will be impaired. This work intended to use some interpolation techniques that work with irregular steps, and to compare their results and their limits. It was firstly done angular coordinates, and tested in lack of some points. Later, in the same data was performed the Delaunay tessellation interpolation ir order to compare. Computational and graphic treatments was done with the GNU OCTAVE software and its image-processing package. Real data was acquired from a bunker where a 6 MeV betatron can be used to produce radiation scattering. (author)

  11. Magnetic x-ray scattering studies of holmium using synchro- tron radiation

    International Nuclear Information System (INIS)

    Gibbs, D.; Moncton, D.E.; D'Amico, K.L.; Bohr, J.; Grier, B.H.

    1985-01-01

    We present the results of magnetic x-ray scattering experiments on the rare-earth metal holmium using synchrotron radiation. Direct high-resolution measurements of the nominally incommensurate magnetic satellite reflections reveal new lock-in behavior which we explain within a simple spin-discommensuration model. As a result of magnetoelastic coupling, the spin-discommensuration array produces additional x-ray diffraction satellites. Their observation further substantiates the model and demonstrates additional advantages of synchrotron radiation for magnetic-structure studies

  12. Violation of the factorization theorem in large-angle radiative Bhabha scattering

    International Nuclear Information System (INIS)

    Arbuzov, A.B.; Kuraev, Eh.A.; Shajkhatdenov, B.G.

    1998-01-01

    The lowest order QED radiative corrections to the radiative large-angle Bhabha scattering process in the region where all the kinematical invariants are large compared to the electron mass are considered. We show that the leading logarithmic corrections do not factor before the Born cross section, contrary to the picture assumed in the renormalization group approach. Estimation of the leading and nonleading contributions for typical kinematics of the hard process for energy of Φ factory is done

  13. WE-DE-207B-09: Scatter Radiation Measurement From a Digital Breast Tomosynthesis System and Its Impact On Shielding Consideration

    Energy Technology Data Exchange (ETDEWEB)

    Yang, K; Li, X; Liu, B [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: To accurately measure the scatter radiation from a Hologic digital breast tomosynthesis (DBT) system and to provide updated scatter distribution to guide radiation shielding calculation for DBT rooms. Methods: A high sensitivity GOS-based linear detector was used to measure the angular distribution of scatter radiation from a Hologic Selenia Dimensions DBT system. The linear detector was calibrated for its energy response of typical DBT spectra. Following the NCRP147 approach, the measured scatter intensity was normalized by the primary beam area and primary air kerma at 1m from the scatter phantom center and presented as the scatter fraction. Direct comparison was made against Simpkin’s initial measurement. Key parameters including the phantom size, primary beam area, and kV/anode/target combination were also studied. Results: The measured scatter-to-primary-ratio and scatter fraction data closely matched with previous data from Simpkin. The measured data demonstrated the unique nonisotropic distribution of the scattered radiation around a Hologic DBT system, with two strong peaks around 25° and 160°. The majority scatter radiation (>70%) originated from the imaging detector assembly, instead of the phantom. With a workload from a previous local survey, the scatter air kerma at 1m from the phantom center for wall/door is 0.018mGy/patient, for floor is 0.164mGy/patient, and for ceiling is 0.037mGy/patient. Conclusion: Comparing to Simpkin’s previous data, the scatter air kerma from Holgoic DBT is at least two times higher. The main reasons include the harder primary beam with higher workload, added tomosynthesis acquisition, and strong small angle forward scattering. Due to the highly conservative initial assumptions, the shielding recommendation from NCRP147 is still sufficient for the Hologic DBT system given the workload from a previous local survey. With the data provided from this study, accurate shielding calculation can be performed for

  14. Continuous-wave spatial quantum correlations of light induced by multiple scattering

    DEFF Research Database (Denmark)

    Smolka, Stephan; Ott, Johan Raunkjær; Huck, Alexander

    2012-01-01

    and reflectance. Utilizing frequency-resolved quantum noise measurements, we observe that the strength of the spatial quantum correlation function can be controlled by changing the quantum state of an incident bright squeezed-light source. Our results are found to be in excellent agreement with the developed......We present theoretical and experimental results on spatial quantum correlations induced by multiple scattering of nonclassical light. A continuous-mode quantum theory is derived that enables determining the spatial quantum correlation function from the fluctuations of the total transmittance...... theory and form a basis for future research on, e. g., quantum interference of multiple quantum states in a multiple scattering medium....

  15. The application of correlation techniques to the angular spectrum of scattered radiation from tokamak plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.

    1990-07-01

    In the limit of the first Born approximation for a partially coherent secondary source, consisting of a spatially random plasma illuminated by a coherent plane wave, it is shown that the spectral coherence of the scattered radiation as measured on an arbitrary plane beyond the scatterer conveys information on the three dimensional intensity distribution of the random source. By defining a new two point statistical measure of the random field, closely related to the cross spectral density, we show that the fluctuation amplitude of the random source along the direction of the incident plane wave may by recovered from the measurement of the scattered radiation. The application of cross spectral techniques to fluctuation studies on tokamaks is considered. 7 refs

  16. Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis

    Science.gov (United States)

    Liu, X.; Wu, W.; Yang, Q.

    2017-12-01

    Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.

  17. Location of alien bodies in a media according to the data of scattering gamma radiation

    International Nuclear Information System (INIS)

    Vasil'ev, M.B.; Chuvashov, N.F.; Skuchaev, Yu.K.; Markov, V.I.

    1995-01-01

    Locations of alien bodies in a medium are studied by the method of model experiment using scattering γ-radiation. 60 Co and 137 Cs were used as radiation sources. The scattering bodies were made in the form of aluminium, iron and lead cylinders of different diameters inserted inside hollow cylindrical water, aluminium and iron media. The cases are reviewed when the alien bodies are in the center of cylindrical media. The obtained data are presented in the graphical form and in the form of tables. 4 refs., 4 figs. 1 tab

  18. Influence of X-ray scatter radiation on image quality in Digital Breast Tomosynthesis (DBT)

    Science.gov (United States)

    Rodrigues, M. J.; Di Maria, S.; Baptista, M.; Belchior, A.; Afonso, J.; Venâncio, J.; Vaz, P.

    2017-11-01

    Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging technique that was developed to solve the principal limitation of mammography, namely the overlapping tissue effect. This issue in standard mammography (SM) leads to two main problems: low sensitivity (difficulty to detect lesions) and low specificity (non-negligible percentage of false positives). Although DBT is now being introduced in clinical practice the features of this technique have not yet been fully and accurately assessed. Consequently, optimization studies in terms of choosing the most suitable parameters which maximize image quality according to the known limits of breast dosimetry are currently performing. In DBT, scatter radiation can lead to a loss of contrast and to an increase of image noise by reducing the signal-to-difference-noise ratio (SDNR) of a lesion. Moreover the use of an anti-scatter grid is a concern due to the low exposure of the photon flux available per projection. For this reason the main aim of this study was to analyze the influence of the scatter radiation on image quality and the dose delivered to the breast. In particular a detailed analysis of the scatter radiation on the optimal energy that maximizes the SDNR was performed for different monochromatic energies and voltages. To reach this objective the PenEasy Monte Carlo (MC) simulation tool imbedded in the general-purpose main program PENELOPE, was used. After a successful validation of the MC model with measurements, 2D projection images of primary, coherent and incoherent photons were obtained. For that, a homogeneous breast phantom (2, 4, 6, 8 cm) with 25%, 50% and 75% glandular compositions was used, including a 5 mm thick tumor. The images were generated for each monochromatic X-ray energies in the range from 16 keV to 32 keV. For each angular projection considered (25 angular projections covering an arc of 50°) the scatter-to-primary ratio (SPR), the mean glandular dose (MGD) and the signal

  19. Scattered radiation field in X-ray diagnostics; Polje rasejanog zracenja u rendgen dijagnostici

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, S; Pavlovic, S; Boreli, F [Institute of Nuclear Sciences VINCA, Belgrade (Yugoslavia)

    1995-07-01

    In order to obtain simple analytical relation for spatial distribution of scattered X radiation around patient, the analytical procedure of simplification of starting equations is presented in this paper. (author)

  20. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Braicovich, L., E-mail: lucio.braicovich@polimi.it; Minola, M.; Dellea, G.; Ghiringhelli, G. [CNR-SPIN and Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano I-20133 (Italy); Le Tacon, M. [Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B. [European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble F-38043 (France); Supruangnet, R. [Synchrotron Light Research Institute, Nakhon Ratchasima (Thailand)

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  1. Continuous Emission of A Radiation Quantum

    International Nuclear Information System (INIS)

    Zheng-Johansson, J X

    2013-01-01

    It is in accordance with such experiments as single photon self-interference that a photon, conveying one radiation energy quantum h × frequency , is spatially extensive and stretches an electromagnetic wave train. A wave train, hence an energy quantum, can only be emitted (or absorbed) by its source (or absorber) gradually. In both two processes the wave and ''particle'' attributes of the radiation field are simultaneously prominent, where an overall satisfactory theory has been lacking; for the latter process no known theoretical description currently exists. This paper presents a first principles treatment, in a unified framework of the classical and quantum mechanics, of the latter process, the emission (similarly absorption) of a single radiation quantum based on the dynamics of the radiation-emitting source, a charged oscillator, which is itself extensive across the potential well in which it oscillates. During the emission of one single radiation quantum, the extensive charged oscillator undergoes a continuous radiation damping and is non-stationary. This process is in this work treated using a quasi stationary approach, whereby the classical equation of motion, which directly facilitates the correspondence principle for a particle oscillator, and the quantum wave equation are established for each sufficiently brief time interval. As an inevitable consequence of the division of the total time for emitting one single quantum, a fractional Planck constant h is introduced. The solutions to the two simultaneous equations yield for the charged oscillator a continuously exponentially decaying Hamiltonian that is at the same time quantised with respect to the fractional-h at any instant of time; and the radiation wave field emitted over time stretches a wave train of finite length. The total system of the source and radiation field maintains at any time (integer n times) one whole energy quantum, (n×) h× frequency, in complete accordance with

  2. Application of the method of continued fractions for electron scattering by linear molecules

    International Nuclear Information System (INIS)

    Lee, M.-T.; Iga, I.; Fujimoto, M.M.; Lara, O.; Brasilia Univ., DF

    1995-01-01

    The method of continued fractions (MCF) of Horacek and Sasakawa is adapted for the first time to study low-energy electron scattering by linear molecules. Particularly, we have calculated the reactance K-matrices for an electron scattered by hydrogen molecule and hydrogen molecular ion as well as by a polar LiH molecule in the static-exchange level. For all the applications studied herein. the calculated physical quantities converge rapidly, even for a strongly polar molecule such as LiH, to the correct values and in most cases the convergence is monotonic. Our study suggests that the MCF could be an efficient method for studying electron-molecule scattering and also photoionization of molecules. (Author)

  3. Tailored long range forces on polarizable particles by collective scattering of broadband radiation

    International Nuclear Information System (INIS)

    Holzmann, D; Ritsch, H

    2016-01-01

    Collective coherent light scattering by polarizable particles creates surprisingly strong, long range inter-particle forces originating from interference of the light scattered by different particles. While for monochromatic laser beams this interaction decays with the inverse distance, we show here that in general the effective interaction range and geometry can be controlled by the illumination bandwidth and geometry. As generic example we study the modifications inter-particle forces within a 1D chain of atoms trapped in the field of a confined optical nanofiber mode. For two particles we find short range attraction as well as optical binding at multiple distances. The range of stable distances shrinks with increasing light bandwidth and for a very large bandwidth field as e.g. blackbody radiation. We find a strongly attractive potential up to a critical distance beyond which the force gets repulsive. Including multiple scattering can even lead to the appearance of a stable configuration at a large distance. Such broadband scattering forces should be observable contributions in ultra-cold atom interferometers or atomic clocks setups. They could be studied in detail in 1D geometries with ultra-cold atoms trapped along or within an optical nanofiber. Broadband radiation force interactions might also contribute in astrophysical scenarios as illuminated cold dust clouds. (paper)

  4. Non-Gaussian Stochastic Radiation Transfer in Finite Planar Media with Quadratic Scattering

    International Nuclear Information System (INIS)

    Sallah, M.

    2016-01-01

    The stochastic radiation transfer is considered in a participating planar finite continuously fluctuating medium characterized by non-Gaussian variability. The problem is considered for diffuse-reflecting boundaries with quadratic Rayleigh scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions that are represented by the probability-density function (PDF) of the solution process. RVT algorithm applies a simple integral transformation to the input stochastic process (the extinction function of the medium). This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the radiation transfer equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity, transmissivity and partial heat fluxes at the medium boundaries. Numerical results are represented graphically for different non-Gaussian probability distribution functions that compared with the corresponding Gaussian PDF.

  5. Baryon scattering at high energies. Wave function, impact factor, and gluon radiation

    International Nuclear Information System (INIS)

    Bartels, J.; Motyka, L.; Jagellonian Univ., Krakow

    2007-11-01

    The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in γ * scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in γ * scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the γ * -initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2→4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3→4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)

  6. Baryon scattering at high energies. Wave function, impact factor, and gluon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Motyka, L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Jagellonian Univ., Krakow (Poland). Inst. of Physics

    2007-11-15

    The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in {gamma}{sup *} scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in {gamma}{sup *} scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the {gamma}{sup *}-initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2{yields}4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3{yields}4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)

  7. An EPID response calculation algorithm using spatial beam characteristics of primary, head scattered and MLC transmitted radiation

    International Nuclear Information System (INIS)

    Rosca, Florin; Zygmanski, Piotr

    2008-01-01

    We have developed an independent algorithm for the prediction of electronic portal imaging device (EPID) response. The algorithm uses a set of images [open beam, closed multileaf collimator (MLC), various fence and modified sweeping gap patterns] to separately characterize the primary and head-scatter contributions to EPID response. It also characterizes the relevant dosimetric properties of the MLC: Transmission, dosimetric gap, MLC scatter [P. Zygmansky et al., J. Appl. Clin. Med. Phys. 8(4) (2007)], inter-leaf leakage, and tongue and groove [F. Lorenz et al., Phys. Med. Biol. 52, 5985-5999 (2007)]. The primary radiation is modeled with a single Gaussian distribution defined at the target position, while the head-scatter radiation is modeled with a triple Gaussian distribution defined downstream of the target. The distances between the target and the head-scatter source, jaws, and MLC are model parameters. The scatter associated with the EPID is implicit in the model. Open beam images are predicted to within 1% of the maximum value across the image. Other MLC test patterns and intensity-modulated radiation therapy fluences are predicted to within 1.5% of the maximum value. The presented method was applied to the Varian aS500 EPID but is designed to work with any planar detector with sufficient spatial resolution

  8. Estimates of the Spectral Aerosol Single Sea Scattering Albedo and Aerosol Radiative Effects during SAFARI 2000

    Science.gov (United States)

    Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat; Russell, Philip B.

    2003-01-01

    Using measurements of the spectral solar radiative flux and optical depth for 2 days (24 August and 6 September 2000) during the SAFARI 2000 intensive field experiment and a detailed radiative transfer model, we estimate the spectral single scattering albedo of the aerosol layer. The single scattering albedo is similar on the 2 days even though the optical depth for the aerosol layer was quite different. The aerosol single scattering albedo was between 0.85 and 0.90 at 350 nm, decreasing to 0.6 in the near infrared. The magnitude and decrease with wavelength of the single scattering albedo are consistent with the absorption properties of small black carbon particles. We estimate the uncertainty in the single scattering albedo due to the uncertainty in the measured fractional absorption and optical depths. The uncertainty in the single scattering albedo is significantly less on the high-optical-depth day (6 September) than on the low-optical-depth day (24 August). On the high-optical-depth day, the uncertainty in the single scattering albedo is 0.02 in the midvisible whereas on the low-optical-depth day the uncertainty is 0.08 in the midvisible. On both days, the uncertainty becomes larger in the near infrared. We compute the radiative effect of the aerosol by comparing calculations with and without the aerosol. The effect at the top of the atmosphere (TOA) is to cool the atmosphere by 13 W/sq m on 24 August and 17 W/sq m on 6 September. The effect on the downward flux at the surface is a reduction of 57 W/sq m on 24 August and 200 W/sq m on 6 September. The aerosol effect on the downward flux at the surface is in good agreement with the results reported from the Indian Ocean Experiment (INDOEX).

  9. Inelastic scattering in condensed matter with high intensity moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1991-05-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is not fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using Bragg scattering filters to suppress unwanted radiation. These have led to a Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to make a novel independent determination of interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na metal and the charge density wave satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. Using a specially constructed sample cell which enables us to vary temperatures from -10 C to 110 C, we have begun quasielastic diffusion studies in viscous liquids and current results are summarized. Included are the temperature and Q dependence of the scattering in pentadecane and diffusion in glycerol

  10. A simple property of the contribution of double scattered radiation to the lidar returnes from homogeneous fogs

    International Nuclear Information System (INIS)

    Bruscaglioni, P.

    1979-01-01

    By using the formulas presented in a previous paper for the calculation of the ratio D/S between the contributions of doubly scattered and singly scattered radiation to lidar returns from homogeneous fogs, it is shown that the ratio D/S is proportional to the lidar range, indipendently from the particular model of fog, i.e. from the assumed phase scattering function

  11. Nuclear resonant scattering of synchrotron radiation: Applications in magnetism of layered structures

    International Nuclear Information System (INIS)

    Schlage, Kai; Röhlsberger, Ralf

    2013-01-01

    Highlights: •Depth-resolved determination of magnetic spin structures. •Isotopic probe layers allow for probing selected depths in the sample. •High sensitivity to magnetic domain patterns via diffuse scattering. -- Abstract: Nuclear resonant scattering of synchrotron radiation has become an established tool within condensed-matter research. Synchrotron radiation with its outstanding brilliance, transverse coherence and polarization has opened this field for many unique studies, for fundamental research in the field of light-matter interaction as well as for materials science. This applies in particular for the electronic and magnetic structure of very small sample volumes like micro- and nano-structures and samples under extreme conditions of temperature and pressure. This article is devoted to the application of the technique to nanomagnetic systems such as thin films and multilayers. After a basic introduction into the method, a number of our experiments are presented to illustrate how magnetic spin structures within such layer systems can be revealed

  12. X-ray spectral determination by detection of radiation scattered at different angles

    International Nuclear Information System (INIS)

    Barrea, Raul; Mainardi, R.T.

    1987-01-01

    A precise knowledge of the spectral content of an X-ray beam is of fundamental importance in areas such as X-ray fluorescence analysis by absolute methods, radiodiagnosis, radiotherapy, computed tomography, etc. A simple practical method was developed to determine X-ray spectra emitted by X-ray tubes. It is based on the scattering of the beam on a solid target and detection of this radiation at different angles. This methodology can easily be adapted to the successive attenuation of the beam procedure. Numerical parameter values of a proposed analytical function for the energy spectrum are found measuring the radiation intensity with a suitable detector (ionization chamber or plastic scintillation detector) and equating it with the convolution integral of the proposed spectrum with the incoherent scattering function. This procedure of spectra determination is enclosed in the same group of those generically referred as successive modifications of the irradiation set up used in absolute methods of X-ray fluorescence analysis. (Author) [es

  13. Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media

    Science.gov (United States)

    Liu, L. H.; Tan, J. Y.

    2007-02-01

    A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.

  14. Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media

    International Nuclear Information System (INIS)

    Liu, L.H.; Tan, J.Y.

    2007-01-01

    A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media

  15. A new radiative transfer scattering phase function discretisation approach with inherent energy conservation

    CSIR Research Space (South Africa)

    Roos, TH

    2014-06-01

    Full Text Available large sphere scattering phase function distributions of interest for packed bed radiative heat transfer: the analytic distribution for a diffusely reflecting sphere (a backscattering test case) and the distribution for a transparent sphere (n = 1...

  16. Small angle scattering of X radiation and slow neutrons in structural analyses of amorphous solids

    International Nuclear Information System (INIS)

    Kostorz, G.

    1980-01-01

    Small angle scattering of x radiation and slow neutrons allows to detect inhomogeneities of the dimension of ten to some thousands of Angstroem by the difference in the scattering length density. The progress made during recent years in the development of apparatusses has created the possibility of solving very complicated problems. A first outline shows that in separation processes as well as in investigating extended defects the method of small angle scattering may provide valuable contributions to the analysis of the non-crystalline state

  17. First observation of the depolarization of Thomson scattering radiation by a fusion plasma

    Science.gov (United States)

    Giudicotti, L.; Kempenaars, M.; McCormack, O.; Flanagan, J.; Pasqualotto, R.; contributors, JET

    2018-04-01

    We report the first experimental observation of the depolarization of the Thomson scattering (TS) radiation, a relativistic effect expected to occur in very high {{T}e} plasmas and never observed so far in a fusion machine. A set of unused optical fibers in the collection optics of the high resolution Thomson scattering system of JET has been used to detect the depolarized TS radiation during a JET campaign with {{T}e}≤slant 8 keV . A linear polarizer with the axis perpendicular to the direction of the incident E-field was placed in front of a fiber optic pair observing a region close to the plasma core, while another fiber pair with no polariser simultaneously observed an adjacent plasma region. The measured intensity ratio was found to be consistent with the theory, taking into account sensitivity coefficients of the two measurement channels determined with post-experiment calibrations and Raman scattering. This depolarization effect is at the basis of polarimetric TS, a different and complementary method for the analysis of TS spectra that can provide significant advantages for {{T}e} measurements in very hot plasmas such as in ITER ≤ft({{T}e}≤slant 40 keV \\right) .

  18. A novel radiation detector for removing scattered radiation in chest radiography: Monte Carlo simulation-based performance evaluation

    Science.gov (United States)

    Roh, Y. H.; Yoon, Y.; Kim, K.; Kim, J.; Kim, J.; Morishita, J.

    2016-10-01

    Scattered radiation is the main reason for the degradation of image quality and the increased patient exposure dose in diagnostic radiology. In an effort to reduce scattered radiation, a novel structure of an indirect flat panel detector has been proposed. In this study, a performance evaluation of the novel system in terms of image contrast as well as an estimation of the number of photons incident on the detector and the grid exposure factor were conducted using Monte Carlo simulations. The image contrast of the proposed system was superior to that of the no-grid system but slightly inferior to that of the parallel-grid system. The number of photons incident on the detector and the grid exposure factor of the novel system were higher than those of the parallel-grid system but lower than those of the no-grid system. The proposed system exhibited the potential for reduced exposure dose without image quality degradation; additionally, can be further improved by a structural optimization considering the manufacturer's specifications of its lead contents.

  19. Evaluation of systematic uncertainties caused by radiative corrections in experiments on deep inelastic νsub(l)N-scattering

    International Nuclear Information System (INIS)

    Bardin, D.Yu.

    1979-01-01

    Basing on the simple quark-parton model of strong interaction and on the Weinberg-Salam theory compact formulae are derived for the radiative correction to the charged current induced deep inelastic scattering of neutrinos on nucleons. The radiative correction is found to be around 20-30%, i.e., the value typical for deep inelastic lN-scattering. The results obtained are rather different from the presently available estimations of the effect under consideration

  20. Study of radiative corrections with application to the electron-neutrino scattering

    International Nuclear Information System (INIS)

    Oliveira, L.C.S. de.

    1977-01-01

    The radiative correction method is studied which appears in Quantum Field Theory, for some weak interaction processes. e.g., Beta decay and muon decay. Such a method is then applied to calculate transition probability for the electron-neutrino scattering using the U-A theory as a base. The calculations of infrared and ultraviolet divergences are also discussed. (L.C.) [pt

  1. On the radiative corrections to the neutrino deep inelastic scattering

    International Nuclear Information System (INIS)

    Bardin, D.Yu.; Dokuchaeva, V.A.

    1986-01-01

    A unique set of formulae is presented for the radiative corrections to the double differential cross section of deep inelastic neutrino scattering in channels of charged and neutral currents within a simple quark parton model in a renormalization scheme on mass-shell. It is shown that these cross sections when being integrated up to the one-dimensional distribution or up to the total cross section reproduce many results existing in the literature

  2. Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory

    Science.gov (United States)

    Zeng, Yuehua

    2017-01-01

    This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.

  3. The continuous cut-off method and the relativistic scattering of spin-1/2 particles

    International Nuclear Information System (INIS)

    Dolinszky, T.

    1979-07-01

    A high energy formula, obtained in the framework of the continuous cut-off approach, is shown to improve the correctness of the standard phase shift expression for Dirac scattering by two orders of magnitude in energy. (author)

  4. Scattering and absorption characteristics of aerosols at an urban megacity over IGB: Implications to radiative forcing

    Science.gov (United States)

    Srivastava, A. K.; Bisht, D. S.; Singh, Sachchidanand; Kishore, N.; Soni, V. K.; Singh, Siddhartha; Tiwari, S.

    2018-06-01

    Aerosol scattering and absorption characteristics were investigated at an urban megacity Delhi in the western Indo-Gangetic Basin (IGB) during the period from October 2011 to September 2012 using different in-situ measurements. The scattering coefficient (σsp at 550 nm) varied between 71 and 3014 Mm-1 (mean 710 ± 615 Mm-1) during the entire study period, which was about ten times higher than the absorption coefficient (σabs at 550 nm 67 ± 40 Mm-1). Seasonally, σsp and σabs were substantially higher during the winter/post-monsoon periods, which also gave rise to single scattering albedo (SSA) by 5%. The magnitude of SSA (at 550 nm) varied between 0.81 and 0.94 (mean: 0.89 ± 0.05). Further, the magnitude of scattering Ångström exponent (SAE) and back-scattering Ångström exponent (BAE) showed a wide range from -1.20 to 1.57 and -1.13 to 0.87, respectively which suggests large variability in aerosol sizes and emission sources. Relatively higher aerosol backscatter fraction (b at 550 nm) during the monsoon (0.25 ± 0.10) suggests more inhomogeneous scattering, associated with the coarser dust particles. However, lower value of b during winter (0.13 ± 0.02) is associated with more isotropic scattering due to dominance of smaller size particles. This is further confirmed with the estimated asymmetry parameter (AP at 550 nm), which exhibits opposite trend with b. The aerosol optical parameters were used in a radiative transfer model to estimate aerosol radiative forcing. A mean radiative forcing of -61 ± 22 W m-2 (ranging from -111 to -40 W m-2) was observed at the surface and 42 ± 24 W m-2 (ranging from 18 to 87 W m-2) into the atmosphere, which can give rise to the mean atmospheric heating rate of 1.18 K day-1.

  5. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1990-10-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  6. Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1990-01-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  7. Evaluation of a scattered radiation field in a cluster relevant for multiple-energy X-ray holography

    International Nuclear Information System (INIS)

    Fonda, L.

    1996-09-01

    We analyze theoretically a recent proposal of utilizing synchrotron radiation to generate an electromagnetic scattering field at a specific target atom inside a material sample. The direct wave coming from a wiggler interferes there with the waves scattered by the surrounding atoms. The suggestion is relevant for obtaining atomic holographic images. (author). 23 refs, 2 figs

  8. H(10) due to radiation scattered in a 6 MV Linac for tomotherapy

    International Nuclear Information System (INIS)

    Vega C, H. R.; Esparza H, A.; Garcia R, M. G.; Reyes R, E.; Hernandez A, L.; Rivera, T.

    2017-10-01

    In order to determine the environmental equivalent dose (H(10)), due to the radiation that is dispersed over the body of a patient, 100 thermoluminescent dosimeters (TLD) around 6 MV TomoLINAC were used. The characteristics of the tomotherapy have the disadvantage that the shielding of the bunker increases considerably and for its design validated parameters are used for the conventional Linacs. In order to determine H(10) due to scattered radiation, measurements were made in the vicinity of the isocenter, while the 6 MeV photon beam was applied on a phantom. Also, TLDs were placed on the walls of the bunker that remained for 7 days, where approximately 50 patients were treated per day. At points close to the isocenter, the H(10) has an angular distribution caused by the phantom shape. In the bunker walls the highest H(10) was observed in the primary barriers. In the labyrinth, the impact of the scattered radiation was observed when measuring a greater value of the environmental equivalent dose in the wall furthest from the isocenter compared to the point located closest to it. (Author)

  9. Scatter radiation dose at height of the lens and image quality in interventional cardiology

    International Nuclear Information System (INIS)

    Leguees, Fernando A. Leyton

    2016-01-01

    Cardiologist and other staff members receive high doses of scattered radiation. Cases of radiation-induced cataract among cardiology professionals have been reported in studies, estimates for the dose to eye lens ranged from 450 to 900 mSv per year (without ceiling suspended screen), over several years. Recent surveys regarding high prevalence of lens changes likely induced by radiation exposure suggest an urgent need for improved radiation safety and training, use of eye protection during catheterization procedures, and improved occupational dosimetry. In view of the evidence of radiation injuries, the ICRP recommends limiting the radiation dose to the lens to 20 mSv per year for occupational exposure. A system for optimizing the radiation exposure is the measurement of entrance surface air kerma (K a,e ) and kerma-area product (P KA ) for patient and scattered dose or dose rate at the position for the staff, under clinical working conditions using phantoms and defined technical factors. Correlating K a,e and P KA with the scatter dose, applying the attenuation factors protective devices can enable estimation of the lens doses for operators. The purpose of this work is: to study the possibility of establishing a procedure which is useful for scientific societies and the regulatory authority in the prevention and control of IOE dose and to control and improve the quality of procedures in interventional cardiology as an initiative to raise awareness and optimization of radiological protection. Measurements were taken in different cardiac laboratories. Clinical working conditions were reproduced during the experiments for the different hemodynamic angiographic projections and operating modes used in fluoroscopy and cine. A first K a,e rate reference proposal for the characterization of angiography for the different acquisition modes were 16; 35; 40 and 220 (mGy/min), respectively. Considering the typical PKA values to patient in interventional cardiology procedures

  10. Nuclear resonant scattering of synchrotron radiation from nuclei in the Brownian motion

    International Nuclear Information System (INIS)

    Razdan, Ashok

    2003-01-01

    The time evolution of the coherent forward scattering of the synchrotron radiation for resonant nuclei in Brownian motion is studied. Apart from target thickness, the appearance of the dynamical beats also depends on 'α' which is the ratio of the harmonic force constant to the damping force constant of harmonic oscillator undergoing Brownian motion

  11. Dosimetric measurement of scattered radiation from dental implants in simulated head and neck radiotherapy.

    Science.gov (United States)

    Wang, R; Pillai, K; Jones, P K

    1998-01-01

    The purpose of this study was to examine the dose enhancement at bone-implant interfaces from scattered radiation during simulated head and neck radiotherapy. Three cylindric implant systems with different compositions (pure titanium, titanium-aluminum-vanadium alloy, titanium coated with hydroxyapatite) and a high gold content transmandibular implant system (gold-copper-silver alloy) were studied. Extruded lithium fluoride single crystal chips were used as thermoluminescent material to measure radiation dose enhancement at 0, 1, and 2 mm from the bone-implant interface. The relative doses in buccal, lingual, mesial, and distal directions were also recorded and compared. The results indicated that the highest dose enhancement occurred at a distance of 0 mm from the bone-implant interface for all the implant systems studied. The transmandibular implants had higher scattered radiation than other groups at 0 mm and at 1 mm from the bone-implant interface. There was no significant difference of dose enhancement between buccal, lingual, mesial, and distal directions. Titanium implants coated with hydroxyapatite demonstrated the best results under the simulated irradiation.

  12. Effect of infrared radiation on the threshold behavior of scattering (and decay) processes

    International Nuclear Information System (INIS)

    Mohanty, A.K.; Rosenberg, L.; Spruch, L.

    1988-01-01

    An analysis is given of the effect of radiative corrections on the threshold behavior of the cross section for the inelastic scattering of a light charged particle by a neutral composite system. Explicit results are obtained for a model problem where the target consists of a proton and antiproton bound under their mutual Coulomb interaction and excited to a 2p state from its 1s ground state by electron impact, but the conclusions drawn are applicable, qualitatively, to a wide range of problems. It is found that when the energy resolution Δepsilon-c of the electron detector is small compared with the kinetic energy K' of the electron in the final state, the more careful treatment given here, which properly accounts for the rapid variation of the cross section for scattering energies near threshold, leads to only small modifications in the standard form of the radiative correction factor δ. For sufficiently high resolution in energy of a (high-energy) incident beam, the modification could be significant if Δepsilon-c is comparable with K'. The above considerations are applicable not only to scattering cross sections but to endpoints of the energy spectrum of the charged particle in a decay process in which only one charged particle is emitted

  13. Superradiative scattering magnons

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1980-01-01

    A magnon-photon interaction for the magnetic vector of the electromagnetic wave perpendicular to the direction of magnetization in a ferromagnet is constructed. The magnon part of the interaction is reduced with the use of Bogoliubov transformation. The resulting magnon-photon interaction is found to contain several interesting new radiation effects. The self energy of the magnon is calculated and life times arising from the radiation scattering are predicted. The magnon frequency shift due to the radiation field is found. One of the terms arising from the one-magnon one-photon scattering gives a line width in reasonable agreement with the experimentally measured value of ferromagnetic resonance line width in yttrium iron garnet. Surface magnon scattering is indicated and the contribution of this type of scattering to the radiative line width is discussed. The problem of magnetic superradiance is indicated and it is shown that in anisotropic ferromagnets the emission is proportional to the sqare of the number of magnons and the divergence is considerably minimized. Accordingly the magnetic superradiance emerges as a hyperradiance with much more radiation intensity than in the case of disordered atomic superradiance. (author)

  14. Invited Review Terahertz Transmission, Scattering, Reflection, and Absorption—the Interaction of THz Radiation with Soils

    Science.gov (United States)

    Lewis, R. A.

    2017-07-01

    Terahertz radiation has been proposed as a useful tool in the study of soils and related materials from such diverse perspectives as detection of non-metallic landmines to improving soil fertility by agricultural charcoals produced by pyrolysis of organic material. The main barrier to such applications is that soils are rather opaque at terahertz frequencies. In this article, the main findings to date on the interaction of terahertz radiation with soils are reviewed, organized around the four phenomena of terahertz: transmission, scattering, reflection, and absorption. Terahertz transmission through soils is generally low and decreases with frequency. Terahertz scattering is evident in many THz-soil interactions, as the wavelength of the radiation is of the order of the particle size. Terahertz reflection is important to communications as these develop from the GHz into the THz band. Terahertz absorption on diluted soil samples has been demonstrated to be effective in identifying soil constituents, such as aromatic compounds, and soil contaminants, such as pesticides.

  15. Background radiation in inelastic X-ray scattering and X-ray emission spectroscopy. A study for Johann-type spectrometers

    Science.gov (United States)

    Paredes Mellone, O. A.; Bianco, L. M.; Ceppi, S. A.; Goncalves Honnicke, M.; Stutz, G. E.

    2018-06-01

    A study of the background radiation in inelastic X-ray scattering (IXS) and X-ray emission spectroscopy (XES) based on an analytical model is presented. The calculation model considers spurious radiation originated from elastic and inelastic scattering processes along the beam paths of a Johann-type spectrometer. The dependence of the background radiation intensity on the medium of the beam paths (air and helium), analysed energy and radius of the Rowland circle was studied. The present study shows that both for IXS and XES experiments the background radiation is dominated by spurious radiation owing to scattering processes along the sample-analyser beam path. For IXS experiments the spectral distribution of the main component of the background radiation shows a weak linear dependence on the energy for the most cases. In the case of XES, a strong non-linear behaviour of the background radiation intensity was predicted for energy analysis very close to the backdiffraction condition, with a rapid increase in intensity as the analyser Bragg angle approaches π / 2. The contribution of the analyser-detector beam path is significantly weaker and resembles the spectral distribution of the measured spectra. Present results show that for usual experimental conditions no appreciable structures are introduced by the background radiation into the measured spectra, both in IXS and XES experiments. The usefulness of properly calculating the background profile is demonstrated in a background subtraction procedure for a real experimental situation. The calculation model was able to simulate with high accuracy the energy dependence of the background radiation intensity measured in a particular XES experiment with air beam paths.

  16. Polarimetric and angular light-scattering from dense media: Comparison of a vectorial radiative transfer model with analytical, stochastic and experimental approaches

    International Nuclear Information System (INIS)

    Riviere, Nicolas; Ceolato, Romain; Hespel, Laurent

    2013-01-01

    Our work presents computations via a vectorial radiative transfer model of the polarimetric and angular light scattered by a stratified dense medium with small and intermediate optical thickness. We report the validation of this model using analytical results and different computational methods like stochastic algorithms. Moreover, we check the model with experimental data from a specific scatterometer developed at the Onera. The advantages and disadvantages of a radiative approach are discussed. This paper represents a step toward the characterization of particles in dense media involving multiple scattering. -- Highlights: • A vectorial radiative transfer model to simulate the light scattered by stratified layers is developed. • The vectorial radiative transfer equation is solved using an adding–doubling technique. • The results are compared to analytical and stochastic data. • Validation with experimental data from a scatterometer developed at Onera is presented

  17. Reconciling semiclassical and Bohmian mechanics. III. Scattering states for continuous potentials

    International Nuclear Information System (INIS)

    Trahan, Corey; Poirier, Bill

    2006-01-01

    In a previous paper [B. Poirier, J. Chem. Phys. 121, 4501 (2004)] a unique bipolar decomposition Ψ=Ψ 1 +Ψ 2 was presented for stationary bound states Ψ of the one-dimensional Schroedinger equation, such that the components Ψ 1 and Ψ 2 approach their semiclassical WKB analogs in the large-action limit. The corresponding bipolar quantum trajectories, as defined in the usual Bohmian mechanical formulation, are classical-like and well behaved, even when Ψ has many nodes or is wildly oscillatory. A modification for discontinuous potential stationary scattering states was presented in a second, companion paper [C. Trahan and B. Poirier, J. Chem. Phys.124, 034115 (2006), previous paper], whose generalization for continuous potentials is given here. The result is an exact quantum scattering methodology using classical trajectories. For additional convenience in handling the tunneling case, a constant-velocity-trajectory version is also developed

  18. Multiple scattering effects with cyclical terms in active remote sensing of vegetated surface using vector radiative transfer theory

    Science.gov (United States)

    The energy transport in a vegetated (corn) surface layer is examined by solving the vector radiative transfer equation using a numerical iterative approach. This approach allows a higher order that includes the multiple scattering effects. Multiple scattering effects are important when the optical t...

  19. Unconventional application of the two-flux approximation for the calculation of the Ambartsumyan-Chandrasekhar function and the angular spectrum of the backward-scattered radiation for a semi-infinite isotropically scattering medium

    Science.gov (United States)

    Remizovich, V. S.

    2010-06-01

    It is commonly accepted that the Schwarzschild-Schuster two-flux approximation (1905, 1914) can be employed only for the calculation of the energy characteristics of the radiation field (energy density and energy flux density) and cannot be used to characterize the angular distribution of radiation field. However, such an inference is not valid. In several cases, one can calculate the radiation intensity inside matter and the reflected radiation with the aid of this simplest approximation in the transport theory. In this work, we use the results of the simplest one-parameter variant of the two-flux approximation to calculate the angular distribution (reflection function) of the radiation reflected by a semi-infinite isotropically scattering dissipative medium when a relatively broad beam is incident on the medium at an arbitrary angle relative to the surface. We do not employ the invariance principle and demonstrate that the reflection function exhibits the multiplicative property. It can be represented as a product of three functions: the reflection function corresponding to the single scattering and two identical h functions, which have the same physical meaning as the Ambartsumyan-Chandrasekhar function ( H) has. This circumstance allows a relatively easy derivation of simple analytical expressions for the H function, total reflectance, and reflection function. We can easily determine the relative contribution of the true single scattering in the photon backscattering at an arbitrary probability of photon survival Λ. We compare all of the parameters of the backscattered radiation with the data resulting from the calculations using the exact theory of Ambartsumyan, Chandrasekhar, et al., which was developed decades after the two-flux approximation. Thus, we avoid the application of fine mathematical methods (the Wiener-Hopf method, the Case method of singular functions, etc.) and obtain simple analytical expressions for the parameters of the scattered radiation

  20. A new shielding calculation method for X-ray computed tomography regarding scattered radiation.

    Science.gov (United States)

    Watanabe, Hiroshi; Noto, Kimiya; Shohji, Tomokazu; Ogawa, Yasuyoshi; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Hiraki, Hitoshi; Kida, Tetsuo; Sasanuma, Kazutoshi; Katsunuma, Yasushi; Nakano, Takurou; Horitsugi, Genki; Hosono, Makoto

    2017-06-01

    The goal of this study is to develop a more appropriate shielding calculation method for computed tomography (CT) in comparison with the Japanese conventional (JC) method and the National Council on Radiation Protection and Measurements (NCRP)-dose length product (DLP) method. Scattered dose distributions were measured in a CT room with 18 scanners (16 scanners in the case of the JC method) for one week during routine clinical use. The radiation doses were calculated for the same period using the JC and NCRP-DLP methods. The mean (NCRP-DLP-calculated dose)/(measured dose) ratios in each direction ranged from 1.7 ± 0.6 to 55 ± 24 (mean ± standard deviation). The NCRP-DLP method underestimated the dose at 3.4% in fewer shielding directions without the gantry and a subject, and the minimum (NCRP-DLP-calculated dose)/(measured dose) ratio was 0.6. The reduction factors were 0.036 ± 0.014 and 0.24 ± 0.061 for the gantry and couch directions, respectively. The (JC-calculated dose)/(measured dose) ratios ranged from 11 ± 8.7 to 404 ± 340. The air kerma scatter factor κ is expected to be twice as high as that calculated with the NCRP-DLP method and the reduction factors are expected to be 0.1 and 0.4 for the gantry and couch directions, respectively. We, therefore, propose a more appropriate method, the Japanese-DLP method, which resolves the issues of possible underestimation of the scattered radiation and overestimation of the reduction factors in the gantry and couch directions.

  1. New method for imaging epicardial motion with scattered radiation

    International Nuclear Information System (INIS)

    Tilley, D.G.

    1976-01-01

    A new method for monitoring cardiac motion is described which employs the secondary radiation emerging from the thorax during fluoroscopic x-ray examination of the heart. The motion of selected points on the heart's epicardial surface can be investigated by detecting the intensity variations of radiation scattered in the local vicinity of the heart-lung border. Also discussed are the radiation detectors and signal processing electronics used to produce a voltage analog depicting the periodic displacements of the heart surface. Digital data processing methods are described which are used to accomplish a transformation from a time scale for representing surface motion, to a frequency scale that is better suited for the quantitative analysis of the heart's myocardial dynamics. The dynamic radiographic technique is compared to other methods such as electrocardiography, phonocardiography, radarkymography, and echocardiography; which are also used to sense the dynamic state of the heart. A three-dimensional Monte Carlo computer code is used to investigate the transport of x-radiation in the canine thorax. The Monte Carlo computer studies are used to explore the capabilities and limitations of the dynamic radiograph as it is used to sense motions of the canine heart. Animal studies were conducted with the dynamic radiograph to determine the reproducibility of the examination procedure. Canine case studies are reported showing the effects of increased myocardial contractility resulting from intervention with these inotropic agents

  2. Doubly-scattered-radiation contribution to Lidar returns from fog, evaluated by means of a simple geometrical approach

    International Nuclear Information System (INIS)

    Bruscaglioni, P.; Ismaelli, A.

    1978-01-01

    The contribution of doubly scattered radiation to the return of a monostatic Lidar, used for measurement of atmospheric visibility, is evaluated by means of a simple geometrical scheme. A very narrow laser beam is considered, to obtain an expression of the ratio D/S of doubly scattered power to singly scattered power. This assumption allows an easy consideration of any angle of scattering and the introduction of time into the calculations. Numerical computations are performed for several models of fog. Our results are similar, though a little lower, than the results of other theoretical treatments of this problem based on different assumptions. (author)

  3. Investigation of scattered radiation in 3D whole-body positron emission tomography using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Adam, L.-E.; Brix, G.

    1999-01-01

    The correction of scattered radiation is one of the most challenging tasks in 3D positron emission tomography (PET) and knowledge about the amount of scatter and its distribution is a prerequisite for performing an accurate correction. One concern in 3D PET in contrast to 2D PET is the scatter contribution from activity outside the field-of-view (FOV) and multiple scatter. Using Monte Carlo simulations, we examined the scatter distribution for various phantoms. The simulations were performed for a whole-body PET system (ECAT EXACT HR + , Siemens/CTI) with an axial FOV of 15.5 cm and a ring diameter of 82.7 cm. With (without) interplane septa, up to one (two) out of three detected events are scattered (for a centred point source in a water-filled cylinder that nearly fills out the patient port), whereby the relative scatter fraction varies significantly with the axial position. Our results show that for an accurate scatter correction, activity as well as scattering media outside the FOV have to be taken into account. Furthermore it could be shown that there is a considerable amount of multiple scatter which has a different spatial distribution from single scatter. This means that multiple scatter cannot be corrected by simply rescaling the single scatter component. (author)

  4. A Note on the Radiative and Collisional Branching Ratios in Polarized Radiation Transport with Coherent Scattering

    Science.gov (United States)

    Casini, R.; del Pino Alemán, T.; Manso Sainz, R.

