WorldWideScience

Sample records for scattered continuous radiation

  1. Radiation scattering techniques

    International Nuclear Information System (INIS)

    Edmonds, E.A.

    1986-01-01

    Radiation backscattering techniques are useful when access to an item to be inspected is restricted to one side. These techniques are very sensitive to geometrical effects. Scattering processes and their application to the determination of voids, thickness measuring, well-logging and the use of x-ray fluorescence techniques are discussed. (U.K.)

  2. Inelastic electron scattering and radiative pion capture to the lowest 1+ and 2+ isovector levels in A=12 nuclei. Continuity-equation effects

    International Nuclear Information System (INIS)

    Eramzhyan, R.A.; Gmitro, M.; Kaipov, T.D.; Kamalov, S.S.; Mach, R.

    1983-01-01

    Continuity equation for the nuclear electric charge and convection current has been used in an analysis of nuclear transition densities in 12 C. The results differ considerably from the former derivations. Standard M1 and calculated E2 nuclear transition densities are fixed which provide an accurate description of the electron scattering data. Such a nuclear structure imput is used in the radiative pion capture calculations

  3. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  4. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A

    2013-01-01

    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  5. Scattered Radiation Emission Imaging: Principles and Applications

    Directory of Open Access Journals (Sweden)

    M. K. Nguyen

    2011-01-01

    Full Text Available Imaging processes built on the Compton scattering effect have been under continuing investigation since it was first suggested in the 50s. However, despite many innovative contributions, there are still formidable theoretical and technical challenges to overcome. In this paper, we review the state-of-the-art principles of the so-called scattered radiation emission imaging. Basically, it consists of using the cleverly collected scattered radiation from a radiating object to reconstruct its inner structure. Image formation is based on the mathematical concept of compounded conical projection. It entails a Radon transform defined on circular cone surfaces in order to express the scattered radiation flux density on a detecting pixel. We discuss in particular invertible cases of such conical Radon transforms which form a mathematical basis for image reconstruction methods. Numerical simulations performed in two and three space dimensions speak in favor of the viability of this imaging principle and its potential applications in various fields.

  6. Transition radiation and transition scattering

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1982-01-01

    Transition radiation is a process of a rather general character. It occurs when some source, which does not have a proper frequency (for example, a charge) moves at a constant velocity in an inhomogeneous and (or) nonstationary medium or near such a medium. The simplest type of transition radiation takes place when a charge crosses a boundary between two media (the role of one of the media may be played by vacuum). In the case of periodic variation of the medium, transition radiation possesses some specific features (resonance transition radiation or transition scattering). Transition scattering occurs, in particular, when a permittivity wave falls onto an nonmoving (fixed) charge. Transition scattering is closely connected with transition bremsstrahlung radiation. All these transition processes are essential for plasma physics. Transition radiation and transition scattering have analogues outside the framework of electrodynamics (like in the case of Vavilov-Cherenkov radiation). In the present report the corresponding range of phenomena is elucidated, as far as possible, in a generally physical aspect. (Auth.)

  7. Thomson scattering if FIR radiation

    International Nuclear Information System (INIS)

    Evans, D.E.

    1976-12-01

    The frequency spectrum of radiation scattered by collective density fluctuations of electrons in a hot plasma is influenced by ion and electron temperatures, impurity concentration and plasma effective charge, magnetic field, and the level of microturbulence. A pulsed laser suitable for measuring collective scattering in a tokamak will have infrared wavelength, power of the order of MWs and bandwidth of a few 10s of MHz. The extent to which these conditions can be met by optically pumped submillimetre lasers, including narrow band oscillators, amplifiers and superradiance - injection assemblies operated in CH 3 F and D 2 O, under development at the Culham Laboratory, is discussed. (author)

  8. Coherence effects in radiative scattering

    International Nuclear Information System (INIS)

    Knoll, J.; Lenk, R.

    1993-03-01

    The bremsstrahl-production of photons in dense matter is reinvestigated using the example of an exactly solvable quantum mechanical model in one space dimension. Coherence phenomena between successive radiative scatterings among the constituents lead to a modification of the production cross section in the medium relative to the incoherent quasi-free prescription used in kinetic models. Analytic expressions for the correction factor have been derived comparing the quantum rates with the corresponding incoherent quasi-free rates. The result has implications for the kinetic description of all kinds of radiative processes in nucleus-nucleus collisions, both on the level of hadron and parton dynamics. (orig.)

  9. Radiation scatter apparatus and method

    International Nuclear Information System (INIS)

    Molbert, J. L.; Riddle, E. R.

    1985-01-01

    A radiation scatter gauge includes multiple detector locations for developing separate and independent sets of data from which multiple physical characteristics of a thin material and underlying substrate may be determined. In an illustrated embodiment, the apparatus and method of the invention are directed to determining characteristics of resurfaced pavement by nondestructive testing. More particularly, the density and thickness of a thin asphalt overlay and the density of the underlying pavement may be determined

  10. Light scattering reviews 9 light scattering and radiative transfer

    CERN Document Server

    Kokhanovsky, Alexander A

    2014-01-01

    This book details modern methods of the radiative transfer theory. It presents recent advances in light scattering (measurements and theory) and highlights the newest developments in remote sensing of aerosol and cloud properties.

  11. Scattering of light and other electromagnetic radiation

    CERN Document Server

    Kerker, Milton

    1969-01-01

    The Scattering of Light and Other Electromagnetic Radiation discusses the theory of electromagnetic scattering and describes some practical applications. The book reviews electromagnetic waves, optics, the interrelationships of main physical quantities and the physical concepts of optics, including Maxwell's equations, polarization, geometrical optics, interference, and diffraction. The text explains the Rayleigh2 theory of scattering by small dielectric spheres, the Bessel functions, and the Legendre functions. The author also explains how the scattering functions for a homogenous sphere chan

  12. Scattered radiation in fan beam imaging systems

    International Nuclear Information System (INIS)

    Johns, P.C.; Yaffe, M.

    1982-01-01

    Scatter-to-primary energy fluence ratios (S/P) have been studied for fan x-ray beams as used in CT scanners and slit projection radiography systems. The dependence of S/P on phantom diameter, distance from phantom to image receptor, and kilovoltage is presented. An empirical equation is given that predicts S/P over a wide range of fan beam imaging configurations. For CT body scans on a 4th-generation machine, S/P is approximately 5%. Scattered radiation can produce a significant cupping artefact in CT images which is similar to that due to beam hardening. When multiple slices are used in scanned slit radiography, they can be arranged such that the increase in S/P is negligible. Calculations of scatter-to-primary ratios for first order scattering showed that for fan beams the contribution of coherent scatter is comparable to or greater than that of incoherent first scatter

  13. Stationary radiation of objects with scattering media

    International Nuclear Information System (INIS)

    Vasil'eva, Inna A

    2001-01-01

    The radiation observed inside or outside a stationary radiator with a scattering medium is a sum of components, each being determined by, first, the primary radiation from some part of the radiator and, second, the probability of this radiation reaching the region where it is observed. In this review, general and rather simple relations between these components are discussed. These relations, unlike the components themselves, are independent of the specific optical characteristics of the object as well as of its geometry, inhomogeneity, etc. In deriving the relations, the situations in which geometrical optics is either applicable or inapplicable to radiation in a scattering medium are considered. For the case where geometrical optics does apply, stationary relations are derived from the probabilistic stationarity condition for radiation passing through the medium, i.e., from the fact that all radiation emitted in a stationary regime disappears with probability unity. Equilibrium relations are derived from the stationary relations in the particular case of a thermal radiator in an isothermal cavity. To derive the stationary relations in the geometrical optics approximation, we obtain general solutions of the linear equation of transfer using the Green function approach. If geometrical optics cannot be applied to a scattering and radiating medium, only relations for the components of outgoing thermal radiation are obtained, and the generalized Kirchhoff law, obtained by Levin and Rytov using statistical radio-physics methods, is employed. In this case, stationary relations are also derived from a probabilistic stationarity condition; the equilibrium relations follow from the stationary ones as well as from the equilibrium condition for radiation in the isothermal cavity. The quantities involved in all the relations obtained are a subject of experimental and computational spectroscopic studies. Examples of current and potential applications are given. The relations

  14. Multichannel radiography employing scattered radiation

    International Nuclear Information System (INIS)

    Jacobs, A.M.; McInerney, J.J.; Kenney, E.S.

    1985-01-01

    This invention provides a diagnostic imaging system for constructing an image of on area of an interfacial surface within the body of a subject particularly adapted to obtain data for constructing interfaces between a beating heart and the lung. The system comprises a radiation source with means for generating a shaped beam of penetrating radiation; a radiation detector assembly; sensitive volume positioning means attached to both the radiation source and the detectors, which can be used to change the shape of the beam or the orientation of the detectors; a search control circuit; and image construction means

  15. Measurements of computed tomography radiation scatter

    International Nuclear Information System (INIS)

    Van Every, B.; Petty, R.J.

    1992-01-01

    This paper describes the measurement of scattered radiation from a computed tomography (CT) scanner in a clinical situation and compares the results with those obtained from a CT performance phantom and with data obtained from CT manufacturers. The results are presented as iso-dose contours. There are significant differences between the data obtained and that supplied by manufacturers, both in the shape of the iso-dose contours and in the nominal values. The observed scatter in a clinical situation (for an abdominal scan) varied between 3% and 430% of the manufacturers' stated values, with a marked reduction in scatter noted a the head and feet of the patient. These differences appear to be due to the fact that manufacturers use CT phantoms to obtain scatter data and these phantoms do not provide the same scatter absorption geometry as patients. CT scatter was observed to increase as scan field size and slice thickness increased, whilst there was little change in scatter with changes in gantry tilt and table slew. Using the iso-dose contours, the orientation of the CT scanner can be optimised with regard to the location and shielding requirements of doors and windows. Additionally, the positioning of staff who must remain in the room during scanning can be optimised to minimise their exposure. It is estimated that the data presented allows for realistic radiation protection assessments to be made. 13 refs., 5 tabs., 6 figs

  16. Radiation and scattering of waves

    CERN Document Server

    Felsen, Leopold B

    1994-01-01

    This world-renowned classic by Professors Felsen and Marcuvitz continues to abound in timely and useful materialover 20 years after it was originally published. The book contains indispensable information that remains difficult to find anywhere else in the electromagnetics and acoustics literature, and it will be useful for many years to come. Of particular interest is Chapter 4, Asymptotic Evaluation of Integrals, which is appreciated and cited worldwide. It contains an in-depth description of asymptotic techniques and formulas useful to both engineers and physicists.

  17. Study of continuous spectra of scattered α and 6Li particles at 26 MeV/A by detection of coincident #betta#-radiation

    International Nuclear Information System (INIS)

    Nitsche, W.

    1981-01-01

    In a particle-#betta# coincidence experiment with a new developed correlation chamber the excitation and the subsequent particle decay of the nuclear continuum (up to 70 MeV excitation energy) and isoscalar giant quadrupole resonance in the nuclei 28 Si, 27 Al, 58 Ni, and 62 Ni is studied by the detection of discrete #betta#-transitions in the daughter nuclei. The excitation is performed by inelastic scattering of α particles on 28 Si, 58 Ni, and 62 Ni at an incident energy of 104 MeV and of 6 Li particles on 28 Si and 27 Al at 156 MeV (26 MeV/A). The measured particle-#betta# angular correlations are compatible with isotropic #betta#-decay. The α spectrum coincident with 6 Li ejectiles shows in the case of the 28 Si target only strong photo lines of the 1 -> 0 (transitions from the 1. excited to the ground state) transition in 28 Si, 27 Si, 27 Al, and 24 Mg and 2 -> 0 transitions in 27 Al and 27 Si. In the α-induced #betta#-spectrum beyond many lines of low lying transitions in nuclei with a mass number A = 20 to 26 are found which follow the emission of several nucleons. The interpretation is performed in the framework of Hauser-Feshbach evaporation calculations which describe the dissipative part of the continuum and calculation in PWIA approximation which describe fast direct nucleon respectively α-particle knock-out processes. (orig./HSI) [de

  18. Effects of Scattering of Radiation on Wormholes

    Directory of Open Access Journals (Sweden)

    Alexander Kirillov

    2018-02-01

    Full Text Available Significant progress in the development of observational techniques gives us the hope to directly observe cosmological wormholes. We have collected basic effects produced by the scattering of radiation on wormholes, which can be used in observations. These are the additional topological damping of cosmic rays, the generation of a diffuse background around any discrete source, the generation of an interference picture, and distortion of the cosmic microwave background (CMB spectrum. It turns out that wormholes in the leading order mimic perfectly analogous effects of the scattering of radiation on the standard matter (dust, hot electron gas, etc.. However, in higher orders, a small difference appears, which allows for disentangling effects of wormholes and ordinary matter.

  19. Scatter radiation exposure during knee arthrography

    International Nuclear Information System (INIS)

    Light, M.C.; Molloi, S.Y.; Yandow, D.R.; Ranallo, F.N.

    1987-01-01

    Knee arthrography, as performed at the authors' institution, was simulated and scattered radiation exposure to a radiologist's gonads, thyroid, and eye lens was measured with a sensitive ionization chamber. Results show that radiologists who regularly conduct knee arthrography examinations can incur doses to the gonads that are less than 6% of the U.S. limits, and to the thyroid and eye that are approximately 10% of the U.S. limits. Since the scatter radiation from overhead imaging of stress views constituted most (greater than or equal to 60%) of the dose to the lens of the eye and the thyroid, spot imaging was evaluated as a substitute for overhead imaging in the assessment of the anterior cruciate ligament. This substitution resulted in no loss of clinical information and has now completely replaced overhead imaging of stress views at this institution

  20. Radiative corrections to deep inelastic muon scattering

    International Nuclear Information System (INIS)

    Akhundov, A.A.; Bardin, D.Yu.; Lohman, W.

    1986-01-01

    A summary is given of the most recent results for the calculaion of radiative corrections to deep inelastic muon-nucleon scattering. Contributions from leptonic electromagnetic processes up to the order a 4 , vacuum polarization by leptons and hadrons, hadronic electromagnetic processes approximately a 3 and γZ interference have been taken into account. The dependence of the individual contributions on kinematical variables is studied. Contributions, not considered in earlier calculations of radiative corrections, reach in certain kinematical regions several per cent at energies above 100 GeV

  1. Scatter Dose in Patients in Radiation Therapy

    International Nuclear Information System (INIS)

    Schmidt, W. F. O.

    2003-01-01

    Patients undergoing radiation therapy are often treated with high energy radiation (bremsstrahlung) which causes scatter doses in the patients from various sources as photon scatter coming from collimator, gantry, patient, patient table or room (walls, floor, air) or particle doses resulting from gamma-particle reactions in the atomic nucleus if the photon energies are above 8 MeV. In the last years new treatment techniques like IMRT (esp the step-and-shoot- or the MIMIC-techniques) have increased interest in these topics again. In the lecture an overview about recent measurements on scatter doses resulting from gantry, table and room shall be given. Scatter doses resulting from the volume treated in the patient to other critical parts of the body like eyes, ovarii etc. have been measured in two diploma works in our institute and are compared with a program (PERIDOSE; van der Giessen, Netherlands) to estimate them. In some cases these scatter doses have led to changes of treatment modalities. Also an overview and estimation of doses resulting from photon-particle interactions is given according to a publication from Gudowska et al.(Gudowska I, Brahme A, Andreo P, Gudowski W, Kierkegaard J. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV. Phys Med Biol 1999; 44(9):2099-2125.). Energy dose has been calculated with Monte Carlo-methods and is compared with analytical methods for 50 MV bremsstrahlung. From these data biologically effective doses from particles in different depths of the body can be estimated also for energies used in normal radiotherapy. (author)

  2. Evaluating the scattered radiation intensity in CBCT

    Science.gov (United States)

    Gonçalves, O. D.; Boldt, S.; Nadaes, M.; Devito, K. L.

    2018-03-01

    In this work we calculate the ratio between scattered and transmitted photons (STRR) by a water cylinder reaching a detector matrix element (DME) in a flat array of detectors, similar to the used in cone beam tomography (CBCT), as a function of the field of view (FOV) and the irradiated volume of the scanned object. We perform the calculation by obtaining an equation to determine the scattered and transmitted radiation and building a computer code in order to calculate the contribution of all voxels of the sample. We compare calculated results with the shades of gray in a central slice of a tomography obtained from a cylindrical glass container filled with distilled water. The tomography was performed with an I-CAT tomograph (Imaging Science International), from the Department of Dental Clinic - Oral Radiology, Universidade Federal de Juiz de Fora. The shade of gray (voxel gray value - VGV) was obtained using the software provided with the I-CAT. The experimental results show a general behavior compatible with theoretical previsions attesting the validity of the method used to calculate the scattering contributions from simple scattering theories in cone beam tomography. The results also attest to the impossibility of obtaining Hounsfield values from a CBCT.

  3. Induced Compton scattering effects in radiation transport approximations

    International Nuclear Information System (INIS)

    Gibson, D.R. Jr.

    1982-01-01

    In this thesis the method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions

  4. Induced Compton-scattering effects in radiation-transport approximations

    International Nuclear Information System (INIS)

    Gibson, D.R. Jr.

    1982-02-01

    The method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions

  5. Coherent scattering of electromagnetic radiation by a polarized particle system

    International Nuclear Information System (INIS)

    Agre, M.Ya.; Rapoport, L.P.

    1996-01-01

    The paper deals with the development of the theory of coherent scattering of electromagnetic waves by a polarized atom or molecular system. Peculiarities of the angular distribution and polarization peculiarities of scattered radiation are discussed

  6. Scattering in an intense radiation field: Time-independent methods

    International Nuclear Information System (INIS)

    Rosenberg, L.

    1977-01-01

    The standard time-independent formulation of nonrelativistic scattering theory is here extended to take into account the presence of an intense external radiation field. In the case of scattering by a static potential the extension is accomplished by the introduction of asymptotic states and intermediate-state propagators which account for the absorption and induced emission of photons by the projectile as it propagates through the field. Self-energy contributions to the propagator are included by a systematic summation of forward-scattering terms. The self-energy analysis is summarized in the form of a modified perturbation expansion of the type introduced by Watson some time ago in the context of nuclear-scattering theory. This expansion, which has a simple continued-fraction structure in the case of a single-mode field, provides a generally applicable successive approximation procedure for the propagator and the asymptotic states. The problem of scattering by a composite target is formulated using the effective-potential method. The modified perturbation expansion which accounts for self-energy effects is applicable here as well. A discussion of a coupled two-state model is included to summarize and clarify the calculational procedures

  7. Scattering of Non-Relativistic Charged Particles by Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2017-11-01

    The cross-section is computed for non-relativistic charged particles (like electrons and ions) scattered by electromagnetic radiation confined to a finite region (like the focal region of optical laser beams). The cross-section exhibits maxima at scattering angles given by the energy and momentum conservation in multi-photon absorption or emission processes. For convenience, a potential scattering is included and a comparison is made with the well-known Kroll-Watson scattering formula. The scattering process addressed in this paper is distinct from the process dealt with in previous studies, where the scattering is immersed in the radiation field.

  8. Continuing medical education in radiation oncology

    International Nuclear Information System (INIS)

    Chauvet, B.; Barillot, I.; Denis, F.; Cailleux, P.E.; Ardiet, J.M.; Mornex, F.

    2012-01-01

    In France, continuing medical education (CME) and professional practice evaluation (PPE) became mandatory by law in July 2009 for all health professionals. Recently published decrees led to the creation of national specialty councils to implement this organizational device. For radiation oncology, this council includes the French Society for Radiation Oncology (SFRO), the National Radiation Oncology Syndicate (SNRO) and the Association for Continuing Medical Education in Radiation Oncology (AFCOR). The Radiation Oncology National Council will propose a set of programs including CME and PPE, professional thesaurus, labels for CME actions consistent with national requirements, and will organize expertise for public instances. AFCOR remains the primary for CME, but each practitioner can freely choose an organisation for CME, provided that it is certified by the independent scientific commission. The National Order for physicians is the control authority. Radiation oncology has already a strong tradition of independent CME that will continue through this major reform. (authors)

  9. Validation of MCNP4A for repository scattered radiation analysis

    International Nuclear Information System (INIS)

    Haas, M.N.; Su, S.

    1998-02-01

    Comparison is made between experimentally determined albedo (scattered) radiation and MCNP4A predictions in order to provide independent validation for repository shielding analysis. Both neutron and gamma scattered radiation fields from concrete ducts are compared in this paper. Satisfactory agreement is found between actual and calculated results with conservative values calculated by the MCNP4A code for all conditions

  10. Application of the Radiative Transfer Equation (RTE) to Scattering by ...

    African Journals Online (AJOL)

    Application of the Radiative Transfer Equation (RTE) to Scattering by a Dust Aerosol Layer. ... Incident radiation in its journey through the atmosphere before reaching the earth surface encounters particles of different sizes and composition such as dust aerosols resulting in interactions that lead to absorption and scattering.

  11. On the omnipresent background gamma radiation of the continuous spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Banjanac, R.; Maletić, D.; Joković, D., E-mail: yokovic@ipb.ac.rs; Veselinović, N.; Dragić, A.; Udovičić, V.; Aničin, I.

    2014-05-01

    The background spectrum of a germanium detector, shielded from the radiations arriving from the lower and open for the radiations arriving from the upper hemisphere, is studied by means of absorption measurements, both in a ground level and in an underground laboratory. The low-energy continuous portion of this background spectrum that peaks at around 100 keV, which is its most intense component, is found to be of very similar shape at the two locations. It is established that it is mostly due to the radiations of the real continuous spectrum, which is quite similar to the instrumental one. The intensity of this radiation is in our cases estimated to about 8000 photons/(m{sup 2}s·2π·srad) in the ground level laboratory, and to about 5000 photons/(m{sup 2}s·2π·srad) in the underground laboratory, at the depth of 25 m.w.e. Simulations by GEANT4 and CORSIKA demonstrate that this radiation is predominantly of terrestrial origin, due to environmental gamma radiations scattered off the materials that surround the detector (the “skyshine radiation”), and to a far less extent to cosmic rays of degraded energy. - Highlights: • We studied the low-energy part of continuous background spectra of germanium detectors. • The study was performed at the ground level and at the shallow underground sites. • The instrumental spectrum is due to radiations of the similar continuous spectrum. • The low-energy radiation is of both terrestrial and cosmic-ray origin. • In our study, we find that this radiation is of predominantly terrestrial origin.

  12. Scaling, scattering, and blackbody radiation in classical physics

    International Nuclear Information System (INIS)

    Boyer, Timothy H

    2017-01-01

    Here we discuss blackbody radiation within the context of classical theory. We note that nonrelativistic classical mechanics and relativistic classical electrodynamics have contrasting scaling symmetries which influence the scattering of radiation. Also, nonrelativistic mechanical systems can be accurately combined with relativistic electromagnetic radiation only provided the nonrelativistic mechanical systems are the low-velocity limits of fully relativistic systems. Application of the no-interaction theorem for relativistic systems limits the scattering mechanical systems for thermal radiation to relativistic classical electrodynamic systems, which involve the Coulomb potential. Whereas the naive use of nonrelativistic scatterers or nonrelativistic classical statistical mechanics leads to the Rayleigh–Jeans spectrum, the use of fully relativistic scatterers leads to the Planck spectrum for blackbody radiation within classical physics. (paper)

  13. Magnetic X-Ray Scattering with Synchrotron Radiation

    DEFF Research Database (Denmark)

    Moncton, D. E.; Gibbs, D.; Bohr, Jakob

    1986-01-01

    With the availability of high-brilliance synchrotron radiation from multiple wigglers, magnetic X-ray scattering has become a powerful new probe of magnetic structure and phase transitions. Similar to the well-established magnetic neutron scattering technique, magnetic X-ray scattering methods have...... many complementary advantages. A brief review is presented of the history of magnetic X-ray scattering as well as recent results obtained in studies of the rare-earth magnet holmium with emphasis on instrumentational aspects. In particular, the development of a simple polarization analyzer...... to distinguish charge and magnetic scattering is described....

  14. Some aspects of transition radiation and scattering theory

    International Nuclear Information System (INIS)

    Ginzburg, V.L.; Tsytovich, V.N.

    1978-01-01

    Some aspects of transition radiation and transition scattering theory are considered. The transition radiation in vacuum is analysed in the presence of a strong magnetic field. It is shown, that the constant electro-magnetic field makes vacuum similar to the uniaxial ferrodielectric. The appearance of the transition radiation in the nonstationary medium is discussed when its properties in the medium change abruptly in time. It is obtained, that both types of the transition radiation for nonrelativistic particles (on an abrupt boundary of the two media interface and under an abrupt change in time of the medium properties) differ quantitatively (on the order of the value). The role of the radiation transition and scattering in plasma physics has been elucidated from different points. Four most important features of these processes are pointed out. Particularly, essential is shown to be the type of the transition scattering when one plasma wave, being the dielectric constant wave transforms into another one also a plasma wave. In the processes of the transition scattering an essential part is played by the effects of the space dispersion, particularly when the scattering takes place on the small velocity particles. Finally besides transition scattering there exists in plasma or in some cases prevails a Thomson scattering. In this case an important role in plasma is played by the interference between the Thomson and the transition scattering

  15. Scattered radiation from applicators in clinical electron beams

    International Nuclear Information System (INIS)

    Battum, L J van; Zee, W van der; Huizenga, H

    2003-01-01

    In radiotherapy with high-energy (4-25 MeV) electron beams, scattered radiation from the electron applicator influences the dose distribution in the patient. In most currently available treatment planning systems for radiotherapy this component is not explicitly included and handled only by a slight change of the intensity of the primary beam. The scattered radiation from an applicator changes with the field size and distance from the applicator. The amount of scattered radiation is dependent on the applicator design and on the formation of the electron beam in the treatment head. Electron applicators currently applied in most treatment machines are essentially a set of diaphragms, but still do produce scattered radiation. This paper investigates the present level of scattered dose from electron applicators, and as such provides an extensive set of measured data. The data provided could for instance serve as example input data or benchmark data for advanced treatment planning algorithms which employ a parametrized initial phase space to characterize the clinical electron beam. Central axis depth dose curves of the electron beams have been measured with and without applicators in place, for various applicator sizes and energies, for a Siemens Primus, a Varian 2300 C/D and an Elekta SLi accelerator. Scattered radiation generated by the applicator has been found by subtraction of the central axis depth dose curves, obtained with and without applicator. Scattered radiation from Siemens, Varian and Elekta electron applicators is still significant and cannot be neglected in advanced treatment planning. Scattered radiation at the surface of a water phantom can be as high as 12%. Scattered radiation decreases almost linearly with depth. Scattered radiation from Varian applicators shows clear dependence on beam energy. The Elekta applicators produce less scattered radiation than those of Varian and Siemens, but feature a higher effective angular variance. The scattered

  16. Analysis by absorption and scattering of radiation. A current bibliography

    International Nuclear Information System (INIS)

    Bujdoso, E.

    2002-01-01

    A current bibliography with 100 references based on INIS Atomindex has been compiled on Analysis by absorption and scattering of radiation for years 1998-1999. References are arranged by first author's names. (N.T.)

  17. Continuous Emission of A Radiation Quantum

    International Nuclear Information System (INIS)

    Zheng-Johansson, J X

    2013-01-01

    It is in accordance with such experiments as single photon self-interference that a photon, conveying one radiation energy quantum h × frequency , is spatially extensive and stretches an electromagnetic wave train. A wave train, hence an energy quantum, can only be emitted (or absorbed) by its source (or absorber) gradually. In both two processes the wave and ''particle'' attributes of the radiation field are simultaneously prominent, where an overall satisfactory theory has been lacking; for the latter process no known theoretical description currently exists. This paper presents a first principles treatment, in a unified framework of the classical and quantum mechanics, of the latter process, the emission (similarly absorption) of a single radiation quantum based on the dynamics of the radiation-emitting source, a charged oscillator, which is itself extensive across the potential well in which it oscillates. During the emission of one single radiation quantum, the extensive charged oscillator undergoes a continuous radiation damping and is non-stationary. This process is in this work treated using a quasi stationary approach, whereby the classical equation of motion, which directly facilitates the correspondence principle for a particle oscillator, and the quantum wave equation are established for each sufficiently brief time interval. As an inevitable consequence of the division of the total time for emitting one single quantum, a fractional Planck constant h is introduced. The solutions to the two simultaneous equations yield for the charged oscillator a continuously exponentially decaying Hamiltonian that is at the same time quantised with respect to the fractional-h at any instant of time; and the radiation wave field emitted over time stretches a wave train of finite length. The total system of the source and radiation field maintains at any time (integer n times) one whole energy quantum, (n×) h× frequency, in complete accordance with

  18. Distance factor on reducing scattered radiation risk during interventional fluoroscopy

    International Nuclear Information System (INIS)

    Husaini Salleh; Mohd Khalid Matori; Muhammad Jamal Mat Isa; Zainal Jamaluddin; Mohd Firdaus Abdul Rahman; Mohd Khairusalih Mohd Zin

    2012-01-01

    Interventional Radiology (IR) is subspecialty of diagnostic radiology where minimally invasive procedures are performed using an x-ray as a guidance. This procedure can deliver high radiation doses to patient and medical staff compared with other radiological method due to long screening time. The use of proper shielding, shorten the exposure time and keep the distance are the practices to reduce scattered radiation risks to staff involve in this procedure. This project is to study the distance factor on reducing the scattered radiation effect to the medical staff. It also may provide the useful information which can be use to establish the scattered radiation profile during the IR for the sake of radiation protection and safety to the medical staff involved. (author)

  19. Roles of scattered radiation in SRIXE

    International Nuclear Information System (INIS)

    Hanson, A.L.

    1988-01-01

    The scattering of x-rays is the major source of background and hence is a limiting factor in the minimum detectable limits available with SRIXE measurements. The scattering can be utilized for normalizing the net peak areas to fluctuations in sample thickness or mass on a relative basis or on a comparative basis. Even then measurement of the scattered x-rays should be made at backward angles. Measurement at forward angles should be avoided because of diffraction problems. The uncertainties in the measurement of an absolute intensity of the x-rays can be extremely large

  20. Radiation reaction in a continuous focusing channel

    International Nuclear Information System (INIS)

    Huang, Z.; Chen, P.; Ruth, R.D.

    1995-01-01

    We show that the radiation damping rate of the transverse action of a particle in a straight, continuous focusing system is independent of the particle energy, and that no quantum excitation is induced. This absolute damping effect leads to the existence of a transverse ground state to which the particle inevitably decays and yields the minimum beam emittance that one can ever attain, γε min =ℎ/2mc, limited only by the uncertainty principle. Because of adiabatic invariance, the particle can be accelerated along the focusing channel in its ground state without any radiation energy loss

  1. Elastic scattering of gamma radiation in solids

    International Nuclear Information System (INIS)

    Goncalves, O.D.

    1987-01-01

    The elastic scattering of gamma rays in solids is studied: Rayleigh scattering as well as Bragg scattering in Laue geometries. We measured Rayleigh cross sections for U, Pb, Pt, W, Sn, Ag, Mo, Cd, Zn, and Cu with gamma energies ranging from 60 to 660 KeV and angles between 5 0 and 140 0 . The experimental data are compared with form factor theories and second order perturbation theories and the limits of validity of both are established. In the 60 KeV experiment, a competition between Rayleigh and Bragg effects is found in the region of low momentum transfer. The Bragg experiments were performed using the gamma ray diffractometer from the Hahn-Meitner Institut (Berlin) with gammas of 317 KeV and angles up to 2 0 . In particular, we studied the effect of annealing in nearly perfect Czochralski Silicon crystals with high perfection in the crystallographic structure. The results are compared with Kinematical and Dynamical theories. (author)

  2. Research of synchrotron radiation by virtual photon and compton scattering

    International Nuclear Information System (INIS)

    Meng Xianzhu

    2005-01-01

    This paper presents a new theory to explain the synchrotron radiation. When charged particle does circular motion in the accelerator, the magnetic field of the accelerator can be taken as periodic, and equivalent to virtual photon. By Compton scattering of virtual photon and charged particle, the virtual photon can be transformed into photon to radiate out. According to this theory, the formula of photon wavelength in synchrotron radiation is found out, and the calculation results of wavelength is consonant with experimental data. (author)

  3. Photophoresis and the scattering of electromagnetic radiation

    International Nuclear Information System (INIS)

    Ipser, J.R.

    1985-09-01

    Electron-microscope photographs of soot lend support to the picture in which a soot particle is modeled as a collection of chains of small carbon spheres. The soot particle itself is typically considerably larger than the small carbon spheres making up the chains. Thus the soot particles might have a size approx.0.1 - 1 μm while the small carbon spheres might have a size approx.0.03 μm in typical situations. Further, measurements of the density of soot yield values much less than that of normal carbon, indicating that an individual soot particle has a rather small filling factor, i.e., the fraction of the volume of the particle tht is occupied by chains. If a soot particle is taken to be a sphere partially filled with carbon chains, what are its scattering and absorption properties. Several workers have adopted the view that the net scattering and absorption properties can be determined simply by summing the cross-sections for the individual small carbon spheres. We feel that such a procedure cannot be valid in general because it neglects coherence effects among the various randomly located scatterers within the soot particle. It appears that in a first rough approximation the scattering and absorption properties of soot can be determined by estimating the effective dielectric constant of a soot sphere

  4. Measuring scatter radiation in diagnostic x rays for radiation protection purposes

    International Nuclear Information System (INIS)

    Panayiotakis, George; Vlachos, Ioannis; Delis, Harry; Tsantilas, Xenophon; Kalyvas, Nektarios; Kandarakis, Ioannis

    2015-01-01

    During the last decades, radiation protection and dosimetry in medical X-ray imaging practice has been extensively studied. The purpose of this study was to measure secondary radiation in a conventional radiographic room, in terms of ambient dose rate equivalent H*(10) and its dependence on the radiographic exposure parameters such as X-ray tube voltage, tube current and distance. With some exceptions, the results indicated that the scattered radiation was uniform in the space around the water cylindrical phantom. The results also showed that the tube voltage and filtration affect the dose rate due to the scatter radiation. Finally, the scattered X-ray energy distribution was experimentally calculated. (authors)

  5. Astrophysical applications of Delbrück scattering: Dust scattered gamma radiation from gamma ray bursts

    International Nuclear Information System (INIS)

    Kunwar, B.; Bhadra, A.; Gupta, S.K. Sen

    2014-01-01

    A preliminary, and perhaps the first, study of astrophysical applications of Delbrück scattering in a gamma-ray emitting celestial object like a gamma-ray burst (GRB) has been made. At energies≥100 MeV the elastic scattering of gamma-ray photons off the molecular dust surrounding the GRB site is dominated by Delbrück scattering. Expressions for Delbrück-scattered gamma-ray flux as a function of time has been obtained for a few selected energies by assuming a simple model of GRB. These are compared with Compton-scattered flux. At certain situations, interestingly, the former is found to exceed the latter for the first few milliseconds of the burst. The issue of detectability of Delbrück-scattered gamma-ray echo from the cloud of a GRB is discussed. Although it is observed that the detection of such an echo is not within the capability of the presently operating gamma-ray missions such as Fermi LAT, a rough estimate shows that one can be optimistic that future generation gamma-ray telescopes might be able to see such photons' contribution to the total flux. - Highlights: ► Astrophysical application of Delbrück scattering in a GRB has been made. ► Initially, the Delbrück scattering may dominate the scattering of GeV γ-rays. ► The issue of detectability of such radiations is discussed

  6. Transient radiative transfer in a scattering slab considering polarization.

    Science.gov (United States)

    Yi, Hongliang; Ben, Xun; Tan, Heping

    2013-11-04

    The characteristics of the transient and polarization must be considered for a complete and correct description of short-pulse laser transfer in a scattering medium. A Monte Carlo (MC) method combined with a time shift and superposition principle is developed to simulate transient vector (polarized) radiative transfer in a scattering medium. The transient vector radiative transfer matrix (TVRTM) is defined to describe the transient polarization behavior of short-pulse laser propagating in the scattering medium. According to the definition of reflectivity, a new criterion of reflection at Fresnel surface is presented. In order to improve the computational efficiency and accuracy, a time shift and superposition principle is applied to the MC model for transient vector radiative transfer. The results for transient scalar radiative transfer and steady-state vector radiative transfer are compared with those in published literatures, respectively, and an excellent agreement between them is observed, which validates the correctness of the present model. Finally, transient radiative transfer is simulated considering the polarization effect of short-pulse laser in a scattering medium, and the distributions of Stokes vector in angular and temporal space are presented.

  7. Multiple scattering theory of radiative transfer in inhomogeneous atmospheres.

    Science.gov (United States)

    Kanal, M.

    1973-01-01

    In this paper we treat the multiple scattering theory of radiative transfer in plane-parallel inhomogeneous atmospheres. The treatment presented here may be adopted to model atmospheres characterized by an optical depth dependent coherent scattering phase function. For the purpose of illustration we consider the semi-infinite medium in which the absorption property of the atmosphere is characterized by an exponential function. The methodology employed here is the extension of the case treated previously by the author for homogeneous atmospheres.

  8. Interstellar scattering of pulsar radiation. Pt. 1

    International Nuclear Information System (INIS)

    Backer, D.C.

    1975-01-01

    An investigation of the intensity fluctuations of 28 pulsars near 0.4 GHz indicates that spectra of interstellar scintillation are consistent with a gaussian shape, that scintillation indices are near unity, and that scintillation bandwidth depends linearly on dispersion measure. Observations at cm wavelengths show that the observer is in the near field of the scattering medium for objects with the lowest dispersion measures, and confirm the step dependence of correlation bandwidth on dispersion measure found by Sutton (1971). The variation of scattering parameters with dispersion measure may indicate that the rms deviation of thermal electron density on the scale of 10 11 cm grows with path length through the galaxy. (orig.) [de

  9. Radiative MRI Coil Design Using Parasitic Scatterers

    DEFF Research Database (Denmark)

    Sanchez-Heredia, Juan D.; Avendal, Johan; Bibic, Adnan

    2018-01-01

    allows for antenna design techniques to be adapted to RF coil designs. This study proposes the use of parasitic scatterers to improve the performance of an existing 7T MRI coil called the single-sided adapted dipole (SSAD) antenna. The results reveal that scatterers arranged in a Yagi fashion can......Conventionally, radiofrequency (RF) coils used for magnetic resonance imaging (MRI) are electrically small and designed for nearfield operation. Therefore, existing antenna design techniques are mostly irrelevant for RF coils. However, the use of higher frequencies in ultrahigh field (UHF) MRI...... be applied to reduce local specific absorption rate (SAR) maxima of a reference SSAD by 40% with only a 6% decrease in the propagated B1 + field at the tissue depth of 15 cm. The higher directivity of the proposed design also decreasing the coupling with additional elements, making this antenna...

  10. Effects of scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmakov, D.

    1983-01-01

    Expansion of the scattering cross sections into Legendre series is the usual way of solving neutron transport problems. Because of the large space gradients of the neutron flux, the effects of that approximation become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account the scattering anisotropy is presented. From the point od view of the accuracy and computing rate, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations. (author)

  11. Scatter radiation intensities around a clinical digital breast tomosynthesis unit and the impact on radiation shielding considerations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kai, E-mail: kyang11@mgh.harvard.edu; Li, Xinhua; Liu, Bob [Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114 (United States)

    2016-03-15

    Purpose: To measure the scattered radiation intensity around a clinical digital breast tomosynthesis (DBT) unit and to provide updated data for radiation shielding design for DBT systems with tungsten-anode x-ray tubes. Methods: The continuous distribution of scattered x-rays from a clinical DBT system (Hologic Selenia Dimensions) was measured within an angular range of 0°–180° using a linear-array x-ray detector (X-Scan 0.8f3-512, Detection Technology, Inc., Finland), which was calibrated for the x-ray spectrum range of the DBT unit. The effects of x-ray field size, phantom size, and x-ray kVp/filter combination were investigated. Following a previously developed methodology by Simpkin, scatter fraction was determined for the DBT system as a function of angle around the phantom center. Detailed calculations of the scatter intensity from a DBT system were demonstrated using the measured scatter fraction data. Results: For the 30 and 35 kVp acquisition, the scatter-to-primary-ratio and scatter fraction data closely matched with data previously measured by Simpkin. However, the measured data from this study demonstrated the nonisotropic distribution of the scattered radiation around a DBT system, with two strong peaks around 25° and 160°. The majority scatter radiation (>70%) originated from the imaging detector assembly, instead of the phantom. With a workload from a previous survey performed at MGH, the scatter air kerma at 1 m from the phantom center for wall/door is 1.76 × 10{sup −2} mGy patient{sup −1}, for floor is 1.64 × 10{sup −1} mGy patient{sup −1}, and for ceiling is 3.66 × 10{sup −2} mGy patient{sup −1}. Conclusions: Comparing to previously measured data for mammographic systems, the scatter air kerma from Holgoic DBT is at least two times higher. The main reasons include the harder primary beam with higher workload (measured with total mAs/week), added tomosynthesis acquisition, and strong small angle forward scattering. Due to the

  12. Nonlinear Scattering of VLF Waves in the Radiation Belts

    Science.gov (United States)

    Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish

    2014-10-01

    Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.

  13. Scattered radiation from applicators in clinical electron beams.

    NARCIS (Netherlands)

    Battum, L.J. van; Zee, W. van der; Huizenga, H.

    2003-01-01

    In radiotherapy with high-energy (4-25 MeV) electron beams, scattered radiation from the electron applicator influences the dose distribution in the patient. In most currently available treatment planning systems for radiotherapy this component is not explicitly included and handled only by a slight

  14. Continuity of Earth Radiation Budget Observations

    Science.gov (United States)

    Loeb, N. G.; Su, W.; Wong, T.; Priestley, K.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation at the top-of-atmosphere (TOA) fuels the climate system, providing the energy required for atmospheric and oceanic motions. Earth's radiation budget (ERB) involves a balance between how much solar energy Earth absorbs and how much terrestrial thermal infrared radiation is emitted to space. Because of its critical role in climate, continuous monitoring of the ERB is necessary for improved understanding and prediction of climate variability and change. NASA's long history in observing the TOA ERB is acknowledged in the 2007 and 2013 reports of the IPCC (IPCC 2007, 2013), the 2007 NRC Decadal Survey (NRC 2007), and the GCOS implementation plan of the WMO (GCOS 2016). A key reason for NASA's success in this area is due to its support of the CERES Project and its predecessor, ERBE. During ERBE, the TOA ERB was observed using both scanner and nonscanner broadband instruments. The CERES project consists of six scanner instruments flying alongside high-resolution spectral imagers (MODIS, VIIRS) in morning and afternoon sun-synchronous orbits. In addition to extending the ERBE TOA radiation budget record, CERES also provides observations of Earth's surface radiation budget with unprecedented accuracy. Here we assess the likelihood of a measurement gap in the ERB record. We show that unless a follow-on ERB instrument to the last available CERES copy (FM6) is built and launched, there is a significant risk of a measurement gap in the ERB record by the mid-2020s. A gap is of concern not only because the ERB would not be monitored during the gap period but also because it would be exceedingly difficult to tie the records before and after the gap together with sufficient accuracy for climate analyses. While ERB instruments are highly stable temporally, they lack the absolute accuracy needed to bridge a gap. Consequently, there is a requirement that

  15. Analysis and characterization. Nuclear resonant scattering with the synchrotron radiation

    International Nuclear Information System (INIS)

    Ruffer, R.; Teillet, J.

    2003-01-01

    The nuclear resonant scattering using the synchrotron radiation combines the uncommon properties of the Moessbauer spectroscopy and those of the synchrotron radiation. Since its first observation in 1984, this technique and its applications have been developed rapidly. The nuclear resonant scattering is now a standard technique for all the synchrotron radiation sources of the third generation. As the Moessbauer spectroscopy, it is a method of analysis at the atomic scale and a non destructive method. It presents the advantage not to require the use of radioactive sources of incident photons which can be difficult to make, of a lifetime which can be short and of an obviously limited intensity. The current applications are the hyperfine spectroscopy and the structural dynamics. In hyperfine spectroscopy, the nuclear resonant scattering can measure the same size than the Moessbauer spectroscopy. Nevertheless, it is superior in the ranges which exploit the specific properties of the synchrotron radiation, such as the very small samples, the monocrystals, the measures under high pressures, the geometry of small angle incidence for surfaces and multilayers. The structural dynamics, in a time scale of the nanosecond to the microsecond can be measured in the temporal scale. Moreover, the nuclear inelastic scattering gives for the first time a tool which allows to have directly the density of states of phonons and then allow to deduce the dynamical and thermodynamical properties of the lattice. The nuclear resonant scattering technique presented here, which corresponds to the Moessbauer spectroscopy technique (SM), is called 'nuclear forward scattering' (NFS). Current applications in physics and chemistry are develop. The NFS is compared to the usual SM technique in order to reveal its advantages and disadvantages. (O.M.)

  16. Altitude Registration of Limb-Scattered Radiation

    Science.gov (United States)

    Moy, Leslie; Bhartia, Pawan K.; Jaross, Glen; Loughman, Robert; Kramarova, Natalya; Chen, Zhong; Taha, Ghassan; Chen, Grace; Xu, Philippe

    2017-01-01

    One of the largest constraints to the retrieval of accurate ozone profiles from UV backscatter limb sounding sensors is altitude registration. Two methods, the Rayleigh scattering attitude sensing (RSAS) and absolute radiance residual method (ARRM), are able to determine altitude registration to the accuracy necessary for long-term ozone monitoring. The methods compare model calculations of radiances to measured radiances and are independent of onboard tracking devices. RSAS determines absolute altitude errors, but, because the method is susceptible to aerosol interference, it is limited to latitudes and time periods with minimal aerosol contamination. ARRM, a new technique introduced in this paper, can be applied across all seasons and altitudes. However, it is only appropriate for relative altitude error estimates. The application of RSAS to Limb Profiler (LP) measurements from the Ozone Mapping and Profiler Suite (OMPS) on board the Suomi NPP (SNPP) satellite indicates tangent height (TH) errors greater than 1 km with an absolute accuracy of +/-200 m. Results using ARRM indicate a approx. 300 to 400m intra-orbital TH change varying seasonally +/-100 m, likely due to either errors in the spacecraft pointing or in the geopotential height (GPH) data that we use in our analysis. ARRM shows a change of approx. 200m over 5 years with a relative accuracy (a long-term accuracy) of 100m outside the polar regions.

  17. Continuous environmental radiation monitoring network at Kalpakkam

    International Nuclear Information System (INIS)

    Somayaji, K.M.; Mathiyarasu, R.; Prakash, G.S.; Meenakshisundaram, V.; Rajagopal, V.

    1997-01-01

    The report highlights our experience in the design and installation of monitoring stations as part of continuous environmental radiation monitoring network around the periphery of the nuclear complex at Kalpakkam. Five monitoring stations, one each in south-west sector (Main Gate I) and south-south west (Main Gate II) and the others in North sector (HASL and ESG) and in north-west section (WIP) have been set up. Two independent detector systems, based on high pressure ionisation chamber (HPIC) and energy compensated GM have been installed at each of these locations and the data has been logged continuously using a data logger. The data so gathered at each monitoring station is retrieved every week by means of a hand held terminal (HHT) with a built-in non-volatile memory and transferred to an IBM PC-AT for data analysis and archival. The report discusses in depth the design and developmental efforts undertaken to set up the network, starting from the basic detectors. The work involved the design of suitable electrometer circuits for measuring the low levels of current from HPICs, and the subsequent study of the performance of the highly sensitive preamplifier under diurnal variations of ambient conditions. The report includes, in detail the design aspects and fabrication details of low current measuring electrometer circuits

  18. UV Irradiance Enhancements by Scattering of Solar Radiation from Clouds

    Directory of Open Access Journals (Sweden)

    Uwe Feister

    2015-08-01

    Full Text Available Scattering of solar radiation by clouds can reduce or enhance solar global irradiance compared to cloudless-sky irradiance at the Earth’s surface. Cloud effects to global irradiance can be described by Cloud Modification Factors (CMF. Depending on strength and duration, irradiance enhancements affect the energy balance of the surface and gain of solar power for electric energy generation. In the ultraviolet region, they increase the risk for damage to living organisms. Wavelength-dependent CMFs have been shown to reach 1.5 even in the UV-B region at low altitudes. Ground-based solar radiation measurements in the high Andes region at altitudes up to 5917 m a.s.l showed cloud-induced irradiance enhancements. While UV-A enhancements were explained by cloud scattering, both radiation scattering from clouds and Negative Ozone Anomalies (NOA have been discussed to have caused short-time enhancement of UV-B irradiance. Based on scenarios using published CMF and additional spectroradiometric measurements at a low-altitude site, the contribution of cloud scattering to the UV-B irradiance enhancement in the Andes region has been estimated. The range of UV index estimates converted from measured UV-B and UV-A irradiance and modeled cloudless-sky ratios UV-B/erythemal UV is compatible with an earlier estimate of an extreme UV index value of 43 derived for the high Andes.

  19. Radiation of ultrarelativistic charge taking into account for multiple scattering

    International Nuclear Information System (INIS)

    Yang, C.

    1977-01-01

    A brief theoretical review of characteristics of X-rays and more hard radiation formed by an ultrarelativistic charged particle passing through a plate or a stack of plates with regard for multiple scattering and the plate material absorptivity is made. Formulas for frequency- angular and frequency distributions of total radiation in the cases of a plate and of a stack of plates with large spacings as well as a stack of sufficiently thick plates are given. A calculation method for the radiation distributions in a general case of an arbitrary stack is pointed out. The frequency distribution of the total radiation consisting of bremsstrahlung and boundary effects is analyzed in detail. A problem of experimental separation of the boundary effect from the total radiation is discussed

  20. Scatter radiation in digital tomosynthesis of the breast

    International Nuclear Information System (INIS)

    Sechopoulos, Ioannis; Suryanarayanan, Sankararaman; Vedantham, Srinivasan; D'Orsi, Carl J.; Karellas, Andrew

    2007-01-01

    Digital tomosynthesis of the breast is being investigated as one possible solution to the problem of tissue superposition present in planar mammography. This imaging technique presents various advantages that would make it a feasible replacement for planar mammography, among them similar, if not lower, radiation glandular dose to the breast; implementation on conventional digital mammography technology via relatively simple modifications; and fast acquisition time. One significant problem that tomosynthesis of the breast must overcome, however, is the reduction of x-ray scatter inclusion in the projection images. In tomosynthesis, due to the projection geometry and radiation dose considerations, the use of an antiscatter grid presents several challenges. Therefore, the use of postacquisition software-based scatter reduction algorithms seems well justified, requiring a comprehensive evaluation of x-ray scatter content in the tomosynthesis projections. This study aims to gain insight into the behavior of x-ray scatter in tomosynthesis by characterizing the scatter point spread functions (PSFs) and the scatter to primary ratio (SPR) maps found in tomosynthesis of the breast. This characterization was performed using Monte Carlo simulations, based on the Geant4 toolkit, that simulate the conditions present in a digital tomosynthesis system, including the simulation of the compressed breast in both the cranio-caudal (CC) and the medio-lateral oblique (MLO) views. The variation of the scatter PSF with varying tomosynthesis projection angle, as well as the effects of varying breast glandular fraction and x-ray spectrum, was analyzed. The behavior of the SPR for different projection angle, breast size, thickness, glandular fraction, and x-ray spectrum was also analyzed, and computer fit equations for the magnitude of the SPR at the center of mass for both the CC and the MLO views were found. Within mammographic energies, the x-ray spectrum was found to have no appreciable

  1. Influences of scattering radiation in a TLD irradiation room, 2

    International Nuclear Information System (INIS)

    Suzuki, Osamu; Suwa, Shigeo

    1985-01-01

    The influence of scattering radiation (SR) on radiation dose rate (DR) in a TLD irradiation room was assessed. A single SD from a standard TLD apparatus, i.e., an acrylic or aluminum table, was examined. The maximum DR was attained at approximately 80 cm from the radiation source. Energy spectra of SR ranged up to the energy of direct radiation beam. Circular SD at one m from the radiation source, which contributed to DR to the direct radiation beam, was almost homogeneous. SD was large near the irradiation table, and the influence of SD on DR became smaller with SD being vertically farther from the apparatus. The influence of SD on RD to the direct radiation beam became less with an increase in gamma ray energy. At one m from the radiation source, 6 - 7 % of SD contributed to DR to the direct radiation beam for 0.662 MeV of gamma ray. This figure was one half of that with NaI (Tl) scintillation detector. (Namekawa, K.)

  2. Radiative corrections to neutrino deep inelastic scattering revisited

    International Nuclear Information System (INIS)

    Arbuzov, Andrej B.; Bardin, Dmitry Yu.; Kalinovskaya, Lidia V.

    2005-01-01

    Radiative corrections to neutrino deep inelastic scattering are revisited. One-loop electroweak corrections are re-calculated within the automatic SANC system. Terms with mass singularities are treated including higher order leading logarithmic corrections. Scheme dependence of corrections due to weak interactions is investigated. The results are implemented into the data analysis of the NOMAD experiment. The present theoretical accuracy in description of the process is discussed

  3. On the radiative corrections to the neutrino deep inelastic scattering

    International Nuclear Information System (INIS)

    Bardin, D.Yu.; Dokuchaeva, V.A.

    1986-01-01

    A unique set of formulae is presented for the radiative corrections to the double differential cross section of deep inelastic neutrino scattering in channels of charged and neutral currents within a simple quark parton model in a renormalization scheme on mass-shell. It is shown that these cross sections when being integrated up to the one-dimensional distribution or up to the total cross section reproduce many results existing in the literature

  4. Inelastic scattering in condensed matter with high intensity moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1991-05-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is not fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using Bragg scattering filters to suppress unwanted radiation. These have led to a Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to make a novel independent determination of interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na metal and the charge density wave satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. Using a specially constructed sample cell which enables us to vary temperatures from -10 C to 110 C, we have begun quasielastic diffusion studies in viscous liquids and current results are summarized. Included are the temperature and Q dependence of the scattering in pentadecane and diffusion in glycerol

  5. Polarized scattered light from self-luminous exoplanets. Three-dimensional scattering radiative transfer with ARTES

    Science.gov (United States)

    Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.

    2017-11-01

    Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron

  6. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1990-10-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  7. Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1990-01-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  8. Calculation and Measurement of Low-Energy Radiative Moller Scattering

    Science.gov (United States)

    Epstein, Charles; DarkLight Collaboration

    2017-09-01

    A number of current nuclear physics experiments have come to rely on precise knowledge of electron-electron (Moller) and positron-electron (Bhabha) scattering. Some of these experiments, having lepton beams on targets containing atomic electrons, use these purely-QED processes as normalization. In other scenarios, with electron beams at low energy and very high intensity, Moller scattering and radiative Moller scattering have such enormous cross-sections that the backgrounds they produce must be understood. In this low-energy regime, the electron mass is also not negligible in the calculation of the cross section. This is important, for example, in the DarkLight experiment (100 MeV). As a result, we have developed a new event generator for the radiative Moller and Bhabha processes, with new calculations that keep all terms of the electron mass. The MIT High Voltage Research Laboratory provides us a unique opportunity to study this process experimentally and compare it with our work, at a low beam energy of 2.5 MeV where the effects of the electron mass are significant. We are preparing a dedicated apparatus consisting of a magnetic spectrometer in order to directly measure this process. An overview of the calculation and the status of the experiment will be presented.

  9. Generating bessel functions in mie scattering calculations using continued fractions.

    Science.gov (United States)

    Lentz, W J

    1976-03-01

    A new method of generating the Bessel functions and ratios of Bessel functions necessary for Mie calculations is presented. Accuracy is improved while eliminating the need for extended precision word lengths or large storage capability. The algorithm uses a new technique of evaluating continued fractions that starts at the beginning rather than the tail and has a built-in error check. The continued fraction representations for both spherical Bessel functions and ratios of Bessel functions of consecutive order are presented.

  10. The continuous cut-off method and the relativistic scattering of spin-1/2 particles

    International Nuclear Information System (INIS)

    Dolinszky, T.

    1979-07-01

    A high energy formula, obtained in the framework of the continuous cut-off approach, is shown to improve the correctness of the standard phase shift expression for Dirac scattering by two orders of magnitude in energy. (author)

  11. Dynamics of globular molecules: moisture effect on the Rayleigh scattering spectrum of the Moessbauer radiation

    International Nuclear Information System (INIS)

    Chesskaya, T.Yu.

    1998-01-01

    The Rayleigh scattering spectrum of the Moessbauer radiation is plotted on the model simulating globular macromolecules. The modeling results are compared with experimental data on the spectra of the Rayleigh scattering of the Moessbauer radiation for various moisture content and hydratation dependence of the elastic scattering portion

  12. Clinical applications of continuous infusion chemotherapy ahd concomitant radiation therapy

    International Nuclear Information System (INIS)

    Rosenthal, C.J.; Rotman, M.

    1986-01-01

    This book presents information on the following topics: theoretical basis and clinical applications of 5-FU as a radiosensitizer; treatment of hepatic metastases from gastro intestingal primaries with split course radiation therapy; combined modality therapy with 5-FU, Mitomycin-C and radiation therapy for sqamous cell cancers; treatment of bladder carcinoma with concomitant infusion chemotherapy and irradiation; a treatment of invasiv bladder cancer by the XRT/5FU protocol; concomitant radiation therapy and doxorubicin by continuous infusion in advanced malignancies; cis platin by continuous infusion with concurrent radiation therapy in malignant tumors; combination of radiation with concomitant continuous adriamycin infusion in a patient with partially excised pleomorphic soft tissue sarcoma of the lower extremeity; treatment of recurrent carcinoma of the paranasal sinuses using concomitant infusion cis-platinum and radiation therapy; hepatic artery infusion for hepatic metastases in combination with hepatic resection and hepatic radiation; study of simultaneous radiation therapy, continuous infusion, 5FU and bolus mitomycin-C; cancer of the esophagus; continuous infusion VP-16, bolus cis-platinum and simultaneous radiation therapy as salvage therapy in small cell bronchogenic carcinoma; and concomitant radiation, mitomycin-C and 5-FU infusion in gastro intestinal cancer

  13. Interpolation methods for creating a scatter radiation exposure map

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Elicardo A. de S., E-mail: elicardo.goncalves@ifrj.edu.br [Instituto Federal do Rio de Janeiro (IFRJ), Paracambi, RJ (Brazil); Gomes, Celio S.; Lopes, Ricardo T. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Oliveira, Luis F. de; Anjos, Marcelino J. dos; Oliveira, Davi F. [Universidade do Estado do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Física

    2017-07-01

    A well know way for best comprehension of radiation scattering during a radiography is to map exposure over the space around the source and sample. This map is done measuring exposure in points regularly spaced, it means, measurement will be placed in localization chosen by increasing a regular steps from a starting point, along the x, y and z axes or even radial and angular coordinates. However, it is not always possible to maintain the accuracy of the steps throughout the entire space, or there will be regions of difficult access where the regularity of the steps will be impaired. This work intended to use some interpolation techniques that work with irregular steps, and to compare their results and their limits. It was firstly done angular coordinates, and tested in lack of some points. Later, in the same data was performed the Delaunay tessellation interpolation ir order to compare. Computational and graphic treatments was done with the GNU OCTAVE software and its image-processing package. Real data was acquired from a bunker where a 6 MeV betatron can be used to produce radiation scattering. (author)

  14. Interpolation methods for creating a scatter radiation exposure map

    International Nuclear Information System (INIS)

    Gonçalves, Elicardo A. de S.; Gomes, Celio S.; Lopes, Ricardo T.; Oliveira, Luis F. de; Anjos, Marcelino J. dos; Oliveira, Davi F.

    2017-01-01

    A well know way for best comprehension of radiation scattering during a radiography is to map exposure over the space around the source and sample. This map is done measuring exposure in points regularly spaced, it means, measurement will be placed in localization chosen by increasing a regular steps from a starting point, along the x, y and z axes or even radial and angular coordinates. However, it is not always possible to maintain the accuracy of the steps throughout the entire space, or there will be regions of difficult access where the regularity of the steps will be impaired. This work intended to use some interpolation techniques that work with irregular steps, and to compare their results and their limits. It was firstly done angular coordinates, and tested in lack of some points. Later, in the same data was performed the Delaunay tessellation interpolation ir order to compare. Computational and graphic treatments was done with the GNU OCTAVE software and its image-processing package. Real data was acquired from a bunker where a 6 MeV betatron can be used to produce radiation scattering. (author)

  15. New method for imaging epicardial motion with scattered radiation

    International Nuclear Information System (INIS)

    Tilley, D.G.

    1976-01-01

    A new method for monitoring cardiac motion is described which employs the secondary radiation emerging from the thorax during fluoroscopic x-ray examination of the heart. The motion of selected points on the heart's epicardial surface can be investigated by detecting the intensity variations of radiation scattered in the local vicinity of the heart-lung border. Also discussed are the radiation detectors and signal processing electronics used to produce a voltage analog depicting the periodic displacements of the heart surface. Digital data processing methods are described which are used to accomplish a transformation from a time scale for representing surface motion, to a frequency scale that is better suited for the quantitative analysis of the heart's myocardial dynamics. The dynamic radiographic technique is compared to other methods such as electrocardiography, phonocardiography, radarkymography, and echocardiography; which are also used to sense the dynamic state of the heart. A three-dimensional Monte Carlo computer code is used to investigate the transport of x-radiation in the canine thorax. The Monte Carlo computer studies are used to explore the capabilities and limitations of the dynamic radiograph as it is used to sense motions of the canine heart. Animal studies were conducted with the dynamic radiograph to determine the reproducibility of the examination procedure. Canine case studies are reported showing the effects of increased myocardial contractility resulting from intervention with these inotropic agents

  16. Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion

    Science.gov (United States)

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Shao, Liyang

    2016-07-01

    The control of electromagnetic waves scattering is critical in wireless communications and stealth technology. Discrete metasurfaces not only increase the design and fabrication complex but also cause difficulties in obtaining simultaneous electric and optical functionality. On the other hand, discontinuous phase profiles fostered by discrete systems inevitably introduce phase noises to the scattering fields. Here we propose the principle of a scattering-harness mechanism by utilizing continuous gradient phase stemming from the spin-orbit interaction via sinusoidal metallic strips. Furthermore, by adjusting the amplitude and period of the sinusoidal metallic strip, the scattering characteristics of the underneath object can be greatly changed and thus result in electromagnetic illusion. The proposal is validated by full-wave simulations and experiment characterization in microwave band. Our approach featured by continuous phase profile, polarization independent performance and facile implementation may find widespread applications in electromagnetic wave manipulation.

  17. Non perturbative method for radiative corrections applied to lepton-proton scattering

    International Nuclear Information System (INIS)

    Chahine, C.

    1979-01-01

    We present a new, non perturbative method to effect radiative corrections in lepton (electron or muon)-nucleon scattering, useful for existing or planned experiments. This method relies on a spectral function derived in a previous paper, which takes into account both real soft photons and virtual ones and hence is free from infrared divergence. Hard effects are computed perturbatively and then included in the form of 'hard factors' in the non peturbative soft formulas. Practical computations are effected using the Gauss-Jacobi integration method which reduce the relevant integrals to a rapidly converging sequence. For the simple problem of the radiative quasi-elastic peak, we get an exponentiated form conjectured by Schwinger and found by Yennie, Frautschi and Suura. We compare also our results with the peaking approximation, which we derive independantly, and with the exact one-photon emission formula of Mo and Tsai. Applications of our method to the continuous spectrum include the radiative tail of the Δ 33 resonance in e + p scattering and radiative corrections to the Feynman scale invariant F 2 structure function for the kinematics of two recent high energy muon experiments

  18. Light scattering reviews 7 radiative transfer and optical properties of atmosphere and underlying surface

    CERN Document Server

    Kokhanovsky, Alexander A

    2014-01-01

    This book describes modern advances in radiative transfer and light scattering. Coverage includes fast radiative transfer techniques, use of polarization in remote sensing and recent developments in remote sensing of snow properties from space observations.

  19. Scattering of point particles by black holes: Gravitational radiation

    Science.gov (United States)

    Hopper, Seth; Cardoso, Vitor

    2018-02-01

    Gravitational waves can teach us not only about sources and the environment where they were generated, but also about the gravitational interaction itself. Here we study the features of gravitational radiation produced during the scattering of a pointlike mass by a black hole. Our results are exact (to numerical error) at any order in a velocity expansion, and are compared against various approximations. At large impact parameter and relatively small velocities our results agree to within percent level with various post-Newtonian and weak-field results. Further, we find good agreement with scaling predictions in the weak-field/high-energy regime. Lastly, we achieve striking agreement with zero-frequency estimates.

  20. Bound states embedded into continuous spectrum as 'gathered' (compactified) scattering waves

    International Nuclear Information System (INIS)

    Zakhar'ev, B.N.; Chabanov, V.M.

    1995-01-01

    It is shown that states of continuous spectrum (the half-line case) can be considered as bound states normalized by unity but distributed on the infinite interval with vanishing density. Then the algorithms of shifting the range of primary localization of a chosen bound state in potential well of finite width appear to be applicable to scattering functions. The potential perturbations of the same type (but now on half-axis) concentrate the scattering wave in near vicinity of the origin, which leads to creation of bound state embedded into continuous spectrum. (author). 8 refs., 7 figs

  1. [Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses: quasielastic scattering studies on glycerol; gamma-ray scattering from alkali halides; lattice dynamics in metals; Moessbauer neutron scattering, x-ray diffraction, and macroscopic studies of high T c superconductors containing tungsten; NiAl scattering studies; and atomic interference factors and nuclear Casimir effect

  2. Measuring main-ion temperatures in ASDEX upgrade using scattering of ECRH radiation

    DEFF Research Database (Denmark)

    Pedersen, Morten Stejner; Nielsen, Stefan Kragh; Jacobsen, Asger Schou

    2016-01-01

    We demonstrate that collective Thomson scattering of millimeter wave electron cyclotron resonance heating radiation can be used for measurements of the main-ion temperature in the ASDEX Upgrade tokamak.......We demonstrate that collective Thomson scattering of millimeter wave electron cyclotron resonance heating radiation can be used for measurements of the main-ion temperature in the ASDEX Upgrade tokamak....

  3. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.

    Science.gov (United States)

    Voit, Florian; Hohmann, Ansgar; Schäfer, Jan; Kienle, Alwin

    2012-04-01

    For many research areas in biomedical optics, information about scattering of polarized light in turbid media is of increasing importance. Scattering simulations within this field are mainly performed on the basis of radiative transfer theory. In this study a polarization sensitive Monte Carlo solution of radiative transfer theory is compared to exact Maxwell solutions for all elements of the scattering Müller matrix. Different scatterer volume concentrations are modeled as a multitude of monodisperse nonabsorbing spheres randomly positioned in a cubic simulation volume which is irradiated with monochromatic incident light. For all Müller matrix elements effects due to dependent scattering and multiple scattering are analysed. The results are in overall good agreement between the two methods with deviations related to dependent scattering being prominent for high volume concentrations and high scattering angles.

  4. [Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1989-01-01

    There are four areas where major progress has occurred this year. We have applied the Fourier-transform method of describing and analyzing Moessbauer effect (ME) line shapes to make measurements of the temperature dependence of the recoilless fraction in tungsten. We have carried out quasi-elastic measurements of the gamma scattering from viscous liquids, learning about diffusive motion in polydimethylsiloxane, pentadecane, and glycerol. We have made major progress in fundamental physics, having shown for the first time how to determine precise quantum interference parameters, obtaining experimental results on the 46.5 keV line of 183 W and the 129 keV line of 191 Ir. Finally, we have continued our development of MICE detectors, with a theoretical analysis of the MICE lineshape and its relation to the lineshape of conventional transmission ME spectroscopy. 12 refs

  5. Use of implicit Monte Carlo radiation transport with hydrodynamics and compton scattering

    International Nuclear Information System (INIS)

    Fleck, J.A. Jr.

    1971-03-01

    It is shown that the combination of implicit radiation transport and hydrodynamics, Compton scattering, and any other energy transport can be simply carried out by a ''splitting'' procedure. Contributions to material energy exchange can be reckoned separately for hydrodynamics, radiation transport without scattering, Compton scattering, plus any other possible energy exchange mechanism. The radiation transport phase of the calculation would be implicit, but the hydrodynamics and Compton portions would not, leading to possible time step controls. The time step restrictions which occur on radiation transfer due to large Planck mean absorption cross-sections would not occur

  6. Scatter radiation from chest radiographs: is there a risk to infants in a typical NICU?

    International Nuclear Information System (INIS)

    Trinh, Angela M.; Schoenfeld, Alan H.; Levin, Terry L.

    2010-01-01

    To evaluate the dose of scatter radiation to infants in a NICU in order to determine the minimal safe distance between isolettes. Dose secondary to scattered radiation from an acrylic phantom exposed to vertical and horizontal beam exposures at 56 kVp was measured at 93 cm and 125 cm from the center of the phantom. This corresponds to 2 and 3 ft between standard isolettes, respectively. For horizontal exposures, the dosimeter was placed directly behind a CR plate and scatter dose at 90-degrees and 135-degrees from the incident beam was also measured. Exposures were obtained at 160 mAs and the results were extrapolated to correspond to 2.5 mAs. Four measurements were taken at each point and averaged. At 125 cm and 93 cm there was minimal scatter compared to daily natural background radiation dose (8.493 μGy). Greatest scatter dose obtained from a horizontal beam exposure at 135 from the incident beam was still far below background radiation. Scatter radiation dose from a single exposure as well as cumulative scatter dose from numerous exposures is significantly below natural background radiation. Infants in neighboring isolettes are not at added risk from radiation scatter as long as the isolettes are separated by at least 2 ft. (orig.)

  7. Application of the equivalent radiator method for radiative corrections to the spectra of elastic electron scattering by nuclei

    Directory of Open Access Journals (Sweden)

    I. S. Timchenko

    2015-07-01

    Full Text Available For calculating the radiative tails in the spectra of inelastic electron scattering by nuclei, the approximation, namely, the equivalent radiator method (ERM, is used. However, the applicability of this method for evaluating the radiative tail from the elastic scattering peak has been little investigated, and therefore, it has become the subject of the present study for the case of light nuclei. As a result, spectral regions were found, where a significant discrepancy between the ERM calculation and the exact-formula calculation was observed. A link was established between this phenomenon and the diffraction minimum of the squared form-factor of the nuclear ground state. Varieties of calculations were carried out for different kinematics of electron scattering by nuclei. The analysis of the calculation results has shown the conditions, at which the equivalent radiator method can be applied for adequately evaluating the radiative tail of the elastic scattering peak.

  8. Reduction of the scattered radiation during X-ray examination with screen-film systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V N; Stavitsky, R V [Moscow Research Inst. for Roentgenology and Radiology, Moscow (Russian Federation); Oshomkov, Yu V [Mosroentgen, Moscow Region (Russian Federation)

    1993-01-01

    In diagnostic radiography, during X-ray examination, photons scattered in the patient's body are detected by the intensifying screen and decrease the image contrast. A conventional way to avoid this image degradation is to attenuate the scattered radiation by an antiscatter grid placed between the patient's body and the screen. A grid selectivity effect originates from the greater attenuation of scattered as opposed to primary radiation. Previous authors calculated the primary and scattered radiation transmission factor of photons with initial energy 30-120 keV for a number of typical grids. The primary radiation transmission factor varied from 0.34 to 0.67 and the secondary radiation factor was equal from 0.03 to 0.13. This effect results in a contrast improvement from 2 to 6, but the patient exposure increases up to a factor of 10. In this work we studied the possibility of improving the image contrast by attenuating the scattered radiation by a secondary filter placed between the patient's body and the screen and made of an appropriate material. A selectivity effect due to the secondary filter arises from two circumstances. First, tilting incidence of the scattered radiation results in the path inside the filter being greater than the primary one. Second, the average energy of the scattered radiation is less than the primary and, hence, the attenuation coefficient is greater. (author).

  9. Continuous-wave spatial quantum correlations of light induced by multiple scattering

    DEFF Research Database (Denmark)

    Smolka, Stephan; Ott, Johan Raunkjær; Huck, Alexander

    2012-01-01

    and reflectance. Utilizing frequency-resolved quantum noise measurements, we observe that the strength of the spatial quantum correlation function can be controlled by changing the quantum state of an incident bright squeezed-light source. Our results are found to be in excellent agreement with the developed......We present theoretical and experimental results on spatial quantum correlations induced by multiple scattering of nonclassical light. A continuous-mode quantum theory is derived that enables determining the spatial quantum correlation function from the fluctuations of the total transmittance...... theory and form a basis for future research on, e. g., quantum interference of multiple quantum states in a multiple scattering medium....

  10. The simple analytical method for scattered radiation calculation in contrast X-ray diagnostic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, S; Pavlovic, R [Inst. of Nuclear Science Vinca, Belgrade (Yugoslavia). Radiation and Environmental Protection Lab.; Boreli, F [Fac. of Electrical Engineering, Belgrade (Yugoslavia)

    1996-12-31

    In realization of radiation protection measures for medical staff present during diagnostic procedures, the necessary condition is knowledge of the space - energy distributions of the scattered radiation from the patient. In this paper, the simple calculation procedure for the scattered radiation field of the actual diagnostic energies is presented. Starting from the single Compton scattering model and using the justified transformations the final equations in elementary form are derived. For numerical calculations the computer code ANGIO was created. The calculated results were confirmed by detailed dosimetric measurements of the scattered field around patient (the water phantom) in SSDL in the Institute of nuclear sciences `Vinca`, Belgrade. These results are good base for assessment of irradiation. The main irradiation source for the physician and the other members of the medical team is the back scattered radiation from patient - albedo. (author). 3 figs., 3 refs.

  11. A study of low Q2 radiative Bhabha scattering

    International Nuclear Information System (INIS)

    Karlen, D.A.

    1988-03-01

    This thesis presents a study of electron-positron scattering, via nearly real photon exchange, where in the process one or more high energy photons are produced. The motivations behind the work are twofold. Firstly, the study is a sensitive test of the theory of electron-photon interactions, quantum electrodynamics. A deviation from the theory could indicate that the electron is a composite particle. Secondly, a thorough understanding of this process is necessary for experiments to be done in the near future at the Stanford Linear Collider and the LEP facility at CERN. Calculations for the process to third and fourth order in pertubation theory are described. Methods for simulating the process by a Monte Carlo event generator are given. Results from the calculations are compared to data from the Mark II experiment at the PEP storage ring. The ratio of measured to calculated cross sections are 0.993 /+-/ 0.017 /+-/ 0.015 and 0.99 /+-/ 0.16 /+-/ 0.08 for final states with one and two observed photons respectively, where the first errors are statistical and the second systematic. The excellent agreement verifies the calculations of the fourth order radiative correction. No evidence for electron substructure is observed

  12. Application of the method of continued fractions for electron scattering by linear molecules

    International Nuclear Information System (INIS)

    Lee, M.-T.; Iga, I.; Fujimoto, M.M.; Lara, O.; Brasilia Univ., DF

    1995-01-01

    The method of continued fractions (MCF) of Horacek and Sasakawa is adapted for the first time to study low-energy electron scattering by linear molecules. Particularly, we have calculated the reactance K-matrices for an electron scattered by hydrogen molecule and hydrogen molecular ion as well as by a polar LiH molecule in the static-exchange level. For all the applications studied herein. the calculated physical quantities converge rapidly, even for a strongly polar molecule such as LiH, to the correct values and in most cases the convergence is monotonic. Our study suggests that the MCF could be an efficient method for studying electron-molecule scattering and also photoionization of molecules. (Author)

  13. Determination of the scattered radiation at the Neutron Calibration Laboratory of IPEN, SP, Brazil

    International Nuclear Information System (INIS)

    Alvarenga, Tallyson; Valeriano, Caio C.S.; Caldas, Linda V.E.; Federico, Claudio A.

    2016-01-01

    With the increased use of techniques using neutron radiation, there has been a considerable growth in the number of detectors for this kind of radiation. A neutron calibration laboratory with neutron radiation ("2"4"1AmBe) was designed. In practical situations of this type of laboratory, one of the main problems is related to the knowledge of scattered radiation. In order to evaluate this scattered radiation, simulations were carried out without the presence of structural elements and with the complete room. Fourteen measuring points were evaluated in different directions at various distances. (author)

  14. Compton scattering and electron-atom scattering in an elliptically polarized laser field of relativistic radiation power

    International Nuclear Information System (INIS)

    Panek, P.; Kaminski, J.Z.; Ehlotzky, F.

    2003-01-01

    Presently available laser sources can yield powers for which the ponderomotive energy of an electron U p can be equal to or even larger than the rest energy mc 2 of an electron. Therefore it has become of interest to consider fundamental radiation-induced or assisted processes in such powerful laser fields. In the present work we consider laser-induced Compton scattering and laser-assisted electron atom scattering in such fields, assuming that the laser beam has arbitrary elliptic polarization. We investigate in detail the angular and polarisation dependence of the differential cross-sections of the two laser-induced or laser-assisted nonlinear processes as a function of the order N of absorbed or emitted laser photons ω. The present work is a generalization of our previous analysis of Compton scattering and electron-atom scattering in a linearly polarized laser field. (authors)

  15. Determination of the gamma radiation scattering with geometry changes in the system

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.P.; Xavier, M.; Caldas, L.V.E.

    1988-07-01

    Three different experimental systems were used for the determination of the radiation scattering due to the walls, ceiling and floor of the Calibration Laboratory. The radiation detection was made with a portable ionization chamber Victoreen model Panoramic 470. The measurements were taken with and without the use of a lead shield block between the detector and the radioactive source. The results showed that the scattering contribution increased about 80%, as the distance between detector and source was varied from 1,0 to 2,0 m. Therefore the scattering contribution determination is very important for the establishment of the standard radiation fields for instruments calibration. (author) [pt

  16. Calculation of the Scattered Radiation Profile in 64 Slice CT Scanners Using Experimental Measurement

    Directory of Open Access Journals (Sweden)

    Afshin Akbarzadeh

    2009-06-01

    Full Text Available Introduction: One of the most important parameters in x-ray CT imaging is the noise induced by detected scattered radiation. The detected scattered radiation is completely dependent on the scanner geometry as well as size, shape and material of the scanned object. The magnitude and spatial distribution of the scattered radiation in x-ray CT should be quantified for development of robust scatter correction techniques. Empirical methods based on blocking the primary photons in a small region are not able to extract scatter in all elements of the detector array while the scatter profile is required for a scatter correction procedure. In this study, we measured scatter profiles in 64 slice CT scanners using a new experimental measurement. Material and Methods: To measure the scatter profile, a lead block array was inserted under the collimator and the phantom was exposed at the isocenter. The raw data file, which contained detector array readouts, was transferred to a PC and was read using a dedicated GUI running under MatLab 7.5. The scatter profile was extracted by interpolating the shadowed area. Results: The scatter and SPR profiles were measured. Increasing the tube voltage from 80 to 140 kVp resulted in an 80% fall off in SPR for a water phantom (d=210 mm and 86% for a polypropylene phantom (d = 350 mm. Increasing the air gap to 20.9 cm caused a 30% decrease in SPR. Conclusion: In this study, we presented a novel approach for measurement of scattered radiation distribution and SPR in a CT scanner with 64-slice capability using a lead block array. The method can also be used on other multi-slice CT scanners. The proposed technique can accurately estimate scatter profiles. It is relatively straightforward, easy to use, and can be used for any related measurement.

  17. Anisotropic scattering in three dimensional differential approximation of radiation heat transfer

    International Nuclear Information System (INIS)

    Condiff, D.W.

    1987-01-01

    The differential approximation is extended to account for anisotropic scattering in invariant three dimensional form. A moment method using polyadic Legendre functions establishes that pressure cross sections should take precedence over extinction cross sections for treating radiation heat transfer in an absorbing, emitting, and scattering medium, and that use of these cross sections accounts for the extent of preferred forward or backwards scattering. The procedure and principle is extended to polyadic P-N approximations

  18. Hard synchrotron radiation scattering from a nonideal surface grating from multilayer X-ray mirrors

    International Nuclear Information System (INIS)

    Punegov, V.I.; Nesterets, Ya.I.; Mytnichenko, S.V.; Kovalenko, N.V.; Chernov, V.A.

    2003-01-01

    The hard synchrotron radiation scattering from a multilayer surface grating is theoretically and experimentally investigated. The numerical calculations of angular distribution of scattering intensity from X-ray mirror Ni/C are executed with use of recurrence formulae and statistical dynamical theory of diffraction. It is shown, that the essential role in formation of a diffraction pattern plays a diffuse scattering caused by structure imperfection of a multilayer grating [ru

  19. A new radiative transfer scattering phase function discretisation approach with inherent energy conservation

    CSIR Research Space (South Africa)

    Roos, TH

    2014-06-01

    Full Text Available large sphere scattering phase function distributions of interest for packed bed radiative heat transfer: the analytic distribution for a diffusely reflecting sphere (a backscattering test case) and the distribution for a transparent sphere (n = 1...

  20. Scattered radiation field in X-ray diagnostics; Polje rasejanog zracenja u rendgen dijagnostici

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, S; Pavlovic, S; Boreli, F [Institute of Nuclear Sciences VINCA, Belgrade (Yugoslavia)

    1995-07-01

    In order to obtain simple analytical relation for spatial distribution of scattered X radiation around patient, the analytical procedure of simplification of starting equations is presented in this paper. (author)

  1. Velocity-space tomography of fusion plasmas by collective Thomson scattering of gyrotron radiation

    DEFF Research Database (Denmark)

    Salewski, Mirko; Jacobsen, A.S.; Jensen, Thomas

    2016-01-01

    -tonoise ratio becomes fairly low for MeV-range ions. Ions at any energy can be detected well by collective Thomson scattering of mm-wave radiation from a high-power gyrotron. We demonstrate how collective Thomson scattering can be used to measure 푓2퐷푣 in the MeV-range in reactor relevant plasmas...

  2. Characterizing the behavior of scattered radiation in multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, Artur, E-mail: artur.sossin@gmail.com [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Rebuffel, V.; Tabary, J. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Univ Lyon, INSA-Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Centre Léon Bérard, CREATIS UMR 5220 U1206, F-69373 Lyon (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)

    2017-04-01

    Scattered radiation results in various undesirable effects in medical diagnostics, non-destructive testing (NDT) and security x-ray imaging. Despite numerous studies characterizing this phenomenon and its effects, the knowledge of its behavior in the energy domain remains limited. The present study aims at summarizing some key insights on scattered radiation originating from the inspected object. In addition, various simulations and experiments with limited collimation on both simplified and realistic phantoms were conducted in order to study scatter behavior in multi-energy x-ray imaging. Results showed that the spectrum shape of the scatter component can be considered preserved in the first approximation across the image plane for various acquisition geometries and phantoms. The variations exhibited by the scatter spectrum were below 10% for most examined cases. Furthermore, the corresponding spectrum shape proved to be also relatively invariant for different experimental angular projections of one of the examined phantoms. The observed property of scattered radiation can potentially lead to the decoupling of spatial and energy scatter components, which can in turn enable speed ups in scatter simulations and reduce the complexity of scatter correction.

  3. Forward-scattered radiation from the compression paddle should be considered in glandular dose estimations

    International Nuclear Information System (INIS)

    Hemdal, B.

    2011-01-01

    From major protocols on dosimetry in mammography, there is no doubt that the incident air kerma should be evaluated without backscattered radiation to the dosemeter. However, forward-scattered radiation from the compression paddle is neglected. The aim of this work was to analyse the contribution of forward-scattered radiation for typical air kerma measurements. Measurements of forward-scatter were performed with a plane-parallel ionisation chamber on four mammography units. The forward-scatter contribution to the air kerma was 2-10 % and increased with the compression paddle thickness, but also with the half-value layer value. For incident air kerma in mammography, it can be as important to consider forward scattered as backscattered radiation. If an ionisation chamber is used, the compression paddle should be in contact with the chamber; otherwise the air kerma and absorbed dose will be underestimated. If a dosemeter based on semiconductors with much less sensitivity to scattered radiation is used, it is suggested that a forward-scatter factor (FSF) is applied. Based on the results of this work, FSF=1.06 will lead to a maximum error of ∼4 %. (authors)

  4. Continuous monitoring system for environmental {gamma} radiation near nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Jin; Qingyu, Yue; Wenhai, Wang [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy

    1996-06-01

    The continuous monitoring system which is used for the environmental routine and accident emergency {gamma} radiation monitoring near nuclear facility is described. The continuous monitoring system consists of a high pressurized ionization chamber, integrated weak current amplifier, V/F converter and intelligent data recorder. The data gained by recorder can be transmitted to a PC through a standard RS-232-C interface for the data handling and graph plotting. This continuous monitoring system has the functions of alarm over threshold and recorded output signal of detector and temperature. The measuring range is from 10 nGy{center_dot}h{sup -1} to 10 mGy{center_dot}h{sup -1} because a high insulation switch atomically changed measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability. (5 figs., 2 tabs.).

  5. Continuous monitoring system for environmental γ radiation near nuclear facility

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu; Wang Wenhai

    1996-06-01

    The continuous monitoring system which is used for the environmental routine and accident emergency γ radiation monitoring near nuclear facility is described. The continuous monitoring system consists of a high pressurized ionization chamber, integrated weak current amplifier, V/F converter and intelligent data recorder. The data gained by recorder can be transmitted to a PC through a standard RS-232-C interface for the data handling and graph plotting. This continuous monitoring system has the functions of alarm over threshold and recorded output signal of detector and temperature. The measuring range is from 10 nGy·h -1 to 10 mGy·h -1 because a high insulation switch atomically changed measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability. (5 figs., 2 tabs.)

  6. Prior image constrained scatter correction in cone-beam computed tomography image-guided radiation therapy.

    Science.gov (United States)

    Brunner, Stephen; Nett, Brian E; Tolakanahalli, Ranjini; Chen, Guang-Hong

    2011-02-21

    X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.

  7. Monte Carlo calculation of scattered radiation from applicators in low energy clinical electron beams

    International Nuclear Information System (INIS)

    Jabbari, N.; Hashemi-Malayeri, B.; Farajollahi, A. R.; Kazemnejad, A.

    2007-01-01

    In radiotherapy with electron beams, scattered radiation from an electron applicator influences the dose distribution in the patient. The contribution of this radiation to the patient dose is significant, even in modern accelerators. In most of radiotherapy treatment planning systems, this component is not explicitly included. In addition, the scattered radiation produced by applicators varies based on the applicator design as well as the field size and distance from the applicators. The aim of this study was to calculate the amount of scattered dose contribution from applicators. We also tried to provide an extensive set of calculated data that could be used as input or benchmark data for advanced treatment planning systems that use Monte Carlo algorithms for dose distribution calculations. Electron beams produced by a NEPTUN 10PC medical linac were modeled using the BEAMnrc system. Central axis depth dose curves of the electron beams were measured and calculated, with and without the applicators in place, for different field sizes and energies. The scattered radiation from the applicators was determined by subtracting the central axis depth dose curves obtained without the applicators from that with the applicator. The results of this study indicated that the scattered radiation from the electron applicators of the NEPTUN 10PC is significant and cannot be neglected in advanced treatment planning systems. Furthermore, our results showed that the scattered radiation depends on the field size and decreases almost linearly with depth. (author)

  8. The Academic Curriculum of Medical Radiation Technologists: Continuous Development

    International Nuclear Information System (INIS)

    Sergieva, K.; Gagova, P.; Bonninska, N.

    2016-01-01

    Full text: The purpose is to present the activities of Department of Radiation technologists at Medical College Sofia in knowledge management (KM) in human health applications and namely: continuous development of academic curriculum (AC) for medical radiation technologists (MRT) in sense of the conference motto “Nuclear Knowledge Management: Challenges and Approaches”. Our challenge is to realize, in practice, the important role of MRT professionals in healthcare. They are the front line in the patient safety and the last person with the patient before exposure. The existing AC has been periodically peer-reviewed: in 2011, 2014, and ongoing reviews, with the aim to guarantee that we are providing knowledge, skills and competencies that meet modern requirements for the training of radiation technologists. The AC compromises both academic and clinical education. The clinical component occurs throughout the academic course, accenting the role of MRT in radiology, radiotherapy and nuclear medicine. The approach of continuously developing the AC will meet the stringent requirements recently published by IAEA, with the goal that radiological medical practitioners, medical physicists, medical radiation technologists and other health professionals with specific duties in relation to protection and safety for patients in a given radiological procedure are specialized in the appropriate area. (author

  9. Scattering by a slab containing randomly located cylinders: comparison between radiative transfer and electromagnetic simulation.

    Science.gov (United States)

    Roux, L; Mareschal, P; Vukadinovic, N; Thibaud, J B; Greffet, J J

    2001-02-01

    This study is devoted to the examination of scattering of waves by a slab containing randomly located cylinders. For the first time to our knowledge, the complete transmission problem has been solved numerically. We have compared the radiative transfer theory with a numerical solution of the wave equation. We discuss the coherent effects, such as forward-scattering dip and backscattering enhancement. It is seen that the radiative transfer equation can be used with great accuracy even for optically thin systems whose geometric thickness is comparable with the wavelength. We have also shown the presence of dependent scattering.

  10. Scattering and radiative properties of semi-external versus external mixtures of different aerosol types

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Liu Li; Travis, Larry D.; Lacis, Andrew A.

    2004-01-01

    The superposition T-matrix method is used to compute the scattering of unpolarized light by semi-external aerosol mixtures in the form of polydisperse, randomly oriented two-particle clusters with touching components. The results are compared with those for composition-equivalent external aerosol mixtures, in which the components are widely separated and scatter light in isolation from each other. It is concluded that aggregation is likely to have a relatively weak effect on scattering and radiative properties of two-component tropospheric aerosols and can be replaced by the much simpler external-mixture model in remote sensing studies and atmospheric radiation balance computations

  11. Reconciling semiclassical and Bohmian mechanics. III. Scattering states for continuous potentials

    International Nuclear Information System (INIS)

    Trahan, Corey; Poirier, Bill

    2006-01-01

    In a previous paper [B. Poirier, J. Chem. Phys. 121, 4501 (2004)] a unique bipolar decomposition Ψ=Ψ 1 +Ψ 2 was presented for stationary bound states Ψ of the one-dimensional Schroedinger equation, such that the components Ψ 1 and Ψ 2 approach their semiclassical WKB analogs in the large-action limit. The corresponding bipolar quantum trajectories, as defined in the usual Bohmian mechanical formulation, are classical-like and well behaved, even when Ψ has many nodes or is wildly oscillatory. A modification for discontinuous potential stationary scattering states was presented in a second, companion paper [C. Trahan and B. Poirier, J. Chem. Phys.124, 034115 (2006), previous paper], whose generalization for continuous potentials is given here. The result is an exact quantum scattering methodology using classical trajectories. For additional convenience in handling the tunneling case, a constant-velocity-trajectory version is also developed

  12. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    International Nuclear Information System (INIS)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-01-01

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the ∼10 3 - 5×10 4 W cm -2 range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  13. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    Science.gov (United States)

    Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Solomakhin, V. B.

    2012-04-01

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the ~103 — 5×104 W cm-2 range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene — ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  14. Experiment on direct nn scattering - The radiation-induced outgassing complication

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, S.L., E-mail: sstephen@gettysburg.edu [Gettysburg College, Gettysburg, PA 17325 (United States); Crawford, B.E. [Gettysburg College, Gettysburg, PA 17325 (United States); Furman, W.I.; Lychagin, E.V.; Muzichka, A.Yu.; Nekhaev, G.V.; Sharapov, E.I.; Shvetsov, V.N.; Strelkov, A.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Levakov, B.G.; Lyzhin, A.E.; Chernukhin, Yu.I. [Russian Federal Nuclear Center - All Russian Research Institute of Technical Physics, P.O. Box 245, 456770 Snezhinsk (Russian Federation); Howell, C.R. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G.E. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Showalter-Bucher, R.A. [Northeastern University, Boston, MA 02115 (United States)

    2012-12-01

    The first direct neutron-neutron scattering experiment using the YAGUAR pulsed reactor has yielded initial results. They show a unforeseen significant thermal neutron background as a result of radiation-induced desorption within the scattering chamber. Thermal neutrons are mostly scattering not from other neutrons but instead from the desorbed gas molecules. Analysis of the obtained neutron time-of-flight spectra suggests neutron scattering from H{sub 2} molecules. The presented desorption model agrees with our experimental value of the desorption yield {eta}{sub {gamma}}=0.02 molecules/gamma. Possible techniques to reduce the effect of the desorption background are presented.

  15. A Note on the Radiative and Collisional Branching Ratios in Polarized Radiation Transport with Coherent Scattering

    Science.gov (United States)

    Casini, R.; del Pino Alemán, T.; Manso Sainz, R.

    2017-02-01

    We discuss the implementation of physically meaningful branching ratios between the CRD and partial redistribution contributions to the emissivity of a polarized multi-term atom in the presence of both inelastic and elastic collisions. Our derivation is based on a recent theoretical formulation of partially coherent scattering, and it relies on a heuristic diagrammatic analysis of the various radiative and collisional processes to determine the proper form of the branching ratios. The expression we obtain for the emissivity is {\\boldsymbol{\\varepsilon }}=[{{\\boldsymbol{\\varepsilon }}}(1)-{{\\boldsymbol{\\varepsilon }}}{{f}.{{s}}.}(2)]+{{\\boldsymbol{\\varepsilon }}}(2), where {{\\boldsymbol{\\varepsilon }}}(1) and {{\\boldsymbol{\\varepsilon }}}(2) are the emissivity terms for the redistributed and partially coherent radiation, respectively, and where “f.s.” implies that the corresponding term must be evaluated assuming a flat-spectrum average of the incident radiation. This result is shown to be in agreement with prior literature on the subject in the limit of the unpolarized multi-level atom.

  16. Electromagnetic radiation and scattering from small canonical structures of double-negative metamaterials

    DEFF Research Database (Denmark)

    Arslanagic, Samel

    2007-01-01

    aspects associated with DNG materials, and was subsequently extended to investigations of the radiation and scattering from two- and three-dimensional (2D and 3D) MTM-based canonical problems in electromagnetic theory. As to the theoretical aspects of DNG materials, the sign, or more generally the branch......, cylindrical and spherical configurations to design electrically small, resonant structures such as cavities, waveguides, scatterers and radiators. These ideas are extended here to canonical antenna and scattering configurations which consist of electrically small resonant cylindrical and spherical MTM......-based structures excited by an arbitrarily located electric line source and an arbitrarily located and oriented electric Hertzian dipole, respectively. Exact analytical solutions, based on eigenfunction series, are derived and then numerically evaluated to study the radiation and scattering from these structures...

  17. Application of the 2-D discrete-ordinates method to multiple scattering of laser radiation

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.; Embury, J.F.

    1983-01-01

    The discrete-ordinates finite-element radiation transport code twotran is applied to describe the multiple scattering of a laser beam from a reflecting target. For a model scenario involving a 99% relative humidity rural aerosol we compute the average intensity of the scattered radiation and correction factors to the Beer-Lambert law arising from multiple scattering. As our results indicate, 2-D x-y and r-z geometry modeling can reliably describe a realistic 3-D scenario. Specific results are presented for the two visual ranges of 1.52 and 0.76 km which show that, for sufficiently high aerosol concentrations (e.g., equivalent to V = 0.76 km), the target signature in a distant detector becomes dominated by multiply scattered radiation from interactions of the laser light with the aerosol environment. The merits of the scaling group and the delta-M approximation for the transfer equation are also explored

  18. Continuous monitoring system of environmental γ radiation near nuclear facility

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu; Wang Wenhai

    1996-01-01

    The continuous monitoring system for the environmental γ radiation and accident emergency near nuclear facility is described. The continuous monitoring system consists of high pressurized ionization chamber, integrated weak current amplifier, V-F converter and intelligent data recorder. PC 486 microcomputer with standard RS-232C interface is used for data handling and graph plotting. This intelligent data recorder has the functions of alarm over threshold and records the output signal of detector and temperature. The measuring range is from 10 nGy h -1 to 10 mGy h -1 because a high insulation switch automatical changing the measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability

  19. Hyper-Rayleigh scattering and hyper-Raman scattering of dye-adsorbed silver nanoparticles induced by a focused continuous-wave near-infrared laser

    International Nuclear Information System (INIS)

    Itoh, Tamitake; Ozaki, Yukihiro; Yoshikawa, Hiroyuki; Ihama, Takashi; Masuhara, Hiroshi

    2006-01-01

    We report that hyper-Rayleigh scattering, surface-enhanced hyper-Raman scattering, and two-photon excited luminescence occur intermittently by focusing a continuous-wave near-infrared (cw-NIR) laser into a colloidal silver solution including rhodamine 6G (R6G) and sodium chloride (NaCl). On the other hand, continuous hyper-Rayleigh scattering is observed from colloidal silver free from R6G and NaCl, demonstrating that hyper-Raman scattering and two-photon excited luminescence are attributed to R6G and their intermittent features are dependent on the colloidal dispersion. These results suggest that the cw-NIR laser has three roles; the source of the nonlinear response, optical trapping of nanoparticles, and making nanoparticle aggregates possessing the high activity for the nonlinear response

  20. Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory

    International Nuclear Information System (INIS)

    Ma, L.X.; Tan, J.Y.; Zhao, J.M.; Wang, F.Q.; Wang, C.A.

    2017-01-01

    The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus–Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus–Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied. - Highlights: • The Muller matrix of randomly distributed, densely packed spheres are investigated. • The effects of multiple scattering and dependent scattering are analyzed. • The accuracy of radiative transfer theory for densely packed spheres is discussed. • Dependent scattering correction takes effect at medium size parameter or smaller. • Performance of dependent scattering correction

  1. A small-angle scattering study of bacteriophage T7 using synchrotron radiation

    International Nuclear Information System (INIS)

    Feigin, L.A.; Svergun, D.I.; Dembo, A.T.; Ronto, G.; Toth, K.

    1989-01-01

    Structure transitions in the bacterial virus T7, due to an environment of varying ionic strength, are investigated by means of synchrotron radiation small-angle scattering. Effects of radiation damages and kinetics of the structure transition are separated. Time dependencies of the structural parameters and distribution functions are obtained and characteristic features of the structure rearrangements are described. (orig.)

  2. Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation.

    Science.gov (United States)

    Gartmann, Thomas E; Hartweg, Sebastian; Ban, Loren; Chasovskikh, Egor; Yoder, Bruce L; Signorell, Ruth

    2018-06-06

    Low-energy electron scattering in water clusters (H2O)n with average cluster sizes of n < 700 is investigated by angle-resolved photoelectron spectroscopy using high harmonic radiation at photon energies of 14.0, 20.3, and 26.5 eV for ionization from the three outermost valence orbitals. The measurements probe the evolution of the photoelectron anisotropy parameter β as a function of cluster size. A remarkably steep decrease of β with increasing cluster size is observed, which for the largest clusters reaches liquid bulk values. Detailed electron scattering calculations reveal that neither gas nor condensed phase scattering can explain the cluster data. Qualitative agreement between experiment and simulations is obtained with scattering calculations that treat cluster scattering as an intermediate case between gas and condensed phase scattering.

  3. Light scattering by multiple spheres: comparison between Maxwell theory and radiative-transfer-theory calculations.

    Science.gov (United States)

    Voit, Florian; Schäfer, Jan; Kienle, Alwin

    2009-09-01

    We present a methodology to compare results of classical radiative transfer theory against exact solutions of Maxwell theory for a high number of spheres. We calculated light propagation in a cubic scattering region (20 x 20 x 20 microm(3)) consisting of different concentrations of polystyrene spheres in water (diameter 2 microm) by an analytical solution of Maxwell theory and by a numerical solution of radiative transfer theory. The relative deviation of differential as well as total scattering cross sections obtained by both approaches was evaluated for each sphere concentration. For the considered case, we found that deviations due to radiative transfer theory remain small, even for concentrations up to ca. 20 vol. %.

  4. Nongray radiative heat transfer analysis in the anisotropic scattering fog layer subjected to solar irradiation

    International Nuclear Information System (INIS)

    Maruyama, Shigenao; Mori, Yusuke; Sakai, Seigo

    2004-01-01

    Radiative heat transfer in the fog layer is analyzed. Direct and diffuse solar irradiation, and infrared sky flux are considered as incident radiation. Anisotropic scattering of radiation by water droplets is taken into account. Absorption and emission of radiation by water droplets and radiative gases are also considered. Furthermore, spectral dependences of radiative properties of irradiation, reflectivity, gas absorption and scattering and absorption of mist are considered. The radiation element method by ray emission model (REM 2 ) is used for the nongray radiation analysis. Net downward radiative heat flux at the sea surface and radiative equilibrium temperature distribution in the fog layer are calculated for several conditions. Transmitted solar flux decreases as liquid water content (LWC) in the fog increases. However, the value does not become zero but has the value about 60 W/m 2 . The effect of humidity and mist on radiative cooling at night is investigated. Due to high temperature and humidity condition, the radiation cooling at night is not so large even in the clear sky. Furthermore, the radiative equilibrium temperature distribution in the fog layer in the daytime is higher as LWC increases, and the inversion layer of temperature occurs

  5. Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory

    Science.gov (United States)

    Zeng, Yuehua

    2017-01-01

    This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.

  6. THREE-DIMENSIONAL RADIATIVE TRANSFER MODELING OF THE POLARIZATION OF THE SUN'S CONTINUOUS SPECTRUM

    International Nuclear Information System (INIS)

    Bueno, Javier Trujillo; Shchukina, Nataliya

    2009-01-01

    Polarized light provides the most reliable source of information at our disposal for diagnosing the physical properties of astrophysical plasmas, including the three-dimensional (3D) structure of the solar atmosphere. Here we formulate and solve the 3D radiative transfer problem of the linear polarization of the solar continuous radiation, which is principally produced by Rayleigh and Thomson scattering. Our approach takes into account not only the anisotropy of the solar continuum radiation but also the symmetry-breaking effects caused by the horizontal atmospheric inhomogeneities produced by the solar surface convection. We show that such symmetry-breaking effects do produce observable signatures in Q/I and U/I, even at the very center of the solar disk where we observe the forward scattering case, but their detection would require obtaining very high resolution linear polarization images of the solar surface. Without spatial and/or temporal resolution U/I ∼ 0 and the only observable quantity is Q/I, whose wavelength variation at a solar disk position close to the limb has been recently determined semi-empirically. Interestingly, our 3D radiative transfer modeling of the polarization of the Sun's continuous spectrum in a well-known 3D hydrodynamical model of the solar photosphere shows remarkable agreement with the semi-empirical determination, significantly better than that obtained via the use of one-dimensional (1D) atmospheric models. Although this result confirms that the above-mentioned 3D model was indeed a suitable choice for our Hanle-effect estimation of the substantial amount of 'hidden' magnetic energy that is stored in the quiet solar photosphere, we have found however some small discrepancies whose origin may be due to uncertainties in the semi-empirical data and/or in the thermal and density structure of the 3D model. For this reason, we have paid some attention also to other (more familiar) observables, like the center-limb variation of the

  7. Influence of X-ray scatter radiation on image quality in Digital Breast Tomosynthesis (DBT)

    International Nuclear Information System (INIS)

    Rodrigues, M.J.; Di Maria, S.; Baptista, M.; Belchior, A.; Afonso, J.; Venâncio, J.; Vaz, P.

    2017-01-01

    Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging technique that was developed to solve the principal limitation of mammography, namely the overlapping tissue effect. This issue in standard mammography (SM) leads to two main problems: low sensitivity (difficulty to detect lesions) and low specificity (non-negligible percentage of false positives). Although DBT is now being introduced in clinical practice the features of this technique have not yet been fully and accurately assessed. Consequently, optimization studies in terms of choosing the most suitable parameters which maximize image quality according to the known limits of breast dosimetry are currently performing. In DBT, scatter radiation can lead to a loss of contrast and to an increase of image noise by reducing the signal-to-difference-noise ratio (SDNR) of a lesion. Moreover the use of an anti-scatter grid is a concern due to the low exposure of the photon flux available per projection. For this reason the main aim of this study was to analyze the influence of the scatter radiation on image quality and the dose delivered to the breast. In particular a detailed analysis of the scatter radiation on the optimal energy that maximizes the SDNR was performed for different monochromatic energies and voltages. To reach this objective the PenEasy Monte Carlo (MC) simulation tool imbedded in the general-purpose main program PENELOPE, was used. After a successful validation of the MC model with measurements, 2D projection images of primary, coherent and incoherent photons were obtained. For that, a homogeneous breast phantom (2, 4, 6, 8 cm) with 25%, 50% and 75% glandular compositions was used, including a 5 mm thick tumor. The images were generated for each monochromatic X-ray energies in the range from 16 keV to 32 keV. For each angular projection considered (25 angular projections covering an arc of 50°) the scatter-to-primary ratio (SPR), the mean glandular dose (MGD) and the signal

  8. Compton scatter imaging: A promising modality for image guidance in lung stereotactic body radiation therapy.

    Science.gov (United States)

    Redler, Gage; Jones, Kevin C; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C H

    2018-03-01

    Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. © 2018 American Association of Physicists in Medicine.