    2017-02-01

    We discuss the implementation of physically meaningful branching ratios between the CRD and partial redistribution contributions to the emissivity of a polarized multi-term atom in the presence of both inelastic and elastic collisions. Our derivation is based on a recent theoretical formulation of partially coherent scattering, and it relies on a heuristic diagrammatic analysis of the various radiative and collisional processes to determine the proper form of the branching ratios. The expression we obtain for the emissivity is {\\boldsymbol{\\varepsilon }}=[{{\\boldsymbol{\\varepsilon }}}(1)-{{\\boldsymbol{\\varepsilon }}}{{f}.{{s}}.}(2)]+{{\\boldsymbol{\\varepsilon }}}(2), where {{\\boldsymbol{\\varepsilon }}}(1) and {{\\boldsymbol{\\varepsilon }}}(2) are the emissivity terms for the redistributed and partially coherent radiation, respectively, and where “f.s.” implies that the corresponding term must be evaluated assuming a flat-spectrum average of the incident radiation. This result is shown to be in agreement with prior literature on the subject in the limit of the unpolarized multi-level atom.

  5. Scattered radiation to gonads: Role of testicular shielding for para-aortic and homolateral illiac nodal radiotherapy

    International Nuclear Information System (INIS)

    Singhal, M.K.; Kapoor, A.; Singh, D.; Bagri, P.K.; Narayan, S.; Nirban, R.K.; Kumar, H.S.

    2014-01-01

    Background: Scattered radiation to organs at risk deserves great attention during radiotherapy especially when the concern is about fertility. Minimizing the delivery of scattered radiation to the gonads while treating abdominal nodes or pelvic fields in male patients requires adequate shielding of the testes to preserve testicular functions. We constructed a testicular shield with cerrobend for the purpose of treatment of seminoma of testis stage I and IIA disease. Materials and methods: An outer shell of coconut of required dimensions was taken as a base over which cerrobend was poured to obtain two semi-spherical half testicular shields. Five patients of seminoma early stage (stage I and IIA) were treated with this testicular shield. Results: The estimated total dose received by the testis by scatter radiation after completion of the treatment was 0.115 Gy (0.28%) of total mid-plane dose of 40 Gy delivered by inverted Y field. At a distance of 8 cm from the inferior field border the 2 cm thick cerrobend testicular shield provided a shielding factor of 3.2/0.3 =10.33. Conclusions: With proper testicular shielding, doses as low as 0.28% of the prescribed dose can be achieved. This low dose is believed to maintain the fertility of the patient.

  6. Scattered radiation to gonads: role of testicular shielding for para-aortic and homolateral illiac nodal radiotherapy.

    Science.gov (United States)

    Singhal, Mukesh Kumar; Kapoor, Akhil; Singh, Daleep; Bagri, Puneet Kumar; Narayan, Satya; Nirban, Raj Kumar; Kumar, Harvindra Singh

    2014-06-01

    Scattered radiation to organs at risk deserves great attention during radiotherapy especially when the concern is about fertility. Minimizing the delivery of scattered radiation to the gonads while treating abdominal nodes or pelvic fields in male patients requires adequate shielding of the testes to preserve testicular functions. We constructed a testicular shield with cerrobend for the purpose of treatment of seminoma of testis stage I and IIA disease. An outer shell of coconut of required dimensions was taken as a base over which cerrobend was poured to obtain two semi-spherical half testicular shields. Five patients of seminoma early stage (stage I and IIA) were treated with this testicular shield. The estimated total dose received by the testis by scatter radiation after completion of the treatment was 0.115Gy (0.28%) of total mid-plane dose of 40Gy delivered by inverted Y field. At a distance of 8cm from the inferior field border the 2cm thick cerrobend testicular shield provided a shielding factor of 3.2/0.3=10.33. With proper testicular shielding, doses as low as 0.28% of the prescribed dose can be achieved. This low dose is believed to maintain the fertility of the patient. Copyright © 2014. Production and hosting by Elsevier B.V.

  7. Influence of multiple scattering of a relativistic electron in a periodic layered medium on coherent X-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Blazhevich, S. V.; Kos’kova, T. V.; Noskov, A. V., E-mail: noskovbupk@mail.ru [Belgorod State National Research University (Russian Federation)

    2016-01-15

    A dynamic theory of coherent X-ray radiation generated in a periodic layered medium by a relativistic electron multiply scattered by target atoms has been developed. The expressions describing the spectral–angular characteristics of parametric X-ray radiation and diffracted transition radiation are derived. Numerical calculations based on the derived expressions have been performed.

  8. Reduction of the scatter dose to the testicle outside the radiation treatment fields

    International Nuclear Information System (INIS)

    Kubo, H.; Shipley, W.U.

    1982-01-01

    A technique is described to reduce the dose to the contralateral testicle of patients with testis tumors during retroperitoneal therapy with 10 MV X-rays. When a conventional clam-shell shielding device was used, the dose to the testis from the photons scattered by the patient and the collimator jaws was found to be about 1.6% of the prescribed midplane dose. A more substantial gonadal shield made of low melting Ostalloy, that reduced further the dose from internal scattered X rays, was therefore designed. A 10 cm thick lead scrotal block above the scrotum immediately outside the field is shown to reduce the external scattered radiation to negligible levels. Using the shield and the block, it is possible to reduce the dose to the testicle to one-tenth of one percent of the prescribed midplane dose

  9. Reduction of the scatter dose to the testicle outside the radiation treatment fields

    International Nuclear Information System (INIS)

    Kubo, H.; Shipley, W.U.

    1982-01-01

    A technique is described to reduce the dose to the contralateral testicle of patients with testis tumors during retroperitoneal therapy with 10 MV X rays. When a conventional clam-shell shielding device was used, the dose to the testis from the photons scattered by the patient and collimator jaws was found to be about 1.6% of the prescribed midplane dose. A more substantial gonadal shield made of low melting point Ostalloy, that reduced further the dose from internal scattered X rays, was therefore designed. A 10 cm thick lead scrotal block above the scrotum immediately outside the field is shown to reduce the external scattering radiation to negligible levels. Using the shield and the block, it is possible to reduce the dose to the testicle to one-tenth of one percent of the prescribed midplane dose

  10. Subdiffraction field localisation in the scattering of femtosecond laser radiation by a dielectric microsphere

    Energy Technology Data Exchange (ETDEWEB)

    Geints, Yu E; Zemlyanov, A A; Panina, E K [V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

    2014-01-31

    The time dynamics of the optical field was theoretically considered in the near-field diffraction zone in the scattering of a femtosecond laser pulse by a transparent spherical microparticle. The spatial region of field focusing by the particle (the 'photonic jet' zone) was investigated; the evolution of the jet shape and the peak intensity in this region were analysed. For the first time it was determined that an extremely tight optical field localisation to a subdiffraction size is possible at a certain (resonance) temporal stage of photonic jet development. (radiation scattering)

  11. Compton-scatter tissue densitometry: calculation of single and multiple scatter photon fluences

    International Nuclear Information System (INIS)

    Battista, J.J.; Bronskill, M.J.

    1978-01-01

    The accurate measurement of in vivo electron densities by the Compton-scatter method is limited by attenuations and multiple scattering in the patient. Using analytic and Monte Carlo calculation methods, the Clarke tissue density scanner has been modelled for incident monoenergetic photon energies from 300 to 2000 keV and for mean scattering angles of 30 to 130 degrees. For a single detector focussed to a central position in a uniform water phantom (25 x 25 x 25 cm 3 ) it has been demonstrated that: (1) Multiple scatter contamination is an inherent limitation of the Compton-scatter method of densitometry which can be minimised, but not eliminated, by improving the energy resolution of the scattered radiation detector. (2) The choice of the incident photon energy is a compromise between the permissible radiation dose to the patient and the tolerable level of multiple scatter contamination. For a mean scattering angle of 40 degrees, the intrinsic multiple-single scatter ratio decreases from 64 to 35%, and the radiation dose (per measurement) increases from 1.0 to 4.1 rad, as the incident photon energy increases from 300 to 2000 keV. These doses apply to a sampled volume of approximately 0.3 cm 3 and an electron density precision of 0.5%. (3) The forward scatter densitometer configuration is optimum, minimising both the dose and the multiple scatter contamination. For an incident photon energy of 1250 keV, the intrinsic multiple-single scatter ratio reduces from 122 to 27%, and the dose reduces from 14.3 to 1.2 rad, as the mean scattering angle decreases from 130 to 30 degrees. These calculations have been confirmed by experimental measurements. (author)

  12. Confluent Heun functions and the physics of black holes: Resonant frequencies, Hawking radiation and scattering of scalar waves

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)

    2016-10-15

    We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild black hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied. - Highlights: • Charged massive scalar field in the dyon black hole and massless scalar field in the Ernst spacetime are analyzed. • The confluent Heun functions are applied to obtain the solution of the Klein–Gordon equation. • The resonant frequencies are obtained. • The Hawking radiation and the scattering process of scalar waves are examined.

  13. A Monte Carlo study of the energy spectra and transmission characteristics of scattered radiation from x-ray computed tomography.

    Science.gov (United States)

    Platten, David John

    2014-06-01

    Existing data used to calculate the barrier transmission of scattered radiation from computed tomography (CT) are based on primary beam CT energy spectra. This study uses the EGSnrc Monte Carlo system and Epp user code to determine the energy spectra of CT scatter from four different primary CT beams passing through an ICRP 110 male reference phantom. Each scatter spectrum was used as a broad-beam x-ray source in transmission simulations through seventeen thicknesses of lead (0.00-3.50 mm). A fit of transmission data to lead thickness was performed to obtain α, β and γ parameters for each spectrum. The mean energy of the scatter spectra were up to 12.3 keV lower than that of the primary spectrum. For 120 kVp scatter beams the transmission through lead was at least 50% less than predicted by existing data for thicknesses of 1.5 mm and greater; at least 30% less transmission was seen for 140 kVp scatter beams. This work has shown that the mean energy and half-value layer of CT scatter spectra are lower than those of the corresponding primary beam. The transmission of CT scatter radiation through lead is lower than that calculated with currently available data. Using the data from this work will result in less lead shielding being required for CT scanner installations.

  14. Plasma scattering measurement using a submillimeter wave gyrotron as a radiation source

    International Nuclear Information System (INIS)

    Ogawa, I.; Idehara, T.; Itakura, Y.; Myodo, M.; Hori, T.; Hatae, T.

    2004-01-01

    Plasma scattering measurement is an effective technique to observe low frequency density fluctuations excited in plasma. The spatial and wave number resolutions and the S/N ratio of measurement depend on the wavelength range, the size and the intensity of a probe beam. A well-collimated, submillimeter wave beam is suitable for improving the spatial and wave number resolutions. Application of high frequency gyrotron is effective in improving the S/N ratio of the measurement because of its capacity to deliver high power. Unlike the molecular vapor lasers, the gyrotrons generate diverging beam of radiation with TE mn mode structure. It is therefore necessary to convert the output radiation into a Gaussian beam. A quasi-optical antenna is a suitable element for the conversion system under consideration since it is applicable to several TE 0n and TE 1n modes. In order to apply the gyrotron to plasma scattering measurement, we have stabilized the output (P = 110 W, f = 354 GHz) of gyrotron up to the level (ΔP/P < 1 %, Δf< 10 kHz). The gyrotron output can be stabilized by decreasing the fluctuation of the cathode potential. (authors)

  15. Quantum theory of the laser radiation scattering by electrons in magnetic fields

    International Nuclear Information System (INIS)

    Rochlin, H.

    1981-08-01

    A system composed of an electron in a static magnetic field interacting with the quantized electromagnetic field, within the electric-dipole and the nonrelativistic approximations (with a cutoff in momentum space) is considered. The Heisenberg equations are solved exactly and the time evolution of the electric field is determined. This result is then used to obtain the spectrum of the scattered radiation when the initial state of the field is coherent, aplying the theory of photodetection. This theory is thoroughly discussed. Several expressions proposed in the literature for the time-dependent spectrum are compared and conditions for the equivalence of these expressions are analyzed. Moreover, inaccuracies in previous treatments of the theory of photodetection are corrected. The results allow the line shape of the scattered radiation to be analyzed for magnetic fields up to 10 12 G. The quantization of the eletromagnetic field allows one to consider the role of the natural line width, which becomes important near ressonance. In particular, it is analyzed the dependence of the line width with the magnetic field. This treatment includes the renormalization of the electron mass, which keeps the results finite when the cutoff goes to infinity. (Author) [pt

  16. Measurement of the ratio of liquid to solid phases in a continuous ingot

    International Nuclear Information System (INIS)

    Deryabina, G.N.; Ripp, A.G.

    1980-01-01

    A radiometric method of measuring the ratio of liquid and solid phases (crust thickness) in a continuous ingot for automation of the continuous steel casting process, has been proposed. The essence of the method is, that radiation flux, bearing information on the object tested, is transformed in a succession of electric pulses, which is processed afterwords for obtaining necessary information. In this case either the flux of non-scattered radiation, passed through the object, or the flux of single-scattered radiation reflected from the object is registered. Block-diagram and specifications of a radiometric device with the Co source of 50 gxequiv. Ra activity developed for this purpose are presented. The technique for calibration ob the device and the results of its tests, are described. It is shown, that introduction of such devices for the control crust thickness at the installations of continuous steel casting of metallurgical works would permit to exercise casting in the optimum regime, to exclude metal leakage, to increase its quality and yield of the useful metal

  17. An exploration in acoustic radiation force experienced by cylindrical shells via resonance scattering theory.

    Science.gov (United States)

    Rajabi, Majid; Behzad, Mehdi

    2014-04-01

    In nonlinear acoustic regime, a body insonified by a sound field is known to experience a steady force that is called the acoustic radiation force (RF). This force is a second-order quantity of the velocity potential function of the ambient medium. Exploiting the sufficiency of linear solution representation of potential function in RF formulation, and following the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of the resonant field and a background (non-resonant) component, we will show that the radiation force is a composition of three components: background part, resonant part and their interaction. Due to the nonlinearity effects, each part contains the contribution of pure partial waves in addition to their mutual interaction. The numerical results propose the residue component (i.e., subtraction of the background component from the RF) as a good indicator of the contribution of circumferential surface waves in RF. Defining the modal series of radiation force function and its components, it will be shown that within each partial wave, the resonance contribution can be synthesized as the Breit-Wigner form for adequately none-close resonant frequencies. The proposed formulation may be helpful essentially due to its inherent value as a canonical subject in physical acoustics. Furthermore, it may make a tunnel through the circumferential resonance reducing effects on radiation forces. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Evaluation of a method for correction of scatter radiation in thorax cone beam CT

    International Nuclear Information System (INIS)

    Rinkel, J.; Dinten, J.M.; Esteve, F.

    2004-01-01

    Purpose: Cone beam CT (CBCT) enables three-dimensional imaging with isotropic resolution. X-ray scatter estimation is a big challenge for quantitative CBCT imaging of thorax: scatter level is significantly higher on cone beam systems compared to collimated fan beam systems. The effects of this scattered radiation are cupping artefacts, streaks, and quantification inaccuracies. The beam stops conventional scatter estimation approach can be used for CBCT but leads to a significant increase in terms of dose and acquisition time. At CEA-LETI has been developed an original scatter management process without supplementary acquisition. Methods and Materials: This Analytical Plus Indexing-based method (API) of scatter correction in CBCT is based on scatter calibration through offline acquisitions with beam stops on lucite plates, combined to an analytical transformation issued from physical equations. This approach has been applied with success in bone densitometry and mammography. To evaluate this method in CBCT, acquisitions from a thorax phantom with and without beam stops have been performed. To compare different scatter correction approaches, Feldkamp algorithm has been applied on rough data corrected from scatter by API and by beam stops approaches. Results: The API method provides results in good agreement with the beam stops array approach, suppressing cupping artefact. Otherwise influence of the scatter correction method on the noise in the reconstructed images has been evaluated. Conclusion: The results indicate that the API method is effective for quantitative CBCT imaging of thorax. Compared to a beam stops array method it needs a lower x-ray dose and shortens acquisition time. (authors)

  19. Numerical prediction of heat transfer by natural convection and radiation in an enclosure filled with an isotropic scattering medium

    International Nuclear Information System (INIS)

    Moufekkir, F.; Moussaoui, M.A.; Mezrhab, A.; Naji, H.; Lemonnier, D.

    2012-01-01

    This paper deals with the numerical solution for natural convection and volumetric radiation in an isotropic scattering medium within a heated square cavity using a hybrid thermal lattice Boltzmann method (HTLBM). The multiple relaxation time lattice Boltzmann method (MRT-LBM) has been coupled to the finite difference method (FDM) to solve momentum and energy equations, while the discrete ordinates method (DOM) has been adopted to solve the radiative transfer equation (RTE) using the S8 quadrature. Based on these approaches, the effects of various influencing parameters such as the Rayleigh number (Ra), the wall emissivity (ε ι ), the Planck number (Pl), and the scattering albedo (ω), have been considered. The results presented in terms of isotherms, streamlines and averaged Nusselt number, show that in absence of radiation, the temperature and the flow fields are centro-symmetrics and the cavity core is thermally stratified. However, radiation causes an overall increase in the temperature and velocity gradients along both thermally active walls. The maximum heat transfer rate is obtained when the surfaces of the enclosure walls are regarded as blackbodies. It is also seen that the scattering medium can generate a multicellular flow.

  20. Radiation reaction in a continuous focusing channel

    International Nuclear Information System (INIS)

    Huang, Z.; Chen, P.; Ruth, R.D.

    1995-01-01

    We show that the radiation damping rate of the transverse action of a particle in a straight, continuous focusing system is independent of the particle energy, and that no quantum excitation is induced. This absolute damping effect leads to the existence of a transverse ground state to which the particle inevitably decays and yields the minimum beam emittance that one can ever attain, γε min =ℎ/2mc, limited only by the uncertainty principle. Because of adiabatic invariance, the particle can be accelerated along the focusing channel in its ground state without any radiation energy loss

  1. Scattering of point particles by black holes: Gravitational radiation

    Science.gov (United States)

    Hopper, Seth; Cardoso, Vitor

    2018-02-01

    Gravitational waves can teach us not only about sources and the environment where they were generated, but also about the gravitational interaction itself. Here we study the features of gravitational radiation produced during the scattering of a pointlike mass by a black hole. Our results are exact (to numerical error) at any order in a velocity expansion, and are compared against various approximations. At large impact parameter and relatively small velocities our results agree to within percent level with various post-Newtonian and weak-field results. Further, we find good agreement with scaling predictions in the weak-field/high-energy regime. Lastly, we achieve striking agreement with zero-frequency estimates.

  2. A successive order of scattering model for solving vector radiative transfer in the atmosphere

    International Nuclear Information System (INIS)

    Min Qilong; Duan Minzheng

    2004-01-01

    A full vector radiative transfer model for vertically inhomogeneous plane-parallel media has been developed by using the successive order of scattering approach. In this model, a fast analytical expansion of Fourier decomposition is implemented and an exponent-linear assumption is used for vertical integration. An analytic angular interpolation method of post-processing source function is also implemented to accurately interpolate the Stokes vector at arbitrary angles for a given solution. It has been tested against the benchmarks for the case of randomly orientated oblate spheroids, illustrating a good agreement for each stokes vector (within 0.01%). Sensitivity tests have been conducted to illustrate the accuracy of vertical integration and angle interpolation approaches. The contribution of each scattering order for different optical depths and single scattering albedos are also analyzed

  3. The studies of radiation distorations in CdS single crystals by using a proton back-scattering method

    International Nuclear Information System (INIS)

    Grigor'ev, A.N.; Dikij, N.P.; Matyash, P.P.; Nikolajchuk, L.I.; Pivovar, L.I.

    1974-01-01

    The radiation defects in semiconducting CdS single crystals induced during doping with 140 keV Na ions (10 15 -2.10 16 ion/cm 2 ) were studied by the orientation dependence of 700 keV proton backscattering. The absence of discrete peaks in the scattered proton eneryg spectra indicates a small contribution of direct scattering at large angles. The defects formed during doping increase the fractionof dechanneled particles, which are then scattered at large anlges. No amorphization of CdS was observed at high Na ion dose 2x10 16 ion/cm 2

  4. Evaluation of a scattering correction method for high energy tomography

    Science.gov (United States)

    Tisseur, David; Bhatia, Navnina; Estre, Nicolas; Berge, Léonie; Eck, Daniel; Payan, Emmanuel

    2018-01-01

    One of the main drawbacks of Cone Beam Computed Tomography (CBCT) is the contribution of the scattered photons due to the object and the detector. Scattered photons are deflected from their original path after their interaction with the object. This additional contribution of the scattered photons results in increased measured intensities, since the scattered intensity simply adds to the transmitted intensity. This effect is seen as an overestimation in the measured intensity thus corresponding to an underestimation of absorption. This results in artifacts like cupping, shading, streaks etc. on the reconstructed images. Moreover, the scattered radiation provides a bias for the quantitative tomography reconstruction (for example atomic number and volumic mass measurement with dual-energy technique). The effect can be significant and difficult in the range of MeV energy using large objects due to higher Scatter to Primary Ratio (SPR). Additionally, the incident high energy photons which are scattered by the Compton effect are more forward directed and hence more likely to reach the detector. Moreover, for MeV energy range, the contribution of the photons produced by pair production and Bremsstrahlung process also becomes important. We propose an evaluation of a scattering correction technique based on the method named Scatter Kernel Superposition (SKS). The algorithm uses a continuously thickness-adapted kernels method. The analytical parameterizations of the scatter kernels are derived in terms of material thickness, to form continuously thickness-adapted kernel maps in order to correct the projections. This approach has proved to be efficient in producing better sampling of the kernels with respect to the object thickness. This technique offers applicability over a wide range of imaging conditions and gives users an additional advantage. Moreover, since no extra hardware is required by this approach, it forms a major advantage especially in those cases where

  5. Universal analytical scattering form factor for shell-, core-shell, or homogeneous particles with continuously variable density profile shape.

    Science.gov (United States)

    Foster, Tobias

    2011-09-01

    A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society

  6. Study of electron densities of normal and neoplastic human breast tissues by Compton scattering using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil)

    2012-07-15

    Electron densities of 33 samples of normal (adipose and fibroglangular) and neoplastic (benign and malignant) human breast tissues were determined through Compton scattering data using a monochromatic synchrotron radiation source and an energy dispersive detector. The area of Compton peaks was used to determine the electron densities of the samples. Adipose tissue exhibits the lowest values of electron density whereas malignant tissue the highest. The relationship with their histology was discussed. Comparison with previous results showed differences smaller than 4%. - Highlights: Black-Right-Pointing-Pointer Electron density of normal and neoplastic breast tissues was measured using Compton scattering. Black-Right-Pointing-Pointer Monochromatic synchrotron radiation was used to obtain the Compton scattering data. Black-Right-Pointing-Pointer The area of Compton peaks was used to determine the electron densities of samples. Black-Right-Pointing-Pointer Adipose tissue shows the lowest electron density values whereas the malignant tissue the highest. Black-Right-Pointing-Pointer Comparison with previous results showed differences smaller than 4%.

  7. Study of electron densities of normal and neoplastic human breast tissues by Compton scattering using synchrotron radiation

    International Nuclear Information System (INIS)

    Antoniassi, M.; Conceição, A.L.C.; Poletti, M.E.

    2012-01-01

    Electron densities of 33 samples of normal (adipose and fibroglangular) and neoplastic (benign and malignant) human breast tissues were determined through Compton scattering data using a monochromatic synchrotron radiation source and an energy dispersive detector. The area of Compton peaks was used to determine the electron densities of the samples. Adipose tissue exhibits the lowest values of electron density whereas malignant tissue the highest. The relationship with their histology was discussed. Comparison with previous results showed differences smaller than 4%. - Highlights: ► Electron density of normal and neoplastic breast tissues was measured using Compton scattering. ► Monochromatic synchrotron radiation was used to obtain the Compton scattering data. ► The area of Compton peaks was used to determine the electron densities of samples. ► Adipose tissue shows the lowest electron density values whereas the malignant tissue the highest. ► Comparison with previous results showed differences smaller than 4%.

  8. Application of correlation techniques to the angular spectrum of scattered radiation from tokamak plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.

    1990-01-01

    In the limit of the first Born approximation for a partially coherent secondary source consisting of a spatially random plasma illuminated by a coherent plane wave, it is shown that the spectral coherence of the scattered radiation conveys information on the three-dimensional intensity distribution of the secondary source

  9. Scattering of lower-hybrid waves by drift-wave density fluctuations: solutions of the radiative transfer equation

    International Nuclear Information System (INIS)

    Andrews, P.L.; Perkins, F.W.

    1983-01-01

    The investigation of the scattering of lower-hybrid waves by density fluctuations arising from drift waves in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. The propagation of the lower-hybrid waves is well represented by a radiative transfer equation when the scale size of the density fluctuations is small compared to the overall plasma size. The radiative transfer equation is solved in two limits: first, the forward scattering limit, where the scale size of density fluctuations is large compared to the lower-hybrid perpendicular wavelength, and second, the large-angle scattering limit, where this inequality is reversed. The most important features of these solutions are well represented by analytical formulas derived by simple arguments. Based on conventional estimates for density fluctuations arising from drift waves and a parabolic density profile, the optical depth tau for scattering through a significant angle, is given by tauroughly-equal(2/N 2 /sub parallel/) (#betta#/sub p/i0/#betta#) 2 (m/sub e/c 2 /2T/sub i/)/sup 1/2/ [c/α(Ω/sub i/Ω/sub e/)/sup 1/2/ ], where #betta#/sub p/i0 is the central ion plasma frequency and T/sub i/ denotes the ion temperature near the edge of the plasma. Most of the scattering occurs near the surface. The transmission through the scattering region scales as tau - 1 and the emerging intensity has an angular spectrum proportional to cos theta, where sin theta = k/sub perpendicular/xB/sub p//(k/sub perpendicular/B/sub p/), and B/sub p/ is the poloidal field

  10. Inelastic X-ray scattering activities in Europe

    International Nuclear Information System (INIS)

    Dorner, B.

    1984-01-01

    Inelastic X-ray scattering requires an energy determination before and after the scattering process together with a technique to vary at least one energy continuously in a controlled way. Sufficiently monochromatic beams can only be produced by Bragg reflection from single crystals. Stationary X-ray monochromators are standard equipment of conventional X-ray generators to select a particular characteristic line. Quite often they are curved to focus on the sample or the detector. Devices with variable Bragg angle have been and are used as analyzers in Compton scattering which is inelastic X-ray scattering with moderate resolution. With the rapidly increasing availability of synchrotron radiation (SR) monochromators and analyzers became more and more sophisticated improving momentum (Q) resolution and only somewhat the energy resolution ΔE which stays in the order of eV. Very high energy resolution can only be obtained with Bragg angles Theta near to 90 0 . This field is the topic of the present paper

  11. Response of the seminiferous epithelium to scattered radiation in seminoma patients

    International Nuclear Information System (INIS)

    Schlappack, O.K.; Kratzik, C.; Schmidt, W.; Spona, J.; Schuster, E.

    1988-01-01

    Semen and blood samples were obtained, at 3-month intervals over 12 to 28 months, from patients who underwent subdiaphragmal radiation after orchidectomy for seminoma testis. Before radiotherapy a mean (+/- SE) semen volume of 4.7 +/- 0.5 ml, a mean sperm count of 44.4 +/- 13.5 x 10(6)/ml, a mean percentage of motile cells of 20.3 +/- 5.2, a mean percentage of morphologically normal spermatozoa of 13.4 +/- 5.4, a mean percentage of swollen sperm of 39.6 +/- 7.4, and a mean serum follicle-stimulating hormone (FSH) value of 8.3 +/- 1.2 mIU/ml was found. The mean testicular dose from scatter was 62 +/- 5 cGy (range, 34 to 95 cGy). Sperm counts between 0 and 2.75 x 10(6)/ml were seen at 6.8 +/- 0.6 months and recovery to values greater than 2.25 x 10(6)/ml at 11.8 +/- 0.8 months after the start of radiation. Peak FSH values of 19.2 +/- 1.6 mIU/ml were obtained at 6.7 +/- 0.9 months after the start of irradiation. After recovery mean semen volume was 3.9 +/- 0.4 ml, mean sperm count 34.6 +/- 5.6 x 10(6)/ml, the mean percentage of motile cells 42.5 +/- 6.0, the mean percentage of swollen sperm 58.7 +/- 6.8, and the mean percentage of spermatozoa with normal morphology 23.4 +/- 5.1. Only motility was significantly different (P less than 0.01) from pretreatment values. The elevation of FSH values with time after start of radiotherapy reflected the toxicity to spermatogenesis but no correlation was found between peak FSH levels and scattered radiation dose. Also, neither the time from start of radiotherapy to sperm count nadir or recovery nor the time to peak FSH levels was significantly correlated with radiation dose

  12. Relationship between the Kubelka-Munk scattering and radiative transfer coefficients.

    Science.gov (United States)

    Thennadil, Suresh N

    2008-07-01

    The relationship between the Kubelka-Munk (K-M) and the transport scattering coefficient is obtained through a semi-empirical approach. This approach gives the same result as that given by Gate [Appl. Opt.13, 236 (1974)] when the incident beam is diffuse. This result and those given by Star et al. [Phys. Med. Biol.33, 437 (1988)] and Brinkworth [Appl. Opt.11, 1434 (1972)] are compared with the exact solution of the radiative transfer equation over a large range of optical properties. It is found that the latter expressions, which include an absorption component, do not give accurate results over the range considered. Using the semi-empirical approach, the relationship between the K-M and the transport scattering coefficient is derived for the case where the incident light is collimated. It is shown that although the K-M equation is derived based on diffuse incident light, it can also represent very well the reflectance from a slab of infinite thickness when the incident light is collimated. However, in this case the relationship between the coefficients has to include a function that is dependent on the anisotropy factor. Analysis indicates that the K-M transform achieves the objective of obtaining a measure that gives the ratio of absorption to scattering effects for both diffuse and collimated incident beams over a large range of optical properties.

  13. Experimental study of TJ-1 plasma using scattering and radiation emission techniques

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1987-01-01

    The Thomson scattering system of TJ-1 is described in detail. The radial profiles of Te and ne obtained in TJ-1 discharges are presented. This data make possible to deduce characteristic parameters of the plasma confinement in this machine, as energy confinement times, Zeff B. Using also radiation measurements (global and in the visible range) we obtained the particle confinement time and Zeff without non experimental assumptions. (Author) 52 refs

  14. Anti-scatter grids, applied in diagnostic radiology

    International Nuclear Information System (INIS)

    Porubszky, T.

    2012-01-01

    During imaging in diagnostic radiology, X-ray beam is scattered on all media between X-ray source and X-ray image receptor. The most important one from these is the patient itself. Scattered radiation, reaching X-ray image receptor - which may be even 5-6 times more intensive than X-ray pattern, in case of pelvis of a corpulent patient - reduces image contrast, impairs detail visibility and, moreover - in case of examinations during which staff stays in the controlled area, it causes radiation exposure of the staff. For diminishing scattered radiation, in principle, there are two possibilities. One of them is the so-called air gap, i.e. increasing the distance between the patient and the X-ray image receptor; however, because of the geometric magnification it is not always applicable or appropriate. The other way is application of anti-scatter grids directly in front of the X-ray image receptor. Interest of the patient is firstly the image, appropriate for diagnosis, and only after it the possible lowest radiation exposure. In most cases radiation exposure is optimized if image quality impairing effect of scattered radiation is decreased, although entrance skin dose and so radiation exposure of the patient may increase then by a factor of 2 to 5. Examinations of babies and small children as well as extremities, however, are exceptions: in these cases antiscatter grids are to be removed from the beam as amount of scattered radiation is very small, therefore optimizing radiation exposure in these cases reached by examination without grid. The presentation deals with the most important characteristics of anti-scatter grids as new edition of their international standard will be published next year. (author)

  15. Automated Computer-Based Facility for Measurement of Near-Field Structure of Microwave Radiators and Scatterers

    DEFF Research Database (Denmark)

    Mishra, Shantnu R.;; Pavlasek, Tomas J. F.;; Muresan, Letitia V.

    1980-01-01

    An automatic facility for measuring the three-dimensional structure of the near fields of microwave radiators and scatterers is described. The amplitude and phase for different polarization components can be recorded in analog and digital form using a microprocessor-based system. The stored data...... are transferred to a large high-speed computer for bulk processing and for the production of isophot and equiphase contour maps or profiles. The performance of the system is demonstrated through results for a single conical horn, for interacting rectangular horns, for multiple cylindrical scatterers...

  16. Correlation between scatter radiation dose at the height of the operators eye and dose to patient for different angiographies projections

    Energy Technology Data Exchange (ETDEWEB)

    Leyton, F.; Nogueira, M. S.; Da Silva, T. A. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Post-graduation in Sciences and Technology of Radiations, Minerals and Materials, Pte. Antonio Carlos No. 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Gubolino, L.; Pivetta, M. R. [Hospital dos Fornecedores de Cana de Piracicaba, Av. Barao de Valenca 616, 13405-233 Piracicaba (Brazil); Ubeda, C., E-mail: leyton.fernando@gmail.com [Tarapaca University, Health Sciences Faculty, Radiological Sciences Center, Av. Gral. Velasquez 1775, 1000007 Arica, Arica and Parinacota (Chile)

    2015-10-15

    Cases of radiation induced cataract among cardiology professionals have been reported in studies. In view of evidence of radiation injuries, the ICRP recommends limiting the radiation dose to the lens to 20 mSv per year for occupational exposure. The aim of this works was to report scattered radiation doses at the height of the operators eye in an interventional cardiology facility from procedures performed without use of radiation protection devices, correlated with different angiographic projections and operational modes. Measurements were made in a cardiac laboratory with an angiography X-ray system GE equipped with flat-panel detector. PMMA plates of 30 x 30 x 5 cm were used to simulate a patient with a thickness of 20 cm. Two fluoroscopy modes (low and normal, 15 frame/s), cine mode 15 frame/s. Four angiographic projections anterior posterior (Ap), lateral (Lat), left anterior oblique caudal (spider) and left anterior oblique cranial (Lao-45/cra-30) and a cardiac protocol for patient between 70 to 90 kg was used. Measurements of phantom entrance doses rate and scatter doses rate were performed with two Unfors Xi plus. The detector measuring scatter radiation was positioned at the usual distance of the cardiologists eyes during working conditions (1 m from the isocenter and 1.7 m from the floor). There is a good linear correlation between the kerma-area product and scatter dose at the lens. An experimental correlation factor of 2.3; 12.0; 12.2 and 17.6 μSv/Gy cm{sup 2} were found for the Ap, Lao/cra, spider and Lat projections, respectively. The entrance dose of PMMA for fluoroscopy low, medium and cine was 13, 39 and 282 mGy/min, respectively to Ap. (Author)

  17. Correlation between scatter radiation dose at the height of the operators eye and dose to patient for different angiographies projections

    International Nuclear Information System (INIS)

    Leyton, F.; Nogueira, M. S.; Da Silva, T. A.; Gubolino, L.; Pivetta, M. R.; Ubeda, C.

    2015-10-01

    Cases of radiation induced cataract among cardiology professionals have been reported in studies. In view of evidence of radiation injuries, the ICRP recommends limiting the radiation dose to the lens to 20 mSv per year for occupational exposure. The aim of this works was to report scattered radiation doses at the height of the operators eye in an interventional cardiology facility from procedures performed without use of radiation protection devices, correlated with different angiographic projections and operational modes. Measurements were made in a cardiac laboratory with an angiography X-ray system GE equipped with flat-panel detector. PMMA plates of 30 x 30 x 5 cm were used to simulate a patient with a thickness of 20 cm. Two fluoroscopy modes (low and normal, 15 frame/s), cine mode 15 frame/s. Four angiographic projections anterior posterior (Ap), lateral (Lat), left anterior oblique caudal (spider) and left anterior oblique cranial (Lao-45/cra-30) and a cardiac protocol for patient between 70 to 90 kg was used. Measurements of phantom entrance doses rate and scatter doses rate were performed with two Unfors Xi plus. The detector measuring scatter radiation was positioned at the usual distance of the cardiologists eyes during working conditions (1 m from the isocenter and 1.7 m from the floor). There is a good linear correlation between the kerma-area product and scatter dose at the lens. An experimental correlation factor of 2.3; 12.0; 12.2 and 17.6 μSv/Gy cm 2 were found for the Ap, Lao/cra, spider and Lat projections, respectively. The entrance dose of PMMA for fluoroscopy low, medium and cine was 13, 39 and 282 mGy/min, respectively to Ap. (Author)

  18. Evaluation of the spectral distribution of X-ray beams from measurements on the scattered radiation

    International Nuclear Information System (INIS)

    Casnati, E.; Baraldi, C.

    1980-01-01

    Most of the phenomena activated by photons with energies below 100 keV show an apparent or real dependence on the quantum energy. Therefore, knowledge of the beam energy characteristics is of primary importance for interpretation of the irradiation results. The greatest difficulty arises from the high flux density of the beams usually employed which does not allow direct measurements of the beam. A method was developed which permits evaluation of the spectral distribution of the X-ray beam from a spectrometric measurement of the radiation scattered by a thin foil of a suitable metal. This makes possible a new and more rational approach to the measurement of X-rays in the energy range where the interaction parameters show a large photon energy dependence. The corrections required by the presence of some collateral effects, among which the most important is the coexistence of the coherent and incoherent scattering, must be evaluated. The knowledge of the spectral distribution is of immediate usefulness for studies of radiation damage in biological and other materials, for the calibration of radiation measuring instruments and for the improvement of the radiological instrumentation response which contributes to reducing the patient's dose. (H.K.)

  19. Source of X-ray radiation based on back compton scattering

    CERN Document Server

    Bulyak, E V; Karnaukhov, I M; Kononenko, S G; Lapshin, V G; Mytsykov, A O; Telegin, Yu P; Shcherbakov, A A; Zelinsky, Andrey Yurij

    2000-01-01

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 sup - sup 7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.

  20. Source of X-ray radiation based on back compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A.Yu

    2000-06-21

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10{sup -7} m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.

  1. Source of X-ray radiation based on back compton scattering

    International Nuclear Information System (INIS)

    Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A.; Zelinsky, A.Yu.

    2000-01-01

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 -7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam

  2. SASKTRAN: A spherical geometry radiative transfer code for efficient estimation of limb scattered sunlight

    International Nuclear Information System (INIS)

    Bourassa, A.E.; Degenstein, D.A.; Llewellyn, E.J.

    2008-01-01

    The inversion of satellite-based observations of limb scattered sunlight for the retrieval of constituent species requires an efficient and accurate modelling of the measurement. We present the development of the SASKTRAN radiative transfer model for the prediction of limb scatter measurements at optical wavelengths by method of successive orders along rays traced in a spherical atmosphere. The component of the signal due to the first two scattering events of the solar beam is accounted for directly along rays traced in the three-dimensional geometry. Simplifying assumptions in successive scattering orders provide computational optimizations without severely compromising the accuracy of the solution. SASKTRAN is designed for the analysis of measurements from the OSIRIS instrument and the implementation of the algorithm is efficient such that the code is suitable for the inversion of OSIRIS profiles on desktop computers. SASKTRAN total limb radiance profiles generally compare better with Monte-Carlo reference models over a large range of solar conditions than the approximate spherical and plane-parallel models typically used for inversions

  3. Integrated simulation of continuous-scale and discrete-scale radiative transfer in metal foams

    Science.gov (United States)

    Xia, Xin-Lin; Li, Yang; Sun, Chuang; Ai, Qing; Tan, He-Ping

    2018-06-01

    A novel integrated simulation of radiative transfer in metal foams is presented. It integrates the continuous-scale simulation with the direct discrete-scale simulation in a single computational domain. It relies on the coupling of the real discrete-scale foam geometry with the equivalent continuous-scale medium through a specially defined scale-coupled zone. This zone holds continuous but nonhomogeneous volumetric radiative properties. The scale-coupled approach is compared to the traditional continuous-scale approach using volumetric radiative properties in the equivalent participating medium and to the direct discrete-scale approach employing the real 3D foam geometry obtained by computed tomography. All the analyses are based on geometrical optics. The Monte Carlo ray-tracing procedure is used for computations of the absorbed radiative fluxes and the apparent radiative behaviors of metal foams. The results obtained by the three approaches are in tenable agreement. The scale-coupled approach is fully validated in calculating the apparent radiative behaviors of metal foams composed of very absorbing to very reflective struts and that composed of very rough to very smooth struts. This new approach leads to a reduction in computational time by approximately one order of magnitude compared to the direct discrete-scale approach. Meanwhile, it can offer information on the local geometry-dependent feature and at the same time the equivalent feature in an integrated simulation. This new approach is promising to combine the advantages of the continuous-scale approach (rapid calculations) and direct discrete-scale approach (accurate prediction of local radiative quantities).

  4. Atmospheric scattering corrections to solar radiometry

    International Nuclear Information System (INIS)

    Box, M.A.; Deepak, A.

    1979-01-01

    Whenever a solar radiometer is used to measure direct solar radiation, some diffuse sky radiation invariably enters the detector's field of view along with the direct beam. Therefore, the atmospheric optical depth obtained by the use of Bouguer's transmission law (also called Beer-Lambert's law), that is valid only for direct radiation, needs to be corrected by taking account of the scattered radiation. In this paper we shall discuss the correction factors needed to account for the diffuse (i.e., singly and multiply scattered) radiation and the algorithms developed for retrieving aerosol size distribution from such measurements. For a radiometer with a small field of view (half-cone angle 0 ) and relatively clear skies (optical depths <0.4), it is shown that the total diffuse contributions represents approximately l% of the total intensity. It is assumed here that the main contributions to the diffuse radiation within the detector's view cone are due to single scattering by molecules and aerosols and multiple scattering by molecules alone, aerosol multiple scattering contributions being treated as negligibly small. The theory and the numerical results discussed in this paper will be helpful not only in making corrections to the measured optical depth data but also in designing improved solar radiometers

  5. Determination of effective atomic number of breast tissues using scattered radiation; Determinacao do numero atomico efetivo de tecidos mamarios usando a radiacao espalhada

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C.; Poletti, M.E. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2010-07-01

    The scattered radiation has been used in several industrial and clinical applications since it permits to characterize the scattering material. Several types of information can be extracted from the spectrum of scattered radiation which can be used to characterization of biological tissues such as breast tissues. In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose), benign (fibroadenoma) and malignant (carcinoma) neoplastic breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90 deg C (x = 0.99 angstrom-1). A practical method using the area of elastic and inelastic scattering was used for determining the effective atomic number (Z{sub eff}) of the samples, being validated comparing the experimental obtained values of Z{sub eff} of several standard materials with calculated values using traditional method based on total cross-section of compounds. The obtained results show that exist differences in the distributions of Z{sub eff} of breast tissues, which are related to the content of carbon (Z=6) and oxygen (Z=8) in each tissue type. The results suggest that is possible to use this parameter for characterizing breast tissues, pointing the possibility of its use as a complementary tool for the diagnosis of the breast cancer. (author)

  6. Bremsstrahlung in electron-positronium scattering

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Korol, A.V.; Solovyov, A.V.

    1986-01-01

    The spectrum of radiation formed in the fast nonrelativistic electron scattering on positronium is calculated. It is shown that all the radiation proceeds via virtual positronium deformations during the collision. An essential difference of bremsstrahlung spectra in electron on positronium and electron on hydrogen scattering is demonstrated. (orig.)

  7. Radiation and scattering from cylindrically conformal printed antennas. Ph.D. Thesis Final Report

    Science.gov (United States)

    Kempel, Leo C.; Volakis, John L.

    1994-01-01

    Microstrip patch antennas offer considerable advantages in terms of weight, aerodynamic drag, cost, flexibility, and observables over more conventional protruding antennas. These flat patch antennas were first proposed over thirty years ago by Deschamps in the United States and Gutton and Baisinot in France. Such antennas have been analyzed and developed for planar as well as curved platforms. However, the methods used in these designs employ gross approximations, suffer from extreme computational burden, or require expensive physical experiments. The goal of this thesis is to develop accurate and efficient numerical modeling techniques which represent actual antenna structures mounted on curved surfaces with a high degree of fidelity. In this thesis, the finite element method is extended to cavity-backed conformal antenna arrays embedded in a circular, metallic, infinite cylinder. Both the boundary integral and absorbing boundary mesh closure conditions will be used for terminating the mesh. These two approaches will be contrasted and used to study the scattering and radiation behavior of several useful antenna configurations. An important feature of this study will be to examine the effect of curvature and cavity size on the scattering and radiation properties of wraparound conformal antenna arrays.