  9. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    International Nuclear Information System (INIS)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Mueller, P.; Ulm, G.

    2009-01-01

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  10. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    Science.gov (United States)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Müller, P.; Ulm, G.

    2009-09-01

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  11. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Krumrey, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)], E-mail: Michael.Krumrey@ptb.de; Cibik, L.; Mueller, P.; Ulm, G. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2009-09-11

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  12. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1993-02-01

    The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program

  13. Analysis of Scattered Radiation Influence on Detectability in Diagnostic Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Gurvich, V [ALVIM R and D Ltd., P.O.B. 801 Jerusalem 91007 (Israel); Manevich, I [Jerusalem College of Technology, 21 Havaad Haleumi St. P.O.B. 16031, Jerusalem 91160 (Israel)

    1994-12-31

    The calculation of holes detectability in tissue equivalent materials on a X-ray image is implemented. In the calculation various values of scatter accumulation factor are used. The obtained results confirmed by experimental data may be useful for choice of physics-technical conditions of X-ray examination. (authors). 7 refs, 1 fig, 1 tab.

  14. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Braicovich, L., E-mail: lucio.braicovich@polimi.it; Minola, M.; Dellea, G.; Ghiringhelli, G. [CNR-SPIN and Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano I-20133 (Italy); Le Tacon, M. [Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B. [European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble F-38043 (France); Supruangnet, R. [Synchrotron Light Research Institute, Nakhon Ratchasima (Thailand)

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  15. Non-Gaussian Stochastic Radiation Transfer in Finite Planar Media with Quadratic Scattering

    International Nuclear Information System (INIS)

    Sallah, M.

    2016-01-01

    The stochastic radiation transfer is considered in a participating planar finite continuously fluctuating medium characterized by non-Gaussian variability. The problem is considered for diffuse-reflecting boundaries with quadratic Rayleigh scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions that are represented by the probability-density function (PDF) of the solution process. RVT algorithm applies a simple integral transformation to the input stochastic process (the extinction function of the medium). This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the radiation transfer equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity, transmissivity and partial heat fluxes at the medium boundaries. Numerical results are represented graphically for different non-Gaussian probability distribution functions that compared with the corresponding Gaussian PDF.

  16. Radiative heat transfer in strongly forward scattering media using the discrete ordinates method

    Science.gov (United States)

    Granate, Pedro; Coelho, Pedro J.; Roger, Maxime

    2016-03-01

    The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta

  17. Understanding the scatter radiation distribution during C-arm CT examination. A body phantom study

    International Nuclear Information System (INIS)

    Norimasa, Toshiyo; Kakimi, Akihiko; Takao, Yoshinori; Sasaki, Shohei; Katayama, Yutaka; Himoto, Daisuke; Izuta, Shinichiro; Ichida, Takao

    2016-01-01

    The purpose of this study was to understand the scatter radiation distribution during C-arm CT examination in the interventional radiography (IVR) room to show the escaped area and the radiation protective method. The C-arm rotates 200deg in 5 s. The tube voltage was 90 kV, and the entrance dose to the detector was 0.36 μGy/frame during C-arm CT examination. The scattered doses were measured each 50 cm from the isocenter like a grid pattern. The heights of the measurement were 50, 100, and 150 cm from the floor. The maximum scattered doses were 38.23 ± 0.60 μGy at 50 cm, 43.86 ± 20 μGy at 100 cm, and 25.78 ± 0.37 μGy at 150 cm. The scatter radiation distribution at 100 cm was the highest scattered dose. The operator should protect their reproductive gland, thyroid, and lens. The scattered dose was low behind the C-arm body and the bed, so they will be able to become the escaped area for staff. (author)

  18. Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings

    Science.gov (United States)

    Chen, X. W.; Zhao, C. Y.; Wang, B. X.

    2018-05-01

    Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.

  19. Electromagnetic radiation of ultrarelativistic particles at scattering in excited medium

    International Nuclear Information System (INIS)

    Malyshevskij, V.S.

    1990-01-01

    The interaction between relativistic particles and a gaseous or condensed medium with a high density of nondegenerate excited quantum states involves the coherent conversion of atomic or molecular excitations into electromagnetic radiation

  20. Effects of the scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmarkov, D.

    1983-01-01

    Expansion of the scattering cross-sections into Legendre series is the usual way of solving the neutron transport problem. Because of the large space gradients of the neutron flux, the effects of that approximations become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account scattering anisotropy is presented. From the point of view of the accuracy and computing speed, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations (author) [sr

  1. Small angle scattering of X radiation and slow neutrons in structural analyses of amorphous solids

    International Nuclear Information System (INIS)

    Kostorz, G.

    1980-01-01

    Small angle scattering of x radiation and slow neutrons allows to detect inhomogeneities of the dimension of ten to some thousands of Angstroem by the difference in the scattering length density. The progress made during recent years in the development of apparatusses has created the possibility of solving very complicated problems. A first outline shows that in separation processes as well as in investigating extended defects the method of small angle scattering may provide valuable contributions to the analysis of the non-crystalline state

  2. Location of alien bodies in a media according to the data of scattering gamma radiation

    International Nuclear Information System (INIS)

    Vasil'ev, M.B.; Chuvashov, N.F.; Skuchaev, Yu.K.; Markov, V.I.

    1995-01-01

    Locations of alien bodies in a medium are studied by the method of model experiment using scattering γ-radiation. 60 Co and 137 Cs were used as radiation sources. The scattering bodies were made in the form of aluminium, iron and lead cylinders of different diameters inserted inside hollow cylindrical water, aluminium and iron media. The cases are reviewed when the alien bodies are in the center of cylindrical media. The obtained data are presented in the graphical form and in the form of tables. 4 refs., 4 figs. 1 tab

  3. Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.

    Science.gov (United States)

    Massey, Steven M; Spring, Justin B; Russell, Timothy H

    2008-07-21

    Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.

  4. Structural-electrical coupling optimisation for radiating and scattering performances of active phased array antenna

    Science.gov (United States)

    Wang, Congsi; Wang, Yan; Wang, Zhihai; Wang, Meng; Yuan, Shuai; Wang, Weifeng

    2018-04-01

    It is well known that calculating and reducing of radar cross section (RCS) of the active phased array antenna (APAA) are both difficult and complicated. It remains unresolved to balance the performance of the radiating and scattering when the RCS is reduced. Therefore, this paper develops a structure and scattering array factor coupling model of APAA based on the phase errors of radiated elements generated by structural distortion and installation error of the array. To obtain the optimal radiating and scattering performance, an integrated optimisation model is built to optimise the installation height of all the radiated elements in normal direction of the array, in which the particle swarm optimisation method is adopted and the gain loss and scattering array factor are selected as the fitness function. The simulation indicates that the proposed coupling model and integrated optimisation method can effectively decrease the RCS and that the necessary radiating performance can be simultaneously guaranteed, which demonstrate an important application value in engineering design and structural evaluation of APAA.

  5. Several problems of the theory of transition radiation and transition scattering

    International Nuclear Information System (INIS)

    Ginzburg, V.L.; Tsytovich, V.N.

    1979-01-01

    The process of transition radiation is a very general one. It appears if some source, which does not have a proper frequency (for example a point charge, multipole etc), is moving with a constant velocity in an inhomogeneous and/or nonstationary medium. In the case of a periodic medium the transition radiation has some special peculiarities and is called the resonance transition radiation or transition scattering. Transition scattering occurs particularly in the case when some wave of dielectric permittivity acts on a nonmoving (fixed) charge. The processes of transition radiation and transition scattering have analogies outside electrodynamics similarly to the Vavilov-Cherenkov emission. The latter occurs also for a source moving with a constant velocity but in a homogeneous medium (and only if the velocity of the source exceeds the wave phase velocity in the medium). The present review is dealing with several problems of the theory of transition radiation and transition scattering. Attention is paid mainly to the formulation of the problems and to revealing characterisic features and peculiarities of the phenomena described. (Auth.)

  6. Investigations on image improvement in radiodiagnosis under special consideration of reducing scattered radiation

    International Nuclear Information System (INIS)

    Becker, R.

    1976-10-01

    In the study, image improvement is proposed for scintiscanning, X-ray and neutron diagnosis as well as computer axial tomography. In order to reduce the scattered radiation, mainly two-dimensional radiation transport calculations are carried out, and the imaging properties are studied by simulation on a large computer. It was found, among other things, that in contrast to X-ray techniques, in diagnosis with fast neutrons the image quality can hardly be improved by screens for scattered radiation. Here the problem of scattered radiation can only be solved by using scanners with narrow beams. The new method of neutron diagnosis resulting from this is especially suited for representing structures behind bones or for the localization of bone tumors invisible to X-rays, but not for representing fatty tissue. For large depths of irradiation, the scattered radiation with neutron sources below 1 MeV gets so intensive that diagnosis becomes impossible. When fast neutrons are used are used, the method is applicable for computer axial tomography because of the narrow beams. (ORU) [de

  7. Direct time-domain techniques for transient radiation and scattering

    International Nuclear Information System (INIS)

    Miller, E.K.; Landt, J.A.

    1976-01-01

    A tutorial introduction to transient electromagnetics, focusing on direct time-domain techniques, is presented. Physical, mathematical, numerical, and experimental aspects of time-domain methods, with emphasis on wire objects excited as antennas or scatters are examined. Numerous computed examples illustrate the characteristics of direct time-domain procedures, especially where they may offer advantages over procedures in the more familiar frequency domain. These advantages include greater solution efficiency for many types of problems, the ability to handle nonlinearities, improved physical insight and interpretability, availability of wide-band information from a single calculation, and the possibility of isolating interactions among various parts of an object using time-range gating

  8. SCATTER

    International Nuclear Information System (INIS)

    Broome, J.

    1965-11-01

    The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)

  9. Beam size effects in the radiative Bhabha scattering

    International Nuclear Information System (INIS)

    Szczekowski, M.

    1990-01-01

    In some electromagnetic processes the measured cross section can be substantially smaller than calculated in standard Quantum Electrodynamics. The process of single bremsstrahlung, e + e - → e + e - γ is an example of such effect. If the size of the effect for large angle γ radiation is similar to its magnitude at low angles, then standard calculations of the radiative Bahbha background to e.g. the reaction used in counting the number of neutrino generations, e + e - → νν-barγ, at LEP energies can be overestimated by 10-20%. 5 refs., 5 figs. (author)

  10. Scattered radiation from dental metallic crowns in head and neck radiotherapy.

    Science.gov (United States)

    Shimozato, T; Igarashi, Y; Itoh, Y; Yamamoto, N; Okudaira, K; Tabushi, K; Obata, Y; Komori, M; Naganawa, S; Ueda, M

    2011-09-07

    We aimed to estimate the scattered radiation from dental metallic crowns during head and neck radiotherapy by irradiating a jaw phantom with external photon beams. The phantom was composed of a dental metallic plate and hydroxyapatite embedded in polymethyl methacrylate. We used radiochromic film measurement and Monte Carlo simulation to calculate the radiation dose and dose distribution inside the phantom. To estimate dose variations in scattered radiation under different clinical situations, we altered the incident energy, field size, plate thickness, plate depth and plate material. The simulation results indicated that the dose at the incident side of the metallic dental plate was approximately 140% of that without the plate. The differences between dose distributions calculated with the radiation treatment-planning system (TPS) algorithms and the data simulation, except around the dental metallic plate, were 3% for a 4 MV photon beam. Therefore, we should carefully consider the dose distribution around dental metallic crowns determined by a TPS.

  11. Radiative corrections to high-energy neutrino scattering

    International Nuclear Information System (INIS)

    Rujula, A. de; Petronzio, R.; Savoy-Navarro, A.

    1979-01-01

    Motivated by precise neutrino experiments, the electromagnetic radiative corrections to the data are reconsidered. The usefulness is investigated and the simplicity demonstrated of the 'leading log' approximation: the calculation to order α ln (Q/μ), α ln (Q/msub(q)). Here Q is an energy scale of the overall process, μ is the lepton mass and msub(q) is a hadronic mass, the effective quark mass in a parton model. The leading log radiative corrections to dsigma/dy distributions and to suitably interpreted dsigma/dx distributions are quark-mass independent. The authors improve upon the conventional leading log approximation and compute explicitly the largest terms that lie beyond the leading log level. In practice this means that the model-independent formulae, though approximate, are likely to be excellent estimates everywhere except at low energy or very large y. It is pointed out that radiative corrections to measurements of deviations from the Callan-Gross relation and to measurements of the 'sea' constituency of nucleons are gigantic. The QCD inspired study of deviations from scaling is of particular interest. The authors compute, beyond the leading log level, the radiative corrections of the QCD predictions. (Auth.)

  12. Violation of the factorization theorem in large-angle radiative Bhabha scattering

    International Nuclear Information System (INIS)

    Arbuzov, A.B.; Kuraev, Eh.A.; Shajkhatdenov, B.G.

    1998-01-01

    The lowest order QED radiative corrections to the radiative large-angle Bhabha scattering process in the region where all the kinematical invariants are large compared to the electron mass are considered. We show that the leading logarithmic corrections do not factor before the Born cross section, contrary to the picture assumed in the renormalization group approach. Estimation of the leading and nonleading contributions for typical kinematics of the hard process for energy of Φ factory is done

  13. The application of correlation techniques to the angular spectrum of scattered radiation from tokamak plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.

    1990-07-01

    In the limit of the first Born approximation for a partially coherent secondary source, consisting of a spatially random plasma illuminated by a coherent plane wave, it is shown that the spectral coherence of the scattered radiation as measured on an arbitrary plane beyond the scatterer conveys information on the three dimensional intensity distribution of the random source. By defining a new two point statistical measure of the random field, closely related to the cross spectral density, we show that the fluctuation amplitude of the random source along the direction of the incident plane wave may by recovered from the measurement of the scattered radiation. The application of cross spectral techniques to fluctuation studies on tokamaks is considered. 7 refs

  14. Solution of the radiative transfer equation for Rayleigh scattering using the infinite medium Green's function

    Science.gov (United States)

    Biçer, M.; Kaşkaş, A.

    2018-03-01

    The infinite medium Green's function is used to solve the half-space albedo, slab albedo and Milne problems for the unpolarized Rayleigh scattering case; these problems are the most classical problems of radiative transfer theory. The numerical results are obtained and are compared with previous ones.

  15. Nuclear resonant scattering of synchrotron radiation from nuclei in the Brownian motion

    International Nuclear Information System (INIS)

    Razdan, Ashok

    2003-01-01

    The time evolution of the coherent forward scattering of the synchrotron radiation for resonant nuclei in Brownian motion is studied. Apart from target thickness, the appearance of the dynamical beats also depends on 'α' which is the ratio of the harmonic force constant to the damping force constant of harmonic oscillator undergoing Brownian motion

  16. Investigation of vacuum polarization in t-channel radiative Bhabha scattering

    CERN Document Server

    Karlen, D A

    2001-01-01

    We discuss the possibility of a precision measurement of vacuum polarization in t-channel radiative Bhabha scattering at a high luminosity collider. For illustration, the achievable precision is estimated for the BaBar experiment at PEP-II and for the OPAL experiment at LEP.

  17. Study of radiative corrections with application to the electron-neutrino scattering

    International Nuclear Information System (INIS)

    Oliveira, L.C.S. de.

    1977-01-01

    The radiative correction method is studied which appears in Quantum Field Theory, for some weak interaction processes. e.g., Beta decay and muon decay. Such a method is then applied to calculate transition probability for the electron-neutrino scattering using the U-A theory as a base. The calculations of infrared and ultraviolet divergences are also discussed. (L.C.) [pt

  18. Examination of the component of the scattered radiation by external monitor chamber using the EGS4

    International Nuclear Information System (INIS)

    Shiota, Y.; Tabushi, K.; Kito, S.

    2005-01-01

    The output beams of the liner accelerator are radiated by an accelerated electron and a dose rate usually fluctuates. The variation affects the shape of a dose distribution in dosimetry. The external monitor chamber is often used for monitoring the variation. Generally the external monitor chamber is set above the water phantom. Therefore, if the irradiation field is small, the scattered radiation due to the external monitor chamber may affect a measurement dose. This work is to examine the component of the scattered radiation generated by external monitor chamber, and to investigate the effect on measurement dose using the EGS4 code and the Klein-Nishina formula. The shapes and the peak energies were corresponding to the spectra of EGS4 and the Klein-Nishina formula. Therefore the main interaction at the external monitor chamber is Compton scatter. The effect of the scattered radiation and the change of the dose distribution were few. However the dose decreased to about 1% under the position of the external monitor chamber. Therefore we should pay the attention to the distance between the external monitor chamber and the measurement chamber. (author)

  19. Application of correlation techniques to the angular spectrum of scattered radiation from tokamak plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.

    1990-01-01

    In the limit of the first Born approximation for a partially coherent secondary source consisting of a spatially random plasma illuminated by a coherent plane wave, it is shown that the spectral coherence of the scattered radiation conveys information on the three-dimensional intensity distribution of the secondary source

  20. Soliton generation via continuous stokes acoustic self-scattering of hypersonic waves in a paramagnetic crystal

    International Nuclear Information System (INIS)

    Bugay, A. N.; Sazonov, S. V.

    2008-01-01

    A new mechanism is proposed for continuous frequency down-conversion of acoustic waves propagating in a paramagnetic crystal at a low temperature in an applied magnetic field. A transverse hypersonic pulse generating a carrier-free longitudinal strain pulse via nonlinear effects is scattered by the generated pulse. This leads to a Stokes shift in the transverse hypersonic wave proportional to its intensity, and both pulses continue to propagate in the form of a mode-locked soliton. As the transverse-pulse frequency is Stokes shifted, its spectrum becomes narrower. This process can be effectively implemented only if the linear group velocity of the transverse hypersonic pulse equals the phase velocity of the longitudinal strain wave. These velocities are renormalized by spin-phonon coupling and can be made equal by adjusting the magnitude of the applied magnetic field. The transverse structure of the soliton depends on the sign of the group velocity dispersion of the transverse component. When the dispersion is positive, planar solitons can develop whose transverse component has a topological defect of dark vortex type and longitudinal component has a hole. In the opposite case, the formation of two-component acoustic 'bullets' or vortices localized in all directions is possible

  1. Analytic continuation of scattering data as a method of obtaining characteristics of bound states

    International Nuclear Information System (INIS)

    Blokhintsev, L.; Savin, D.

    2014-01-01

    An asymptotic normalization coefficient (ANC) determines the asymptotics of a wave function of a nucleus a in a binary channel b + c. ANCs are proportional to nuclear vertex constants (NVCs), which are on-shell matrix elements of the virtual processes a ↔ b+c. The method of the analytic continuation of the effective range function is applied to obtain the asymptotic normalization coefficients for 6 Li nucleus in the α+ d channel. Several sets of scattering phases obtained from the phase-shift analyses as well as from Faddeev calculations are used as an input. Since the α+d system possesses the low-lying inelastic threshold due to the dissociation of a deuteron, the approach used is generalized to include inelastic channels. The sensitivity of the obtained values of asymptotic normalization coefficients to the elastic channels coupling and to account of the inelastic channel is investigated. In summary, we can say that employing the analytic continuation of the effective range expansion to determine the ANCs and NVCs for the 6 Li → α + d channel turns out to be successful

  2. Evaluation of a method for correction of scatter radiation in thorax cone beam CT

    International Nuclear Information System (INIS)

    Rinkel, J.; Dinten, J.M.; Esteve, F.

    2004-01-01

    Purpose: Cone beam CT (CBCT) enables three-dimensional imaging with isotropic resolution. X-ray scatter estimation is a big challenge for quantitative CBCT imaging of thorax: scatter level is significantly higher on cone beam systems compared to collimated fan beam systems. The effects of this scattered radiation are cupping artefacts, streaks, and quantification inaccuracies. The beam stops conventional scatter estimation approach can be used for CBCT but leads to a significant increase in terms of dose and acquisition time. At CEA-LETI has been developed an original scatter management process without supplementary acquisition. Methods and Materials: This Analytical Plus Indexing-based method (API) of scatter correction in CBCT is based on scatter calibration through offline acquisitions with beam stops on lucite plates, combined to an analytical transformation issued from physical equations. This approach has been applied with success in bone densitometry and mammography. To evaluate this method in CBCT, acquisitions from a thorax phantom with and without beam stops have been performed. To compare different scatter correction approaches, Feldkamp algorithm has been applied on rough data corrected from scatter by API and by beam stops approaches. Results: The API method provides results in good agreement with the beam stops array approach, suppressing cupping artefact. Otherwise influence of the scatter correction method on the noise in the reconstructed images has been evaluated. Conclusion: The results indicate that the API method is effective for quantitative CBCT imaging of thorax. Compared to a beam stops array method it needs a lower x-ray dose and shortens acquisition time. (authors)

  3. Estimates of the Spectral Aerosol Single Sea Scattering Albedo and Aerosol Radiative Effects during SAFARI 2000

    Science.gov (United States)

    Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat; Russell, Philip B.

    2003-01-01

    Using measurements of the spectral solar radiative flux and optical depth for 2 days (24 August and 6 September 2000) during the SAFARI 2000 intensive field experiment and a detailed radiative transfer model, we estimate the spectral single scattering albedo of the aerosol layer. The single scattering albedo is similar on the 2 days even though the optical depth for the aerosol layer was quite different. The aerosol single scattering albedo was between 0.85 and 0.90 at 350 nm, decreasing to 0.6 in the near infrared. The magnitude and decrease with wavelength of the single scattering albedo are consistent with the absorption properties of small black carbon particles. We estimate the uncertainty in the single scattering albedo due to the uncertainty in the measured fractional absorption and optical depths. The uncertainty in the single scattering albedo is significantly less on the high-optical-depth day (6 September) than on the low-optical-depth day (24 August). On the high-optical-depth day, the uncertainty in the single scattering albedo is 0.02 in the midvisible whereas on the low-optical-depth day the uncertainty is 0.08 in the midvisible. On both days, the uncertainty becomes larger in the near infrared. We compute the radiative effect of the aerosol by comparing calculations with and without the aerosol. The effect at the top of the atmosphere (TOA) is to cool the atmosphere by 13 W/sq m on 24 August and 17 W/sq m on 6 September. The effect on the downward flux at the surface is a reduction of 57 W/sq m on 24 August and 200 W/sq m on 6 September. The aerosol effect on the downward flux at the surface is in good agreement with the results reported from the Indian Ocean Experiment (INDOEX).

  4. Determination of Atmospheric Aerosol Characteristics from the Polarization of Scattered Radiation

    Science.gov (United States)

    Harris, F. S., Jr.; McCormick, M. P.

    1973-01-01

    Aerosols affect the polarization of radiation in scattering, hence measured polarization can be used to infer the nature of the particles. Size distribution, particle shape, real and absorption parts of the complex refractive index affect the scattering. From Lorenz-Mie calculations of the 4-Stokes parameters as a function of scattering angle for various wavelengths the following polarization parameters were plotted: total intensity, intensity of polarization in plane of observation, intensity perpendicular to the plane of observation, polarization ratio, polarization (using all 4-Stokes parameters), plane of the polarization ellipse and its ellipticity. A six-component log-Gaussian size distribution model was used to study the effects of the nature of the polarization due to variations in the size distribution and complex refractive index. Though a rigorous inversion from measurements of scattering to detailed specification of aerosol characteristics is not possible, considerable information about the nature of the aerosols can be obtained. Only single scattering from aerosols was used in this paper. Also, the background due to Rayleigh gas scattering, the reduction of effects as a result of multiple scattering and polarization effects of possible ground background (airborne platforms) were not included.

  5. RADIATIVE TRANSFER MODELING OF THE ENIGMATIC SCATTERING POLARIZATION IN THE SOLAR Na i D{sub 1} LINE

    Energy Technology Data Exchange (ETDEWEB)

    Belluzzi, Luca [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Degl’Innocenti, Egidio Landi [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50125 Firenze (Italy)

    2015-12-01

    The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuous distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of Na i, with emphasis on the enigmatic D{sub 1} line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polarization observed in the core of the D{sub 1} line may be explained by the effect that one gets when the detailed spectral structure of the anisotropic radiation responsible for the optical pumping is taken into account. This physical ingredient is capable of introducing significant scattering polarization in the core of the Na i D{sub 1} line without the need for ground-level polarization.

  6. Scatter radiation breast exposure during head CT: impact of scanning conditions and anthropometric parameters on shielded and unshielded breast dose

    Energy Technology Data Exchange (ETDEWEB)

    Klasic, B. [Hospital for pulmonary diseases, Zagreb (Croatia); Knezevic, Z.; Vekic, B. [Rudjer Boskovic Institute, Zagreb (Croatia); Brnic, Z.; Novacic, K. [Merkur Univ. Hospital, Zagreb (Croatia)

    2006-07-01

    Constantly increasing clinical requests for CT scanning of the head on our facility continue to raise concern regarding radiation exposure of patients, especially radiosensitive tissues positioned close to the scanning plane. The aim of our prospective study was to estimate scatter radiation doses to the breast from routine head CT scans, both with and without use of lead shielding, and to establish influence of various technical and anthropometric factors on doses using statistical data analysis. In 85 patient referred to head CT for objective medical reasons, one breast was covered with lead apron during CT scanning. Radiation doses were measured at skin of both breasts and over the apron simultaneously, by the use of thermo luminescent dosimeters. The doses showed a mean reduction by 37% due to lead shielding. After we statistically analyzed our data, we observed significant correlation between under-the-shield dose and values of technical parameters. We used multiple linear regression model to describe the relationships of doses to unshielded and shielded breast respectively, with anthropometric and technical factors. Our study proved lead shielding of the breast to be effective, easy to use and leading to a significant reduction in scatter dose. (author)

  7. Scatter radiation breast exposure during head CT: impact of scanning conditions and anthropometric parameters on shielded and unshielded breast dose

    International Nuclear Information System (INIS)

    Klasic, B.; Knezevic, Z.; Vekic, B.; Brnic, Z.; Novacic, K.

    2006-01-01

    Constantly increasing clinical requests for CT scanning of the head on our facility continue to raise concern regarding radiation exposure of patients, especially radiosensitive tissues positioned close to the scanning plane. The aim of our prospective study was to estimate scatter radiation doses to the breast from routine head CT scans, both with and without use of lead shielding, and to establish influence of various technical and anthropometric factors on doses using statistical data analysis. In 85 patient referred to head CT for objective medical reasons, one breast was covered with lead apron during CT scanning. Radiation doses were measured at skin of both breasts and over the apron simultaneously, by the use of thermo luminescent dosimeters. The doses showed a mean reduction by 37% due to lead shielding. After we statistically analyzed our data, we observed significant correlation between under-the-shield dose and values of technical parameters. We used multiple linear regression model to describe the relationships of doses to unshielded and shielded breast respectively, with anthropometric and technical factors. Our study proved lead shielding of the breast to be effective, easy to use and leading to a significant reduction in scatter dose. (author)

  8. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Accardo, Angelo [Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163 (Italy); Di Fabrizio, Enzo [KAUST (King Abdullah University of Science and Technology), Jeddah (Saudi Arabia); BIONEM Lab at University Magna Graecia, Campus Salvatore Venuta, Viale Europa 88100, Germaneto-Catanzaro (Italy); Limongi, Tania [KAUST (King Abdullah University of Science and Technology), Jeddah (Saudi Arabia); Marinaro, Giovanni [Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163 (Italy); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France); Riekel, Christian, E-mail: riekel@esrf.fr [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France)

    2014-06-10

    A comprehensive review about the use of micro- and nanostructured superhydrophobic surfaces as a tool for in situ X-ray scattering investigations of soft matter and biological materials. Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data.

  9. Invited Review Terahertz Transmission, Scattering, Reflection, and Absorption—the Interaction of THz Radiation with Soils

    Science.gov (United States)

    Lewis, R. A.

    2017-07-01

    Terahertz radiation has been proposed as a useful tool in the study of soils and related materials from such diverse perspectives as detection of non-metallic landmines to improving soil fertility by agricultural charcoals produced by pyrolysis of organic material. The main barrier to such applications is that soils are rather opaque at terahertz frequencies. In this article, the main findings to date on the interaction of terahertz radiation with soils are reviewed, organized around the four phenomena of terahertz: transmission, scattering, reflection, and absorption. Terahertz transmission through soils is generally low and decreases with frequency. Terahertz scattering is evident in many THz-soil interactions, as the wavelength of the radiation is of the order of the particle size. Terahertz reflection is important to communications as these develop from the GHz into the THz band. Terahertz absorption on diluted soil samples has been demonstrated to be effective in identifying soil constituents, such as aromatic compounds, and soil contaminants, such as pesticides.

  10. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-04-30

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  11. Scattering and Diffraction of Electromagnetic Radiation: An Effective Probe to Material Structure

    Science.gov (United States)

    Xu, Yu-Lin

    2016-01-01

    Scattered electromagnetic waves from material bodies of different forms contain, in an intricate way, precise information on the intrinsic, geometrical and physical properties of the objects. Scattering theories, ever deepening, aim to provide dependable interpretation and prediction to the complicated interaction of electromagnetic radiation with matter. There are well-established multiple-scattering formulations based on classical electromagnetic theories. An example is the Generalized Multi-particle Mie-solution (GMM), which has recently been extended to a special version ? the GMM-PA approach, applicable to finite periodic arrays consisting of a huge number (e.g., >>106) of identical scattering centers [1]. The framework of the GMM-PA is nearly complete. When the size of the constituent unit scatterers becomes considerably small in comparison with incident wavelength, an appropriate array of such small element volumes may well be a satisfactory representation of a material entity having an arbitrary structure. X-ray diffraction is a powerful characterization tool used in a variety of scientific and technical fields, including material science. A diffraction pattern is nothing more than the spatial distribution of scattered intensity, determined by the distribution of scattering matter by way of its Fourier transform [1]. Since all linear dimensions entered into Maxwell's equations are normalized by wavelength, an analogy exists between optical and X-ray diffraction patterns. A large set of optical diffraction patterns experimentally obtained can be found in the literature [e.g., 2,3]. Theoretical results from the GMM-PA have been scrutinized using a large collection of publically accessible, experimentally obtained Fraunhofer diffraction patterns. As far as characteristic structures of the patterns are concerned, theoretical and experimental results are in uniform agreement; no exception has been found so far. Closely connected with the spatial distribution of

  12. Anomalous resonance-radiation energy-transfer rate in a scattering dispersive medium

    International Nuclear Information System (INIS)

    Shekhtman, V.L.

    1992-01-01

    This paper describes a generalization of the concept of group velocity as an energy-transfer rate in a dispersive medium with complex refractive index when the polaritons, which are energy carriers, undergo scattering, in contrast to the classical concept of the group velocity of free polaritons (i.e., without scattering in the medium). The concept of delay time from quantum multichannel-scattering, theory is used as the fundamental concept. Based on Maxwell's equations and the new mathematical Φ-function method, a consistent conceptual definition of group velocity in terms of the ratio of the coherent-energy flux density to the coherent-energy density is obtained for the first time, and a critical analysis of the earlier (Brillouin) understanding of energy-transfer rate is given in the light of radiation-trapping theory and the quantum theory of resonance scattering. The role of generalized group velocity is examined for the interpretation of the phenomenon of multiple resonance scattering, or radiation diffusion. The question of causality for the given problem is touched upon; a new relationship is obtained, called the microcausality condition, which limits the anomalous values of group velocity by way of the indeterminacy principle and the relativistic causality principle for macroscopic time intervals directly measurable in experiment, whereby attention is focused on the connection of the given microcausality condition and the well-known Wigner inequality for the time delay of spherical waves. 22 refs

  13. Influence of Ceiling Suspended Screen Positioning to the Scatter Radiation Levels in Interventional Cardiology

    International Nuclear Information System (INIS)

    Arandjic, D.; Bozovic, P.; Ciraj-Bjelac, O.; Antic, V.

    2013-01-01

    The objective of this paper is to identify the effects of the ceiling suspended screen position to the scatter radiation levels in the interventional cardiology. The scatter radiation in terms of ambient dose equivalent H * (10) was measured for various positions of protective screen in the positions of the first operator, nurse and radiographer, at elevations 100-190 cm and in four different angulations of the x-ray tube. To assess the effectiveness of the protective screen, the scattered dose was also measured in the absence of any protection in all four angulations and elevations. To simulate real clinical situation the measurements were performed in the presence of 30 cm PMMA phantom using standard clinical protocol. The utility of protective screen varied for different positions and angulations. Scatter radiation levels varied in the range 70 - 3400 μSv/h for the first operator, 140 - 3200 μSv/h for the nurse and 50 - 560 μSv/h for radiographer. Ceiling suspended screens can provide a substantial level of protection (up to factor 18) in interventional cardiology, but they have to be properly managed and positioned to achieve sufficient level of protection. The guidance for optimal protection is provided in the paper.(author)

  14. Gamma radiation compton scattering effect from the Ukrytie Object on the radiation situation at the Chernobyl' NPP territory

    International Nuclear Information System (INIS)

    Alekseeva, E.A.; Volkovich, A.G.; Koba, G.I.; Liksonov, V.I.; Stepanov, V.E.; Tyurin, A.S.; Urutskoev, L.I.; Chesnokov, A.V.

    1989-01-01

    With the aim of determination of the angular distribution of the gamma-radiation (GR) exposure dose rate (EDR) around the Ukrytie Object (UO) are described the measurement results of GR EDR in July 1988 at the territory, adjoining to UO. The conclusion is made that the main contribution into EDR ensures GR, scattered as a result of the Compton effect on air molecules and that the contribution of the NPP territory is small. 10 figs.; 3 tabs

  15. Effects of radiation scatter exposure on electrometer dose assessment in orthovoltage radiotherapy

    International Nuclear Information System (INIS)

    Butson, Martin J.; Yu, Peter K.N.; Cheung, Tsang; Oborn, B.M.

    2011-01-01

    During orthovoltage x-ray radiotherapy dosimetry, normal practice requires the use of a standard ionisation chamber and dedicated electrometer for dosimetry. In ideal conditions, the electrometer is positioned outside the treatment room to eliminate any effects from scatter radiation on dose measurement. However in some older designed rooms, there is no access portal for the chamber cable to run to an 'outside' position for the electrometer. As such the electrometer is positioned within the treatment room. This work quantifies the effects on measured charge when this occurs. Results have shown that with the electrometer positioned next to a solid water dosimetry stack and using a large 15 x 15 cm field at 250 kVp x-ray beam energy, charge results can deviate by up to ±17.2% depending on the polarity applied to the chamber compared to readings when the electrometer is outside the treatment room. It is assumed to be due to scatter radiation producing electrons in the amplifying circuit of the electrometer. Results are also shown when the electrometer is shielded by a 4 mm thick lead casing whilst inside the room which removes the scattering effect, providing the best case scenario when the electrometer must remain in the treatment room. Whilst it is well known that an electrometer should not be irradiated (even to scattered radiation), often small kilovoltage or orthovoltage rooms do not have a portal access for an electrometer to go outside. As such it would be recommended for a lead shield to be placed around the electrometer during irradiation if this was to occur to minimize dosimetric inaccuracies which may occur due to scattered radiation effects.

  16. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    International Nuclear Information System (INIS)

    Renard, Jean-Baptiste; Gaubicher, Bertrand; Thaury, Claire; Mineau, Jean-Luc

    2010-01-01

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration

  17. Isospin breaking in pion-nucleon scattering at threshold by radiative processes

    CERN Document Server

    Ericson, Torleif Eric Oskar

    2006-01-01

    We investigate the dispersive contribution by radiative processes such as (pi- proton to neutron gamma) and (pi- proton to Delta gamma) to the pion-nucleon scattering lengths of charged pions in the heavy baryon limit. They give a large isospin violating contribution in the corresponding isoscalar scattering length, but only a small violation in the isovector one. These terms contribute 6.3(3)% to the 1s level shift of pionic hydrogen and give a chiral constant F_pi^2f_1=-25.8(8) MeV.

  18. Subdiffraction field localisation in the scattering of femtosecond laser radiation by a dielectric microsphere

    Energy Technology Data Exchange (ETDEWEB)

    Geints, Yu E; Zemlyanov, A A; Panina, E K [V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

    2014-01-31

    The time dynamics of the optical field was theoretically considered in the near-field diffraction zone in the scattering of a femtosecond laser pulse by a transparent spherical microparticle. The spatial region of field focusing by the particle (the 'photonic jet' zone) was investigated; the evolution of the jet shape and the peak intensity in this region were analysed. For the first time it was determined that an extremely tight optical field localisation to a subdiffraction size is possible at a certain (resonance) temporal stage of photonic jet development. (radiation scattering)

  19. On scattering diagnostics with periodically pulsed lasers to follow the continuous evolution of time dependent plasma parameters

    International Nuclear Information System (INIS)

    Hellermann, M. von; Hirsch, K.; Doeble, H.F.

    1977-04-01

    The possibilities to use periodically pulsed lasers for plasma scattering diagnostics are discussed. An experiment with succesful application of a periodically pulsed frequency-doubled Nd:YAG laser is described and results are given. Application of the method to monitor continuously, with millisecond time resolution, parameters of Tokamak type plasmas, is considered. (orig.) [de

  20. Reduction of the scatter dose to the testicle outside the radiation treatment fields

    International Nuclear Information System (INIS)

    Kubo, H.; Shipley, W.U.

    1982-01-01

    A technique is described to reduce the dose to the contralateral testicle of patients with testis tumors during retroperitoneal therapy with 10 MV X-rays. When a conventional clam-shell shielding device was used, the dose to the testis from the photons scattered by the patient and the collimator jaws was found to be about 1.6% of the prescribed midplane dose. A more substantial gonadal shield made of low melting Ostalloy, that reduced further the dose from internal scattered X rays, was therefore designed. A 10 cm thick lead scrotal block above the scrotum immediately outside the field is shown to reduce the external scattered radiation to negligible levels. Using the shield and the block, it is possible to reduce the dose to the testicle to one-tenth of one percent of the prescribed midplane dose

  1. Reduction of the scatter dose to the testicle outside the radiation treatment fields

    International Nuclear Information System (INIS)

    Kubo, H.; Shipley, W.U.

    1982-01-01

    A technique is described to reduce the dose to the contralateral testicle of patients with testis tumors during retroperitoneal therapy with 10 MV X rays. When a conventional clam-shell shielding device was used, the dose to the testis from the photons scattered by the patient and collimator jaws was found to be about 1.6% of the prescribed midplane dose. A more substantial gonadal shield made of low melting point Ostalloy, that reduced further the dose from internal scattered X rays, was therefore designed. A 10 cm thick lead scrotal block above the scrotum immediately outside the field is shown to reduce the external scattering radiation to negligible levels. Using the shield and the block, it is possible to reduce the dose to the testicle to one-tenth of one percent of the prescribed midplane dose

  2. A successive order of scattering model for solving vector radiative transfer in the atmosphere

    International Nuclear Information System (INIS)

    Min Qilong; Duan Minzheng

    2004-01-01

    A full vector radiative transfer model for vertically inhomogeneous plane-parallel media has been developed by using the successive order of scattering approach. In this model, a fast analytical expansion of Fourier decomposition is implemented and an exponent-linear assumption is used for vertical integration. An analytic angular interpolation method of post-processing source function is also implemented to accurately interpolate the Stokes vector at arbitrary angles for a given solution. It has been tested against the benchmarks for the case of randomly orientated oblate spheroids, illustrating a good agreement for each stokes vector (within 0.01%). Sensitivity tests have been conducted to illustrate the accuracy of vertical integration and angle interpolation approaches. The contribution of each scattering order for different optical depths and single scattering albedos are also analyzed

  3. Prediction of mass absorption coefficients from inelastically scattered X-radiation for specimens of less than 'infinite thickness'

    International Nuclear Information System (INIS)

    Kieser, R.; Mulligan, T.J.

    1979-01-01

    An equation is developed which describes the X-ray scatter radiation from specimens of any thickness. This equation suggests that a specimen's mass absorption coefficient can be determined from its inelastically scattered X-radiation not only when the specimen is 'infinitely thick' but also when it is of 'intermediate thickness'. Measurements have been carried out with a standard energy-dispersive X-ray spectrometer on specimens of 'intermediate thickness'. Good agreement is obtained between the mass absorption coefficients that are calculated from the scattered radiation and those obtained on the basis of tabulated mass absorption coefficients for the elements. (author)

  4. Influence of multiple scattering of a relativistic electron in a periodic layered medium on coherent X-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Blazhevich, S. V.; Kos’kova, T. V.; Noskov, A. V., E-mail: noskovbupk@mail.ru [Belgorod State National Research University (Russian Federation)

    2016-01-15

    A dynamic theory of coherent X-ray radiation generated in a periodic layered medium by a relativistic electron multiply scattered by target atoms has been developed. The expressions describing the spectral–angular characteristics of parametric X-ray radiation and diffracted transition radiation are derived. Numerical calculations based on the derived expressions have been performed.

  5. Nuclear resonant scattering of synchrotron radiation: Applications in magnetism of layered structures

    International Nuclear Information System (INIS)

    Schlage, Kai; Röhlsberger, Ralf

    2013-01-01

    Highlights: •Depth-resolved determination of magnetic spin structures. •Isotopic probe layers allow for probing selected depths in the sample. •High sensitivity to magnetic domain patterns via diffuse scattering. -- Abstract: Nuclear resonant scattering of synchrotron radiation has become an established tool within condensed-matter research. Synchrotron radiation with its outstanding brilliance, transverse coherence and polarization has opened this field for many unique studies, for fundamental research in the field of light-matter interaction as well as for materials science. This applies in particular for the electronic and magnetic structure of very small sample volumes like micro- and nano-structures and samples under extreme conditions of temperature and pressure. This article is devoted to the application of the technique to nanomagnetic systems such as thin films and multilayers. After a basic introduction into the method, a number of our experiments are presented to illustrate how magnetic spin structures within such layer systems can be revealed

  6. Radiation and scattering by cavity-backed antennas on a circular cylinder

    Science.gov (United States)

    Kempel, Leo C.; Volakis, John L.

    1993-01-01

    Conformal arrays are popular antennas for aircraft and missile platforms due to their inherent low weight and drag properties. However, to date there has been a dearth of rigorous analytical or numerical solutions to aid the designer. In fact, it has been common practice to use limited measurements and planar approximations in designing such non-planar antennas. The finite element-boundary integral method is extended to scattering and radiation by cavity-backed structures in an infinite, metallic cylinder. In particular, the formulation specifics such as weight functions, dyadic Green's function, implementation details, and particular difficulties inherent to cylindrical structures are discussed. Special care is taken to ensure that the resulting computer program has low memory demand and minimal computational requirements. Both scattering and radiation parameters are computed and validated as much as possible.

  7. Quantum theory of laser radiation scattering by electrons in magnetic fields

    International Nuclear Information System (INIS)

    Rochlin, H.; Davidovich, L.

    1982-01-01

    A system consisting of an electron in a static magnetic field, interacting with the quantized electromagnetic field, within the non-relativistic and electric dipole approximations (with a cutoff in momentum space) is considered. The Heisenberg equations of motion are solved exactly and the time evolution of the electric field is determined. The power spectrum of the scattered radiation is calculated, when the electromagnetic field is initially in a coherent state. The results for the line shape of the scattered radiation are shown to be valid for magnetic fields up to 10 12 G. The quantization of the electromagnetic field allows one to consider effects of the natural linewidth and its dependence on the magnetic field. The renormalization of the electron mass is included in these treatment, and the results remain finite when the cutoff goes to infinity. (Author) [pt

  8. Tailored long range forces on polarizable particles by collective scattering of broadband radiation

    International Nuclear Information System (INIS)

    Holzmann, D; Ritsch, H

    2016-01-01

    Collective coherent light scattering by polarizable particles creates surprisingly strong, long range inter-particle forces originating from interference of the light scattered by different particles. While for monochromatic laser beams this interaction decays with the inverse distance, we show here that in general the effective interaction range and geometry can be controlled by the illumination bandwidth and geometry. As generic example we study the modifications inter-particle forces within a 1D chain of atoms trapped in the field of a confined optical nanofiber mode. For two particles we find short range attraction as well as optical binding at multiple distances. The range of stable distances shrinks with increasing light bandwidth and for a very large bandwidth field as e.g. blackbody radiation. We find a strongly attractive potential up to a critical distance beyond which the force gets repulsive. Including multiple scattering can even lead to the appearance of a stable configuration at a large distance. Such broadband scattering forces should be observable contributions in ultra-cold atom interferometers or atomic clocks setups. They could be studied in detail in 1D geometries with ultra-cold atoms trapped along or within an optical nanofiber. Broadband radiation force interactions might also contribute in astrophysical scenarios as illuminated cold dust clouds. (paper)

  9. Magnetic x-ray scattering studies of holmium using synchro- tron radiation

    International Nuclear Information System (INIS)

    Gibbs, D.; Moncton, D.E.; D'Amico, K.L.; Bohr, J.; Grier, B.H.

    1985-01-01

    We present the results of magnetic x-ray scattering experiments on the rare-earth metal holmium using synchrotron radiation. Direct high-resolution measurements of the nominally incommensurate magnetic satellite reflections reveal new lock-in behavior which we explain within a simple spin-discommensuration model. As a result of magnetoelastic coupling, the spin-discommensuration array produces additional x-ray diffraction satellites. Their observation further substantiates the model and demonstrates additional advantages of synchrotron radiation for magnetic-structure studies

  10. Experimental study of TJ-1 plasma using scattering and radiation emission techniques

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1987-01-01

    The Thomson scattering system of TJ-1 is described in detail. The radial profiles of Te and ne obtained in TJ-1 discharges are presented. This data make possible to deduce characteristic parameters of the plasma confinement in this machine, as energy confinement times, Zeff B. Using also radiation measurements (global and in the visible range) we obtained the particle confinement time and Zeff without non experimental assumptions. (Author) 52 refs

  11. Study of TJ-1 Tokamak plasmas with Thomson scattering and radiation diagnostics

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1987-06-01

    The Thomson scattering system of TJ-1 is described in detail. The radial profiles of T e and n e obtained in TJ-1 discharges are presented. This data makes possible to deduce characteristic parameters of the plasma confinement in this machine, as energy confinement times, Z eff B. Using also radiation measurements (global and in the visible range) we obtained the particle confinement time and Z eff without non experimental assumptions. (author) 56 figs., 52 refs

  12. On the radiative corrections of deep inelastic scattering of muon neutrino on nucleon

    International Nuclear Information System (INIS)

    So Sang Guk

    1986-01-01

    The radiative corrections of deep inelastic scattering process VΜP→ ΜN are considered. Matrix element which takes Feynman one photon exchange diagrams into account at high transfer momentum are used. Based on calculation of the matrix element one can obtain matrix element for given process. It is shown that the effective cross section which takes one photon exchange into account is obtained. (author)

  13. Low energy elastic scattering of positrons by CO: An application of continued fractions and Schwinger variational iterative methods

    Energy Technology Data Exchange (ETDEWEB)

    Arretche, F. [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, Santa Catarina (Brazil)], E-mail: farretche@hotmail.com; Mazon, K.T.; Michelin, S.E. [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, Santa Catarina (Brazil); Fujimoto, M.M. [Departamento de Fisica, Universidade Federal do Parana, 81531-990, Curitiba, Parana (Brazil); Iga, I.; Lee, M.-T. [Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905, Sao Paulo (Brazil)

    2008-02-15

    Iterative Schwinger variational methods and the method of continued fractions, widely used for electron-molecule scattering, are applied for the first time to investigate positron-molecule interactions. Specifically, integral and differential cross sections for elastic positron scattering by CO in the (0.5-20) eV energy range are calculated and reported. In our calculation, a static plus correlation-polarization potential is used to represent the collisional dynamics. Our calculated results are in general agreement with the theoretical and experimental data available in the literature.

  14. Universal analytical scattering form factor for shell-, core-shell, or homogeneous particles with continuously variable density profile shape.

    Science.gov (United States)

    Foster, Tobias

    2011-09-01

    A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society

  15. Modeling and design of radiative hydrodynamic experiments with X-ray Thomson Scattering measurements on NIF

    Science.gov (United States)

    Ma, K. H.; Lefevre, H. J.; Belancourt, P. X.; MacDonald, M. J.; Doeppner, T.; Keiter, P. A.; Kuranz, C. C.; Johnsen, E.

    2017-10-01

    Recent experiments at the National Ignition Facility studied the effect of radiation on shock-driven hydrodynamic instability growth. X-ray radiography images from these experiments indicate that perturbation growth is lower in highly radiative shocks compared to shocks with negligible radiation flux. The reduction in instability growth is attributed to ablation from higher temperatures in the foam for highly radiative shocks. The proposed design implements the X-ray Thomson Scattering (XRTS) technique in the radiative shock tube platform to measure electron temperatures and densities in the shocked foam. We model these experiments with CRASH, an Eulerian radiation hydrodynamics code with block-adaptive mesh refinement, multi-group radiation transport and electron heat conduction. Simulations are presented with SiO2 and carbon foams for both the high temperature, radiative shock and the low-temperature, hydrodynamic shock cases. Calculations from CRASH give estimations for shock speed, electron temperature, effective ionization, and other quantities necessary for designing the XRTS diagnostic measurement. This work is funded by the LLNL under subcontract B614207, and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  16. Investigation of scattered radiation in 3D whole-body positron emission tomography using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Adam, L.-E.; Brix, G.

    1999-01-01

    The correction of scattered radiation is one of the most challenging tasks in 3D positron emission tomography (PET) and knowledge about the amount of scatter and its distribution is a prerequisite for performing an accurate correction. One concern in 3D PET in contrast to 2D PET is the scatter contribution from activity outside the field-of-view (FOV) and multiple scatter. Using Monte Carlo simulations, we examined the scatter distribution for various phantoms. The simulations were performed for a whole-body PET system (ECAT EXACT HR + , Siemens/CTI) with an axial FOV of 15.5 cm and a ring diameter of 82.7 cm. With (without) interplane septa, up to one (two) out of three detected events are scattered (for a centred point source in a water-filled cylinder that nearly fills out the patient port), whereby the relative scatter fraction varies significantly with the axial position. Our results show that for an accurate scatter correction, activity as well as scattering media outside the FOV have to be taken into account. Furthermore it could be shown that there is a considerable amount of multiple scatter which has a different spatial distribution from single scatter. This means that multiple scatter cannot be corrected by simply rescaling the single scatter component. (author)

  17. Reduction of scatter radiation during transradial percutaneous coronary angiography: a randomized trial using a lead-free radiation shield.

    Science.gov (United States)

    Politi, Luigi; Biondi-Zoccai, Giuseppe; Nocetti, Luca; Costi, Tiziana; Monopoli, Daniel; Rossi, Rosario; Sgura, Fabio; Modena, Maria Grazia; Sangiorgi, Giuseppe M

    2012-01-01

    Occupational radiation exposure is a growing problem due to the increasing number and complexity of interventional procedures performed. Radial artery access has reduced the number of complications at the price of longer procedure duration. Radpad® scatter protection is a sterile, disposable bismuth-barium radiation shield drape that should be able to decrease the dose of operator radiation during diagnostic and interventional procedures. Such radiation shield has never been tested in a randomized study in humans. Sixty consecutive patients undergoing coronary angiography by radial approach were randomized 1:1 to Radpad use versus no radiation shield protection. The sterile shield was placed around the area of right radial artery sheath insertion and extended medially to the patient trunk. All diagnostic procedures were performed by the same operator to reduce variability in radiation absorption. Radiation exposure was measured blindly using thermoluminescence dosimeters positioned at the operator's chest, left eye, left wrist, and thyroid. Despite similar fluoroscopy time (3.52 ± 2.71 min vs. 3.46 ± 2.77 min, P = 0.898) and total examination dose (50.5 ± 30.7 vs. 45.8 ± 18.0 Gycm(2), P = 0.231), the mean total radiation exposure to the operator was significantly lower when Radpad was utilized (282.8 ± 32.55 μSv vs. 367.8 ± 105.4 μSv, P Radpad utilization at all body locations ranging from 13 to 34% reduction. This first-in-men randomized trial demonstrates that Radpad significantly reduces occupational radiation exposure during coronary angiography performed through right radial artery access. Copyright © 2011 Wiley Periodicals, Inc.

  18. Scattering and absorption characteristics of aerosols at an urban megacity over IGB: Implications to radiative forcing

    Science.gov (United States)

    Srivastava, A. K.; Bisht, D. S.; Singh, Sachchidanand; Kishore, N.; Soni, V. K.; Singh, Siddhartha; Tiwari, S.

    2018-06-01

    Aerosol scattering and absorption characteristics were investigated at an urban megacity Delhi in the western Indo-Gangetic Basin (IGB) during the period from October 2011 to September 2012 using different in-situ measurements. The scattering coefficient (σsp at 550 nm) varied between 71 and 3014 Mm-1 (mean 710 ± 615 Mm-1) during the entire study period, which was about ten times higher than the absorption coefficient (σabs at 550 nm 67 ± 40 Mm-1). Seasonally, σsp and σabs were substantially higher during the winter/post-monsoon periods, which also gave rise to single scattering albedo (SSA) by 5%. The magnitude of SSA (at 550 nm) varied between 0.81 and 0.94 (mean: 0.89 ± 0.05). Further, the magnitude of scattering Ångström exponent (SAE) and back-scattering Ångström exponent (BAE) showed a wide range from -1.20 to 1.57 and -1.13 to 0.87, respectively which suggests large variability in aerosol sizes and emission sources. Relatively higher aerosol backscatter fraction (b at 550 nm) during the monsoon (0.25 ± 0.10) suggests more inhomogeneous scattering, associated with the coarser dust particles. However, lower value of b during winter (0.13 ± 0.02) is associated with more isotropic scattering due to dominance of smaller size particles. This is further confirmed with the estimated asymmetry parameter (AP at 550 nm), which exhibits opposite trend with b. The aerosol optical parameters were used in a radiative transfer model to estimate aerosol radiative forcing. A mean radiative forcing of -61 ± 22 W m-2 (ranging from -111 to -40 W m-2) was observed at the surface and 42 ± 24 W m-2 (ranging from 18 to 87 W m-2) into the atmosphere, which can give rise to the mean atmospheric heating rate of 1.18 K day-1.

  19. Influence of X-ray scatter radiation on image quality in Digital Breast Tomosynthesis (DBT)

    Science.gov (United States)

    Rodrigues, M. J.; Di Maria, S.; Baptista, M.; Belchior, A.; Afonso, J.; Venâncio, J.; Vaz, P.

    2017-11-01

    Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging technique that was developed to solve the principal limitation of mammography, namely the overlapping tissue effect. This issue in standard mammography (SM) leads to two main problems: low sensitivity (difficulty to detect lesions) and low specificity (non-negligible percentage of false positives). Although DBT is now being introduced in clinical practice the features of this technique have not yet been fully and accurately assessed. Consequently, optimization studies in terms of choosing the most suitable parameters which maximize image quality according to the known limits of breast dosimetry are currently performing. In DBT, scatter radiation can lead to a loss of contrast and to an increase of image noise by reducing the signal-to-difference-noise ratio (SDNR) of a lesion. Moreover the use of an anti-scatter grid is a concern due to the low exposure of the photon flux available per projection. For this reason the main aim of this study was to analyze the influence of the scatter radiation on image quality and the dose delivered to the breast. In particular a detailed analysis of the scatter radiation on the optimal energy that maximizes the SDNR was performed for different monochromatic energies and voltages. To reach this objective the PenEasy Monte Carlo (MC) simulation tool imbedded in the general-purpose main program PENELOPE, was used. After a successful validation of the MC model with measurements, 2D projection images of primary, coherent and incoherent photons were obtained. For that, a homogeneous breast phantom (2, 4, 6, 8 cm) with 25%, 50% and 75% glandular compositions was used, including a 5 mm thick tumor. The images were generated for each monochromatic X-ray energies in the range from 16 keV to 32 keV. For each angular projection considered (25 angular projections covering an arc of 50°) the scatter-to-primary ratio (SPR), the mean glandular dose (MGD) and the signal

  20. Leakage and scattered radiation from hand-held dental x-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2007-06-15

    To compare the leakage and scattered radiation from hand-held dental X-ray unit with radiation from fixed dental X-ray unit. For evaluation we used one hand-held dental X-ray unit and Oramatic 558 (Trophy Radiologie, France), a fixed dental X-ray unit. Doses were measured with Unfors Multi-O-Meter 512L at the right and left hand levels of X-ray tube head part for the scattered and leakage radiation when human skull DXTTR {iota}{iota}{iota} was exposed to both dental X-ray units. And for the leakage radiation only, doses were measured at the immediately right, left, superior and posterior side of the tube head part when air was exposed. Exposure parameters of hand-held dental X-ray unit were 70 kVp, 3 mA , 0.1 second, and of fixed X-ray unit 70 kVp, 8 mA, 0.45 second. The mean dose at the hand level when human skull DXTTR {iota}{iota}{iota} was exposed with portable X-ray unit 6.39 {mu}Gy, and the mean dose with fixed X-ray unit 3.03 {mu}Gy (p<0.001). The mean dose at the immediate side of the tube head part when air was exposed with portable X-ray unit was 2.97 {mu}Gy and with fixed X-ray unit the mean dose was 0.68 {mu}Gy (p<0.01). The leakage and scattered radiation from hand-held dental radiography was greater than from fixed dental radiography.

  1. Leakage and scattered radiation from hand-held dental x-ray unit

    International Nuclear Information System (INIS)

    Kim, Eun Kyung

    2007-01-01

    To compare the leakage and scattered radiation from hand-held dental X-ray unit with radiation from fixed dental X-ray unit. For evaluation we used one hand-held dental X-ray unit and Oramatic 558 (Trophy Radiologie, France), a fixed dental X-ray unit. Doses were measured with Unfors Multi-O-Meter 512L at the right and left hand levels of X-ray tube head part for the scattered and leakage radiation when human skull DXTTR ΙΙΙ was exposed to both dental X-ray units. And for the leakage radiation only, doses were measured at the immediately right, left, superior and posterior side of the tube head part when air was exposed. Exposure parameters of hand-held dental X-ray unit were 70 kVp, 3 mA , 0.1 second, and of fixed X-ray unit 70 kVp, 8 mA, 0.45 second. The mean dose at the hand level when human skull DXTTR ΙΙΙ was exposed with portable X-ray unit 6.39 μGy, and the mean dose with fixed X-ray unit 3.03 μGy (p<0.001). The mean dose at the immediate side of the tube head part when air was exposed with portable X-ray unit was 2.97 μGy and with fixed X-ray unit the mean dose was 0.68 μGy (p<0.01). The leakage and scattered radiation from hand-held dental radiography was greater than from fixed dental radiography

  2. A simple property of the contribution of double scattered radiation to the lidar returnes from homogeneous fogs

    International Nuclear Information System (INIS)

    Bruscaglioni, P.

    1979-01-01

    By using the formulas presented in a previous paper for the calculation of the ratio D/S between the contributions of doubly scattered and singly scattered radiation to lidar returns from homogeneous fogs, it is shown that the ratio D/S is proportional to the lidar range, indipendently from the particular model of fog, i.e. from the assumed phase scattering function

  3. Evaluation of a scattered radiation field in a cluster relevant for multiple-energy X-ray holography

    International Nuclear Information System (INIS)

    Fonda, L.

    1996-09-01

    We analyze theoretically a recent proposal of utilizing synchrotron radiation to generate an electromagnetic scattering field at a specific target atom inside a material sample. The direct wave coming from a wiggler interferes there with the waves scattered by the surrounding atoms. The suggestion is relevant for obtaining atomic holographic images. (author). 23 refs, 2 figs

  4. A model-based approach of scatter dose contributions and efficiency of apron shielding for radiation protection in CT.

    Science.gov (United States)

    Weber, N; Monnin, P; Elandoy, C; Ding, S

    2015-12-01

    Given the contribution of scattered radiations to patient dose in CT, apron shielding is often used for radiation protection. In this study the efficiency of apron was assessed with a model-based approach of the contributions of the four scatter sources in CT, i.e. external scattered radiations from the tube and table, internal scatter from the patient and backscatter from the shielding. For this purpose, CTDI phantoms filled with thermoluminescent dosimeters were scanned without apron, and then with an apron at 0, 2.5 and 5 cm from the primary field. Scatter from the tube was measured separately in air. The scatter contributions were separated and mathematically modelled. The protective efficiency of the apron was low, only 1.5% in scatter dose reduction on average. The apron at 0 cm from the beam lowered the dose by 7.5% at the phantom bottom but increased the dose by 2% at the top (backscatter) and did not affect the centre. When the apron was placed at 2.5 or 5 cm, the results were intermediate to the one obtained with the shielding at 0 cm and without shielding. The apron effectiveness is finally limited to the small fraction of external scattered radiation. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Multiple scattering effects with cyclical terms in active remote sensing of vegetated surface using vector radiative transfer theory

    Science.gov (United States)

    The energy transport in a vegetated (corn) surface layer is examined by solving the vector radiative transfer equation using a numerical iterative approach. This approach allows a higher order that includes the multiple scattering effects. Multiple scattering effects are important when the optical t...

  6. Baryon scattering at high energies. Wave function, impact factor, and gluon radiation

    International Nuclear Information System (INIS)

    Bartels, J.; Motyka, L.; Jagellonian Univ., Krakow

    2007-11-01

    The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in γ * scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in γ * scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the γ * -initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2→4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3→4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)

  7. Baryon scattering at high energies. Wave function, impact factor, and gluon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Motyka, L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Jagellonian Univ., Krakow (Poland). Inst. of Physics

    2007-11-15

    The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in {gamma}{sup *} scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in {gamma}{sup *} scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the {gamma}{sup *}-initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2{yields}4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3{yields}4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)

  8. An exploration in acoustic radiation force experienced by cylindrical shells via resonance scattering theory.

    Science.gov (United States)

    Rajabi, Majid; Behzad, Mehdi

    2014-04-01

    In nonlinear acoustic regime, a body insonified by a sound field is known to experience a steady force that is called the acoustic radiation force (RF). This force is a second-order quantity of the velocity potential function of the ambient medium. Exploiting the sufficiency of linear solution representation of potential function in RF formulation, and following the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of the resonant field and a background (non-resonant) component, we will show that the radiation force is a composition of three components: background part, resonant part and their interaction. Due to the nonlinearity effects, each part contains the contribution of pure partial waves in addition to their mutual interaction. The numerical results propose the residue component (i.e., subtraction of the background component from the RF) as a good indicator of the contribution of circumferential surface waves in RF. Defining the modal series of radiation force function and its components, it will be shown that within each partial wave, the resonance contribution can be synthesized as the Breit-Wigner form for adequately none-close resonant frequencies. The proposed formulation may be helpful essentially due to its inherent value as a canonical subject in physical acoustics. Furthermore, it may make a tunnel through the circumferential resonance reducing effects on radiation forces. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Evaluation of systematic uncertainties caused by radiative corrections in experiments on deep inelastic νsub(l)N-scattering

    International Nuclear Information System (INIS)

    Bardin, D.Yu.

    1979-01-01

    Basing on the simple quark-parton model of strong interaction and on the Weinberg-Salam theory compact formulae are derived for the radiative correction to the charged current induced deep inelastic scattering of neutrinos on nucleons. The radiative correction is found to be around 20-30%, i.e., the value typical for deep inelastic lN-scattering. The results obtained are rather different from the presently available estimations of the effect under consideration

  10. Non-Directional Radiation Spread Modeling and Non-Invasive Estimating the Radiation Scattering and Absorption Parameters in Biological Tissue

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2015-01-01

    Full Text Available The article dwells on a development of new non-invasive measurement methods of optical parameters of biological tissues, which are responsible for the scattering and absorption of monochromatic radiation. It is known from the theory of radiation transfer [1] that for strongly scattering media, to which many biological tissues pertain, such parameters are parameters of diffusion approximation, as well as a scattering coefficient and an anisotropy parameter.Based on statistical modeling the paper examines a spread of non-directional radiation from a Lambert light beam with the natural polarization that illuminates a surface of the biological tissue. Statistical modeling is based on the Monte Carlo method [2]. Thus, to have the correct energy coefficient values of Fresnel reflection and transmission in simulation of such radiation by Monte Carlo method the author uses his finding that is a function of the statistical representation for the incidence of model photons [3]. The paper describes in detail a principle of fixing the power transmitted by the non-directional radiation into biological tissue [3], and the equations of a power balance in this case.Further, the paper describes the diffusion approximation of a radiation transfer theory, often used in simulation of radiation propagation in strongly scattering media and shows its application in case of fixing the power transmitted into the tissue. Thus, to represent an uneven power distribution is used an approximating expression in conditions of fixing a total input power. The paper reveals behavior peculiarities of solution on the surface of the biological tissue inside and outside of the incident beam. It is shown that the solution in the region outside of the incident beam (especially far away from it, essentially, depends neither on the particular power distribution across the surface, being a part of the tissue, nor on the refractive index of the biological tissue. It is determined only by

  11. Multiple Scattering of Gamma Radiation in a Spherical Concrete Wall Room

    Energy Technology Data Exchange (ETDEWEB)

    Leimdoerfer, M

    1962-12-15

    The Monte Carlo method has been applied for the calculation of the energy flux of scattered gamma radiation in a spherical room surrounded by an infinitely thick spherical wall and with a point source at the centre. Source energies were I, 2, 4, 6, and 10 MeV. The main investigation was carried out at a room radius of 500 cm but, for the 1 MeV source, the influence of varying the room radius down to 1 cm was analysed. The results contain energy distributions of the first four successive reflection components at the centre of the room and at the wall surface, as well as spatial distributions of the successive energy flux components. The neglect of reflection contributions of order five and higher was estimated to introduce an error of less than 0. 2 % of the total scattered energy flux. An analytical approximation is shown to produce a useful and easily applicable method of predicting the amount of scattered radiation in a spherical room.

  12. First observation of the depolarization of Thomson scattering radiation by a fusion plasma

    Science.gov (United States)

    Giudicotti, L.; Kempenaars, M.; McCormack, O.; Flanagan, J.; Pasqualotto, R.; contributors, JET

    2018-04-01

    We report the first experimental observation of the depolarization of the Thomson scattering (TS) radiation, a relativistic effect expected to occur in very high {{T}e} plasmas and never observed so far in a fusion machine. A set of unused optical fibers in the collection optics of the high resolution Thomson scattering system of JET has been used to detect the depolarized TS radiation during a JET campaign with {{T}e}≤slant 8 keV . A linear polarizer with the axis perpendicular to the direction of the incident E-field was placed in front of a fiber optic pair observing a region close to the plasma core, while another fiber pair with no polariser simultaneously observed an adjacent plasma region. The measured intensity ratio was found to be consistent with the theory, taking into account sensitivity coefficients of the two measurement channels determined with post-experiment calibrations and Raman scattering. This depolarization effect is at the basis of polarimetric TS, a different and complementary method for the analysis of TS spectra that can provide significant advantages for {{T}e} measurements in very hot plasmas such as in ITER ≤ft({{T}e}≤slant 40 keV \\right) .

  13. Multiple Scattering of Gamma Radiation in a Spherical Concrete Wall Room

    International Nuclear Information System (INIS)

    Leimdoerfer, M.

    1962-12-01

    The Monte Carlo method has been applied for the calculation of the energy flux of scattered gamma radiation in a spherical room surrounded by an infinitely thick spherical wall and with a point source at the centre. Source energies were I, 2, 4, 6, and 10 MeV. The main investigation was carried out at a room radius of 500 cm but, for the 1 MeV source, the influence of varying the room radius down to 1 cm was analysed. The results contain energy distributions of the first four successive reflection components at the centre of the room and at the wall surface, as well as spatial distributions of the successive energy flux components. The neglect of reflection contributions of order five and higher was estimated to introduce an error of less than 0. 2 % of the total scattered energy flux. An analytical approximation is shown to produce a useful and easily applicable method of predicting the amount of scattered radiation in a spherical room

  14. Effect of infrared radiation on the threshold behavior of scattering (and decay) processes

    International Nuclear Information System (INIS)

    Mohanty, A.K.; Rosenberg, L.; Spruch, L.

    1988-01-01

    An analysis is given of the effect of radiative corrections on the threshold behavior of the cross section for the inelastic scattering of a light charged particle by a neutral composite system. Explicit results are obtained for a model problem where the target consists of a proton and antiproton bound under their mutual Coulomb interaction and excited to a 2p state from its 1s ground state by electron impact, but the conclusions drawn are applicable, qualitatively, to a wide range of problems. It is found that when the energy resolution Δepsilon-c of the electron detector is small compared with the kinetic energy K' of the electron in the final state, the more careful treatment given here, which properly accounts for the rapid variation of the cross section for scattering energies near threshold, leads to only small modifications in the standard form of the radiative correction factor δ. For sufficiently high resolution in energy of a (high-energy) incident beam, the modification could be significant if Δepsilon-c is comparable with K'. The above considerations are applicable not only to scattering cross sections but to endpoints of the energy spectrum of the charged particle in a decay process in which only one charged particle is emitted

  15. Pitch angle scattering of relativistic electrons from stationary magnetic waves: Continuous Markov process and quasilinear theory

    International Nuclear Information System (INIS)

    Lemons, Don S.

    2012-01-01

    We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitch angle scattering of high-energy electrons into the geomagnetic loss cone.

  16. SASKTRAN: A spherical geometry radiative transfer code for efficient estimation of limb scattered sunlight

    International Nuclear Information System (INIS)

    Bourassa, A.E.; Degenstein, D.A.; Llewellyn, E.J.

    2008-01-01

    The inversion of satellite-based observations of limb scattered sunlight for the retrieval of constituent species requires an efficient and accurate modelling of the measurement. We present the development of the SASKTRAN radiative transfer model for the prediction of limb scatter measurements at optical wavelengths by method of successive orders along rays traced in a spherical atmosphere. The component of the signal due to the first two scattering events of the solar beam is accounted for directly along rays traced in the three-dimensional geometry. Simplifying assumptions in successive scattering orders provide computational optimizations without severely compromising the accuracy of the solution. SASKTRAN is designed for the analysis of measurements from the OSIRIS instrument and the implementation of the algorithm is efficient such that the code is suitable for the inversion of OSIRIS profiles on desktop computers. SASKTRAN total limb radiance profiles generally compare better with Monte-Carlo reference models over a large range of solar conditions than the approximate spherical and plane-parallel models typically used for inversions

  17. Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions

    International Nuclear Information System (INIS)

    Tarvainen, Tanja; Vauhkonen, Marko; Kolehmainen, Ville; Arridge, Simon R; Kaipio, Jari P

    2005-01-01

    In this paper, a coupled radiative transfer equation and diffusion approximation model is extended for light propagation in turbid medium with low-scattering and non-scattering regions. The light propagation is modelled with the radiative transfer equation in sub-domains in which the assumptions of the diffusion approximation are not valid. The diffusion approximation is used elsewhere in the domain. The two equations are coupled through their boundary conditions and they are solved simultaneously using the finite element method. The streamline diffusion modification is used to avoid the ray-effect problem in the finite element solution of the radiative transfer equation. The proposed method is tested with simulations. The results of the coupled model are compared with the finite element solutions of the radiative transfer equation and the diffusion approximation and with results of Monte Carlo simulation. The results show that the coupled model can be used to describe photon migration in turbid medium with low-scattering and non-scattering regions more accurately than the conventional diffusion model

  18. Scatter radiation dose at height of the lens and image quality in interventional cardiology

    International Nuclear Information System (INIS)

    Leguees, Fernando A. Leyton

    2016-01-01

    Cardiologist and other staff members receive high doses of scattered radiation. Cases of radiation-induced cataract among cardiology professionals have been reported in studies, estimates for the dose to eye lens ranged from 450 to 900 mSv per year (without ceiling suspended screen), over several years. Recent surveys regarding high prevalence of lens changes likely induced by radiation exposure suggest an urgent need for improved radiation safety and training, use of eye protection during catheterization procedures, and improved occupational dosimetry. In view of the evidence of radiation injuries, the ICRP recommends limiting the radiation dose to the lens to 20 mSv per year for occupational exposure. A system for optimizing the radiation exposure is the measurement of entrance surface air kerma (K a,e ) and kerma-area product (P KA ) for patient and scattered dose or dose rate at the position for the staff, under clinical working conditions using phantoms and defined technical factors. Correlating K a,e and P KA with the scatter dose, applying the attenuation factors protective devices can enable estimation of the lens doses for operators. The purpose of this work is: to study the possibility of establishing a procedure which is useful for scientific societies and the regulatory authority in the prevention and control of IOE dose and to control and improve the quality of procedures in interventional cardiology as an initiative to raise awareness and optimization of radiological protection. Measurements were taken in different cardiac laboratories. Clinical working conditions were reproduced during the experiments for the different hemodynamic angiographic projections and operating modes used in fluoroscopy and cine. A first K a,e rate reference proposal for the characterization of angiography for the different acquisition modes were 16; 35; 40 and 220 (mGy/min), respectively. Considering the typical PKA values to patient in interventional cardiology procedures

  19. Doubly-scattered-radiation contribution to Lidar returns from fog, evaluated by means of a simple geometrical approach

    International Nuclear Information System (INIS)

    Bruscaglioni, P.; Ismaelli, A.

    1978-01-01

    The contribution of doubly scattered radiation to the return of a monostatic Lidar, used for measurement of atmospheric visibility, is evaluated by means of a simple geometrical scheme. A very narrow laser beam is considered, to obtain an expression of the ratio D/S of doubly scattered power to singly scattered power. This assumption allows an easy consideration of any angle of scattering and the introduction of time into the calculations. Numerical computations are performed for several models of fog. Our results are similar, though a little lower, than the results of other theoretical treatments of this problem based on different assumptions. (author)

  20. Revisiting Bragg's X-ray microscope: scatter based optical transient grating detection of pulsed ionising radiation.

    Science.gov (United States)

    Fullagar, Wilfred K; Paganin, David M; Hall, Chris J

    2011-06-01

    Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Dosimetric measurement of scattered radiation from dental implants in simulated head and neck radiotherapy.

    Science.gov (United States)

    Wang, R; Pillai, K; Jones, P K

    1998-01-01

    The purpose of this study was to examine the dose enhancement at bone-implant interfaces from scattered radiation during simulated head and neck radiotherapy. Three cylindric implant systems with different compositions (pure titanium, titanium-aluminum-vanadium alloy, titanium coated with hydroxyapatite) and a high gold content transmandibular implant system (gold-copper-silver alloy) were studied. Extruded lithium fluoride single crystal chips were used as thermoluminescent material to measure radiation dose enhancement at 0, 1, and 2 mm from the bone-implant interface. The relative doses in buccal, lingual, mesial, and distal directions were also recorded and compared. The results indicated that the highest dose enhancement occurred at a distance of 0 mm from the bone-implant interface for all the implant systems studied. The transmandibular implants had higher scattered radiation than other groups at 0 mm and at 1 mm from the bone-implant interface. There was no significant difference of dose enhancement between buccal, lingual, mesial, and distal directions. Titanium implants coated with hydroxyapatite demonstrated the best results under the simulated irradiation.

  2. Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media

    Science.gov (United States)

    Liu, L. H.; Tan, J. Y.

    2007-02-01

    A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.

  3. Evaluation of the spectral distribution of X-ray beams from measurements on the scattered radiation

    International Nuclear Information System (INIS)

    Casnati, E.; Baraldi, C.

    1980-01-01

    Most of the phenomena activated by photons with energies below 100 keV show an apparent or real dependence on the quantum energy. Therefore, knowledge of the beam energy characteristics is of primary importance for interpretation of the irradiation results. The greatest difficulty arises from the high flux density of the beams usually employed which does not allow direct measurements of the beam. A method was developed which permits evaluation of the spectral distribution of the X-ray beam from a spectrometric measurement of the radiation scattered by a thin foil of a suitable metal. This makes possible a new and more rational approach to the measurement of X-rays in the energy range where the interaction parameters show a large photon energy dependence. The corrections required by the presence of some collateral effects, among which the most important is the coexistence of the coherent and incoherent scattering, must be evaluated. The knowledge of the spectral distribution is of immediate usefulness for studies of radiation damage in biological and other materials, for the calibration of radiation measuring instruments and for the improvement of the radiological instrumentation response which contributes to reducing the patient's dose. (H.K.)

  4. H(10) due to radiation scattered in a 6 MV Linac for tomotherapy

    International Nuclear Information System (INIS)

    Vega C, H. R.; Esparza H, A.; Garcia R, M. G.; Reyes R, E.; Hernandez A, L.; Rivera, T.

    2017-10-01

    In order to determine the environmental equivalent dose (H(10)), due to the radiation that is dispersed over the body of a patient, 100 thermoluminescent dosimeters (TLD) around 6 MV TomoLINAC were used. The characteristics of the tomotherapy have the disadvantage that the shielding of the bunker increases considerably and for its design validated parameters are used for the conventional Linacs. In order to determine H(10) due to scattered radiation, measurements were made in the vicinity of the isocenter, while the 6 MeV photon beam was applied on a phantom. Also, TLDs were placed on the walls of the bunker that remained for 7 days, where approximately 50 patients were treated per day. At points close to the isocenter, the H(10) has an angular distribution caused by the phantom shape. In the bunker walls the highest H(10) was observed in the primary barriers. In the labyrinth, the impact of the scattered radiation was observed when measuring a greater value of the environmental equivalent dose in the wall furthest from the isocenter compared to the point located closest to it. (Author)

  5. Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media

    International Nuclear Information System (INIS)

    Liu, L.H.; Tan, J.Y.

    2007-01-01

    A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media

  6. A novel radiation detector for removing scattered radiation in chest radiography: Monte Carlo simulation-based performance evaluation

    Science.gov (United States)

    Roh, Y. H.; Yoon, Y.; Kim, K.; Kim, J.; Kim, J.; Morishita, J.

    2016-10-01

    Scattered radiation is the main reason for the degradation of image quality and the increased patient exposure dose in diagnostic radiology. In an effort to reduce scattered radiation, a novel structure of an indirect flat panel detector has been proposed. In this study, a performance evaluation of the novel system in terms of image contrast as well as an estimation of the number of photons incident on the detector and the grid exposure factor were conducted using Monte Carlo simulations. The image contrast of the proposed system was superior to that of the no-grid system but slightly inferior to that of the parallel-grid system. The number of photons incident on the detector and the grid exposure factor of the novel system were higher than those of the parallel-grid system but lower than those of the no-grid system. The proposed system exhibited the potential for reduced exposure dose without image quality degradation; additionally, can be further improved by a structural optimization considering the manufacturer's specifications of its lead contents.

  7. Radiative transfer equation accounting for rotational Raman scattering and its solution by the discrete-ordinates method

    International Nuclear Information System (INIS)

    Rozanov, Vladimir V.; Vountas, Marco

    2014-01-01

    Rotational Raman scattering of solar light in Earth's atmosphere leads to the filling-in of Fraunhofer and telluric lines observed in the reflected spectrum. The phenomenological derivation of the inelastic radiative transfer equation including rotational Raman scattering is presented. The different forms of the approximate radiative transfer equation with first-order rotational Raman scattering terms are obtained employing the Cabannes, Rayleigh, and Cabannes–Rayleigh scattering models. The solution of these equations is considered in the framework of the discrete-ordinates method using rigorous and approximate approaches to derive particular integrals. An alternative forward-adjoint technique is suggested as well. A detailed description of the model including the exact spectral matching and a binning scheme that significantly speeds up the calculations is given. The considered solution techniques are implemented in the radiative transfer software package SCIATRAN and a specified benchmark setup is presented to enable readers to compare with own results transparently. -- Highlights: • We derived the radiative transfer equation accounting for rotational Raman scattering. • Different approximate radiative transfer approaches with first order scattering were used. • Rigorous and approximate approaches are shown to derive particular integrals. • An alternative forward-adjoint technique is suggested as well. • An additional spectral binning scheme which speeds up the calculations is presented

  8. Continuing dental education in radiation protection: monitoring the outcomes.

    Science.gov (United States)

    Absi, Eg; Drage, Na; Thomas, Hs; Newcombe, Rg; Nash, Es

    2009-03-01

    To evaluate an evolving radiation protection dental postgraduate course run in Wales between 2003 and 2007. We compared three standardized course series. Course content was enhanced in 2006 to target areas of weakness. In 2007, a single best answer multiple choice questionnaire instrument superseded a true/false format. Practitioners' performance was studied pre- and immediately post-training. 900 participants completed identical pre- and post-course validated multiple choice questionnaires. 809 (90%) paired morning-afternoon records, including those of 52 dental care professionals (DCPs), were analysed. Mean (standard error) pre- and post-course percentage scores for the three courses were 33.8 (0.9), 35.4 (1.4), 34.6 (1.0) and 63.6 (0.9), 59.0 (1.4), 69.5 (0.9). Pre-training, only 2.4%, 3.1% and 4.9% of participants achieved the pass mark compared to 57.7%, 48.4% and 65.9% post-training, indicating a rather greater pass rate and gain in the most recent series than earlier ones. In recent series, older more experienced candidates scored slightly higher; however, their gain from pre- to post-training was slightly less. Baseline levels of radiation protection knowledge remained very low but attending an approved course improved this considerably. Targeting areas of weaknesses produced higher scores. Current radiation protection courses may not be optimal for DCPs.

  9. Effect of ionizing radiation on in situ Raman scattering and photoluminescence of silica optical fibers

    International Nuclear Information System (INIS)

    Bilodeau, T.G.; Ewing, K.J.; Nau, G.M.; Aggarwal, I.D.

    1995-01-01

    Raman fiber optic chemical sensors provide remote situ characterization capability. One application of Raman fiber optic chemical sensors is the characterization of the contents of nuclear waste tanks. In these tanks it is expected that approximately 20 meters of optical fiber will be exposed to radiation levels between 100 and 1,000 rads/hour. In support of this work two silica optical fiber types (one a communications grade fiber and the other nominally radiation resistant) have been tested at the radiation levels expected in the tanks. Luminescence and Raman scattering measurements have been performed in situ with 488-nm excitation on two types of silica optical fiber exposed to a constant low to moderate dose rate of gamma radiation of 880 rads(Si)/hour from a 60 Co source for a total dose of greater than 45 krads. The nominally radiation-resistant fiber was also excited with 514.5-nm and near-infrared 830-nm laser radiation. The rate of the silica Raman signal decrease is more than three times greater for the visible excitation wavelengths than for the 830-nm excitation for the radiation resistant fiber. The behavior of the 650-nm photoluminescence line upon irradiation was different for the two fibers studied, both in terms of the shift of the 650-nm line and rate of increase of the normalized photoluminescence intensity. In all cases the photoluminescence from the fibers was less than the Raman intensity. No radioluminescence was observed in either fiber. The radiation resistant fiber exhibited photo bleaching effects on the Raman transmission when photoannealed with 488-nm laser light

  10. Effect of ionizing radiation on in situ Raman scattering and photoluminescence of silica optical fibers

    Science.gov (United States)

    Bilodeau, T. G.; Ewing, K. J.; Nau, G. M.; Aggarwai, I. D.

    1995-02-01

    Raman fiber optic chemical sensors provide remote in situ characterization capability. One application of Raman fiber optic chemical sensors is the characterization of the contents of nuclear waste tanks. In these tanks it is expected that approximately 20 meters of optical fiber will be exposed to radiation levels between 100 and 1000 rads/hour. In support of this work two silica optical fiber types (one a communications grade fiber and the other nominally radiation resistant) have been tested at the radiation levels expected in the tanks. Luminescence and Raman scattering measurements have been performed in situ with 488-nm excitation on two types of silica optical fiber exposed to a constant low to moderate dose rate of gamma radiation of 880 rads(Si)/hour from a /sup 60/Co source for a total dose of greater than 45 krads. The nominally radiation-resistant fiber was also excited with 514.5-nm and near-infrared 830-nm laser radiation. The rate of the silica Raman signal decrease is more than three times greater for the visible excitation wavelengths than for the 830-nm excitation for the radiation resistant fiber. The behavior of the 650-nm photoluminescence line upon irradiation was different for the two fibers studied, both in terms of the shift of the 650-nm line and rate of increase of the normalized photoluminescence intensity. In all cases the photoluminescence from the fibers was less than the Raman intensity. No radioluminescence was observed in either fiber. The radiation resistant fiber exhibited photobleaching effects on the Raman transmission when photoannealed with 488-nm laser light.

  11. Measurement of x-ray scattering cross sections of hydrogen and helium with synchrotron radiation

    International Nuclear Information System (INIS)

    Ice, G.E.

    1977-01-01

    Total x-ray scattering is a two-electron expectation value. The prominence of the electron correlation effect was demonstrated in recent theoretical work. Only one measurement of x-ray scattering from H 2 has been reported heretofore, nearly fifty years ago. New measurements were carried out using the virtually monochromatic, intense flux of synchrotron radiation in the SSRP EXAFS line. The targets, at 1 atm pressure, were UHP He and ultrapure H 2 that had been passed through a hot Pd--Ag alloy diffusion purifier. The scattered-photon spectra were measured with a Xe-filled proportional counter and fast multichannel analyzer. The incident flux was monitored with a parallel-plate ion chamber, calibrated by direct counting of the absorber-attenuated beam. Measurements were performed at 5, 6, and 7 keV photon energy, as a function of scattering angle (60, 90, and 135 deg) and azimuthal angle (i.e., polarization). The relative total differential photon scattering cross sections for H 2 over the range 3.0 less than or equal to x = 4πsin (theta/2)lambda less than or equal to 5.6 A -1 agree to within approx. 1% with the correlated calculations of Bentley and Stewart. The ratios of measured cross sections for H 2 to those for He at x = 3.0 and 5.6 A -1 agree to within 1% with the ratios of the Bentley--Stewart H 2 cross sections to the correlated wave-function calculations of Brown for He

  12. A new shielding calculation method for X-ray computed tomography regarding scattered radiation.

    Science.gov (United States)

    Watanabe, Hiroshi; Noto, Kimiya; Shohji, Tomokazu; Ogawa, Yasuyoshi; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Hiraki, Hitoshi; Kida, Tetsuo; Sasanuma, Kazutoshi; Katsunuma, Yasushi; Nakano, Takurou; Horitsugi, Genki; Hosono, Makoto

    2017-06-01

    The goal of this study is to develop a more appropriate shielding calculation method for computed tomography (CT) in comparison with the Japanese conventional (JC) method and the National Council on Radiation Protection and Measurements (NCRP)-dose length product (DLP) method. Scattered dose distributions were measured in a CT room with 18 scanners (16 scanners in the case of the JC method) for one week during routine clinical use. The radiation doses were calculated for the same period using the JC and NCRP-DLP methods. The mean (NCRP-DLP-calculated dose)/(measured dose) ratios in each direction ranged from 1.7 ± 0.6 to 55 ± 24 (mean ± standard deviation). The NCRP-DLP method underestimated the dose at 3.4% in fewer shielding directions without the gantry and a subject, and the minimum (NCRP-DLP-calculated dose)/(measured dose) ratio was 0.6. The reduction factors were 0.036 ± 0.014 and 0.24 ± 0.061 for the gantry and couch directions, respectively. The (JC-calculated dose)/(measured dose) ratios ranged from 11 ± 8.7 to 404 ± 340. The air kerma scatter factor κ is expected to be twice as high as that calculated with the NCRP-DLP method and the reduction factors are expected to be 0.1 and 0.4 for the gantry and couch directions, respectively. We, therefore, propose a more appropriate method, the Japanese-DLP method, which resolves the issues of possible underestimation of the scattered radiation and overestimation of the reduction factors in the gantry and couch directions.

  13. Hazards of radiation from continuous nuclear bomb tests

    Energy Technology Data Exchange (ETDEWEB)

    Leipunskii, O I

    1958-01-01

    The hazards from radioactive fallout due to continuous nuclear bomb tests equivalent in intensity to 11 megatons of TNT are studied. Concentrations of /sup 90/Sr in the bones, the rate of leukemia, and the number of the victims of genetic damage are evaluated. The calculations show that towards the end of the century the concentration of /sup 90/Sr in the spine in large groups of the population could exceed the officially permissible dose and each year of continuous tests would result in the birth of 44,000 persons burdened by hereditary sickness, and 29,000 cases of leukemia.

  14. Investigation of Doppler spectra of laser radiation scattered inside hand skin during occlusion test

    Science.gov (United States)

    Kozlov, I. O.; Zherebtsov, E. A.; Zherebtsova, A. I.; Dremin, V. V.; Dunaev, A. V.

    2017-11-01

    Laser Doppler flowmetry (LDF) is a method widely used in diagnosis of microcirculation diseases. It is well known that information about frequency distribution of Doppler spectrum of the laser radiation scattered by moving red blood cells (RBC) usually disappears after signal processing procedure. Photocurrent’s spectrum distribution contains valuable diagnostic information about velocity distribution of the RBC. In this research it is proposed to compute the indexes of microcirculation in the sub-ranges of the Doppler spectrum as well as investigate the frequency distribution of the computed indexes.

  15. Source of X-ray radiation based on back compton scattering

    CERN Document Server

    Bulyak, E V; Karnaukhov, I M; Kononenko, S G; Lapshin, V G; Mytsykov, A O; Telegin, Yu P; Shcherbakov, A A; Zelinsky, Andrey Yurij

    2000-01-01

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 sup - sup 7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.

  16. Source of X-ray radiation based on back compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A.Yu

    2000-06-21

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10{sup -7} m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.

  17. Source of X-ray radiation based on back compton scattering

    International Nuclear Information System (INIS)

    Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A.; Zelinsky, A.Yu.

    2000-01-01

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 -7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam

  18. Density measurement by means of once scattered gamma radiation the ETG probe, principles and equipment

    International Nuclear Information System (INIS)

    Joergensen, J.L.; Oelgaard, P.L.; Berg, F.

    1987-01-01

    The Department of Electrophysics, the Technical University of Denmark, and the Danish National Road Laboratory have together developed a new patent claimed device for measurements of the in situ density of materials. This report describes the principles of the system and some experimental results. The system is based on the once scattered gamma radiation. In a totally non-destructive and fast way it is possible to measure the density of up to 25 cm thick layers. Furthermore, an estimate of the density variation through the layer may be obtained. Thus the gauge represents a new generation of equipment for e.g. compaction control of road constructions. (author)

  19. Nuclear inelastic scattering of synchrotron radiation on solutions of 57Fe complexes

    International Nuclear Information System (INIS)

    Vanko, Gy.; Vertes, A.; Bottyan, L.; Nagy, D.L.; Szilagyi, E.

    2000-01-01

    Nuclear inelastic resonant scattering of synchrotron radiation was applied to the study solutions of 57 Fe complexes. In order to reveal different inelastic contributions solutions of two different 57 Fe complexes of different molecular dimensions with solvents of substantially different viscosities were studied. We argue that the only former experiment available in the literature overestimates the role of the diffusivity in affecting the spectrum. The first direct observation of an intramolecular vibrational transition assisting the nuclear resonance absorption in a liquid is reported. (author)

  20. Electron scattering by an atom in the field of resonant laser radiation

    International Nuclear Information System (INIS)

    Agre, M.; Rapoport, L.

    1982-01-01

    The collision of an electron with an atom in the field of intense electromagnetic radiation that is at resonance with two atomic multiplets is investigated theoretically. Expressions are obtained for the amplitudes of the elastic and inelastic scattering with emission (absorption) of photons. The case of a ground state at resonance with a doublet is considered in detail. It is shown that photon absorption takes place predominantly in the case of resonance in inelastic transitions from a state of the lower multiplet, and photon emission takes place in transitions from a state of the upper multiplet

  1. Scattering anomalies in a resonator above the thresholds of the continuous spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, S A [St. Petersburg State Politechnical University, St. Petersburg (Russian Federation)

    2015-06-30

    We consider the Dirichlet spectral problem for the Laplace operator in a multi-dimensional domain with a cylindrical outlet to infinity, a Helmholtz resonator. Using asymptotic analysis of the scattering matrix we demonstrate different types of reflection of high-amplitude near-threshold waves. One scattering type or another, unstable or stable with respect to variations of the resonator shapes, is determined by the presence or absence of stabilizing solutions at the threshold frequency, respectively. In a waveguide with two cylindrical outlets to infinity, we discover the effect of almost complete passage of the wave under 'fine tuning' of the resonator. Bibliography: 26 titles.

  2. Analytic continuation of scattering data to the region of negative energies for systems that have one and two bound states

    International Nuclear Information System (INIS)

    Blokhintsev, L. D.; Savin, D. A.

    2016-01-01

    An exactly solvable potential model is used to study the possibility of deducing information about the features of bound states for the system under consideration (binding energies and asymptotic normalization coefficients) on the basis of data on continuum states. The present analysis is based on an analytic approximation and on the subsequent continuation of a partial-wave scattering function from the region of positive energies to the region of negative energies. Cases where the system has one or two bound states are studied. The α+d and α+"1"2C systems are taken as physical examples. In the case of one bound state, the scattering function is a smooth function of energy, and the procedure of its analytic continuation for different polynomial approximations leads to close results, which are nearly coincident with exact values. In the case of two bound states, the scattering function has two poles—one in the region of positive energies and the other in the region of negative energies between the energies corresponding to the two bound states in question. Padéapproximants are used to reproduce these poles. The inclusion of these poles proves to be necessary for correctly describing the properties of the bound states.

  3. Experimental researches of nuclear reactor neutron and gamma radiation scattering into the atmosphere

    International Nuclear Information System (INIS)

    Istomin, Yu.L.; Zelensky, D.I.; Cherepnin, Yu.S.; Orlov, Yu.V.; Netecha, M.E.; Avaev, V.N.; Vasel'ev, G.A.; Sakamoto, H.; Nomura, Y.; Naito, Y.

    1998-01-01

    In the report there are results of measuring radiation distribution on the caps of the RA and IWG.1M research reactors. Comparative analysis of the results is also in the report. There are neutron spectra in the interval of energies from 10 -9 to 13 MeV above RA and IWG.1M reactors. The spectra were measured with a set of activation detectors. Measurements were calculated to a nominal rate: for RA reactor - 300 kw, for IWG.1M - 7 MW. Thus, in the course of the experiment, vast experimental information relating to distribution of the RA and IWG.1M reactor gamma and neutron radiation scattered in the air for distances varying from 50 to 1000 m from the reactors has become available. The data obtained are to be used to verify the calculation codes and to validate the group nuclear constants

  4. Radiation pressure in galactic disks: stability, turbulence, and winds in the single-scattering limit

    Science.gov (United States)

    Wibking, Benjamin D.; Thompson, Todd A.; Krumholz, Mark R.

    2018-04-01

    The radiation force on dust grains may be dynamically important in driving turbulence and outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically-thick limit relevant to the densest ultra-luminous galaxies and super star clusters, where reprocessed infrared photons provide the dominant source of electromagnetic momentum. However, even among starburst galaxies, the great majority instead lie in the so-called "single-scattering" limit, where the system is optically-thick to the incident starlight, but optically-thin to the re-radiated infrared. In this paper we present a stability analysis and multidimensional radiation-hydrodynamic simulations exploring the stability and dynamics of isothermal dusty gas columns in this regime. We describe our algorithm for full angle-dependent radiation transport based on the discontinuous Galerkin finite element method. For a range of near-Eddington fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent atmosphere with a scale height significantly inflated compared to the gas pressure scale height and mass-weighted turbulent energy densities of ˜0.01 - 0.1 of the midplane radiation energy density, corresponding to mass-weighted velocity dispersions of Mach number ˜0.5 - 2. Extrapolation of our results to optical depths of 103 implies maximum turbulent Mach numbers of ˜20. Comparing our results to galaxy-averaged observations, and subject to the approximations of our calculations, we find that radiation pressure does not contribute significantly to the effective supersonic pressure support in star-forming disks, which in general are substantially sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical equilibrium and comment on implications for radiation-pressure-driven galactic winds.

  5. LASER RADIATION CHARACTERISTICS (BRIEF COMMUNICATIONS): Conversion of KrCl and XeCl laser radiation to the visible spectral range by stimulated Raman scattering in lead vapor

    Science.gov (United States)

    Evtushenko, Gennadii S.; Mel'chenko, S. V.; Panchenko, Aleksei N.; Tarasenko, Viktor F.

    1990-04-01

    Conversion of KrCl and XeCl laser radiation by stimulated Raman scattering was achieved in lead vapor. The KrCl laser radiation was converted into three lines in the visible region at λ = 406, 590, and 723 nm by transitions from both the ground and first excited levels of the lead atom. The conversion efficiency of XeCl laser radiation of low spatial coherence was found to be limited by the activation of a competing nonlinear process.

  6. Relationship between the Kubelka-Munk scattering and radiative transfer coefficients.

    Science.gov (United States)

    Thennadil, Suresh N

    2008-07-01

    The relationship between the Kubelka-Munk (K-M) and the transport scattering coefficient is obtained through a semi-empirical approach. This approach gives the same result as that given by Gate [Appl. Opt.13, 236 (1974)] when the incident beam is diffuse. This result and those given by Star et al. [Phys. Med. Biol.33, 437 (1988)] and Brinkworth [Appl. Opt.11, 1434 (1972)] are compared with the exact solution of the radiative transfer equation over a large range of optical properties. It is found that the latter expressions, which include an absorption component, do not give accurate results over the range considered. Using the semi-empirical approach, the relationship between the K-M and the transport scattering coefficient is derived for the case where the incident light is collimated. It is shown that although the K-M equation is derived based on diffuse incident light, it can also represent very well the reflectance from a slab of infinite thickness when the incident light is collimated. However, in this case the relationship between the coefficients has to include a function that is dependent on the anisotropy factor. Analysis indicates that the K-M transform achieves the objective of obtaining a measure that gives the ratio of absorption to scattering effects for both diffuse and collimated incident beams over a large range of optical properties.

  7. A MULTIPLE SCATTERING POLARIZED RADIATIVE TRANSFER MODEL: APPLICATION TO HD 189733b

    Energy Technology Data Exchange (ETDEWEB)

    Kopparla, Pushkar; Yung, Yuk L. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Natraj, Vijay; Swain, Mark R. [Jet Propulsion Laboratory (NASA-JPL), Pasadena, CA (United States); Zhang, Xi [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States); Wiktorowicz, Sloane J., E-mail: pkk@gps.caltech.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States)

    2016-01-20

    We present a multiple scattering vector radiative transfer model that produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet’s atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partially covered by clouds or hazes, exhibit larger contrasts in polarized light when compared to clear atmospheres. This effect can potentially be used to identify patchy clouds in exoplanets. Given a set of full phase polarimetric measurements, this model can constrain the geometric albedo, properties of scattering particles in the atmosphere, and the longitude of the ascending node of the orbit. The model is used to interpret new polarimetric observations of HD 189733b in a companion paper.

  8. A Monte Carlo study of the energy spectra and transmission characteristics of scattered radiation from x-ray computed tomography.

    Science.gov (United States)

    Platten, David John

    2014-06-01

    Existing data used to calculate the barrier transmission of scattered radiation from computed tomography (CT) are based on primary beam CT energy spectra. This study uses the EGSnrc Monte Carlo system and Epp user code to determine the energy spectra of CT scatter from four different primary CT beams passing through an ICRP 110 male reference phantom. Each scatter spectrum was used as a broad-beam x-ray source in transmission simulations through seventeen thicknesses of lead (0.00-3.50 mm). A fit of transmission data to lead thickness was performed to obtain α, β and γ parameters for each spectrum. The mean energy of the scatter spectra were up to 12.3 keV lower than that of the primary spectrum. For 120 kVp scatter beams the transmission through lead was at least 50% less than predicted by existing data for thicknesses of 1.5 mm and greater; at least 30% less transmission was seen for 140 kVp scatter beams. This work has shown that the mean energy and half-value layer of CT scatter spectra are lower than those of the corresponding primary beam. The transmission of CT scatter radiation through lead is lower than that calculated with currently available data. Using the data from this work will result in less lead shielding being required for CT scanner installations.

  9. Continuing training program in radiation protection in biological research centers

    International Nuclear Information System (INIS)

    Escudero, R.; Hidalgo, R.M.; Usera, F.; Macias, M.T.; Mirpuri, E.; Perez, J.; Sanchez, A.

    2008-01-01

    The use of ionizing radiation in biological research has many specific characteristics. A great variety of radioisotopic techniques involve unsealed radioactive sources, and their use not only carries a risk of irradiation, but also a significant risk of contamination. Moreover, a high proportion of researchers are in training and the labor mobility rate is therefore high. Furthermore, most newly incorporated personnel have little or no previous training in radiological protection, since most academic qualifications do not include training in this discipline. In a biological research center, in addition to personnel whose work is directly associated with the radioactive facility (scientific-technical personnel, operators, supervisors), there are also groups of support personnel The use of ionizing radiation in biological research has many specific characteristics. A great variety of radioisotopic techniques involve unsealed radioactive sources, and their use not only carries a risk of irradiation, but also a significant risk of contamination. Moreover, a high proportion of researchers are in training and the labor mobility rate is therefore high. Furthermore, most newly incorporated personnel have little or no previous training in radiological protection, since most academic qualifications do not include training in this discipline. In a biological research center, in addition to personnel whose work is directly associated with the radioactive facility (scientific-technical personnel, operators, supervisors), there are also groups of support personnel maintenance and instrumentation workers, cleaners, administrative personnel, etc. who are associated with the radioactive facility indirectly. These workers are affected by the work in the radioactive facility to varying degrees, and they therefore also require information and training in radiological protection tailored to their level of interaction with the installation. The aim of this study was to design a

  10. Plasma scattering measurement using a submillimeter wave gyrotron as a radiation source

    International Nuclear Information System (INIS)

    Ogawa, I.; Idehara, T.; Itakura, Y.; Myodo, M.; Hori, T.; Hatae, T.

    2004-01-01

    Plasma scattering measurement is an effective technique to observe low frequency density fluctuations excited in plasma. The spatial and wave number resolutions and the S/N ratio of measurement depend on the wavelength range, the size and the intensity of a probe beam. A well-collimated, submillimeter wave beam is suitable for improving the spatial and wave number resolutions. Application of high frequency gyrotron is effective in improving the S/N ratio of the measurement because of its capacity to deliver high power. Unlike the molecular vapor lasers, the gyrotrons generate diverging beam of radiation with TE mn mode structure. It is therefore necessary to convert the output radiation into a Gaussian beam. A quasi-optical antenna is a suitable element for the conversion system under consideration since it is applicable to several TE 0n and TE 1n modes. In order to apply the gyrotron to plasma scattering measurement, we have stabilized the output (P = 110 W, f = 354 GHz) of gyrotron up to the level (ΔP/P < 1 %, Δf< 10 kHz). The gyrotron output can be stabilized by decreasing the fluctuation of the cathode potential. (authors)

  11. Electromagnetic scattering and radiation from microstrip patch antennas and spirals residing in a cavity

    Science.gov (United States)

    Volakis, J. L.; Gong, J.; Alexanian, A.; Woo, A.

    1992-01-01

    A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy.

  12. X-ray spectral determination by detection of radiation scattered at different angles

    International Nuclear Information System (INIS)

    Barrea, Raul; Mainardi, R.T.

    1987-01-01

    A precise knowledge of the spectral content of an X-ray beam is of fundamental importance in areas such as X-ray fluorescence analysis by absolute methods, radiodiagnosis, radiotherapy, computed tomography, etc. A simple practical method was developed to determine X-ray spectra emitted by X-ray tubes. It is based on the scattering of the beam on a solid target and detection of this radiation at different angles. This methodology can easily be adapted to the successive attenuation of the beam procedure. Numerical parameter values of a proposed analytical function for the energy spectrum are found measuring the radiation intensity with a suitable detector (ionization chamber or plastic scintillation detector) and equating it with the convolution integral of the proposed spectrum with the incoherent scattering function. This procedure of spectra determination is enclosed in the same group of those generically referred as successive modifications of the irradiation set up used in absolute methods of X-ray fluorescence analysis. (Author) [es

  13. Quantum theory of the laser radiation scattering by electrons in magnetic fields

    International Nuclear Information System (INIS)

    Rochlin, H.