  8. Light scattering studies at UNICAMP

    International Nuclear Information System (INIS)

    Luzzi, R.; Cerdeira, H.A.; Salzberg, J.; Vasconcellos, A.R.; Frota Pessoa, S.; Reis, F.G. dos; Ferrari, C.A.; Algarte, C.A.S.; Tenan, M.A.

    1975-01-01

    Current theoretical studies on light scattering spectroscopy at UNICAMP is presented briefly, such as: inelastic scattering of radiation from a solid state plasma; resonant Ramman scattering; high excitation effects; saturated semiconductors and glasses

  9. Solution of the radiative transfer equation for Rayleigh scattering using the infinite medium Green's function

    Science.gov (United States)

    Biçer, M.; Kaşkaş, A.

    2018-03-01

    The infinite medium Green's function is used to solve the half-space albedo, slab albedo and Milne problems for the unpolarized Rayleigh scattering case; these problems are the most classical problems of radiative transfer theory. The numerical results are obtained and are compared with previous ones.

  10. The Academic Curriculum of Medical Radiation Technologists: Continuous Development

    International Nuclear Information System (INIS)

    Sergieva, K.; Gagova, P.; Bonninska, N.

    2016-01-01

    Full text: The purpose is to present the activities of Department of Radiation technologists at Medical College Sofia in knowledge management (KM) in human health applications and namely: continuous development of academic curriculum (AC) for medical radiation technologists (MRT) in sense of the conference motto “Nuclear Knowledge Management: Challenges and Approaches”. Our challenge is to realize, in practice, the important role of MRT professionals in healthcare. They are the front line in the patient safety and the last person with the patient before exposure. The existing AC has been periodically peer-reviewed: in 2011, 2014, and ongoing reviews, with the aim to guarantee that we are providing knowledge, skills and competencies that meet modern requirements for the training of radiation technologists. The AC compromises both academic and clinical education. The clinical component occurs throughout the academic course, accenting the role of MRT in radiology, radiotherapy and nuclear medicine. The approach of continuously developing the AC will meet the stringent requirements recently published by IAEA, with the goal that radiological medical practitioners, medical physicists, medical radiation technologists and other health professionals with specific duties in relation to protection and safety for patients in a given radiological procedure are specialized in the appropriate area. (author

  11. Roles of scattered radiation in SRIXE

    International Nuclear Information System (INIS)

    Hanson, A.L.

    1988-01-01

    The scattering of x-rays is the major source of background and hence is a limiting factor in the minimum detectable limits available with SRIXE measurements. The scattering can be utilized for normalizing the net peak areas to fluctuations in sample thickness or mass on a relative basis or on a comparative basis. Even then measurement of the scattered x-rays should be made at backward angles. Measurement at forward angles should be avoided because of diffraction problems. The uncertainties in the measurement of an absolute intensity of the x-rays can be extremely large

  12. On the radiative corrections of deep inelastic scattering of muon neutrino on nucleon

    International Nuclear Information System (INIS)

    So Sang Guk

    1986-01-01

    The radiative corrections of deep inelastic scattering process VΜP→ ΜN are considered. Matrix element which takes Feynman one photon exchange diagrams into account at high transfer momentum are used. Based on calculation of the matrix element one can obtain matrix element for given process. It is shown that the effective cross section which takes one photon exchange into account is obtained. (author)

  13. Gamma camera scatter suppression unit WAM

    International Nuclear Information System (INIS)

    Kishi, Haruo; Shibahara, Noriyuki; Hirose, Yoshiharu; Shimonishi, Yoshihiro; Oumura, Masahiro; Ikeda, Hozumi; Hamada, Kunio; Ochi, Hironobu; Itagane, Hiroshi.

    1990-01-01

    In gamma camera imaging, scattered radiation is one of big factors to decrease image contrast. Simply, scatter suppression makes signal to noise ratio larger, but it makes statistics error because of radionuclide injection limit to the human body. EWA is a new method that suppresses scattered radiation and improves image contrast. In this article, WAM which is commercialized EWA method by Siemens Gammasonics Inc. is presented. (author)

  14. Importance of scatter compensation algorithm in heterogeneous tissue for the radiation dose calculation of small lung nodules. A clinical study

    International Nuclear Information System (INIS)

    Baba, Yuji; Murakami, Ryuji; Mizukami, Naohisa; Morishita, Shoji; Yamashita, Yasuyuki; Araki, Fujio; Moribe, Nobuyuki; Hirata, Yukinori

    2004-01-01

    The purpose of this study was to compare radiation doses of small lung nodules calculated with beam scattering compensation and those without compensation in heterogeneous tissues. Computed tomography (CT) data of 34 small (1-2 cm: 12 nodules, 2-3 cm 11 nodules, 3-4 cm 11 nodules) lung nodules were used in the radiation dose measurements. Radiation planning for lung nodule was performed with a commercially available unit using two different radiation dose calculation methods: the superposition method (with scatter compensation in heterogeneous tissues), and the Clarkson method (without scatter compensation in heterogeneous tissues). The energy of the linac photon used in this study was 10 MV and 4 MV. Monitor unit (MU) to deliver 10 Gy at the center of the radiation field (center of the nodule) calculated with the two methods were compared. In 1-2 cm nodules, MU calculated by Clarkson method (MUc) was 90.0±1.1% (4 MV photon) and 80.5±2.7% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 92.9±1.1% (4 MV photon) and 86.6±2.8% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 90.5±2.0% (4 MV photon) and 90.1±1.7% (10 MV photon) compared to MUs. In 1-2 cm nodules, MU calculated without lung compensation (MUn) was 120.6±8.3% (4 MV photon) and 95.1±4.1% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 120.3±11.5% (4 MV photon) and 100.5±4.6% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 105.3±9.0% (4 MV photon) and 103.4±4.9% (10 MV photon) compared to MUs. The MU calculated without lung compensation was not significantly different from the MU calculated by superposition method in 2-3 cm nodules. We found that the conventional dose calculation algorithm without scatter compensation in heterogeneous tissues substantially overestimated the radiation dose of small nodules in the lung field. In the calculation of dose distribution of small

  15. Gamma-ray scatter methods applied to industrial measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Holstad, Marie Bueie

    2004-09-01

    Throughout the work presented in this dissertation it has been confirmed that the use of scattered gamma-radiation is a complex but useful tool in industrial measurement science. Scattered radiation has shown to be useful both when traditional measurement principles cannot be used (Chapter 4) and when more information about a system is needed than what is obtained with transmission measurements (Chapter 6). All three main projects (Chapters 4, 5 and 6) confirm that the sensitivity and accuracy of systems based on scattered gamma-radiation depends strongly on the geometry of the setup and that that presence of multiple scattered radiation makes the problems complex. Chapter 4 shows that multiple scattered gamma-radiation can be used for detection of changes in density where the dimensions are too large to use transmitted radiation. There is, however, an upper limit on the thickness of the absorbing medium also when scattered radiation is utilized. As seen in Chapter 5, multiple scattered gamma-radiation can in principle also be used in level gauges with very compact measurement geometries. The main challenges are the sensitivity to interfaces between materials with similar densities and low count rate. These challenges could not be overcome for level measurements in gravitational separator tanks. The results presented in Chapter 6 show that it is feasible to combine transmission and scatter measurements to characterize produced water in the oil and gas industry. (Author)

  16. Study of TJ-1 Tokamak plasmas with Thomson scattering and radiation diagnostics

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1987-06-01

    The Thomson scattering system of TJ-1 is described in detail. The radial profiles of T e and n e obtained in TJ-1 discharges are presented. This data makes possible to deduce characteristic parameters of the plasma confinement in this machine, as energy confinement times, Z eff B. Using also radiation measurements (global and in the visible range) we obtained the particle confinement time and Z eff without non experimental assumptions. (author) 56 figs., 52 refs

  17. Gamma radiation compton scattering effect from the Ukrytie Object on the radiation situation at the Chernobyl' NPP territory

    International Nuclear Information System (INIS)

    Alekseeva, E.A.; Volkovich, A.G.; Koba, G.I.; Liksonov, V.I.; Stepanov, V.E.; Tyurin, A.S.; Urutskoev, L.I.; Chesnokov, A.V.

    1989-01-01

    With the aim of determination of the angular distribution of the gamma-radiation (GR) exposure dose rate (EDR) around the Ukrytie Object (UO) are described the measurement results of GR EDR in July 1988 at the territory, adjoining to UO. The conclusion is made that the main contribution into EDR ensures GR, scattered as a result of the Compton effect on air molecules and that the contribution of the NPP territory is small. 10 figs.; 3 tabs

  18. LASER RADIATION CHARACTERISTICS (BRIEF COMMUNICATIONS): Conversion of KrCl and XeCl laser radiation to the visible spectral range by stimulated Raman scattering in lead vapor

    Science.gov (United States)

    Evtushenko, Gennadii S.; Mel'chenko, S. V.; Panchenko, Aleksei N.; Tarasenko, Viktor F.

    1990-04-01

    Conversion of KrCl and XeCl laser radiation by stimulated Raman scattering was achieved in lead vapor. The KrCl laser radiation was converted into three lines in the visible region at λ = 406, 590, and 723 nm by transitions from both the ground and first excited levels of the lead atom. The conversion efficiency of XeCl laser radiation of low spatial coherence was found to be limited by the activation of a competing nonlinear process.

  19. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    Science.gov (United States)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  20. A 2D MWPC area detector for use with synchrotron X-radiation at the Daresbury Laboratory for small angle diffraction and scattering

    International Nuclear Information System (INIS)

    Helliwell, J.R.; Hughes, G.; Przybylski, M.M.; Ridley, P.A.; Sumner, I.; Bateman, J.E.; Connolly, J.F.; Stephenson, R.

    1982-01-01

    A 2D multiwire proportional chamber area detector is being developed to provide a real time data acquisition system for small angle scattering and diffraction experiments with synchrotron X-radiation at the Daresbury synchrotron radiation source (SRS). The chamber has a circular aperture, 200 mm diameter with an anode and cathode wire pitch of 1 mm; a front cathode-anode spacing of 6 mm and a 6 mm spacing between anode and rear cathode. A 1 mm thick front beryllium window and a rear aluminium cover plate with indium seals provide a gas-tight system. Previous experiments with a similar chamber design allowed continual use of the chamber for up to 2 years without refill. A digitising time of 2 μs is expected based on a 260 mm delay line and Lecroy TDC linked to a mass semiconductor memory of 512 x 256 elements. The experiment will be controlled by a PDP 11/04 computer with 28 K memory interfaced to a CAMAC create with 64 K fast access CAMAC memory. The system should be relatively easy to use with good order to order resolution and reasonable rate for small angle diffraction and scattering experiments on biological systems. Evaluation of the set-up for protein crystallography is planned though a TV based image intensifier (Enraf-Nonius) is preferred for this application at the SRS. (orig.)

  1. Scattering of light from small nematic spheres with radial dielectric anisotropy

    International Nuclear Information System (INIS)

    Karacali, H.; Risser, S.M.; Ferris, K.F.

    1997-01-01

    We have calculated the scattering cross sections of small anisotropic nematic droplets embedded in a polymer matrix as a function of the dielectric constants of the nematic and the polymer. We have derived the general form for the Helmholtz wave equation for a droplet which has spatially varying radial anisotropy, and have explicitly solved this equation for three distinct models of the dielectric anisotropy, including one model where the anisotropy increases linearly with droplet radius. Numerical calculations of the scattering amplitudes for droplets much smaller than the wavelength of the incident radiation show that droplets with continual variation in the dielectric anisotropy have much larger scattering amplitude than droplets with fixed anisotropy. The scattering from droplets with linearly varying anisotropy exhibits a scattering minimum for much smaller polymer dielectric constants than the other models. These results show that the scattering from small anisotropic droplets is sensitive to details of the internal structure and anisotropy of the droplet. copyright 1997 The American Physical Society

  2. Dynamic effects on cyclotron scattering in pulsar accretion columns

    International Nuclear Information System (INIS)

    Brainerd, J.J.; Meszaros, P.

    1991-01-01

    A resonant scattering model for photon reprocessing in a pulsar accretion column is presented. The accretion column is optically thin to Thomson scattering and optically thick to resonant scattering at the cyclotron frequency. Radiation from the neutron star surface propagates freely through the column until the photon energy equals the local cyclotron frequency, at which point the radiation is scattered, much of it back toward the star. The radiation pressure in this regime is insufficient to stop the infall. Some of the scattered radiation heats the stellar surface around the base of the column, which adds a softer component to the spectrum. The partial blocking by the accretion column of X-rays from the surface produces a fan beam emission pattern. X-rays above the surface cyclotron frequency freely escape and are characterized by a pencil beam. Gravitational light bending produces a pencil beam pattern of column-scattered radiation in the antipodal direction, resulting in a strongly angle-dependent cyclotron feature. 31 refs

  3. Reduction of scatter radiation during transradial percutaneous coronary angiography: a randomized trial using a lead-free radiation shield.

    Science.gov (United States)

    Politi, Luigi; Biondi-Zoccai, Giuseppe; Nocetti, Luca; Costi, Tiziana; Monopoli, Daniel; Rossi, Rosario; Sgura, Fabio; Modena, Maria Grazia; Sangiorgi, Giuseppe M

    2012-01-01

    Occupational radiation exposure is a growing problem due to the increasing number and complexity of interventional procedures performed. Radial artery access has reduced the number of complications at the price of longer procedure duration. Radpad® scatter protection is a sterile, disposable bismuth-barium radiation shield drape that should be able to decrease the dose of operator radiation during diagnostic and interventional procedures. Such radiation shield has never been tested in a randomized study in humans. Sixty consecutive patients undergoing coronary angiography by radial approach were randomized 1:1 to Radpad use versus no radiation shield protection. The sterile shield was placed around the area of right radial artery sheath insertion and extended medially to the patient trunk. All diagnostic procedures were performed by the same operator to reduce variability in radiation absorption. Radiation exposure was measured blindly using thermoluminescence dosimeters positioned at the operator's chest, left eye, left wrist, and thyroid. Despite similar fluoroscopy time (3.52 ± 2.71 min vs. 3.46 ± 2.77 min, P = 0.898) and total examination dose (50.5 ± 30.7 vs. 45.8 ± 18.0 Gycm(2), P = 0.231), the mean total radiation exposure to the operator was significantly lower when Radpad was utilized (282.8 ± 32.55 μSv vs. 367.8 ± 105.4 μSv, P Radpad utilization at all body locations ranging from 13 to 34% reduction. This first-in-men randomized trial demonstrates that Radpad significantly reduces occupational radiation exposure during coronary angiography performed through right radial artery access. Copyright © 2011 Wiley Periodicals, Inc.

  4. Multiple scattering processes: inverse and direct

    International Nuclear Information System (INIS)

    Kagiwada, H.H.; Kalaba, R.; Ueno, S.

    1975-01-01

    The purpose of the work is to formulate inverse problems in radiative transfer, to introduce the functions b and h as parameters of internal intensity in homogeneous slabs, and to derive initial value problems to replace the more traditional boundary value problems and integral equations of multiple scattering with high computational efficiency. The discussion covers multiple scattering processes in a one-dimensional medium; isotropic scattering in homogeneous slabs illuminated by parallel rays of radiation; the theory of functions b and h in homogeneous slabs illuminated by isotropic sources of radiation either at the top or at the bottom; inverse and direct problems of multiple scattering in slabs including internal sources; multiple scattering in inhomogeneous media, with particular reference to inverse problems for estimation of layers and total thickness of inhomogeneous slabs and to multiple scattering problems with Lambert's law and specular reflectors underlying slabs; and anisotropic scattering with reduction of the number of relevant arguments through axially symmetric fields and expansion in Legendre functions. Gaussian quadrature data for a seven point formula, a FORTRAN program for computing the functions b and h, and tables of these functions supplement the text

  5. Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations

    International Nuclear Information System (INIS)

    Fu, Q.; Thorsen, T.J.; Su, J.; Ge, J.M.; Huang, J.P.

    2009-01-01

    We simulate the single-scattering properties (SSPs) of dust aerosols with both spheroidal and spherical shapes at a wavelength of 0.55 μm for two refractive indices and four effective radii. Herein spheres are defined by preserving both projected area and volume of a non-spherical particle. It is shown that the relative errors of the spheres to approximate the spheroids are less than 1% in the extinction efficiency and single-scattering albedo, and less than 2% in the asymmetry factor. It is found that the scattering phase function of spheres agrees with spheroids better than the Henyey-Greenstein (HG) function for the scattering angle range of 0-90 o . In the range of ∼90-180 o , the HG function is systematically smaller than the spheroidal scattering phase function while the spherical scattering phase function is smaller from ∼90 o to 145 o but larger from ∼145 o to 180 o . We examine the errors in reflectivity and absorptivity due to the use of SSPs of equivalent spheres and HG functions for dust aerosols. The reference calculation is based on the delta-DISORT-256-stream scheme using the SSPs of the spheroids. It is found that the errors are mainly caused by the use of the HG function instead of the SSPs for spheres. By examining the errors associated with the delta-four- and delta-two-stream schemes using various approximate SSPs of dust aerosols, we find that the errors related to the HG function dominate in the delta-four-stream results, while the errors related to the radiative transfer scheme dominate in the delta-two-stream calculations. We show that the relative errors in the global reflectivity due to the use of sphere SSPs are always less than 5%. We conclude that Mie-based SSPs of non-spherical dust aerosols are well suited in radiative flux calculations.

  6. Nuclear inelastic scattering of synchrotron radiation on solutions of 57Fe complexes

    International Nuclear Information System (INIS)

    Vanko, Gy.; Vertes, A.; Bottyan, L.; Nagy, D.L.; Szilagyi, E.

    2000-01-01

    Nuclear inelastic resonant scattering of synchrotron radiation was applied to the study solutions of 57 Fe complexes. In order to reveal different inelastic contributions solutions of two different 57 Fe complexes of different molecular dimensions with solvents of substantially different viscosities were studied. We argue that the only former experiment available in the literature overestimates the role of the diffusivity in affecting the spectrum. The first direct observation of an intramolecular vibrational transition assisting the nuclear resonance absorption in a liquid is reported. (author)

  7. Simulation of inverse Compton scattering and its implications on the scattered linewidth

    Science.gov (United States)

    Ranjan, N.; Terzić, B.; Krafft, G. A.; Petrillo, V.; Drebot, I.; Serafini, L.

    2018-03-01

    Rising interest in inverse Compton sources has increased the need for efficient models that properly quantify the behavior of scattered radiation given a set of interaction parameters. The current state-of-the-art simulations rely on Monte Carlo-based methods, which, while properly expressing scattering behavior in high-probability regions of the produced spectra, may not correctly simulate such behavior in low-probability regions (e.g. tails of spectra). Moreover, sampling may take an inordinate amount of time for the desired accuracy to be achieved. In this paper, we present an analytic derivation of the expression describing the scattered radiation linewidth and propose a model to describe the effects of horizontal and vertical emittance on the properties of the scattered radiation. We also present an improved version of the code initially reported in Krafft et al. [Phys. Rev. Accel. Beams 19, 121302 (2016), 10.1103/PhysRevAccelBeams.19.121302], that can perform the same simulations as those present in cain and give accurate results in low-probability regions by integrating over the emissions of the electrons. Finally, we use these codes to carry out simulations that closely verify the behavior predicted by the analytically derived scaling law.

  8. Modeling and design of radiative hydrodynamic experiments with X-ray Thomson Scattering measurements on NIF

    Science.gov (United States)

    Ma, K. H.; Lefevre, H. J.; Belancourt, P. X.; MacDonald, M. J.; Doeppner, T.; Keiter, P. A.; Kuranz, C. C.; Johnsen, E.

    2017-10-01

    Recent experiments at the National Ignition Facility studied the effect of radiation on shock-driven hydrodynamic instability growth. X-ray radiography images from these experiments indicate that perturbation growth is lower in highly radiative shocks compared to shocks with negligible radiation flux. The reduction in instability growth is attributed to ablation from higher temperatures in the foam for highly radiative shocks. The proposed design implements the X-ray Thomson Scattering (XRTS) technique in the radiative shock tube platform to measure electron temperatures and densities in the shocked foam. We model these experiments with CRASH, an Eulerian radiation hydrodynamics code with block-adaptive mesh refinement, multi-group radiation transport and electron heat conduction. Simulations are presented with SiO2 and carbon foams for both the high temperature, radiative shock and the low-temperature, hydrodynamic shock cases. Calculations from CRASH give estimations for shock speed, electron temperature, effective ionization, and other quantities necessary for designing the XRTS diagnostic measurement. This work is funded by the LLNL under subcontract B614207, and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  9. A stochastic model for density-dependent microwave Snow- and Graupel scattering coefficients of the NOAA JCSDA community radiative transfer model

    Science.gov (United States)

    Stegmann, Patrick G.; Tang, Guanglin; Yang, Ping; Johnson, Benjamin T.

    2018-05-01

    A structural model is developed for the single-scattering properties of snow and graupel particles with a strongly heterogeneous morphology and an arbitrary variable mass density. This effort is aimed to provide a mechanism to consider particle mass density variation in the microwave scattering coefficients implemented in the Community Radiative Transfer Model (CRTM). The stochastic model applies a bicontinuous random medium algorithm to a simple base shape and uses the Finite-Difference-Time-Domain (FDTD) method to compute the single-scattering properties of the resulting complex morphology.

  10. Time-dependent radiation transfer with rayleigh scattering in finite plane-parallel media using pomraning-eddington approximation

    International Nuclear Information System (INIS)

    El-Wakil, S.A.; Sallah, M.; Degheidy, A.R.

    2005-01-01

    The time-dependent radiation transfer equation in plane geometry with Rayleigh scattering is studied. The traveling wave transformation is used to obtain the corresponding stationary-like equation. Pomraning-Eddington approximation is then used to calculate the radiation intensity in finite plane-parallel media. Numerical results and shielding calculations are shown for reflectivity and transmissivity at different times. The medium is assumed to have specular-reflecting boundaries. For the sake of comparison, two different weight functions are introduced and to force the boundary conditions to be fulfilled

  11. Iterative solution of multiple radiation and scattering problems in structural acoustics using the BL-QMR algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, M. [Stanford Univ., CA (United States)

    1996-12-31

    Finite-element discretizations of time-harmonic acoustic wave problems in exterior domains result in large sparse systems of linear equations with complex symmetric coefficient matrices. In many situations, these matrix problems need to be solved repeatedly for different right-hand sides, but with the same coefficient matrix. For instance, multiple right-hand sides arise in radiation problems due to multiple load cases, and also in scattering problems when multiple angles of incidence of an incoming plane wave need to be considered. In this talk, we discuss the iterative solution of multiple linear systems arising in radiation and scattering problems in structural acoustics by means of a complex symmetric variant of the BL-QMR method. First, we summarize the governing partial differential equations for time-harmonic structural acoustics, the finite-element discretization of these equations, and the resulting complex symmetric matrix problem. Next, we sketch the special version of BL-QMR method that exploits complex symmetry, and we describe the preconditioners we have used in conjunction with BL-QMR. Finally, we report some typical results of our extensive numerical tests to illustrate the typical convergence behavior of BL-QMR method for multiple radiation and scattering problems in structural acoustics, to identify appropriate preconditioners for these problems, and to demonstrate the importance of deflation in block Krylov-subspace methods. Our numerical results show that the multiple systems arising in structural acoustics can be solved very efficiently with the preconditioned BL-QMR method. In fact, for multiple systems with up to 40 and more different right-hand sides we get consistent and significant speed-ups over solving the systems individually.

  12. Some remarks on electron scattering in a laser field

    International Nuclear Information System (INIS)

    Ehlotzky, F.

    1988-01-01

    Potential scattering of electrons in a quantized radiation field is reconsidered. Some remarks are made on the validity of the Kroll-Watson scattering formula and on the close connection of this formula with the classical transition rate of scattering in a radiation field. (17 refs.)

  13. Study on radiation-induced defects in germanium monocrystals by the X-ray diffusive scattering method

    International Nuclear Information System (INIS)

    Malinenko, I.A.; Perelygina, E.A.; Chudinova, S.A.; Shivrin, O.N.

    1979-01-01

    The method of X-ray diffusion scattering was used to study the defective structure of germanium monocrystals exposed to 750 keV proton irradiation with 3.8x10 16 -4.6x10 17 cm -2 doses and subjected to the subsequent annealing at temperatures up to 450 deg C. Detected in the crystals were the complex radiation induced structure characterized with oriented vacancy complexes and results from the both effects: irradiation and annealing. Radiation defect sizes in the section (hhO) have been determined. With increasing the annealing temperature the structure reconstruction resulting in the complex dissociation is observed

  14. Monte Carlo generator ELRADGEN 2.0 for simulation of radiative events in elastic ep-scattering of polarized particles

    Science.gov (United States)

    Akushevich, I.; Filoti, O. F.; Ilyichev, A.; Shumeiko, N.

    2012-07-01

    The structure and algorithms of the Monte Carlo generator ELRADGEN 2.0 designed to simulate radiative events in polarized ep-scattering are presented. The full set of analytical expressions for the QED radiative corrections is presented and discussed in detail. Algorithmic improvements implemented to provide faster simulation of hard real photon events are described. Numerical tests show high quality of generation of photonic variables and radiatively corrected cross section. The comparison of the elastic radiative tail simulated within the kinematical conditions of the BLAST experiment at MIT BATES shows a good agreement with experimental data. Catalogue identifier: AELO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1299 No. of bytes in distributed program, including test data, etc.: 11 348 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: All Operating system: Any RAM: 1 MB Classification: 11.2, 11.4 Nature of problem: Simulation of radiative events in polarized ep-scattering. Solution method: Monte Carlo simulation according to the distributions of the real photon kinematic variables that are calculated by the covariant method of QED radiative correction estimation. The approach provides rather fast and accurate generation. Running time: The simulation of 108 radiative events for itest:=1 takes up to 52 seconds on Pentium(R) Dual-Core 2.00 GHz processor.

  15. Measurement of x-ray scattering cross sections of hydrogen and helium with synchrotron radiation

    International Nuclear Information System (INIS)

    Ice, G.E.

    1977-01-01

    Total x-ray scattering is a two-electron expectation value. The prominence of the electron correlation effect was demonstrated in recent theoretical work. Only one measurement of x-ray scattering from H 2 has been reported heretofore, nearly fifty years ago. New measurements were carried out using the virtually monochromatic, intense flux of synchrotron radiation in the SSRP EXAFS line. The targets, at 1 atm pressure, were UHP He and ultrapure H 2 that had been passed through a hot Pd--Ag alloy diffusion purifier. The scattered-photon spectra were measured with a Xe-filled proportional counter and fast multichannel analyzer. The incident flux was monitored with a parallel-plate ion chamber, calibrated by direct counting of the absorber-attenuated beam. Measurements were performed at 5, 6, and 7 keV photon energy, as a function of scattering angle (60, 90, and 135 deg) and azimuthal angle (i.e., polarization). The relative total differential photon scattering cross sections for H 2 over the range 3.0 less than or equal to x = 4πsin (theta/2)lambda less than or equal to 5.6 A -1 agree to within approx. 1% with the correlated calculations of Bentley and Stewart. The ratios of measured cross sections for H 2 to those for He at x = 3.0 and 5.6 A -1 agree to within 1% with the ratios of the Bentley--Stewart H 2 cross sections to the correlated wave-function calculations of Brown for He

  16. Considerations on scattering and leak radiation for effective determination of secondary shielding in X-rays rooms of megavoltage

    International Nuclear Information System (INIS)

    Borges, Diogo da S.; Lava, Deise D.; Affonso, Renato R.W.; Moreira, Maria de L.; Guimaraes, Antonio C.F.

    2014-01-01

    This paper addresses the development of a algorithm capable of analyzing the thickness of the secondary shielding due to the production of secondary beams. The production of this beam requires consideration of scattering angle, as well as factors normally used for screening of medical facilities using radiographic techniques. Besides the beam emanated from scattering radiation, is is necessary to evaluate the contribution of leakage radiation, originating from equipment used for the production of the primary beam. A view of the mutual contribution of these radiation to the formation of the secondary beam has shown the need of using shieldings in adjacent walls of the room. The code was validated by comparison with an example case provided by NCRP-151 Report. In this report calculations for determining the secondary barrier for small angles are presented, that deserves greater attention for shielding and statements related to radiotherapy procedures of Modulated intensity. The results are consistent with those provided in the report, which makes the code can be used as a practical tool for the determination of effective shielding beams of megavoltage X-rays

  17. Low energy elastic scattering of positrons by CO: An application of continued fractions and Schwinger variational iterative methods

    Energy Technology Data Exchange (ETDEWEB)

    Arretche, F. [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, Santa Catarina (Brazil)], E-mail: farretche@hotmail.com; Mazon, K.T.; Michelin, S.E. [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, Santa Catarina (Brazil); Fujimoto, M.M. [Departamento de Fisica, Universidade Federal do Parana, 81531-990, Curitiba, Parana (Brazil); Iga, I.; Lee, M.-T. [Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905, Sao Paulo (Brazil)

    2008-02-15

    Iterative Schwinger variational methods and the method of continued fractions, widely used for electron-molecule scattering, are applied for the first time to investigate positron-molecule interactions. Specifically, integral and differential cross sections for elastic positron scattering by CO in the (0.5-20) eV energy range are calculated and reported. In our calculation, a static plus correlation-polarization potential is used to represent the collisional dynamics. Our calculated results are in general agreement with the theoretical and experimental data available in the literature.

  18. Scattered radiation dose to radiologist's cornea, thyroid and gonads while performing some x-ray fluoroscopic investigations

    International Nuclear Information System (INIS)

    Chougle, Arun

    1993-01-01

    The mankind has been immensely benefited from discovery of X-ray and it has found wide spread application in diagnosis and treatment. Radiation is harmful and can produce somatic and genetic effects in the exposed person. International Commission on Radiation Protection (ICRP) has recommended a system of dose limitation based on principle of ALARA. All the efforts should be made to keep the radiation dose to the radiation worker as low as possible. Fluoroscopy gives maximum dose to the patient and staff and hence we have attempted to quantify the scattered radiation dose to the cornea, thyroid and gonads of the radiologist performing fluoroscopic examinations such as barium meal, barium swallow, barium enema, myelography, histerosalpingography and fracture reduction. Thermoluminescence dosimetry (TLD) method using CaSO 4 :Dy TLD disc was employed for these measurements. Use of lead apron has reduced the dose to radiologist's gonad. (author). 3 refs., 4 tabs

  19. Monte Carlo-based dose reconstruction in a rat model for scattered ionizing radiation investigations.

    Science.gov (United States)

    Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Anna; Kolb, Bryan; Kovalchuk, Olga

    2013-09-01

    In radiation biology, rats are often irradiated, but the precise dose distributions are often lacking, particularly in areas that receive scatter radiation. We used a non-dedicated set of resources to calculate detailed dose distributions, including doses to peripheral organs well outside of the primary field, in common rat exposure settings. We conducted a detailed dose reconstruction in a rat through an analog to the conventional human treatment planning process. The process consisted of: (i) Characterizing source properties of an X-ray irradiator system, (ii) acquiring a computed tomography (CT) scan of a rat model, and (iii) using a Monte Carlo (MC) dose calculation engine to generate the dose distribution within the rat model. We considered cranial and liver irradiation scenarios where the rest of the body was protected by a lead shield. Organs of interest were the brain, liver and gonads. The study also included paired scenarios where the dose to adjacent, shielded rats was determined as a potential control for analysis of bystander effects. We established the precise doses and dose distributions delivered to the peripheral organs in single and paired rats. Mean doses to non-targeted organs in irradiated rats ranged from 0.03-0.1% of the reference platform dose. Mean doses to the adjacent rat peripheral organs were consistent to within 10% those of the directly irradiated rat. This work provided details of dose distributions in rat models under common irradiation conditions and established an effective scenario for delivering only scattered radiation consistent with that in a directly irradiated rat.

  20. Scattering and emission from inhomogeneous vegetation canopy and alien target beneath by using three-dimensional vector radiative transfer (3D-VRT) equation

    International Nuclear Information System (INIS)

    Jin Yaqiu; Liang Zichang

    2005-01-01

    To solve the 3D-VRT equation for the model of spatially inhomogeneous scatter media, the finite enclosure of the scatter media is geometrically divided, in both vertical z and transversal (x,y) directions, to form very thin multi-boxes. The zeroth order emission, first-order Mueller matrix of each thin box and an iterative approach of high-order radiative transfer are applied to derive high-order scattering and emission of whole inhomogeneous scatter media. Numerical results of polarized brightness temperature at microwave frequency and under different radiometer resolutions from inhomogeneous scatter model such as vegetation canopy and alien target beneath canopy are simulated and discussed

  1. Electromagnetic scattering and radiation from microstrip patch antennas and spirals residing in a cavity

    Science.gov (United States)

    Volakis, J. L.; Gong, J.; Alexanian, A.; Woo, A.

    1992-01-01

    A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy.

  2. Scatter and leakage contributions to the out-of-field absorbed dose distribution in water phantom around the medical LINAC radiation beams

    International Nuclear Information System (INIS)

    Bordy, J.M.; Bessiere, I.; Ostrowsky, A.; Poumarede, B.; Sorel, S.; Vermesse, D.

    2013-01-01

    This work is carried out within the framework of EURADOS Working Group 9 (WG9) whose general objective is 'to assess non-target organ doses in radiotherapy and the related risks of second cancers, with the emphasis on dosimetry'. The objective of the present work is to provide reference values (i) to evaluate the current methods of deriving three-dimensional dose distributions in and around the target volume using passive dosimeters, (ii) to derive the leakage dose from the head of the medical linear accelerator (LINAC) and the doses due to scattered radiation from the collimator edges and the body (phantom) itself. Radiation qualities of 6, 12 and 20 MV are used with standard calibration conditions described in IAEA TRS 398 and nonstandard conditions at a reference facility at the Laboratoire National Henri Becquerel (CEA LIST/LNE LNHB). An ionisation chamber is used to measure profile and depth dose in especially design water phantom built to enable investigation of doses up to 60 cm from the beam axis. A first set of experiments is carried out with the beam passing through the tank. From this first experiment, penumbra and out-of-field dose profiles including water and collimator scatter and leakage are found over three orders of magnitude. Two further sets of experiments using the same experimental arrangement with the beam outside the tank, to avoid water scatter, are designed to measure collimator scatter and leakage by closing the jaws of the collimator. It is shown that the ratios between water scatter, collimator scatter and leakage depend on the photon energy. Depending on the energy, typical leakage and collimator scatter represents 10-40% and 30-50% of the total out-of-field doses respectively. Water scatter decreases with energy while leakage increases with energy, and collimator scatter varies only slowly with energy. (authors)

  3. SCAP-82, Single Scattering, Albedo Scattering, Point-Kernel Analysis in Complex Geometry

    International Nuclear Information System (INIS)

    Disney, R.K.; Vogtman, S.E.

    1987-01-01

    1 - Description of problem or function: SCAP solves for radiation transport in complex geometries using the single or albedo scatter point kernel method. The program is designed to calculate the neutron or gamma ray radiation level at detector points located within or outside a complex radiation scatter source geometry or a user specified discrete scattering volume. Geometry is describable by zones bounded by intersecting quadratic surfaces within an arbitrary maximum number of boundary surfaces per zone. Anisotropic point sources are describable as pointwise energy dependent distributions of polar angles on a meridian; isotropic point sources may also be specified. The attenuation function for gamma rays is an exponential function on the primary source leg and the scatter leg with a build- up factor approximation to account for multiple scatter on the scat- ter leg. The neutron attenuation function is an exponential function using neutron removal cross sections on the primary source leg and scatter leg. Line or volumetric sources can be represented as a distribution of isotropic point sources, with un-collided line-of-sight attenuation and buildup calculated between each source point and the detector point. 2 - Method of solution: A point kernel method using an anisotropic or isotropic point source representation is used, line-of-sight material attenuation and inverse square spatial attenuation between the source point and scatter points and the scatter points and detector point is employed. A direct summation of individual point source results is obtained. 3 - Restrictions on the complexity of the problem: - The SCAP program is written in complete flexible dimensioning so that no restrictions are imposed on the number of energy groups or geometric zones. The geometric zone description is restricted to zones defined by boundary surfaces defined by the general quadratic equation or one of its degenerate forms. The only restriction in the program is that the total

  4. Dust scattering and the radiation pressure force in the M82 superwind

    International Nuclear Information System (INIS)

    Coker, Carl T.; Thompson, Todd A.; Martini, Paul

    2013-01-01

    Radiation pressure on dust grains may be an important physical mechanism driving galaxy-wide superwinds in rapidly star-forming galaxies. We calculate the combined dust and gas Eddington ratio (Γ) for the archetypal superwind of M82. By combining archival Galaxy Evolution Explorer data, a standard dust model, Monte Carlo dust scattering calculations, and the Herschel map of the dust surface density distribution, the observed far-UV/near-UV surface brightness in the outflow constrains both the total UV luminosity escaping from the starburst along its minor axis (L *,UV ) and the flux-mean opacity, thus allowing a calculation of Γ. We find that L *,UV ≈ (1-6) × 10 42 erg s –1 , ∼2-12 times greater than the UV luminosity observed from our line of sight. On a scale of 1-3 kpc above the plane of M82, we find that Γ ∼ 0.01-0.06. On smaller scales (∼0.25-0.5 kpc), where the enclosed mass decreases, our calculation of L *,UV implies that Γ ∼ 0.1 with factor of few uncertainties. Within the starburst itself, we estimate the single-scattering Eddington ratio to be of order unity. Thus, although radiation pressure is weak compared to gravity on kpc scales above the plane of M82, it may yet be important in launching the observed outflow. We discuss the primary uncertainties in our calculation, the sensitivity of Γ to the dust grain size distribution, and the time evolution of the wind following M82's recent starburst episodes.

  5. Comparison of different models for the determination of the absorption and scattering coefficients of thermal barrier coatings

    International Nuclear Information System (INIS)

    Wang, Li; Eldridge, Jeffrey I.; Guo, S.M.

    2014-01-01

    The thermal radiative properties of thermal barrier coatings (TBCs) are becoming more important as the inlet temperatures of advanced gas-turbine engines are continuously being pushed higher in order to improve efficiency. To determine the absorption and scattering coefficients of TBCs, four-flux, two-flux and Kubelka–Munk models were introduced and used to characterize the thermal radiative properties of plasma-sprayed yttria-stabilized zirconia (YSZ) coatings. The results show that the absorption coefficient of YSZ is extremely low for wavelengths 200 μm suggests that when the coating thickness is larger than around twice the average scattering distance, the collimated flux can be simply treated as a diffuse flux inside the coating, and thus the two-flux model can be used to determine the absorption and scattering coefficients as a simplification of the four-flux model

  6. Electron scattering by an atom in the field of resonant laser radiation

    International Nuclear Information System (INIS)

    Agre, M.; Rapoport, L.

    1982-01-01

    The collision of an electron with an atom in the field of intense electromagnetic radiation that is at resonance with two atomic multiplets is investigated theoretically. Expressions are obtained for the amplitudes of the elastic and inelastic scattering with emission (absorption) of photons. The case of a ground state at resonance with a doublet is considered in detail. It is shown that photon absorption takes place predominantly in the case of resonance in inelastic transitions from a state of the lower multiplet, and photon emission takes place in transitions from a state of the upper multiplet

  7. Efficiency of the scattered primary radiation as an internal standard in the determination of uranium and thorium in geological materials by X-ray spectrometry

    International Nuclear Information System (INIS)

    Diaz-Guerra, J.P.; Bayon, A.

    1980-01-01

    The efficiency of the scattered primary coherent and incoherent X-radiation of various wavelengths has been studied as a matrix correction in the determination of uranium and thorium in geological materials by X-ray spectrometry. The excitation has been performed with molybdenum and tungsten targets. Results illustrate that the incoherently-scattered Mok βsub(1,3) and Mok βsub(1,2) radiation are, respectively, the optimum reference lines. The particle size influence and the critical thickness of the sample are also considered.(auth.)

  8. Measurements of the parametric decay of CO2 laser radiation into plasma waves at quarter critical density using ruby laser Thomson scattering

    International Nuclear Information System (INIS)

    Schuss, J.J.; Chu, T.K.; Johnson, L.C.

    1977-11-01

    We report the results of small-angle ruby laser Thomson scattering measurements of the parametric excitation of plasma waves by CO 2 laser radiation at quarter-critical density in a laser-heated gas target plasma. From supplementary data obtained from interferometry and large-angle ruby laser scattering we infer that the threshold conditions for a convective decay are satisfied

  9. Continuity of Earth Radiation Budget Observations

    Science.gov (United States)

    Loeb, N. G.; Su, W.; Wong, T.; Priestley, K.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation at the top-of-atmosphere (TOA) fuels the climate system, providing the energy required for atmospheric and oceanic motions. Earth's radiation budget (ERB) involves a balance between how much solar energy Earth absorbs and how much terrestrial thermal infrared radiation is emitted to space. Because of its critical role in climate, continuous monitoring of the ERB is necessary for improved understanding and prediction of climate variability and change. NASA's long history in observing the TOA ERB is acknowledged in the 2007 and 2013 reports of the IPCC (IPCC 2007, 2013), the 2007 NRC Decadal Survey (NRC 2007), and the GCOS implementation plan of the WMO (GCOS 2016). A key reason for NASA's success in this area is due to its support of the CERES Project and its predecessor, ERBE. During ERBE, the TOA ERB was observed using both scanner and nonscanner broadband instruments. The CERES project consists of six scanner instruments flying alongside high-resolution spectral imagers (MODIS, VIIRS) in morning and afternoon sun-synchronous orbits. In addition to extending the ERBE TOA radiation budget record, CERES also provides observations of Earth's surface radiation budget with unprecedented accuracy. Here we assess the likelihood of a measurement gap in the ERB record. We show that unless a follow-on ERB instrument to the last available CERES copy (FM6) is built and launched, there is a significant risk of a measurement gap in the ERB record by the mid-2020s. A gap is of concern not only because the ERB would not be monitored during the gap period but also because it would be exceedingly difficult to tie the records before and after the gap together with sufficient accuracy for climate analyses. While ERB instruments are highly stable temporally, they lack the absolute accuracy needed to bridge a gap. Consequently, there is a requirement that

  10. On scattering diagnostics with periodically pulsed lasers to follow the continuous evolution of time dependent plasma parameters

    International Nuclear Information System (INIS)

    Hellermann, M. von; Hirsch, K.; Doeble, H.F.

    1977-04-01

    The possibilities to use periodically pulsed lasers for plasma scattering diagnostics are discussed. An experiment with succesful application of a periodically pulsed frequency-doubled Nd:YAG laser is described and results are given. Application of the method to monitor continuously, with millisecond time resolution, parameters of Tokamak type plasmas, is considered. (orig.) [de

  11. IPRT polarized radiative transfer model intercomparison project - Three-dimensional test cases (phase B)

    Science.gov (United States)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2018-04-01

    Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http

  12. Small-angle X-ray scattering of solutions

    International Nuclear Information System (INIS)

    Koch, M.H.J.; Stuhrmann, H.B.; Vachette, P.; Tardieu, A.

    1982-01-01

    The use of synchrotron radiation in small-angle X-ray scattering (SAXS) techniques in biological structural studies is described. The main features of the monochromatic radiation systems and the white radiation systems are considered. The detectors, data acquisition and experimental procedures are briefly described. Experimental results are presented for 1) measurements on dilute solutions and weak scatterers, 2) measurement of conformational transitions, 3) contrast variation experiments, 4) time-resolved measurements and 5) complex contrast variation. (U.K.)

  13. A MULTIPLE SCATTERING POLARIZED RADIATIVE TRANSFER MODEL: APPLICATION TO HD 189733b

    Energy Technology Data Exchange (ETDEWEB)

    Kopparla, Pushkar; Yung, Yuk L. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Natraj, Vijay; Swain, Mark R. [Jet Propulsion Laboratory (NASA-JPL), Pasadena, CA (United States); Zhang, Xi [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States); Wiktorowicz, Sloane J., E-mail: pkk@gps.caltech.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States)

    2016-01-20

    We present a multiple scattering vector radiative transfer model that produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet’s atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partially covered by clouds or hazes, exhibit larger contrasts in polarized light when compared to clear atmospheres. This effect can potentially be used to identify patchy clouds in exoplanets. Given a set of full phase polarimetric measurements, this model can constrain the geometric albedo, properties of scattering particles in the atmosphere, and the longitude of the ascending node of the orbit. The model is used to interpret new polarimetric observations of HD 189733b in a companion paper.