    1981-08-01

    A system composed of an electron in a static magnetic field interacting with the quantized electromagnetic field, within the electric-dipole and the nonrelativistic approximations (with a cutoff in momentum space) is considered. The Heisenberg equations are solved exactly and the time evolution of the electric field is determined. This result is then used to obtain the spectrum of the scattered radiation when the initial state of the field is coherent, aplying the theory of photodetection. This theory is thoroughly discussed. Several expressions proposed in the literature for the time-dependent spectrum are compared and conditions for the equivalence of these expressions are analyzed. Moreover, inaccuracies in previous treatments of the theory of photodetection are corrected. The results allow the line shape of the scattered radiation to be analyzed for magnetic fields up to 10 12 G. The quantization of the eletromagnetic field allows one to consider the role of the natural line width, which becomes important near ressonance. In particular, it is analyzed the dependence of the line width with the magnetic field. This treatment includes the renormalization of the electron mass, which keeps the results finite when the cutoff goes to infinity. (Author) [pt

  14. Radiation and scattering from cylindrically conformal printed antennas. Ph.D. Thesis Final Report

    Science.gov (United States)

    Kempel, Leo C.; Volakis, John L.

    1994-01-01

    Microstrip patch antennas offer considerable advantages in terms of weight, aerodynamic drag, cost, flexibility, and observables over more conventional protruding antennas. These flat patch antennas were first proposed over thirty years ago by Deschamps in the United States and Gutton and Baisinot in France. Such antennas have been analyzed and developed for planar as well as curved platforms. However, the methods used in these designs employ gross approximations, suffer from extreme computational burden, or require expensive physical experiments. The goal of this thesis is to develop accurate and efficient numerical modeling techniques which represent actual antenna structures mounted on curved surfaces with a high degree of fidelity. In this thesis, the finite element method is extended to cavity-backed conformal antenna arrays embedded in a circular, metallic, infinite cylinder. Both the boundary integral and absorbing boundary mesh closure conditions will be used for terminating the mesh. These two approaches will be contrasted and used to study the scattering and radiation behavior of several useful antenna configurations. An important feature of this study will be to examine the effect of curvature and cavity size on the scattering and radiation properties of wraparound conformal antenna arrays.

  15. Study of a new approach to diagnose breast cancer based on synchrotron radiation scattering properties

    International Nuclear Information System (INIS)

    Conceicao, A.L.C.; Poletti, M.E.

    2012-01-01

    Full text: Breast cancer is the most frequently occurring cancer in women accounting for about 20% of all cancer deaths. This scenario is, among other factors, due to inherent limitations of the current clinical methods of diagnosis based on x-ray absorption. Meanwhile, recent researches have shown that the scattered radiation can provide information about the structures that compose a biological tissue, like breast tissue. Then, the information provided by x-ray scattering techniques can be used to identify breast cancer. In this work, we developed a classification model based on discriminant analysis of scattering profiles of 106 human breast samples histopathologically classified as normal tissue, benign and malignant lesion, at wide (WAXS) and small angle x-ray scattering (SAXS) regions. WAXS and SAXS experiments were carried out at the D12A-XRD1 and D02-SAXS2 beam lines in the National Synchrotron Light Laboratory (LNLS) in Campinas. For WAXS experiment, was used an x-ray beam energy of 11keV allowing to record the momentum transfer interval of 0.7nm -1 ≤(q=4π.sin(θ/2)/λ)≤70.5nm -1 on the NaI(Tl) detector. While for SAXS experiment was used an x-ray wavelength of 1.488 Angstrom, a two-dimensional detector and several sample-detector distances, allowing to get the range of 0.07nm -1 ≤q≤4.20nm -1 . The scattering profiles at both regions, for each sample were used to build the diagnosis model based on discriminant analysis. From WAXS data, differences related to position and intensity of the peaks of the molecular structures were found, when compared normal and pathological breast tissues. While for SAXS these differences were observed in supramolecular structures. The diagnostic model combining the information at WAXS and SAXS yield two linear functions which, allow to correlate changes at molecular scale with those at supramolecular level as well as, to classify correctly all samples analyzed in this study[1]. Finally, the results achieved in this

  16. Radiation protection service for a nucleonic control system of continuous casting plant after events of accident

    International Nuclear Information System (INIS)

    Chakrabarti, Santanu; Massand, O.P.

    1998-01-01

    Extensive use of nucleonic control systems like level controllers was observed during radiation protection surveys in industries such as refineries, steel plants etc., located in the eastern region of India. There were two accidents at continuous casting plant in 1995 which affected the nucleonic control system installed in 1992. The authorities contacted Bhabha Atomic Research Centre (BARC) for radiation protection surveys for the involved nucleonic gauges. The present paper describes the radiation protection services rendered by BARC during such accidents. (author)

  17. Monte Carlo-based dose reconstruction in a rat model for scattered ionizing radiation investigations.

    Science.gov (United States)

    Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Anna; Kolb, Bryan; Kovalchuk, Olga

    2013-09-01

    In radiation biology, rats are often irradiated, but the precise dose distributions are often lacking, particularly in areas that receive scatter radiation. We used a non-dedicated set of resources to calculate detailed dose distributions, including doses to peripheral organs well outside of the primary field, in common rat exposure settings. We conducted a detailed dose reconstruction in a rat through an analog to the conventional human treatment planning process. The process consisted of: (i) Characterizing source properties of an X-ray irradiator system, (ii) acquiring a computed tomography (CT) scan of a rat model, and (iii) using a Monte Carlo (MC) dose calculation engine to generate the dose distribution within the rat model. We considered cranial and liver irradiation scenarios where the rest of the body was protected by a lead shield. Organs of interest were the brain, liver and gonads. The study also included paired scenarios where the dose to adjacent, shielded rats was determined as a potential control for analysis of bystander effects. We established the precise doses and dose distributions delivered to the peripheral organs in single and paired rats. Mean doses to non-targeted organs in irradiated rats ranged from 0.03-0.1% of the reference platform dose. Mean doses to the adjacent rat peripheral organs were consistent to within 10% those of the directly irradiated rat. This work provided details of dose distributions in rat models under common irradiation conditions and established an effective scenario for delivering only scattered radiation consistent with that in a directly irradiated rat.

  18. Experimental study of TJ-1 plasma using scattering and radiation emission techniques; Analisis experimental del plasma TJ-1 con tecnicas de scattering y emision de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, C; Zurro, B

    1987-07-01

    The Thomson scattering system of TJ-1 is described in detail. The radial profiles of Te and ne obtained in TJ-1 discharges are presented. This data make possible to deduce characteristic parameters of the plasma confinement in this machine, as energy confinement times, Zeff B. Using also radiation measurements (global and in the visible range) we obtained the particle confinement time and Zeff without non experimental assumptions. (Author) 52 refs.

  19. The studies of radiation distorations in CdS single crystals by using a proton back-scattering method

    International Nuclear Information System (INIS)

    Grigor'ev, A.N.; Dikij, N.P.; Matyash, P.P.; Nikolajchuk, L.I.; Pivovar, L.I.

    1974-01-01

    The radiation defects in semiconducting CdS single crystals induced during doping with 140 keV Na ions (10 15 -2.10 16 ion/cm 2 ) were studied by the orientation dependence of 700 keV proton backscattering. The absence of discrete peaks in the scattered proton eneryg spectra indicates a small contribution of direct scattering at large angles. The defects formed during doping increase the fractionof dechanneled particles, which are then scattered at large anlges. No amorphization of CdS was observed at high Na ion dose 2x10 16 ion/cm 2

  20. Combined Natural Convection and Radiation Heat Transfer of Various Absorbing-Emitting-Scattering Media in a Square Cavity

    Directory of Open Access Journals (Sweden)

    Xianglong Liu

    2014-01-01

    Full Text Available A numerical model is developed to simulate combined natural convection and radiation heat transfer of various anisotropic absorbing-emitting-scattering media in a 2D square cavity based on the discrete ordinate (DO method and Boussinesq assumption. The effects of Rayleigh number, optical thickness, scattering ratio, scattering phase function, and aspect ratio of square cavity on the behaviors of heat transfer are studied. The results show that the heat transfer of absorbing-emitting-scattering media is the combined results of radiation and natural convection, which depends on the physical properties and the aspect ratio of the cavity. When the natural convection becomes significant, the convection heat transfer is enhanced, and the distributions of NuR and Nuc along the walls are obviously distorted. As the optical thickness increases, NuR along the hot wall decreases. As the scattering ratio decreases, the NuR along the walls decreases. At the higher aspect ratio, the more intensive thermal radiation and natural convection are formed, which increase the radiation and convection heat fluxes. This paper provides the theoretical research for the optimal thermal design and practical operation of the high temperature industrial equipments.

  1. Risk of a second cancer from scattered radiation in acoustic neuroma treatment

    Science.gov (United States)

    Yoon, Myonggeun; Lee, Hyunho; Sung, Jiwon; Shin, Dongoh; Park, Sungho; Chung, Weon Kuu; Jahng, Geon-Ho; Kim, Dong Wook

    2014-06-01

    The present study aimed to compare the risk of a secondary cancer from scattered and leakage doses in patients receiving intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Four acoustic neuroma patients were treated with IMRT, VMAT, or SRS. Their excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) of a secondary cancer were estimated using the corresponding secondary doses measured at various organs by using radio-photoluminescence glass dosimeters (RPLGD) placed inside a humanoid phantom. When a prescription dose was delivered in the planning target volume of the 4 patients, the average organ equivalent doses (OED) at the thyroid, lung, liver, bowel, bladder, prostate (or ovary), and rectum were 14.6, 1.7, 0.9, 0.8, 0.6, 0.6, and 0.6 cGy, respectively, for IMRT whereas they were 19.1, 1.8, 2.0, 0.6, 0.4, 0.4, and 0.4 cGy, respectively, for VMAT, and 22.8, 4.6, 1.4, 0.7, 0.5, 0.5, and 0.5 cGy, respectively, for SRS. The OED decreased as the distance from the primary beam increased. The thyroid received the highest OED compared to other organs. A lifetime attributable risk evaluation estimated that more than 0.03% of acoustic neuroma (AN) patients would get radiation-induced cancer within 20 years of receiving radiation therapy. The organ with the highest radiation-induced cancer risk after radiation treatment for AN was the thyroid. We found that the LAR could be increased by the transmitted dose from the primary beam. No modality-specific difference in radiation-induced cancer risk was observed in our study.

  2. Risk of a second cancer from scattered radiation in acoustic neuroma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Myonggeun; Lee, Hyunho; Sung, Jiwon [Korea University, Seoul (Korea, Republic of); Shin, Dongoh [Kyung Hee University Medical Center, Seoul (Korea, Republic of); Park, Sungho [Ulsan University Hospital, Ulsan (Korea, Republic of); Chung, Weonkuu; Jahng, Geonho; Kim, Dongwook [Kyung Hee University Hospital at Gangdong, Seoul (Korea, Republic of)

    2014-06-15

    The present study aimed to compare the risk of a secondary cancer from scattered and leakage doses in patients receiving intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Four acoustic neuroma patients were treated with IMRT, VMAT, or SRS. Their excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) of a secondary cancer were estimated using the corresponding secondary doses measured at various organs by using radio-photoluminescence glass dosimeters (RPLGD) placed inside a humanoid phantom. When a prescription dose was delivered in the planning target volume of the 4 patients, the average organ equivalent doses (OED) at the thyroid, lung, liver, bowel, bladder, prostate (or ovary), and rectum were 14.6, 1.7, 0.9, 0.8, 0.6, 0.6, and 0.6 cGy, respectively, for IMRT whereas they were 19.1, 1.8, 2.0, 0.6, 0.4, 0.4, and 0.4 cGy, respectively, for VMAT, and 22.8, 4.6, 1.4, 0.7, 0.5, 0.5, and 0.5 cGy, respectively, for SRS. The OED decreased as the distance from the primary beam increased. The thyroid received the highest OED compared to other organs. A lifetime attributable risk evaluation estimated that more than 0.03% of acoustic neuroma (AN) patients would get radiation-induced cancer within 20 years of receiving radiation therapy. The organ with the highest radiation-induced cancer risk after radiation treatment for AN was the thyroid. We found that the LAR could be increased by the transmitted dose from the primary beam. No modality-specific difference in radiation-induced cancer risk was observed in our study.

  3. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation.

    Science.gov (United States)

    Slaninova, Eva; Sedlacek, Petr; Mravec, Filip; Mullerova, Lucie; Samek, Ota; Koller, Martin; Hesko, Ondrej; Kucera, Dan; Marova, Ivana; Obruca, Stanislav

    2018-02-01

    Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.

  4. Surface-enhanced Raman scattering active gold nanostructure fabricated by photochemical reaction of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Akinobu, E-mail: yamaguti@lasti.u-hyogo.ac.jp [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Matsumoto, Takeshi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Okada, Ikuo; Sakurai, Ikuya [Synchrotoron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Utsumi, Yuichi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan)

    2015-06-15

    The deposition of gold nanoparticles in an electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The nanoparticles grew and aggregated into clusters with increasing radiation time. This behavior is explained by evaluating the effect of Derjaguin-Landau-Verweyand-Overbeek (DLVO) interactions combining repulsive electrostatic and attractive van der Waals forces on the particle deposition process. The surface-enhanced Raman scattering (SERS) of 4,4′ -bipyridine (4bpy) in aqueous solution was measured using gold nanoparticles immobilized on silicon substrates under systematically-varied X-ray exposure. The substrates provided an in situ SERS spectrum for 1 nM 4bpy. This demonstration creates new opportunities for chemical and environmental analyses through simple SERS measurements. - Highlights: • Gold nanoparticles were produced by photochemical reaction of synchrotron radiation. • The gold nanoparticles grew and aggregated into the higher-order nanostructure. • The behavior is qualitatively explained by analytical estimation. • The surface-enhanced Raman spectroscopy of 4,4′-bipyridine (4bpy) was demonstrated. • The substrate fabricated in a suitable condition provides in situ SERS for 1 nM 4bpy.

  5. A Platform for X-Ray Thomson Scattering Measurements of Radiation Hydrodynamics Experiments on the NIF

    Science.gov (United States)

    Lefevre, Heath; Ma, Kevin; Belancourt, Patrick; MacDonald, Michael; Doeppner, Tilo; Keiter, Paul; Kuranz, Carolyn

    2017-10-01

    A recent experiment on the National Ignition Facility (NIF) radiographed the evolution of the Rayleigh-Taylor (RT) instability under high and low drive cases. This experiment showed that under a high drive the growth rate of the RT instability is reduced relative to the low drive case. The high drive launches a radiative shock, increases the temperature of the post-shock region, and ablates the spikes, which reduces the RT growth rate. The plasma parameters must be measured to validate this claim. We present a target design for making X-Ray Thomson Scattering (XRTS) measurements on radiation hydrodynamics experiments on NIF to measure the electron temperature of the shocked region in the above cases. Specifically, we show that a previously fielded NIF radiation hydrodynamics platform can be modified to allow sufficient signal and temperature resolution for XRTS measurements. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program.

  6. Correlation between scatter radiation dose at height of operator's eye and dose to patient for different angiographic projections

    International Nuclear Information System (INIS)

    Leyton, Fernando; Nogueira, Maria S.; Gubolino, Luiz A.; Pivetta, Makyson R.; Ubeda, Carlos

    2016-01-01

    Studies have reported cases of radiation-induced cataract among cardiology professionals. In view of the evidence of epidemiological studies, the ICRP recommends a new threshold for opacities and a new radiation dose to eye lens limit of 20 mSv per year for occupational exposure. The aim of this paper is to report scattered radiation doses at the height of the operator's eye in an interventional cardiology facility without considering radiation protection devices and to correlate these values with different angiographic projections and operational modes. Measurements were taken in a cardiac laboratory with an angiography X-ray system equipped with flat-panel detector. PMMA plates of 30×30×5 cm were used with a thickness of 20 cm. Measurements were taken in two fluoroscopy modes (low and normal, 15 pulses/s) and in cine mode (15 frames/s). Four angiographic projections were used: anterior posterior; lateral; left anterior oblique caudal (spider); and left anterior oblique cranial, with a cardiac protocol for patients weighing between 70 and 90 kg. Measurements of phantom entrance dose rate and scatter dose rate were performed with two Unfors Xi plus detectors. The detector measuring scatter radiation was positioned at the usual distance of the cardiologist's eyes during working conditions. There is a good linear correlation between the kerma area product and scatter dose at the lens. Experimental correlation factors of 2.3, 12.0, 12.2 and 17.6 μSv/Gy cm2 were found for different projections. PMMA entrance dose rates for low and medium fluoroscopy and cine modes were 13, 39 and 282 mGy/min, respectively, for AP projection. - Highlights: • A method is presented to estimate the scatter radiation dose at operator eye height. • The method allows estimating scatter radiation dose measuring ambient dose equivalent. • Operator could exceed threshold for lens opacities if protection tools are not used. • There is a good linear correlation between kerma

  7. Risk of Hypogonadism From Scatter Radiation During Pelvic Radiation in Male Patients With Rectal Cancer

    International Nuclear Information System (INIS)

    Yau, Ivan; Vuong, Te; Garant, Aurelie; Ducruet, Thierry; Doran, Patrick; Faria, Sergio; Liberman, Sender; Richard, Carole; Letellier, Francois; Charlebois, Patrick; Loungnarath, Rasmy; Stein, Barry; Devic, Slobodan

    2009-01-01

    Purpose: Recent studies have reported fluctuations in sex hormones during pelvic irradiation. The objective of this study was to observe the effects of radiation on hormonal profiles for two treatment modalities: conventional external beam radiotherapy (EBRT) and high-dose-rate brachytherapy (HDRBT) given neoadjuvantly for patients with rectal cancer. Methods and Materials: Routine serum follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone levels were collected from 119 consecutive male patients receiving either EBRT, using 45.0-50.4 Gy in 25-28 fractions with concurrent 5-fluorouracil chemotherapy or HDRBT using 26 Gy in 4 fractions. Results: Thirty patients with initially abnormal profiles were excluded. Profiles included in this study were collected from 51 patients treated with EBRT and 38 patients treated with HDRBT, all of whom had normal hormonal profiles before treatment. Mean follow-up times were 17 months for the entire patient cohort-14 and 20 months, respectively-for the EBRT and HDRBT arms. Dosimetry results revealed a mean cumulative testicular dose of 1.24 Gy received in EBRT patients compared with 0.27 Gy in the HDRBT group. After treatment, FSH and LH were elevated in all patients but were more pronounced in the EBRT group. The testosterone-to-LH ratio was significantly lower (p = 0.0036) in EBRT patients for tumors in the lower third of the rectum. The 2-year hypogonadism rate observed was 2.6% for HDRBT compared with 17.6% for EBRT (p = 0.09) for tumors in the lower two thirds of the rectum. Conclusion: HDRBT allows better hormonal sparing than EBRT during neoadjuvant treatment of patients with rectal cancer.

  8. Study of the sensitivity of the radiation transport problem in a scattering medium

    International Nuclear Information System (INIS)

    Nunes, Rogerio Chaffin

    2002-03-01

    In this work, the system of differential equations obtained by the angular approach of the two-dimensional transport equation by the discrete ordinates method is solved through the formulation of finite elements with the objective of investigating the sensitivity of the outgoing flux of radiation with the incoming flux and the properties of absorption and scattering of the medium. The variational formulation for the system of differential equations of second order with the generalized boundary conditions of Neumann (third type) allows an easy implementation of the method of the finite elements with triangular mesh and approximation space of first order. The geometry chosen for the simulations is a circle with a non homogeneous circular form in its interior. The mapping of Dirichlet-Neumann is studied through various simulations involving the incoming flux, the outgoing flux and the properties of the medium. (author)

  9. Rayleigh scattering of Moessbauer radiation in superionic conductor RbAg4I5

    International Nuclear Information System (INIS)

    Ovanesyan, N.S.; Goffman, V.G.; Sokolov, V.B.; Tkachev, V.V.

    1984-01-01

    The dynamical properties of RbAg 4 I 5 has been investiaated by Rayleigh scattering of Moessbauer radiation (RSMR) with wave-length lambda = 0.86 A. The character of Ag + ion oscillatory motion and diffusion in RbAg 4 I 5 depending on temperature including the phase transitions region is studied. It is shown that in the superionic crystal RbAg 4 I 5 the diffusion process is strongly correlated, i.e. a great number of initial and final states at diffusion jumps coincides. The observed broadening can be less than the expected one by value orders. Diffusion correlation can strongly reduce the activation barrier and lead to anomalously high ionic conduction

  10. Assessment of exposure Lo scattered radiation in interventional procedures using special proLecLive bismuth

    International Nuclear Information System (INIS)

    Soto Bua, M.; Medina Jimenez, E.; Vazquez Vazquez, R.; Santamaria Vazquez, F.; Otero Martinez, C.; Lobato Busto, R.; Luna Vega, V.; Mosquera Suero, J.; Sanchez Garcia, M.; Pombar Camean, M.

    2011-01-01

    There are currenLly marketed specific producta aimed aL reducing personnel exposure Lo radiation scatLered in cardiac catheLerization procedures, intervenLional radiology or elecLrophysiology. Our service has been proposed Lo study Lhe aLLenuation characLeristics of Lhe producL ''Drape Armour'' manufactured by Lhe company ''MicroLek'' IL ja flexible devices consLructed from an alloy of bismuth and sLeriliLy characLeristics and infection conLrol and fluid makes Lhem particularly suiLable for incorporaLing into Lhe operative field of the patient. To sLudy their behavior, Lhere have been staff dose measurementa representaLive of Lhe moaL common siLuaLions of exposure to scattered radiaLion in a typical procedure of intervenLion.

  11. Investigation of vesicle-capsular plague antigen complex formation by elastic laser radiation scattering

    Science.gov (United States)

    Guseva, N. P.; Maximova, Irina S.; Romanov, Sergey V.; Shubochkin, L. P.; Tatarintsev, Sergey N.

    1991-05-01

    Recently a great deal of attention has been given to the investigation artificial lipid liposomes, due to their application as "containers" for directed transport of biologically active compounds into particular cells, organs and tissues for prophylaxis and therapy of infectious diseases. The use of traditional methods of liposome investigation, such as sedimentation, electrophoresis and chromatography is impeded by low liposome resistivity to different deformations. In conjunction with this, optical methods of laser light scattering are promising as they allow nondisturbing, precise and quick investigations. This paper describes the investigation of vesicle systems prepared from egg lecithin of Serva Corporation and their complexes with the capsular antigen of the plague microbe. The capsular antigen Fl was obtained from EV plague microbe grown at 37° C on Huttinger agar. Fl was isolated by gel-filtration on ASA-22 followed by freeze drying of the preparation. Angular dependences of polarized radiation scattering were measured for several liposome suspension samples in a saline solution before and after the interaction with the plague microbe capsular antigen. The aim of the investigation was to analyze the nature of mutual antigen arrangement in a liposome and to develop methods for measuring its inclusion percentage.

  12. Revisiting Bragg's X-ray microscope: Scatter based optical transient grating detection of pulsed ionising radiation

    International Nuclear Information System (INIS)

    Fullagar, Wilfred K.; Paganin, David M.; Hall, Chris J.

    2011-01-01

    Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered. -- Research highlights: → It is timely that the concept of Bragg's X-ray microscope be revisited. → Transient gratings can be used for X-ray all-optical information processing. → Applications to optical real-time X-ray phase-retrieval are considered.

  13. Response of the seminiferous epithelium to scattered radiation in seminoma patients

    International Nuclear Information System (INIS)

    Schlappack, O.K.; Kratzik, C.; Schmidt, W.; Spona, J.; Schuster, E.

    1988-01-01

    Semen and blood samples were obtained, at 3-month intervals over 12 to 28 months, from patients who underwent subdiaphragmal radiation after orchidectomy for seminoma testis. Before radiotherapy a mean (+/- SE) semen volume of 4.7 +/- 0.5 ml, a mean sperm count of 44.4 +/- 13.5 x 10(6)/ml, a mean percentage of motile cells of 20.3 +/- 5.2, a mean percentage of morphologically normal spermatozoa of 13.4 +/- 5.4, a mean percentage of swollen sperm of 39.6 +/- 7.4, and a mean serum follicle-stimulating hormone (FSH) value of 8.3 +/- 1.2 mIU/ml was found. The mean testicular dose from scatter was 62 +/- 5 cGy (range, 34 to 95 cGy). Sperm counts between 0 and 2.75 x 10(6)/ml were seen at 6.8 +/- 0.6 months and recovery to values greater than 2.25 x 10(6)/ml at 11.8 +/- 0.8 months after the start of radiation. Peak FSH values of 19.2 +/- 1.6 mIU/ml were obtained at 6.7 +/- 0.9 months after the start of irradiation. After recovery mean semen volume was 3.9 +/- 0.4 ml, mean sperm count 34.6 +/- 5.6 x 10(6)/ml, the mean percentage of motile cells 42.5 +/- 6.0, the mean percentage of swollen sperm 58.7 +/- 6.8, and the mean percentage of spermatozoa with normal morphology 23.4 +/- 5.1. Only motility was significantly different (P less than 0.01) from pretreatment values. The elevation of FSH values with time after start of radiotherapy reflected the toxicity to spermatogenesis but no correlation was found between peak FSH levels and scattered radiation dose. Also, neither the time from start of radiotherapy to sperm count nadir or recovery nor the time to peak FSH levels was significantly correlated with radiation dose

  14. Scattering of ultraviolet and photosynthetically active radiation by Sorghum bicolor: influence of epicuticular wax

    International Nuclear Information System (INIS)

    Grant, R.H.; Jenks, M.A.; Rich, P.J.; Peters, P.J.; Ashworth, E.N.

    1995-01-01

    Near-isogenic mutants of Sorghum bicolor with genetic alterations affecting epicuticular wax (EW) structure but having similar canopy architecture provided a model system to examine the influence of EW on plant radiation scattering. Differences in canopies with two different sheath EW amounts showed differences in angular reflectance and transmittance. The differences varied with waveband of radiation. Canopy ultraviolet-B (UVB) and photosynthetically active radiation (PAR) backward reflectance in the principal solar plane were higher by wild-type plants (N-15) bearing reflective stalk EW filaments than mutant plants (bm-15) lacking stalk EW filaments. Between panicle emergence to anthesis the backward PAR reflectance increased more in the N-15 than bm-15 canopy. We suspect that the increase was a result of reflections from stalk facets emerging above the surface plane of the canopy foliage and exposing reflective EW. As panicles emerged above the foliage, canopy UVB and PAR forward reflectance by bm-15 increased while forward reflectance by N-15 decreased. The increased forward reflectance from bm-15 may be because of high specular reflectance from the microscopically smooth bm-15 stalk surfaces. Based on comparisons of probability distributions, significant differences in PAR and UVB canopy transmittance were detected between N-15 and bm-15. The median UVB transmittance was greater in the bm-15 canopy than the N-15 canopy, while the median PAR transmittance was the same for the two canopies. The greater transmittance in the N-15 canopy corresponded with lower EW load of the sheaths, but the difference between canopies was within the experimental error. Distinct influences of the stalk EW on canopy reflectance and transmittance were difficult to assess because of the relatively low proportion of surface area containing EW, the experimental errors associated with UVB irradiance field measurements. The optical properties of the S. bicolor canopy varied by waveband

  15. Dust scattering and the radiation pressure force in the M82 superwind

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Carl T.; Thompson, Todd A.; Martini, Paul, E-mail: coker@astronomy.ohio-state.edu, E-mail: thompson@astronomy.ohio-state.edu, E-mail: martini@astronomy.ohio-state.edu [Department of Astronomy and Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States)

    2013-11-20

    Radiation pressure on dust grains may be an important physical mechanism driving galaxy-wide superwinds in rapidly star-forming galaxies. We calculate the combined dust and gas Eddington ratio (Γ) for the archetypal superwind of M82. By combining archival Galaxy Evolution Explorer data, a standard dust model, Monte Carlo dust scattering calculations, and the Herschel map of the dust surface density distribution, the observed far-UV/near-UV surface brightness in the outflow constrains both the total UV luminosity escaping from the starburst along its minor axis (L {sub *,UV}) and the flux-mean opacity, thus allowing a calculation of Γ. We find that L {sub *,UV} ≈ (1-6) × 10{sup 42} erg s{sup –1}, ∼2-12 times greater than the UV luminosity observed from our line of sight. On a scale of 1-3 kpc above the plane of M82, we find that Γ ∼ 0.01-0.06. On smaller scales (∼0.25-0.5 kpc), where the enclosed mass decreases, our calculation of L {sub *,UV} implies that Γ ∼ 0.1 with factor of few uncertainties. Within the starburst itself, we estimate the single-scattering Eddington ratio to be of order unity. Thus, although radiation pressure is weak compared to gravity on kpc scales above the plane of M82, it may yet be important in launching the observed outflow. We discuss the primary uncertainties in our calculation, the sensitivity of Γ to the dust grain size distribution, and the time evolution of the wind following M82's recent starburst episodes.

  16. Dust scattering and the radiation pressure force in the M82 superwind

    International Nuclear Information System (INIS)

    Coker, Carl T.; Thompson, Todd A.; Martini, Paul

    2013-01-01

    Radiation pressure on dust grains may be an important physical mechanism driving galaxy-wide superwinds in rapidly star-forming galaxies. We calculate the combined dust and gas Eddington ratio (Γ) for the archetypal superwind of M82. By combining archival Galaxy Evolution Explorer data, a standard dust model, Monte Carlo dust scattering calculations, and the Herschel map of the dust surface density distribution, the observed far-UV/near-UV surface brightness in the outflow constrains both the total UV luminosity escaping from the starburst along its minor axis (L *,UV ) and the flux-mean opacity, thus allowing a calculation of Γ. We find that L *,UV ≈ (1-6) × 10 42 erg s –1 , ∼2-12 times greater than the UV luminosity observed from our line of sight. On a scale of 1-3 kpc above the plane of M82, we find that Γ ∼ 0.01-0.06. On smaller scales (∼0.25-0.5 kpc), where the enclosed mass decreases, our calculation of L *,UV implies that Γ ∼ 0.1 with factor of few uncertainties. Within the starburst itself, we estimate the single-scattering Eddington ratio to be of order unity. Thus, although radiation pressure is weak compared to gravity on kpc scales above the plane of M82, it may yet be important in launching the observed outflow. We discuss the primary uncertainties in our calculation, the sensitivity of Γ to the dust grain size distribution, and the time evolution of the wind following M82's recent starburst episodes.

  17. An EPID response calculation algorithm using spatial beam characteristics of primary, head scattered and MLC transmitted radiation

    International Nuclear Information System (INIS)

    Rosca, Florin; Zygmanski, Piotr

    2008-01-01

    We have developed an independent algorithm for the prediction of electronic portal imaging device (EPID) response. The algorithm uses a set of images [open beam, closed multileaf collimator (MLC), various fence and modified sweeping gap patterns] to separately characterize the primary and head-scatter contributions to EPID response. It also characterizes the relevant dosimetric properties of the MLC: Transmission, dosimetric gap, MLC scatter [P. Zygmansky et al., J. Appl. Clin. Med. Phys. 8(4) (2007)], inter-leaf leakage, and tongue and groove [F. Lorenz et al., Phys. Med. Biol. 52, 5985-5999 (2007)]. The primary radiation is modeled with a single Gaussian distribution defined at the target position, while the head-scatter radiation is modeled with a triple Gaussian distribution defined downstream of the target. The distances between the target and the head-scatter source, jaws, and MLC are model parameters. The scatter associated with the EPID is implicit in the model. Open beam images are predicted to within 1% of the maximum value across the image. Other MLC test patterns and intensity-modulated radiation therapy fluences are predicted to within 1.5% of the maximum value. The presented method was applied to the Varian aS500 EPID but is designed to work with any planar detector with sufficient spatial resolution

  18. Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe

    International Nuclear Information System (INIS)

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

    2012-01-01

    Discovery of Moessbauer effect in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couples to nuclear degrees of freedom leading to hyperfine interactions. thus, Moessbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Moessbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physics, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Moessbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or 'in-beam'Moessbauer experiments with implanted radioactive ions. More recently, two Moessbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time. In this chapter, the authors look into some of the unique aspects of nuclear resonance excited with synchrotron radiation as a probe of condensed matter, including magnetism, valence, vibrations, and lattice dynamics, and review the development of nuclear resonance inelastic x-ray scattering (NRIXS) and synchrotron Moessbauer spectroscopy

  19. Study of electron densities of normal and neoplastic human breast tissues by Compton scattering using synchrotron radiation

    International Nuclear Information System (INIS)

    Antoniassi, M.; Conceição, A.L.C.; Poletti, M.E.

    2012-01-01

    Electron densities of 33 samples of normal (adipose and fibroglangular) and neoplastic (benign and malignant) human breast tissues were determined through Compton scattering data using a monochromatic synchrotron radiation source and an energy dispersive detector. The area of Compton peaks was used to determine the electron densities of the samples. Adipose tissue exhibits the lowest values of electron density whereas malignant tissue the highest. The relationship with their histology was discussed. Comparison with previous results showed differences smaller than 4%. - Highlights: ► Electron density of normal and neoplastic breast tissues was measured using Compton scattering. ► Monochromatic synchrotron radiation was used to obtain the Compton scattering data. ► The area of Compton peaks was used to determine the electron densities of samples. ► Adipose tissue shows the lowest electron density values whereas the malignant tissue the highest. ► Comparison with previous results showed differences smaller than 4%.

  20. Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis

    Science.gov (United States)

    Liu, X.; Wu, W.; Yang, Q.

    2017-12-01

    Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.

  1. Modeling the radiation transfer of discontinuous canopies: results for gap probability and single-scattering contribution

    Science.gov (United States)

    Zhao, Feng; Zou, Kai; Shang, Hong; Ji, Zheng; Zhao, Huijie; Huang, Wenjiang; Li, Cunjun

    2010-10-01

    In this paper we present an analytical model for the computation of radiation transfer of discontinuous vegetation canopies. Some initial results of gap probability and bidirectional gap probability of discontinuous vegetation canopies, which are important parameters determining the radiative environment of the canopies, are given and compared with a 3- D computer simulation model. In the model, negative exponential attenuation of light within individual plant canopies is assumed. Then the computation of gap probability is resolved by determining the entry points and exiting points of the ray with the individual plants via their equations in space. For the bidirectional gap probability, which determines the single-scattering contribution of the canopy, a gap statistical analysis based model was adopted to correct the dependence of gap probabilities for both solar and viewing directions. The model incorporates the structural characteristics, such as plant sizes, leaf size, row spacing, foliage density, planting density, leaf inclination distribution. Available experimental data are inadequate for a complete validation of the model. So it was evaluated with a three dimensional computer simulation model for 3D vegetative scenes, which shows good agreement between these two models' results. This model should be useful to the quantification of light interception and the modeling of bidirectional reflectance distributions of discontinuous canopies.

  2. Integrated simulation of continuous-scale and discrete-scale radiative transfer in metal foams

    Science.gov (United States)

    Xia, Xin-Lin; Li, Yang; Sun, Chuang; Ai, Qing; Tan, He-Ping

    2018-06-01

    A novel integrated simulation of radiative transfer in metal foams is presented. It integrates the continuous-scale simulation with the direct discrete-scale simulation in a single computational domain. It relies on the coupling of the real discrete-scale foam geometry with the equivalent continuous-scale medium through a specially defined scale-coupled zone. This zone holds continuous but nonhomogeneous volumetric radiative properties. The scale-coupled approach is compared to the traditional continuous-scale approach using volumetric radiative properties in the equivalent participating medium and to the direct discrete-scale approach employing the real 3D foam geometry obtained by computed tomography. All the analyses are based on geometrical optics. The Monte Carlo ray-tracing procedure is used for computations of the absorbed radiative fluxes and the apparent radiative behaviors of metal foams. The results obtained by the three approaches are in tenable agreement. The scale-coupled approach is fully validated in calculating the apparent radiative behaviors of metal foams composed of very absorbing to very reflective struts and that composed of very rough to very smooth struts. This new approach leads to a reduction in computational time by approximately one order of magnitude compared to the direct discrete-scale approach. Meanwhile, it can offer information on the local geometry-dependent feature and at the same time the equivalent feature in an integrated simulation. This new approach is promising to combine the advantages of the continuous-scale approach (rapid calculations) and direct discrete-scale approach (accurate prediction of local radiative quantities).

  3. Sparsely corrupted stimulated scattering signals recovery by iterative reweighted continuous basis pursuit

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kunpeng; Chai, Yi [College of Automation, Chongqing University, Chongqing 400044 (China); Su, Chunxiao [Research Center of Laser Fusion, CAEP, P. O. Box 919-983, Mianyang 621900 (China)

    2013-08-15

    In this paper, we consider the problem of extracting the desired signals from noisy measurements. This is a classical problem of signal recovery which is of paramount importance in inertial confinement fusion. To accomplish this task, we develop a tractable algorithm based on continuous basis pursuit and reweighted ℓ{sub 1}-minimization. By modeling the observed signals as superposition of scale time-shifted copies of theoretical waveform, structured noise, and unstructured noise on a finite time interval, a sparse optimization problem is obtained. We propose to solve this problem through an iterative procedure that alternates between convex optimization to estimate the amplitude, and local optimization to estimate the dictionary. The performance of the method was evaluated both numerically and experimentally. Numerically, we recovered theoretical signals embedded in increasing amounts of unstructured noise and compared the results with those obtained through popular denoising methods. We also applied the proposed method to a set of actual experimental data acquired from the Shenguang-II laser whose energy was below the detector noise-equivalent energy. Both simulation and experiments show that the proposed method improves the signal recovery performance and extends the dynamic detection range of detectors.

  4. Sparsely corrupted stimulated scattering signals recovery by iterative reweighted continuous basis pursuit

    International Nuclear Information System (INIS)

    Wang, Kunpeng; Chai, Yi; Su, Chunxiao

    2013-01-01

    In this paper, we consider the problem of extracting the desired signals from noisy measurements. This is a classical problem of signal recovery which is of paramount importance in inertial confinement fusion. To accomplish this task, we develop a tractable algorithm based on continuous basis pursuit and reweighted ℓ 1 -minimization. By modeling the observed signals as superposition of scale time-shifted copies of theoretical waveform, structured noise, and unstructured noise on a finite time interval, a sparse optimization problem is obtained. We propose to solve this problem through an iterative procedure that alternates between convex optimization to estimate the amplitude, and local optimization to estimate the dictionary. The performance of the method was evaluated both numerically and experimentally. Numerically, we recovered theoretical signals embedded in increasing amounts of unstructured noise and compared the results with those obtained through popular denoising methods. We also applied the proposed method to a set of actual experimental data acquired from the Shenguang-II laser whose energy was below the detector noise-equivalent energy. Both simulation and experiments show that the proposed method improves the signal recovery performance and extends the dynamic detection range of detectors

  5. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    Science.gov (United States)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  6. Development of 119Sn nuclear resonance scattering of synchrotron radiation and first applications

    International Nuclear Information System (INIS)

    Barla, A.

    2001-01-01

    In the framework of this thesis the NRS technique has been developed and applied, for the first time at the European Synchrotron Radiation Facility, at the resonance of 119 Sn. Elastic nuclear forward scattering (NFS) is ideal for studies of hyperfine interactions, where information about the electronic and magnetic properties of solids is obtained. On the other hand nuclear inelastic scattering (NIS) allows one to study the phonon density of states (DOS) of Moessbauer isotopes in various kinds of systems. In the first stage, technical developments have been made, particularly with regards the used optical elements. A key point has been the construction of a high resolution monochromator (HRM) for the resonance of 119 Sn, with an energy resolution of about 0.65 meV, perfectly suited to perform NIS experiments. A second HRM optimised in throughput has been constructed and used, in combination with focussing elements (bent crystals and compound refractive lenses), to perform NFS experiments at very high pressure. For the first applications of 119 Sn NIS, the phonon DOS of β-Sn has been directly determined from the NIS spectra measured at T = 100 K and T = 300 K. An excellent agreement has been found with the phonon DOS obtained theoretically by previous calculations. Moreover, dynamical and thermodynamical properties of β-Sn extracted from the determined DOS, such as the Lamb-Moessbauer factor and the specific heat, are found to be in good agreement with previously published results. As a first application of 119 Sn NFS experiments at high pressure, the system U(In 1-x Sn x ) 3 has been chosen. (orig.)

  7. Development of {sup 119}Sn nuclear resonance scattering of synchrotron radiation and first applications

    Energy Technology Data Exchange (ETDEWEB)

    Barla, A.

    2001-07-01

    In the framework of this thesis the NRS technique has been developed and applied, for the first time at the European Synchrotron Radiation Facility, at the resonance of {sup 119}Sn. Elastic nuclear forward scattering (NFS) is ideal for studies of hyperfine interactions, where information about the electronic and magnetic properties of solids is obtained. On the other hand nuclear inelastic scattering (NIS) allows one to study the phonon density of states (DOS) of Moessbauer isotopes in various kinds of systems. In the first stage, technical developments have been made, particularly with regards the used optical elements. A key point has been the construction of a high resolution monochromator (HRM) for the resonance of {sup 119}Sn, with an energy resolution of about 0.65 meV, perfectly suited to perform NIS experiments. A second HRM optimised in throughput has been constructed and used, in combination with focussing elements (bent crystals and compound refractive lenses), to perform NFS experiments at very high pressure. For the first applications of {sup 119}Sn NIS, the phonon DOS of {beta}-Sn has been directly determined from the NIS spectra measured at T = 100 K and T = 300 K. An excellent agreement has been found with the phonon DOS obtained theoretically by previous calculations. Moreover, dynamical and thermodynamical properties of {beta}-Sn extracted from the determined DOS, such as the Lamb-Moessbauer factor and the specific heat, are found to be in good agreement with previously published results. As a first application of {sup 119}Sn NFS experiments at high pressure, the system U(In{sub 1-x}Sn{sub x}){sub 3} has been chosen. (orig.)

  8. The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers.

    Science.gov (United States)

    Schoenfeld, Andreas A; Poppinga, Daniela; Harder, Dietrich; Doerner, Karl-Joachim; Poppe, Bjoern

    2014-07-07

    Optical experiments and theoretical considerations have been undertaken in order to understand the causes of the 'orientation effect' and the 'parabola effect', the artefacts impairing the desired light absorption measurement on radiochromic EBT3 films with flatbed scanners. EBT3 films exposed to doses up to 20.9 Gy were scanned with an Epson Expression 10000XL flatbed scanner in landscape and portrait orientation. The horizontally and vertically polarized light components of the scanner were determined, and another Epson Expression 10000XL flatbed scanner was disassembled to examine its optical components. The optical properties of exposed and unexposed EBT3 films were studied with incident polarized and unpolarized white light, and the transmitted red light was investigated for its polarization and scattering properties including the distribution of the scattering angles. Neutral density filters were studied for comparison. Guidance was sought from the theory of light scattering from rod-like macromolecular structures. The drastic dose-dependent variation of the transmitted total light current as function of the orientation of front and rear polarizers, interpreted by light scattering theory, shows that the radiation-induced polymerization of the monomers of EBT3 films produces light scattering oscillators preferably polarized at right angles with the coating direction of the film. The directional distribution of the scattered light is partly anisotropic, with a preferred scattering plane at right angles with the coating direction, indicating light scattering from stacks of coherently vibrating oscillators piled up along the monomer crystals. The polyester carrier film also participates in these effects. The 'orientation' and 'parabola' artefacts due to flatbed scanning of radiochromic films can be explained by the interaction of the polarization-dependent and anisotropic light scattering from exposed and unexposed EBT3 films with the quantitative difference

  9. The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers

    International Nuclear Information System (INIS)

    Schoenfeld, Andreas A; Poppinga, Daniela; Poppe, Bjoern; Harder, Dietrich; Doerner, Karl-Joachim

    2014-01-01

    Optical experiments and theoretical considerations have been undertaken in order to understand the causes of the ‘orientation effect’ and the ‘parabola effect’, the artefacts impairing the desired light absorption measurement on radiochromic EBT3 films with flatbed scanners. EBT3 films exposed to doses up to 20.9 Gy were scanned with an Epson Expression 10000XL flatbed scanner in landscape and portrait orientation. The horizontally and vertically polarized light components of the scanner were determined, and another Epson Expression 10000XL flatbed scanner was disassembled to examine its optical components. The optical properties of exposed and unexposed EBT3 films were studied with incident polarized and unpolarized white light, and the transmitted red light was investigated for its polarization and scattering properties including the distribution of the scattering angles. Neutral density filters were studied for comparison. Guidance was sought from the theory of light scattering from rod-like macromolecular structures. The drastic dose-dependent variation of the transmitted total light current as function of the orientation of front and rear polarizers, interpreted by light scattering theory, shows that the radiation-induced polymerization of the monomers of EBT3 films produces light scattering oscillators preferably polarized at right angles with the coating direction of the film. The directional distribution of the scattered light is partly anisotropic, with a preferred scattering plane at right angles with the coating direction, indicating light scattering from stacks of coherently vibrating oscillators piled up along the monomer crystals. The polyester carrier film also participates in these effects. The ‘orientation’ and ‘parabola’ artefacts due to flatbed scanning of radiochromic films can be explained by the interaction of the polarization-dependent and anisotropic light scattering from exposed and unexposed EBT3 films with the quantitative

  10. Correlation between scatter radiation dose at the height of the operators eye and dose to patient for different angiographies projections

    Energy Technology Data Exchange (ETDEWEB)

    Leyton, F.; Nogueira, M. S.; Da Silva, T. A. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Post-graduation in Sciences and Technology of Radiations, Minerals and Materials, Pte. Antonio Carlos No. 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Gubolino, L.; Pivetta, M. R. [Hospital dos Fornecedores de Cana de Piracicaba, Av. Barao de Valenca 616, 13405-233 Piracicaba (Brazil); Ubeda, C., E-mail: leyton.fernando@gmail.com [Tarapaca University, Health Sciences Faculty, Radiological Sciences Center, Av. Gral. Velasquez 1775, 1000007 Arica, Arica and Parinacota (Chile)

    2015-10-15

    Cases of radiation induced cataract among cardiology professionals have been reported in studies. In view of evidence of radiation injuries, the ICRP recommends limiting the radiation dose to the lens to 20 mSv per year for occupational exposure. The aim of this works was to report scattered radiation doses at the height of the operators eye in an interventional cardiology facility from procedures performed without use of radiation protection devices, correlated with different angiographic projections and operational modes. Measurements were made in a cardiac laboratory with an angiography X-ray system GE equipped with flat-panel detector. PMMA plates of 30 x 30 x 5 cm were used to simulate a patient with a thickness of 20 cm. Two fluoroscopy modes (low and normal, 15 frame/s), cine mode 15 frame/s. Four angiographic projections anterior posterior (Ap), lateral (Lat), left anterior oblique caudal (spider) and left anterior oblique cranial (Lao-45/cra-30) and a cardiac protocol for patient between 70 to 90 kg was used. Measurements of phantom entrance doses rate and scatter doses rate were performed with two Unfors Xi plus. The detector measuring scatter radiation was positioned at the usual distance of the cardiologists eyes during working conditions (1 m from the isocenter and 1.7 m from the floor). There is a good linear correlation between the kerma-area product and scatter dose at the lens. An experimental correlation factor of 2.3; 12.0; 12.2 and 17.6 μSv/Gy cm{sup 2} were found for the Ap, Lao/cra, spider and Lat projections, respectively. The entrance dose of PMMA for fluoroscopy low, medium and cine was 13, 39 and 282 mGy/min, respectively to Ap. (Author)

  11. Correlation between scatter radiation dose at the height of the operators eye and dose to patient for different angiographies projections

    International Nuclear Information System (INIS)

    Leyton, F.; Nogueira, M. S.; Da Silva, T. A.; Gubolino, L.; Pivetta, M. R.; Ubeda, C.

    2015-10-01

    Cases of radiation induced cataract among cardiology professionals have been reported in studies. In view of evidence of radiation injuries, the ICRP recommends limiting the radiation dose to the lens to 20 mSv per year for occupational exposure. The aim of this works was to report scattered radiation doses at the height of the operators eye in an interventional cardiology facility from procedures performed without use of radiation protection devices, correlated with different angiographic projections and operational modes. Measurements were made in a cardiac laboratory with an angiography X-ray system GE equipped with flat-panel detector. PMMA plates of 30 x 30 x 5 cm were used to simulate a patient with a thickness of 20 cm. Two fluoroscopy modes (low and normal, 15 frame/s), cine mode 15 frame/s. Four angiographic projections anterior posterior (Ap), lateral (Lat), left anterior oblique caudal (spider) and left anterior oblique cranial (Lao-45/cra-30) and a cardiac protocol for patient between 70 to 90 kg was used. Measurements of phantom entrance doses rate and scatter doses rate were performed with two Unfors Xi plus. The detector measuring scatter radiation was positioned at the usual distance of the cardiologists eyes during working conditions (1 m from the isocenter and 1.7 m from the floor). There is a good linear correlation between the kerma-area product and scatter dose at the lens. An experimental correlation factor of 2.3; 12.0; 12.2 and 17.6 μSv/Gy cm 2 were found for the Ap, Lao/cra, spider and Lat projections, respectively. The entrance dose of PMMA for fluoroscopy low, medium and cine was 13, 39 and 282 mGy/min, respectively to Ap. (Author)

  12. Polarized radiative transfer through terrestrial atmosphere accounting for rotational Raman scattering

    Science.gov (United States)

    Lelli, Luca; Rozanov, Vladimir V.; Vountas, Marco; Burrows, John P.

    2017-10-01

    This paper is devoted to the phenomenological derivation of the vector radiative transfer equation (VRTE) accounting for first-order source terms of rotational Raman scattering (RRS), which is responsible for the in-filling of Fraunhofer and telluric lines by inelastic scattered photons. The implementation of the solution of the VRTE within the framework of the forward-adjoint method is given. For the Ca II and the oxygen A-band (O2 A) spectral windows, values of reflectance, degree of linear polarization (DOLP) and in-filling, in zenith and nadir geometry, are compared with results given in literature. Moreover, the dependence of these quantities on the columnar loading and vertical layering of non-spherical dust aerosols is investigated, together with their changes as function of two habits of ice crystals, modeled as regular icosahedra and severely rough aggregated columns. Bi-directional effects of an underlying polarizing surface are accounted for. The forward simulations are performed for one selected wavelength in the continuum and one in the strong absorption of the O2 A, as their combination can be exploited for the spaceborne retrieval of aerosol and cloud properties. For this reason, we also mimic seasonal maps of reflectance, DOLP and in-filling, that are prototypical measurements of the Ultraviolet-Visible-Near Infrared (UVN) sensor, at a nominal spectral resolution of 0.12 nm. UVN is the core payload of the upcoming European Sentinel-4 mission, that will observe Europe in geostationary orbit for air quality monitoring purposes. In general, in the core of O2 A, depending on the optical thickness and altitude of the scatterers, we find RRS-induced in-filling values ranging from 1.3% to 1.8%, while DOLP decreases by 1%. Conversely, while negligible differences of RRS in-filling are calculated with different ice crystal habits, the severely rough aggregated column model can reduce DOLP by a factor up to 10%. The UVN maps of in-filling show values varying

  13. Scattered radiation dose to radiologist's cornea, thyroid and gonads while performing some x-ray fluoroscopic investigations

    International Nuclear Information System (INIS)

    Chougle, Arun

    1993-01-01

    The mankind has been immensely benefited from discovery of X-ray and it has found wide spread application in diagnosis and treatment. Radiation is harmful and can produce somatic and genetic effects in the exposed person. International Commission on Radiation Protection (ICRP) has recommended a system of dose limitation based on principle of ALARA. All the efforts should be made to keep the radiation dose to the radiation worker as low as possible. Fluoroscopy gives maximum dose to the patient and staff and hence we have attempted to quantify the scattered radiation dose to the cornea, thyroid and gonads of the radiologist performing fluoroscopic examinations such as barium meal, barium swallow, barium enema, myelography, histerosalpingography and fracture reduction. Thermoluminescence dosimetry (TLD) method using CaSO 4 :Dy TLD disc was employed for these measurements. Use of lead apron has reduced the dose to radiologist's gonad. (author). 3 refs., 4 tabs

  14. Continuous weighing of conveyor-transported materials based on gamma radiation conversion to electric current

    International Nuclear Information System (INIS)

    The principle is described of the continuous weighing of conveyer-transported materials applied in the food industry. The weighing technique is based on the measurement of the absorption of gamma radiation emitted by a source located behind the material to be scaled. (Z.M.)

  15. Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device

    Science.gov (United States)

    Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.

    2012-08-01

    Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.

  16. Automated Computer-Based Facility for Measurement of Near-Field Structure of Microwave Radiators and Scatterers

    DEFF Research Database (Denmark)

    Mishra, Shantnu R.;; Pavlasek, Tomas J. F.;; Muresan, Letitia V.

    1980-01-01

    An automatic facility for measuring the three-dimensional structure of the near fields of microwave radiators and scatterers is described. The amplitude and phase for different polarization components can be recorded in analog and digital form using a microprocessor-based system. The stored data...... are transferred to a large high-speed computer for bulk processing and for the production of isophot and equiphase contour maps or profiles. The performance of the system is demonstrated through results for a single conical horn, for interacting rectangular horns, for multiple cylindrical scatterers...

  17. Inelastic scattering in condensed matter with high intensity Mossbauer radiation: Progress report, March 1, 1985-October 31, 1987

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1987-10-01

    A facility for high intensity Moessbauer scattering has been commissioned at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue University using special isotopes produced at MURR. A number of scattering studies have been successfully carried out, including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 which indicates phason rather than phonon behavior. High precision, fundamental Moessbauer effect studies have also been carried out using scattering to filter unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape. This method allows complete correction for source resonance self-absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. This analysis is important to both the funadmental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct elastic fractions and lineshape parameters. These advances, coupled to our improvements in MIcrofoil Conversion Electron (MICE) spectroscopy, lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  18. Numerical prediction of heat transfer by natural convection and radiation in an enclosure filled with an isotropic scattering medium

    International Nuclear Information System (INIS)

    Moufekkir, F.; Moussaoui, M.A.; Mezrhab, A.; Naji, H.; Lemonnier, D.

    2012-01-01

    This paper deals with the numerical solution for natural convection and volumetric radiation in an isotropic scattering medium within a heated square cavity using a hybrid thermal lattice Boltzmann method (HTLBM). The multiple relaxation time lattice Boltzmann method (MRT-LBM) has been coupled to the finite difference method (FDM) to solve momentum and energy equations, while the discrete ordinates method (DOM) has been adopted to solve the radiative transfer equation (RTE) using the S8 quadrature. Based on these approaches, the effects of various influencing parameters such as the Rayleigh number (Ra), the wall emissivity (ε ι ), the Planck number (Pl), and the scattering albedo (ω), have been considered. The results presented in terms of isotherms, streamlines and averaged Nusselt number, show that in absence of radiation, the temperature and the flow fields are centro-symmetrics and the cavity core is thermally stratified. However, radiation causes an overall increase in the temperature and velocity gradients along both thermally active walls. The maximum heat transfer rate is obtained when the surfaces of the enclosure walls are regarded as blackbodies. It is also seen that the scattering medium can generate a multicellular flow.

  19. Reconstruction of surface morphology from coherent scattering of white x-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sant, Tushar; Pietsch, Ullrich [Solid State Physics Group, University of Siegen, 57068 Siegen (Germany)

    2009-07-01

    Static speckle experiments were performed using coherent white X-ray radiation from a bending magnet at BESSYII. Semiconductor and polymer surfaces were investigated under incidence condition smaller than the critical angle of total external reflection. The scattering pattern of the sample results from the illumination function modified by the surface roughness. The periodic oscillations are caused by the illumination function whereas other irregular features are associated with sample surface. The speckle map of reflection from a laterally periodic structure like GaAs grating is studied. Under coherent illumination the grating peaks split into speckles because of fluctuations on the sample surface. The surface morphology can be reconstructed using phase retrieval algorithms. In case of 1D problem, these algorithms rarely yield a unique and converging solution. The algorithm is modified to contain additional propagator term and the phase of illumination function in the real space constraint. The modified algorithm converges faster than conventional algorithms. A detailed surface profiles from the real measurements of the sample are reconstructed using this algorithm.

  20. Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range

    International Nuclear Information System (INIS)

    Astapenko, V. A.

    2011-01-01

    The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of “elastic” scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.

  1. Importance of scatter compensation algorithm in heterogeneous tissue for the radiation dose calculation of small lung nodules. A clinical study

    International Nuclear Information System (INIS)

    Baba, Yuji; Murakami, Ryuji; Mizukami, Naohisa; Morishita, Shoji; Yamashita, Yasuyuki; Araki, Fujio; Moribe, Nobuyuki; Hirata, Yukinori

    2004-01-01

    The purpose of this study was to compare radiation doses of small lung nodules calculated with beam scattering compensation and those without compensation in heterogeneous tissues. Computed tomography (CT) data of 34 small (1-2 cm: 12 nodules, 2-3 cm 11 nodules, 3-4 cm 11 nodules) lung nodules were used in the radiation dose measurements. Radiation planning for lung nodule was performed with a commercially available unit using two different radiation dose calculation methods: the superposition method (with scatter compensation in heterogeneous tissues), and the Clarkson method (without scatter compensation in heterogeneous tissues). The energy of the linac photon used in this study was 10 MV and 4 MV. Monitor unit (MU) to deliver 10 Gy at the center of the radiation field (center of the nodule) calculated with the two methods were compared. In 1-2 cm nodules, MU calculated by Clarkson method (MUc) was 90.0±1.1% (4 MV photon) and 80.5±2.7% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 92.9±1.1% (4 MV photon) and 86.6±2.8% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 90.5±2.0% (4 MV photon) and 90.1±1.7% (10 MV photon) compared to MUs. In 1-2 cm nodules, MU calculated without lung compensation (MUn) was 120.6±8.3% (4 MV photon) and 95.1±4.1% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 120.3±11.5% (4 MV photon) and 100.5±4.6% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 105.3±9.0% (4 MV photon) and 103.4±4.9% (10 MV photon) compared to MUs. The MU calculated without lung compensation was not significantly different from the MU calculated by superposition method in 2-3 cm nodules. We found that the conventional dose calculation algorithm without scatter compensation in heterogeneous tissues substantially overestimated the radiation dose of small nodules in the lung field. In the calculation of dose distribution of small

  2. Application of gamma radiation backscattering in determining density and Zsub(eff) of scattering material Monte Carlo optimization of configuration

    International Nuclear Information System (INIS)

    Cechak, T.

    1982-01-01

    Applying Gardner's method of double evaluation one detector should be positioned such that its response should be independent of the material density and the second detector should be positioned so as to maximize changes in response due to density changes. The experimental scanning for optimal energy is extremely time demanding. A program was written based on the Monte Carlo method which solves the problem of error magnitude in case the computation of gamma radiation backscattering neglects multiply scattered photons, the problem of how this error depends on the atomic number of the scattering material as well as the problem of whether the representation of individual scatterings in the spectrum of backscattered photons depends on the positioning of the detector. 42 detectors, 8 types of material and 10 different density values were considered. The computed dependences are given graphically. (M.D.)

  3. Scattering and emission from inhomogeneous vegetation canopy and alien target beneath by using three-dimensional vector radiative transfer (3D-VRT) equation

    International Nuclear Information System (INIS)

    Jin Yaqiu; Liang Zichang

    2005-01-01

    To solve the 3D-VRT equation for the model of spatially inhomogeneous scatter media, the finite enclosure of the scatter media is geometrically divided, in both vertical z and transversal (x,y) directions, to form very thin multi-boxes. The zeroth order emission, first-order Mueller matrix of each thin box and an iterative approach of high-order radiative transfer are applied to derive high-order scattering and emission of whole inhomogeneous scatter media. Numerical results of polarized brightness temperature at microwave frequency and under different radiometer resolutions from inhomogeneous scatter model such as vegetation canopy and alien target beneath canopy are simulated and discussed

  4. Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations

    International Nuclear Information System (INIS)

    Fu, Q.; Thorsen, T.J.; Su, J.; Ge, J.M.; Huang, J.P.

    2009-01-01

    We simulate the single-scattering properties (SSPs) of dust aerosols with both spheroidal and spherical shapes at a wavelength of 0.55 μm for two refractive indices and four effective radii. Herein spheres are defined by preserving both projected area and volume of a non-spherical particle. It is shown that the relative errors of the spheres to approximate the spheroids are less than 1% in the extinction efficiency and single-scattering albedo, and less than 2% in the asymmetry factor. It is found that the scattering phase function of spheres agrees with spheroids better than the Henyey-Greenstein (HG) function for the scattering angle range of 0-90 o . In the range of ∼90-180 o , the HG function is systematically smaller than the spheroidal scattering phase function while the spherical scattering phase function is smaller from ∼90 o to 145 o but larger from ∼145 o to 180 o . We examine the errors in reflectivity and absorptivity due to the use of SSPs of equivalent spheres and HG functions for dust aerosols. The reference calculation is based on the delta-DISORT-256-stream scheme using the SSPs of the spheroids. It is found that the errors are mainly caused by the use of the HG function instead of the SSPs for spheres. By examining the errors associated with the delta-four- and delta-two-stream schemes using various approximate SSPs of dust aerosols, we find that the errors related to the HG function dominate in the delta-four-stream results, while the errors related to the radiative transfer scheme dominate in the delta-two-stream calculations. We show that the relative errors in the global reflectivity due to the use of sphere SSPs are always less than 5%. We conclude that Mie-based SSPs of non-spherical dust aerosols are well suited in radiative flux calculations.

  5. Scattering of lower-hybrid waves by drift-wave density fluctuations: solutions of the radiative transfer equation

    International Nuclear Information System (INIS)

    Andrews, P.L.; Perkins, F.W.

    1983-01-01

    The investigation of the scattering of lower-hybrid waves by density fluctuations arising from drift waves in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. The propagation of the lower-hybrid waves is well represented by a radiative transfer equation when the scale size of the density fluctuations is small compared to the overall plasma size. The radiative transfer equation is solved in two limits: first, the forward scattering limit, where the scale size of density fluctuations is large compared to the lower-hybrid perpendicular wavelength, and second, the large-angle scattering limit, where this inequality is reversed. The most important features of these solutions are well represented by analytical formulas derived by simple arguments. Based on conventional estimates for density fluctuations arising from drift waves and a parabolic density profile, the optical depth tau for scattering through a significant angle, is given by tauroughly-equal(2/N 2 /sub parallel/) (#betta#/sub p/i0/#betta#) 2 (m/sub e/c 2 /2T/sub i/)/sup 1/2/ [c/α(Ω/sub i/Ω/sub e/)/sup 1/2/ ], where #betta#/sub p/i0 is the central ion plasma frequency and T/sub i/ denotes the ion temperature near the edge of the plasma. Most of the scattering occurs near the surface. The transmission through the scattering region scales as tau - 1 and the emerging intensity has an angular spectrum proportional to cos theta, where sin theta = k/sub perpendicular/xB/sub p//(k/sub perpendicular/B/sub p/), and B/sub p/ is the poloidal field

  6. Main error sources in sorbtion technique and plasma electron component parameter definition by continuous X radiation

    International Nuclear Information System (INIS)

    Gavrilov, V.V.; Torokhova, N.V.; Fasakhov, I.K.

    1986-01-01

    Recombination radiation effect on the relation of signals behind the filters depending on the plasma temperature(sorption method for T determination) is demonstrated. This factor produces the main effect on the method accuracy (100-400%), the other factors analysed in combination make an error in temperature at the level of 50%. Method of plasma electron distribution function reconstruction by continuous x-radiation spectrum, based on the correctness (under certain limitations for the required function) of the equation, linking the electron distribution function with bremmsstrahlung spectral density is presented

  7. Research on continuous environmental radiation monitoring system for NPP based on wireless sensor network

    International Nuclear Information System (INIS)

    Fu Hailong; Jia Mingchun; Peng Guichu

    2010-01-01

    According to the characteristics of environmental gamma radiation monitoring and the requirement of nuclear power plant (NPP) developing, a new continuous environmental radiation monitoring system based on wireless sensor network (WSN) was presented. The basic concepts and application of WSN were introduced firstly. And then the characteristics of the new system were analyzed. At the same time the configuration of the WSN and the whole structure of the system were built. Finally, the crucial techniques used in system designing, such as the design of sensor node, the choice of communication mode and protocol, the time synchronization and space location, the security of the network and the faults tolerance were introduced. (authors)

  8. On the radiative-conductive solution in continuous heterogeneous grey plane-parallel participating medium

    Energy Technology Data Exchange (ETDEWEB)

    Valerio, Felipe L. [Instituto Federal de Educacao Ciencia e Tecnologia do Rio Grande do Sul (IFRGS), Bento Goncalves, RS (Brazil); Segatto, Cynthia F.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos Graduacao em Engenharia Mecanica; Vargas, Rubem M.F., E-mail: felipe.valerio@bento.ifrs.edu.br, E-mail: cynthia.segatto@ufrgs.br, E-mail: marco.vilhena@ufrgs.br, E-mail: rvargas@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil). Programa de Pos Graduacao em Engenharia e Tecnologia de Materiais

    2017-07-01

    In this work we report an analytical representation for the solution of the radiative-conductive S{sub N} equation in a plane-parallel atmosphere in a heterogeneous domain considering an arbitrary continuous functions for the albedo. The basic idea consists in the application of the decomposition procedure to the non-linear radiative-conductive SN problem that are easily solved by the well know LTSN method. The length of the recursive system is properly chose in order to get a prescribed accuracy for the results. We also present numerical simulations for the results. (author)

  9. A 2D MWPC area detector for use with synchrotron X-radiation at the Daresbury Laboratory for small angle diffraction and scattering

    International Nuclear Information System (INIS)

    Helliwell, J.R.; Hughes, G.; Przybylski, M.M.; Ridley, P.A.; Sumner, I.; Bateman, J.E.; Connolly, J.F.; Stephenson, R.

    1982-01-01

    A 2D multiwire proportional chamber area detector is being developed to provide a real time data acquisition system for small angle scattering and diffraction experiments with synchrotron X-radiation at the Daresbury synchrotron radiation source (SRS). The chamber has a circular aperture, 200 mm diameter with an anode and cathode wire pitch of 1 mm; a front cathode-anode spacing of 6 mm and a 6 mm spacing between anode and rear cathode. A 1 mm thick front beryllium window and a rear aluminium cover plate with indium seals provide a gas-tight system. Previous experiments with a similar chamber design allowed continual use of the chamber for up to 2 years without refill. A digitising time of 2 μs is expected based on a 260 mm delay line and Lecroy TDC linked to a mass semiconductor memory of 512 x 256 elements. The experiment will be controlled by a PDP 11/04 computer with 28 K memory interfaced to a CAMAC create with 64 K fast access CAMAC memory. The system should be relatively easy to use with good order to order resolution and reasonable rate for small angle diffraction and scattering experiments on biological systems. Evaluation of the set-up for protein crystallography is planned though a TV based image intensifier (Enraf-Nonius) is preferred for this application at the SRS. (orig.)

  10. Time-dependent radiation transfer with rayleigh scattering in finite plane-parallel media using pomraning-eddington approximation

    International Nuclear Information System (INIS)

    El-Wakil, S.A.; Sallah, M.; Degheidy, A.R.

    2005-01-01

    The time-dependent radiation transfer equation in plane geometry with Rayleigh scattering is studied. The traveling wave transformation is used to obtain the corresponding stationary-like equation. Pomraning-Eddington approximation is then used to calculate the radiation intensity in finite plane-parallel media. Numerical results and shielding calculations are shown for reflectivity and transmissivity at different times. The medium is assumed to have specular-reflecting boundaries. For the sake of comparison, two different weight functions are introduced and to force the boundary conditions to be fulfilled

  11. Study on radiation-induced defects in germanium monocrystals by the X-ray diffusive scattering method

    International Nuclear Information System (INIS)

    Malinenko, I.A.; Perelygina, E.A.; Chudinova, S.A.; Shivrin, O.N.

    1979-01-01

    The method of X-ray diffusion scattering was used to study the defective structure of germanium monocrystals exposed to 750 keV proton irradiation with 3.8x10 16 -4.6x10 17 cm -2 doses and subjected to the subsequent annealing at temperatures up to 450 deg C. Detected in the crystals were the complex radiation induced structure characterized with oriented vacancy complexes and results from the both effects: irradiation and annealing. Radiation defect sizes in the section (hhO) have been determined. With increasing the annealing temperature the structure reconstruction resulting in the complex dissociation is observed

  12. Solving the radiation diffusion and energy balance equations using pseudo-transient continuation

    International Nuclear Information System (INIS)

    Shestakov, A.I.; Greenough, J.A.; Howell, L.H.

    2005-01-01

    We develop a scheme for the system coupling the radiation diffusion and matter energy balance equations. The method is based on fully implicit, first-order, backward Euler differencing; Picard-Newton iterations solve the nonlinear system. We show that iterating on the radiation energy density and the emission source is more robust. Since the Picard-Newton scheme may not converge for all initial conditions and time steps, pseudo-transient continuation (Ψtc) is introduced. The combined Ψtc-Picard-Newton scheme is analyzed. We derive conditions on the Ψtc parameter that guarantee physically meaningful iterates, e.g., positive energies. Successive Ψtc iterates are bounded and the radiation energy density and emission source tend to equilibrate. The scheme is incorporated into a multiply dimensioned, massively parallel, Eulerian, radiation-hydrodynamic computer program with automatic mesh refinement (AMR). Three examples are presented that exemplify the scheme's performance. (1) The Pomraning test problem that models radiation flow into cold matter. (2) A similar, but more realistic problem simulating the propagation of an ionization front into tenuous hydrogen gas with a Saha model for the equation-of-state. (3) A 2D axisymmetric (R,Z) simulation with real materials featuring jetting, radiatively driven, interacting shocks

  13. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media

    Science.gov (United States)

    Stamnes, Knut; Tsay, S.-CHEE; Jayaweera, Kolf; Wiscombe, Warren

    1988-01-01

    The transfer of monochromatic radiation in a scattering, absorbing, and emitting plane-parallel medium with a specified bidirectional reflectivity at the lower boundary is considered. The equations and boundary conditions are summarized. The numerical implementation of the theory is discussed with attention given to the reliable and efficient computation of eigenvalues and eigenvectors. Ways of avoiding fatal overflows and ill-conditioning in the matrix inversion needed to determine the integration constants are also presented.

  14. Full correction of scattering effects by using the radiative transfer theory for improved quantitative analysis of absorbing species in suspensions.

    Science.gov (United States)

    Steponavičius, Raimundas; Thennadil, Suresh N

    2013-05-01

    Sample-to-sample photon path length variations that arise due to multiple scattering can be removed by decoupling absorption and scattering effects by using the radiative transfer theory, with a suitable set of measurements. For samples where particles both scatter and absorb light, the extracted bulk absorption spectrum is not completely free from nonlinear particle effects, since it is related to the absorption cross-section of particles that changes nonlinearly with particle size and shape. For the quantitative analysis of absorbing-only (i.e., nonscattering) species present in a matrix that contains a particulate species that absorbs and scatters light, a method to eliminate particle effects completely is proposed here, which utilizes the particle size information contained in the bulk scattering coefficient extracted by using the Mie theory to carry out an additional correction step to remove particle effects from bulk absorption spectra. This should result in spectra that are equivalent to spectra collected with only the liquid species in the mixture. Such an approach has the potential to significantly reduce the number of calibration samples as well as improve calibration performance. The proposed method was tested with both simulated and experimental data from a four-component model system.

  15. Wrapped and unwrapped phase of radiation scattered by a discrete number of particles

    International Nuclear Information System (INIS)

    Watson, Stephen M; Ridley, Kevin D

    2007-01-01

    This paper investigates wrapped and unwrapped phase differences generated by a non-Gaussian scattering model: the two-dimensional random walk. Mean square values for these quantities are obtained for one and two scatterers, as well as the large scatterer limit when the field constitutes a circular complex Gaussian process. Numerical simulation is used to investigate the phase under more general fluctuation conditions, and reveals that the wrapped phase difference correlation converges rapidly to that result predicted for a Gaussian speckle field. Analytical results for the unwrapped phase indicate that this quantity transitions from a stationary process for one and two scatterers to a non-stationary process in the large scatterer limit. The nature of this transition is examined using numerical simulation for arbitrary scatterer number. Phase correlations are of consequence in various phase sensitive detection systems, and this paper examines both Gaussian and non-Gaussian fields

  16. Confluent Heun functions and the physics of black holes: Resonant frequencies, Hawking radiation and scattering of scalar waves

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)

    2016-10-15

    We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild black hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied. - Highlights: • Charged massive scalar field in the dyon black hole and massless scalar field in the Ernst spacetime are analyzed. • The confluent Heun functions are applied to obtain the solution of the Klein–Gordon equation. • The resonant frequencies are obtained. • The Hawking radiation and the scattering process of scalar waves are examined.

  17. Scattered radiation to gonads: Role of testicular shielding for para-aortic and homolateral illiac nodal radiotherapy

    International Nuclear Information System (INIS)

    Singhal, M.K.; Kapoor, A.; Singh, D.; Bagri, P.K.; Narayan, S.; Nirban, R.K.; Kumar, H.S.

    2014-01-01

    Background: Scattered radiation to organs at risk deserves great attention during radiotherapy especially when the concern is about fertility. Minimizing the delivery of scattered radiation to the gonads while treating abdominal nodes or pelvic fields in male patients requires adequate shielding of the testes to preserve testicular functions. We constructed a testicular shield with cerrobend for the purpose of treatment of seminoma of testis stage I and IIA disease. Materials and methods: An outer shell of coconut of required dimensions was taken as a base over which cerrobend was poured to obtain two semi-spherical half testicular shields. Five patients of seminoma early stage (stage I and IIA) were treated with this testicular shield. Results: The estimated total dose received by the testis by scatter radiation after completion of the treatment was 0.115 Gy (0.28%) of total mid-plane dose of 40 Gy delivered by inverted Y field. At a distance of 8 cm from the inferior field border the 2 cm thick cerrobend testicular shield provided a shielding factor of 3.2/0.3 =10.33. Conclusions: With proper testicular shielding, doses as low as 0.28% of the prescribed dose can be achieved. This low dose is believed to maintain the fertility of the patient.

  18. Scattered radiation to gonads: role of testicular shielding for para-aortic and homolateral illiac nodal radiotherapy.

    Science.gov (United States)

    Singhal, Mukesh Kumar; Kapoor, Akhil; Singh, Daleep; Bagri, Puneet Kumar; Narayan, Satya; Nirban, Raj Kumar; Kumar, Harvindra Singh

    2014-06-01

    Scattered radiation to organs at risk deserves great attention during radiotherapy especially when the concern is about fertility. Minimizing the delivery of scattered radiation to the gonads while treating abdominal nodes or pelvic fields in male patients requires adequate shielding of the testes to preserve testicular functions. We constructed a testicular shield with cerrobend for the purpose of treatment of seminoma of testis stage I and IIA disease. An outer shell of coconut of required dimensions was taken as a base over which cerrobend was poured to obtain two semi-spherical half testicular shields. Five patients of seminoma early stage (stage I and IIA) were treated with this testicular shield. The estimated total dose received by the testis by scatter radiation after completion of the treatment was 0.115Gy (0.28%) of total mid-plane dose of 40Gy delivered by inverted Y field. At a distance of 8cm from the inferior field border the 2cm thick cerrobend testicular shield provided a shielding factor of 3.2/0.3=10.33. With proper testicular shielding, doses as low as 0.28% of the prescribed dose can be achieved. This low dose is believed to maintain the fertility of the patient. Copyright © 2014. Production and hosting by Elsevier B.V.

  19. The use of the case study method in radiation worker continuing training

    International Nuclear Information System (INIS)

    Stevens, R.D.

    1990-01-01

    Typical methods of continuing training are often viewed by employees as boring, redundant and unnecessary. It is hoped that the operating experience lesson in the required course, Radiation Worker Requalification, will be well received by employees because actual RFP events will be presented as case studies. The interactive learning atmosphere created by the case study method stimulates discussion, develops analytical abilities, and motivates employees to use lessons learned in the workplace. This problem solving approach to continuing training incorporates cause and effect analysis, a technique which is also used at RFP to investigate events. A method of designing the operating experience lesson in the Radiation Worker Requalification course is described in this paper. 7 refs., 2 figs

  20. Continuous enzyme reactions with immobilized enzyme tubes prepared by radiation cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1986-01-01

    Immobilized glucose oxidase tubes were prepared by radiation cast-polymerization of 2-hydroxyethyl methacrylate and tetraethyleneglycol diacrylate monomer at low temperatures. The immobilized enzyme tubes which were spirally set in a water bath were used as reactor, in which the enzyme activity varied with tube size and flow rate of the substrate. The conversion yield of the substrate in continuous enzyme reaction was about 80%. (author)

  1. A continuous exchange factor method for radiative exchange in enclosures with participating media

    International Nuclear Information System (INIS)

    Naraghi, M.H.N.; Chung, B.T.F.; Litkouhi, B.

    1987-01-01

    A continuous exchange factor method for analysis of radiative exchange in enclosures is developed. In this method two types of exchange functions are defined, direct exchange function and total exchange function. Certain integral equations relating total exchange functions to direct exchange functions are developed. These integral equations are solved using Gaussian quadrature integration method. The results obtained based on the present approach are found to be more accurate than those of the zonal method

  2. Pilot study of interaction of radiation therapy with doxorubicin by continuous infusion

    International Nuclear Information System (INIS)

    Rosenthal, C.J.; Rotman, M.

    1988-01-01

    Doxorubicin was initially administered alone by continuous infusion for 5 days every 3 weeks in escalating doses to 13 patients with advanced metastatic and/or recurrent malignancies. The maximum tolerable dosage was 13 mg/m2 per day for 5 days. Kinetic data showed a steady level of 60 ng/ml for 4 days and a biphasic disappearance curve. Radiation therapy (150-200 cGy per session) was then administered in 5-day cycles, every 3 weeks, concomitantly with continuous infusion of doxorubicin (12 mg/m2 per day) to 21 patients with various advanced unresectable recurrent or metastatic malignancies. Four of 9 patients with soft tissue sarcomas achieved complete response after a radiation dose of 2,206 +/- 590 (SD) cGy and 3 had partial response; the median durations of the response were 142 +/- 65 (SD) weeks for complete response and 28 +/- 10 weeks for partial response. Of 4 patients with primary hepatoma, 2 achieved partial response after 1,290 +/- 210 cGy. No response was seen in any of the 7 patients with adenocarcinoma of the gastrointestinal tract or breast. Complications of this regimen included moderate leukopenia and thrombocytopenia, mucositis, skin erythema, and decrease of the ventricular ejection fraction at a cumulative doxorubicin dose of 840 mg/m2. We conclude that doxorubicin given by protracted infusion can be safely administered with concomitant radiation and appears to enhance the effects of radiation on most soft tissue sarcomas and on some hepatocellular carcinomas

  3. Adjoint Sensitivity Analysis of Radiative Transfer Equation: Temperature and Gas Mixing Ratio Weighting Functions for Remote Sensing of Scattering Atmospheres in Thermal IR

    Science.gov (United States)

    Ustinov, E.

    1999-01-01

    Sensitivity analysis based on using of the adjoint equation of radiative transfer is applied to the case of atmospheric remote sensing in the thermal spectral region with non-negligeable atmospheric scattering.

  4. Monte Carlo generator ELRADGEN 2.0 for simulation of radiative events in elastic ep-scattering of polarized particles

    Science.gov (United States)

    Akushevich, I.; Filoti, O. F.; Ilyichev, A.; Shumeiko, N.

    2012-07-01

    The structure and algorithms of the Monte Carlo generator ELRADGEN 2.0 designed to simulate radiative events in polarized ep-scattering are presented. The full set of analytical expressions for the QED radiative corrections is presented and discussed in detail. Algorithmic improvements implemented to provide faster simulation of hard real photon events are described. Numerical tests show high quality of generation of photonic variables and radiatively corrected cross section. The comparison of the elastic radiative tail simulated within the kinematical conditions of the BLAST experiment at MIT BATES shows a good agreement with experimental data. Catalogue identifier: AELO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1299 No. of bytes in distributed program, including test data, etc.: 11 348 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: All Operating system: Any RAM: 1 MB Classification: 11.2, 11.4 Nature of problem: Simulation of radiative events in polarized ep-scattering. Solution method: Monte Carlo simulation according to the distributions of the real photon kinematic variables that are calculated by the covariant method of QED radiative correction estimation. The approach provides rather fast and accurate generation. Running time: The simulation of 108 radiative events for itest:=1 takes up to 52 seconds on Pentium(R) Dual-Core 2.00 GHz processor.

  5. Measurements of the parametric decay of CO2 laser radiation into plasma waves at quarter critical density using ruby laser Thomson scattering

    International Nuclear Information System (INIS)

    Schuss, J.J.; Chu, T.K.; Johnson, L.C.

    1977-11-01

    We report the results of small-angle ruby laser Thomson scattering measurements of the parametric excitation of plasma waves by CO 2 laser radiation at quarter-critical density in a laser-heated gas target plasma. From supplementary data obtained from interferometry and large-angle ruby laser scattering we infer that the threshold conditions for a convective decay are satisfied

  6. Inverse radiation problem of temperature distribution in one-dimensional isotropically scattering participating slab with variable refractive index

    International Nuclear Information System (INIS)

    Namjoo, A.; Sarvari, S.M. Hosseini; Behzadmehr, A.; Mansouri, S.H.

    2009-01-01

    In this paper, an inverse analysis is performed for estimation of source term distribution from the measured exit radiation intensities at the boundary surfaces in a one-dimensional absorbing, emitting and isotropically scattering medium between two parallel plates with variable refractive index. The variation of refractive index is assumed to be linear. The radiative transfer equation is solved by the constant quadrature discrete ordinate method. The inverse problem is formulated as an optimization problem for minimizing an objective function which is expressed as the sum of square deviations between measured and estimated exit radiation intensities at boundary surfaces. The conjugate gradient method is used to solve the inverse problem through an iterative procedure. The effects of various variables on source estimation are investigated such as type of source function, errors in the measured data and system parameters, gradient of refractive index across the medium, optical thickness, single scattering albedo and boundary emissivities. The results show that in the case of noisy input data, variation of system parameters may affect the inverse solution, especially at high error values in the measured data. The error in measured data plays more important role than the error in radiative system parameters except the refractive index distribution; however the accuracy of source estimation is very sensitive toward error in refractive index distribution. Therefore, refractive index distribution and measured exit intensities should be measured accurately with a limited error bound, in order to have an accurate estimation of source term in a graded index medium.

  7. Study of electron densities of normal and neoplastic human breast tissues by Compton scattering using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil)

    2012-07-15

    Electron densities of 33 samples of normal (adipose and fibroglangular) and neoplastic (benign and malignant) human breast tissues were determined through Compton scattering data using a monochromatic synchrotron radiation source and an energy dispersive detector. The area of Compton peaks was used to determine the electron densities of the samples. Adipose tissue exhibits the lowest values of electron density whereas malignant tissue the highest. The relationship with their histology was discussed. Comparison with previous results showed differences smaller than 4%. - Highlights: Black-Right-Pointing-Pointer Electron density of normal and neoplastic breast tissues was measured using Compton scattering. Black-Right-Pointing-Pointer Monochromatic synchrotron radiation was used to obtain the Compton scattering data. Black-Right-Pointing-Pointer The area of Compton peaks was used to determine the electron densities of samples. Black-Right-Pointing-Pointer Adipose tissue shows the lowest electron density values whereas the malignant tissue the highest. Black-Right-Pointing-Pointer Comparison with previous results showed differences smaller than 4%.

  8. Positron annihilation radiation from the Galactic center - Cheshire cat' Compton scattering and the origin of excess continuum

    International Nuclear Information System (INIS)

    Bildsten, L.; Zurek, W.H.

    1988-01-01

    Two observations of the gamma-ray spectrum from the direction of the Galactic center were made by HEAO 3 in the fall of 1979 and the spring of 1980. The 2-gamma 511 keV annihilation line flux decreased by a factor of about three during the 6 months between these observations, while the excess gamma-ray continuum below the annihilation line, often interpreted as 3-gamma decay of orthopositronium, barely changed. This discrepancy in temporal behavior makes the identification of the bulk of excess continuum as 3-gamma decay of positronium difficult. It is shown that Compton scattering of the line and high-energy radiation provides a natural explanation for the surprisingly small changes seen in the excess continuum. Scattered photons are delayed by a time corresponding to the size of the scattering region. For the annihilation source in the Galactic center, this distance is probably a fraction of a parsec. Thus, even after the high-energy continuum and annihilation line are gone, low-energy Compton-scattered photons can still be detected with an almost unchanged flux. 23 references

  9. Extra lethal damage due to residual incompletely repaired sublethal damage in hyperfractionated and continuous radiation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; van de Geijn, J.; Goffman, T. (ROB, DCT, NCI, NIH, Bethesda, Maryland 20892 (US))

    1991-05-01

    In the conventional linear--quadratic model of single-dose response, the {alpha} and {beta} terms reflect lethal damage created {ital during} the delivery of a dose, from two different presumed molecular processes, one linear with dose, the other quadratic. With the conventional one-fraction-per-day (or less) regimens, the sublethal damage (SLD), presumably repairing exponentially over time, is essentially completely fixed by the time of the next dose of radiation. If this assumption is true, the effects of subsequent fractions of radiation should be independent, that is, there should be little, if any, reversible damage left from previous fractions, at the time of the next dose. For multiple daily fractions, or for the limiting case, continuous radiation, this simplification may overlook damaged cells that have had insufficient time for repair. A generalized method is presented for accounting for extra lethal damage (ELD) arising from such residual SLD for hyperfractionation and continuous irradiation schemes. It may help to predict differences in toxicity and tumor control, if any, obtained with unconventional'' treatment regimens. A key element in the present model is the finite size and the dynamic character of the pool of sublethal damage. Besides creating the usual linear and quadratic components of lethal damage, each new fraction converts a certain fraction of the existing SLD into ELD, and creates some new SLD.

  10. Extra lethal damage due to residual incompletely repaired sublethal damage in hyperfractionated and continuous radiation treatment

    International Nuclear Information System (INIS)

    Chen, J.; van de Geijn, J.; Goffman, T.

    1991-01-01

    In the conventional linear--quadratic model of single-dose response, the α and β terms reflect lethal damage created during the delivery of a dose, from two different presumed molecular processes, one linear with dose, the other quadratic. With the conventional one-fraction-per-day (or less) regimens, the sublethal damage (SLD), presumably repairing exponentially over time, is essentially completely fixed by the time of the next dose of radiation. If this assumption is true, the effects of subsequent fractions of radiation should be independent, that is, there should be little, if any, reversible damage left from previous fractions, at the time of the next dose. For multiple daily fractions, or for the limiting case, continuous radiation, this simplification may overlook damaged cells that have had insufficient time for repair. A generalized method is presented for accounting for extra lethal damage (ELD) arising from such residual SLD for hyperfractionation and continuous irradiation schemes. It may help to predict differences in toxicity and tumor control, if any, obtained with ''unconventional'' treatment regimens. A key element in the present model is the finite size and the dynamic character of the pool of sublethal damage. Besides creating the usual linear and quadratic components of lethal damage, each new fraction converts a certain fraction of the existing SLD into ELD, and creates some new SLD

  11. Application of segmented dental panoramic tomography among children: positive effect of continuing education in radiation protection.

    Science.gov (United States)

    Pakbaznejad Esmaeili, Elmira; Waltimo-Sirén, Janna; Laatikainen, Tuula; Haukka, Jari; Ekholm, Marja

    2016-05-23

    Dental panoramic tomography is the most frequent examination among 7-12-year olds, according to the Radiation Safety and Nuclear Authority of Finland. At those ages, dental panoramic tomographs (DPTs) are mostly obtained for orthodontic reasons. Children's dose reduction by trimming the field size to the area of interest is important because of their high radiosensitivity. Yet, the majority of DPTs in this age group are still taken by using an adult programme and never by using a segmented programme. The purpose of the present study was to raise the awareness of dental staff with respect to children's radiation safety, to increase the application of segmented and child DPT programmes by further educating the whole dental team and to evaluate the outcome of the educational intervention. A five-step intervention programme, focusing on DPT field limitation possibilities, was carried out in community-based dental care as a part of mandatory continuing education in radiation protection. Application of segmented and child DPT programmes was thereafter prospectively followed up during a 1-year period and compared with our similar data from 2010 using a logistic regression analysis. Application of the child programme increased by 9% and the segmented programme by 2%, reaching statistical significance (odds ratios 1.68; 95% confidence interval 1.23-2.30; p-value radiation safety of children during dental panoramic tomography. Segmented and child DPT programmes can be applied successfully in dental practice for children.

  12. Evaluation of attenuating materials: model for the distribution of scattered radiation

    International Nuclear Information System (INIS)

    Costa, Paulo R.

    1996-01-01

    A mathematical model for the behaviour of the distribution of photon scattered by attenuating media is presented. Shielding barriers or attenuating materials used in tests of quality control in radiology are proposed. Comparative results for Lucite are reported

  13. On the intensity and polarization of radiation emerging from a thick Rayleigh scattering atmosphere

    Directory of Open Access Journals (Sweden)

    V. Natraj

    2011-09-01

    Full Text Available We compute the intensity and polarization of reflected and transmitted light in optically thick Rayleigh scattering atmospheres. We obtain results accurate to seven decimal places. The results have been validated using a variety of methods.

  14. Effects of multiple scattering on radiative properties of soot fractal aggregates

    International Nuclear Information System (INIS)

    Yon, Jérôme; Liu, Fengshan; Bescond, Alexandre; Caumont-Prim, Chloé; Rozé, Claude; Ouf, François-Xavier; Coppalle, Alexis

    2014-01-01

    The in situ optical characterization of smokes composed of soot particles relies on light extinction, angular static light scattering (SLS), or laser induced incandescence (LII). These measurements are usually interpreted by using the Rayleigh–Debye–Gans theory for Fractal Aggregates (RDG-FA). RDG-FA is simple to use but it completely neglects the impact of multiple scattering (MS) within soot aggregates. In this paper, based on a scaling approach that takes into account MS effects, an extended form of the RDG-FA theory is proposed in order to take into account these effects. The parameters of this extended theory and their dependency on the number of primary sphere inside the aggregate (1 p <1006) and on the wavelength (266nm<λ<1064nm) are evaluated thanks to rigorous calculations based on discrete dipole approximation (DDA) and generalized multi-sphere Mie-solution (GMM) calculations. This study shows that size determination by SLS is not distorted by MS effect. On the contrary, it is shown that fractal dimension can be misinterpreted by light scattering experiments, especially at short wavelengths. MS effects should be taken into account for the interpretation of absorption measurements that are involved in LII or extinction measurements. -- Highlights: • We incorporate multiple scattering effects in a scaling approach for fractal aggregates. • A generalized structure factor is introduced for implementation in RDG-FA theory. • Forward scattering is affected by multiple scattering as well as power law regime. • Absorption cross sections are affected by multiple scattering. • Absorption cross sections are 11% higher than that for forward scattering

  15. A synchrotron radiation camera and data acquisition system for time resolved x-ray scattering studies

    International Nuclear Information System (INIS)

    Bordas, J.; Koch, M.H.J.; Clout, P.N.; Dorrington, E.; Boulin, C.; Gabriel, A.

    1980-01-01

    Until recently, time resolved measurements of x-ray scattering patterns have not been feasible because laboratory x-ray sources were too weak and detectors unavailable. Recent developments in both these fields have changed the situation, and it is now possible to follow changes in x-ray scattering patterns with a time resolution of a few ms. The apparatus used to achieve this is described and some examples from recent biological experiments are given. (author)

  16. Polarization effects in coherent and incoherent photon scattering: survey of measurements and theory relevant to radiation transport calculations

    International Nuclear Information System (INIS)

    Hubbell, J.H.

    1993-01-01

    This report reviews available information on polarization effects arising when photons in the X-ray and gamma-ray energy regime undergo coherent (Rayleigh) scattering and incoherent (Compton) scattering by atomic electrons. In addition to descriptions and discussions of these effects, including estimates of their magnitudes as they apply to radiation transport calculations, an annotated bibliography of 102 selected works covering the period 1905-1991 is provided, with particularly relevant works for the purpose of this report flagged with asterisks (*). A major resource for this report is a 1948 unpublished informal report by L.V. Spencer which has been quoted here almost in its entirety, since, of all the works cited in the annotated bibliography, it appears to be the only one which explicitly and directly addresses the purpose of this report. Hence this valuable material should be re-introduced into the available and current literature. (author). 119 refs., 7 figs

  17. Continuing Professional Development (CPD) of the nuclear and radiation professional engineers

    International Nuclear Information System (INIS)

    Sasaki, Satoru

    2016-01-01

    Professional Engineer is the national qualification stipulated by the Professional Engineer Act. A Professional Engineer in this Act means a person who conducts business on matters of planning, research, design, analysis, testing, evaluation or guidance thereof, which requires application of extensive scientific and technical expertise, and has three obligation and two responsibility related to engineer ethic. A technical discipline for nuclear and radiation technology in 2004, was established for the purpose of upgrading the skills of engineers in nuclear technology fields, utilizing their ability in nuclear safety regulation fields, and further strengthening safety management system in each entity. The activity of the nuclear and radiation professional engineers for the past 10 years was evaluated. For the next ten years, awareness of the role of the professional engineer to talk with general public is needed, and it is important to continue professional development. (author)

  18. Biological effectiveness of pulsed and continuous neutron radiation for cells of yeast Saccharomyces

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Komarova, E.V.; Potetnya, V.I.; Obaturov, G.M.

    2001-01-01

    Data are presented on biological effectiveness of fast neutrons generated by BR-10 reactor (dose rate up to 3.8 Gy/s) in comparison with neutrons of pulsed BARS-6 reactor (dose rate ∼6x10 6 Gy/s) for yeast Saccharomyces vini cells of a wild type Menri 139-B and radiosensitive Saccharomyces cerevisiae (rad52/rad52; rad54/rad54) mutants which are defective over different systems of DNA reparation. Value of relative biological efficiency (RBE) of continuous radiation for wild stam is from 3.5 up to 2.5 when survival level being 75-10 %, and RBE of pulsed neutron radiation is in the limits of 2.0-1.7 at the same levels. For mutant stam the value of RBE (1.4-1.6) of neutrons is constant at all survival levels and does not depend on dose rate [ru

  19. Blood-brain barrier disruption by continuous-wave radio frequency radiation.

    Science.gov (United States)

    Sirav, Bahriye; Seyhan, Nesrin

    2009-01-01

    The increasing use of cellular phones and the increasing number of associated base stations are becoming a widespread source of non ionizing electromagnetic radiation. Some biological effects are likely to occur even at low-level EM fields. This study was designed to investigate the effects of 900 and 1,800 MHz Continuous Wave Radio Frequency Radiation (CW RFR) on the permeability of Blood Brain Barrier (BBB) of rats. Results have shown that 20 min RFR exposure of 900 and 1,800 MHz induces an effect and increases the permeability of BBB of male rats. There was no change in female rats. The scientific evidence on RFR safety or harm remains inconclusive. More studies are needed to demonstrate the effects of RFR on the permeability of BBB and the mechanisms of that breakdown.

  20. Considerations on scattering and leak radiation for effective determination of secondary shielding in X-rays rooms of megavoltage

    International Nuclear Information System (INIS)

    Borges, Diogo da S.; Lava, Deise D.; Affonso, Renato R.W.; Moreira, Maria de L.; Guimaraes, Antonio C.F.

    2014-01-01

    This paper addresses the development of a algorithm capable of analyzing the thickness of the secondary shielding due to the production of secondary beams. The production of this beam requires consideration of scattering angle, as well as factors normally used for screening of medical facilities using radiographic techniques. Besides the beam emanated from scattering radiation, is is necessary to evaluate the contribution of leakage radiation, originating from equipment used for the production of the primary beam. A view of the mutual contribution of these radiation to the formation of the secondary beam has shown the need of using shieldings in adjacent walls of the room. The code was validated by comparison with an example case provided by NCRP-151 Report. In this report calculations for determining the secondary barrier for small angles are presented, that deserves greater attention for shielding and statements related to radiotherapy procedures of Modulated intensity. The results are consistent with those provided in the report, which makes the code can be used as a practical tool for the determination of effective shielding beams of megavoltage X-rays

  1. Finite volume method for radiative heat transfer in an unstructured flow solver for emitting, absorbing and scattering media

    International Nuclear Information System (INIS)

    Gazdallah, Moncef; Feldheim, Véronique; Claramunt, Kilian; Hirsch, Charles

    2012-01-01

    This paper presents the implementation of the finite volume method to solve the radiative transfer equation in a commercial code. The particularity of this work is that the method applied on unstructured hexahedral meshes does not need a pre-processing step establishing a particular marching order to visit all the control volumes. The solver simply visits the faces of the control volumes as numbered in the hexahedral unstructured mesh. A cell centred mesh and a spatial differencing step scheme to relate facial radiative intensities to nodal intensities is used. The developed computer code based on FVM has been integrated in the CFD solver FINE/Open from NUMECA Int. Radiative heat transfer can be evaluated within systems containing uniform, grey, emitting, absorbing and/or isotropically or linear anisotropically scattering medium bounded by diffuse grey walls. This code has been validated for three test cases. The first one is a three dimensional rectangular enclosure filled with emitting, absorbing and anisotropically scattering media. The second is the differentially heated cubic cavity. The third one is the L-shaped enclosure. For these three test cases a good agreement has been observed when temperature and heat fluxes predictions are compared with references taken, from literature.

  2. Development of a process for continuous, radiation-chemically initiated, catalytic hydrocarboxylation

    International Nuclear Information System (INIS)

    Laege, J.

    1980-01-01

    In the general part are treated technical preparation of aliphatic carboxylic acids and their economical importance, the hydrocarboxylation reaction and general aspects of radiation chemistry. The chapter on results of discontinuous experiments contains experiments of radiochemically initiated catalytical hydroesterification of oct-1-ene and buteneoxide. The chapter on development and arrangement of the continuously working hydrocarboxylation plant deals with the disposition of process flow sheet, single elements of and description of the plant. The chapter on results of continuous experiments describes residence time behaviour of the tube reactor, investigations on the mixing behaviour of educts, influence of residence time and reaction pressure on continuous thermal and thermal-radiochemical hydrocarboxylation. The next chapter proposes a procedure of continuous hydrobarboxylation and esterification at high pressure on an industrial scale. The experimental part presents starting materials, preparation on catalysts and reference substances, performance of discontinuous autoclave experiments, work up and investigation of reaction products, performance of continuous high pressure experiments, Co-60-source, Fricke-dosimetry and analytics. (SPI)

  3. Effects of continuous prenatal γ radiation on the pig and rat

    International Nuclear Information System (INIS)

    Erickson, B.H.; Martin, P.G.

    1976-01-01

    Little is known of the effects of continuous low-level irradiation applied prenatally to the long-lived mammal. As compared with the rodent, developmental events are protracted in long-lived species and consequently are at risk longer. Estimation of radiation risk to man therefore requires data from animals in which developmental events are similarly protracted. Pigs were irradiated continuously for the first 108 days of their 112-day gestation period at rates of 20, 9, 3 and 1.5 R per 22-hour day. Six pregnant gilts and six controls were employed at each dose rate. Foetal doses were 7, 3, 1 and 0.5 rad/d. Neither the health of the gilt nor the number of live births was affected by any exposure. Postnatal viability was also unaffected. Radiation effects on growth and organic development were assayed at birth, 70 and 150 days of age. Body weight and growth were unaffected by dose rates of 3 rad/d or less; and other than the gonad, only the weight of the brain was affected by 3 rad/d. At 1 rad/d or less only gonadal weight was reduced. The most spectacular finding at doses of 7 and 3 rad/d was sterility in both sexes. Following 1 rad/d, germ-cell number was reduced to 5% and 2% of control in the female and male, respectively. At 0.5 rad/d/, germ cells were reduced to 43% of control in the female and 11% of control in the male. In contrast to the pig, 7 rad/d reduced the germ-cell population of male and female rats to only 49% and 35% of control, respectively, and 1 rad/d produced no apparent effect in either sex. It appears, therefore, that interspecific differences in the response to continuous γ radiation are large and that the germ cell is the most labile cell type. (author)

  4. Continuous wave ultraviolet radiation induced frustration of etching in lithium niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mailis, S.; Riziotis, C.; Smith, P.G.R.; Scott, J.G.; Eason, R.W

    2003-02-15

    Illumination of the -z face of congruent lithium niobate single crystals with continuous wave (c.w.) ultraviolet (UV) laser radiation modifies the response of the surface to subsequent acid etching. A frequency doubled Ar{sup +} laser ({lambda}=244 nm) was used to illuminate the -z crystal face making it resistive to HF etching and thus transforming the illuminated tracks into ridge structures. This process enables the fabrication of relief patterns in a photolithographic manner. Spatially resolved Raman spectroscopy indicates preservation of the good crystal quality after irradiation.

  5. Cell-cycle distributions and radiation responses of Chinese hamster cells cultured continuously under hypoxic conditions

    International Nuclear Information System (INIS)

    Tokita, N.; Carpenter, S.G.; Raju, M.R.

    1984-01-01

    Cell-cycle distributions were measured by flow cytometry for Chinese hamster (CHO) cells cultured continuously under hypoxic conditions. DNA histograms showed an accumulation of cells in the early S phase followed by a traverse delay through the S phase, and a G 2 block. During hypoxic culturing, cell viability decreased rapidly to less than 0.1% at 120 h. Radiation responses for cells cultured under these conditions showed an extreme radioresistance at 72 h. Results suggest that hypoxia induces a condition similar to cell synchrony which itself changes the radioresistance of hypoxic cells. (author)

  6. WARMS - a continuous on-line environmental and emergency radiation monitoring system

    International Nuclear Information System (INIS)

    Ramsden, D.

    1984-01-01

    The Winfrith Airborne Release Monitoring System (WARMS) is used to monitor the environment around the Winfrith reactor site. It operates continuously monitoring the background radiation at 16 outstations and can provide rapid information should an accidental release occur. WARMS was developed jointly by the Radiological Safety Division and the Control and Instrumentation Division at Winfrith in association with the Safety and Reliability Directorate at Culcheth which developed the software. The system became operational in the autumn of 1983 and has since demonstrated a high degree of reliability and effectiveness. (author)

  7. Iterative solution of multiple radiation and scattering problems in structural acoustics using the BL-QMR algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, M. [Stanford Univ., CA (United States)

    1996-12-31

    Finite-element discretizations of time-harmonic acoustic wave problems in exterior domains result in large sparse systems of linear equations with complex symmetric coefficient matrices. In many situations, these matrix problems need to be solved repeatedly for different right-hand sides, but with the same coefficient matrix. For instance, multiple right-hand sides arise in radiation problems due to multiple load cases, and also in scattering problems when multiple angles of incidence of an incoming plane wave need to be considered. In this talk, we discuss the iterative solution of multiple linear systems arising in radiation and scattering problems in structural acoustics by means of a complex symmetric variant of the BL-QMR method. First, we summarize the governing partial differential equations for time-harmonic structural acoustics, the finite-element discretization of these equations, and the resulting complex symmetric matrix problem. Next, we sketch the special version of BL-QMR method that exploits complex symmetry, and we describe the preconditioners we have used in conjunction with BL-QMR. Finally, we report some typical results of our extensive numerical tests to illustrate the typical convergence behavior of BL-QMR method for multiple radiation and scattering problems in structural acoustics, to identify appropriate preconditioners for these problems, and to demonstrate the importance of deflation in block Krylov-subspace methods. Our numerical results show that the multiple systems arising in structural acoustics can be solved very efficiently with the preconditioned BL-QMR method. In fact, for multiple systems with up to 40 and more different right-hand sides we get consistent and significant speed-ups over solving the systems individually.