  14. FIR-laser scattering for JT-60

    International Nuclear Information System (INIS)

    Itagaki, Tokiyoshi; Matoba, Tohru; Funahashi, Akimasa; Suzuki, Yasuo

    1977-09-01

    An ion Thomson scattering method with far infrared (FIR) laser has been studied for measuring the ion temperature in large tokamak JT-60 to be completed in 1981. Ion Thomson scattering has the advantage of measuring spatial variation of the ion temperature. The ion Thomson scattering in medium tokamak (PLT) and future large tokamak (JET) requires a FIR laser of several megawatts. Research and development of FIR high power pulse lasers with power up to 0.6 MW have proceeded in ion Thomson scattering for future high-temperature tokamaks. The FIR laser power will reach to the desired several megawatts in a few years, so JAERI plans to measure the ion temperature in JT-60 by ion Thomson scattering. A noise source of the ion Thomson scattering with 496 μm-CH 3 F laser is synchrotron radiation of which the power is similar to NEP of the Schottky-barrier diode. However, the synchrotron radiation power is one order smaller than that when a FIR laser is 385 μm-D 2 O laser. The FIR laser power corresponding to a signal to noise ratio of 1 is about 4 MW for CH 3 F laser, and 0.4 MW for D 2 O laser if NEP of the heterodyne mixer is one order less. A FIR laser scattering system for JT-60 should be realized with improvement of FIR laser power, NEP of heterodyne mixer and reduction of synchrotron radiation. (auth.)

  15. Separate observation of ballistic and scattered photons in the propagation of short laser pulses through a strongly scattering medium

    International Nuclear Information System (INIS)

    Tereshchenko, Sergei A; Podgaetskii, Vitalii M; Vorob'ev, Nikolai S; Smirnov, A V

    1998-01-01

    The conditions are identified for simultaneous observation of the peaks of scattered and unscattered (ballistic) photons in a narrow pulsed laser beam crossing a strongly scattering medium. The experimental results are explained on the basis of a nonstationary two-flux model of radiation transport. An analytic expression is given for the contribution of ballistic photons to the transmitted radiation, as a function of the characteristics of the scattering medium. It is shown that the ballistic photon contribution can be increased by the use of high-contrast substances which alter selectively the absorption and scattering coefficients of the medium. (laser applications and other topics in quantum electronics)

  16. Positron annihilation radiation from the Galactic center - Cheshire cat' Compton scattering and the origin of excess continuum

    International Nuclear Information System (INIS)

    Bildsten, L.; Zurek, W.H.

    1988-01-01

    Two observations of the gamma-ray spectrum from the direction of the Galactic center were made by HEAO 3 in the fall of 1979 and the spring of 1980. The 2-gamma 511 keV annihilation line flux decreased by a factor of about three during the 6 months between these observations, while the excess gamma-ray continuum below the annihilation line, often interpreted as 3-gamma decay of orthopositronium, barely changed. This discrepancy in temporal behavior makes the identification of the bulk of excess continuum as 3-gamma decay of positronium difficult. It is shown that Compton scattering of the line and high-energy radiation provides a natural explanation for the surprisingly small changes seen in the excess continuum. Scattered photons are delayed by a time corresponding to the size of the scattering region. For the annihilation source in the Galactic center, this distance is probably a fraction of a parsec. Thus, even after the high-energy continuum and annihilation line are gone, low-energy Compton-scattered photons can still be detected with an almost unchanged flux. 23 references

  17. Revisiting Bragg's X-ray microscope: scatter based optical transient grating detection of pulsed ionising radiation.

    Science.gov (United States)

    Fullagar, Wilfred K; Paganin, David M; Hall, Chris J

    2011-06-01

    Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Dust scattering and the radiation pressure force in the M82 superwind

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Carl T.; Thompson, Todd A.; Martini, Paul, E-mail: coker@astronomy.ohio-state.edu, E-mail: thompson@astronomy.ohio-state.edu, E-mail: martini@astronomy.ohio-state.edu [Department of Astronomy and Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States)

    2013-11-20

    Radiation pressure on dust grains may be an important physical mechanism driving galaxy-wide superwinds in rapidly star-forming galaxies. We calculate the combined dust and gas Eddington ratio (Γ) for the archetypal superwind of M82. By combining archival Galaxy Evolution Explorer data, a standard dust model, Monte Carlo dust scattering calculations, and the Herschel map of the dust surface density distribution, the observed far-UV/near-UV surface brightness in the outflow constrains both the total UV luminosity escaping from the starburst along its minor axis (L {sub *,UV}) and the flux-mean opacity, thus allowing a calculation of Γ. We find that L {sub *,UV} ≈ (1-6) × 10{sup 42} erg s{sup –1}, ∼2-12 times greater than the UV luminosity observed from our line of sight. On a scale of 1-3 kpc above the plane of M82, we find that Γ ∼ 0.01-0.06. On smaller scales (∼0.25-0.5 kpc), where the enclosed mass decreases, our calculation of L {sub *,UV} implies that Γ ∼ 0.1 with factor of few uncertainties. Within the starburst itself, we estimate the single-scattering Eddington ratio to be of order unity. Thus, although radiation pressure is weak compared to gravity on kpc scales above the plane of M82, it may yet be important in launching the observed outflow. We discuss the primary uncertainties in our calculation, the sensitivity of Γ to the dust grain size distribution, and the time evolution of the wind following M82's recent starburst episodes.

  19. Multichannel radiography employing scattered radiation

    International Nuclear Information System (INIS)

    Jacobs, A.M.; McInerney, J.J.; Kenney, E.S.

    1985-01-01

    This invention provides a diagnostic imaging system for constructing an image of on area of an interfacial surface within the body of a subject particularly adapted to obtain data for constructing interfaces between a beating heart and the lung. The system comprises a radiation source with means for generating a shaped beam of penetrating radiation; a radiation detector assembly; sensitive volume positioning means attached to both the radiation source and the detectors, which can be used to change the shape of the beam or the orientation of the detectors; a search control circuit; and image construction means

  20. Inelastic scattering in condensed matter with high intensity Mossbauer radiation: Progress report, March 1, 1985-October 31, 1987

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1987-10-01

    A facility for high intensity Moessbauer scattering has been commissioned at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue University using special isotopes produced at MURR. A number of scattering studies have been successfully carried out, including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 which indicates phason rather than phonon behavior. High precision, fundamental Moessbauer effect studies have also been carried out using scattering to filter unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape. This method allows complete correction for source resonance self-absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. This analysis is important to both the funadmental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct elastic fractions and lineshape parameters. These advances, coupled to our improvements in MIcrofoil Conversion Electron (MICE) spectroscopy, lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  1. Experimental researches of nuclear reactor neutron and gamma radiation scattering into the atmosphere

    International Nuclear Information System (INIS)

    Istomin, Yu.L.; Zelensky, D.I.; Cherepnin, Yu.S.; Orlov, Yu.V.; Netecha, M.E.; Avaev, V.N.; Vasel'ev, G.A.; Sakamoto, H.; Nomura, Y.; Naito, Y.

    1998-01-01

    In the report there are results of measuring radiation distribution on the caps of the RA and IWG.1M research reactors. Comparative analysis of the results is also in the report. There are neutron spectra in the interval of energies from 10 -9 to 13 MeV above RA and IWG.1M reactors. The spectra were measured with a set of activation detectors. Measurements were calculated to a nominal rate: for RA reactor - 300 kw, for IWG.1M - 7 MW. Thus, in the course of the experiment, vast experimental information relating to distribution of the RA and IWG.1M reactor gamma and neutron radiation scattered in the air for distances varying from 50 to 1000 m from the reactors has become available. The data obtained are to be used to verify the calculation codes and to validate the group nuclear constants

  2. Three-dimensional radiative transfer in an isotropically scattering, plane-parallel medium: generalized X- and Y-functions

    International Nuclear Information System (INIS)

    Mueller, D.W.; Crosbie, A.L.

    2005-01-01

    The topic of this work is the generalized X- and Y-functions of multidimensional radiative transfer. The physical problem considered is spatially varying, collimated radiation incident on the upper boundary of an isotropically scattering, plane-parallel medium. An integral transform is used to reduce the three-dimensional transport equation to a one-dimensional form, and a modified Ambarzumian's method is used to derive coupled, integro-differential equations for the source functions at the boundaries of the medium. The resulting equations are said to be in double-integral form because the integration is over both angular variables. Numerical results are presented to illustrate the computational characteristics of the formulation

  3. Constituent Components of Out-of-Field Scatter Dose for 18-MV Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy: A Comparison With 6-MV and Implications for Carcinogenesis

    International Nuclear Information System (INIS)

    Ruben, Jeremy D.; Smith, Ryan; Lancaster, Craig M.; Haynes, Matthew; Jones, Phillip; Panettieri, Vanessa

    2014-01-01

    Purpose: To characterize and compare the components of out-of-field dose for 18-MV intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) and their 6-MV counterparts and consider implications for second cancer induction. Methods and Materials: Comparable plans for each technique/energy were delivered to a water phantom with a sloping wall; under full scatter conditions; with field edge abutting but outside the bath to prevent internal/phantom scatter; and with shielding below the linear accelerator head to attenuate head leakage. Neutron measurements were obtained from published studies. Results: Eighteen-megavolt IMRT produces 1.7 times more out-of-field scatter than 18-MV 3D-CRT. In absolute terms, however, differences are just approximately 0.1% of central axis dose. Eighteen-megavolt IMRT reduces internal/patient scatter by 13%, but collimator scatter (C) is 2.6 times greater than 18-MV 3D-CRT. Head leakage (L) is minimal. Increased out-of-field photon scatter from 18-MV IMRT carries out-of-field second cancer risks of approximately 0.2% over and above the 0.4% from 18-MV 3D-CRT. Greater photoneutron dose from 18-MV IMRT may result in further maximal, absolute increased risk to peripheral tissue of approximately 1.2% over 18-MV 3D-CRT. Out-of-field photon scatter remains comparable for the same modality irrespective of beam energy. Machine scatter (C+L) from 18 versus 6 MV is 1.2 times higher for IMRT and 1.8 times for 3D-CRT. It is 4 times higher for 6-MV IMRT versus 3D-CRT. Reduction in internal scatter with 18 MV versus 6 MV is 27% for 3D-CRT and 29% for IMRT. Compared with 6-MV 3D-CRT, 18-MV IMRT increases out-of-field second cancer risk by 0.2% from photons and adds 0.28-2.2% from neutrons. Conclusions: Out-of-field photon dose seems to be independent of beam energy for both techniques. Eighteen-megavolt IMRT increases out-of-field scatter 1.7-fold over 3D-CRT because of greater collimator scatter despite

  4. Inverse radiation problem of temperature distribution in one-dimensional isotropically scattering participating slab with variable refractive index

    International Nuclear Information System (INIS)

    Namjoo, A.; Sarvari, S.M. Hosseini; Behzadmehr, A.; Mansouri, S.H.

    2009-01-01

    In this paper, an inverse analysis is performed for estimation of source term distribution from the measured exit radiation intensities at the boundary surfaces in a one-dimensional absorbing, emitting and isotropically scattering medium between two parallel plates with variable refractive index. The variation of refractive index is assumed to be linear. The radiative transfer equation is solved by the constant quadrature discrete ordinate method. The inverse problem is formulated as an optimization problem for minimizing an objective function which is expressed as the sum of square deviations between measured and estimated exit radiation intensities at boundary surfaces. The conjugate gradient method is used to solve the inverse problem through an iterative procedure. The effects of various variables on source estimation are investigated such as type of source function, errors in the measured data and system parameters, gradient of refractive index across the medium, optical thickness, single scattering albedo and boundary emissivities. The results show that in the case of noisy input data, variation of system parameters may affect the inverse solution, especially at high error values in the measured data. The error in measured data plays more important role than the error in radiative system parameters except the refractive index distribution; however the accuracy of source estimation is very sensitive toward error in refractive index distribution. Therefore, refractive index distribution and measured exit intensities should be measured accurately with a limited error bound, in order to have an accurate estimation of source term in a graded index medium.

  5. Risk of a second cancer from scattered radiation in acoustic neuroma treatment

    Science.gov (United States)

    Yoon, Myonggeun; Lee, Hyunho; Sung, Jiwon; Shin, Dongoh; Park, Sungho; Chung, Weon Kuu; Jahng, Geon-Ho; Kim, Dong Wook

    2014-06-01

    The present study aimed to compare the risk of a secondary cancer from scattered and leakage doses in patients receiving intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Four acoustic neuroma patients were treated with IMRT, VMAT, or SRS. Their excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) of a secondary cancer were estimated using the corresponding secondary doses measured at various organs by using radio-photoluminescence glass dosimeters (RPLGD) placed inside a humanoid phantom. When a prescription dose was delivered in the planning target volume of the 4 patients, the average organ equivalent doses (OED) at the thyroid, lung, liver, bowel, bladder, prostate (or ovary), and rectum were 14.6, 1.7, 0.9, 0.8, 0.6, 0.6, and 0.6 cGy, respectively, for IMRT whereas they were 19.1, 1.8, 2.0, 0.6, 0.4, 0.4, and 0.4 cGy, respectively, for VMAT, and 22.8, 4.6, 1.4, 0.7, 0.5, 0.5, and 0.5 cGy, respectively, for SRS. The OED decreased as the distance from the primary beam increased. The thyroid received the highest OED compared to other organs. A lifetime attributable risk evaluation estimated that more than 0.03% of acoustic neuroma (AN) patients would get radiation-induced cancer within 20 years of receiving radiation therapy. The organ with the highest radiation-induced cancer risk after radiation treatment for AN was the thyroid. We found that the LAR could be increased by the transmitted dose from the primary beam. No modality-specific difference in radiation-induced cancer risk was observed in our study.

  6. Risk of a second cancer from scattered radiation in acoustic neuroma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Myonggeun; Lee, Hyunho; Sung, Jiwon [Korea University, Seoul (Korea, Republic of); Shin, Dongoh [Kyung Hee University Medical Center, Seoul (Korea, Republic of); Park, Sungho [Ulsan University Hospital, Ulsan (Korea, Republic of); Chung, Weonkuu; Jahng, Geonho; Kim, Dongwook [Kyung Hee University Hospital at Gangdong, Seoul (Korea, Republic of)

    2014-06-15

    The present study aimed to compare the risk of a secondary cancer from scattered and leakage doses in patients receiving intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Four acoustic neuroma patients were treated with IMRT, VMAT, or SRS. Their excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) of a secondary cancer were estimated using the corresponding secondary doses measured at various organs by using radio-photoluminescence glass dosimeters (RPLGD) placed inside a humanoid phantom. When a prescription dose was delivered in the planning target volume of the 4 patients, the average organ equivalent doses (OED) at the thyroid, lung, liver, bowel, bladder, prostate (or ovary), and rectum were 14.6, 1.7, 0.9, 0.8, 0.6, 0.6, and 0.6 cGy, respectively, for IMRT whereas they were 19.1, 1.8, 2.0, 0.6, 0.4, 0.4, and 0.4 cGy, respectively, for VMAT, and 22.8, 4.6, 1.4, 0.7, 0.5, 0.5, and 0.5 cGy, respectively, for SRS. The OED decreased as the distance from the primary beam increased. The thyroid received the highest OED compared to other organs. A lifetime attributable risk evaluation estimated that more than 0.03% of acoustic neuroma (AN) patients would get radiation-induced cancer within 20 years of receiving radiation therapy. The organ with the highest radiation-induced cancer risk after radiation treatment for AN was the thyroid. We found that the LAR could be increased by the transmitted dose from the primary beam. No modality-specific difference in radiation-induced cancer risk was observed in our study.

  7. Surface-enhanced Raman scattering from silver electrodes

    International Nuclear Information System (INIS)

    Trott, G.R.

    1982-01-01

    The chemical and physical origins of the anomalously large enhancement of the Raman scattering cross section for molecules adsorbed on silver electrodes in an electrochemical cell were investigated. The effect of the chemical reactions which occur during the anodization/activation procedure were studied using the Ag-CN system. It was shown that the function of the anodization process is to roughen the electrode surface and create an activated site for bonding to the cyanide. A new nonelectrochemical technique for activating the silver surface, along with a study of the enhanced cyanide Raman scattering in different background electrolytes, showed that the Raman active entity on the surface must be a silver-cyanide complex. In order to study the physical mechanism of the enhancement, the angular dependence of the scattered radiation was measured from pyridine adsorbed on an evaporated silver electrode. Both polycrystalline and single crystalline silver films were used. The angular dependence of the scattered radiation from these films showed that the metal surface was controlling the directional properties of the scattered radiation, and not the polarizability tensor of the adsorbate. Based on these experimental results, it was concluded that for weakly roughened silver electrodes the source of the anomalous enhancement is due to a resonant Raman scattering process

  8. The use of the case study method in radiation worker continuing training

    International Nuclear Information System (INIS)

    Stevens, R.D.

    1990-01-01

    Typical methods of continuing training are often viewed by employees as boring, redundant and unnecessary. It is hoped that the operating experience lesson in the required course, Radiation Worker Requalification, will be well received by employees because actual RFP events will be presented as case studies. The interactive learning atmosphere created by the case study method stimulates discussion, develops analytical abilities, and motivates employees to use lessons learned in the workplace. This problem solving approach to continuing training incorporates cause and effect analysis, a technique which is also used at RFP to investigate events. A method of designing the operating experience lesson in the Radiation Worker Requalification course is described in this paper. 7 refs., 2 figs

  9. Finite volume method for radiative heat transfer in an unstructured flow solver for emitting, absorbing and scattering media

    International Nuclear Information System (INIS)

    Gazdallah, Moncef; Feldheim, Véronique; Claramunt, Kilian; Hirsch, Charles

    2012-01-01

    This paper presents the implementation of the finite volume method to solve the radiative transfer equation in a commercial code. The particularity of this work is that the method applied on unstructured hexahedral meshes does not need a pre-processing step establishing a particular marching order to visit all the control volumes. The solver simply visits the faces of the control volumes as numbered in the hexahedral unstructured mesh. A cell centred mesh and a spatial differencing step scheme to relate facial radiative intensities to nodal intensities is used. The developed computer code based on FVM has been integrated in the CFD solver FINE/Open from NUMECA Int. Radiative heat transfer can be evaluated within systems containing uniform, grey, emitting, absorbing and/or isotropically or linear anisotropically scattering medium bounded by diffuse grey walls. This code has been validated for three test cases. The first one is a three dimensional rectangular enclosure filled with emitting, absorbing and anisotropically scattering media. The second is the differentially heated cubic cavity. The third one is the L-shaped enclosure. For these three test cases a good agreement has been observed when temperature and heat fluxes predictions are compared with references taken, from literature.

  10. Light scattering by nonspherical particles theory, measurements, and applications

    CERN Document Server

    Mishchenko, Michael I; Travis, Larry D

    1999-01-01

    There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid part

  11. Light Scattering Reviews, Vol 6 Light Scattering and Remote Sensing of Atmosphere and Surface

    CERN Document Server

    Kokhanovsky, Alexander A

    2012-01-01

    This is the next volume in series of Light Scattering Reviews. Volumes 1-5 have already been printed by Springer. The volume is composed of several papers ( usually, 10) of leading researchers in the respective field. The main focus of this book is light scattering, radiative transfer and optics of snow.

  12. Continuous monitoring system of environmental γ radiation near nuclear facility

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu; Wang Wenhai

    1996-01-01

    The continuous monitoring system for the environmental γ radiation and accident emergency near nuclear facility is described. The continuous monitoring system consists of high pressurized ionization chamber, integrated weak current amplifier, V-F converter and intelligent data recorder. PC 486 microcomputer with standard RS-232C interface is used for data handling and graph plotting. This intelligent data recorder has the functions of alarm over threshold and records the output signal of detector and temperature. The measuring range is from 10 nGy h -1 to 10 mGy h -1 because a high insulation switch automatical changing the measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability

  13. Comparison of the auxiliary function method and the discrete-ordinate method for solving the radiative transfer equation for light scattering.

    Science.gov (United States)

    da Silva, Anabela; Elias, Mady; Andraud, Christine; Lafait, Jacques

    2003-12-01

    Two methods for solving the radiative transfer equation are compared with the aim of computing the angular distribution of the light scattered by a heterogeneous scattering medium composed of a single flat layer or a multilayer. The first method [auxiliary function method (AFM)], recently developed, uses an auxiliary function and leads to an exact solution; the second [discrete-ordinate method (DOM)] is based on the channel concept and needs an angular discretization. The comparison is applied to two different media presenting two typical and extreme scattering behaviors: Rayleigh and Mie scattering with smooth or very anisotropic phase functions, respectively. A very good agreement between the predictions of the two methods is observed in both cases. The larger the number of channels used in the DOM, the better the agreement. The principal advantages and limitations of each method are also listed.

  14. Electromagnetic radiation from beam-plasma instabilities

    Science.gov (United States)

    Pritchett, P. L.; Dawson, J. M.

    1983-01-01

    A computer simulation is developed for the generation of electromagnetic radiation in an electron beam-plasma interaction. The plasma is treated as a two-dimensional finite system, and effects of a continuous nonrelativistic beam input are accounted for. Three momentum and three field components are included in the simulation, and an external magnetic field is excluded. EM radiation generation is possible through interaction among Langmuir oscillations, ion-acoustic waves, and the electromagnetic wave, producing radiation perpendicular to the beam. The radiation is located near the plasma frequency, and polarized with the E component parallel to the beam. The scattering of Langmuir waves caused by ion-acoustic fluctuations generates the radiation. Comparison with laboratory data for the three-wave interactions shows good agreement in terms of the radiation levels produced, which are small relative to the plasma thermal energy.

  15. Non-combustible nuclear radiation shields with high hydrogen content

    International Nuclear Information System (INIS)

    Hall, W.C.; Peterson, J.M.

    1978-01-01

    The invention relates to compositions, methods of production, and uses of non-combustible nuclear radiation shields, with particular emphasis on those containing a high concentration of hydrogen atoms, especially effective for moderating neutron energy by elastic scatter, dispersed as a discontinuous phase in a continuous phase of a fire resistant matrix

  16. Modeling X-Ray Scattering Process and Applications of the Scattering Model

    Science.gov (United States)

    Al-Jundi, Taher Lutfi

    1995-01-01

    Computer modeling of nondestructive inspections with x-rays is proving to be a very useful tool for enhancing the performance of these techniques. Two x-ray based inspection techniques are considered in this study. The first is "Radiographic Inspection", where an existing simulation model has been improved to account for scattered radiation effects. The second technique is "Inspection with Compton backscattering", where a new simulation model has been developed. The effect of scattered radiation on a simulated radiographic image can be insignificant, equally important, or more important than the effect of the uncollided flux. Techniques to account for the scattered radiation effects include Monte Carlo techniques, and solving the particle transport equation for photons. However, these two techniques although accurate, are computationally expensive and hence inappropriate for use in computer simulation of radiography. A less accurate approach but computationally efficient is the principle of buildup factors. Traditionally, buildup factors are defined for monoenergetic photons of energies typical of a nuclear reactor. In this work I have expanded the definition of buildup factors to include a bremsstrahlung spectrum of photons with energies typically used in radiography (keV's instead of MeV's). This expansion of the definition relies on an intensive experimental work to measure buildup factors for a white spectrum of x-rays. I have also developed a monte carlo code to reproduce the measured buildup factors. The code was then converted to a parallel code and distributed on a network of workstations to reduce the execution time. The second inspection technique is based on Compton backscattering, where photons are scattered at large angles, more than 90 degrees. The importance of this technique arises when the inspected object is very large, or when access is limited to only one side of the specimen. The downside of detecting photons from backscattering is the low

  17. Extraction of chemical information of suspensions using radiative transfer theory to remove multiple scattering effects: application to a model multicomponent system.

    Science.gov (United States)

    Steponavičius, Raimundas; Thennadil, Suresh N

    2011-03-15

    The effectiveness of a scatter correction approach based on decoupling absorption and scattering effects through the use of the radiative transfer theory to invert a suitable set of measurements is studied by considering a model multicomponent suspension. The method was used in conjunction with partial least-squares regression to build calibration models for estimating the concentration of two types of analytes: an absorbing (nonscattering) species and a particulate (absorbing and scattering) species. The performances of the models built by this approach were compared with those obtained by applying empirical scatter correction approaches to diffuse reflectance, diffuse transmittance, and collimated transmittance measurements. It was found that the method provided appreciable improvement in model performance for the prediction of both types of analytes. The study indicates that, as long as the bulk absorption spectra are accurately extracted, no further empirical preprocessing to remove light scattering effects is required.

  18. Experimental study of TJ-1 plasma using scattering and radiation emission techniques; Analisis experimental del plasma TJ-1 con tecnicas de scattering y emision de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, C; Zurro, B

    1987-07-01

    The Thomson scattering system of TJ-1 is described in detail. The radial profiles of Te and ne obtained in TJ-1 discharges are presented. This data make possible to deduce characteristic parameters of the plasma confinement in this machine, as energy confinement times, Zeff B. Using also radiation measurements (global and in the visible range) we obtained the particle confinement time and Zeff without non experimental assumptions. (Author) 52 refs.

  19. [Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses: quasielastic scattering studies on glycerol; gamma-ray scattering from alkali halides; lattice dynamics in metals; Moessbauer neutron scattering, x-ray diffraction, and macroscopic studies of high T c superconductors containing tungsten; NiAl scattering studies; and atomic interference factors and nuclear Casimir effect

  20. Continuous monitoring system for environmental {gamma} radiation near nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Jin; Qingyu, Yue; Wenhai, Wang [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy

    1996-06-01

    The continuous monitoring system which is used for the environmental routine and accident emergency {gamma} radiation monitoring near nuclear facility is described. The continuous monitoring system consists of a high pressurized ionization chamber, integrated weak current amplifier, V/F converter and intelligent data recorder. The data gained by recorder can be transmitted to a PC through a standard RS-232-C interface for the data handling and graph plotting. This continuous monitoring system has the functions of alarm over threshold and recorded output signal of detector and temperature. The measuring range is from 10 nGy{center_dot}h{sup -1} to 10 mGy{center_dot}h{sup -1} because a high insulation switch atomically changed measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability. (5 figs., 2 tabs.).

  1. Continuous monitoring system for environmental γ radiation near nuclear facility

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu; Wang Wenhai

    1996-06-01

    The continuous monitoring system which is used for the environmental routine and accident emergency γ radiation monitoring near nuclear facility is described. The continuous monitoring system consists of a high pressurized ionization chamber, integrated weak current amplifier, V/F converter and intelligent data recorder. The data gained by recorder can be transmitted to a PC through a standard RS-232-C interface for the data handling and graph plotting. This continuous monitoring system has the functions of alarm over threshold and recorded output signal of detector and temperature. The measuring range is from 10 nGy·h -1 to 10 mGy·h -1 because a high insulation switch atomically changed measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability. (5 figs., 2 tabs.)

  2. 4D cone-beam computed tomography (CBCT) using a moving blocker for simultaneous radiation dose reduction and scatter correction

    Science.gov (United States)

    Zhao, Cong; Zhong, Yuncheng; Duan, Xinhui; Zhang, You; Huang, Xiaokun; Wang, Jing; Jin, Mingwu

    2018-06-01

    Four-dimensional (4D) x-ray cone-beam computed tomography (CBCT) is important for a precise radiation therapy for lung cancer. Due to the repeated use and 4D acquisition over a course of radiotherapy, the radiation dose becomes a concern. Meanwhile, the scatter contamination in CBCT deteriorates image quality for treatment tasks. In this work, we propose the use of a moving blocker (MB) during the 4D CBCT acquisition (‘4D MB’) and to combine motion-compensated reconstruction to address these two issues simultaneously. In 4D MB CBCT, the moving blocker reduces the x-ray flux passing through the patient and collects the scatter information in the blocked region at the same time. The scatter signal is estimated from the blocked region for correction. Even though the number of projection views and projection data in each view are not complete for conventional reconstruction, 4D reconstruction with a total-variation (TV) constraint and a motion-compensated temporal constraint can utilize both spatial gradient sparsity and temporal correlations among different phases to overcome the missing data problem. The feasibility simulation studies using the 4D NCAT phantom showed that 4D MB with motion-compensated reconstruction with 1/3 imaging dose reduction could produce satisfactory images and achieve 37% improvement on structural similarity (SSIM) index and 55% improvement on root mean square error (RMSE), compared to 4D reconstruction at the regular imaging dose without scatter correction. For the same 4D MB data, 4D reconstruction outperformed 3D TV reconstruction by 28% on SSIM and 34% on RMSE. A study of synthetic patient data also demonstrated the potential of 4D MB to reduce the radiation dose by 1/3 without compromising the image quality. This work paves the way for more comprehensive studies to investigate the dose reduction limit offered by this novel 4D MB method using physical phantom experiments and real patient data based on clinical relevant metrics.

  3. Investigation of Doppler spectra of laser radiation scattered inside hand skin during occlusion test

    Science.gov (United States)

    Kozlov, I. O.; Zherebtsov, E. A.; Zherebtsova, A. I.; Dremin, V. V.; Dunaev, A. V.

    2017-11-01

    Laser Doppler flowmetry (LDF) is a method widely used in diagnosis of microcirculation diseases. It is well known that information about frequency distribution of Doppler spectrum of the laser radiation scattered by moving red blood cells (RBC) usually disappears after signal processing procedure. Photocurrent’s spectrum distribution contains valuable diagnostic information about velocity distribution of the RBC. In this research it is proposed to compute the indexes of microcirculation in the sub-ranges of the Doppler spectrum as well as investigate the frequency distribution of the computed indexes.

  4. Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.

    Science.gov (United States)

    Massey, Steven M; Spring, Justin B; Russell, Timothy H

    2008-07-21

    Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.

  5. Photophoresis and the scattering of electromagnetic radiation

    International Nuclear Information System (INIS)

    Ipser, J.R.

    1985-09-01

    Electron-microscope photographs of soot lend support to the picture in which a soot particle is modeled as a collection of chains of small carbon spheres. The soot particle itself is typically considerably larger than the small carbon spheres making up the chains. Thus the soot particles might have a size approx.0.1 - 1 μm while the small carbon spheres might have a size approx.0.03 μm in typical situations. Further, measurements of the density of soot yield values much less than that of normal carbon, indicating that an individual soot particle has a rather small filling factor, i.e., the fraction of the volume of the particle tht is occupied by chains. If a soot particle is taken to be a sphere partially filled with carbon chains, what are its scattering and absorption properties. Several workers have adopted the view that the net scattering and absorption properties can be determined simply by summing the cross-sections for the individual small carbon spheres. We feel that such a procedure cannot be valid in general because it neglects coherence effects among the various randomly located scatterers within the soot particle. It appears that in a first rough approximation the scattering and absorption properties of soot can be determined by estimating the effective dielectric constant of a soot sphere

  6. Synchrotron radiation-based quasi-elastic scattering using time-domain interferometry with multi-line gamma rays.

    Science.gov (United States)

    Saito, Makina; Masuda, Ryo; Yoda, Yoshitaka; Seto, Makoto

    2017-10-02

    We developed a multi-line time-domain interferometry (TDI) system using 14.4 keV Mössbauer gamma rays with natural energy widths of 4.66 neV from 57 Fe nuclei excited using synchrotron radiation. Electron density fluctuations can be detected at unique lengths ranging from 0.1 nm to a few nm on time scales from several nanoseconds to the sub-microsecond order by quasi-elastic gamma-ray scattering (QGS) experiments using multi-line TDI. In this report, we generalize the established expression for a time spectrum measured using an identical single-line gamma-ray emitter pair to the case of a nonidentical pair of multi-line gamma-ray emitters by considering the finite energy width of the incident synchrotron radiation. The expression obtained illustrates the unique characteristics of multi-line TDI systems, where the finite incident energy width and use of a nonidentical emitter pair produces further information on faster sub-picosecond-scale dynamics in addition to the nanosecond dynamics; this was demonstrated experimentally. A normalized intermediate scattering function was extracted from the spectrum and its relaxation form was determined for a relaxation time of the order of 1 μs, even for relatively large momentum transfer of ~31 nm -1 . The multi-line TDI method produces a microscopic relaxation picture more rapidly and accurately than conventional single-line TDI.

  7. A boundary integral equation method using auxiliary interior surface approach for acoustic radiation and scattering in two dimensions.

    Science.gov (United States)

    Yang, S A

    2002-10-01

    This paper presents an effective solution method for predicting acoustic radiation and scattering fields in two dimensions. The difficulty of the fictitious characteristic frequency is overcome by incorporating an auxiliary interior surface that satisfies certain boundary condition into the body surface. This process gives rise to a set of uniquely solvable boundary integral equations. Distributing monopoles with unknown strengths over the body and interior surfaces yields the simple source formulation. The modified boundary integral equations are further transformed to ordinary ones that contain nonsingular kernels only. This implementation allows direct application of standard quadrature formulas over the entire integration domain; that is, the collocation points are exactly the positions at which the integration points are located. Selecting the interior surface is an easy task. Moreover, only a few corresponding interior nodal points are sufficient for the computation. Numerical calculations consist of the acoustic radiation and scattering by acoustically hard elliptic and rectangular cylinders. Comparisons with analytical solutions are made. Numerical results demonstrate the efficiency and accuracy of the current solution method.

  8. On the use of flux limiters in the discrete ordinates method for 3D radiation calculations in absorbing and scattering media

    International Nuclear Information System (INIS)

    Godoy, William F.; DesJardin, Paul E.

    2010-01-01

    The application of flux limiters to the discrete ordinates method (DOM), S N , for radiative transfer calculations is discussed and analyzed for 3D enclosures for cases in which the intensities are strongly coupled to each other such as: radiative equilibrium and scattering media. A Newton-Krylov iterative method (GMRES) solves the final systems of linear equations along with a domain decomposition strategy for parallel computation using message passing libraries in a distributed memory system. Ray effects due to angular discretization and errors due to domain decomposition are minimized until small variations are introduced by these effects in order to focus on the influence of flux limiters on errors due to spatial discretization, known as numerical diffusion, smearing or false scattering. Results are presented for the DOM-integrated quantities such as heat flux, irradiation and emission. A variety of flux limiters are compared to 'exact' solutions available in the literature, such as the integral solution of the RTE for pure absorbing-emitting media and isotropic scattering cases and a Monte Carlo solution for a forward scattering case. Additionally, a non-homogeneous 3D enclosure is included to extend the use of flux limiters to more practical cases. The overall balance of convergence, accuracy, speed and stability using flux limiters is shown to be superior compared to step schemes for any test case.

  9. Study on the influences of X Ray Scattering on radioscopic inspection

    Energy Technology Data Exchange (ETDEWEB)

    Wozniak, M.; Torrent, J.; Bancelin, A. [SNECMA NDE Dept. Laboratory, France, Evry Corbeil, 91 - Evry (France)

    2007-07-01

    This study issued from European project 'Verdict' (Virtual Evaluation and Robust Detection for engine Components non destructive Testing), aimed at developing and evaluating X Ray Non Destructive Method simulation. An qualitative appreciation and quantification for X Ray scattering for modelling (SINDBAD software) was identified. The effect of such radiation on radiogram results in a disturbing blur for interpretation of indications. The method and the results described are innovative in the analysis of X Ray scattering because for aeronautic field, the configurations used with this energy range are breakthrough. The approach followed consists in an experimental and practical method for evaluating scattered radiation on final image issued from the inspection. Experimental tests results confirmed that the influence of scattering radiation are linked to density variation, geometry of parts in the axis of direct radiation and spatial area. This study performed in industrial configurations contributed to improve X Ray scattering understanding. (authors)

  10. Elastic scattering of gamma radiation in solids

    International Nuclear Information System (INIS)

    Goncalves, O.D.

    1987-01-01

    The elastic scattering of gamma rays in solids is studied: Rayleigh scattering as well as Bragg scattering in Laue geometries. We measured Rayleigh cross sections for U, Pb, Pt, W, Sn, Ag, Mo, Cd, Zn, and Cu with gamma energies ranging from 60 to 660 KeV and angles between 5 0 and 140 0 . The experimental data are compared with form factor theories and second order perturbation theories and the limits of validity of both are established. In the 60 KeV experiment, a competition between Rayleigh and Bragg effects is found in the region of low momentum transfer. The Bragg experiments were performed using the gamma ray diffractometer from the Hahn-Meitner Institut (Berlin) with gammas of 317 KeV and angles up to 2 0 . In particular, we studied the effect of annealing in nearly perfect Czochralski Silicon crystals with high perfection in the crystallographic structure. The results are compared with Kinematical and Dynamical theories. (author)

  11. Radiation pressure in galactic disks: stability, turbulence, and winds in the single-scattering limit

    Science.gov (United States)

    Wibking, Benjamin D.; Thompson, Todd A.; Krumholz, Mark R.

    2018-04-01

    The radiation force on dust grains may be dynamically important in driving turbulence and outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically-thick limit relevant to the densest ultra-luminous galaxies and super star clusters, where reprocessed infrared photons provide the dominant source of electromagnetic momentum. However, even among starburst galaxies, the great majority instead lie in the so-called "single-scattering" limit, where the system is optically-thick to the incident starlight, but optically-thin to the re-radiated infrared. In this paper we present a stability analysis and multidimensional radiation-hydrodynamic simulations exploring the stability and dynamics of isothermal dusty gas columns in this regime. We describe our algorithm for full angle-dependent radiation transport based on the discontinuous Galerkin finite element method. For a range of near-Eddington fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent atmosphere with a scale height significantly inflated compared to the gas pressure scale height and mass-weighted turbulent energy densities of ˜0.01 - 0.1 of the midplane radiation energy density, corresponding to mass-weighted velocity dispersions of Mach number ˜0.5 - 2. Extrapolation of our results to optical depths of 103 implies maximum turbulent Mach numbers of ˜20. Comparing our results to galaxy-averaged observations, and subject to the approximations of our calculations, we find that radiation pressure does not contribute significantly to the effective supersonic pressure support in star-forming disks, which in general are substantially sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical equilibrium and comment on implications for radiation-pressure-driven galactic winds.

  12. Applications of the conjugate gradient FFT method in scattering and radiation including simulations with impedance boundary conditions

    Science.gov (United States)

    Barkeshli, Kasra; Volakis, John L.

    1991-01-01

    The theoretical and computational aspects related to the application of the Conjugate Gradient FFT (CGFFT) method in computational electromagnetics are examined. The advantages of applying the CGFFT method to a class of large scale scattering and radiation problems are outlined. The main advantages of the method stem from its iterative nature which eliminates a need to form the system matrix (thus reducing the computer memory allocation requirements) and guarantees convergence to the true solution in a finite number of steps. Results are presented for various radiators and scatterers including thin cylindrical dipole antennas, thin conductive and resistive strips and plates, as well as dielectric cylinders. Solutions of integral equations derived on the basis of generalized impedance boundary conditions (GIBC) are also examined. The boundary conditions can be used to replace the profile of a material coating by an impedance sheet or insert, thus, eliminating the need to introduce unknown polarization currents within the volume of the layer. A general full wave analysis of 2-D and 3-D rectangular grooves and cavities is presented which will also serve as a reference for future work.

  13. The underlying event in hard scattering processes

    International Nuclear Information System (INIS)

    Field, R.

    2002-01-01

    The authors study the behavior of the underlying event in hard scattering proton-antiproton collisions at 1.8 TeV and compare with the QCD Monte-Carlo models. The underlying event is everything except the two outgoing hard scattered jets and receives contributions from the beam-beam remnants plus initial and final-state radiation. The data indicate that neither ISAJET or HERWIG produce enough charged particles (with p T > 0.5 GeV/c) from the beam-beam remnant component and that ISAJET produces too many charged particles from initial-state radiation. PYTHIA which uses multiple parton scattering to enhance the underlying event does the best job describing the data

  14. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media

    Science.gov (United States)

    Stamnes, Knut; Tsay, S.-CHEE; Jayaweera, Kolf; Wiscombe, Warren

    1988-01-01

    The transfer of monochromatic radiation in a scattering, absorbing, and emitting plane-parallel medium with a specified bidirectional reflectivity at the lower boundary is considered. The equations and boundary conditions are summarized. The numerical implementation of the theory is discussed with attention given to the reliable and efficient computation of eigenvalues and eigenvectors. Ways of avoiding fatal overflows and ill-conditioning in the matrix inversion needed to determine the integration constants are also presented.

  15. Multiple-scattering in radar systems: A review

    International Nuclear Information System (INIS)

    Battaglia, Alessandro; Tanelli, Simone; Kobayashi, Satoru; Zrnic, Dusan; Hogan, Robin J.; Simmer, Clemens

    2010-01-01

    Although extensively studied within the lidar community, the multiple scattering phenomenon has always been considered a rare curiosity by radar meteorologists. Up to few years ago its appearance has only been associated with two- or three-body-scattering features (e.g. hail flares and mirror images) involving highly reflective surfaces. Recent atmospheric research aimed at better understanding of the water cycle and the role played by clouds and precipitation in affecting the Earth's climate has driven the deployment of high frequency radars in space. Examples are the TRMM 13.5 GHz, the CloudSat 94 GHz, the upcoming EarthCARE 94 GHz, and the GPM dual 13-35 GHz radars. These systems are able to detect the vertical distribution of hydrometeors and thus provide crucial feedbacks for radiation and climate studies. The shift towards higher frequencies increases the sensitivity to hydrometeors, improves the spatial resolution and reduces the size and weight of the radar systems. On the other hand, higher frequency radars are affected by stronger extinction, especially in the presence of large precipitating particles (e.g. raindrops or hail particles), which may eventually drive the signal below the minimum detection threshold. In such circumstances the interpretation of the radar equation via the single scattering approximation may be problematic. Errors will be large when the radiation emitted from the radar after interacting more than once with the medium still contributes substantially to the received power. This is the case if the transport mean-free-path becomes comparable with the instrument footprint (determined by the antenna beam-width and the platform altitude). This situation resembles to what has already been experienced in lidar observations, but with a predominance of wide- versus small-angle scattering events. At millimeter wavelengths, hydrometeors diffuse radiation rather isotropically compared to the visible or near infrared region where scattering is

  16. Analytic continuation of scattering data to the region of negative energies for systems that have one and two bound states

    International Nuclear Information System (INIS)

    Blokhintsev, L. D.; Savin, D. A.

    2016-01-01

    An exactly solvable potential model is used to study the possibility of deducing information about the features of bound states for the system under consideration (binding energies and asymptotic normalization coefficients) on the basis of data on continuum states. The present analysis is based on an analytic approximation and on the subsequent continuation of a partial-wave scattering function from the region of positive energies to the region of negative energies. Cases where the system has one or two bound states are studied. The α+d and α+"1"2C systems are taken as physical examples. In the case of one bound state, the scattering function is a smooth function of energy, and the procedure of its analytic continuation for different polynomial approximations leads to close results, which are nearly coincident with exact values. In the case of two bound states, the scattering function has two poles—one in the region of positive energies and the other in the region of negative energies between the energies corresponding to the two bound states in question. Padéapproximants are used to reproduce these poles. The inclusion of these poles proves to be necessary for correctly describing the properties of the bound states.

  17. Time-dependent scattering in resonance lines

    International Nuclear Information System (INIS)

    Kunasz, P.B.

    1983-01-01

    A numerical finite-difference method is presented for the problem of time-dependent line transfer in a finite slab in which material density is sufficiently low that the time of flight between scatterings greatly exceeds the relaxation time of the upper state of the scattering transition. The medium is assumed to scatter photons isotropically, with complete frequency redistribution. Numerical solutions are presented for a homogeneous, time-independent slab illuminated by an externally imposed radiation field which enters the slab at t = 0. Graphical results illustrate relaxation to steady state of trapped internal radiation, emergent energy, and emergent profiles. A review of the literature is also given in which the time-dependent line transfer problem is discussed in the context of recent analytical work

  18. Fast radiative transfer models for retrieval of cloud properties in the back-scattering region: application to DSCOVR-EPIC sensor

    Science.gov (United States)

    Molina Garcia, Victor; Sasi, Sruthy; Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego

    2017-04-01

    In this work, the requirements for the retrieval of cloud properties in the back-scattering region are described, and their application to the measurements taken by the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) is shown. Various radiative transfer models and their linearizations are implemented, and their advantages and issues are analyzed. As radiative transfer calculations in the back-scattering region are computationally time-consuming, several acceleration techniques are also studied. The radiative transfer models analyzed include the exact Discrete Ordinate method with Matrix Exponential (DOME), the Matrix Operator method with Matrix Exponential (MOME), and the approximate asymptotic and equivalent Lambertian cloud models. To reduce the computational cost of the line-by-line (LBL) calculations, the k-distribution method, the Principal Component Analysis (PCA) and a combination of the k-distribution method plus PCA are used. The linearized radiative transfer models for retrieval of cloud properties include the Linearized Discrete Ordinate method with Matrix Exponential (LDOME), the Linearized Matrix Operator method with Matrix Exponential (LMOME) and the Forward-Adjoint Discrete Ordinate method with Matrix Exponential (FADOME). These models were applied to the EPIC oxygen-A band absorption channel at 764 nm. It is shown that the approximate asymptotic and equivalent Lambertian cloud models give inaccurate results, so an offline processor for the retrieval of cloud properties in the back-scattering region requires the use of exact models such as DOME and MOME, which behave similarly. The combination of the k-distribution method plus PCA presents similar accuracy to the LBL calculations, but it is up to 360 times faster, and the relative errors for the computed radiances are less than 1.5% compared to the results when the exact phase function is used. Finally, the linearized models studied show similar behavior

  19. Application of gamma radiation backscattering in determining density and Zsub(eff) of scattering material Monte Carlo optimization of configuration

    International Nuclear Information System (INIS)

    Cechak, T.