  8. Evaluation of scattered radiation emitted from X-ray security scanners on occupational dose to airport personnel

    International Nuclear Information System (INIS)

    Dalah, Entesar; Fakhry, Angham; Mukhtar, Asma; Al Salti, Farah; Bader, May; Khouri, Sara; Al-Zahmi, Reem

    2017-01-01

    Based on security issues and regulations airports are provided with luggage cargo scanners. These scanners utilize ionizing radiation that in principle present health risks toward humans. The study aims to investigate the amount of backscatter produced by passenger luggage and cargo toward airport personnel who are located at different distances from the scanners. To approach our investigation a Thermo Electron Radeye-G probe was used to quantify the backscattered radiation measured in terms of dose-rate emitted from airport scanners, Measurements were taken at the entrance and exit positions of the X-ray tunnel at three different distances (0, 50, and 100 cm) for two different scanners; both scanners include shielding curtains that reduce scattered radiation. Correlation was demonstrated using the Pearson coefficient test. Measurements confirmed an inverse relationship between dose rate and distance. An estimated occupational accumulative dose of 0.88 mSv/y, and 2.04 mSv/y were obtained for personnel working in inspection of carry-on, and cargo, respectively. Findings confirm that the projected dose of security and engineering staff are being well within dose limits. - Highlights: • Backscattered radiation emitted from the airport security scanners is estimated. • Inverse relation observed between backscattered radiation and scanners distance. • Occupational dose for personnel inspecting the scanners were up to 2.04 mSv/y. • The projected dose of security and engineering staff are well within dose limits.

  9. Analysis of scattered radiation in an irradiated body by means of the monte carlo simulation

    International Nuclear Information System (INIS)

    Kato, Hideki; Nakamura, Masaru; Tsuiki, Saeko; Shimizu, Ikuo; Higashi, Naoki; Kamada, Takao

    1992-01-01

    Isodose charts for oblique incidence are simply obtained from normal isodose data of correcting methods such as the tissue-air ratio (TAR) method, the effective source-skin distance (SSD) method etc. Although, in these correcting methods, the depth dose data on the beam axis remained as the normal depth dose data, which were measured on the geometry of perpendicular incidence. In this paper, the primary and scattered dose on the beam axis for 60 Co gamma-ray oblique incidence were calculated by means of the Monthe Carlo simulation, and the variation of the percentage depth dose and scatter factor were evaluated for oblique incident angles. The scattered dose distribution was altered for change in the oblique incident angle. Also, for increasing the angle, percentage depth dose (PDD) was decreased and the scatter factor was increased. If the depth dose for oblique incidence was calculated using normal PDD data and normal scatter factors, the results become an underestimation of the shallow region up to several cm, and an overesitimation for the deep region. (author)

  10. Scattering of infrared radiation by dust in NGC 7023 and NGC 2023

    Science.gov (United States)

    Sellgren, K.; Werner, M. W.; Dinerstein, H. L.

    1992-01-01

    The contribution of scattered light to the total nebular emission is determined on the basis of linear polarization measurements at 1.25, 1.65, and 2.2 microns of the visual reflection nebulae NGC 7023 and NGC 2023. The percentage polarization of NGC 7023 slowly increases from 0.3 to 1 micron, with peak polarizations of up to 26 percent at 1.25 micron, then rapidly decreases, with values of 4-7 percent at 2.2 microns. This is interpreted as implying that scattered starlight contributes most to the SW emission, while unpolarized emission from small grains or large molecules dominates at longer wavelengths. IR polarization and surface brightness measurements are combined to derive the intensity of scattered light, which is then compared with scattering models. While the near-IR emission of both NGC 2023 and NGC 7023 is dominated by small-grain or large-molecule emission, IR scattered light plays a larger role in NGC 2023 than in NGC 7023.

  11. Polarimetric and angular light-scattering from dense media: Comparison of a vectorial radiative transfer model with analytical, stochastic and experimental approaches

    International Nuclear Information System (INIS)

    Riviere, Nicolas; Ceolato, Romain; Hespel, Laurent

    2013-01-01

    Our work presents computations via a vectorial radiative transfer model of the polarimetric and angular light scattered by a stratified dense medium with small and intermediate optical thickness. We report the validation of this model using analytical results and different computational methods like stochastic algorithms. Moreover, we check the model with experimental data from a specific scatterometer developed at the Onera. The advantages and disadvantages of a radiative approach are discussed. This paper represents a step toward the characterization of particles in dense media involving multiple scattering. -- Highlights: • A vectorial radiative transfer model to simulate the light scattered by stratified layers is developed. • The vectorial radiative transfer equation is solved using an adding–doubling technique. • The results are compared to analytical and stochastic data. • Validation with experimental data from a scatterometer developed at Onera is presented

  12. Discrete ordinate theory of radiative transfer. 2: Scattering from maritime haze

    Science.gov (United States)

    Kattawar, G. W.; Plass, G. N.; Catchings, F. E.

    1971-01-01

    Discrete ordinate theory was used to calculate the reflected and transmitted radiance of photons which have interacted with plane parallel maritime haze layers. The results are presented for three solar zenith angles, three values of the surface albedo, and a range of optical thicknesses from very thin to very thick. The diffuse flux at the lower boundary and the cloud albedo were tabulated. The forward peak and other features in the single scattered phase function caused the radiance in many cases to be very different from that for Rayleigh scattering. The variation of the radiance with both the zenith or nadir angle and the azimuthal angle is more marked, and the relative limb darkening under very thick layers is greater, for haze than for Rayleigh scattering. The downward diffuse flux at the lower boundary for A = O is always greater and the cloud albedo is always less for haze than for Rayleigh layers.

  13. WE-DE-207B-09: Scatter Radiation Measurement From a Digital Breast Tomosynthesis System and Its Impact On Shielding Consideration

    Energy Technology Data Exchange (ETDEWEB)

    Yang, K; Li, X; Liu, B [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: To accurately measure the scatter radiation from a Hologic digital breast tomosynthesis (DBT) system and to provide updated scatter distribution to guide radiation shielding calculation for DBT rooms. Methods: A high sensitivity GOS-based linear detector was used to measure the angular distribution of scatter radiation from a Hologic Selenia Dimensions DBT system. The linear detector was calibrated for its energy response of typical DBT spectra. Following the NCRP147 approach, the measured scatter intensity was normalized by the primary beam area and primary air kerma at 1m from the scatter phantom center and presented as the scatter fraction. Direct comparison was made against Simpkin’s initial measurement. Key parameters including the phantom size, primary beam area, and kV/anode/target combination were also studied. Results: The measured scatter-to-primary-ratio and scatter fraction data closely matched with previous data from Simpkin. The measured data demonstrated the unique nonisotropic distribution of the scattered radiation around a Hologic DBT system, with two strong peaks around 25° and 160°. The majority scatter radiation (>70%) originated from the imaging detector assembly, instead of the phantom. With a workload from a previous local survey, the scatter air kerma at 1m from the phantom center for wall/door is 0.018mGy/patient, for floor is 0.164mGy/patient, and for ceiling is 0.037mGy/patient. Conclusion: Comparing to Simpkin’s previous data, the scatter air kerma from Holgoic DBT is at least two times higher. The main reasons include the harder primary beam with higher workload, added tomosynthesis acquisition, and strong small angle forward scattering. Due to the highly conservative initial assumptions, the shielding recommendation from NCRP147 is still sufficient for the Hologic DBT system given the workload from a previous local survey. With the data provided from this study, accurate shielding calculation can be performed for

  14. Time evolution of photon-pulse propagation in scattering and absorbing media: The dynamic radiative transfer system

    Science.gov (United States)

    Georgakopoulos, A.; Politopoulos, K.; Georgiou, E.

    2018-03-01

    A new dynamic-system approach to the problem of radiative transfer inside scattering and absorbing media is presented, directly based on first-hand physical principles. This method, the Dynamic Radiative Transfer System (DRTS), employs a dynamical system formality using a global sparse matrix, which characterizes the physical, optical and geometrical properties of the material-volume of interest. The new system state is generated by the above time-independent matrix, using simple matrix-vector multiplication for each subsequent time step. DRTS is capable of calculating accurately the time evolution of photon propagation in media of complex structure and shape. The flexibility of DRTS allows the integration of time-dependent sources, boundary conditions, different media and several optical phenomena like reflection and refraction in a unified and consistent way. Various examples of DRTS simulation results are presented for ultra-fast light pulse 3-D propagation, demonstrating greatly reduced computational cost and resource requirements compared to other methods.

  15. Pure-Triplet Scattering for Radiative Transfer in Semi-infinite Random Media with Refractive-Index Dependent Boundary

    International Nuclear Information System (INIS)

    Sallah, M.; Degheidy, A.R.

    2013-01-01

    Radiative transfer problem for pure-triplet scattering, in participating half-space random medium is proposed. The medium is assumed to be random with binary Markovian mixtures (e.g. radiation transfer in astrophysical contexts where the clouds and clear sky play and two-phase medium) described by Markovian statistics. The specular reflectivity of the boundary is angular-dependent described by the Fresnel's reflection probability function. The problem is solved at first in the deterministic case, and then the solution is averaged using the formalism developed by Levermore and Pomraning, to treat particles transport problems in statistical mixtures. Some physical quantities of interest such as the reflectivity of the boundary, average radiant energy, and average net flux are computed for various values of refractive index of the boundary

  16. Three-dimensional radiative transfer in an isotropically scattering, plane-parallel medium: generalized X- and Y-functions

    International Nuclear Information System (INIS)

    Mueller, D.W.; Crosbie, A.L.

    2005-01-01

    The topic of this work is the generalized X- and Y-functions of multidimensional radiative transfer. The physical problem considered is spatially varying, collimated radiation incident on the upper boundary of an isotropically scattering, plane-parallel medium. An integral transform is used to reduce the three-dimensional transport equation to a one-dimensional form, and a modified Ambarzumian's method is used to derive coupled, integro-differential equations for the source functions at the boundaries of the medium. The resulting equations are said to be in double-integral form because the integration is over both angular variables. Numerical results are presented to illustrate the computational characteristics of the formulation

  17. The matrix element for radiative Bhabha scattering in the forward direction

    International Nuclear Information System (INIS)

    Kleiss, R.

    1993-09-01

    We present an approximation to the matrix element for the process e + e - →e + e - γ, appropriate to the situation where one or both of the fermions are scattered over very small angles. The leading terms in the situation where all scattering angles are small contains not only terms quadratic in the electron mass, but also quartic and even sextic terms must be included. Special attention is devoted to the numerical stability of the resultant expression. Its relation to several existing formulae is discussed. (orig.)

  18. Study of performance of electronic dosemeters in continuous and pulsed X-radiation beams

    International Nuclear Information System (INIS)

    Guimaraes, Margarete Cristina

    2014-01-01

    Personal radiation monitoring is a basic procedure to verify the compliance to regulatory requirements for radiological protection. Electronic personal dosimeters (EPD) based on solid state detectors have largely been used for personnel monitoring; including for pulsed radiation beams where their responses are not well known and deficiencies have been reported. In this work, irradiation conditions for testing the response of EPDs in both continuous and pulsed X-ray beams were studied to be established in a constant potential Seifert-Pantak and in a medical Pulsar 800 Plus VMI X-ray machines. Characterization of X-ray beams was done in terms of tube voltage, half-value layer, mean energy and air kerma rate. A Xi R/F Unfors solid state dosimeter used as reference for air kerma measurements was verified against a RC-6 and 10X6-6 Radical ionization chambers as far its metrological coherence. Rad-60 RADOS, PDM- 11 Aloka and EPD MK2 Thermo electron EPDs were selected to be tested in terms of relative intrinsic error and energy response in similar to IEC RQR, IEC RQA and ISO N reference radiations. Results demonstrated the reliability of the solid state Xi R/F Unfors dosimeter to be as reference dosimeter although its response was affected by heavily filtered beams. Results also showed that relative intrinsic errors in the response of the EPDs in terms of personal dose equivalent, Hp(10), were higher than the requirement established for continuous beams. In pulsed beams, some EPDs showed inadequate response and high relative intrinsic errors. This work stressed the need of performing additional checks for EPDs, besides the limited 137 Cs beam calibration, before using them in pulsed X-ray beams. (author)

  19. A System for Continual Quality Improvement of Normal Tissue Delineation for Radiation Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Jennifer; Hernandez, Sophy; Lin, Jeffrey; Alsager, Stacy; Dumstorf, Christine; Price, Jennifer; Steber, Jennifer; Garza, Richard; Nagda, Suneel; Melian, Edward; Emami, Bahman [Department of Radiation Oncology, Loyola University Medical Center, Maywood, Illinois (United States); Roeske, John C., E-mail: jroeske@lumc.edu [Department of Radiation Oncology, Loyola University Medical Center, Maywood, Illinois (United States)

    2012-08-01

    Purpose: To implement the 'plan-do-check-act' (PDCA) cycle for the continual quality improvement of normal tissue contours used for radiation therapy treatment planning. Methods and Materials: The CT scans of patients treated for tumors of the brain, head and neck, thorax, pancreas and prostate were selected for this study. For each scan, a radiation oncologist and a diagnostic radiologist, outlined the normal tissues ('gold' contours) using Radiation Therapy Oncology Group (RTOG) guidelines. A total of 30 organs were delineated. Independently, 5 board-certified dosimetrists and 1 trainee then outlined the same organs. Metrics used to compare the agreement between the dosimetrists' contours and the gold contours included the Dice Similarity Coefficient (DSC), and a penalty function using distance to agreement. Based on these scores, dosimetrists were re-trained on those organs in which they did not receive a passing score, and they were subsequently re-tested. Results: Passing scores were achieved on 19 of 30 organs evaluated. These scores were correlated to organ volume. For organ volumes <8 cc, the average DSC was 0.61 vs organ volumes {>=}8 cc, for which the average DSC was 0.91 (P=.005). Normal tissues that had the lowest scores included the lenses, optic nerves, chiasm, cochlea, and esophagus. Of the 11 organs that were considered for re-testing, 10 showed improvement in the average score, and statistically significant improvement was noted in more than half of these organs after education and re-assessment. Conclusions: The results of this study indicate the feasibility of applying the PDCA cycle to assess competence in the delineation of individual organs, and to identify areas for improvement. With testing, guidance, and re-evaluation, contouring consistency can be obtained across multiple dosimetrists. Our expectation is that continual quality improvement using the PDCA approach will ensure more accurate treatments and dose

  20. A System for Continual Quality Improvement of Normal Tissue Delineation for Radiation Therapy Treatment Planning

    International Nuclear Information System (INIS)

    Breunig, Jennifer; Hernandez, Sophy; Lin, Jeffrey; Alsager, Stacy; Dumstorf, Christine; Price, Jennifer; Steber, Jennifer; Garza, Richard; Nagda, Suneel; Melian, Edward; Emami, Bahman; Roeske, John C.

    2012-01-01

    Purpose: To implement the “plan-do-check-act” (PDCA) cycle for the continual quality improvement of normal tissue contours used for radiation therapy treatment planning. Methods and Materials: The CT scans of patients treated for tumors of the brain, head and neck, thorax, pancreas and prostate were selected for this study. For each scan, a radiation oncologist and a diagnostic radiologist, outlined the normal tissues (“gold” contours) using Radiation Therapy Oncology Group (RTOG) guidelines. A total of 30 organs were delineated. Independently, 5 board-certified dosimetrists and 1 trainee then outlined the same organs. Metrics used to compare the agreement between the dosimetrists' contours and the gold contours included the Dice Similarity Coefficient (DSC), and a penalty function using distance to agreement. Based on these scores, dosimetrists were re-trained on those organs in which they did not receive a passing score, and they were subsequently re-tested. Results: Passing scores were achieved on 19 of 30 organs evaluated. These scores were correlated to organ volume. For organ volumes <8 cc, the average DSC was 0.61 vs organ volumes ≥8 cc, for which the average DSC was 0.91 (P=.005). Normal tissues that had the lowest scores included the lenses, optic nerves, chiasm, cochlea, and esophagus. Of the 11 organs that were considered for re-testing, 10 showed improvement in the average score, and statistically significant improvement was noted in more than half of these organs after education and re-assessment. Conclusions: The results of this study indicate the feasibility of applying the PDCA cycle to assess competence in the delineation of individual organs, and to identify areas for improvement. With testing, guidance, and re-evaluation, contouring consistency can be obtained across multiple dosimetrists. Our expectation is that continual quality improvement using the PDCA approach will ensure more accurate treatments and dose assessment in

  1. The influence of scattering and absorption processes in sea water on atmospheric radiation - results from ship-borne DOAS measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schoenhardt, Anja; Wittrock, Folkard; Richter, Andreas; Kirk, Henning; Schulte, Hagen I.D.B; Burrows, John P. [Institut fuer Umweltphysik, Universitaet Bremen (Germany)

    2009-07-01

    Absorption and inelastic scattering within water can influence the upwelling radiation over water bodies. If not identified properly, these effects impact on absorption measurements of trace gases when using nadir observations. Spectral correlations lead to incorrect trace gas amounts and reduced retrieval quality. This presentation reports on Differential Optical Absorption Spectroscopy (DOAS) measurements from a Polarstern cruise in April-May 2008 from South America to Europe. Scattered sun light was measured by two spectrometer units in the visible and UV spectral regions. The light collecting telescope was viewing alternately in different elevation angles: into zenith-sky and at slant angles above and especially below the horizon, intentionally viewing into the ocean water. The DOAS measurements were analysed in different spectral windows to identify structures not associated to well-known effects. Such persistent structures were indeed found in spectra at water viewing angles and may be caused by inelastic scattering at water molecules, by effects from substances in the water (particles, organics, etc) or by processes yet unknown. Analysing these structured residuals helps to characterise the disturbance of optical absorption measurements caused by light transmission through sea water.

  2. 4D cone-beam computed tomography (CBCT) using a moving blocker for simultaneous radiation dose reduction and scatter correction

    Science.gov (United States)

    Zhao, Cong; Zhong, Yuncheng; Duan, Xinhui; Zhang, You; Huang, Xiaokun; Wang, Jing; Jin, Mingwu

    2018-06-01

    Four-dimensional (4D) x-ray cone-beam computed tomography (CBCT) is important for a precise radiation therapy for lung cancer. Due to the repeated use and 4D acquisition over a course of radiotherapy, the radiation dose becomes a concern. Meanwhile, the scatter contamination in CBCT deteriorates image quality for treatment tasks. In this work, we propose the use of a moving blocker (MB) during the 4D CBCT acquisition (‘4D MB’) and to combine motion-compensated reconstruction to address these two issues simultaneously. In 4D MB CBCT, the moving blocker reduces the x-ray flux passing through the patient and collects the scatter information in the blocked region at the same time. The scatter signal is estimated from the blocked region for correction. Even though the number of projection views and projection data in each view are not complete for conventional reconstruction, 4D reconstruction with a total-variation (TV) constraint and a motion-compensated temporal constraint can utilize both spatial gradient sparsity and temporal correlations among different phases to overcome the missing data problem. The feasibility simulation studies using the 4D NCAT phantom showed that 4D MB with motion-compensated reconstruction with 1/3 imaging dose reduction could produce satisfactory images and achieve 37% improvement on structural similarity (SSIM) index and 55% improvement on root mean square error (RMSE), compared to 4D reconstruction at the regular imaging dose without scatter correction. For the same 4D MB data, 4D reconstruction outperformed 3D TV reconstruction by 28% on SSIM and 34% on RMSE. A study of synthetic patient data also demonstrated the potential of 4D MB to reduce the radiation dose by 1/3 without compromising the image quality. This work paves the way for more comprehensive studies to investigate the dose reduction limit offered by this novel 4D MB method using physical phantom experiments and real patient data based on clinical relevant metrics.

  3. A boundary integral equation method using auxiliary interior surface approach for acoustic radiation and scattering in two dimensions.

    Science.gov (United States)

    Yang, S A

    2002-10-01

    This paper presents an effective solution method for predicting acoustic radiation and scattering fields in two dimensions. The difficulty of the fictitious characteristic frequency is overcome by incorporating an auxiliary interior surface that satisfies certain boundary condition into the body surface. This process gives rise to a set of uniquely solvable boundary integral equations. Distributing monopoles with unknown strengths over the body and interior surfaces yields the simple source formulation. The modified boundary integral equations are further transformed to ordinary ones that contain nonsingular kernels only. This implementation allows direct application of standard quadrature formulas over the entire integration domain; that is, the collocation points are exactly the positions at which the integration points are located. Selecting the interior surface is an easy task. Moreover, only a few corresponding interior nodal points are sufficient for the computation. Numerical calculations consist of the acoustic radiation and scattering by acoustically hard elliptic and rectangular cylinders. Comparisons with analytical solutions are made. Numerical results demonstrate the efficiency and accuracy of the current solution method.

  4. Applications of the conjugate gradient FFT method in scattering and radiation including simulations with impedance boundary conditions

    Science.gov (United States)

    Barkeshli, Kasra; Volakis, John L.

    1991-01-01

    The theoretical and computational aspects related to the application of the Conjugate Gradient FFT (CGFFT) method in computational electromagnetics are examined. The advantages of applying the CGFFT method to a class of large scale scattering and radiation problems are outlined. The main advantages of the method stem from its iterative nature which eliminates a need to form the system matrix (thus reducing the computer memory allocation requirements) and guarantees convergence to the true solution in a finite number of steps. Results are presented for various radiators and scatterers including thin cylindrical dipole antennas, thin conductive and resistive strips and plates, as well as dielectric cylinders. Solutions of integral equations derived on the basis of generalized impedance boundary conditions (GIBC) are also examined. The boundary conditions can be used to replace the profile of a material coating by an impedance sheet or insert, thus, eliminating the need to introduce unknown polarization currents within the volume of the layer. A general full wave analysis of 2-D and 3-D rectangular grooves and cavities is presented which will also serve as a reference for future work.

  5. Synchrotron radiation-based quasi-elastic scattering using time-domain interferometry with multi-line gamma rays.

    Science.gov (United States)

    Saito, Makina; Masuda, Ryo; Yoda, Yoshitaka; Seto, Makoto

    2017-10-02

    We developed a multi-line time-domain interferometry (TDI) system using 14.4 keV Mössbauer gamma rays with natural energy widths of 4.66 neV from 57 Fe nuclei excited using synchrotron radiation. Electron density fluctuations can be detected at unique lengths ranging from 0.1 nm to a few nm on time scales from several nanoseconds to the sub-microsecond order by quasi-elastic gamma-ray scattering (QGS) experiments using multi-line TDI. In this report, we generalize the established expression for a time spectrum measured using an identical single-line gamma-ray emitter pair to the case of a nonidentical pair of multi-line gamma-ray emitters by considering the finite energy width of the incident synchrotron radiation. The expression obtained illustrates the unique characteristics of multi-line TDI systems, where the finite incident energy width and use of a nonidentical emitter pair produces further information on faster sub-picosecond-scale dynamics in addition to the nanosecond dynamics; this was demonstrated experimentally. A normalized intermediate scattering function was extracted from the spectrum and its relaxation form was determined for a relaxation time of the order of 1 μs, even for relatively large momentum transfer of ~31 nm -1 . The multi-line TDI method produces a microscopic relaxation picture more rapidly and accurately than conventional single-line TDI.

  6. Problems of radiation protection at continuous service of industrial full-screen-X-ray-installations

    International Nuclear Information System (INIS)

    Krebs, K.

    1979-01-01

    A lot of usual product of high automatisized full-screen-X-ray-installations prove very susceptible to trouble when used in continuous 3-shift-working. Normal safeguards by rough industrial continuous use mostly abruptly lose their efficiency without announcement; this mainly by vibration, disadjustment, aerosols, dirts and thermal stress. The author explains this by illustrated samples of practice. Since for those installations neither physical controls of persons nor dose-alarm-systems are prescribed by law, the needed security regarding radiation protection seems not to be guaranteed. Therefore it is proposed to order the following by technical and legistical rules: 1. Screening has to be constructed and mounted resistant in mechanical and termical regards. 2. Safety-switches must work by constraint and in an primary way. 3. The reaching of the legally allowed dose-limit has to be recognized in an unmistakable way by alarm signal. These protections are the most urgent, since the continuous service of those X-ray-installations normally works without any further screening admist other production installations and operation is done by semiskilled operators who are not subjected to any physical or medical control. (author)

  7. Developing a framework to model the primary drying step of a continuous freeze-drying process based on infrared radiation

    DEFF Research Database (Denmark)

    Van Bockstal, Pieter-Jan; Corver, Jos; Mortier, Séverine Thérèse F.C.

    2018-01-01

    . These results assist in the selection of proper materials which could serve as IR window in the continuous freeze-drying prototype. The modelling framework presented in this paper fits the model-based design approach used for the development of this prototype and shows the potential benefits of this design...... requires the fundamental mechanistic modelling of each individual process step. Therefore, a framework is presented for the modelling and control of the continuous primary drying step based on non-contact IR radiation. The IR radiation emitted by the radiator filaments passes through various materials...

  8. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    Science.gov (United States)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  9. Monte Carlo simulation of radiative transfer in scattering, emitting, absorbing slab with gradient index

    International Nuclear Information System (INIS)

    Huang Yong; Liang Xingang; Xia Xinlin

    2005-01-01

    The Monte Carlo method is used to simulate the thermal emission of absorbing-emitting-scattering slab with gradient index. Three Monte Carlo ray-tracing strategies are considered. The first strategy is keeping the real distribution of the refractive index and to trace bundles in a curve route. The second strategy is discretizing the slab into sub-layers, each having constant refractive index. The bundle is traced in a straight route in each sub-layer and the reflection at the inner interface is taken into account. The third strategy is similar to the second one but only the total reflection at the inner interface is computed. Little difference is observed among the results of apparent thermal emission by these three different Monte Carlo ray tracing strategies. The results also show that the apparent hemispherical emissivity non-monotonously varies with increasing optical thickness of the slab with strong scattering gradient index. Many parameters can influence the apparent thermal emission greatly

  10. Extraction of chemical information of suspensions using radiative transfer theory to remove multiple scattering effects: application to a model multicomponent system.

    Science.gov (United States)

    Steponavičius, Raimundas; Thennadil, Suresh N

    2011-03-15

    The effectiveness of a scatter correction approach based on decoupling absorption and scattering effects through the use of the radiative transfer theory to invert a suitable set of measurements is studied by considering a model multicomponent suspension. The method was used in conjunction with partial least-squares regression to build calibration models for estimating the concentration of two types of analytes: an absorbing (nonscattering) species and a particulate (absorbing and scattering) species. The performances of the models built by this approach were compared with those obtained by applying empirical scatter correction approaches to diffuse reflectance, diffuse transmittance, and collimated transmittance measurements. It was found that the method provided appreciable improvement in model performance for the prediction of both types of analytes. The study indicates that, as long as the bulk absorption spectra are accurately extracted, no further empirical preprocessing to remove light scattering effects is required.

  11. Optimisation of anomalous scattering and structural studies of proteins using synchrotron radiation

    International Nuclear Information System (INIS)

    Helliwell, J.R.

    1979-01-01

    Measurements from crystalline protein samples using SR can be conveniently divided into two classes. Firstly, small samples, large unit cells, the rapid collection of accurate high resolution data and dynamical studies can all benefit from the high intensity. Secondly, an important extension of the classical methods of protein structure determination arises from use of the tunability of SR for optimization of anomalous scattering and subsequent phase determination. This paper concentrates on this area of application. (author)

  12. Anomalous scattering factors for synchrotron radiation users, calculated using Cromer and Liberman's method

    International Nuclear Information System (INIS)

    Sasaki, Satoshi.

    1984-01-01

    Anomalous scattering factors f' and f'' have been calculated for the atoms Li through Bi, plus U, using the relativistic treatment described by Cromer and Liberman (1970, 1981). The tables presented in this paper include values (i) in the wavelength range from 0.1 to 2.89 A in 0.01 A intervals and (ii) in the neighborhood of the K,L 1 ,L 2 , and L 3 absorption edges in 0.0001 A intervals. (author)

  13. Remote and continuous gamma spectrometry for environmental radiation protection: state of the art technology and perspectives

    International Nuclear Information System (INIS)

    Van Put, Ph.; Lellis, C.; Debauche, A.; Lacroix, J-P.

    2004-01-01

    The instruments technologies for radiological protection of the environment have been considerably enhanced since the last 20 years. From very simple warning bells in the early 80s, the instruments have been sophisticated nowadays to a degree where their performances can be compared to the performances achieved in low level laboratories. This presentation will briefly overview the evolution of these instruments by comparing their technology, their methodology and their performances. Next, it will present the concepts of the state of the art technology in the field of continuous monitoring of the environment. A discussion will follow on the performances and the limitations of this technology. Finally, the presentation will highlight the future perspective of developments by taking into account recent progress in the field of radiation detectors, telecommunication and computer sciences among others. (authors)

  14. Determination of effective atomic number of breast tissues using scattered radiation; Determinacao do numero atomico efetivo de tecidos mamarios usando a radiacao espalhada

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C.; Poletti, M.E. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2010-07-01

    The scattered radiation has been used in several industrial and clinical applications since it permits to characterize the scattering material. Several types of information can be extracted from the spectrum of scattered radiation which can be used to characterization of biological tissues such as breast tissues. In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose), benign (fibroadenoma) and malignant (carcinoma) neoplastic breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90 deg C (x = 0.99 angstrom-1). A practical method using the area of elastic and inelastic scattering was used for determining the effective atomic number (Z{sub eff}) of the samples, being validated comparing the experimental obtained values of Z{sub eff} of several standard materials with calculated values using traditional method based on total cross-section of compounds. The obtained results show that exist differences in the distributions of Z{sub eff} of breast tissues, which are related to the content of carbon (Z=6) and oxygen (Z=8) in each tissue type. The results suggest that is possible to use this parameter for characterizing breast tissues, pointing the possibility of its use as a complementary tool for the diagnosis of the breast cancer. (author)

  15. An important step forward in continuous spectroscopic imaging of ionising radiations using ASICs

    Energy Technology Data Exchange (ETDEWEB)

    Fessler, P. [11 rue Rabelais, 92170 Vanves (France); Coffin, J. [Institut de Recherches Subatomiques, B.P. 28, 67037 Strasbourg (France); Eberle, H. [Institut de Recherches Subatomiques, B.P. 28, 67037 Strasbourg (France); Raad Iseli, C. de [Smart Silicon Systems SA, Ch. de la Graviere 6, CH-1007 Lausanne (Switzerland); Hilt, B. [Universite de Haute-Alsace, GRPHE, 61, rue Albert Camus, 68093 Mulhouse (France); Huss, D. [Universite de Haute-Alsace, GRPHE, 61, rue Albert Camus, 68093 Mulhouse (France); Krummenacher, F. [Smart Silicon Systems SA, Ch. de la Graviere 6, CH-1007 Lausanne (Switzerland); Lutz, J.R. [Institut de Recherches Subatomiques, B.P. 28, 67037 Strasbourg (France); Prevot, G. [Institut de Recherches Subatomiques, B.P. 28, 67037 Strasbourg (France); Renouprez, A. [Institut de Recherche sur la Catalyse, 2 Avenue Albert Einstein, 69626 Villeurbanne (France); Sigward, M.H. [Institut de Recherches Subatomiques, B.P. 28, 67037 Strasbourg (France); Schwaller, B. [Universite de Haute-Alsace, GRPHE, 61, rue Albert Camus, 68093 Mulhouse (France); Voltolini, C. [Institut de Recherches Subatomiques, B.P. 28, 67037 Strasbourg (France)

    1999-01-21

    Characterization results are given for an original ASIC allowing continuous acquisition of ionising radiation images in spectroscopic mode. Ionising radiation imaging in general and spectroscopic imaging in particular must primarily be guided by the attempt to decrease statistical noise, which requires detection systems designed to allow very high counting rates. Any source of dead time must therefore be avoided. Thus, the use of on-line corrections of the inevitable dispersion of characteristics between the large number of electronic channels of the detection system, shall be precluded. Without claiming to achieve ultimate noise levels, the work described is focused on how to prevent good individual acquisition channel noise performance from being totally destroyed by the dispersion between channels without introducing dead times. With this goal, we developed an automatic charge amplifier output voltage offset compensation system which operates regardless of the cause of the offset (detector or electronic). The main performances of the system are the following: the input equivalent noise charge is 190 e rms (input non connected, peaking time 500 ns), the highest gain is 255 mV/fC, the peaking time is adjustable between 200 ns and 2 {mu}s and the power consumption is 10 mW per channel. The agreement between experimental data and theoretical simulation results is excellent.

  16. An important step forward in continuous spectroscopic imaging of ionising radiations using ASICs

    International Nuclear Information System (INIS)

    Fessler, P.; Coffin, J.; Eberle, H.; Raad Iseli, C. de; Hilt, B.; Huss, D.; Krummenacher, F.; Lutz, J.R.; Prevot, G.; Renouprez, A.; Sigward, M.H.; Schwaller, B.; Voltolini, C.

    1999-01-01

    Characterization results are given for an original ASIC allowing continuous acquisition of ionising radiation images in spectroscopic mode. Ionising radiation imaging in general and spectroscopic imaging in particular must primarily be guided by the attempt to decrease statistical noise, which requires detection systems designed to allow very high counting rates. Any source of dead time must therefore be avoided. Thus, the use of on-line corrections of the inevitable dispersion of characteristics between the large number of electronic channels of the detection system, shall be precluded. Without claiming to achieve ultimate noise levels, the work described is focused on how to prevent good individual acquisition channel noise performance from being totally destroyed by the dispersion between channels without introducing dead times. With this goal, we developed an automatic charge amplifier output voltage offset compensation system which operates regardless of the cause of the offset (detector or electronic). The main performances of the system are the following: the input equivalent noise charge is 190 e rms (input non connected, peaking time 500 ns), the highest gain is 255 mV/fC, the peaking time is adjustable between 200 ns and 2 μs and the power consumption is 10 mW per channel. The agreement between experimental data and theoretical simulation results is excellent

  17. A stochastic model for density-dependent microwave Snow- and Graupel scattering coefficients of the NOAA JCSDA community radiative transfer model

    Science.gov (United States)

    Stegmann, Patrick G.; Tang, Guanglin; Yang, Ping; Johnson, Benjamin T.

    2018-05-01

    A structural model is developed for the single-scattering properties of snow and graupel particles with a strongly heterogeneous morphology and an arbitrary variable mass density. This effort is aimed to provide a mechanism to consider particle mass density variation in the microwave scattering coefficients implemented in the Community Radiative Transfer Model (CRTM). The stochastic model applies a bicontinuous random medium algorithm to a simple base shape and uses the Finite-Difference-Time-Domain (FDTD) method to compute the single-scattering properties of the resulting complex morphology.

  18. A fast, exact code for scattered thermal radiation compared with a two-stream approximation

    International Nuclear Information System (INIS)

    Cogley, A.C.; Pandey, D.K.

    1980-01-01

    A two-stream accuracy study for internally (thermal) driven problems is presented by comparison with a recently developed 'exact' adding/doubling method. The resulting errors in external (or boundary) radiative intensity and flux are usually larger than those for the externally driven problems and vary substantially with the radiative parameters. Error predictions for a specific problem are difficult. An unexpected result is that the exact method is computationally as fast as the two-stream approximation for nonisothermal media

  19. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    Science.gov (United States)

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  20. Reprint of 'Evaluation of Scattered Radiation Emitted From X-ray Security Scanners on Occupational Dose to Airport Personnel'

    Science.gov (United States)

    Dalah, Entesar; Fakhry, Angham; Mukhtar, Asma; Al Salti, Farah; Bader, May; Khouri, Sara; Al-Zahmi, Reem

    2017-11-01

    Based on security issues and regulations airports are provided with luggage cargo scanners. These scanners utilize ionizing radiation that in principle present health risks toward humans. The study aims to investigate the amount of backscatter produced by passenger luggage and cargo toward airport personnel who are located at different distances from the scanners. To approach our investigation a Thermo Electron Radeye-G probe was used to quantify the backscattered radiation measured in terms of dose-rate emitted from airport scanners, Measurements were taken at the entrance and exit positions of the X-ray tunnel at three different distances (0, 50, and 100 cm) for two different scanners; both scanners include shielding curtains that reduce scattered radiation. Correlation was demonstrated using the Pearson coefficient test. Measurements confirmed an inverse relationship between dose rate and distance. An estimated occupational accumulative dose of 0.88 mSv/y, and 2.04 mSv/y were obtained for personnel working in inspection of carry-on, and cargo, respectively. Findings confirm that the projected dose of security and engineering staff are being well within dose limits.

  1. Efficiency of the scattered primary radiation as an internal standard in the determination of uranium and thorium in geological materials by X-ray spectrometry

    International Nuclear Information System (INIS)

    Diaz-Guerra, J.P.; Bayon, A.

    1980-01-01

    The efficiency of the scattered primary coherent and incoherent X-radiation of various wavelengths has been studied as a matrix correction in the determination of uranium and thorium in geological materials by X-ray spectrometry. The excitation has been performed with molybdenum and tungsten targets. Results illustrate that the incoherently-scattered Mok βsub(1,3) and Mok βsub(1,2) radiation are, respectively, the optimum reference lines. The particle size influence and the critical thickness of the sample are also considered.(auth.)

  2. Assessment of exposure to scattered radiation in interventional procedures using special protective bismuth; Evaluacion de la exposicion a radiacion dispersa en procedimientos intervencionistas usando protectores especiales de bismuto

    Energy Technology Data Exchange (ETDEWEB)

    Soto Bua, M.; Medina Jimenez, E.; Vazquez Vazquez, R.; Santamaria Vazquez, F.; Otero Martinez, C.; Lobato Busto, R.; Luna Vega, V.; Mosquera Suero, J.; Sanchez Garcia, M.; Pombar Camean, M.

    2011-07-01

    There are currently marketed specific producta aimed at reducing personnel exposure to radiation scattered in cardiac catheterization procedures, interventional radiology or electrophysiology. Our service has been proposed to study the attenuation characteristics of the product Drape Armour manufactured by the company Microtek. Is a flexible devices constructed from an alloy of bismuth and sterility characteristics and infection control and fluid makes them particularly suitable for incorporating into the operative field of the patient. To study their behavior, there have been staff dose measurements representative of the moaL common situations of exposure to scattered radiation in a typical procedure of intervention.

  3. Light scattering studies at UNICAMP

    International Nuclear Information System (INIS)

    Luzzi, R.; Cerdeira, H.A.; Salzberg, J.; Vasconcellos, A.R.; Frota Pessoa, S.; Reis, F.G. dos; Ferrari, C.A.; Algarte, C.A.S.; Tenan, M.A.

    1975-01-01

    Current theoretical studies on light scattering spectroscopy at UNICAMP is presented briefly, such as: inelastic scattering of radiation from a solid state plasma; resonant Ramman scattering; high excitation effects; saturated semiconductors and glasses

  4. Radiative kaon capture on deuterium and the Λn scattering lengths

    International Nuclear Information System (INIS)

    Gall, K.P.; Booth, E.C.; Fickinger, W.J.; Hasinoff, M.D.; Hessey, N.P.; Horvath, D.; Lowe, J.; McIntyre, E.K.; Measday, D.F.; Miller, J.P.; Noble, A.J.; Roberts, B.L.; Robinson, D.K.; Sakitt, M.; Salomon, M.; Whitehouse, D.A.

    1990-01-01

    The photon spectrum from K - d→Λnγ at rest has been measured for the first time. We obtained the branching ratio, in the end-point region, of (1.89±0.12±0.28)x10 -3 where the first error is statistical and the second is systematic. We have found that the shape of the photon energy spectrum is consistent with the distribution calculated by Workman and Fearing with Λn scattering lengths and effective ranges predicted by the Nijmegen group

  5. Influences of Au ion radiation on microstructure and surface-enhanced Raman scattering of nanoporous copper

    Science.gov (United States)

    Wang, Jing; Hu, Zhaoyi; Li, Rui; Liu, Xiongjun; Xu, Chuan; Wang, Hui; Wu, Yuan; Fu, Engang; Lu, Zhaoping

    2018-05-01

    In this work, effects of Au ion irradiation on microstructure and surface-enhanced Raman scattering (SERS) performance of nanoporous copper (NPC) were investigated. It is found that the microstructure of NPC could be tailored by the ion irradiation dose, i.e., the pore size decreases while the ligament size significantly coarsens with the increase of the irradiation dose. In addition, the SERS enhancement for rhodamine 6G molecules was improved by Au ions irradiation at an appropriate dose. The underlying mechanism of the increase of SERS enhancement resulted from ion irradiation was discussed. Our findings could provide a new way to tune nanoporosity of nanoporous metals and improve their SERS performance.

  6. Scattering length measurements from radiative pion capture and neutron-deuteron breakup

    International Nuclear Information System (INIS)

    Gibson, B.F.; Tornow, W.; Carman, T.S.

    1997-07-01

    The neutron-neutron and neutron-proton 1 S 0 scattering lengths a nn and a np , respectively, were determined simultaneously from the neutron-deuteron breakup reaction. Their comparison with the recommended values obtained from two body reactions gives a measure of the importance of three-nucleon force effects in the three-nucleon continuum. In order to check on the result obtained for a nn from the two-body π - -d capture reaction, a new measurement was performed at LANL. Preliminary results of the three experiments are given

  7. Multiple X-ray tomography using transmitted, scattered and fluorescent radiation

    International Nuclear Information System (INIS)

    Cesareo, R.; Brunetti, A.; Golosio, B.; Lopes, R.T.; Barroso, R.C.; Donativi, M.; Castellano, A.; Quarta, S.

    2003-01-01

    A multiple CT-scanner is described, which contemporaneously uses transmitted, scattered and fluorescent X-rays for Imaging. The scanner is characterized by a small size X-ray tube and by four detectors: a ''pencil'' X-ray NaI(Tl) for transmitted tomography, a larger size NaI(Tl) for 90 C o Compton tomography, a thermoelectrically cooled Si-PIN or CdZnTe for fluorescent imaging and a CdZnTe for Rayleigh (or diffraction) tomography. Examples of applications are shown

  8. Scattering length measurements from radiative pion capture and neutron-deuteron breakup

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W.; Chen, Q. [Duke Univ., Durham, NC (United States). Dept. of Physics; Carman, T.S. [Lawrence Livermore National Lab., CA (United States). Program for Climate Model Diagnosis and Intercomparison] [and others

    1998-03-02

    The neutron-neutron and neutron-proton {sup 1}S{sub 0} scattering lengths a{sub nn} and a{sub np}, respectively, were determined simultaneously from the neutron-deuteron breakup reaction. Their comparison with the recommended values obtained from ``two-body`` reactions gives a measure of the importance of three-nucleon force effects in the three-nucleon continuum. In order to check on the result obtained for a{sub nn} from the ``two-body`` {pi}{sup -}-d capture reaction, a new measurement was performed at LANL. Preliminary results of the three experiments are given. (orig.). 5 refs.

  9. Multiphonon scattering and non-radiative decay in ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, K.; Tokunaga, M.; Okamoto, H.; Fujita, Y. [Interdisciplinary Faculty of Science and Engineering, Shimane University, Matsue 690-8504 (Japan); Senthilkumar, O. [Research Project Promotion Institute, Shimane University, Matsue 690-8504 (Japan); Lin, J.; Urban, B.; Neogi, A. [Department of Physics, University of North Texas, Denton 76203 (United States)

    2010-06-15

    ZnO nanoparticles were prepared using a simple evaporation technique at pressures of 75 and 760 torr. A wide visible emission was recorded from both samples using photoluminescence spectroscopy. The presence of green emission at 530 nm is due to deep level defects of vacant zinc V{sub Zn}, and/or their complexes in the ZnO band gap. The fundamental optical phonon modes were identified in addition to multiphonon combination of optical and acoustical overtones and nitrogen related local vibrational modes using Raman backscattering. The existence of multiphonons induces the non-radiative processes. The life time of both the radiative and non-radiative processes is discussed using time resolved photoluminescence spectroscopic results (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Radiative transfer theory for active remote sensing of a layer of small ellipsoidal scatterers. [of vegetation

    Science.gov (United States)

    Tsang, L.; Kubacsi, M. C.; Kong, J. A.

    1981-01-01

    The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.

  11. Investigation of radiative corrections in the scattering at 180 deg. of 240 MeV positrons on atomic electrons

    International Nuclear Information System (INIS)

    Poux, J.P.

    1972-06-01

    In this research thesis, after a recall of processes of elastic scattering of positrons on electrons (kinematics and cross section), and of involved radiative corrections, the author describes the experimental installation (positron beam, ionization chamber, targets, spectrometer, electronic logics associated with the counter telescope) which has been used to measure the differential cross section of recoil electrons, and the methods which have been used. In a third part, the author reports the calculation of corrections and the obtained spectra. In the next part, the author reports the interpretation of results and their comparison with the experiment performed by Browman, Grossetete and Yount. The author shows that both experiments are complementary to each other, and are in agreement with the calculation performed by Yennie, Hearn and Kuo

  12. ZZ SAIL, Albedo Scattering Data Library for 3-D Monte-Carlo Radiation Transport in LWR Pressure Vessel

    International Nuclear Information System (INIS)

    1982-01-01

    1 - Description of problem or function: Format: SAIL format; Number of groups: 23 neutron / 17 gamma-ray; Nuclides: Type 04 Concrete and Low Carbon Steel (A533B). Origin: Science Applications, Inc (SAI); Weighting spectrum: yes. SAIL is a library of albedo scattering data to be used in three-dimensional Monte Carlo codes to solve radiation transport problems specific to the reactor pressure vessel cavity region of a LWR. The library contains data for Type 04 Concrete and Low Carbon Steel (A533B). 2 - Method of solution: The calculation of the albedo data was perform- ed with a version of the discrete ordinates transport code DOT which treats the transport of neutrons, secondary gamma-rays and gamma- rays in one dimension, while maintaining the complete two-dimension- al treatment of the angular dependence

  13. Rayleigh scattering of Moessbauer radiation in superionic conductor RbAg/sub 4/I/sub 5/

    Energy Technology Data Exchange (ETDEWEB)

    Ovanesyan, N.S.; Goffman, V.G.; Sokolov, V.B.; Tkachev, V.V. (AN SSSR, Chernogolovka. Otdelenie Inst. Khimicheskoj Fiziki)

    1984-04-01

    The dynamical properties of RbAg/sub 4/I/sub 5/ has been investiaated by Rayleigh scattering of Moessbauer radiation (RSMR) with wave-length lambda = 0.86 A. The character of Ag/sup +/ ion oscillatory motion and diffusion in RbAg/sub 4/I/sub 5/ depending on temperature including the phase transitions region is studied. It is shown that in the superionic crystal RbAg/sub 4/I/sub 5/ the diffusion process is strongly correlated, i.e. a great number of initial and final states at diffusion jumps coincide. The observed broadening can be less than the expected one by value orders. Diffusion correlation can strongly reduce the activation barrier and lead to anomalously high ionic conduction.

  14. Diffuse Scattering of the Conduction Electrons of a Metallic Substrate by an Adsorbate: an Experimental Study Using Synchrotron Infrared Radiation

    International Nuclear Information System (INIS)

    Hein, M.; Otto, A.; Dumas, P.; Williams, G. P.

    1999-01-01

    Due to its intrinsic high brightness, high stability, and proportionality to the stored electron beam current, synchrotrons IR spectroscopy has revealed itself as an unique tool to experimentally test a physical phenomenon occurring at metallic interfaces, the theory for which was motivated by previous observations. Any adsorbate induces inelastic scattering of the conduction electrons, which causes a broadband IR reflectance change, and was predicted to induce a concomitant DC resistivity change. By choosing a well ordered single crystal thin film of Cu(111), we have checked that the DC resistivity change, and the asymptotic limit of the IR reflectance change are linearly dependent, but independent of the nature of the adsorbate. Coadsorption experiments which have been used to modify the induced density of states at the Fermi level, have further demonstrated that the friction coefficient, which is responsible for the elastic scattering phenomenon, is chemically specific. This article describes the use of synchrotron radiation as an absolute source and its application to the study of dynamics of adsorbates on surfaces

  15. Blood group typing based on recording the elastic scattering of laser radiation using the method of digital imaging

    International Nuclear Information System (INIS)

    Dolmashkin, A A; Dubrovskii, V A; Zabenkov, I V

    2012-01-01

    The possibility is demonstrated to determine the human blood group by recording the scattering of laser radiation with the help of the digital imaging method. It is experimentally shown that the action of a standing ultrasound wave leads to acceleration of the agglutination reaction of red blood cells, to formation of larger immune complexes of red blood cells, and, as a consequence, to acceleration of their sedimentation. In the absence of agglutination of red blood cells the ultrasound does not enhance the relevant processes. This difference in the results of ultrasound action on the mixture of blood and serum allows a method of blood typing to be offered. Theoretical modelling of the technique of the practical blood typing, carried out on the basis of the elastic light scattering theory, agrees well with the experimental results, which made it possible to plan further improvement of the proposed method. The studies of specific features of sedimentation of red blood cells and their immune complexes were aimed at the optimisation of the sample preparation, i.e., at the search for such experimental conditions that provide the maximal resolution of the method and the device for registering the reaction of red blood cells agglutination. The results of the study may be used in designing the instrumentation for blood group assessment in humans.

  16. Blood group typing based on recording the elastic scattering of laser radiation using the method of digital imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dolmashkin, A A; Dubrovskii, V A; Zabenkov, I V [V.I.Razumovsky Saratov State Medical University, Saratov (Russian Federation)

    2012-05-31

    The possibility is demonstrated to determine the human blood group by recording the scattering of laser radiation with the help of the digital imaging method. It is experimentally shown that the action of a standing ultrasound wave leads to acceleration of the agglutination reaction of red blood cells, to formation of larger immune complexes of red blood cells, and, as a consequence, to acceleration of their sedimentation. In the absence of agglutination of red blood cells the ultrasound does not enhance the relevant processes. This difference in the results of ultrasound action on the mixture of blood and serum allows a method of blood typing to be offered. Theoretical modelling of the technique of the practical blood typing, carried out on the basis of the elastic light scattering theory, agrees well with the experimental results, which made it possible to plan further improvement of the proposed method. The studies of specific features of sedimentation of red blood cells and their immune complexes were aimed at the optimisation of the sample preparation, i.e., at the search for such experimental conditions that provide the maximal resolution of the method and the device for registering the reaction of red blood cells agglutination. The results of the study may be used in designing the instrumentation for blood group assessment in humans.

  17. Discovery of Scattering Polarization in the Hydrogen Ly α Line of the Solar Disk Radiation

    International Nuclear Information System (INIS)

    Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Katsukawa, Y.; Kubo, M.; Giono, G.; Hara, H.; Suematsu, Y.; Bueno, J. Trujillo; Winebarger, A.; Kobayashi, K.; Auchère, F.; Ishikawa, S.; Shimizu, T.; Sakao, T.; Tsuneta, S.; Ichimoto, K.; Goto, M.; Belluzzi, L.

    2017-01-01

    There is a thin transition region (TR) in the solar atmosphere where the temperature rises from 10,000 K in the chromosphere to millions of degrees in the corona. Little is known about the mechanisms that dominate this enigmatic region other than the magnetic field plays a key role. The magnetism of the TR can only be detected by polarimetric measurements of a few ultraviolet (UV) spectral lines, the Ly α line of neutral hydrogen at 121.6 nm (the strongest line of the solar UV spectrum) being of particular interest given its sensitivity to the Hanle effect (the magnetic-field-induced modification of the scattering line polarization). We report the discovery of linear polarization produced by scattering processes in the Ly α line, obtained with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) rocket experiment. The Stokes profiles observed by CLASP in quiet regions of the solar disk show that the Q / I and U / I linear polarization signals are of the order of 0.1% in the line core and up to a few percent in the nearby wings, and that both have conspicuous spatial variations with scales of ∼10 arcsec. These observations help constrain theoretical models of the chromosphere–corona TR and extrapolations of the magnetic field from photospheric magnetograms. In fact, the observed spatial variation from disk to limb of polarization at the line core and wings already challenge the predictions from three-dimensional magnetohydrodynamical models of the upper solar chromosphere.

  18. Compton scattering of microwave background radiation by gas in galaxy clusters

    International Nuclear Information System (INIS)

    Gould, R.J.; Rephaeli, Y.