    1982-01-01

    Applying Gardner's method of double evaluation one detector should be positioned such that its response should be independent of the material density and the second detector should be positioned so as to maximize changes in response due to density changes. The experimental scanning for optimal energy is extremely time demanding. A program was written based on the Monte Carlo method which solves the problem of error magnitude in case the computation of gamma radiation backscattering neglects multiply scattered photons, the problem of how this error depends on the atomic number of the scattering material as well as the problem of whether the representation of individual scatterings in the spectrum of backscattered photons depends on the positioning of the detector. 42 detectors, 8 types of material and 10 different density values were considered. The computed dependences are given graphically. (M.D.)

  20. Study of Compton Broadening Due to Electron-Photon Scattering

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao, M.

    2010-06-01

    Full Text Available We have investigated the effects of Compton broadening due to electron-photon scattering in hot stellar atmospheres. A purely electron-photon scattering media is assumed to have plane parallel geometry with an input radiation field localized on one side of the slab. The method is based on the discrete space theory of radiative transfer for the intensity of emitted radiation.The solution is developed to study the importance of scattering of radiation by free electrons in high temperature stellar atmospheres which produces a brodening and shift in spectral lines because of the Compton effect and the Doppler effect arising from mass and thermal motions of scattering electrons.It is noticed that the Comptonized spectrum depends on three parameters: the optical depth of the medium, the temperature of the thermal electrons and the viewing angle.We also showed that the Compton effect produces red shift and asymmetry in the line. These two effects increase as the optical depth increases. It is also noticed that the emergent specific intensities become completely asymmetric for higher optical depths.

  1. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    Science.gov (United States)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  2. Retrieval method of aerosol extinction coefficient profile based on backscattering, side-scattering and Raman-scattering lidar

    Science.gov (United States)

    Shan, Huihui; Zhang, Hui; Liu, Junjian; Tao, Zongming; Wang, Shenhao; Ma, Xiaomin; Zhou, Pucheng; Yao, Ling; Liu, Dong; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    Aerosol extinction coefficient profile is an essential parameter for atmospheric radiation model. It is difficult to get higher signal to noise ratio (SNR) of backscattering lidar from the ground to the tropopause especially in near range. Higher SNR problem can be solved by combining side-scattering and backscattering lidar. Using Raman-scattering lidar, aerosol extinction to backscatter ratio (lidar ratio) can be got. Based on side-scattering, backscattering and Raman-scattering lidar system, aerosol extinction coefficient is retrieved precisely from the earth's surface to the tropopause. Case studies show this method is reasonable and feasible.

  3. Surface-enhanced Raman scattering active gold nanostructure fabricated by photochemical reaction of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Akinobu, E-mail: yamaguti@lasti.u-hyogo.ac.jp [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Matsumoto, Takeshi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Okada, Ikuo; Sakurai, Ikuya [Synchrotoron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Utsumi, Yuichi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan)

    2015-06-15

    The deposition of gold nanoparticles in an electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The nanoparticles grew and aggregated into clusters with increasing radiation time. This behavior is explained by evaluating the effect of Derjaguin-Landau-Verweyand-Overbeek (DLVO) interactions combining repulsive electrostatic and attractive van der Waals forces on the particle deposition process. The surface-enhanced Raman scattering (SERS) of 4,4′ -bipyridine (4bpy) in aqueous solution was measured using gold nanoparticles immobilized on silicon substrates under systematically-varied X-ray exposure. The substrates provided an in situ SERS spectrum for 1 nM 4bpy. This demonstration creates new opportunities for chemical and environmental analyses through simple SERS measurements. - Highlights: • Gold nanoparticles were produced by photochemical reaction of synchrotron radiation. • The gold nanoparticles grew and aggregated into the higher-order nanostructure. • The behavior is qualitatively explained by analytical estimation. • The surface-enhanced Raman spectroscopy of 4,4′-bipyridine (4bpy) was demonstrated. • The substrate fabricated in a suitable condition provides in situ SERS for 1 nM 4bpy.

  4. Determination of scattering structures from spatial coherence measurements.

    Science.gov (United States)

    Zarubin, A M

    1996-03-01

    A new method of structure determination and microscopic imaging with short-wavelength radiations (charged particles, X-rays, neutrons), based on measurements of the modulus and the phase of the degree of spatial coherence of the scattered radiation, is developed. The underlying principle of the method--transfer of structural information about the scattering potential via spatial coherence of the secondary (scattering) source of radiation formed by this potential--is expressed by the generalization of the van Cittert-Zernike theorem to wave and particle scattering [A.M. Zarubin, Opt. Commun. 100 (1993) 491; Opt. Commun. 102 (1993) 543]. Shearing interferometric techniques are proposed for implementing the above measurements; the limits of spatial resolution attainable by reconstruction of the absolute square of a 3D scattering potential and its 2D projections from the measurements are analyzed. It is shown theoretically that 3D imaging with atomic resolution can be realized in a "synthetic aperture" electron or ion microscope and that a 3D resolution of about 6 nm can be obtained with a "synthetic aperture" X-ray microscope. A proof-of-principle optical experiment is presented.

  5. Pure-Triplet Scattering for Radiative Transfer in Semi-infinite Random Media with Refractive-Index Dependent Boundary

    International Nuclear Information System (INIS)

    Sallah, M.; Degheidy, A.R.

    2013-01-01

    Radiative transfer problem for pure-triplet scattering, in participating half-space random medium is proposed. The medium is assumed to be random with binary Markovian mixtures (e.g. radiation transfer in astrophysical contexts where the clouds and clear sky play and two-phase medium) described by Markovian statistics. The specular reflectivity of the boundary is angular-dependent described by the Fresnel's reflection probability function. The problem is solved at first in the deterministic case, and then the solution is averaged using the formalism developed by Levermore and Pomraning, to treat particles transport problems in statistical mixtures. Some physical quantities of interest such as the reflectivity of the boundary, average radiant energy, and average net flux are computed for various values of refractive index of the boundary

  6. Investigation of vesicle-capsular plague antigen complex formation by elastic laser radiation scattering

    Science.gov (United States)

    Guseva, N. P.; Maximova, Irina S.; Romanov, Sergey V.; Shubochkin, L. P.; Tatarintsev, Sergey N.

    1991-05-01

    Recently a great deal of attention has been given to the investigation artificial lipid liposomes, due to their application as "containers" for directed transport of biologically active compounds into particular cells, organs and tissues for prophylaxis and therapy of infectious diseases. The use of traditional methods of liposome investigation, such as sedimentation, electrophoresis and chromatography is impeded by low liposome resistivity to different deformations. In conjunction with this, optical methods of laser light scattering are promising as they allow nondisturbing, precise and quick investigations. This paper describes the investigation of vesicle systems prepared from egg lecithin of Serva Corporation and their complexes with the capsular antigen of the plague microbe. The capsular antigen Fl was obtained from EV plague microbe grown at 37° C on Huttinger agar. Fl was isolated by gel-filtration on ASA-22 followed by freeze drying of the preparation. Angular dependences of polarized radiation scattering were measured for several liposome suspension samples in a saline solution before and after the interaction with the plague microbe capsular antigen. The aim of the investigation was to analyze the nature of mutual antigen arrangement in a liposome and to develop methods for measuring its inclusion percentage.

  7. A Platform for X-Ray Thomson Scattering Measurements of Radiation Hydrodynamics Experiments on the NIF

    Science.gov (United States)

    Lefevre, Heath; Ma, Kevin; Belancourt, Patrick; MacDonald, Michael; Doeppner, Tilo; Keiter, Paul; Kuranz, Carolyn

    2017-10-01

    A recent experiment on the National Ignition Facility (NIF) radiographed the evolution of the Rayleigh-Taylor (RT) instability under high and low drive cases. This experiment showed that under a high drive the growth rate of the RT instability is reduced relative to the low drive case. The high drive launches a radiative shock, increases the temperature of the post-shock region, and ablates the spikes, which reduces the RT growth rate. The plasma parameters must be measured to validate this claim. We present a target design for making X-Ray Thomson Scattering (XRTS) measurements on radiation hydrodynamics experiments on NIF to measure the electron temperature of the shocked region in the above cases. Specifically, we show that a previously fielded NIF radiation hydrodynamics platform can be modified to allow sufficient signal and temperature resolution for XRTS measurements. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program.

  8. Scattering of an ultrashort electromagnetic pulse in a plasma

    International Nuclear Information System (INIS)

    Astapenko, V. A.

    2011-01-01

    An analytic approach is developed to describing how ultrashort electromagnetic pulses with a duration of one period or less at the carrier frequency are scattered in a plasma. Formulas are derived to calculate and analyze the angular and spectral probabilities of radiation scattering via two possible mechanisms-Compton and transition radiation channels-throughout the entire pulse. Numerical simulations were carried out for a Gaussian pulse. The effect of the phase of the carrier frequency relative to the pulse envelope on the scattering parameters is investigated.

  9. Effect of ionizing radiation on in situ Raman scattering and photoluminescence of silica optical fibers

    International Nuclear Information System (INIS)

    Bilodeau, T.G.; Ewing, K.J.; Nau, G.M.; Aggarwal, I.D.

    1995-01-01

    Raman fiber optic chemical sensors provide remote situ characterization capability. One application of Raman fiber optic chemical sensors is the characterization of the contents of nuclear waste tanks. In these tanks it is expected that approximately 20 meters of optical fiber will be exposed to radiation levels between 100 and 1,000 rads/hour. In support of this work two silica optical fiber types (one a communications grade fiber and the other nominally radiation resistant) have been tested at the radiation levels expected in the tanks. Luminescence and Raman scattering measurements have been performed in situ with 488-nm excitation on two types of silica optical fiber exposed to a constant low to moderate dose rate of gamma radiation of 880 rads(Si)/hour from a 60 Co source for a total dose of greater than 45 krads. The nominally radiation-resistant fiber was also excited with 514.5-nm and near-infrared 830-nm laser radiation. The rate of the silica Raman signal decrease is more than three times greater for the visible excitation wavelengths than for the 830-nm excitation for the radiation resistant fiber. The behavior of the 650-nm photoluminescence line upon irradiation was different for the two fibers studied, both in terms of the shift of the 650-nm line and rate of increase of the normalized photoluminescence intensity. In all cases the photoluminescence from the fibers was less than the Raman intensity. No radioluminescence was observed in either fiber. The radiation resistant fiber exhibited photo bleaching effects on the Raman transmission when photoannealed with 488-nm laser light

  10. Effect of ionizing radiation on in situ Raman scattering and photoluminescence of silica optical fibers

    Science.gov (United States)

    Bilodeau, T. G.; Ewing, K. J.; Nau, G. M.; Aggarwai, I. D.

    1995-02-01

    Raman fiber optic chemical sensors provide remote in situ characterization capability. One application of Raman fiber optic chemical sensors is the characterization of the contents of nuclear waste tanks. In these tanks it is expected that approximately 20 meters of optical fiber will be exposed to radiation levels between 100 and 1000 rads/hour. In support of this work two silica optical fiber types (one a communications grade fiber and the other nominally radiation resistant) have been tested at the radiation levels expected in the tanks. Luminescence and Raman scattering measurements have been performed in situ with 488-nm excitation on two types of silica optical fiber exposed to a constant low to moderate dose rate of gamma radiation of 880 rads(Si)/hour from a /sup 60/Co source for a total dose of greater than 45 krads. The nominally radiation-resistant fiber was also excited with 514.5-nm and near-infrared 830-nm laser radiation. The rate of the silica Raman signal decrease is more than three times greater for the visible excitation wavelengths than for the 830-nm excitation for the radiation resistant fiber. The behavior of the 650-nm photoluminescence line upon irradiation was different for the two fibers studied, both in terms of the shift of the 650-nm line and rate of increase of the normalized photoluminescence intensity. In all cases the photoluminescence from the fibers was less than the Raman intensity. No radioluminescence was observed in either fiber. The radiation resistant fiber exhibited photobleaching effects on the Raman transmission when photoannealed with 488-nm laser light.

  11. Revisiting Bragg's X-ray microscope: Scatter based optical transient grating detection of pulsed ionising radiation

    International Nuclear Information System (INIS)

    Fullagar, Wilfred K.; Paganin, David M.; Hall, Chris J.

    2011-01-01

    Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered. -- Research highlights: → It is timely that the concept of Bragg's X-ray microscope be revisited. → Transient gratings can be used for X-ray all-optical information processing. → Applications to optical real-time X-ray phase-retrieval are considered.

  12. Adjoint Sensitivity Analysis of Radiative Transfer Equation: Temperature and Gas Mixing Ratio Weighting Functions for Remote Sensing of Scattering Atmospheres in Thermal IR

    Science.gov (United States)

    Ustinov, E.

    1999-01-01

    Sensitivity analysis based on using of the adjoint equation of radiative transfer is applied to the case of atmospheric remote sensing in the thermal spectral region with non-negligeable atmospheric scattering.

  13. Comparison of the local dose of scattered radiation of a special dental - phantom and a real human head by using a Digital Volume Tomography (DVT)

    International Nuclear Information System (INIS)

    Neuwirth, J.; Hefner, A.

    2008-01-01

    Dental Radiography Digital Volume Tomography (DVT) gains more and more importance due to its possibility of three-dimensional imaging of teeth, jaw and visercoranium and the reduced radiation dose in comparison to conventional Computer Tomography (CT). Contrary to other, well documented radiographic procedures like dental panorama X-ray imaging there are no national or international guidelines or recommendations relating to DVT which regulate the designation of areas and standardize risk assessment. This study aims to assess the parameters necessary for local radiation protection in dental practices. Measurements were carried out in dental practices in order to evaluate the local dose resulting from different DVT devices. A special dental-phantom and a real human head were used in the irradiations in order to define the local dose of scattered radiation by nominal voltage. The dental-phantom was created for conventional dental panorama X-ray devices which make use of lower nominal voltages. This poses the question if the scatter performance of the special dental-phantom is comparable to a real human head and therefore applicable to the estimation of the radiation quality of a DVT when using 120 kV. The existing guidelines for dental panorama xray are analyzed and suggestions for future recommendations concerning the designation of areas and risk assessment for DVT are then deducted by comparing both sets of measurements. The results show that the special dental-phantom is absolutely suitable for the definition of the local dose resulting from the scattered radiation of a DVT. (author)

  14. Full correction of scattering effects by using the radiative transfer theory for improved quantitative analysis of absorbing species in suspensions.

    Science.gov (United States)

    Steponavičius, Raimundas; Thennadil, Suresh N

    2013-05-01

    Sample-to-sample photon path length variations that arise due to multiple scattering can be removed by decoupling absorption and scattering effects by using the radiative transfer theory, with a suitable set of measurements. For samples where particles both scatter and absorb light, the extracted bulk absorption spectrum is not completely free from nonlinear particle effects, since it is related to the absorption cross-section of particles that changes nonlinearly with particle size and shape. For the quantitative analysis of absorbing-only (i.e., nonscattering) species present in a matrix that contains a particulate species that absorbs and scatters light, a method to eliminate particle effects completely is proposed here, which utilizes the particle size information contained in the bulk scattering coefficient extracted by using the Mie theory to carry out an additional correction step to remove particle effects from bulk absorption spectra. This should result in spectra that are equivalent to spectra collected with only the liquid species in the mixture. Such an approach has the potential to significantly reduce the number of calibration samples as well as improve calibration performance. The proposed method was tested with both simulated and experimental data from a four-component model system.

  15. Rayleigh scattering of Moessbauer radiation in superionic conductor RbAg4I5

    International Nuclear Information System (INIS)

    Ovanesyan, N.S.; Goffman, V.G.; Sokolov, V.B.; Tkachev, V.V.

    1984-01-01

    The dynamical properties of RbAg 4 I 5 has been investiaated by Rayleigh scattering of Moessbauer radiation (RSMR) with wave-length lambda = 0.86 A. The character of Ag + ion oscillatory motion and diffusion in RbAg 4 I 5 depending on temperature including the phase transitions region is studied. It is shown that in the superionic crystal RbAg 4 I 5 the diffusion process is strongly correlated, i.e. a great number of initial and final states at diffusion jumps coincides. The observed broadening can be less than the expected one by value orders. Diffusion correlation can strongly reduce the activation barrier and lead to anomalously high ionic conduction

  16. The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers.

    Science.gov (United States)

    Schoenfeld, Andreas A; Poppinga, Daniela; Harder, Dietrich; Doerner, Karl-Joachim; Poppe, Bjoern

    2014-07-07

    Optical experiments and theoretical considerations have been undertaken in order to understand the causes of the 'orientation effect' and the 'parabola effect', the artefacts impairing the desired light absorption measurement on radiochromic EBT3 films with flatbed scanners. EBT3 films exposed to doses up to 20.9 Gy were scanned with an Epson Expression 10000XL flatbed scanner in landscape and portrait orientation. The horizontally and vertically polarized light components of the scanner were determined, and another Epson Expression 10000XL flatbed scanner was disassembled to examine its optical components. The optical properties of exposed and unexposed EBT3 films were studied with incident polarized and unpolarized white light, and the transmitted red light was investigated for its polarization and scattering properties including the distribution of the scattering angles. Neutral density filters were studied for comparison. Guidance was sought from the theory of light scattering from rod-like macromolecular structures. The drastic dose-dependent variation of the transmitted total light current as function of the orientation of front and rear polarizers, interpreted by light scattering theory, shows that the radiation-induced polymerization of the monomers of EBT3 films produces light scattering oscillators preferably polarized at right angles with the coating direction of the film. The directional distribution of the scattered light is partly anisotropic, with a preferred scattering plane at right angles with the coating direction, indicating light scattering from stacks of coherently vibrating oscillators piled up along the monomer crystals. The polyester carrier film also participates in these effects. The 'orientation' and 'parabola' artefacts due to flatbed scanning of radiochromic films can be explained by the interaction of the polarization-dependent and anisotropic light scattering from exposed and unexposed EBT3 films with the quantitative difference

  17. Momentum transfer in a Brillouin surface scattering

    International Nuclear Information System (INIS)

    Khater, A.F.

    1980-01-01

    The theory of acoustic excitation scattering in the surface of Brilloiun of opaque materials, is related to the question of momentum transfexed from radiation fields to the material when the incident eight is scattered in a measurable spectrum. (A.C.A.S.) [pt

  18. A study of low Q2 radiative Bhabha scattering

    International Nuclear Information System (INIS)

    Karlen, D.A.

    1988-03-01

    This thesis presents a study of electron-positron scattering, via nearly real photon exchange, where in the process one or more high energy photons are produced. The motivations behind the work are twofold. Firstly, the study is a sensitive test of the theory of electron-photon interactions, quantum electrodynamics. A deviation from the theory could indicate that the electron is a composite particle. Secondly, a thorough understanding of this process is necessary for experiments to be done in the near future at the Stanford Linear Collider and the LEP facility at CERN. Calculations for the process to third and fourth order in pertubation theory are described. Methods for simulating the process by a Monte Carlo event generator are given. Results from the calculations are compared to data from the Mark II experiment at the PEP storage ring. The ratio of measured to calculated cross sections are 0.993 /+-/ 0.017 /+-/ 0.015 and 0.99 /+-/ 0.16 /+-/ 0.08 for final states with one and two observed photons respectively, where the first errors are statistical and the second systematic. The excellent agreement verifies the calculations of the fourth order radiative correction. No evidence for electron substructure is observed

  19. Stationary theory of scattering

    International Nuclear Information System (INIS)

    Kato, T.

    1977-01-01

    A variant of the stationary methods is described, and it is shown that it is useful in a wide range of problems, including scattering, by long-range potentials, two-space scattering, and multichannel scattering. The method is based on the notion of spectral forms. The paper is restricted to the simplest case of continuous spectral forms defined on a Banach space embedded in the basic Hilbert space. (P.D.)

  20. Development of a process for continuous, radiation-chemically initiated, catalytic hydrocarboxylation

    International Nuclear Information System (INIS)

    Laege, J.

    1980-01-01

    In the general part are treated technical preparation of aliphatic carboxylic acids and their economical importance, the hydrocarboxylation reaction and general aspects of radiation chemistry. The chapter on results of discontinuous experiments contains experiments of radiochemically initiated catalytical hydroesterification of oct-1-ene and buteneoxide. The chapter on development and arrangement of the continuously working hydrocarboxylation plant deals with the disposition of process flow sheet, single elements of and description of the plant. The chapter on results of continuous experiments describes residence time behaviour of the tube reactor, investigations on the mixing behaviour of educts, influence of residence time and reaction pressure on continuous thermal and thermal-radiochemical hydrocarboxylation. The next chapter proposes a procedure of continuous hydrobarboxylation and esterification at high pressure on an industrial scale. The experimental part presents starting materials, preparation on catalysts and reference substances, performance of discontinuous autoclave experiments, work up and investigation of reaction products, performance of continuous high pressure experiments, Co-60-source, Fricke-dosimetry and analytics. (SPI)

  1. Low energy X-ray radiation impact on coated Si constructions

    International Nuclear Information System (INIS)

    Adliene, D.; Cibulskaite, I.; Meskinis, S.

    2010-01-01

    Low energy X-ray radiation impact on the coated Si structures is discussed in this paper. Experimental sandwich structures consisting of amorphous hydrogenated a:C-H or SiO x -containing DLC films were synthesized on Si wafers using direct ion deposition method and exposed to low energy (medical diagnostic range) X-ray photons. Irradiation of samples was performed continuously or in sequences and protective characteristics of the irradiated DLC films were investigated. Experimental data were used as the input data for Monte Carlo modelling of X-ray scattering effects in the coated silicon constructions, which affect significantly the 'signal to noise ratio' in DLC-coated Si structures proposed for their application in medical radiation detectors. Modelling results obtained in the case of DLC coatings were compared to the results of calculations performed for other commonly used combinations coating-detector material. The evaluation method of coated structures for their possible application in medical radiation detector constructions has been proposed in this paper. It is based on the best achieved compatibility between the appropriate mechanical characteristics, coating's resistance against the radiation damage and the lowest estimated scattering to total dose ratio in the coated radiation sensitive volume.

  2. Output factors and scatter ratios

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, P N; Summers, R E; Samulski, T V; Baird, L C [Allegheny General Hospital, Pittsburgh, PA (USA); Ahuja, A S; Dubuque, G L; Hendee, W R; Chhabra, A S

    1979-07-01

    Reference is made to a previous publication on output factors and scatter ratios for radiotherapy units in which it was suggested that the output factor should be included in the definitions of scatter-air ratio and tissue-maximum ratio. In the present correspondence from other authors and from the authors of the previous publication, the original definitions and the proposed changes are discussed. Radiation scatter from source and collimator degradation of beam energy and calculation of dose in tissue are considered in relation to the objective of accurate dosimetry.

  3. Pilot study of interaction of radiation therapy with doxorubicin by continuous infusion

    International Nuclear Information System (INIS)

    Rosenthal, C.J.; Rotman, M.

    1988-01-01

    Doxorubicin was initially administered alone by continuous infusion for 5 days every 3 weeks in escalating doses to 13 patients with advanced metastatic and/or recurrent malignancies. The maximum tolerable dosage was 13 mg/m2 per day for 5 days. Kinetic data showed a steady level of 60 ng/ml for 4 days and a biphasic disappearance curve. Radiation therapy (150-200 cGy per session) was then administered in 5-day cycles, every 3 weeks, concomitantly with continuous infusion of doxorubicin (12 mg/m2 per day) to 21 patients with various advanced unresectable recurrent or metastatic malignancies. Four of 9 patients with soft tissue sarcomas achieved complete response after a radiation dose of 2,206 +/- 590 (SD) cGy and 3 had partial response; the median durations of the response were 142 +/- 65 (SD) weeks for complete response and 28 +/- 10 weeks for partial response. Of 4 patients with primary hepatoma, 2 achieved partial response after 1,290 +/- 210 cGy. No response was seen in any of the 7 patients with adenocarcinoma of the gastrointestinal tract or breast. Complications of this regimen included moderate leukopenia and thrombocytopenia, mucositis, skin erythema, and decrease of the ventricular ejection fraction at a cumulative doxorubicin dose of 840 mg/m2. We conclude that doxorubicin given by protracted infusion can be safely administered with concomitant radiation and appears to enhance the effects of radiation on most soft tissue sarcomas and on some hepatocellular carcinomas

  4. Analytic continuation of scattering data as a method of obtaining characteristics of bound states

    International Nuclear Information System (INIS)

    Blokhintsev, L.; Savin, D.

    2014-01-01

    An asymptotic normalization coefficient (ANC) determines the asymptotics of a wave function of a nucleus a in a binary channel b + c. ANCs are proportional to nuclear vertex constants (NVCs), which are on-shell matrix elements of the virtual processes a ↔ b+c. The method of the analytic continuation of the effective range function is applied to obtain the asymptotic normalization coefficients for 6 Li nucleus in the α+ d channel. Several sets of scattering phases obtained from the phase-shift analyses as well as from Faddeev calculations are used as an input. Since the α+d system possesses the low-lying inelastic threshold due to the dissociation of a deuteron, the approach used is generalized to include inelastic channels. The sensitivity of the obtained values of asymptotic normalization coefficients to the elastic channels coupling and to account of the inelastic channel is investigated. In summary, we can say that employing the analytic continuation of the effective range expansion to determine the ANCs and NVCs for the 6 Li → α + d channel turns out to be successful

  5. Interstellar scattering of pulsar radiation. Pt. 1

    International Nuclear Information System (INIS)

    Backer, D.C.

    1975-01-01

    An investigation of the intensity fluctuations of 28 pulsars near 0.4 GHz indicates that spectra of interstellar scintillation are consistent with a gaussian shape, that scintillation indices are near unity, and that scintillation bandwidth depends linearly on dispersion measure. Observations at cm wavelengths show that the observer is in the near field of the scattering medium for objects with the lowest dispersion measures, and confirm the step dependence of correlation bandwidth on dispersion measure found by Sutton (1971). The variation of scattering parameters with dispersion measure may indicate that the rms deviation of thermal electron density on the scale of 10 11 cm grows with path length through the galaxy. (orig.) [de

  6. Inelastic scattering of neutrons by laser photons and excitons in crystals

    International Nuclear Information System (INIS)

    Agranovich, V.M.; Lalov, I.J.

    1975-01-01

    The cross section for the neutron scattering by photons sharply increases in crystals. In view of the fact that a propagating photon in a crystal (polariton), being the superposition of transverse photons and Coulomb excitations (optical phonons, excitons, etc.), involves in the motion also a nucleus subsystem, the cross section for the neutron scattering on the photon turns out to be proportional to the cross section for neutron scattering on nuclei and to the strength function of phonons at the polariton frequency. Numerical estimates for the cross section of the noncoherent photon absorption by a neutron in the case of a LiH crystal in the presence of an intense, electromagnetic radiation point to the possibility of an action of neutron fluxes by laser radiation. A similar effect of involvement (superposition) also takes place for excitons. This fact can be used for calculations of the cross section for neutron inelastic scattering by excitons, which is proportional to the scattering of neutron on nuclei cross section. The paper also discussed the effect of laser radiation of neutron-induced nuclear reaction (radiative capture and threshold reactions)

  7. The spectral energy distribution of the scattered light from dark clouds

    Science.gov (United States)

    Mattila, Kalevi; Schnur, G. F. O.

    1989-01-01

    A dark cloud is exposed to the ambient radiation field of integrated starlight in the Galaxy. Scattering of starlight by the dust particles gives rise to a diffuse surface brightness of the dark nebula. The intensity and the spectrum of this diffuse radiation can be used to investigate, e.g., the scattering parameters of the dust, the optical thickness of the cloud, and as a probe of the ambient radiation field at the location of the cloud. An understanding of the scattering process is also a prerequisite for the isolation of broad spectral features due to fluorescence or to any other non-scattering origin of the diffuse light. Model calculations are presented for multiple scattering in a spherical cloud. These calculations show that the different spectral shapes of the observed diffuse light can be reproduced with standard dust parameters. The possibility to use the observed spectrum as a diagnostic tool for analyzing the thickness of the cloud and the dust particle is discussed.

  8. Analytical calculations of multiple scattering for high energy photons and neutrons

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1994-04-01

    Radiography of large dense objects often require the use of highly penetrating radiation. For example, a couple of centimeters of steel attenuates 50 keV x-rays by a factor of approximately 10 -14 whereas this same amount of steel would attenuate a 500 keV photon beam by only a factor of about 0.25. However, this increase in penetrating power comes with a price. In the case of x-radiation there are two bills to pay: (1) For projection radiography, this increase in penetration directly causes a corresponding decrease in resolution. (2) This increase in penetration occurs in a region where the interaction of radiation and matter is changing from absorption to scattering. In the above example the fraction of scattering goes from about 0.1 at 50 keV to over 0.99 at 500 keV. These scattered photons can significantly degrade contrast. In order to overcome some of these difficulties, radiography using scattered photons has been studied by myself and numerous other authors. In all the above cases, calculation of the intensity of scattered radiation is of primary importance. In cases where scattering is probable, multiple scattering can also be probable. Calculations of multiple scattering are generally very difficult and usually require the use of extremely sophisticated Monte Carlo simulations. It is not unusual for these calculations to require several hours of CPU time on some of the worlds largest and fastest supercomputers. In this paper I will present an alternative approach. I will present an analytical solution to the equations of double scattering, and show how this solution can extended to the case of higher order scattering. Finally, I will give numerical examples of these solutions and compare them to solutions obtained by Monte Carlo simulations

  9. [Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1989-01-01

    There are four areas where major progress has occurred this year. We have applied the Fourier-transform method of describing and analyzing Moessbauer effect (ME) line shapes to make measurements of the temperature dependence of the recoilless fraction in tungsten. We have carried out quasi-elastic measurements of the gamma scattering from viscous liquids, learning about diffusive motion in polydimethylsiloxane, pentadecane, and glycerol. We have made major progress in fundamental physics, having shown for the first time how to determine precise quantum interference parameters, obtaining experimental results on the 46.5 keV line of 183 W and the 129 keV line of 191 Ir. Finally, we have continued our development of MICE detectors, with a theoretical analysis of the MICE lineshape and its relation to the lineshape of conventional transmission ME spectroscopy. 12 refs

  10. A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere. I - Theory. II - Application

    Science.gov (United States)

    Weng, Fuzhong

    1992-01-01

    A theory is developed for discretizing the vector integro-differential radiative transfer equation including both solar and thermal radiation. A complete solution and boundary equations are obtained using the discrete-ordinate method. An efficient numerical procedure is presented for calculating the phase matrix and achieving computational stability. With natural light used as a beam source, the Stokes parameters from the model proposed here are compared with the analytical solutions of Chandrasekhar (1960) for a Rayleigh scattering atmosphere. The model is then applied to microwave frequencies with a thermal source, and the brightness temperatures are compared with those from Stamnes'(1988) radiative transfer model.

  11. Diffusion and scattering in multifractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Lovejoy, S. [McGill Univ., Montreal, Quebec (Canada); Schertzer, D. [Universite Pierre et Marie Curie, Paris (France); Waston, B. [St. Lawrence Univ., Canton, NY (United States)] [and others

    1996-04-01

    This paper describes investigations of radiative properties of multifractal clouds using two different approaches. In the first, diffusion is considered by examining the scaling properties of one dimensional random walks on media with multifractal diffusivities. The second approach considers the scattering statistics associated with radiative transport.

  12. Blood-brain barrier disruption by continuous-wave radio frequency radiation.

    Science.gov (United States)

    Sirav, Bahriye; Seyhan, Nesrin

    2009-01-01

    The increasing use of cellular phones and the increasing number of associated base stations are becoming a widespread source of non ionizing electromagnetic radiation. Some biological effects are likely to occur even at low-level EM fields. This study was designed to investigate the effects of 900 and 1,800 MHz Continuous Wave Radio Frequency Radiation (CW RFR) on the permeability of Blood Brain Barrier (BBB) of rats. Results have shown that 20 min RFR exposure of 900 and 1,800 MHz induces an effect and increases the permeability of BBB of male rats. There was no change in female rats. The scientific evidence on RFR safety or harm remains inconclusive. More studies are needed to demonstrate the effects of RFR on the permeability of BBB and the mechanisms of that breakdown.

  13. Modeling of the scattered radiation of the head of an ALE by an extended source Gaussian extrafocal; Modelizacion de la radiacion dispersa del cabezal de un A. L. E. mediante una fuentes extrafocal extendida gasussiana

    Energy Technology Data Exchange (ETDEWEB)

    Quinones Rodriguez, L. A.; Richarte Reina, J. M.; Castro Ramirez, I. J.; Iborra Oquendo, M.; Angulo Pain, E.; Urena Llinares, A.; Lupiani Castellanos, J.; Ramos Cabalalero, L. J.

    2011-07-01

    The flattening filter is the main source of scattered radiation in an accelerator, there is also an important contribution of the primary collimator and a lower order of monitors and cameras secondary collimation. This scattered radiation of the head can be up to 12% of the radiation emitted by the accelerator and its characterization by a source extra focal extended to predict values for the field factors and the shape of the penumbra of the radiation profiles, based on the part of this virtual source view from our detector.

  14. Continuous environmental radiation monitoring network at Kalpakkam

    International Nuclear Information System (INIS)

    Somayaji, K.M.; Mathiyarasu, R.; Prakash, G.S.; Meenakshisundaram, V.; Rajagopal, V.

    1997-01-01

    The report highlights our experience in the design and installation of monitoring stations as part of continuous environmental radiation monitoring network around the periphery of the nuclear complex at Kalpakkam. Five monitoring stations, one each in south-west sector (Main Gate I) and south-south west (Main Gate II) and the others in North sector (HASL and ESG) and in north-west section (WIP) have been set up. Two independent detector systems, based on high pressure ionisation chamber (HPIC) and energy compensated GM have been installed at each of these locations and the data has been logged continuously using a data logger. The data so gathered at each monitoring station is retrieved every week by means of a hand held terminal (HHT) with a built-in non-volatile memory and transferred to an IBM PC-AT for data analysis and archival. The report discusses in depth the design and developmental efforts undertaken to set up the network, starting from the basic detectors. The work involved the design of suitable electrometer circuits for measuring the low levels of current from HPICs, and the subsequent study of the performance of the highly sensitive preamplifier under diurnal variations of ambient conditions. The report includes, in detail the design aspects and fabrication details of low current measuring electrometer circuits

  15. Synchrotron radiation: its characteristics and applications

    International Nuclear Information System (INIS)

    Blewett, J.P.; Chasman, R.; Green, G.K.

    1977-01-01

    It has been known for a century that charged particles radiate when accelerated and that relativistic electrons in the energy range between 100 MeV and several GeV and constrained to travel in circular orbits emit concentrated, intense beams with broad continuous spectra that can cover the electromagnetic spectrum from infrared through hard X-rays. Recently the possible applications of this radiation have been appreciated and electron synchrotrons and electron storage rings are now being used in many centers for studies of the properties of matter in the solid, liquid and gaseous states. A brief history is presented of ''synchrotron radiation'' as it is now called. The basic properties of this radiation are described and the world-wide distribution is indicated of facilities for its production. Particular attention is given to the proposed facility at Brookhaven which will be the first major installation to be dedicated only to the production and use of synchrotron radiation. Finally, typical examples are given of applications in the areas of radiation absorption studies, techniques based on scattering of radiation, and advances based on X-ray lithography

  16. Dielectric effects on Thomson scattering in a relativistic magnetized plasma

    DEFF Research Database (Denmark)

    Bindslev, H.

    1991-01-01

    The effects of the dielectric properties of a relativistic magnetized plasma on the scattering of electromagnetic radiation by fluctuations in electron density are investigated. The origin of the density fluctuations is not considered. Expressions for the scattering cross-section and the scattered...... power accepted by the receiving antenna are derived for a plasma with spatial dispersion. The resulting expressions allow thermal motion to be included in the description of the plasma and remain valid for frequencies of the probing radiation in the region of omega(p) and omega(ce), provided...... the absorption is small. Symmetry between variables relating to incident and scattered fields is demonstrated and shown to be in agreement with the reciprocity relation. Earlier results are confirmed in the cold plasma limit. Significant relativistic effects, of practical importance to the scattering...

  17. Coherent Radiation in Atomic Systems

    Science.gov (United States)

    Sutherland, Robert Tyler

    Over the last century, quantum mechanics has dramatically altered our understanding of light and matter. Impressively, exploring the relationship between the two continues to provide important insights into the physics of many-body systems. In this thesis, we add to this still growing field of study. Specifically, we discuss superradiant line-broadening and cooperative dipole-dipole interactions for cold atom clouds in the linear-optics regime. We then discuss how coherent radiation changes both the photon scattering properties and the excitation distribution of atomic arrays. After that, we explore the nature of superradiance in initially inverted clouds of multi-level atoms. Finally, we explore the physics of clouds with degenerate Zeeman ground states, and show that this creates quantum effects that fundamentally change the photon scattering of atomic ensembles.

  18. Depolarization Rayleigh scattering as a means of molecular concentration determination in plasmas

    NARCIS (Netherlands)

    Meulenbroeks, R.F.G.; Schram, D.C.; Jaegers, L.J.M.; Sanden, van de M.C.M.

    1992-01-01

    The difference in polarization for Rayleigh scattered radiation on spherically and nonspherically symmetric scattering objects has been used to obtain molecular species concentrations in plasmas of simple composition. Using a Rayleigh scattering diagnostic, the depolarized component of the scattered

  19. Group theory approach to scattering

    International Nuclear Information System (INIS)

    Wu, J.

    1985-01-01

    For certain physical systems, there exists a dynamical group which contains the operators connecting states with the same energy but belonging to potentials with different strengths. This group is called the potential group of that system. The SO(2,1) potential groups structure is introduced to describe physical systems with mixed spectra, such as Morse and Poeschl-teller potentials. The discrete spectrum describes bound states and the continuous spectrum describes bound states and the continuous spectrum describes scattering states. A solvable class of one-dimensional potentials given by Natanzon belongs to this structure with an SO(2,2) potential group. The potential group structure provides us with an algebraic procedure generating the recursion relations for the scattering matrix, which can be formulated in a purely algebraic fashion, divorced from any differential realization. This procedure, when applied to the three-dimensional scattering problem with SO(3,1) symmetry, generates the scattering matrix of the Coulomb problem. Preliminary phenomenological models for elastic scattering in a heavy-ion collision are constructed on the basis. The results obtained here can be regarded as an important extension of the group theory techniques to scattering problems similar to that developed for bound state problems

  20. Study of Compton broadening due to electron-photon scattering

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao M.

    2010-01-01

    Full Text Available We have investigated the effects of Compton broadening due to electron-photon scattering in hot stellar atmospheres. A purely electron-photon scattering media is assumed to have plane parallel geometry with an input radia­tion field localized on one side of the slab. The method is based on the discrete space theory of radiative transfer for the intensity of emitted radiation. The solution is developed to study the importance of scattering of radiation by free electrons in high temperature stellar atmospheres which produces a brodening and shift in spectral lines because of the Compton effect and the Doppler effect arising from mass and thermal motions of scattering electrons. It is noticed that the Comptonized spectrum depends on three parameters: the optical depth of the medium, the temperature of the thermal electrons and the viewing angle. We also showed that the Compton effect produces red shift and asymmetry in the line. These two effects increase as the optical depth increases. It is also noticed that the emergent specific intensities become completely asymmetric for higher optical depths.

  1. THE DISCOVERY OF RAMAN SCATTERING IN H II REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dopita, Michael A.; Nicholls, David C.; Sutherland, Ralph S.; Kewley, Lisa J.; Groves, Brent A., E-mail: Michael.Dopita@anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2016-06-10

    We report here on the discovery of faint extended wings of H α observed out to an apparent velocity of ∼7600 km s{sup −1} in the Orion Nebula (M42) and in five H ii regions in the Large and the Small Magellanic Clouds. We show that these wings are caused by Raman scattering of both the O i and Si ii resonance lines and stellar continuum UV photons with H i followed by radiative decay to the H i n = 2 level. The broad wings also seen in H β and in H γ result from Raman scattering of the UV continuum in the H i n = 4 and n = 5 levels, respectively. The Raman scattering fluorescence is correlated with the intensity of the narrow permitted lines of O i and Si ii. In the case of Si ii, this is explained by radiative pumping of the same 1023.7 Å resonance line involved in the Raman scattering by the Ly β radiation field. The subsequent radiative cascade produces enhanced Si ii λλ 5978.9, 6347.1, and 6371.4 Å permitted transitions. Finally, we show that in O i, radiative pumping of the 1025.76 Å resonance line by the Lyman series radiation field is also the cause of the enhancement in the permitted lines of this species lying near H α in wavelength, but here the process is a little more complex. We argue that all these processes are active in the zone of the H ii region near the ionization front.

  2. Quantum scattering at low energies

    DEFF Research Database (Denmark)

    Derezinski, Jan; Skibsted, Erik

    2009-01-01

    For a class of negative slowly decaying potentials, including V(x):=−γ|x|−μ with 0quantum mechanical scattering theory in the low-energy regime. Using appropriate modifiers of the Isozaki–Kitada type we show that scattering theory is well behaved on the whole continuous spectrum...... of the Hamiltonian, including the energy 0. We show that the modified scattering matrices S(λ) are well-defined and strongly continuous down to the zero energy threshold. Similarly, we prove that the modified wave matrices and generalized eigenfunctions are norm continuous down to the zero energy if we use...... of the kernel of S(λ) experiences an abrupt change from passing from positive energies λ to the limiting energy λ=0 . This change corresponds to the behaviour of the classical orbits. Under stronger conditions one can extract the leading term of the asymptotics of the kernel of S(λ) at its singularities....

  3. Assessment of exposure to scattered radiation in interventional procedures using special protective bismuth; Evaluacion de la exposicion a radiacion dispersa en procedimientos intervencionistas usando protectores especiales de bismuto

    Energy Technology Data Exchange (ETDEWEB)

    Soto Bua, M.; Medina Jimenez, E.; Vazquez Vazquez, R.; Santamaria Vazquez, F.; Otero Martinez, C.; Lobato Busto, R.; Luna Vega, V.; Mosquera Suero, J.; Sanchez Garcia, M.; Pombar Camean, M.

    2011-07-01

    There are currently marketed specific producta aimed at reducing personnel exposure to radiation scattered in cardiac catheterization procedures, interventional radiology or electrophysiology. Our service has been proposed to study the attenuation characteristics of the product Drape Armour manufactured by the company Microtek. Is a flexible devices constructed from an alloy of bismuth and sterility characteristics and infection control and fluid makes them particularly suitable for incorporating into the operative field of the patient. To study their behavior, there have been staff dose measurements representative of the moaL common situations of exposure to scattered radiation in a typical procedure of intervention.

  4. Efficient Fixed-Offset GPR Scattering Analysis

    DEFF Research Database (Denmark)

    Meincke, Peter; Chen, Xianyao

    2004-01-01

    The electromagnetic scattering by buried three-dimensional penetrable objects, as involved in the analysis of ground penetrating radar systems, is calculated using the extended Born approximation. The involved scattering tensor is calculated using fast Fourier transforms (FFT's). We incorporate...... in the scattering calculation the correct radiation patterns of the ground penetrating radar antennas by using their plane-wave transmitting and receiving spectra. Finally, we derive an efficient FFT-based method to analyze a fixed-offset configuration in which the location of the transmitting antenna is different...

  5. Generation of Attosecond X-Ray Pulse through Coherent Relativistic Nonlinear Thomson Scattering

    CERN Document Server

    Lee, K; Jeong, Y U; Lee, B C; Park, S H

    2005-01-01

    In contrast to some recent experimental results, which state that the Nonlinear Thomson Scattered (NTS) radiation is incoherent, a coherent condition under which the scattered radiation of an incident laser pulse by a bunch of electrons can be coherently superposed has been investigated. The Coherent Relativistic Nonlinear Thomson Scattered (C-RNTS) radiation makes it possible utilizing the ultra-short pulse nature of NTS radiation with a bunch of electrons, such as plasma or electron beams. A numerical simulation shows that a 25 attosecond X-ray pulse can be generated by irradiating an ultra-intense laser pulse of 4x10(19) W/cm2 on an ultra-thin solid target of 50 nm thickness, which is commercially available. The coherent condition can be easily extended to an electron beam from accelerators. Different from the solid target, much narrower electron beam is required for the generation of an attosecond pulse. Instead, this condition could be applied for the generation of intense Compton scattered X-rays with a...

  6. K correlations and facet models in diffuse scattering

    NARCIS (Netherlands)

    Hoenders, B.J.; Jakeman, E.; Baltes, H.P.; Steinle, B.

    1979-01-01

    The angular intensity distribution of radiation scattered by a wide range of random media can be accounted for by assuming effective source amplitude correlations involving modified Bessel functions Kv. We investigate how such correlations can be derived from physical models of stochastic scattering

  7. RAYLEIGH SCATTERING MODELS WITH CORRELATION INTEGRAL

    Directory of Open Access Journals (Sweden)

    S. F. Kolomiets

    2014-01-01

    Full Text Available This article offers one of possible approaches to the use of the classical correlation concept in Rayleigh scattering models. Classical correlation in contrast to three types of correlations corresponding to stochastic point flows opens the door to the efficient explanation of the interaction between periodical structure of incident radiation and discreet stochastic structure of distributed scatters typical for Rayleigh problems.

  8. Solving the radiation diffusion and energy balance equations using pseudo-transient continuation

    International Nuclear Information System (INIS)

    Shestakov, A.I.; Greenough, J.A.; Howell, L.H.

    2005-01-01

    We develop a scheme for the system coupling the radiation diffusion and matter energy balance equations. The method is based on fully implicit, first-order, backward Euler differencing; Picard-Newton iterations solve the nonlinear system. We show that iterating on the radiation energy density and the emission source is more robust. Since the Picard-Newton scheme may not converge for all initial conditions and time steps, pseudo-transient continuation (Ψtc) is introduced. The combined Ψtc-Picard-Newton scheme is analyzed. We derive conditions on the Ψtc parameter that guarantee physically meaningful iterates, e.g., positive energies. Successive Ψtc iterates are bounded and the radiation energy density and emission source tend to equilibrate. The scheme is incorporated into a multiply dimensioned, massively parallel, Eulerian, radiation-hydrodynamic computer program with automatic mesh refinement (AMR). Three examples are presented that exemplify the scheme's performance. (1) The Pomraning test problem that models radiation flow into cold matter. (2) A similar, but more realistic problem simulating the propagation of an ionization front into tenuous hydrogen gas with a Saha model for the equation-of-state. (3) A 2D axisymmetric (R,Z) simulation with real materials featuring jetting, radiatively driven, interacting shocks

  9. The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers

    International Nuclear Information System (INIS)

    Schoenfeld, Andreas A; Poppinga, Daniela; Poppe, Bjoern; Harder, Dietrich; Doerner, Karl-Joachim

    2014-01-01

    Optical experiments and theoretical considerations have been undertaken in order to understand the causes of the ‘orientation effect’ and the ‘parabola effect’, the artefacts impairing the desired light absorption measurement on radiochromic EBT3 films with flatbed scanners. EBT3 films exposed to doses up to 20.9 Gy were scanned with an Epson Expression 10000XL flatbed scanner in landscape and portrait orientation. The horizontally and vertically polarized light components of the scanner were determined, and another Epson Expression 10000XL flatbed scanner was disassembled to examine its optical components. The optical properties of exposed and unexposed EBT3 films were studied with incident polarized and unpolarized white light, and the transmitted red light was investigated for its polarization and scattering properties including the distribution of the scattering angles. Neutral density filters were studied for comparison. Guidance was sought from the theory of light scattering from rod-like macromolecular structures. The drastic dose-dependent variation of the transmitted total light current as function of the orientation of front and rear polarizers, interpreted by light scattering theory, shows that the radiation-induced polymerization of the monomers of EBT3 films produces light scattering oscillators preferably polarized at right angles with the coating direction of the film. The directional distribution of the scattered light is partly anisotropic, with a preferred scattering plane at right angles with the coating direction, indicating light scattering from stacks of coherently vibrating oscillators piled up along the monomer crystals. The polyester carrier film also participates in these effects. The ‘orientation’ and ‘parabola’ artefacts due to flatbed scanning of radiochromic films can be explained by the interaction of the polarization-dependent and anisotropic light scattering from exposed and unexposed EBT3 films with the quantitative

  10. Electron Scattering From Atoms, Molecules, Nuclei, and Bulk Matter

    CERN Document Server

    Whelan, Colm T

    2005-01-01

    Topics that are covered include electron scattering in the scanning TEM; basic theory of inelastic electron imaging; study of confined atoms by electron excitation; helium bubbles created in extreme pressure with application to nuclear safety; lithium ion implantation; electron and positron scattering from clusters; electron scattering from physi- and chemi-absorbed molecules on surfaces; coincidence studies; electron scattering from biological molecules; electron spectroscopy as a tool for environmental science; electron scattering in the presence of intense fields; electron scattering from astrophysical molecules; electon interatctions an detection of x-ray radiation.

  11. Modeling classical and quantum radiation from laser-plasma accelerators

    Directory of Open Access Journals (Sweden)

    M. Chen

    2013-03-01

    Full Text Available The development of models and the “Virtual Detector for Synchrotron Radiation” (vdsr code that accurately describe the production of synchrotron radiation are described. These models and code are valid in the classical and linear (single-scattering quantum regimes and are capable of describing radiation produced from laser-plasma accelerators (LPAs through a variety of mechanisms including betatron radiation, undulator radiation, and Thomson/Compton scattering. Previous models of classical synchrotron radiation, such as those typically used for undulator radiation, are inadequate in describing the radiation spectra from electrons undergoing small numbers of oscillations. This is due to an improper treatment of a mathematical evaluation at the end points of an integration that leads to an unphysical plateau in the radiation spectrum at high frequencies, the magnitude of which increases as the number of oscillation periods decreases. This is important for betatron radiation from LPAs, in which the betatron strength parameter is large but the number of betatron periods is small. The code vdsr allows the radiation to be calculated in this regime by full integration over each electron trajectory, including end-point effects, and this code is used to calculate betatron radiation for cases of experimental interest. Radiation from Thomson scattering and Compton scattering is also studied with vdsr. For Thomson scattering, radiation reaction is included by using the Sokolov method for the calculation of the electron dynamics. For Compton scattering, quantum recoil effects are considered in vdsr by using Monte Carlo methods. The quantum calculation has been benchmarked with the classical calculation in a classical regime.

  12. Polarized radiative transfer through terrestrial atmosphere accounting for rotational Raman scattering

    Science.gov (United States)

    Lelli, Luca; Rozanov, Vladimir V.; Vountas, Marco; Burrows, John P.

    2017-10-01

    This paper is devoted to the phenomenological derivation of the vector radiative transfer equation (VRTE) accounting for first-order source terms of rotational Raman scattering (RRS), which is responsible for the in-filling of Fraunhofer and telluric lines by inelastic scattered photons. The implementation of the solution of the VRTE within the framework of the forward-adjoint method is given. For the Ca II and the oxygen A-band (O2 A) spectral windows, values of reflectance, degree of linear polarization (DOLP) and in-filling, in zenith and nadir geometry, are compared with results given in literature. Moreover, the dependence of these quantities on the columnar loading and vertical layering of non-spherical dust aerosols is investigated, together with their changes as function of two habits of ice crystals, modeled as regular icosahedra and severely rough aggregated columns. Bi-directional effects of an underlying polarizing surface are accounted for. The forward simulations are performed for one selected wavelength in the continuum and one in the strong absorption of the O2 A, as their combination can be exploited for the spaceborne retrieval of aerosol and cloud properties. For this reason, we also mimic seasonal maps of reflectance, DOLP and in-filling, that are prototypical measurements of the Ultraviolet-Visible-Near Infrared (UVN) sensor, at a nominal spectral resolution of 0.12 nm. UVN is the core payload of the upcoming European Sentinel-4 mission, that will observe Europe in geostationary orbit for air quality monitoring purposes. In general, in the core of O2 A, depending on the optical thickness and altitude of the scatterers, we find RRS-induced in-filling values ranging from 1.3% to 1.8%, while DOLP decreases by 1%. Conversely, while negligible differences of RRS in-filling are calculated with different ice crystal habits, the severely rough aggregated column model can reduce DOLP by a factor up to 10%. The UVN maps of in-filling show values varying

  13. Tokamak T-10 multipulse laser scattering: Instrumentation modernization

    International Nuclear Information System (INIS)

    Baukov, V.A.; Ponomarev, A.V.; Gorshkov, A.V.; Rossikhin, B.A.; Sannikov, V.V.; Grek, B.

    1994-01-01

    The modernized Thomson scattering diagnostic complex of Tokamak T-10 is described. The complex is based on a high-power neodimium laser. Both the laser fundamental and second harmonics serve to find out the time-dependence of plasma electron temperature and density profiles, as well as to measure the electron distribution function. One detected the scattered laser radiation at θ = 90 degrees and 2.5 degrees angles. The new-version Nd laser generates eight-pulse sequences. The laser radiation energy is E o = 30-50 J/pulse. The radiation divergence was smaller than var-phi = 0.15 mrad. The multiple radiation parameters were found to be very stable. The operator could vary the inter-pulse time intervals within the pulse sequence. The second-harmonic radiation energy was E 2 = 10-15 J/pulse. The data acquisition and analysis system was supported by IBM/AT and Macintosh computers. 6 refs., 1 fig

  14. LSHINSE, Air Scattering Neutron and Gamma Dose rates for Complex Shielding Geometry

    International Nuclear Information System (INIS)

    Baran, A.; Gruen, M.; Leicht, R.

    1991-01-01

    1 - Description of program or function: The program LSHINSE is used to calculate the flux and the dose rate caused by gamma radiation emanating from a point source and being scattered in surrounding air. The program considers all forms of single scattering. Multiple scattering is taken into account in an approximate way by use of buildup factors. 2 - Method of solution: The program LSHINSE solves the equations for skyshine by use of Simpson integration. The integration limits are chosen such that the partial shielding is approximated by rectangular walls around the source. In addition, the attenuation of the primary radiation by a room ceiling can be calculated for several materials. By giving the height of the ceiling, the scattering in the air of the room can be calculated. By specifying energy groups the spectrum of the scattered radiation can be obtained. Valid energy range is 0.1 - 0.2 MeV, where the lower limit is due to uncertainties in the buildup factors. 3 - Restrictions on the complexity of the problem: The program is restricted to rectangular shielding problems involving gamma radiation in the range of 0.1 to 2.0 MeV

  15. Scatter radiation dose at height of the lens and image quality in interventional cardiology; Nivel de radiacao na altura do cristalino em cardiologia intervencionista

    Energy Technology Data Exchange (ETDEWEB)

    Leguees, Fernando A. Leyton

    2016-07-01

    Cardiologist and other staff members receive high doses of scattered radiation. Cases of radiation-induced cataract among cardiology professionals have been reported in studies, estimates for the dose to eye lens ranged from 450 to 900 mSv per year (without ceiling suspended screen), over several years. Recent surveys regarding high prevalence of lens changes likely induced by radiation exposure suggest an urgent need for improved radiation safety and training, use of eye protection during catheterization procedures, and improved occupational dosimetry. In view of the evidence of radiation injuries, the ICRP recommends limiting the radiation dose to the lens to 20 mSv per year for occupational exposure. A system for optimizing the radiation exposure is the measurement of entrance surface air kerma (K{sub a,e}) and kerma-area product (P{sub KA}) for patient and scattered dose or dose rate at the position for the staff, under clinical working conditions using phantoms and defined technical factors. Correlating K{sub a,e} and P{sub KA} with the scatter dose, applying the attenuation factors protective devices can enable estimation of the lens doses for operators. The purpose of this work is: to study the possibility of establishing a procedure which is useful for scientific societies and the regulatory authority in the prevention and control of IOE dose and to control and improve the quality of procedures in interventional cardiology as an initiative to raise awareness and optimization of radiological protection. Measurements were taken in different cardiac laboratories. Clinical working conditions were reproduced during the experiments for the different hemodynamic angiographic projections and operating modes used in fluoroscopy and cine. A first K{sub a,e} rate reference proposal for the characterization of angiography for the different acquisition modes were 16; 35; 40 and 220 (mGy/min), respectively. Considering the typical PKA values to patient in interventional

  16. Effects of continuous prenatal γ radiation on the pig and rat

    International Nuclear Information System (INIS)

    Erickson, B.H.; Martin, P.G.

    1976-01-01

    Little is known of the effects of continuous low-level irradiation applied prenatally to the long-lived mammal. As compared with the rodent, developmental events are protracted in long-lived species and consequently are at risk longer. Estimation of radiation risk to man therefore requires data from animals in which developmental events are similarly protracted. Pigs were irradiated continuously for the first 108 days of their 112-day gestation period at rates of 20, 9, 3 and 1.5 R per 22-hour day. Six pregnant gilts and six controls were employed at each dose rate. Foetal doses were 7, 3, 1 and 0.5 rad/d. Neither the health of the gilt nor the number of live births was affected by any exposure. Postnatal viability was also unaffected. Radiation effects on growth and organic development were assayed at birth, 70 and 150 days of age. Body weight and growth were unaffected by dose rates of 3 rad/d or less; and other than the gonad, only the weight of the brain was affected by 3 rad/d. At 1 rad/d or less only gonadal weight was reduced. The most spectacular finding at doses of 7 and 3 rad/d was sterility in both sexes. Following 1 rad/d, germ-cell number was reduced to 5% and 2% of control in the female and male, respectively. At 0.5 rad/d/, germ cells were reduced to 43% of control in the female and 11% of control in the male. In contrast to the pig, 7 rad/d reduced the germ-cell population of male and female rats to only 49% and 35% of control, respectively, and 1 rad/d produced no apparent effect in either sex. It appears, therefore, that interspecific differences in the response to continuous γ radiation are large and that the germ cell is the most labile cell type. (author)

  17. Scattering of ultraviolet and photosynthetically active radiation by Sorghum bicolor: influence of epicuticular wax

    International Nuclear Information System (INIS)

    Grant, R.H.; Jenks, M.A.; Rich, P.J.; Peters, P.J.; Ashworth, E.N.

    1995-01-01

    Near-isogenic mutants of Sorghum bicolor with genetic alterations affecting epicuticular wax (EW) structure but having similar canopy architecture provided a model system to examine the influence of EW on plant radiation scattering. Differences in canopies with two different sheath EW amounts showed differences in angular reflectance and transmittance. The differences varied with waveband of radiation. Canopy ultraviolet-B (UVB) and photosynthetically active radiation (PAR) backward reflectance in the principal solar plane were higher by wild-type plants (N-15) bearing reflective stalk EW filaments than mutant plants (bm-15) lacking stalk EW filaments. Between panicle emergence to anthesis the backward PAR reflectance increased more in the N-15 than bm-15 canopy. We suspect that the increase was a result of reflections from stalk facets emerging above the surface plane of the canopy foliage and exposing reflective EW. As panicles emerged above the foliage, canopy UVB and PAR forward reflectance by bm-15 increased while forward reflectance by N-15 decreased. The increased forward reflectance from bm-15 may be because of high specular reflectance from the microscopically smooth bm-15 stalk surfaces. Based on comparisons of probability distributions, significant differences in PAR and UVB canopy transmittance were detected between N-15 and bm-15. The median UVB transmittance was greater in the bm-15 canopy than the N-15 canopy, while the median PAR transmittance was the same for the two canopies. The greater transmittance in the N-15 canopy corresponded with lower EW load of the sheaths, but the difference between canopies was within the experimental error. Distinct influences of the stalk EW on canopy reflectance and transmittance were difficult to assess because of the relatively low proportion of surface area containing EW, the experimental errors associated with UVB irradiance field measurements. The optical properties of the S. bicolor canopy varied by waveband

  18. Time-domain, nuclear-resonant, forward scattering: the classical approach

    International Nuclear Information System (INIS)

    Hoy, G.R.

    1997-01-01

    This paper deals with the interaction of electromagnetic radiation with matter assuming the matter to have nuclear transitions in resonance with incident electromagnetic radiation. The source of the radiation is taken to be of two types; natural radioactive gamma decay and synchrotron radiation. Numerical examples using 57 Fe are given for the two types of source radiation. Calculated results are contrasted for the two cases. Electromagnetic radiation produced by recoil-free gamma-ray emission has essentially the natural linewidth. Electromagnetic radiation from a synchrotron, even with the best monochromators available, has a relatively broad-band spectrum, essentially constant for these considerations. Polarization effects are considered. In general, the nuclear-resonant medium changes the polarization of the input radiation on traversing the medium. Calculations are presented to illustrate that synchrotron radiation studies using nuclear-resonant forward scattering have the potential for making high-precision measurements of hyperfine fields and recoilless fractions. An interesting aspect of nuclear-resonant forward scattering, relative to possible gamma-ray laser development, is the so-called 'speed-up' effect

  19. Evaluation of scattered radiation emitted from X-ray security scanners on occupational dose to airport personnel

    International Nuclear Information System (INIS)

    Dalah, Entesar; Fakhry, Angham; Mukhtar, Asma; Al Salti, Farah; Bader, May; Khouri, Sara; Al-Zahmi, Reem

    2017-01-01

    Based on security issues and regulations airports are provided with luggage cargo scanners. These scanners utilize ionizing radiation that in principle present health risks toward humans. The study aims to investigate the amount of backscatter produced by passenger luggage and cargo toward airport personnel who are located at different distances from the scanners. To approach our investigation a Thermo Electron Radeye-G probe was used to quantify the backscattered radiation measured in terms of dose-rate emitted from airport scanners, Measurements were taken at the entrance and exit positions of the X-ray tunnel at three different distances (0, 50, and 100 cm) for two different scanners; both scanners include shielding curtains that reduce scattered radiation. Correlation was demonstrated using the Pearson coefficient test. Measurements confirmed an inverse relationship between dose rate and distance. An estimated occupational accumulative dose of 0.88 mSv/y, and 2.04 mSv/y were obtained for personnel working in inspection of carry-on, and cargo, respectively. Findings confirm that the projected dose of security and engineering staff are being well within dose limits. - Highlights: • Backscattered radiation emitted from the airport security scanners is estimated. • Inverse relation observed between backscattered radiation and scanners distance. • Occupational dose for personnel inspecting the scanners were up to 2.04 mSv/y. • The projected dose of security and engineering staff are well within dose limits.

  20. Relativistic theory of particles in a scattering flow III: photon transport.

    Science.gov (United States)

    Achterberg, A.; Norman, C. A.

    2018-06-01

    We use the theory developed in Achterberg & Norman (2018a) and Achterberg & Norman (2018b) to calculate the stress due to photons that are scattered elastically by a relativistic flow. We show that the energy-momentum tensor of the radiation takes the form proposed by Eckart (1940). In particular we show that no terms associated with a bulk viscosity appear if one makes the diffusion approximation for radiation transport and treats the radiation as a separate fluid. We find only shear (dynamic) viscosity terms and heat flow terms in our expression for the energy-momentum tensor. This conclusion holds quite generally for different forms of scattering: Krook-type integral scattering, diffusive (Fokker-Planck) scattering and Thomson scattering. We also derive the transport equation in the diffusion approximation that shows the effects of the flow on the photon gas in the form of a combination of adiabatic heating and an irreversible heating term. We find no diffusive changes to the comoving number density and energy density of the scattered photons, in contrast with some published results in Radiation Hydrodynamics. It is demonstrated that these diffusive corrections to the number- and energy density of the photons are in fact higher-order terms that can (and should) be neglected in the diffusion approximation. Our approach eliminates these terms at the root of the expansion that yields the anisotropic terms in the phase-space density of particles and photons, the terms responsible for the photon viscosity.

  1. Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe

    International Nuclear Information System (INIS)

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

    2012-01-01

    Discovery of Moessbauer effect in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couples to nuclear degrees of freedom leading to hyperfine interactions. thus, Moessbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Moessbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physics, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Moessbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or 'in-beam'Moessbauer experiments with implanted radioactive ions. More recently, two Moessbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time. In this chapter, the authors look into some of the unique aspects of nuclear resonance excited with synchrotron radiation as a probe of condensed matter, including magnetism, valence, vibrations, and lattice dynamics, and review the development of nuclear resonance inelastic x-ray scattering (NRIXS) and synchrotron Moessbauer spectroscopy

  2. Radiative MRI Coil Design Using Parasitic Scatterers

    DEFF Research Database (Denmark)

    Sanchez-Heredia, Juan D.; Avendal, Johan; Bibic, Adnan

    2018-01-01

    allows for antenna design techniques to be adapted to RF coil designs. This study proposes the use of parasitic scatterers to improve the performance of an existing 7T MRI coil called the single-sided adapted dipole (SSAD) antenna. The results reveal that scatterers arranged in a Yagi fashion can......Conventionally, radiofrequency (RF) coils used for magnetic resonance imaging (MRI) are electrically small and designed for nearfield operation. Therefore, existing antenna design techniques are mostly irrelevant for RF coils. However, the use of higher frequencies in ultrahigh field (UHF) MRI...... be applied to reduce local specific absorption rate (SAR) maxima of a reference SSAD by 40% with only a 6% decrease in the propagated B1 + field at the tissue depth of 15 cm. The higher directivity of the proposed design also decreasing the coupling with additional elements, making this antenna...

  3. Terahertz Plasma Waves in Two Dimensional Quantum Electron Gas with Electron Scattering

    International Nuclear Information System (INIS)

    Zhang Liping

    2015-01-01

    We investigate the Terahertz (THz) plasma waves in a two-dimensional (2D) electron gas in a nanometer field effect transistor (FET) with quantum effects, the electron scattering, the thermal motion of electrons and electron exchange-correlation. We find that, while the electron scattering, the wave number along y direction and the electron exchange-correlation suppress the radiation power, but the thermal motion of electrons and the quantum effects can amplify the radiation power. The radiation frequency decreases with electron exchange-correlation contributions, but increases with quantum effects, the wave number along y direction and thermal motion of electrons. It is worth mentioning that the electron scattering has scarce influence on the radiation frequency. These properties could be of great help to the realization of practical THz plasma oscillations in nanometer FET. (paper)

  4. Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Vais, O. E.; Bochkarev, S. G., E-mail: bochkar@sci.lebedev.ru; Bychenkov, V. Yu. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2016-09-15

    The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D{sub F} ≳ λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that the ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ≃10λ.

  5. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation.

    Science.gov (United States)

    Slaninova, Eva; Sedlacek, Petr; Mravec, Filip; Mullerova, Lucie; Samek, Ota; Koller, Martin; Hesko, Ondrej; Kucera, Dan; Marova, Ivana; Obruca, Stanislav

    2018-02-01

    Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.

  6. Forward Scattering of Loaded and Unloaded Antennas

    DEFF Research Database (Denmark)

    Gustafsson, Mats; Andersen, Jørgen Bach; Kristensson, Gerhard

    2012-01-01

    Forward scattering of antennas is related to antenna performance via the forward-scattering sum rule. The forward-scattering sum rule is an integral identity that shows that a weighted integral of the extinction cross section over all spectrum is proportional to the static polarizability...... of the antenna structure. Here, the forward-scattering sum rule is experimentally verified for loaded, short-circuit, and open-circuit cylindrical dipole antennas. It is also shown that the absorption efficiency cannot be greater than 1/2 for reciprocal linearly polarized lossless matched antennas...... with a symmetric radiation pattern in the forward and backward directions....

  7. Density measurement by means of once scattered gamma radiation the ETG probe, principles and equipment

    International Nuclear Information System (INIS)

    Joergensen, J.L.; Oelgaard, P.L.; Berg, F.

    1987-01-01

    The Department of Electrophysics, the Technical University of Denmark, and the Danish National Road Laboratory have together developed a new patent claimed device for measurements of the in situ density of materials. This report describes the principles of the system and some experimental results. The system is based on the once scattered gamma radiation. In a totally non-destructive and fast way it is possible to measure the density of up to 25 cm thick layers. Furthermore, an estimate of the density variation through the layer may be obtained. Thus the gauge represents a new generation of equipment for e.g. compaction control of road constructions. (author)

  8. Calculation of radiative corrections to virtual compton scattering - absolute measurement of the energy of Jefferson Lab. electron beam (hall A) by a magnetic method: arc project

    International Nuclear Information System (INIS)

    Marchand, D.

    1998-11-01

    This thesis presents the radiative corrections to the virtual compton scattering and the magnetic method adopted in the Hall A at Jefferson Laboratory, to measure the electrons beam energy with an accuracy of 10 4 . The virtual compton scattering experiments allow the access to the generalised polarizabilities of the protons. The extraction of these polarizabilities is obtained by the experimental and theoretical cross sections comparison. That's why the systematic errors and the radiative effects of the experiments have to be controlled very seriously. In this scope, a whole calculation of the internal radiative corrections has been realised in the framework of the quantum electrodynamic. The method of the dimensional regularisation has been used to the treatment of the ultraviolet and infra-red divergences. The absolute measure method of the energy, takes into account the magnetic deviation, made up of eight identical dipoles. The energy is determined from the deviation angle calculation of the beam and the measure of the magnetic field integral along the deviation

  9. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    Science.gov (United States)

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  10. On the radiative-conductive solution in continuous heterogeneous grey plane-parallel participating medium

    Energy Technology Data Exchange (ETDEWEB)

    Valerio, Felipe L. [Instituto Federal de Educacao Ciencia e Tecnologia do Rio Grande do Sul (IFRGS), Bento Goncalves, RS (Brazil); Segatto, Cynthia F.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos Graduacao em Engenharia Mecanica; Vargas, Rubem M.F., E-mail: felipe.valerio@bento.ifrs.edu.br, E-mail: cynthia.segatto@ufrgs.br, E-mail: marco.vilhena@ufrgs.br, E-mail: rvargas@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil). Programa de Pos Graduacao em Engenharia e Tecnologia de Materiais

    2017-07-01

    In this work we report an analytical representation for the solution of the radiative-conductive S{sub N} equation in a plane-parallel atmosphere in a heterogeneous domain considering an arbitrary continuous functions for the albedo. The basic idea consists in the application of the decomposition procedure to the non-linear radiative-conductive SN problem that are easily solved by the well know LTSN method. The length of the recursive system is properly chose in order to get a prescribed accuracy for the results. We also present numerical simulations for the results. (author)

  11. Study of a new approach to diagnose breast cancer based on synchrotron radiation scattering properties

    International Nuclear Information System (INIS)

    Conceicao, A.L.C.; Poletti, M.E.

    2012-01-01

    Full text: Breast cancer is the most frequently occurring cancer in women accounting for about 20% of all cancer deaths. This scenario is, among other factors, due to inherent limitations of the current clinical methods of diagnosis based on x-ray absorption. Meanwhile, recent researches have shown that the scattered radiation can provide information about the structures that compose a biological tissue, like breast tissue. Then, the information provided by x-ray scattering techniques can be used to identify breast cancer. In this work, we developed a classification model based on discriminant analysis of scattering profiles of 106 human breast samples histopathologically classified as normal tissue, benign and malignant lesion, at wide (WAXS) and small angle x-ray scattering (SAXS) regions. WAXS and SAXS experiments were carried out at the D12A-XRD1 and D02-SAXS2 beam lines in the National Synchrotron Light Laboratory (LNLS) in Campinas. For WAXS experiment, was used an x-ray beam energy of 11keV allowing to record the momentum transfer interval of 0.7nm -1 ≤(q=4π.sin(θ/2)/λ)≤70.5nm -1 on the NaI(Tl) detector. While for SAXS experiment was used an x-ray wavelength of 1.488 Angstrom, a two-dimensional detector and several sample-detector distances, allowing to get the range of 0.07nm -1 ≤q≤4.20nm -1 . The scattering profiles at both regions, for each sample were used to build the diagnosis model based on discriminant analysis. From WAXS data, differences related to position and intensity of the peaks of the molecular structures were found, when compared normal and pathological breast tissues. While for SAXS these differences were observed in supramolecular structures. The diagnostic model combining the information at WAXS and SAXS yield two linear functions which, allow to correlate changes at molecular scale with those at supramolecular level as well as, to classify correctly all samples analyzed in this study[1]. Finally, the results achieved in this

  12. Concentric layered Hermite scatterers

    Science.gov (United States)

    Astheimer, Jeffrey P.; Parker, Kevin J.

    2018-05-01

    The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.

  13. Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particles from Low Energy up to Relativistic Regime in Space Radiation Environment

    CERN Document Server

    Boschini, M.J.; Gervasi, M.; Giani, S.; Grandi, D.; Ivantchenko, V.; Pensotti, S.; Rancoita, P.G.; Tacconi, M.

    2011-01-01

    In the space environment, instruments onboard of spacecrafts can be affected by displacement damage due to radiation. The differential scattering cross section for screened nucleus--nucleus interactions - i.e., including the effects due to screened Coulomb nuclear fields -, nuclear stopping powers and non-ionization energy losses are treated from about 50\\,keV/nucleon up to relativistic energies.

  14. Scattering from randomly oriented scatterers of arbitrary shape in the low-frequency limit with application to vegetation

    Science.gov (United States)

    Karam, M. A.; Fung, A. K.

    1984-01-01

    A general theory of intensity scattering from small particles of arbitrary shape was developed based on the radiative transfer theory. Upon permitting the particles to orient in accordance with any prescribed distribution, scattering models can be derived. By making an appropriate choice of the particle size, the scattering model may be used to estimate scattering from media such as snow, vegetation and sea ice. For the purpose of illustration only comparisons with measurements from a vegetated medium are shown. The difference in scattering between elliptic and circular shaped leaves is demonstrated. In the low frequency limit, the major factors on backscattering from vegetation are found to be the depth of the vegetation layer and the orientation distribution of the leaves. The shape of the leaf is of secondary importance.

  15. Effects of multiple scattering on radiative properties of soot fractal aggregates

    International Nuclear Information System (INIS)

    Yon, Jérôme; Liu, Fengshan; Bescond, Alexandre; Caumont-Prim, Chloé; Rozé, Claude; Ouf, François-Xavier; Coppalle, Alexis

    2014-01-01

    The in situ optical characterization of smokes composed of soot particles relies on light extinction, angular static light scattering (SLS), or laser induced incandescence (LII). These measurements are usually interpreted by using the Rayleigh–Debye–Gans theory for Fractal Aggregates (RDG-FA). RDG-FA is simple to use but it completely neglects the impact of multiple scattering (MS) within soot aggregates. In this paper, based on a scaling approach that takes into account MS effects, an extended form of the RDG-FA theory is proposed in order to take into account these effects. The parameters of this extended theory and their dependency on the number of primary sphere inside the aggregate (1 p <1006) and on the wavelength (266nm<λ<1064nm) are evaluated thanks to rigorous calculations based on discrete dipole approximation (DDA) and generalized multi-sphere Mie-solution (GMM) calculations. This study shows that size determination by SLS is not distorted by MS effect. On the contrary, it is shown that fractal dimension can be misinterpreted by light scattering experiments, especially at short wavelengths. MS effects should be taken into account for the interpretation of absorption measurements that are involved in LII or extinction measurements. -- Highlights: • We incorporate multiple scattering effects in a scaling approach for fractal aggregates. • A generalized structure factor is introduced for implementation in RDG-FA theory. • Forward scattering is affected by multiple scattering as well as power law regime. • Absorption cross sections are affected by multiple scattering. • Absorption cross sections are 11% higher than that for forward scattering

  16. SU-F-J-144: Scatter and Leakage Survey of An Integrated MR-Linac System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J; Bosco, G; Darenbourg, B; Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To assess the scatter and leakage radiation of an integrated 1.5T MRI-Linac system. Methods: A 150cc chamber (model 96020C, Inovision) was used in all the scatter and leakage measurements, after being recalibrated for MV energy by the Accredited Dosimetry Calibration Laboratory at MD Anderson. The scatter radiation was measured by placing a 25 cm stack of solid-water materials at iso-center on the patient couch to simulate patient scatter. Gantry angles were positioned at 0 degree (beam pointing downward) and 270 (beam pointing laterally). Scatter radiation was measured at selective locations inside the RF room. Beam stopper leakage was measured at the exterior panel of the gantry. The head leakage was measured at 1 meter away from the Linac head in the direction which was determined to be the area of maximum leakage by wrapped films test. All measurements were repeated with the 1.5T magnetic field turned off to study the effect of magnetic field. Results: When the magnet was on (B=1.5T), the maximum head leakage at 1 meter was 191.6mR/1000MU. The scatter radiation at 1 meter from the iso-center was 1.091R/1000MU when the radiation beam was pointing downward, 1.296R/1000MU when the beam pointed laterally. The beam stopper leakage was measured as 299.4 mR/1000MU at the exterior panel of the gantry. When magnet was off (B=0), the head leakage was measured as 198.6mR/1000MU. The scatter radiation at 1 meter was 1.153R/1000MU when beam pointed downward, 1.287R/1000MU when beam pointed laterally. The beam stopper leakage was measured as 309.4 mR/1000MU at the exterior panel of the gantry. Conclusion: The measurements indicate that the scatter and leakage radiation from the integrated MR-Linac system are in-line with the expected values. The beam stopper leakage is approximately 300 mR/1000MU. The leakage and scatter difference with the magnetic field ON and OFF was within 5%. The authors received a corporate sponsored grant from Elekta which is the vendor of

  17. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    Science.gov (United States)

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.

  18. Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres : numerical methods and application to the quiet, non-magnetic, surface of a solar-type star

    NARCIS (Netherlands)

    Hayek, W.; Asplund, M.; Carlsson, M.; Trampedach, R.; Collet, R.; Gudiksen, B.V.; Hansteen, V.H.; Leenaarts, J.|info:eu-repo/dai/nl/304837946

    2010-01-01

    Aims. We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes

  19. Developing a framework to model the primary drying step of a continuous freeze-drying process based on infrared radiation

    DEFF Research Database (Denmark)

    Van Bockstal, Pieter-Jan; Corver, Jos; Mortier, Séverine Thérèse F.C.

    2018-01-01

    . These results assist in the selection of proper materials which could serve as IR window in the continuous freeze-drying prototype. The modelling framework presented in this paper fits the model-based design approach used for the development of this prototype and shows the potential benefits of this design...... requires the fundamental mechanistic modelling of each individual process step. Therefore, a framework is presented for the modelling and control of the continuous primary drying step based on non-contact IR radiation. The IR radiation emitted by the radiator filaments passes through various materials...

  20. Simulations, measurements, and optimization of OLEDs with scattering layer

    NARCIS (Netherlands)

    Altazin, S.; Reynaud, C.; Mayer, U.M.; Lanz, T.; Lapagna, K.; Knaack, R.; Peninck, L.; Kirsch, C.; Pernstich, K.P.; Harkema, S.; Hermes, D.; Ruhstaller, B.

    2015-01-01

    A multi-scale optical model for organic light-emitting devices containing scattering layers is presented. This model describes the radiation of embedded oscillating dipoles and scattering from spherical particles. After successful model validation with experiments on a top-emitting white OLED, we

  1. Time evolution of photon-pulse propagation in scattering and absorbing media: The dynamic radiative transfer system

    Science.gov (United States)

    Georgakopoulos, A.; Politopoulos, K.; Georgiou, E.

    2018-03-01

    A new dynamic-system approach to the problem of radiative transfer inside scattering and absorbing media is presented, directly based on first-hand physical principles. This method, the Dynamic Radiative Transfer System (DRTS), employs a dynamical system formality using a global sparse matrix, which characterizes the physical, optical and geometrical properties of the material-volume of interest. The new system state is generated by the above time-independent matrix, using simple matrix-vector multiplication for each subsequent time step. DRTS is capable of calculating accurately the time evolution of photon propagation in media of complex structure and shape. The flexibility of DRTS allows the integration of time-dependent sources, boundary conditions, different media and several optical phenomena like reflection and refraction in a unified and consistent way. Various examples of DRTS simulation results are presented for ultra-fast light pulse 3-D propagation, demonstrating greatly reduced computational cost and resource requirements compared to other methods.

  2. Radiation pressure: A possible cause for the superrotation of the Venusian atmosphere

    Science.gov (United States)

    Krause, J. L.

    1992-01-01

    The superrotation of the venusian atmosphere relative to the planet's surface has long been known. Yet the process by which this vigorous circulation is maintained is poorly understood. The purpose of this report is to show that a mechanism by which the solar radiation interacts with the cloudy atmosphere of Venus could be the principle cause of the superrotation. It has been long known that Venus has a high albedo due to the scattering (similar to the reflection process) of solar radiation by the cloud droplets in its atmosphere. The radiation not scattered, but intercepted by the planet and its atmosphere, is mainly absorbed within the cloud layers. Therefore, momentum (equal, more or less, to that of the solar radiation intercepted) is continually transferred to the venusian atmosphere. The atmospheric system presents a symmetrical surface (same radiation-matter interaction) toward the solar radiation at its morning and evening limbs. If the cross-sectional areas at both limbs were equal, the momentum transfer at the morning limb would decelerate the atmosphere's rotation while at the evening limb the same transfer would accelerate the rotation an equal amount. The net result of this is that the overall rate of rotation would be unchanged. Such a symmetrical configuration is not likely since the atmosphere must be warmed as it rotates across the planet's day hemisphere and cooled as it rotates across the planet's night hemisphere. This warming and cooling must result in a formation of an asymmetrical configuration. It is apparent that the momentum transfer at the evening limb must be greater than that at the morning limb because the atmosphere's greater cross section at the evening limb intercepts a greater amount of solar radiation. It should be noted that very little of the solar radiation is transmitted through the cloud layers, especially at or near the limbs where the atmospheric path length of the radiation is long. This net momentum transfer must be

  3. Polarization effects in coherent and incoherent photon scattering: survey of measurements and theory relevant to radiation transport calculations

    International Nuclear Information System (INIS)

    Hubbell, J.H.

    1993-01-01

    This report reviews available information on polarization effects arising when photons in the X-ray and gamma-ray energy regime undergo coherent (Rayleigh) scattering and incoherent (Compton) scattering by atomic electrons. In addition to descriptions and discussions of these effects, including estimates of their magnitudes as they apply to radiation transport calculations, an annotated bibliography of 102 selected works covering the period 1905-1991 is provided, with particularly relevant works for the purpose of this report flagged with asterisks (*). A major resource for this report is a 1948 unpublished informal report by L.V. Spencer which has been quoted here almost in its entirety, since, of all the works cited in the annotated bibliography, it appears to be the only one which explicitly and directly addresses the purpose of this report. Hence this valuable material should be re-introduced into the available and current literature. (author). 119 refs., 7 figs

  4. Study of the sensitivity of the radiation transport problem in a scattering medium

    International Nuclear Information System (INIS)

    Nunes, Rogerio Chaffin

    2002-03-01

    In this work, the system of differential equations obtained by the angular approach of the two-dimensional transport equation by the discrete ordinates method is solved through the formulation of finite elements with the objective of investigating the sensitivity of the outgoing flux of radiation with the incoming flux and the properties of absorption and scattering of the medium. The variational formulation for the system of differential equations of second order with the generalized boundary conditions of Neumann (third type) allows an easy implementation of the method of the finite elements with triangular mesh and approximation space of first order. The geometry chosen for the simulations is a circle with a non homogeneous circular form in its interior. The mapping of Dirichlet-Neumann is studied through various simulations involving the incoming flux, the outgoing flux and the properties of the medium. (author)

  5. The concept of mass angular scattering power and its relation to the diffusion constant

    Energy Technology Data Exchange (ETDEWEB)

    Sandison, George A.; Papiez, Lech S. [School of Health Sciences, Purdue University, West Lafayette, IN (United States)

    1998-09-01

    An understanding of the scattering of high energy charged particle beams by tissue is required in radiotherapy since the particle trajectories determine the pattern of radiation dose deposition in patients. Numerical calculations of radiation dose often utilize energy dependent values of the angular scattering power. However, the physics literature is replete with confused interpretations of the concept of angular scattering power and its relation to the single scattering cross section for the medium or the diffusion constant in the diffusional limit. The purpose of this article is to clarify these notions.

  6. Anomalous and resonance small-angle scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Thiyagarajan, P.

    1988-01-01

    Significant changes in the small-angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous-dispersion terms for the scattering factor (X-rays) or scattering length (neutrons). The physics inherent in these anomalous-dispersion terms is first discussed before consideration of how they enter the relevant scattering theory. Two major areas of anomalous-scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with X-rays. However, it is pointed out that the formalism is the same for the analog experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scattering are discussed. (orig.)

  7. Physics of radiation

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    This chapter discusses the following topics: concept of atom and elements; molecules and compounds; basic principles of radiation; types of radiations; radioactivity, unit of radioactivity, specific activity, radioactive decay, ionisation and ions, interaction of radiation with matters, modes of interaction: photoelectric absorption: Compton scattering, pair-production; attenuation of x and gamma radiation; build-up factors

  8. Sample Environment in Experiments using X-Ray Synchrotron Radiation

    DEFF Research Database (Denmark)

    Buras, B

    1984-01-01

    beam experiments with wavelength chosen at will from the continuous spectrum. Another type of insertion device, called undulator produces quasi-monochromatic radiation. The insertion devices enable the tailoring of the emitted S.R. to the requirements of the users and can be treated as the first......Modern electron (positron) storage rings are able to emit very intense X-ray radiation with a continuous spectrum extending to 0.1 A, from bending magnets and insertion devices (wavelength shifters and multipole wigglers). It can be used directly for white beam experiments and/or for monochromatic...... optical element of the beam line. This feature is especially important for experiments with samples in special environment because the latter imposes limitations both on scattering and absorption experiments. However, these limitations can be minimized in each case by finding the best match between...

  9. Radiation protection service for a nucleonic control system of continuous casting plant after events of accident

    International Nuclear Information System (INIS)

    Chakrabarti, Santanu; Massand, O.P.

    1998-01-01

    Extensive use of nucleonic control systems like level controllers was observed during radiation protection surveys in industries such as refineries, steel plants etc., located in the eastern region of India. There were two accidents at continuous casting plant in 1995 which affected the nucleonic control system installed in 1992. The authorities contacted Bhabha Atomic Research Centre (BARC) for radiation protection surveys for the involved nucleonic gauges. The present paper describes the radiation protection services rendered by BARC during such accidents. (author)

  10. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Bindslev, H.; Nielsen, S.K.; Porte, L.

    2006-01-01

    Here we present the first measurements by collective Thomson scattering of the evolution of fast-ion populations in a magnetically confined fusion plasma. 150 kW and 110 Ghz radiation from a gyrotron were scattered in the TEXTOR tokamak plasma with energetic ions generated by neutral beam injection...... and ion cyclotron resonance heating. The temporal behavior of the spatially resolved fast-ion velocity distribution is inferred from the received scattered radiation. The fast-ion dynamics at sawteeth and the slowdown after switch off of auxiliary heating is resolved in time. The latter is shown...

  11. Semi-analytical solution to arbitrarily shaped beam scattering

    Science.gov (United States)

    Wang, Wenjie; Zhang, Huayong; Sun, Yufa

    2017-07-01

    Based on the field expansions in terms of appropriate spherical vector wave functions and the method of moments scheme, an exact semi-analytical solution to the scattering of an arbitrarily shaped beam is given. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are presented to a spheroid and a circular cylinder of finite length, and the scattering properties are analyzed concisely.

  12. Rayleigh scattering of Moessbauer radiation in superionic conductor RbAg/sub 4/I/sub 5/

    Energy Technology Data Exchange (ETDEWEB)

    Ovanesyan, N.S.; Goffman, V.G.; Sokolov, V.B.; Tkachev, V.V. (AN SSSR, Chernogolovka. Otdelenie Inst. Khimicheskoj Fiziki)

    1984-04-01

    The dynamical properties of RbAg/sub 4/I/sub 5/ has been investiaated by Rayleigh scattering of Moessbauer radiation (RSMR) with wave-length lambda = 0.86 A. The character of Ag/sup +/ ion oscillatory motion and diffusion in RbAg/sub 4/I/sub 5/ depending on temperature including the phase transitions region is studied. It is shown that in the superionic crystal RbAg/sub 4/I/sub 5/ the diffusion process is strongly correlated, i.e. a great number of initial and final states at diffusion jumps coincide. The observed broadening can be less than the expected one by value orders. Diffusion correlation can strongly reduce the activation barrier and lead to anomalously high ionic conduction.

  13. Nonlinear scattering in hard tissue studied with ultrashort laser pulses

    International Nuclear Information System (INIS)

    Eichler, J.; Kim, B.M.

    2002-01-01

    The back-scattered spectrum of ultrashort laser pulses (800 nm, 0.2 ps) was studied in human dental and other hard tissues in vitro below the ablation threshold. Frequency doubled radiation (SHG), frequency tripled radiation and two-photon fluorescence were detected. The relative yield for these processes was measured for various pulse energies. The dependence of the SHG signal on probe thickness was determined in forward and back scattering geometry. SHG is sensitive to linear polarization of the incident laser radiation. SHG in human teeth was studied in vitro showing larger signals in dentin than in cementum and enamel. In carious areas no SHG signal could be detected. Possible applications of higher harmonic radiation for diagnostics and microscopy are discussed. (orig.)

  14. Evaluating the Efficiency of the Device in Shielding Scattered Radiation during Treatment of Carcinoma of the Penis

    Energy Technology Data Exchange (ETDEWEB)

    Gim, Yang Soo; Lee, Sun Young; Lim, Suk Gun; Gwak, Geun Tak; Park, Ju Gyeong; Lee, Seung Hoon; Hwang, Ho In; Cha, Sook Yong [Dept. of Radiation Oncology, Chonbuk National University Hoispital, Jeonju (Korea, Republic of)

    2009-03-15

    We evaluated the device that was created for maintaining the patient's setup and protecting the testicles from scattered radiation during treatment of carcinoma of the penis. The phantom testicles were made of vaseline cotton gauze and the device consisted of 5 mm of acryl box and 4 mm of lead shielding. 3 x 3 cm{sup 2}, 4 x 4 cm{sup 2}, 5 x 5 cm{sup 2}, 6 x 6 cm{sup 2}, 7 x 7 cm{sup 2} field sizes were used for this study and measurement was made at 4, 5, 6, 7, 8, 10 cm from the lower edge of the field for 10 times with lead shielding and without the shielding respectively. 200 cGy was delivered using 6 MV photons. The scatted radiation without lead shielding at 4, 5, 6, 7, 8, 10 cm from the lower edge of the field were 14.8-4.7 cGy with 3 x 3 cm{sup 2}, 15.7-5.2 cGy with 4 x 4 cm{sup 2}, 17.6-5.5 cGy with 5 x 5 cm{sup 2}, 19.9-6.6 cGy with 6 x 6 cm{sup 2}, 22.2-7.6 cGy with 7 x 7 cm{sup 2} and the measured dose without lead shielding were 7.1-2.6 cGy with 3 x 3 cm{sup 2}, 8.9-3.6 cGy with 4 x 4 cm{sup 2}, 12.3-4.8 cGy with 5 x 5 cm{sup 2}, 14.6-5.0 cGy with 6 x 6 cm{sup 2} and 21.1-6.4 cGy with 7 x 7 cm{sup 2}. As shown above, the scatted radiation decreased after using lead shielding. Depending of the range of field sizes, the resulting difference between without shielding values and with shielding values were: 7.8-1.1 cGy at 4 cm, 5.1-1.2 cGy at 5 cm, 3.8-1.1 cGy at 6 cm, 3.4-1.7 cGy at 7 cm, 2.8-1.7 cGy at 8 cm, 2.4-2.5 cGy at 9 cm and 2.1-1.8 cGy at 10 cm. In the situation as described above, the range in values depending on the distance was 7.8-1.1 cGy with 3 x 3 cm{sup 2}, 6.9-1.6 cGy with 4 x 4 cm{sup 2}, 5.3-0.8 cGy with 5 x 5 cm{sup 2}, 5.3-1.5 cGy with 6 x 6 cm{sup 2} and 1.1-1.8 cGy with 7 x 7 cm{sup 2}. Using the device we created to shield the testicles from scattered radiation during treatment of carcinoma of the penis, we have found that scattered radiation to the testicles is decreased by the phantom testicles, and by increasing the distance

  15. Scattering and; Delay, Scale, and Sum Migration

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S K

    2011-07-06

    How do we see? What is the mechanism? Consider standing in an open field on a clear sunny day. In the field are a yellow dog and a blue ball. From a wave-based remote sensing point of view the sun is a source of radiation. It is a broadband electromagnetic source which, for the purposes of this introduction, only the visible spectrum is considered (approximately 390 to 750 nanometers or 400 to 769 TeraHertz). The source emits an incident field into the known background environment which, for this example, is free space. The incident field propagates until it strikes an object or target, either the yellow dog or the blue ball. The interaction of the incident field with an object results in a scattered field. The scattered field arises from a mis-match between the background refractive index, considered to be unity, and the scattering object refractive index ('yellow' for the case of the dog, and 'blue' for the ball). This is also known as an impedance mis-match. The scattering objects are referred to as secondary sources of radiation, that radiation being the scattered field which propagates until it is measured by the two receivers known as 'eyes'. The eyes focus the measured scattered field to form images which are processed by the 'wetware' of the brain for detection, identification, and localization. When time series representations of the measured scattered field are available, the image forming focusing process can be mathematically modeled by delayed, scaled, and summed migration. This concept of optical propagation, scattering, and focusing have one-to-one equivalents in the acoustic realm. This document is intended to present the basic concepts of scalar scattering and migration used in wide band wave-based remote sensing and imaging. The terms beamforming and (delayed, scaled, and summed) migration are used interchangeably but are to be distinguished from the narrow band (frequency domain) beamforming to determine

  16. SAR Polarimetric Scattering from Natural Terrains

    Science.gov (United States)

    2017-02-17

    land surfaces. In addition, NMM3D will also be useful for C-, X-, and Ku-bands. NMM3D results will also be implemented in the NASA Earth Observing...unlimited. (3) Multiple Scattering Effects with Cyclical Terms in Active Remote Sensing of Vegetated Surface Using Vector Radiative Transfer Theory...IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, pp. 1414-1429 (2016)) The multiple scattering and

  17. Real-time scatter measurement and correction in film radiography

    International Nuclear Information System (INIS)

    Shaw, C.G.

    1987-01-01

    A technique for real-time scatter measurement and correction in scanning film radiography is described. With this technique, collimated x-ray fan beams are used to partially reject scattered radiation. Photodiodes are attached to the aft-collimator for sampled scatter measurement. Such measurement allows the scatter distribution to be reconstructed and subtracted from digitized film image data for accurate transmission measurement. In this presentation the authors discuss the physical and technical considerations of this scatter correction technique. Examples are shown that demonstrate the feasibility of the technique. Improved x-ray transmission measurement and dual-energy subtraction imaging are demonstrated with phantoms

  18. Diffuse scattering from laser-irradiated plane targets

    International Nuclear Information System (INIS)

    Kessel, C.G.M. van; Olsen, J.N.; Sachsenmaier, P.; Sigel, R.; Eidmann, K.; Godwin, R.P.

    1976-11-01

    Optical calorimetry of the laser radiation scattered from plane targets irradiated by 0.3 Joule/30 ps Nd-laser pulses with intensities up to 10 16 W cm -2 has been performed with an emphasis on diffuse scattering. Diffuse scattering outside the solid angle of the focusing lens is found to be a major reflection loss from the target. A fraction of 0.3 to 0.5 of the incident pulse energy was absorbed in the target with only a very weak dependence on pulse energy and target material. (orig.) [de

  19. Analyzing asteroid reflectance spectra with numerical tools based on scattering simulations

    Science.gov (United States)

    Penttilä, Antti; Väisänen, Timo; Markkanen, Johannes; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2017-04-01

    We are developing a set of numerical tools that can be used in analyzing the reflectance spectra of granular materials such as the regolith surface of atmosphereless Solar system objects. Our goal is to be able to explain, with realistic numerical scattering models, the spectral features arising when materials are intimately mixed together. We include the space-weathering -type effects in our simulations, i.e., mixing host mineral locally with small inclusions of another material in small proportions. Our motivation for this study comes from the present lack of such tools. The current common practice is to apply a semi-physical approximate model such as some variation of Hapke models [e.g., 1] or the Shkuratov model [2]. These models are expressed in a closed form so that they are relatively fast to apply. They are based on simplifications on the radiative transfer theory. The problem is that the validity of the model is not always guaranteed, and the derived physical properties related to particle scattering properties can be unrealistic [3]. We base our numerical tool into a chain of scattering simulations. Scattering properties of small inclusions inside an absorbing host matrix can be derived using exact methods solving the Maxwell equations of the system. The next step, scattering by a single regolith grain, is solved using a geometrical optics method accounting for surface reflections, internal absorption, and possibly the internal diffuse scattering. The third step involves the radiative transfer simulations of these regolith grains in a macroscopic planar element. The chain can be continued next with shadowing simulation over the target surface elements, and finally by integrating the bidirectional reflectance distribution function over the object's shape. Most of the tools in the proposed chain already exist, and one practical task for us is to tie these together into an easy-to-use toolchain that can be publicly distributed. We plan to open the

  20. Stationary scattering theory

    International Nuclear Information System (INIS)

    Combes, J.M.

    1980-10-01

    A complementary approach to the time dependent scattering theory for one-body Schroedinger operators is presented. The stationary theory is concerned with objects of quantum theory like scattering waves and amplitudes. In the more recent abstract stationary theory some generalized form of the Lippman-Schwinger equation plays the basic role. Solving this equation leads to a linear map between generalized eigenfunctions of the perturbed and unperturbed operators. This map is the section at fixed energy of the wave-operator from the time dependent theory. Although the radiation condition does not appears explicitely in this formulation it can be shown to hold a posteriori in a variety of situations thus restoring the link with physical theories

  1. Continuing Professional Development (CPD) of the nuclear and radiation professional engineers

    International Nuclear Information System (INIS)

    Sasaki, Satoru

    2016-01-01

    Professional Engineer is the national qualification stipulated by the Professional Engineer Act. A Professional Engineer in this Act means a person who conducts business on matters of planning, research, design, analysis, testing, evaluation or guidance thereof, which requires application of extensive scientific and technical expertise, and has three obligation and two responsibility related to engineer ethic. A technical discipline for nuclear and radiation technology in 2004, was established for the purpose of upgrading the skills of engineers in nuclear technology fields, utilizing their ability in nuclear safety regulation fields, and further strengthening safety management system in each entity. The activity of the nuclear and radiation professional engineers for the past 10 years was evaluated. For the next ten years, awareness of the role of the professional engineer to talk with general public is needed, and it is important to continue professional development. (author)

  2. Radiation shielding analysis

    International Nuclear Information System (INIS)

    Moon, S.H.; Ha, C.W.; Kwon, S.K.; Lee, J.K.; Choi, H.S.

    1982-01-01

    The theoretical bases of radiation streaming analysis in power reactors, such as ducts or reactor cavity, have been investigated. Discrete ordinates-Monte Carlo or Monte Carlo-Monte Carlo coupling techniques are suggested for the streaming analysis of ducts or reactor cavity. Single albedo scattering approximation code (SINALB) has been developed for simple and quick estimation of gamma-ray ceiling scattering, where the ceiling is assumed to be semi-infinite medium. This code has been employed to calculate the gamma-ray ceiling scattering effects in the laboratory containing a Co-60 source. The SINALB is applicable to gamma-ray scattering, only where the ceiling is thicker than Σsup(-1) and the height is at least twice higher than the shield wall. This code can be used for the purpose of preliminary radiation shield design. The MORSE code has been improved to analyze the gamma-ray scattering problem with on approximation method in respect to the random walk and estimation processes. This improved MORSE code has been employed to the gamma-ray ceiling scattering problem. The results of the improved MORSE calculation are in good agreement with the SINALB and standard MORSE. (Author)

  3. The influence of scattering and absorption processes in sea water on atmospheric radiation - results from ship-borne DOAS measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schoenhardt, Anja; Wittrock, Folkard; Richter, Andreas; Kirk, Henning; Schulte, Hagen I.D.B; Burrows, John P. [Institut fuer Umweltphysik, Universitaet Bremen (Germany)

    2009-07-01

    Absorption and inelastic scattering within water can influence the upwelling radiation over water bodies. If not identified properly, these effects impact on absorption measurements of trace gases when using nadir observations. Spectral correlations lead to incorrect trace gas amounts and reduced retrieval quality. This presentation reports on Differential Optical Absorption Spectroscopy (DOAS) measurements from a Polarstern cruise in April-May 2008 from South America to Europe. Scattered sun light was measured by two spectrometer units in the visible and UV spectral regions. The light collecting telescope was viewing alternately in different elevation angles: into zenith-sky and at slant angles above and especially below the horizon, intentionally viewing into the ocean water. The DOAS measurements were analysed in different spectral windows to identify structures not associated to well-known effects. Such persistent structures were indeed found in spectra at water viewing angles and may be caused by inelastic scattering at water molecules, by effects from substances in the water (particles, organics, etc) or by processes yet unknown. Analysing these structured residuals helps to characterise the disturbance of optical absorption measurements caused by light transmission through sea water.

  4. Effects of multiple scattering and target structure on photon emission

    International Nuclear Information System (INIS)

    Blankenbecler, R.

    1996-05-01

    The Landau-Pomeranchuk-Migdal effect is the suppression of Bethe-Heitler radiation caused by multiple scattering in the target medium. The quantum treatment given by S.D. Drell and the author for homogeneous targets of finite thickness will be reviewed. It will then be extended to structured targets. In brief, it is shown that radiators composed of separated plates or of a medium with a spatially varying radiation length can exhibit unexpected structure, even coherence maxima and minima, in their photon spectra. Finally, a functional integral method for performing the averaging implicit in multiple scattering will be briefly discussed and the leading corrections to previous results evaluated

  5. Reprint of 'Evaluation of Scattered Radiation Emitted From X-ray Security Scanners on Occupational Dose to Airport Personnel'

    Science.gov (United States)

    Dalah, Entesar; Fakhry, Angham; Mukhtar, Asma; Al Salti, Farah; Bader, May; Khouri, Sara; Al-Zahmi, Reem

    2017-11-01

    Based on security issues and regulations airports are provided with luggage cargo scanners. These scanners utilize ionizing radiation that in principle present health risks toward humans. The study aims to investigate the amount of backscatter produced by passenger luggage and cargo toward airport personnel who are located at different distances from the scanners. To approach our investigation a Thermo Electron Radeye-G probe was used to quantify the backscattered radiation measured in terms of dose-rate emitted from airport scanners, Measurements were taken at the entrance and exit positions of the X-ray tunnel at three different distances (0, 50, and 100 cm) for two different scanners; both scanners include shielding curtains that reduce scattered radiation. Correlation was demonstrated using the Pearson coefficient test. Measurements confirmed an inverse relationship between dose rate and distance. An estimated occupational accumulative dose of 0.88 mSv/y, and 2.04 mSv/y were obtained for personnel working in inspection of carry-on, and cargo, respectively. Findings confirm that the projected dose of security and engineering staff are being well within dose limits.

  6. Continuous enzyme reactions with immobilized enzyme tubes prepared by radiation cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1986-01-01

    Immobilized glucose oxidase tubes were prepared by radiation cast-polymerization of 2-hydroxyethyl methacrylate and tetraethyleneglycol diacrylate monomer at low temperatures. The immobilized enzyme tubes which were spirally set in a water bath were used as reactor, in which the enzyme activity varied with tube size and flow rate of the substrate. The conversion yield of the substrate in continuous enzyme reaction was about 80%. (author)

  7. An analysis of radiation dose reduction in paediatric interventional cardiology by altering frame rate and use of the anti-scatter grid

    International Nuclear Information System (INIS)

    McFadden, S L; Hughes, C M; Winder, Robert J; Mooney, R B

    2013-01-01

    The purpose of this work is to investigate removal of the anti-scatter grid and alteration of the frame rate in paediatric interventional cardiology (IC) and assess the impact on radiation dose and image quality. Phantom based experimental studies were performed in a dedicated cardiac catheterisation suite to investigate variations in radiation dose and image quality, with various changes in imaging parameters. Phantom based experimental studies employing these variations in technique identified that radiation dose reductions of 28%–49% can be made to the patient with minimal loss of image quality in smaller sized patients. At present, there is no standard technique for carrying out paediatric IC in the UK or Ireland, resulting in the potential for a wide variation in radiation dose. Dose reductions to patients can be achieved with slight alterations to the imaging equipment with minimal compromise to the image quality. These simple modifications can be easily implemented in clinical practice in IC centres. (paper)

  8. Management of diagnostic x-ray radiation in developing countries

    International Nuclear Information System (INIS)

    Date, T.

    2000-01-01

    The purpose of this study is to provide a simple, inexpensive, and effective method to prevent the scattering of x-ray radiation by using a lead apron in the x-ray rooms of developing countries. In developed countries, the scattering of x-ray radiation among patients and radiographers in diagnostic x-ray rooms has been minimized by various methods. However, in some developing countries, scattered x-ray radiation has not yet been adequately contained. The policy of As Law As Reasonably Achievable (ALARA) requires that patients who are waiting for their examinations must be protected from scattered x-ray radiation. However, from the author's experience, protection from scattered x-ray radiation in x-ray rooms is often insufficient in developing countries. In addition, major public hospitals in big cities are overwhelmed with patients because radiology resources in developing countries are concentrated in the big cities. Moreover, the situation is made worse by short working hours in public hospitals. Hours from 10 a.m. to 3 p.m. are typical. Because of the circumstances, radiographers, who are in a rush to finish all of the examinations within their normal working hours, sometimes allow patients to enter the x-ray rooms while they are waiting for their examinations. Chest and abdominal x-rays are the most common kinds of diagnostic x-ray examination in developing countries. Thus, in this study, anthropomorphic chest and abdominal phantoms were x-rayed for measuring the scattered x-ray radiation with and without protection using a 0.25mmPb lead apron at specific points from the anthropomorphic phantoms in the x-ray room. The lead apron was hung on a mobile apron-hanger and placed next to the anthropomorphic phantom. The scattered radiation dosimetry for chest x-rays proves that this simple method reduces scattered x-ray radiation to 15% at one-meter point and to almost 0% at the two-meter point from the anthropomorphic phantom in the x-ray room. Lead aprons are

  9. SU-E-T-90: Concrete Forward-Scatter Fractions for Radiotherapy Shielding Applications

    International Nuclear Information System (INIS)

    Tanny, S; Parsai, E

    2014-01-01

    Purpose: There is little instruction within the primary shielding guidance document NCRP 151 for vault designs where the primary beam intercepts the maze. We have conducted a Monte-Carlo study to characterize forward-scattered radiation from concrete barriers with the intent of quantifying what amount of additional shielding outside the primary beam is needed in this situation. Methods: We reproduced our vault in MCNP 5 and simulated spectra obtained from the literature and from our treatment planning system for 10 and 18 MV beams. Neutron and gamma-capture contributions were not simulated. Energy deposited was scored at isocenter in a water phantom, within various cells that comprised the maze, and within cells that comprised the vault door. Tracks were flagged that scattered from within the maze to the door and their contributions were tallied separately. Three different concrete mixtures found in the literature were simulated. An empirically derived analytic equation was used for comparison, utilizing patient scatter fractions to approximate the scatter from concrete. Results: Our simulated data confirms that maze-scattered radiation is a significant contribution to total photon dose at the door. It contributes between 20-35% of the photon shielding workload. Forward-scatter fractions for concrete were somewhat dependent on concrete composition and the relative abundance of higher-Z elements. Scatter fractions were relatively insensitive to changes in the primary photon spectrum. Analytic results were of the same magnitude as simulated results. Conclusions: Forward-scattered radiation from the maze barrier needs to be included in the photon workload for shielding calculations in non-standard vault designs. Scatter fractions will vary with concrete composition, but should be insensitive to spectral changes between machine manufacturers. Further plans for investigation include refined scatter fractions for various concrete compositions, scatter fraction

  10. SU-E-T-90: Concrete Forward-Scatter Fractions for Radiotherapy Shielding Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tanny, S; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States)

    2014-06-01

    Purpose: There is little instruction within the primary shielding guidance document NCRP 151 for vault designs where the primary beam intercepts the maze. We have conducted a Monte-Carlo study to characterize forward-scattered radiation from concrete barriers with the intent of quantifying what amount of additional shielding outside the primary beam is needed in this situation. Methods: We reproduced our vault in MCNP 5 and simulated spectra obtained from the literature and from our treatment planning system for 10 and 18 MV beams. Neutron and gamma-capture contributions were not simulated. Energy deposited was scored at isocenter in a water phantom, within various cells that comprised the maze, and within cells that comprised the vault door. Tracks were flagged that scattered from within the maze to the door and their contributions were tallied separately. Three different concrete mixtures found in the literature were simulated. An empirically derived analytic equation was used for comparison, utilizing patient scatter fractions to approximate the scatter from concrete. Results: Our simulated data confirms that maze-scattered radiation is a significant contribution to total photon dose at the door. It contributes between 20-35% of the photon shielding workload. Forward-scatter fractions for concrete were somewhat dependent on concrete composition and the relative abundance of higher-Z elements. Scatter fractions were relatively insensitive to changes in the primary photon spectrum. Analytic results were of the same magnitude as simulated results. Conclusions: Forward-scattered radiation from the maze barrier needs to be included in the photon workload for shielding calculations in non-standard vault designs. Scatter fractions will vary with concrete composition, but should be insensitive to spectral changes between machine manufacturers. Further plans for investigation include refined scatter fractions for various concrete compositions, scatter fraction

  11. The potential influence of multiple scattering on longwave flux and heating rate simulations with clouds

    Science.gov (United States)

    Kuo, C. P.; Yang, P.; Huang, X.; Feldman, D.; Flanner, M.; Kuo, C.; Mlawer, E. J.

    2017-12-01

    Clouds, which cover approximately 67% of the globe, serve as one of the major modulators in adjusting radiative energy on the Earth. Since rigorous radiative transfer computations including multiple scattering are costly, only absorption is considered in the longwave spectral bands in the radiation sub-models of the general circulation models (GCMs). Quantification of the effect of ignoring longwave scattering for flux and heating rate simulations is performed by using the GCM version of the Longwave Rapid Radiative Transfer Model (RRTMG_LW) with an implementation with the 16-stream Discrete Ordinates Radiative Transfer (DISORT) Program for a Multi-Layered Plane-Parallel Medium in conjunction with the 2010 CCCM products that merge satellite observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), the CloudSat, the Clouds and the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectrometer (MODIS). One-year global simulations show that neglecting longwave scattering overestimates upward flux at the top of the atmosphere (TOA) and underestimates downward flux at the surface by approximately 2.63 and 1.15 W/m2, respectively. Furthermore, when longwave scattering is included in the simulations, the tropopause is cooled by approximately 0.018 K/day and the surface is heated by approximately 0.028 K/day. As a result, the radiative effects of ignoring longwave scattering and doubling CO2 are comparable in magnitude.

  12. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    International Nuclear Information System (INIS)

    Redler, G; Bernard, D; Templeton, A; Chu, J; Nair, C Kumaran; Turian, J

    2015-01-01

    Purpose: A novel scatter imaging modality is developed and its feasibility for image-guided radiation therapy (IGRT) during stereotactic body radiation therapy (SBRT) for lung cancer patients is assessed using analytic and Monte Carlo models as well as experimental testing. Methods: During treatment, incident radiation interacts and scatters from within the patient. The presented methodology forms an image of patient anatomy from the scattered radiation for real-time localization of the treatment target. A radiographic flat panel-based pinhole camera provides spatial information regarding the origin of detected scattered radiation. An analytical model is developed, which provides a mathematical formalism for describing the scatter imaging system. Experimental scatter images are acquired by irradiating an object using a Varian TrueBeam accelerator. The differentiation between tissue types is investigated by imaging simple objects of known compositions (water, lung, and cortical bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is fabricated and imaged to investigate image quality for various quantities of delivered radiation. Monte Carlo N-Particle (MCNP) code is used for validation and testing by simulating scatter image formation using the experimental pinhole camera setup. Results: Analytical calculations, MCNP simulations, and experimental results when imaging the water, lung, and cortical bone equivalent objects show close agreement, thus validating the proposed models and demonstrating that scatter imaging differentiates these materials well. Lung tumor phantom images have sufficient contrast-to-noise ratio (CNR) to clearly distinguish tumor from surrounding lung tissue. CNR=4.1 and CNR=29.1 for 10MU and 5000MU images (equivalent to 0.5 and 250 second images), respectively. Conclusion: Lung SBRT provides favorable treatment outcomes, but depends on accurate target localization. A comprehensive

  13. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Bernard, D; Templeton, A; Chu, J [Rush University Medical Center, Chicago, IL (United States); Nair, C Kumaran [University of Chicago, Chicago, IL (United States); Turian, J [Rush University Medical Center, Chicago, IL (United States); Rush Radiosurgery LLC, Chicago, IL (United States)

    2015-06-15

    Purpose: A novel scatter imaging modality is developed and its feasibility for image-guided radiation therapy (IGRT) during stereotactic body radiation therapy (SBRT) for lung cancer patients is assessed using analytic and Monte Carlo models as well as experimental testing. Methods: During treatment, incident radiation interacts and scatters from within the patient. The presented methodology forms an image of patient anatomy from the scattered radiation for real-time localization of the treatment target. A radiographic flat panel-based pinhole camera provides spatial information regarding the origin of detected scattered radiation. An analytical model is developed, which provides a mathematical formalism for describing the scatter imaging system. Experimental scatter images are acquired by irradiating an object using a Varian TrueBeam accelerator. The differentiation between tissue types is investigated by imaging simple objects of known compositions (water, lung, and cortical bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is fabricated and imaged to investigate image quality for various quantities of delivered radiation. Monte Carlo N-Particle (MCNP) code is used for validation and testing by simulating scatter image formation using the experimental pinhole camera setup. Results: Analytical calculations, MCNP simulations, and experimental results when imaging the water, lung, and cortical bone equivalent objects show close agreement, thus validating the proposed models and demonstrating that scatter imaging differentiates these materials well. Lung tumor phantom images have sufficient contrast-to-noise ratio (CNR) to clearly distinguish tumor from surrounding lung tissue. CNR=4.1 and CNR=29.1 for 10MU and 5000MU images (equivalent to 0.5 and 250 second images), respectively. Conclusion: Lung SBRT provides favorable treatment outcomes, but depends on accurate target localization. A comprehensive

  14. Light Scattering in Solid IX

    CERN Document Server

    Cardona, Manuel

    2007-01-01

    This is the ninth volume of a well-established series in which expert practitioners discuss topical aspects of light scattering in solids. It reviews recent developments concerning mainly semiconductor nanostructures and inelastic x-ray scattering, including both coherent time-domain and spontaneous scattering studies. In the past few years, light scattering has become one of the most important research and characterization methods for studying carbon nanotubes and semiconducting quantum dots, and a crucial tool for exploring the coupled exciton--photon system in semiconductor cavities. Among the novel techniques discussed in this volume are pump--probe ultrafast measurements and those which use synchrotron radiation as light source. The book addresses improvements in the intensity, beam quality and time synchronization of modern synchrotron sources, which made it possible to measure the phonon dispersion in very small samples and to determine electronic energy bands as well as enabling real-time observations...

  15. Mapping the radiation fields at a research reactor

    International Nuclear Information System (INIS)

    Soegaard-Hansen, Jens; Warming, Lisbeth

    1999-01-01

    The DR 3 reactor at Risoe National Laboratory is a multipurpose research reactor. It has the status of a Large European Beam facility therefor its neutron scattering spectrometers are used by many visiting scientists. As a supplement to the routine health physics monitoring programmes a special survey has been made to get more detailed information of the radiation levels in the hall and of the most important sources of the radiation. The special survey consisted of three sorts of measurements: an extra set of thermoluminescence dosimeters, a set of continuous measurements of the dose rate at selected places and spot measurements with handheld instruments around the spectrometers. Some of the results from the survey are presented. (au)

  16. A conversion method of air-kerma from the primary, scatter and leakage radiations to ambient dose equivalent for calculating the mamography x-ray shielding barrier

    International Nuclear Information System (INIS)

    Kharrati, H.

    2005-01-01

    The primary, scatter, and leakage doses(in Gy), which constitute the data base for calculating shielding requirements for x-ray facilities, are often converted to the equivalent dose (in sievert) by using a constant of conversion of 1.145Sv/Gy. This constant is used for diagnostic radiology as well as for mammography spectra, and is derived by considering an exposure of 1 R corresponds to an air kerma of 8.73 m Gy, which renders by tradition an equivalent dose of 10 mSv. However, this conversion does not take into account the energy dependence of the conversion coefficients relating air kerma to the equivalent dose as described in ICRU report. Moreover, current radiation protection standards propose the use of the quantity ambient dose equivalent in order to qualify the efficiently of given radiation shielding. Therefore, in this study, a new approach has been introduced for derivation ambient dose equivalent from air kerma to calculate shielding requirements in mammography facilities. This new approach has been used to compute the conversion coefficients relating air kerma to ambient dose equivalent for mammography reference beam series of the Netherlands Metrology Institute Van Swinden Laboratorium (NMi), National Institute of Standards and Technology (NIST), and International Atomic Energy Agency (AIEA) laboratories. The calculation has been performed by the means of two methods which show a maximum deviation less than 10%2 for the primary, scatter, and leakage radiations. The results show that the conversion coefficients vary from 0.242 Sv/ Gy to 0.692 Sv/Gy with an average value of 0.436 Sv/Gy for the primary and the scatter radiations, and form 0.156 Sv/Gy to 1.329 Sv/Gy with an average value of 0.98 Sv/Gy for the leakage radiation. Simpkin et al. using an empirical approach propose a conversion value of 0.50 Sv/Gy for the mammography x-ray spectra. This value approximately coincides with the average conversion value of 0.436 Sv/Gy obtained in this work for

  17. Continuous weighing of conveyor-transported materials based on gamma radiation conversion to electric current

    International Nuclear Information System (INIS)

    The principle is described of the continuous weighing of conveyer-transported materials applied in the food industry. The weighing technique is based on the measurement of the absorption of gamma radiation emitted by a source located behind the material to be scaled. (Z.M.)

  18. Radiography by selective detection of scatter field velocity components

    Science.gov (United States)

    Jacobs, Alan M. (Inventor); Dugan, Edward T. (Inventor); Shedlock, Daniel (Inventor)

    2007-01-01

    A reconfigurable collimated radiation detector, system and related method includes at least one collimated radiation detector. The detector has an adjustable collimator assembly including at least one feature, such as a fin, optically coupled thereto. Adjustments to the adjustable collimator selects particular directions of travel of scattered radiation emitted from an irradiated object which reach the detector. The collimated detector is preferably a collimated detector array, where the collimators are independently adjustable. The independent motion capability provides the capability to focus the image by selection of the desired scatter field components. When an array of reconfigurable collimated detectors is provided, separate image data can be obtained from each of the detectors and the respective images cross-correlated and combined to form an enhanced image.

  19. Preliminary laboratory studies of the optical scattering properties of the crystal clouds

    Directory of Open Access Journals (Sweden)

    C. Saunders

    Full Text Available Ice crystal clouds have an influence on the radiative budget of the earth; however, the exact size and nature of this influence has yet to be determined. A laboratory cloud chamber experiment has been set up to provide data on the optical scattering behaviour of ice crystals at a visible wavelength in order to gain information which can be used in climate models concerning the radiative characteristics of cirrus clouds. A PMS grey-scale probe is used to monitor simultaneously the cloud microphysical properties in order to correlate these closely with the observed radiative properties. Preliminary results show that ice crystals scatter considerably more at 90° than do water droplets, and that the halo effects are visible in a laboratory-generated cloud when the ice crystal concentration is sufficiently small to prevent masking from multiple scattering.

    Key words. Meteorology and atmosphere dynamics · Climatology · Radiative process · Atmospheric composition and structure · Cloud physics and chemistry

  20. Emittance of a finite scattering medium with refractive index greater than unity

    International Nuclear Information System (INIS)

    Crosbie, A.L.

    1980-01-01

    Refractive index and scattering can significantly influence the transfer of radiation in a semitransparent medium such as water, glass, plastics, or ceramics. In a recent article (1979), the author presented exact numerical results for the emittance of a semiinfinite scattering medium with a refractive index greater than unity. The present investigation extends the analysis to a finite medium. The physical situation consists of a finite planar layer. The isothermal layer emits, absorbs, and isotropically scatters thermal radiation. It is characterized by single scattering albedo, optical thickness, refractive index, and temperature. A formula for the directional emittance is derived, the directional emittance being the emittance of the medium multiplied by the interface transmittance. The ratio of hemispherical to normal emittance is tabulated and discussed

  1. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1993-02-01

    The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program

  2. Comparative occupational radiation exposure between fixed and mobile imaging systems.

    Science.gov (United States)

    Kendrick, Daniel E; Miller, Claire P; Moorehead, Pamela A; Kim, Ann H; Baele, Henry R; Wong, Virginia L; Jordan, David W; Kashyap, Vikram S

    2016-01-01

    Endovascular intervention exposes surgical staff to scattered radiation, which varies according to procedure and imaging equipment. The purpose of this study was to determine differences in occupational exposure between procedures performed with fixed imaging (FI) in an endovascular suite compared with conventional mobile imaging (MI) in a standard operating room. A series of 116 endovascular cases were performed over a 4-month interval in a dedicated endovascular suite with FI and conventional operating room with MI. All cases were performed at a single institution and radiation dose was recorded using real-time dosimetry badges from Unfors RaySafe (Hopkinton, Mass). A dosimeter was mounted in each room to establish a radiation baseline. Staff dose was recorded using individual badges worn on the torso lead. Total mean air kerma (Kar; mGy, patient dose) and mean case dose (mSv, scattered radiation) were compared between rooms and across all staff positions for cases of varying complexity. Statistical analyses for all continuous variables were performed using t test and analysis of variance where appropriate. A total of 43 cases with MI and 73 cases with FI were performed by four vascular surgeons. Total mean Kar, and case dose were significantly higher with FI compared with MI. (mean ± standard error of the mean, 523 ± 49 mGy vs 98 ± 19 mGy; P < .00001; 0.77 ± 0.03 mSv vs 0.16 ± 0.08 mSv, P < .00001). Exposure for the primary surgeon and assistant was significantly higher with FI compared with MI. Mean exposure for all cases using either imaging modality, was significantly higher for the primary surgeon and assistant than for support staff (ie, nurse, radiology technologist) beyond 6 feet from the X-ray source, indicated according to one-way analysis of variance (MI: P < .00001; FI: P < .00001). Support staff exposure was negligible and did not differ between FI and MI. Room dose stratified according to case complexity (Kar) showed statistically significantly

  3. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    KAUST Repository

    Li, Ping

    2014-05-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens\\' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer\\'s shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  4. Rayleigh scattering under light-atom coherent interaction

    OpenAIRE

    Takamizawa, Akifumi; Shimoda, Koichi

    2012-01-01

    Semi-classical calculation of an oscillating dipole induced in a two-level atom indicates that spherical radiation from the dipole under coherent interaction, i.e., Rayleigh scattering, has a power level comparable to that of spontaneous emission resulting from an incoherent process. Whereas spontaneous emission is nearly isotropic and has random polarization generally, Rayleigh scattering is strongly anisotropic and polarized in association with incident light. In the case where Rabi frequen...

  5. Hanle-Zeeman Scattering Matrix for Magnetic Dipole Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Megha, A.; Sampoorna, M.; Nagendra, K. N.; Sankarasubramanian, K., E-mail: megha@iiap.res.in, E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: sankar@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India)

    2017-06-01

    The polarization of the light that is scattered by the coronal ions is influenced by the anisotropic illumination from the photosphere and the magnetic field structuring in the solar corona. The properties of the coronal magnetic fields can be well studied by understanding the polarization properties of coronal forbidden emission lines that arise from magnetic dipole ( M 1) transitions in the highly ionized atoms that are present in the corona. We present the classical scattering theory of the forbidden lines for a more general case of arbitrary-strength magnetic fields. We derive the scattering matrix for M 1 transitions using the classical magnetic dipole model of Casini and Lin and applying the scattering matrix approach of Stenflo. We consider a two-level atom model and neglect collisional effects. The scattering matrix so derived is used to study the Stokes profiles formed in coronal conditions in those regions where the radiative excitations dominate collisional excitations. To this end, we take into account the integration over a cone of an unpolarized radiation from the solar disk incident on the scattering atoms. Furthermore, we also integrate along the line of sight to calculate the emerging polarized line profiles. We consider radial and dipole magnetic field configurations and spherically symmetric density distributions. For our studies we adopt the atomic parameters corresponding to the [Fe xiii] 10747 Å coronal forbidden line. We also discuss the nature of the scattering matrix for M 1 transitions and compare it with that for the electric dipole ( E 1) transitions.

  6. Assessment of exposure Lo scattered radiation in interventional procedures using special proLecLive bismuth

    International Nuclear Information System (INIS)

    Soto Bua, M.; Medina Jimenez, E.; Vazquez Vazquez, R.; Santamaria Vazquez, F.; Otero Martinez, C.; Lobato Busto, R.; Luna Vega, V.; Mosquera Suero, J.; Sanchez Garcia, M.; Pombar Camean, M.

    2011-01-01

    There are currenLly marketed specific producta aimed aL reducing personnel exposure Lo radiation scatLered in cardiac catheLerization procedures, intervenLional radiology or elecLrophysiology. Our service has been proposed Lo study Lhe aLLenuation characLeristics of Lhe producL ''Drape Armour'' manufactured by Lhe company ''MicroLek'' IL ja flexible devices consLructed from an alloy of bismuth and sLeriliLy characLeristics and infection conLrol and fluid makes Lhem particularly suiLable for incorporaLing into Lhe operative field of the patient. To sLudy their behavior, Lhere have been staff dose measurementa representaLive of Lhe moaL common siLuaLions of exposure to scattered radiaLion in a typical procedure of intervenLion.

  7. Scattered UV irradiation during VISX excimer laser keratorefractive surgery.

    Science.gov (United States)

    Hope, R J; Weber, E D; Bower, K S; Pasternak, J P; Sliney, D H

    2008-04-01

    To evaluate the potential occupational health hazards associated with scattered ultraviolet (UV) radiation during photorefractive keratectomy (PRK) using the VISX Star S3 excimer laser. The Laser Vision Center, National Naval Medical Center, Bethesda, Maryland, USA. Intraoperative radiometric measurements were made with the Ophir Power/Energy Meter (LaserStar Model PD-10 with silicon detector) during PRK treatments as well as during required calibration procedures at a distance of 20.3 cm from the left cornea. These measurements were evaluated using a worst-case scenario for exposure, and then compared with the American Conference of Governmental Industrial Hygeinists (ACGIH) Threshold Value Limits (TVL) to perform a risk/hazard analysis. During the PRK procedures, the highest measured value was 248.4 nJ/pulse. During the calibration procedures, the highest measured UV scattered radiation level was 149.6 nJ/pulse. The maximum treatment time was 52 seconds. Using a worst-case scenario in which all treatments used the maximum power and time, the total energy per eye treated was 0.132 mJ/cm2 and the total UV radiation at close range (80 cm from the treated eye) was 0.0085 mJ/cm2. With a workload of 20 patients, the total occupational exposure at 80 cm to actinic UV radiation in an 8-hour period would be 0.425 mJ/cm2. The scattered actinic UV laser radiation from the VISX Star S3 excimer laser did not exceed occupational exposure limits during a busy 8-hour workday, provided that operating room personnel were at least 80 cm from the treated eye. While the use of protective eyewear is always prudent, this study demonstrates that the trace amounts of scattered laser emissions produced by this laser do not pose a serious health risk even without the use of protective eyewear.

  8. SFERXS, Photoabsorption, Coherent, Incoherent Scattering Cross-Sections Function for Shielding

    International Nuclear Information System (INIS)

    Legarda, F.; Mtz de la Fuente, O.; Herranz, M.

    2002-01-01

    Description of program or function: The use of electromagnetic radiation cross-sections in radiation shielding calculations and more generally in transport theory applications actually requires an interpolation between values which are tabulated for certain values of the energy. In order to facilitate this process and to reduce the computer memory requirements, we have developed, by a least squares method, a set of functions which represents the cross-sections for the photoelectric absorption, the coherent (Rayleigh) and the incoherent (Compton) scattering (1). For this purpose we have accepted as true values the ones tabulated by Storm and Israel (2) for the photoeffect, by Hubbell et Al. (3) for the incoherent scattering and by Hubbell and Overbo (4) for the coherent scattering

  9. Measurement of the primary and scatter dose in high energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Van der Linden, P M [Catharina Ziekenhuis, Eindhoven (Netherlands). Radiotherapy Dept.; Tiourina, T B; Dries, W

    1995-12-01

    A method is presented to measure the primary and scatter components separately in a water tank using a small cylindrical absorber. Results from this experiment are compared with Monte Carlo calculations. The measurement setup consists of a small cylindrical absorber placed on a central axis of the beam a few centimetres above the radiation detector. Both absorber and detector move along the central axis while absorbed dose is registered. As the primary radiation is fully blocked, only scatter component is measured when a cylindrical absorber is used. Measurements in open fields result in the total absorbed dose being the sum of primary and scatter components. The primary dose component can be derived by substraction. Absorbers with different diameters are used. With decreasing dimensions the relative contribution of the dose due to scatter radiation increases. A steep increase is observed when the range of laterally scattered electrons becomes comparable with the radius of the absorber. Two different Monte Carlo simulations have been performed: with and without secondary electron transport. The data obtained for the former case perfectly agrees with the experiment. The situation where the secondary electron is assumed zero (i.e. local energy deposition) simulates the Cunningham model. Our results show that the Cunningham model predicts lower scatter component under the block edge which can be important for these applications.

  10. Changing of optical absorption and scattering coefficients in nonlinear-optical crystal lithium triborate before and after interaction with UV-radiation

    Science.gov (United States)

    Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.

    2016-04-01

    In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.

  11. Measurement of scattered and transmitted X-rays from intra-oral and panoramic dental X-ray equipment.

    Science.gov (United States)

    Holroyd, John Richard

    2018-04-10

    To quantify the levels of transmitted radiation arising from the use of intra-oral dental X-ray equipment and scattered radiation arising from the use of both intra-oral and panoramic X-ray equipment. Methods: Levels of scattered radiation were measured at 1 m from a phantom, using an 1800 cc ion chamber. Transmitted radiation was measured using both: i) a phantom and Dose Area Product (DAP) meter, ii) a patient and an 1800 cc ion chamber. Results: For intra-oral radiography the patient study gave a maximum transmission of 1.80% (range 0.04% to 1.80%, mean 0.26%) and the phantom study gave a maximum transmission of 6% (range 2% to 6%, mean 5%). The maximum scattered radiation, per unit DAP, was 5.5 nGy (mGy cm2)-1 at 70 kVp and a distance of 1 m. For panoramic radiography the maximum scattered radiation was 9.3 nGy (mGy cm2)-1 at 80 kVp and a distance of 1 m. Conclusions: Typical doses from scattered and transmitted radiation in modern dental practice have been measured and values are presented to enable the calculation of adequate protection measures for dental radiography rooms. Advances in knowledge: Previous studies have used a phantom and measured radiation doses at 1 m from the phantom to determine the radiation dose transmitted through a patient, whereas this study uses both patient and phantom measurements together with a large area dose meter, positioned to capture the entire X-ray beam, to ensure more realistic dose measurements can be made. © 2018 IOP Publishing Ltd.

  12. Reconstruction of surface morphology from coherent scattering of white x-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sant, Tushar; Pietsch, Ullrich [Solid State Physics Group, University of Siegen, 57068 Siegen (Germany)

    2009-07-01

    Static speckle experiments were performed using coherent white X-ray radiation from a bending magnet at BESSYII. Semiconductor and polymer surfaces were investigated under incidence condition smaller than the critical angle of total external reflection. The scattering pattern of the sample results from the illumination function modified by the surface roughness. The periodic oscillations are caused by the illumination function whereas other irregular features are associated with sample surface. The speckle map of reflection from a laterally periodic structure like GaAs grating is studied. Under coherent illumination the grating peaks split into speckles because of fluctuations on the sample surface. The surface morphology can be reconstructed using phase retrieval algorithms. In case of 1D problem, these algorithms rarely yield a unique and converging solution. The algorithm is modified to contain additional propagator term and the phase of illumination function in the real space constraint. The modified algorithm converges faster than conventional algorithms. A detailed surface profiles from the real measurements of the sample are reconstructed using this algorithm.

  13. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The K-corona, a significant portion of the solar atmosphere, displays a continuous spectrum which closely parallels photospheric emission, though without the presence of overlying Fraunhofer lines. The E-corona exists in the same region and is characterized by weak emission lines from highly ionized atoms. For instance, the famous green emission line from coronium (FeXIV is part of the E-corona. The F-corona exists beyond the K/E-corona and, like the photospheric spectrum, is characterized by Fraunhofer lines. The F-corona represents photospheric light scattered by dust particles in the interplanetary medium. Within the gaseous models of the Sun, the K-corona is viewed as photospheric radiation which has been scattered by relativistic electrons. This scattering is thought to broaden the Fraunhofer lines of the solar spectrum such that they can no longer be detected in the K-corona. Thus, the gaseous models of the Sun account for the appearance of the K-corona by distorting photospheric light, since they are unable to have recourse to condensed matter to directly produce such radiation. Conversely, it is now advanced that the continuous emission of the K-corona and associated emission lines from the E-corona must be interpreted as manifestations of the same phenomenon: condensed matter exists in the corona. It is well-known that the Sun expels large amounts of material from its surface in the form of flares and coronal mass ejections. Given a liquid metallic hydrogen model of the Sun, it is logical to assume that such matter, which exists in the condensed state on the solar surface, continues to manifest its nature once expelled into the corona. Therefore, the continuous spectrum of the K-corona provides the twenty-seventh line of evidence that the Sun is composed of condensed matter.

  14. Quantum effets in nonresonant X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Slowik, Jan Malte

    2015-11-15

    Due to their versatile properties, X rays are a unique tool to investigate the structure and dynamics of matter. X-ray scattering is the fundamental principle of many imaging techniques. Examples are X-ray crystallography, which recently celebrated one hundred years and is currently the leading method in structure determination of proteins, as well as X-ray phase contrast imaging (PCI), which is an imaging technique with countless applications in biology, medicine, etc. The technological development of X-ray free electron lasers (XFEL) has brought X-ray imaging at the edge of a new scientific revolution. XFELs offer ultrashort X-ray pulses with unprecedented high X-ray fluence and excellent spatial coherence properties. These properties make them an outstanding radiation source for X-ray scattering experiments, providing ultrafast temporal resolution as well as atomic spatial resolution. However, the radiation-matter interaction in XFEL experiments also advances into a novel regime. This demands a sound theoretical fundament to describe and explore the new experimental possibilities. This dissertation is dedicated to the theoretical study of nonresonant X-ray scattering. As the first topic, I consider the near-field imaging by propagation based X-ray phase contrast imaging (PCI). I devise a novel theory of PCI, in which radiation and matter are quantized. Remarkably, the crucial interference term automatically excludes contributions from inelastic scattering. This explains the success of the classical description thus far. The second topic of the thesis is the X-ray imaging of coherent electronic motion, where quantum effects become particularly apparent. The electron density of coherent electronic wave packets - important in charge transfer and bond breaking - varies in time, typically on femto- or attosecond time scales. In the near future, XFELs are envisaged to provide attosecond X-ray pulses, opening the possibility for time-resolved ultrafast X-ray scattering

  15. Quantum effets in nonresonant X-ray scattering

    International Nuclear Information System (INIS)

    Slowik, Jan Malte

    2015-11-01

    Due to their versatile properties, X rays are a unique tool to investigate the structure and dynamics of matter. X-ray scattering is the fundamental principle of many imaging techniques. Examples are X-ray crystallography, which recently celebrated one hundred years and is currently the leading method in structure determination of proteins, as well as X-ray phase contrast imaging (PCI), which is an imaging technique with countless applications in biology, medicine, etc. The technological development of X-ray free electron lasers (XFEL) has brought X-ray imaging at the edge of a new scientific revolution. XFELs offer ultrashort X-ray pulses with unprecedented high X-ray fluence and excellent spatial coherence properties. These properties make them an outstanding radiation source for X-ray scattering experiments, providing ultrafast temporal resolution as well as atomic spatial resolution. However, the radiation-matter interaction in XFEL experiments also advances into a novel regime. This demands a sound theoretical fundament to describe and explore the new experimental possibilities. This dissertation is dedicated to the theoretical study of nonresonant X-ray scattering. As the first topic, I consider the near-field imaging by propagation based X-ray phase contrast imaging (PCI). I devise a novel theory of PCI, in which radiation and matter are quantized. Remarkably, the crucial interference term automatically excludes contributions from inelastic scattering. This explains the success of the classical description thus far. The second topic of the thesis is the X-ray imaging of coherent electronic motion, where quantum effects become particularly apparent. The electron density of coherent electronic wave packets - important in charge transfer and bond breaking - varies in time, typically on femto- or attosecond time scales. In the near future, XFELs are envisaged to provide attosecond X-ray pulses, opening the possibility for time-resolved ultrafast X-ray scattering

  16. Gamma holography from multiple scattering

    International Nuclear Information System (INIS)

    Coussement, R.

    2007-01-01

    Since the introduction of heterodyne methods for synchrotron radiation (Cousesement et al. in Phys. Rev. B 54:16003, 1996; Callens et al. in Phys. Rev. 67:104423, 2003) one observes interferences between two scattering amplitudes; the scattering amplitude of resonant nuclei in a reference sample and the scattering amplitude of nuclei in the sample under investigation. Theses interferences can easily been observed as resonances in velocity spectra when one uses a time integrated method. They can also been observed as quantum beats, when one would use the time differential method. For both methods it is important that one uses a reference sample and therefore both methods disserved the name 'heterodyne methods.' As theses interferences are a product of two scattering amplitudes, the amplitude of a wave scattered form the investigated sample can be known with its phase. But it is assumed that the reference wave is known in advance by a proper choice of the reference sample. At first sight it is very likely that multiple scattering would add more complexity but in this paper it is claimed that on the contrary it provide a bonus, especially for single crystals. It provokes only a line broadening and a line shift of the resonances in the velocity spectra (or a change in the damping and frequency of the quantum beats when the time spectra are registered). Moreover these changes in the line shapes can easily be measured and they provide all the information needed to reconstruct a 3-D picture of the atomic arrangement of resonant nuclei and moreover they distinguish between different hyperfine sites. The method may be more practical for measurements on synchrotron radiation but it does also apply to velocity spectra obtained from resonant scattering with strong sources. The use of radioactive sources suffer from the disadvantage of poorer statistics or much longer accumulation times but they enjoy the advantage to be table-top and at-home experiments. As strong sources are

  17. The effect of Compton scattering on quantitative SPECT imaging

    International Nuclear Information System (INIS)

    Beck, J.W.; Jaszczak, R.J.; Starmer, C.F.

    1982-01-01

    A Monte Carlo code has been developed to simulate the response of a SPECT system. The accuracy of the code has been verified and has been used in this research to study and illustrate the effects of Compton scatter on quantitative SPECT measurements. The effects of Compton scattered radiation on gamma camera response have been discussed by several authors, and will be extended to rotating gamma camera SPECT systems. The unique feature of this research includes the pictorial illustration of the Compton scattered and the unscattered components of the photopeak data on SPECT imaging by simulating phantom studies with and without Compton scatter

  18. What is the contribution of scattering to the Love-to-Rayleigh ratio in ambient microseismic noise?

    Science.gov (United States)

    Ziane, D.; Hadziioannou, C.

    2015-12-01

    Several observations show the existence of both Rayleigh and Love waves in the secondary microseism. While the Rayleigh wave excitation is well described by Longuet-Higgins, the process responsible for Love wave generation still needs further investigation. Several different mechanisms could excite Love waves in this frequency band: broadly speaking, we can differentiate between source effects, like pressure variations on the oblique sea floor, or internal effects in the medium along the propagation path, such as scattering and conversions. Here we will focus on the internal effects. We perform single scattering tests in 2D and 3D to gain a better understanding of the scattering radiation pattern and the conversion between P, S, Rayleigh and Love waves. Furthermore, we use random media with continuous variations of the elastic parameters to create a scattering regime similar to the Earths interior, e.g. Gaussian or von Karmann correlation functions. The aim is to explore the contribution of scattering along the propagation path to the observed Love to Rayleigh wave energy ratios, assuming a purely vertical force source mechanism. We use finite different solvers to calculate the synthetic seismograms, and to separate the different wave types we measure the rotational and divergent components of the wave field.

  19. A library least-squares approach for scatter correction in gamma-ray tomography

    Science.gov (United States)

    Meric, Ilker; Anton Johansen, Geir; Valgueiro Malta Moreira, Icaro

    2015-03-01

    Scattered radiation is known to lead to distortion in reconstructed images in Computed Tomography (CT). The effects of scattered radiation are especially more pronounced in non-scanning, multiple source systems which are preferred for flow imaging where the instantaneous density distribution of the flow components is of interest. In this work, a new method based on a library least-squares (LLS) approach is proposed as a means of estimating the scatter contribution and correcting for this. The validity of the proposed method is tested using the 85-channel industrial gamma-ray tomograph previously developed at the University of Bergen (UoB). The results presented here confirm that the LLS approach can effectively estimate the amounts of transmission and scatter components in any given detector in the UoB gamma-ray tomography system.

  20. Quantum scattering at low energies

    DEFF Research Database (Denmark)

    Derezinski, Jan; Skibsted, Erik

    For a class of negative slowly decaying potentials, including with , we study the quantum mechanical scattering theory in the low-energy regime. Using modifiers of the Isozaki--Kitada type we show that scattering theory is well behaved on the {\\it whole} continuous spectrum of the Hamiltonian......, including the energy . We show that the --matrices are well-defined and strongly continuous down to the zero energy threshold. Similarly, we prove that the wave matrices and generalized eigenfunctions are norm continuous down to the zero energy if we use appropriate weighted spaces. These results are used...... from positive energies to the limiting energy . This change corresponds to the behaviour of the classical orbits. Under stronger conditions we extract the leading term of the asymptotics of the kernel of at its singularities; this leading term defines a Fourier integral operator in the sense...

  1. Soliton generation via continuous stokes acoustic self-scattering of hypersonic waves in a paramagnetic crystal

    International Nuclear Information System (INIS)

    Bugay, A. N.; Sazonov, S. V.

    2008-01-01

    A new mechanism is proposed for continuous frequency down-conversion of acoustic waves propagating in a paramagnetic crystal at a low temperature in an applied magnetic field. A transverse hypersonic pulse generating a carrier-free longitudinal strain pulse via nonlinear effects is scattered by the generated pulse. This leads to a Stokes shift in the transverse hypersonic wave proportional to its intensity, and both pulses continue to propagate in the form of a mode-locked soliton. As the transverse-pulse frequency is Stokes shifted, its spectrum becomes narrower. This process can be effectively implemented only if the linear group velocity of the transverse hypersonic pulse equals the phase velocity of the longitudinal strain wave. These velocities are renormalized by spin-phonon coupling and can be made equal by adjusting the magnitude of the applied magnetic field. The transverse structure of the soliton depends on the sign of the group velocity dispersion of the transverse component. When the dispersion is positive, planar solitons can develop whose transverse component has a topological defect of dark vortex type and longitudinal component has a hole. In the opposite case, the formation of two-component acoustic 'bullets' or vortices localized in all directions is possible

  2. WARMS - a continuous on-line environmental and emergency radiation monitoring system

    International Nuclear Information System (INIS)

    Ramsden, D.

    1984-01-01

    The Winfrith Airborne Release Monitoring System (WARMS) is used to monitor the environment around the Winfrith reactor site. It operates continuously monitoring the background radiation at 16 outstations and can provide rapid information should an accidental release occur. WARMS was developed jointly by the Radiological Safety Division and the Control and Instrumentation Division at Winfrith in association with the Safety and Reliability Directorate at Culcheth which developed the software. The system became operational in the autumn of 1983 and has since demonstrated a high degree of reliability and effectiveness. (author)

  3. Polarimetric scattering and SAR information retrieval

    CERN Document Server

    Jin, Ya-Qiu

    2013-01-01

    Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app

  4. A library least-squares approach for scatter correction in gamma-ray tomography

    International Nuclear Information System (INIS)

    Meric, Ilker; Anton Johansen, Geir; Valgueiro Malta Moreira, Icaro

    2015-01-01

    Scattered radiation is known to lead to distortion in reconstructed images in Computed Tomography (CT). The effects of scattered radiation are especially more pronounced in non-scanning, multiple source systems which are preferred for flow imaging where the instantaneous density distribution of the flow components is of interest. In this work, a new method based on a library least-squares (LLS) approach is proposed as a means of estimating the scatter contribution and correcting for this. The validity of the proposed method is tested using the 85-channel industrial gamma-ray tomograph previously developed at the University of Bergen (UoB). The results presented here confirm that the LLS approach can effectively estimate the amounts of transmission and scatter components in any given detector in the UoB gamma-ray tomography system. - Highlights: • A LLS approach is proposed for scatter correction in gamma-ray tomography. • The validity of the LLS approach is tested through experiments. • Gain shift and pulse pile-up affect the accuracy of the LLS approach. • The LLS approach successfully estimates scatter profiles

  5. Scattering of infrared radiation by dust in NGC 7023 and NGC 2023

    Science.gov (United States)

    Sellgren, K.; Werner, M. W.; Dinerstein, H. L.

    1992-01-01

    The contribution of scattered light to the total nebular emission is determined on the basis of linear polarization measurements at 1.25, 1.65, and 2.2 microns of the visual reflection nebulae NGC 7023 and NGC 2023. The percentage polarization of NGC 7023 slowly increases from 0.3 to 1 micron, with peak polarizations of up to 26 percent at 1.25 micron, then rapidly decreases, with values of 4-7 percent at 2.2 microns. This is interpreted as implying that scattered starlight contributes most to the SW emission, while unpolarized emission from small grains or large molecules dominates at longer wavelengths. IR polarization and surface brightness measurements are combined to derive the intensity of scattered light, which is then compared with scattering models. While the near-IR emission of both NGC 2023 and NGC 7023 is dominated by small-grain or large-molecule emission, IR scattered light plays a larger role in NGC 2023 than in NGC 7023.

  6. Evolution of elastic x-ray scattering in laser-shocked warm dense lithium.

    Science.gov (United States)

    Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C M; Brown, C R D; Constantin, C; Glenzer, S H; Khattak, F Y; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D

    2009-12-01

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly- alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z[over ] and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  7. Evolution of elastic x-ray scattering in laser-shocked warm dense lithium

    International Nuclear Information System (INIS)

    Kugland, N. L.; Niemann, C.; Gregori, G.; Bandyopadhyay, S.; Spindloe, C.; Brenner, C. M.; Brown, C. R. D.; Constantin, C.; Glenzer, S. H.; Khattak, F. Y.; Kritcher, A. L.; Otten, A.; Pelka, A.; Roth, M.; Pasley, J.; Riley, D.

    2009-01-01

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-α photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 deg. using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  8. REVISITING THE SCATTERING GREENHOUSE EFFECT OF CO2 ICE CLOUDS

    International Nuclear Information System (INIS)

    Kitzmann, D.

    2016-01-01

    Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO 2 dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone

  9. Experimental confirmation of neoclassical Compton scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Aristov, V. V., E-mail: aristov@iptm.ru [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation); Yakunin, S. N. [National Research Centre “Kurchatov Institute” (Russian Federation); Despotuli, A. A. [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation)

    2013-12-15

    Incoherent X-ray scattering spectra of diamond and silicon crystals recorded on the BESSY-2 electron storage ring have been analyzed. All spectral features are described well in terms of the neoclassical scattering theory without consideration for the hypotheses accepted in quantum electrodynamics. It is noted that the accepted tabular data on the intensity ratio between the Compton and Rayleigh spectral components may significantly differ from the experimental values. It is concluded that the development of the general theory (considering coherent scattering, incoherent scattering, and Bragg diffraction) must be continued.

  10. A coherent/Compton scattering method employing an x-ray tube for measurement of trabecular bone mineral content

    International Nuclear Information System (INIS)

    Puumalainen, P.; Uimarihuhta, A.; Olkkonen, H.

    1982-01-01

    Results showed that the x-ray generator could be used as a radiation source in the coherent/Compton scattering method of measuring trabecular bone mineral content. The quasimonoenergetic x-ray beam was produced from the continuous bremsstrahlung radiation with the aid of a spectral filter. Of the two measuring arrangements that were tested, the semiconductor detector geometry appeared to give distinctly more reproducible results than the two NaI detector system. However, to improve the counting efficiency of the coherent radiation, the 'coherent' NaI detector could be replaced by a bore-through scintillation probe (bore diameter about 10mm). By placing the x-ray fluorescence target inside the bore, the yield would be considerably higher. The present method is suitable for TBMC measurements of small animal and human peripheral bones. Errors are discussed in relation to increase of bone size. (U.K.)

  11. Light Scattering by Ice Crystals Containing Air Bubbles

    Science.gov (United States)

    Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.

    2014-12-01

    The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.

  12. Multipoint Thomson scattering system for the EXTRAP Z-pinch experiment

    International Nuclear Information System (INIS)

    Karlsson, P.

    1986-03-01

    A Thomson scattering system for simultaneous measurements of the electron temperature and density at three different positions at two different times during a single plasma shot has been developed for the EXTRAP-L1 Z-pinch. The plasma in the present version of EXTRAP-L1 is characterized by densities in the range from 10 21 to 10 22 m -3 , temperatures up to 50 eV and a pinch radius of the order of 1 cm. A spatial resolution down to 3 mm between positions is obtained by imaging the plasma onto an array of quartz optical fibres at the output slit of the spectrometer. Fifteen PM-tubes are used to detect the scattered radiation as well as the background radiation. Due to the relatively dense plasma prevailing in the present version of EXTRAP-L1 the number of scattered photons in large and the photon to electron conversion noise is small. The background radiation is the most important factor limiting the accuracy of the measurements. (author)

  13. Three-dimensional Radiative Transfer Simulations of the Scattering Polarization of the Hydrogen Lyalpha Line in a Magnetohydrodynamic Model of the Chromosphere-Corona Transition Region

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Jiří; Trujillo Bueno, J.; Leenaarts, J.; Carlsson, M.

    2015-01-01

    Roč. 803, č. 2 (2015), 65/1-65/15 ISSN 0004-637X R&D Projects: GA ČR GPP209/12/P741 Grant - others:EU(XE) COST action MP1104 Institutional support: RVO:67985815 Keywords : polarization * radiative transfer * scattering Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  14. Wrapped and unwrapped phase of radiation scattered by a discrete number of particles

    International Nuclear Information System (INIS)

    Watson, Stephen M; Ridley, Kevin D

    2007-01-01

    This paper investigates wrapped and unwrapped phase differences generated by a non-Gaussian scattering model: the two-dimensional random walk. Mean square values for these quantities are obtained for one and two scatterers, as well as the large scatterer limit when the field constitutes a circular complex Gaussian process. Numerical simulation is used to investigate the phase under more general fluctuation conditions, and reveals that the wrapped phase difference correlation converges rapidly to that result predicted for a Gaussian speckle field. Analytical results for the unwrapped phase indicate that this quantity transitions from a stationary process for one and two scatterers to a non-stationary process in the large scatterer limit. The nature of this transition is examined using numerical simulation for arbitrary scatterer number. Phase correlations are of consequence in various phase sensitive detection systems, and this paper examines both Gaussian and non-Gaussian fields

  15. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.; Wuilleumier, F.

    1985-01-01

    This chapter discusses applications of synchrotron light in atomic and molecular physics. Use of the radiation from storage rings has expanded and lent access to new areas of absorption and photoemission spectroscopy and scattering experiments. Techniques applied in connection with synchrotron radiation are discussed including absorption spectroscopy, photoelectron spectroscopy, fluorescence spectroscopy and X-ray scattering. Problem areas that are being studied by the techniques mentioned above are discussed. Synchrotron radiation has provided the means for measuring the threshold-excitation and interference effects that signal the breakdown of the two-step model of atomic excitation/deexcitation. Synchrotron radiation provides more means of excited-state photoionization measurements

  16. Rayleigh scattering in an emitter-nanofiber-coupling system

    Science.gov (United States)

    Tang, Shui-Jing; Gao, Fei; Xu, Da; Li, Yan; Gong, Qihuang; Xiao, Yun-Feng

    2017-04-01

    Scattering is a general process in both fundamental and applied physics. In this paper, we investigate Rayleigh scattering of a solid-state-emitter coupled to a nanofiber, by S -matrix-like theory in k -space description. Under this model, both Rayleigh scattering and dipole interaction are studied between a two-level artificial atom embedded in a nanocrystal and fiber modes (guided and radiation modes). It is found that Rayleigh scattering plays a critical role in the transport properties and quantum statistics of photons. On the one hand, Rayleigh scattering produces the transparency in the optical transmitted field of the nanofiber, accompanied by the change of atomic phase, population, and frequency shift. On the other hand, the interference between two kinds of scattering fields by Rayleigh scattering and dipole transition modifies the photon statistics (second-order autocorrelation function) of output fields, showing a strong wavelength dependence. This study provides guidance for the solid-state emitter acting as a single-photon source and can be extended to explore the scattering effect in many-body physics.

  17. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    Science.gov (United States)

    Hong, Xinguo; Hao, Quan

    2009-01-01

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 °C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  18. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    International Nuclear Information System (INIS)

    Hong Xinguo; Hao Quan

    2009-01-01

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 deg. C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  19. Radiative corrections to high-energy neutrino scattering

    International Nuclear Information System (INIS)

    Rujula, A. de; Petronzio, R.; Savoy-Navarro, A.

    1979-01-01

    Motivated by precise neutrino experiments, the electromagnetic radiative corrections to the data are reconsidered. The usefulness is investigated and the simplicity demonstrated of the 'leading log' approximation: the calculation to order α ln (Q/μ), α ln (Q/msub(q)). Here Q is an energy scale of the overall process, μ is the lepton mass and msub(q) is a hadronic mass, the effective quark mass in a parton model. The leading log radiative corrections to dsigma/dy distributions and to suitably interpreted dsigma/dx distributions are quark-mass independent. The authors improve upon the conventional leading log approximation and compute explicitly the largest terms that lie beyond the leading log level. In practice this means that the model-independent formulae, though approximate, are likely to be excellent estimates everywhere except at low energy or very large y. It is pointed out that radiative corrections to measurements of deviations from the Callan-Gross relation and to measurements of the 'sea' constituency of nucleons are gigantic. The QCD inspired study of deviations from scaling is of particular interest. The authors compute, beyond the leading log level, the radiative corrections of the QCD predictions. (Auth.)

  20. Extending generalized Kubelka-Munk to three-dimensional radiative transfer.

    Science.gov (United States)

    Sandoval, Christopher; Kim, Arnold D

    2015-08-10

    The generalized Kubelka-Munk (gKM) approximation is a linear transformation of the double spherical harmonics of order one (DP1) approximation of the radiative transfer equation. Here, we extend the gKM approximation to study problems in three-dimensional radiative transfer. In particular, we derive the gKM approximation for the problem of collimated beam propagation and scattering in a plane-parallel slab composed of a uniform absorbing and scattering medium. The result is an 8×8 system of partial differential equations that is much easier to solve than the radiative transfer equation. We compare the solutions of the gKM approximation with Monte Carlo simulations of the radiative transfer equation to identify the range of validity for this approximation. We find that the gKM approximation is accurate for isotropic scattering media that are sufficiently thick and much less accurate for anisotropic, forward-peaked scattering media.

  1. A polarimetric scattering database for non-spherical ice particles at microwave wavelengths

    Science.gov (United States)

    Lu, Yinghui; Jiang, Zhiyuan; Aydin, Kultegin; Verlinde, Johannes; Clothiaux, Eugene E.; Botta, Giovanni

    2016-10-01

    The atmospheric science community has entered a period in which electromagnetic scattering properties at microwave frequencies of realistically constructed ice particles are necessary for making progress on a number of fronts. One front includes retrieval of ice-particle properties and signatures from ground-based, airborne, and satellite-based radar and radiometer observations. Another front is evaluation of model microphysics by application of forward operators to their outputs and comparison to observations during case study periods. Yet a third front is data assimilation, where again forward operators are applied to databases of ice-particle scattering properties and the results compared to observations, with their differences leading to corrections of the model state. Over the past decade investigators have developed databases of ice-particle scattering properties at microwave frequencies and made them openly available. Motivated by and complementing these earlier efforts, a database containing polarimetric single-scattering properties of various types of ice particles at millimeter to centimeter wavelengths is presented. While the database presented here contains only single-scattering properties of ice particles in a fixed orientation, ice-particle scattering properties are computed for many different directions of the radiation incident on them. These results are useful for understanding the dependence of ice-particle scattering properties on ice-particle orientation with respect to the incident radiation. For ice particles that are small compared to the wavelength, the number of incident directions of the radiation is sufficient to compute reasonable estimates of their (randomly) orientation-averaged scattering properties. This database is complementary to earlier ones in that it contains complete (polarimetric) scattering property information for each ice particle - 44 plates, 30 columns, 405 branched planar crystals, 660 aggregates, and 640 conical

  2. Polarized Radiative Transfer in Fluctuating Stochastic Media

    International Nuclear Information System (INIS)

    Sallah, M.; Degheidy, A.R.; Selim, M.M.

    2009-01-01

    The problem of polarized radiative transfer in a planar cluttered atmospheric medium (like cloudy atmosphere) is proposed. The solution is presented for an arbitrary absorption and scattering cross sections. The extinction function of the medium is assumed to be a continuous random function of position, with fluctuations about the mean taken as Gaussian distributed. The joint probability distribution function of these Gaussian random variables is used to calculate the ensemble-averaged quantities, such as reflectivity, radiative energy and radiative flux, for an arbitrary correlation function. A modified Gaussian probability distribution function is also used to average the solution in order to exclude the probable negative values of the optical variable. The problem is considered in half space medium which has specular reflecting boundary exposed to unit external incident flux. Numerical results of the average reflectivity, average radiant energy and average net flux are obtained for both Gaussian and modified Gaussian probability density functions at different degrees of polarization

  3. Combination of acoustic levitation with small angle scattering techniques and synchrotron radiation circular dichroism. Application to the study of protein solutions.

    Science.gov (United States)

    Cristiglio, Viviana; Grillo, Isabelle; Fomina, Margarita; Wien, Frank; Shalaev, Evgenyi; Novikov, Alexey; Brassamin, Séverine; Réfrégiers, Matthieu; Pérez, Javier; Hennet, Louis

    2017-01-01

    The acoustic levitation technique is a useful sample handling method for small solid and liquids samples, suspended in air by means of an ultrasonic field. This method was previously used at synchrotron sources for studying pharmaceutical liquids and protein solutions using x-ray diffraction and small angle x-ray scattering (SAXS). In this work we combined for the first time this containerless method with small angle neutron scattering (SANS) and synchrotron radiation circular dichroism (SRCD) to study the structural behavior of proteins in solutions during the water evaporation. SANS results are also compared with SAXS experiments. The aggregation behavior of 45μl droplets of lysozyme protein diluted in water was followed during the continuous increase of the sample concentration by evaporating the solvent. The evaporation kinetics was followed at different drying stage by SANS and SAXS with a good data quality. In a prospective work using SRCD, we also studied the evolution of the secondary structure of the myoglobin protein in water solution in the same evaporation conditions. Acoustic levitation was applied for the first time with SANS and the high performances of the used neutron instruments made it possible to monitor fast container-less reactions in situ. A preliminary work using SRCD shows the potentiality of its combination with acoustic levitation for studying the evolution of the protein structure with time. This multi-techniques approach could give novel insights into crystallization and self-assembly phenomena of biological compound with promising potential applications in pharmaceutical, food and cosmetics industry. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Observation of scattered light between omega/2 and 3/2 omega in short wavelength laser produced plasmas

    International Nuclear Information System (INIS)

    Goldman, L.M.; Seka, W.; Tanaka, K.; Simon, A.; Short, R.

    1984-01-01

    Extensive measurements have been carried out on scattered radiation in the spectral region between omega/2 and 3/2 omega from plasmas produced by 351 nm lasers. The relative intensities of the continuum radiation relative to the line features at omega/2 and 3/2 omega will be shown. A new spectral feature has been observed between 3/2 omega and omega which may be interpreted as an upscattered component produced by ordinary Raman scattering. The overall experimental evidence for ordinary Raman scattering vs stimulated Raman scattering will be discussed

  5. Development of 119Sn nuclear resonance scattering of synchrotron radiation and first applications

    International Nuclear Information System (INIS)

    Barla, A.

    2001-01-01

    In the framework of this thesis the NRS technique has been developed and applied, for the first time at the European Synchrotron Radiation Facility, at the resonance of 119 Sn. Elastic nuclear forward scattering (NFS) is ideal for studies of hyperfine interactions, where information about the electronic and magnetic properties of solids is obtained. On the other hand nuclear inelastic scattering (NIS) allows one to study the phonon density of states (DOS) of Moessbauer isotopes in various kinds of systems. In the first stage, technical developments have been made, particularly with regards the used optical elements. A key point has been the construction of a high resolution monochromator (HRM) for the resonance of 119 Sn, with an energy resolution of about 0.65 meV, perfectly suited to perform NIS experiments. A second HRM optimised in throughput has been constructed and used, in combination with focussing elements (bent crystals and compound refractive lenses), to perform NFS experiments at very high pressure. For the first applications of 119 Sn NIS, the phonon DOS of β-Sn has been directly determined from the NIS spectra measured at T = 100 K and T = 300 K. An excellent agreement has been found with the phonon DOS obtained theoretically by previous calculations. Moreover, dynamical and thermodynamical properties of β-Sn extracted from the determined DOS, such as the Lamb-Moessbauer factor and the specific heat, are found to be in good agreement with previously published results. As a first application of 119 Sn NFS experiments at high pressure, the system U(In 1-x Sn x ) 3 has been chosen. (orig.)

  6. Research on continuous environmental radiation monitoring system for NPP based on wireless sensor network

    International Nuclear Information System (INIS)

    Fu Hailong; Jia Mingchun; Peng Guichu

    2010-01-01

    According to the characteristics of environmental gamma radiation monitoring and the requirement of nuclear power plant (NPP) developing, a new continuous environmental radiation monitoring system based on wireless sensor network (WSN) was presented. The basic concepts and application of WSN were introduced firstly. And then the characteristics of the new system were analyzed. At the same time the configuration of the WSN and the whole structure of the system were built. Finally, the crucial techniques used in system designing, such as the design of sensor node, the choice of communication mode and protocol, the time synchronization and space location, the security of the network and the faults tolerance were introduced. (authors)

  7. Studies in small angle scattering techniques

    International Nuclear Information System (INIS)

    Moellenbach, K.

    1980-03-01

    Small angle scattering of neutrons, X-rays and γ-rays are found among the spectroscopic methods developed in the recent years. Although these techniques differ from each other in many respects, e.g. radiation sources and technical equipment needed, their power to resolve physical phenomena and areas of application can be discussed in a general scheme. Selected examples are given illustrating the use of specific technical methods. Jahn-Teller driven structural phase transitions in Rare Earth zircons were studied with neutron scattering as well as small angle γ-ray diffraction. The study of neutron scattering from formations of magnetic domains in the Ising ferromagnet LiTbF 4 is a second example. Both these examples represent more than experimental test cases since the theoretical interpretations of the data obtained are discussed as well. As a last example the use of small angle scattering methods for the study of molecular biological samples is discussed. In particular the experimental procedures used in connection with scattering from aqueous solutions of proteins and protein complexes are given. (Auth.)

  8. Topics in deep inelastic scattering

    International Nuclear Information System (INIS)

    Wandzura, S.M.

    1977-01-01

    Several topics in deep inelastic lepton--nucleon scattering are discussed, with emphasis on the structure functions appearing in polarized experiments. The major results are: infinite set of new sum rules reducing the number of independent spin dependent structure functions (for electroproduction) from two to one; the application of the techniques of Nachtmann to extract the coefficients appearing in the Wilson operator product expansion; and radiative corrections to the Wilson coefficients of free field theory. Also discussed are the use of dimensional regularization to simplify the calculation of these radiative corrections

  9. Improved radiation protection for physicians performing cardiac catheterization

    International Nuclear Information System (INIS)

    Gertz, E.W.; Wisneski, J.A.; Gould, R.G.; Akin, J.R.

    1982-01-01

    Physicians and their assistants performing diagnostic angiography must be concerned with the radiation exposure they receive. The introduction of hemiaxial projections for imaging has increased diagnostic accuracy but has also greatly increased the physicians' exposure to scattered radiation. This increase is especially critical for the eyes and thyroid of the physician who routinely performs these procedures. To reduce such exposure a ceiling-suspended shield (60 x 45 cm), made of 6.4 mm glass with a 19.5 kg/m2 (4 lb/ft2) lead equivalency, was developed. During procedures the shield is interposed between the physician and the region of the patient acting as the source of scattered radiation. The degree of radiation protection to the operator was assessed by measuring the distribution of scattered radiation in the vicinity of the operator with and without the shield. The effectiveness of the shield was determined in the 30 degrees right anterior oblique (RAO), 5 degrees left anterior oblique (LAO), 35 degrees LAO, and 50 degrees LAO-15 degrees cranial angulations. At critical heights such as the level of the eyes and thyroid, scattered radiation levels were reduced by 85% or greater in all angulations. Without interfering with the physician's ability to observe the patient or manipulate the catheter, this shield can significantly reduce the physician's exposure to radiation

  10. Concept of formation length in radiation theory

    International Nuclear Information System (INIS)

    Baier, V.N.; Katkov, V.M.

    2005-01-01

    The features of electromagnetic processes are considered which connected with finite size of space region in which final particles (photon, electron-positron pair) are formed. The longitudinal dimension of the region is known as the formation length. If some external agent is acting on an electron while traveling this distance the emission process can be disrupted. There are different agents: multiple scattering of projectile, polarization of a medium, action of external fields, etc. The theory of radiation under influence of the multiple scattering, the Landau-Pomeranchuk-Migdal (LPM) effect, is presented. The probability of radiation is calculated with an accuracy up to 'next to leading logarithm' and with the Coulomb corrections taken into account. The integral characteristics of bremsstrahlung are given, it is shown that the effective radiation length increases due to the LPM effect at high energy. The LPM effect for pair creation is also presented. The multiple scattering influences also on radiative corrections in a medium (and an external field too) including the anomalous magnetic moment of an electron and the polarization tensor as well as coherent scattering of a photon in a Coulomb field. The polarization of a medium alters the radiation probability in soft part of spectrum. Specific features of radiation from a target of finite thickness include: the boundary photon emission, interference effects for thin target, multi-photon radiation. The theory predictions are compared with experimental data obtained at SLAC and CERN SPS. For electron-positron colliding beams following items are discussed: the separation of coherent and incoherent mechanisms of radiation, the beam-size effect in bremsstrahlung, coherent radiation and mechanisms of electron-positron creation

  11. A NUMERICAL SCHEME FOR SPECIAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS BASED ON SOLVING THE TIME-DEPENDENT RADIATIVE TRANSFER EQUATION

    Energy Technology Data Exchange (ETDEWEB)

    Ohsuga, Ken; Takahashi, Hiroyuki R. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-02-20

    We develop a numerical scheme for solving the equations of fully special relativistic, radiation magnetohydrodynamics (MHDs), in which the frequency-integrated, time-dependent radiation transfer equation is solved to calculate the specific intensity. The radiation energy density, the radiation flux, and the radiation stress tensor are obtained by the angular quadrature of the intensity. In the present method, conservation of total mass, momentum, and energy of the radiation magnetofluids is guaranteed. We treat not only the isotropic scattering but also the Thomson scattering. The numerical method of MHDs is the same as that of our previous work. The advection terms are explicitly solved, and the source terms, which describe the gas–radiation interaction, are implicitly integrated. Our code is suitable for massive parallel computing. We present that our code shows reasonable results in some numerical tests for propagating radiation and radiation hydrodynamics. Particularly, the correct solution is given even in the optically very thin or moderately thin regimes, and the special relativistic effects are nicely reproduced.

  12. Cold moderator scattering kernels

    International Nuclear Information System (INIS)

    MacFarlane, R.E.

    1989-01-01

    New thermal-scattering-law files in ENDF format have been developed for solid methane, liquid methane liquid ortho- and para-hydrogen, and liquid ortho- and para-deuterium using up-to-date models that include such effects as incoherent elastic scattering in the solid, diffusion and hindered vibration and rotations in the liquids, and spin correlations for the hydrogen and deuterium. These files were generated with the new LEAPR module of the NJOY Nuclear Data Processing System. Other modules of this system were used to produce cross sections for these moderators in the correct format for the continuous-energy Monte Carlo code (MCNP) being used for cold-moderator-design calculations at the Los Alamos Neutron Scattering Center (LANSCE). 20 refs., 14 figs

  13. Scattering of ultrarelativistic electrons in ultrathin crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shul' ga, N.F., E-mail: shulga@kipt.kharkov.ua [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademichna str., Kharkiv, 61108 (Ukraine); Karazin Kharkiv National University, 4, Svobody sq., Kharkiv, 61000 (Ukraine); Shulga, S.N. [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademichna str., Kharkiv, 61108 (Ukraine); Karazin Kharkiv National University, 4, Svobody sq., Kharkiv, 61000 (Ukraine)

    2017-06-10

    Quantum theory is proposed of high energy electrons scattering in ultrathin crystals. This theory is based upon a special representation of the scattering amplitude in the form of an integral over the surface surrounding the crystal, and on the spectral method of determination of the wave function. The comparison is performed of quantum and classical differential scattering cross-sections in the transitional range of crystal thicknesses, from those at which the channeling phenomenon is not developed up to those at which it is established. It is shown that in this thickness range the quantum scattering cross-section, unlike the classical one, contains sharp peaks corresponding to some specific scattering angles, that is connected with the diffraction of the incident plane wave onto the periodically distributed crystal atomic strings. It is shown that the value of the scattering cross-section in the peaks varies periodically with the change of the target thickness. We note that this must lead to a new interference effect in radiation that is connected with the rearrangement of incident wave packet in transitional area of crystal thicknesses.

  14. Scattering of ultrarelativistic electrons in ultrathin crystals

    Directory of Open Access Journals (Sweden)

    N.F. Shul'ga

    2017-06-01

    Full Text Available Quantum theory is proposed of high energy electrons scattering in ultrathin crystals. This theory is based upon a special representation of the scattering amplitude in the form of an integral over the surface surrounding the crystal, and on the spectral method of determination of the wave function. The comparison is performed of quantum and classical differential scattering cross-sections in the transitional range of crystal thicknesses, from those at which the channeling phenomenon is not developed up to those at which it is established. It is shown that in this thickness range the quantum scattering cross-section, unlike the classical one, contains sharp peaks corresponding to some specific scattering angles, that is connected with the diffraction of the incident plane wave onto the periodically distributed crystal atomic strings. It is shown that the value of the scattering cross-section in the peaks varies periodically with the change of the target thickness. We note that this must lead to a new interference effect in radiation that is connected with the rearrangement of incident wave packet in transitional area of crystal thicknesses.

  15. Scattered-field FDTD and PSTD algorithms with CPML absorbing boundary conditions for light scattering by aerosols

    International Nuclear Information System (INIS)

    Sun, Wenbo; Videen, Gorden; Fu, Qiang; Hu, Yongxiang

    2013-01-01

    As fundamental parameters for polarized-radiative-transfer calculations, the single-scattering phase matrix of irregularly shaped aerosol particles must be accurately modeled. In this study, a scattered-field finite-difference time-domain (FDTD) model and a scattered-field pseudo-spectral time-domain (PSTD) model are developed for light scattering by arbitrarily shaped dielectric aerosols. The convolutional perfectly matched layer (CPML) absorbing boundary condition (ABC) is used to truncate the computational domain. It is found that the PSTD method is generally more accurate than the FDTD in calculation of the single-scattering properties given similar spatial cell sizes. Since the PSTD can use a coarser grid for large particles, it can lower the memory requirement in the calculation. However, the Fourier transformations in the PSTD need significantly more CPU time than simple subtractions in the FDTD, and the fast Fourier transform requires a power of 2 elements in calculations, thus using the PSTD could not significantly reduce the CPU time required in the numerical modeling. Furthermore, because the scattered-field FDTD/PSTD equations include incident-wave source terms, the FDTD/PSTD model allows for the inclusion of an arbitrarily incident wave source, including a plane parallel wave or a Gaussian beam like those emitted by lasers usually used in laboratory particle characterizations, etc. The scattered-field FDTD and PSTD light-scattering models can be used to calculate single-scattering properties of arbitrarily shaped aerosol particles over broad size and wavelength ranges. -- Highlights: • Scattered-field FDTD and PSTD models are developed for light scattering by aerosols. • Convolutional perfectly matched layer absorbing boundary condition is used. • PSTD is generally more accurate than FDTD in calculating single-scattering properties. • Using same spatial resolution, PSTD requires much larger CPU time than FDTD

  16. Nuclear resonant scattering measurements on (57)Fe by multichannel scaling with a 64-pixel silicon avalanche photodiode linear-array detector.

    Science.gov (United States)

    Kishimoto, S; Mitsui, T; Haruki, R; Yoda, Y; Taniguchi, T; Shimazaki, S; Ikeno, M; Saito, M; Tanaka, M

    2014-11-01

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm(2)) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10(7) cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on (57)Fe.

  17. Studies of coherent/Compton scattering method for bone mineral content measurement

    International Nuclear Information System (INIS)

    Sakurai, Kiyoko; Iwanami, Shigeru; Nakazawa, Keiji; Matsubayashi, Takashi; Imamura, Keiko.

    1980-01-01

    A measurement of bone mineral content by a coherent/Compton scattering method was described. A bone sample was irradiated by a collimated narrow beam of 59.6 keV gamma-rays emitted from a 300 mCi 241 Am source, and the scattered radiations were detected using a collimated pure germanium detector placed at 90 0 to the incident beam. The ratio of coherent to Compton peaks in a spectrum of the scattered radiations depends on the bone mineral content of the bone sample. The advantage of this method is that bone mineral content of a small region in a bone can be accurately measured. Assuming that bone consists of two components, protein and bone mineral, and that the mass absorption coefficient for Compton scattering is independent of material, the coherent to Compton scattering ratio is linearly related to the percentage in weight of bone mineral. A calibration curve was obtained by measuring standard samples which were mixed with Ca 3 (PO 4 ) 2 and H 2 O. The error due to the assumption about the mass absorption coefficient for Compton scattering and to the difference between true bone and standard samples was estimated to be less than 3% within the range from 10 to 60% in weight of bone mineral. The fat in bone affects an estimated value by only 1.5% when it is 20% in weight. For the clinical application of this method, the location to be analyzed should be selected before the measurement with two X-ray images viewed from the source and the detector. These views would be also used to correct the difference in absorption between coherent and Compton scattered radiations whose energies are slightly different from each other. The absorbed dose to the analyzed region was approximately 150 mrad. The time required for one measurement in this study was about 10 minutes. (author)

  18. Depth distribution of multiple order X-ray scatter

    International Nuclear Information System (INIS)

    Yao Weiguang; Leszczynski, Konrad

    2008-01-01

    Scatter can significantly affect quality of projectional X-ray radiographs and tomographic reconstructions. With this in mind, we examined some of the physical properties of multiple orders of scatter of X-ray photons traversing through a layer of scattering media such as water. Using Monte Carlo techniques, we investigated depth distributions of interactions between incident X-ray photons and water before the resulting scattered photons reach the detector plane. Effects of factors such as radiation field size, air gap, thickness of the layer of scattering medium and X-ray energy, on the scatter were included in the scope of this study. The following scatter characteristics were observed: (1) for a layer of scattering material corresponding to the typical subject thickness in medical imaging, frequency distribution of locations of the last scattering interaction increases approximately exponentially with depth, and the higher the order of scatter or the energy of the incident photon, the narrower is the distribution; (2) for the second order scatter, the distribution of locations of the first interaction is more uniform than that of the last interaction and is dependent on the energy of the primary photons. Theoretical proofs for some of these properties are given. These properties are important to better understanding of effects of scatter on the radiographic and tomographic imaging process and to developing effective methods for scatter correction

  19. Modeling the radiation transfer of discontinuous canopies: results for gap probability and single-scattering contribution

    Science.gov (United States)

    Zhao, Feng; Zou, Kai; Shang, Hong; Ji, Zheng; Zhao, Huijie; Huang, Wenjiang; Li, Cunjun

    2010-10-01

    In this paper we present an analytical model for the computation of radiation transfer of discontinuous vegetation canopies. Some initial results of gap probability and bidirectional gap probability of discontinuous vegetation canopies, which are important parameters determining the radiative environment of the canopies, are given and compared with a 3- D computer simulation model. In the model, negative exponential attenuation of light within individual plant canopies is assumed. Then the computation of gap probability is resolved by determining the entry points and exiting points of the ray with the individual plants via their equations in space. For the bidirectional gap probability, which determines the single-scattering contribution of the canopy, a gap statistical analysis based model was adopted to correct the dependence of gap probabilities for both solar and viewing directions. The model incorporates the structural characteristics, such as plant sizes, leaf size, row spacing, foliage density, planting density, leaf inclination distribution. Available experimental data are inadequate for a complete validation of the model. So it was evaluated with a three dimensional computer simulation model for 3D vegetative scenes, which shows good agreement between these two models' results. This model should be useful to the quantification of light interception and the modeling of bidirectional reflectance distributions of discontinuous canopies.

  20. Efficient Calculation of Born Scattering for Fixed-Offset Ground-Penetrating Radar Surveys

    DEFF Research Database (Denmark)

    Meincke, Peter

    2007-01-01

    A formulation is presented for efficient calculation of linear electromagnetic scattering by buried penetrable objects, as involved in the analysis of fixed-offset ground-penetrating radar (GPR) systems. The actual radiation patterns of the GPR antennas are incorporated in the scattering...