    1978-01-01

    Based on data on the X-ray spectrum of the Coma cluster, interpreted as thermal bremsstrahlung, the expected brightness depletion from Compton scattering of the microwave background in the direction of the cluster is computed. The calculated depletion is about one-third that recently observed by Gull and Northover, and the discrepancy is discussed. In comparing the observed microwave depletion in the direction of other clusters which are X-ray sources it is found that there is no correlation with the cluster X-ray luminosity, while a dependence proportional to L/sub x//sup 1/2/ is expected. Consequently, the microwave depletion observations cannot yet be taken as good evidence for a thermal bremsstrahlung origin for the X-ray emission. The perturbation from Compton scattering of photons on the high-frequency (Wien) tail of the blackbody distribution is computed and found to be much larger than predicted in previous calculations. In the Wien tail the effect is a relative increase in the blackbody intensity that is appreciably greater in magnitude than the depletion in the Rayleigh-Jeans domain

  19. Discovery of Scattering Polarization in the Hydrogen Ly α Line of the Solar Disk Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Katsukawa, Y.; Kubo, M.; Giono, G.; Hara, H.; Suematsu, Y. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, La Laguna, Tenerife, E-38205 (Spain); Winebarger, A.; Kobayashi, K. [Marshall Space Flight Center, National Aeronautics and Space Administration (NASA), Huntsville, AL 35812 (United States); Auchère, F. [Institut d’Astrophysique Spatiale, Université Paris Sud, Batiment 121, F-91405 Orsay (France); Ishikawa, S.; Shimizu, T.; Sakao, T.; Tsuneta, S. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Ichimoto, K. [Hida Observatory, Kyoto University, Takayama, Gifu 506-1314 (Japan); Goto, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Belluzzi, L., E-mail: ryouhei.kano@nao.ac.jp [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); and others

    2017-04-10

    There is a thin transition region (TR) in the solar atmosphere where the temperature rises from 10,000 K in the chromosphere to millions of degrees in the corona. Little is known about the mechanisms that dominate this enigmatic region other than the magnetic field plays a key role. The magnetism of the TR can only be detected by polarimetric measurements of a few ultraviolet (UV) spectral lines, the Ly α line of neutral hydrogen at 121.6 nm (the strongest line of the solar UV spectrum) being of particular interest given its sensitivity to the Hanle effect (the magnetic-field-induced modification of the scattering line polarization). We report the discovery of linear polarization produced by scattering processes in the Ly α line, obtained with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) rocket experiment. The Stokes profiles observed by CLASP in quiet regions of the solar disk show that the Q / I and U / I linear polarization signals are of the order of 0.1% in the line core and up to a few percent in the nearby wings, and that both have conspicuous spatial variations with scales of ∼10 arcsec. These observations help constrain theoretical models of the chromosphere–corona TR and extrapolations of the magnetic field from photospheric magnetograms. In fact, the observed spatial variation from disk to limb of polarization at the line core and wings already challenge the predictions from three-dimensional magnetohydrodynamical models of the upper solar chromosphere.

  20. Unconventional application of the two-flux approximation for the calculation of the Ambartsumyan-Chandrasekhar function and the angular spectrum of the backward-scattered radiation for a semi-infinite isotropically scattering medium

    Science.gov (United States)

    Remizovich, V. S.

    2010-06-01

    It is commonly accepted that the Schwarzschild-Schuster two-flux approximation (1905, 1914) can be employed only for the calculation of the energy characteristics of the radiation field (energy density and energy flux density) and cannot be used to characterize the angular distribution of radiation field. However, such an inference is not valid. In several cases, one can calculate the radiation intensity inside matter and the reflected radiation with the aid of this simplest approximation in the transport theory. In this work, we use the results of the simplest one-parameter variant of the two-flux approximation to calculate the angular distribution (reflection function) of the radiation reflected by a semi-infinite isotropically scattering dissipative medium when a relatively broad beam is incident on the medium at an arbitrary angle relative to the surface. We do not employ the invariance principle and demonstrate that the reflection function exhibits the multiplicative property. It can be represented as a product of three functions: the reflection function corresponding to the single scattering and two identical h functions, which have the same physical meaning as the Ambartsumyan-Chandrasekhar function ( H) has. This circumstance allows a relatively easy derivation of simple analytical expressions for the H function, total reflectance, and reflection function. We can easily determine the relative contribution of the true single scattering in the photon backscattering at an arbitrary probability of photon survival Λ. We compare all of the parameters of the backscattered radiation with the data resulting from the calculations using the exact theory of Ambartsumyan, Chandrasekhar, et al., which was developed decades after the two-flux approximation. Thus, we avoid the application of fine mathematical methods (the Wiener-Hopf method, the Case method of singular functions, etc.) and obtain simple analytical expressions for the parameters of the scattered radiation

  1. Scatter and leakage contributions to the out-of-field absorbed dose distribution in water phantom around the medical LINAC radiation beams

    International Nuclear Information System (INIS)

    Bordy, J.M.; Bessiere, I.; Ostrowsky, A.; Poumarede, B.; Sorel, S.; Vermesse, D.

    2013-01-01

    This work is carried out within the framework of EURADOS Working Group 9 (WG9) whose general objective is 'to assess non-target organ doses in radiotherapy and the related risks of second cancers, with the emphasis on dosimetry'. The objective of the present work is to provide reference values (i) to evaluate the current methods of deriving three-dimensional dose distributions in and around the target volume using passive dosimeters, (ii) to derive the leakage dose from the head of the medical linear accelerator (LINAC) and the doses due to scattered radiation from the collimator edges and the body (phantom) itself. Radiation qualities of 6, 12 and 20 MV are used with standard calibration conditions described in IAEA TRS 398 and nonstandard conditions at a reference facility at the Laboratoire National Henri Becquerel (CEA LIST/LNE LNHB). An ionisation chamber is used to measure profile and depth dose in especially design water phantom built to enable investigation of doses up to 60 cm from the beam axis. A first set of experiments is carried out with the beam passing through the tank. From this first experiment, penumbra and out-of-field dose profiles including water and collimator scatter and leakage are found over three orders of magnitude. Two further sets of experiments using the same experimental arrangement with the beam outside the tank, to avoid water scatter, are designed to measure collimator scatter and leakage by closing the jaws of the collimator. It is shown that the ratios between water scatter, collimator scatter and leakage depend on the photon energy. Depending on the energy, typical leakage and collimator scatter represents 10-40% and 30-50% of the total out-of-field doses respectively. Water scatter decreases with energy while leakage increases with energy, and collimator scatter varies only slowly with energy. (authors)

  2. Combination of acoustic levitation with small angle scattering techniques and synchrotron radiation circular dichroism. Application to the study of protein solutions.

    Science.gov (United States)

    Cristiglio, Viviana; Grillo, Isabelle; Fomina, Margarita; Wien, Frank; Shalaev, Evgenyi; Novikov, Alexey; Brassamin, Séverine; Réfrégiers, Matthieu; Pérez, Javier; Hennet, Louis

    2017-01-01

    The acoustic levitation technique is a useful sample handling method for small solid and liquids samples, suspended in air by means of an ultrasonic field. This method was previously used at synchrotron sources for studying pharmaceutical liquids and protein solutions using x-ray diffraction and small angle x-ray scattering (SAXS). In this work we combined for the first time this containerless method with small angle neutron scattering (SANS) and synchrotron radiation circular dichroism (SRCD) to study the structural behavior of proteins in solutions during the water evaporation. SANS results are also compared with SAXS experiments. The aggregation behavior of 45μl droplets of lysozyme protein diluted in water was followed during the continuous increase of the sample concentration by evaporating the solvent. The evaporation kinetics was followed at different drying stage by SANS and SAXS with a good data quality. In a prospective work using SRCD, we also studied the evolution of the secondary structure of the myoglobin protein in water solution in the same evaporation conditions. Acoustic levitation was applied for the first time with SANS and the high performances of the used neutron instruments made it possible to monitor fast container-less reactions in situ. A preliminary work using SRCD shows the potentiality of its combination with acoustic levitation for studying the evolution of the protein structure with time. This multi-techniques approach could give novel insights into crystallization and self-assembly phenomena of biological compound with promising potential applications in pharmaceutical, food and cosmetics industry. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Evaluating the Efficiency of the Device in Shielding Scattered Radiation during Treatment of Carcinoma of the Penis

    Energy Technology Data Exchange (ETDEWEB)

    Gim, Yang Soo; Lee, Sun Young; Lim, Suk Gun; Gwak, Geun Tak; Park, Ju Gyeong; Lee, Seung Hoon; Hwang, Ho In; Cha, Sook Yong [Dept. of Radiation Oncology, Chonbuk National University Hoispital, Jeonju (Korea, Republic of)

    2009-03-15

    We evaluated the device that was created for maintaining the patient's setup and protecting the testicles from scattered radiation during treatment of carcinoma of the penis. The phantom testicles were made of vaseline cotton gauze and the device consisted of 5 mm of acryl box and 4 mm of lead shielding. 3 x 3 cm{sup 2}, 4 x 4 cm{sup 2}, 5 x 5 cm{sup 2}, 6 x 6 cm{sup 2}, 7 x 7 cm{sup 2} field sizes were used for this study and measurement was made at 4, 5, 6, 7, 8, 10 cm from the lower edge of the field for 10 times with lead shielding and without the shielding respectively. 200 cGy was delivered using 6 MV photons. The scatted radiation without lead shielding at 4, 5, 6, 7, 8, 10 cm from the lower edge of the field were 14.8-4.7 cGy with 3 x 3 cm{sup 2}, 15.7-5.2 cGy with 4 x 4 cm{sup 2}, 17.6-5.5 cGy with 5 x 5 cm{sup 2}, 19.9-6.6 cGy with 6 x 6 cm{sup 2}, 22.2-7.6 cGy with 7 x 7 cm{sup 2} and the measured dose without lead shielding were 7.1-2.6 cGy with 3 x 3 cm{sup 2}, 8.9-3.6 cGy with 4 x 4 cm{sup 2}, 12.3-4.8 cGy with 5 x 5 cm{sup 2}, 14.6-5.0 cGy with 6 x 6 cm{sup 2} and 21.1-6.4 cGy with 7 x 7 cm{sup 2}. As shown above, the scatted radiation decreased after using lead shielding. Depending of the range of field sizes, the resulting difference between without shielding values and with shielding values were: 7.8-1.1 cGy at 4 cm, 5.1-1.2 cGy at 5 cm, 3.8-1.1 cGy at 6 cm, 3.4-1.7 cGy at 7 cm, 2.8-1.7 cGy at 8 cm, 2.4-2.5 cGy at 9 cm and 2.1-1.8 cGy at 10 cm. In the situation as described above, the range in values depending on the distance was 7.8-1.1 cGy with 3 x 3 cm{sup 2}, 6.9-1.6 cGy with 4 x 4 cm{sup 2}, 5.3-0.8 cGy with 5 x 5 cm{sup 2}, 5.3-1.5 cGy with 6 x 6 cm{sup 2} and 1.1-1.8 cGy with 7 x 7 cm{sup 2}. Using the device we created to shield the testicles from scattered radiation during treatment of carcinoma of the penis, we have found that scattered radiation to the testicles is decreased by the phantom testicles, and by increasing the distance

  4. Continuous spectrum of electromagnetic radiation in the collision of nuclear particles

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Solovyov, A.V.

    1988-01-01

    The bremsstrahlung arising at the scattering of various particles on a nucleus has been considered with the demonstration of an important participation of the nuclear polarization in the collision process

  5. Monte Carlo simulation of radiative processes in electron-positron scattering

    International Nuclear Information System (INIS)

    Kleiss, R.H.P.

    1982-01-01

    The Monte Carlo simulation of scattering processes has turned out to be one of the most successful methods of translating theoretical predictions into experimentally meaningful quantities. It is the purpose of this thesis to describe how this approach can be applied to higher-order QED corrections to several fundamental processes. In chapter II a very brief overview of the currently interesting phenomena in e +- scattering is given. It is argued that accurate information on higher-order QED corrections is very important and that the Monte Carlo approach is one of the most flexible and general methods to obtain this information. In chapter III the author describes various techniques which are useful in this context, and makes a few remarks on the numerical aspects of the proposed method. In the following three chapters he applies this to the processes e + e - → μ + μ - (γ) and e + e - → qanti q(sigma). In chapter IV he motivates his choice of these processes in view of their experimental and theoretical relevance. The formulae necessary for a computer simulation of all quantities of interest, up to order α 3 , is given. Chapters V and VI describe how this simulation can be performed using the techniques mentioned in chapter III. In chapter VII it is shown how additional dynamical quantities, namely the polarization of the incoming and outgoing particles, can be incorporated in our treatment, and the relevant formulae for the example processes mentioned above are given. Finally, in chapter VIII the author presents some examples of the comparison between theoretical predictions based on Monte Carlo simulations as outlined here, and the results from actual experiments. (Auth.)

  6. SAD phasing with in-house cu Ka radiation using barium as anomalous scatterer.

    Science.gov (United States)

    Dhanasekaran, V; Velmurugan, D

    2011-12-01

    Phasing of lysozyme crystals using co-crystallized barium ions was performed using single-wavelength anomalous diffraction (SAD) method using Cu Ka radiation with in-house source of data collection. As the ion binding sites vary with respect to the pH of the buffer during crystallization, the highly isomorphic forms of lysozyme crystals grown at acidic and alkaline pH were used for the study. Intrinsic sulphur anomalous signal was also utilized with anomalous signal from lower occupancy ions for phasing. The study showed that to solve the structure by SAD technique, 2.8-fold data redundancy was sufficient when barium was used as an anomalous marker in the in-house copper X-ray radiation source for data collection. Therefore, co-crystallization of proteins with barium containing salt can be a powerful tool for structure determination using lab source.

  7. Three-dimensional Radiative Transfer Simulations of the Scattering Polarization of the Hydrogen Lyalpha Line in a Magnetohydrodynamic Model of the Chromosphere-Corona Transition Region

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Jiří; Trujillo Bueno, J.; Leenaarts, J.; Carlsson, M.

    2015-01-01

    Roč. 803, č. 2 (2015), 65/1-65/15 ISSN 0004-637X R&D Projects: GA ČR GPP209/12/P741 Grant - others:EU(XE) COST action MP1104 Institutional support: RVO:67985815 Keywords : polarization * radiative transfer * scattering Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  8. Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particles from Low Energy up to Relativistic Regime in Space Radiation Environment

    CERN Document Server

    Boschini, M.J.; Gervasi, M.; Giani, S.; Grandi, D.; Ivantchenko, V.; Pensotti, S.; Rancoita, P.G.; Tacconi, M.

    2011-01-01

    In the space environment, instruments onboard of spacecrafts can be affected by displacement damage due to radiation. The differential scattering cross section for screened nucleus--nucleus interactions - i.e., including the effects due to screened Coulomb nuclear fields -, nuclear stopping powers and non-ionization energy losses are treated from about 50\\,keV/nucleon up to relativistic energies.

  9. Measurement of Dose Received By Patients from Scattered Radiation in Diagnostic Radiology in Khartoum

    International Nuclear Information System (INIS)

    Ahmed, A.A.; Shaddad, I.A.

    2003-01-01

    Study on the measurement of the Entrance Surface Dose to patients (ESD) was conducted in 12 X-ray departments in different hospitals within Khartoum State. The number of adult patients covered was 117. Measurements were carried out in a situation where the diaphragm was opened at maximum field size (absence of light beam in the collimators), and another set when the diaphragm was opened at normal field size (i.e when the light beam is on). The measurements of doses in the case of chest (PA) exposure where collected from skull, cervical spine and lumbar spine (both males and females) and gonads for females only. In case of Abdomen (AP) exposure, the organs were chest, thyroid (both males and females) and gonads for males. TLD (LiF) were used for monitoring the radiation dose. The results indicate wide variations between both situations. It was found that the mean difference of doses in the absence of field collimation are greatest by 10 times for radiation dose reaching the chest (male and female),17 times in gonads (females) for abdomen exposure. Hence, it can be deduce that an increase of field size result in the increase of radiation dose delivered to other organs in the body like gonads and bone marrow for (males and females) that contain sensitive tissues

  10. Physician-received scatter radiation with angiography systems used for interventional radiology: Comparison among many x-ray systems

    International Nuclear Information System (INIS)

    Chida, K.; Morishima, Y.; Inaba, Y.; Taura, M.; Ebata, A.; Takeda, K.; Shimura, H.; Zuguchi, M.

    2012-01-01

    Radiation protection for interventional radiology (IR) physicians is very important. Current IR X-ray systems tend to use flat-panel detectors (FPDs) rather than image intensifiers (IIs). The purpose of this study is to test the hypothesis that there is no difference in physician-received scatter radiation (PRSR) between FPD systems and II systems. This study examined 20 X-ray systems in 15 cardiac catheterisation laboratories (11 used a FPD and 9 used an II). The PRSR with digital cine-angiography and fluoroscopy were compared among the 20 X-ray systems using a phantom and a solid-state-detector electronic pocket dosemeter. The maximum PRSR exceeded the minimum PRSR by ∼12-fold for cine-angiography and ∼9-fold for fluoroscopy. For both fluoroscopy and digital cine-angiography, the PRSR had a statistically significant positive correlation with the entrance surface dose (fluoroscopy, r = 0.87; cine-angiography, r = 0.86). There was no statistically significant difference between the average PRSR of FPDs and IIs during either digital cine-angiography or fluoroscopy. There is a wide range of PRSR among the radiography systems evaluated. The PRSR correlated well with the entrance surface dose of the phantom in 20 X-ray units used for IR. Hence, decreasing the dose to the patient will also decrease the dose to staff. (authors)

  11. Comparison of the auxiliary function method and the discrete-ordinate method for solving the radiative transfer equation for light scattering.

    Science.gov (United States)

    da Silva, Anabela; Elias, Mady; Andraud, Christine; Lafait, Jacques

    2003-12-01

    Two methods for solving the radiative transfer equation are compared with the aim of computing the angular distribution of the light scattered by a heterogeneous scattering medium composed of a single flat layer or a multilayer. The first method [auxiliary function method (AFM)], recently developed, uses an auxiliary function and leads to an exact solution; the second [discrete-ordinate method (DOM)] is based on the channel concept and needs an angular discretization. The comparison is applied to two different media presenting two typical and extreme scattering behaviors: Rayleigh and Mie scattering with smooth or very anisotropic phase functions, respectively. A very good agreement between the predictions of the two methods is observed in both cases. The larger the number of channels used in the DOM, the better the agreement. The principal advantages and limitations of each method are also listed.

  12. Interspecific comparison of the effects of continuous ionizing radiation on the primitive mammalian stem germ cell

    International Nuclear Information System (INIS)

    Erickson, B.H.

    1978-01-01

    The response of the mammalian oocyte to radiation is characterized by wide interspecific differences, and results of preliminary assays suggest that this may be the case with the primitive stem germ cell. To test the validity of this observation and to define probable causes for the differences, prenatal mice, rats, and guinea pigs were irradiated continuously throughout gestation at rates of 1 and 3 rads per 23-hr day. Prenatal pigs were irradiated continuously for 108 days at a dose rate of 0.25 rad per 23-hr day. In all cases germ cells were enumerated in gonads excised either at birth or 6 days after birth. A dose rate of 0.25 rad/day reduced the germ-cell number in the male and female pig to 38 and 60% of control, respectively, and only 1 and 5% of the germ cells in the respective sexes survived a dose rate of 1 rad/day. Application of the single-hit multitarget model to all pig data yielded values for D 0 and n of 28 and 0.8, respectively, for the male and 27 and 3.2, respectively, for the female. Corresponding values for the male and female rat were 275 (D 0 ) and 0.3 (n) and 159 (D 0 ) and 0.8 (n), respectively. Both sexes of the pig were either sterilized or brought near sterility by a dose rate of 1 rad/day. In the case of the male rodent, however, this dose rate reduced germ-cell number to only 71% of control in the mouse, 50% of control in the rat, and 41% of control in the guinea pig. Ninety percent of the germ cells in the female rat survived a dose rate of 1 rad/day, as did 87% in the mouse and 71% in the guinea pig. When total dose was used as the basis of comparison, the pig remained the most sensitive species. Thus the differences among rodent species are not great when compared to the tremendous difference between the rodent and pig. When rodents are compared with pigs, the difference in the magnitude of the effect of continuous irradiation on the primitive stem cells of both sexes appears to be dependent on length of time at risk

  13. Background radiation in inelastic X-ray scattering and X-ray emission spectroscopy. A study for Johann-type spectrometers

    Science.gov (United States)

    Paredes Mellone, O. A.; Bianco, L. M.; Ceppi, S. A.; Goncalves Honnicke, M.; Stutz, G. E.

    2018-06-01

    A study of the background radiation in inelastic X-ray scattering (IXS) and X-ray emission spectroscopy (XES) based on an analytical model is presented. The calculation model considers spurious radiation originated from elastic and inelastic scattering processes along the beam paths of a Johann-type spectrometer. The dependence of the background radiation intensity on the medium of the beam paths (air and helium), analysed energy and radius of the Rowland circle was studied. The present study shows that both for IXS and XES experiments the background radiation is dominated by spurious radiation owing to scattering processes along the sample-analyser beam path. For IXS experiments the spectral distribution of the main component of the background radiation shows a weak linear dependence on the energy for the most cases. In the case of XES, a strong non-linear behaviour of the background radiation intensity was predicted for energy analysis very close to the backdiffraction condition, with a rapid increase in intensity as the analyser Bragg angle approaches π / 2. The contribution of the analyser-detector beam path is significantly weaker and resembles the spectral distribution of the measured spectra. Present results show that for usual experimental conditions no appreciable structures are introduced by the background radiation into the measured spectra, both in IXS and XES experiments. The usefulness of properly calculating the background profile is demonstrated in a background subtraction procedure for a real experimental situation. The calculation model was able to simulate with high accuracy the energy dependence of the background radiation intensity measured in a particular XES experiment with air beam paths.

  14. Evaluation of cellular effects of pulsed and continuous wave radiofrequency radiation

    International Nuclear Information System (INIS)

    Pavicic, Ivan; Trosic, Ivancica

    2008-01-01

    proliferation was determined by cell counts for each hour of exposure during five post-exposure days. To identify colony-forming ability, cells were cultivated in concentration of 40 cells/mL and incubated as above. Colony forming ability was defined by colony counts on the 7 th post-exposure day for each hour of exposure. In comparison to the controls, growth curve shows that proliferation ability of CW irradiated cells significantly decrease after 3 hours of exposure on the 3rd post-exposure day. PW exposed cell samples showed significant decrease after 3 hours of exposure on the 2nd and 3rd post-exposure day. CFA of CW and PW exposed cells did not significantly differ from the matched controls. The applied radiofrequency fields have shown similar effect on cell culture growth and CFA. Under the comparable conditions of exposure, pulsed radiofrequency radiation can be more effective in producing biological effects than continuous radiofrequency radiation. (author)

  15. Nuclear Exciton Echo Produced by Ultrasound in Forward Scattering of Synchrotron Radiation

    International Nuclear Information System (INIS)

    Smirnov, G.V.; van Buerck, U.; Arthur, J.; Popov, S.L.; Baron, A.Q.; Chumakov, A.I.; Ruby, S.L.; Potzel, W.; Brown, G.S.

    1996-01-01

    The time evolution of the coherent decay of a collective nuclear excitation (nuclear exciton), induced by 14.4 keV synchrotron radiation, was studied in a system of two stainless steel foils, where one was vibrated by ultrasound (US). The US vibrations disrupted the coherent nuclear emission from the two targets. However, at times corresponding to multiples of the US period, spike increases in the decay were observed. The spikes are interpreted as echoes of the initial nuclear exciton. copyright 1996 The American Physical Society

  16. Fractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Uchaikin, V V; Sibatov, R T, E-mail: vuchaikin@gmail.com, E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432000, 42 Leo Tolstoy str., Ulyanovsk (Russian Federation)

    2011-04-08

    The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.

  17. Fractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasma

    International Nuclear Information System (INIS)

    Uchaikin, V V; Sibatov, R T

    2011-01-01

    The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.

  18. A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere. I - Theory. II - Application

    Science.gov (United States)

    Weng, Fuzhong

    1992-01-01

    A theory is developed for discretizing the vector integro-differential radiative transfer equation including both solar and thermal radiation. A complete solution and boundary equations are obtained using the discrete-ordinate method. An efficient numerical procedure is presented for calculating the phase matrix and achieving computational stability. With natural light used as a beam source, the Stokes parameters from the model proposed here are compared with the analytical solutions of Chandrasekhar (1960) for a Rayleigh scattering atmosphere. The model is then applied to microwave frequencies with a thermal source, and the brightness temperatures are compared with those from Stamnes'(1988) radiative transfer model.

  19. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats☆

    Science.gov (United States)

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested. PMID:25685416

  20. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats

    Directory of Open Access Journals (Sweden)

    Haitham S. Mohammed

    2013-03-01

    Full Text Available In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day. EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS and rapid eye movement sleep (REM sleep revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested.

  1. Generation of continuous coherent radiation at Lyman-alpha and 1S-2P Spectroscopy of atomic hydrogen

    NARCIS (Netherlands)

    Pahl, A.; Fendel, P.; Henrich, B.R.; Walz, J.; Hansch, T.W.; Eikema, K.S.E.

    2005-01-01

    Continuous coherent radiation from wavelengths from 121 to 123 nm in the vacuum ultraviolet (VUV) was generated by four-wave sum-frequency mixing in mercury vapor. A yield of 20 nW at Lyman-alpha (121.57 nm) was achieved. We describe the experimental setup in detail and present a calculation of the

  2. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers

    Science.gov (United States)

    Zajnulina, M.; Böhm, M.; Blow, K.; Rieznik, A. A.; Giannone, D.; Haynes, R.; Roth, M. M.

    2015-10-01

    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

  3. On the continuous spectrum electromagnetic radiation in electron-fullerene collision

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1995-01-01

    It is demonstrated that the electromagnetic radiation spectrum in electron-fullerene collisions is dominated by a huge maximum of multielectron nature, similar to that already predicted and observed in photoabsorption. Due to coherence, the intensity of this radiation is much stronger than the sum of the intensities of isolated atoms. Experimental detection of such radiation would be of great importance for understanding the mechanism of its formation and for investigating fullerene structures. A paper describing these results was published

  4. Detection of two-mode compression and degree of entanglement in continuous variables in parametric scattering of light

    International Nuclear Information System (INIS)

    Rytikov, G. O.; Chekhova, M. V.

    2008-01-01

    Generation of 'twin beams' (of light with two-mode compression) in single-pass optical parametric amplifier (a crystal with a nonzero quadratic susceptibility) is considered. Radiation at the output of the nonlinear crystal is essentially multimode, which raises the question about the effect of the detection volume on the extent of suppression of noise from the difference photocurrent of the detectors. In addition, the longitudinal as well as transverse size of the region in which parametric transformation takes place is of fundamental importance. It is shown that maximal suppression of noise from difference photocurrent requires a high degree of entanglement of two-photon light at the outlet of the parametric amplifier, which is defined by Federov et al. [Phys. Rev. A 77, 032336 (2008)] as the ratio of the intensity distribution width to the correlation function width. The detection volume should be chosen taking into account both these quantities. Various modes of single-pass generation of twin beams (noncollinear frequency-degenerate and collinear frequency-nondegenerate synchronism of type I, as well as collinear frequency-degenerate synchronism of type II) are considered in connection with the degree of entanglement

  5. Shielding for Scattered Radiation to the Testis During Pelvic Radiotherapy: Is it worth?

    International Nuclear Information System (INIS)

    NAZMY, M.S.; El-Taher, M.M.; Attalla, E.M.; El-Hosiny, H.A.; Lotayef, M.M.

    2007-01-01

    To assess the value of external shielding of the testis during pelvic radiotherapy. Material and Methods: Nineteen patients, receiving radiotherapy to the pelvis with the lower border of the field at the obturator foramen, were randomly selected. A 5 half value layer cerro bent shield was positioned at the inferior border of the field. The dose to the testis was measured with and without the shield. Observations were made regarding the reflex cre master contraction and phantom measurements were done at different distances from the perineum. Results: The mean radiation dose to the testis for patients receiving treatment with no shield was 7.4 cGy (±) and it was 5.7c Gy (±) for patients with external shield, this difference was statistically significant by the paired t test p<0.0001. This accounted for a 22% decrease in the dose received by the testis. The position of the testis with the contraction of the cre master muscle and the dartos fascia after manipulation of the testis during diodes placement changed up to 3.5 cm (mean 1.5). Phantom measurements showed 37% increase in the dose with 2 cm change in the position of the testis to the pelvic direction. Conclusion: External shield at the inferior border of the pelvic field is a simple, easy reproducible, convenient shielding method. Clam-shell scrotal shield is not free of drawbacks, but still its benefits overweigh its harms and should be used with caution

  6. Constituent Components of Out-of-Field Scatter Dose for 18-MV Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy: A Comparison With 6-MV and Implications for Carcinogenesis

    International Nuclear Information System (INIS)

    Ruben, Jeremy D.; Smith, Ryan; Lancaster, Craig M.; Haynes, Matthew; Jones, Phillip; Panettieri, Vanessa

    2014-01-01

    Purpose: To characterize and compare the components of out-of-field dose for 18-MV intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) and their 6-MV counterparts and consider implications for second cancer induction. Methods and Materials: Comparable plans for each technique/energy were delivered to a water phantom with a sloping wall; under full scatter conditions; with field edge abutting but outside the bath to prevent internal/phantom scatter; and with shielding below the linear accelerator head to attenuate head leakage. Neutron measurements were obtained from published studies. Results: Eighteen-megavolt IMRT produces 1.7 times more out-of-field scatter than 18-MV 3D-CRT. In absolute terms, however, differences are just approximately 0.1% of central axis dose. Eighteen-megavolt IMRT reduces internal/patient scatter by 13%, but collimator scatter (C) is 2.6 times greater than 18-MV 3D-CRT. Head leakage (L) is minimal. Increased out-of-field photon scatter from 18-MV IMRT carries out-of-field second cancer risks of approximately 0.2% over and above the 0.4% from 18-MV 3D-CRT. Greater photoneutron dose from 18-MV IMRT may result in further maximal, absolute increased risk to peripheral tissue of approximately 1.2% over 18-MV 3D-CRT. Out-of-field photon scatter remains comparable for the same modality irrespective of beam energy. Machine scatter (C+L) from 18 versus 6 MV is 1.2 times higher for IMRT and 1.8 times for 3D-CRT. It is 4 times higher for 6-MV IMRT versus 3D-CRT. Reduction in internal scatter with 18 MV versus 6 MV is 27% for 3D-CRT and 29% for IMRT. Compared with 6-MV 3D-CRT, 18-MV IMRT increases out-of-field second cancer risk by 0.2% from photons and adds 0.28-2.2% from neutrons. Conclusions: Out-of-field photon dose seems to be independent of beam energy for both techniques. Eighteen-megavolt IMRT increases out-of-field scatter 1.7-fold over 3D-CRT because of greater collimator scatter despite

  7. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats ?

    OpenAIRE

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susc...

  8. Dosimetric evaluation of scattered and attenuated radiation due to dental restorations in head and neck radiotherapy

    Directory of Open Access Journals (Sweden)

    Mona Azizi

    2018-01-01

    Full Text Available In radiotherapy of head and neck cancer, the presence of high density materials modifies photon dose distribution near these high density materials during treatment. The aim of this study is to calculate the backscatter and attenuation effects of a healthy tooth, Amalgam, Ni-Cr alloy and Ceramco on the normal tissues before and after these materials irradiated by 6 and 15 MV photon beams, respectively. All measurements were carried out in a water phantom with dimension of 50 × 50 × 50 cm3with an ionization chamber detector. Two points before and four points after the dental sample were considered to score the photon dose. The depth dose on the central beam axis was explored in a water phantom for source to surface distance (SSD of 100 cm in a 10 × 10 cm2 field size. The percentage dose change was obtained relative to the dose in water versus depth of water, tooth, Amalgam, Ni-Cr alloy and Ceramco for the photon beams. The absolute dose (cGy was measured by prescription of 100 cGy dose in the water phantom at depth of 2.0 and 3.1 cm for 6 and 15 MV photons, respectively. At depth of 0.6 cm, the maximum percentage dose increase was observed with values of 6.99% and 9.43%for Ni-Cr and lowest percentage dose increase of 1.49% and 2.63% are related to the healthy tooth in 6 and 15 MV photon beams, respectively. The maximum absolute dose of 95.58 cGy and 93.64 cGy were observed at depth of 0.6 cm in presence of Ni-Cr alloy for 6 and 15 MV photon beams, respectively. The presence of dental restorations can cause backscattering dose during head and neck radiation therapy. Introduction of compositions and electron density of high density materials can improve the accuracy of dosimetric calculations in treatment planning systems to deliver the relevant dose to target organ and reduce the backscattering dose in healthy tissues in the surrounding of tooth.

  9. Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime.

    Science.gov (United States)

    Quraishi, Qudsia; Griebel, Martin; Kleine-Ostmann, Thomas; Bratschitsch, Rudolf

    2005-12-01

    Broadly tunable phase-stable single-frequency terahertz radiation is generated with an optical heterodyne photomixer. The photomixer is excited by two near-infrared CW diode lasers that are phase locked to the stabilized optical frequency comb of a femtosecond titanium:sapphire laser. The terahertz radiation emitted by the photomixer is downconverted into RF frequencies with a waveguide harmonic mixer and measurement-limited linewidths at the Hertz level are demonstrated.

  10. Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments

    Science.gov (United States)

    Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration

    2016-09-01

    As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.

  11. Revolution in New Zealand's Radiation Protection Legislation and Evolution and Continual Improvement in its Regulatory Authority

    International Nuclear Information System (INIS)

    Smyth, V.

    2004-01-01

    The safe use of ionising radiation in New Zealand is regulated by the Radiation Protection Act 1965 and the Radiation Protection Regulations 1982, which are administered by the National Radiation Laboratory (NRL). This legislation is now out of date and creates difficulties for New Zealand in meeting international standards of radiation safety and security, and complying with obligations under international treaties. These problems can be addressed by new legislation that would change the powers and functions of the regulatory authority, and change the responsibilities of licensees under the Act. However historically NRL has provided radiation services as well as acting as regulatory authority. This has the potential to create a conflict of interest in making regulatory judgements. Over the preceding 50 years NRL has undergone an evolution that has resulted in a clarification of the regulatory functions, and development of a quality management system that is now accredited to ISO standards. This paper presents a possible structure of a new Act, and discusses the role of quality management in maintaining the independence of regulatory authority. (Author)

  12. On the use of flux limiters in the discrete ordinates method for 3D radiation calculations in absorbing and scattering media

    International Nuclear Information System (INIS)

    Godoy, William F.; DesJardin, Paul E.

    2010-01-01

    The application of flux limiters to the discrete ordinates method (DOM), S N , for radiative transfer calculations is discussed and analyzed for 3D enclosures for cases in which the intensities are strongly coupled to each other such as: radiative equilibrium and scattering media. A Newton-Krylov iterative method (GMRES) solves the final systems of linear equations along with a domain decomposition strategy for parallel computation using message passing libraries in a distributed memory system. Ray effects due to angular discretization and errors due to domain decomposition are minimized until small variations are introduced by these effects in order to focus on the influence of flux limiters on errors due to spatial discretization, known as numerical diffusion, smearing or false scattering. Results are presented for the DOM-integrated quantities such as heat flux, irradiation and emission. A variety of flux limiters are compared to 'exact' solutions available in the literature, such as the integral solution of the RTE for pure absorbing-emitting media and isotropic scattering cases and a Monte Carlo solution for a forward scattering case. Additionally, a non-homogeneous 3D enclosure is included to extend the use of flux limiters to more practical cases. The overall balance of convergence, accuracy, speed and stability using flux limiters is shown to be superior compared to step schemes for any test case.

  13. Efficiency of different methods of extra-cavity second harmonic generation of continuous wave single-frequency radiation.

    Science.gov (United States)

    Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba

    2016-01-20

    This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.

  14. An analysis of radiation dose reduction in paediatric interventional cardiology by altering frame rate and use of the anti-scatter grid

    International Nuclear Information System (INIS)

    McFadden, S L; Hughes, C M; Winder, Robert J; Mooney, R B

    2013-01-01

    The purpose of this work is to investigate removal of the anti-scatter grid and alteration of the frame rate in paediatric interventional cardiology (IC) and assess the impact on radiation dose and image quality. Phantom based experimental studies were performed in a dedicated cardiac catheterisation suite to investigate variations in radiation dose and image quality, with various changes in imaging parameters. Phantom based experimental studies employing these variations in technique identified that radiation dose reductions of 28%–49% can be made to the patient with minimal loss of image quality in smaller sized patients. At present, there is no standard technique for carrying out paediatric IC in the UK or Ireland, resulting in the potential for a wide variation in radiation dose. Dose reductions to patients can be achieved with slight alterations to the imaging equipment with minimal compromise to the image quality. These simple modifications can be easily implemented in clinical practice in IC centres. (paper)

  15. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    Science.gov (United States)

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.

  16. A conversion method of air kerma from the primary, scatter, and leakage radiations to effective dose for calculating x-ray shielding barriers in mammography

    International Nuclear Information System (INIS)

    Kharrati, Hedi

    2005-01-01

    In this study, a new approach has been introduced for derivation of the effective dose from air kerma to calculate shielding requirements in mammography facilities. This new approach has been used to compute the conversion coefficients relating air kerma to the effective dose for the mammography reference beam series of the Netherlands Metrology Institute Van Swinden Laboratorium, National Institute of Standards and Technology, and International Atomic Energy Agency laboratories. The results show that, in all cases, the effective dose in mammography energy range is less than 25% of the incident air kerma for the primary and the scatter radiations and does not exceed 75% for the leakage radiation

  17. Statistical analysis of polarization-inhomogeneous Fourier spectra of laser radiation scattered by human skin in the tasks of differentiation of benign and malignant formations

    Science.gov (United States)

    Ushenko, Alexander G.; Dubolazov, Alexander V.; Ushenko, Vladimir A.; Novakovskaya, Olga Y.

    2016-07-01

    The optical model of formation of polarization structure of laser radiation scattered by polycrystalline networks of human skin in Fourier plane was elaborated. The results of investigation of the values of statistical (statistical moments of the 1st to 4th order) parameters of polarization-inhomogeneous images of skin surface in Fourier plane were presented. The diagnostic criteria of pathological process in human skin and its severity degree differentiation were determined.

  18. The radiation amplification effect in the scattering of a quasi-classical electron by an ion in an electromagnetic field of medium intensity

    International Nuclear Information System (INIS)

    Freiv, A V; Roshchupkin, S P

    2008-01-01

    The possibility of amplification of electromagnetic radiation is theoretically studied in the scattering of a quasi-classical electron by an ion in a field of linearly polarized waves of medium intensity. An expression for the total cross-section (the gain coefficient) for the wide interval of values of the adiabaticity parameter is obtained. It is shown that the wave amplification takes place in the range of values of adiabaticity parameter greater than 2 and can be sufficiently large

  19. Radiation safety infrastructure in developing countries: a proactive approach for integrated and continuous improvement

    International Nuclear Information System (INIS)

    Mrabit, Khammar

    2008-01-01

    The International Atomic Energy Agency (the Agency) is authorized, by its statute, to establish or adopt safety standards for the protection of health and minimization of danger to life and property, and to provide for their application to its own operations as well as to operations under its control or supervision. The Agency has been assisting, since the mid 1960 's, its Member States through mainly its Technical Cooperation Programme (TCP) to improve their national radiation safety infrastructures. However up to the early nineties, assistance was specific and mostly ad hoc and did not systematically utilize an integrated and harmonized approach to achieving effective and sustainable national radiation safety infrastructures in Member States. An unprecedented and integrated international cooperative effort was launched by the Agency in 1994 to establish and/or upgrade the national radiation safety infrastructure in more than 90 countries within the framework of its TCP through the so-called Model project on upgrading radiation protection infrastructure. In this project proactive co-operation with Member States was used in striving towards achieving an effective and sustainable radiation safety infrastructure, compatible with the International basic safety standards for protection against ionizing radiation and for the safety of radiation sources (the BSS) and related standards. Extension to include compatibility with the guidance of the Code of Conduct on the Safety and Security of Radioactive Sources occurred towards the end of the Model Project in December 2004, and with the more recent ensuing follow up projects that started in 2005. The Model Project started with 5 countries in 1994 and finished with 91 countries in 2004. Up to the end of 2007 more than one hundred Member States had been participating in follow up projects covering six themes - namely: legislative and regulatory infrastructure; occupational radiation protection; radiation protection in

  20. Cloud sensitivity studies for stratospheric and lower mesospheric ozone profile retrievals from measurements of limb-scattered solar radiation

    Directory of Open Access Journals (Sweden)

    T. Sonkaew

    2009-11-01

    Full Text Available Clouds in the atmosphere play an important role in reflection, absorption and transmission of solar radiation and thus affect trace gas retrievals. The main goal of this paper is to examine the sensitivity of stratospheric and lower mesospheric ozone retrievals from limb-scattered radiance measurements to clouds using the SCIATRAN radiative transfer model and retrieval package. The retrieval approach employed is optimal estimation, and the considered clouds are vertically and horizontally homogeneous. Assuming an aerosol-free atmosphere and Mie phase functions for cloud particles, we compute the relative error of ozone profile retrievals in a cloudy atmosphere if clouds are neglected in the retrieval. To access altitudes from the lower stratosphere up to the lower mesosphere, we combine the retrievals in the Chappuis and Hartley ozone absorption bands. We find significant cloud sensitivity of the limb ozone retrievals in the Chappuis bands at lower stratospheric altitudes. The relative error in the retrieved ozone concentrations gradually decreases with increasing altitude and becomes negligible above approximately 40 km. The parameters with the largest impact on the ozone retrievals are cloud optical thickness, ground albedo and solar zenith angle. Clouds with different geometrical thicknesses or different cloud altitudes have a similar impact on the ozone retrievals for a given cloud optical thickness value, if the clouds are outside the field of view of the instrument. The effective radius of water droplets has a small influence on the error, i.e., less than 0.5% at altitudes above the cloud top height. Furthermore, the impact of clouds on the ozone profile retrievals was found to have a rather small dependence on the solar azimuth angle (less than 1% for all possible azimuth angles. For the most frequent cloud types, the total error is below 6% above 15 km altitude, if clouds are completely neglected in the retrieval. Neglecting clouds in

  1. Real time X-ray scattering study of the formation of ZnS nanoparticles using synchrotron radiation

    International Nuclear Information System (INIS)

    Rath, T.; Novák, J.; Amenitsch, H.; Pein, A.; Maier, E.; Haas, W.; Hofer, F.; Trimmel, G.

    2014-01-01

    We investigate the growth of ZnS nanoparticles by a real-time simultaneous small and wide angle X-ray scattering (SAXS, WAXS) study using synchrotron radiation. Zinc chloride and elemental sulfur were dissolved in oleylamine. The formation of nanoparticles was induced by heating to 170 °C and 215 °C. The influence of temperature, reaction time, and sulfur concentration was investigated. After a short phase of rapid growth, saturation in size and a slower growth is observed depending on the temperature. The final size of the nanoparticles ranges between 2 and 6 nm for the investigated growth conditions and increases with the reaction temperature and sulfur concentration. SAXS analysis allows for determination of the size of the nanoparticles and proves also the existence of an organized layer of oleylamine molecules covering the nanoparticles' surfaces, which, however, appears only for diameters of the nanoparticles larger than approximately 2.8 nm. The investigation of the measured structure factor of the nanoparticle assemblies showed that the distance of an attractive interaction is 2.5 nm, which was interpreted as a consequence of the ordered oleylamine surface layer. - Highlights: • ZnS nanoparticle growth is investigated by real-time simultaneous SAXS and WAXS measurements. • Nanoparticle growth can be divided into two growth phases. • Higher reaction temperature or higher surplus of sulfur leads to larger nanoparticles. • Post-growth ex situ XRD and TEM measurements confirm results of the in situ study. • Nanoparticles are surrounded by a 2.6 nm thick ordered shell of oleylamine

  2. Comparison of the local dose of scattered radiation of a special dental - phantom and a real human head by using a Digital Volume Tomography (DVT)

    International Nuclear Information System (INIS)

    Neuwirth, J.; Hefner, A.

    2008-01-01

    Dental Radiography Digital Volume Tomography (DVT) gains more and more importance due to its possibility of three-dimensional imaging of teeth, jaw and visercoranium and the reduced radiation dose in comparison to conventional Computer Tomography (CT). Contrary to other, well documented radiographic procedures like dental panorama X-ray imaging there are no national or international guidelines or recommendations relating to DVT which regulate the designation of areas and standardize risk assessment. This study aims to assess the parameters necessary for local radiation protection in dental practices. Measurements were carried out in dental practices in order to evaluate the local dose resulting from different DVT devices. A special dental-phantom and a real human head were used in the irradiations in order to define the local dose of scattered radiation by nominal voltage. The dental-phantom was created for conventional dental panorama X-ray devices which make use of lower nominal voltages. This poses the question if the scatter performance of the special dental-phantom is comparable to a real human head and therefore applicable to the estimation of the radiation quality of a DVT when using 120 kV. The existing guidelines for dental panorama xray are analyzed and suggestions for future recommendations concerning the designation of areas and risk assessment for DVT are then deducted by comparing both sets of measurements. The results show that the special dental-phantom is absolutely suitable for the definition of the local dose resulting from the scattered radiation of a DVT. (author)

  3. Efficient Sequential Monte Carlo Sampling for Continuous Monitoring of a Radiation Situation

    Czech Academy of Sciences Publication Activity Database

    Šmídl, Václav; Hofman, Radek

    2014-01-01

    Roč. 56, č. 4 (2014), s. 514-527 ISSN 0040-1706 R&D Projects: GA MV VG20102013018 Institutional support: RVO:67985556 Keywords : radiation protection * atmospheric dispersion model * importance sampling Subject RIV: BD - Theory of Information Impact factor: 1.814, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/smidl-0433631.pdf

  4. Theory of differential and integral scattering of laser radiation by a dielectric surface taking a defect layer into account

    NARCIS (Netherlands)

    Azarova, VV; Dmitriev, VG; Lokhov, YN; Malitskii, KN

    The differential and integral light scattering by dielectric surfaces is studied theoretically taking a thin nearsurface defect layer into account. The expressions for the intensities of differential and total integral scattering are found by the Green function method. Conditions are found under

  5. Modeling of the scattered radiation of the head of an ALE by an extended source Gaussian extrafocal; Modelizacion de la radiacion dispersa del cabezal de un A. L. E. mediante una fuentes extrafocal extendida gasussiana

    Energy Technology Data Exchange (ETDEWEB)

    Quinones Rodriguez, L. A.; Richarte Reina, J. M.; Castro Ramirez, I. J.; Iborra Oquendo, M.; Angulo Pain, E.; Urena Llinares, A.; Lupiani Castellanos, J.; Ramos Cabalalero, L. J.

    2011-07-01

    The flattening filter is the main source of scattered radiation in an accelerator, there is also an important contribution of the primary collimator and a lower order of monitors and cameras secondary collimation. This scattered radiation of the head can be up to 12% of the radiation emitted by the accelerator and its characterization by a source extra focal extended to predict values for the field factors and the shape of the penumbra of the radiation profiles, based on the part of this virtual source view from our detector.

  6. Fast radiative transfer models for retrieval of cloud properties in the back-scattering region: application to DSCOVR-EPIC sensor

    Science.gov (United States)

    Molina Garcia, Victor; Sasi, Sruthy; Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego

    2017-04-01

    In this work, the requirements for the retrieval of cloud properties in the back-scattering region are described, and their application to the measurements taken by the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) is shown. Various radiative transfer models and their linearizations are implemented, and their advantages and issues are analyzed. As radiative transfer calculations in the back-scattering region are computationally time-consuming, several acceleration techniques are also studied. The radiative transfer models analyzed include the exact Discrete Ordinate method with Matrix Exponential (DOME), the Matrix Operator method with Matrix Exponential (MOME), and the approximate asymptotic and equivalent Lambertian cloud models. To reduce the computational cost of the line-by-line (LBL) calculations, the k-distribution method, the Principal Component Analysis (PCA) and a combination of the k-distribution method plus PCA are used. The linearized radiative transfer models for retrieval of cloud properties include the Linearized Discrete Ordinate method with Matrix Exponential (LDOME), the Linearized Matrix Operator method with Matrix Exponential (LMOME) and the Forward-Adjoint Discrete Ordinate method with Matrix Exponential (FADOME). These models were applied to the EPIC oxygen-A band absorption channel at 764 nm. It is shown that the approximate asymptotic and equivalent Lambertian cloud models give inaccurate results, so an offline processor for the retrieval of cloud properties in the back-scattering region requires the use of exact models such as DOME and MOME, which behave similarly. The combination of the k-distribution method plus PCA presents similar accuracy to the LBL calculations, but it is up to 360 times faster, and the relative errors for the computed radiances are less than 1.5% compared to the results when the exact phase function is used. Finally, the linearized models studied show similar behavior

  7. 131I distribution in mice after continuous exposure to ionizing radiation of 0.39 C/kg

    International Nuclear Information System (INIS)

    Mraz, L.; Stollarova, N.

    1982-01-01

    The distribution of 131 I in mice has been investigated under the condition of continuous exposure to daily doses of 0.013 C/kg up to a total dose of 0.39 C/kg. Radioiodine distribution in exposed animals was compared with that in laboratory and field controls at intervals ranging from 0.5 to 24 hours. The group of experimental animals was simultaneously exposed to ionizing radiation and the climatic conditions of the open-air gamma field. Consequently, the metabolic activity of organs decreased during the distribution measurements as is also shown by the low radioiodine level in the thyroid gland. Differences in the distribution in exposed animals as compared with field controls are characteristic of changes caused by ionizing radiation. (author)

  8. Reliability design of the continuous monitoring system software for an position radiation

    International Nuclear Information System (INIS)

    Kang Yuebing; Li Tiantuo; Di Yuming; Zhang Yanhong

    2004-01-01

    The reliability and stabilization is an important technical target for a continuous monitoring system. After analyzing the position's environment and the system's structure, we put forward some methods of the software's reliability design and put these into the application. The practice shows that it is important to improve the system's stability and reliability. (authors)

  9. A Prospective Cohort Study of Gated Stereotactic Liver Radiation Therapy Using Continuous Internal Electromagnetic Motion Monitoring

    DEFF Research Database (Denmark)

    Worm, Esben S; Høyer, Morten; Hansen, Rune

    2018-01-01

    PURPOSE: Intrafraction motion can compromise the treatment accuracy in liver stereotactic body radiation therapy (SBRT). Respiratory gating can improve treatment delivery; however, gating based on external motion surrogates is inaccurate. The present study reports the use of Calypso-based internal...... electromagnetic motion monitoring for gated liver SBRT. METHODS AND MATERIALS: Fifteen patients were included in a study of 3-fraction respiratory gated liver SBRT guided by 3 implanted electromagnetic transponders. The planning target volume was created by a 5-mm axial and 7-mm (n = 12) or 10-mm (n = 3...

  10. A continuous OSL scanning method for analysis of radiation depth-dose profiles in bricks

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Jungner, H.; Poolton, N.R.J.

    1995-01-01

    This article describes the development of a method for directly measuring radiation depth-dose profiles from brick, tile and porcelain cores, without the need for sample separation techniques. For the brick cores, examples are shown of the profiles generated by artificial irradiation using...... the different photon energies from Cs-137 and Co-60 gamma sources; comparison is drawn with both the theoretical calculations derived from Monte Carlo simulations, as well as experimental measurements made using more conventional optically stimulated luminescence methods of analysis....

  11. Self-diffraction of continuous laser radiation in a disperse medium with absorbing particles

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2013-01-01

    We study the self-action of light in a water suspension of absorbing subwavelength particles. Due to efficient accumulation of the light energy, this medium shows distinct non-linear properties even at moderate radiation power. In particular, by means of interference of two obliquely incident beams...... formation is shown to be thermal, which leads to the phase grating; a weak amplitude grating also emerges due to the particles' displacements caused by the light-induced gradient and photophoretic forces. These forces, together with the Brownian motion of the particles, are responsible for the grating...

  12. Scatter radiation dose at height of the lens and image quality in interventional cardiology; Nivel de radiacao na altura do cristalino em cardiologia intervencionista

    Energy Technology Data Exchange (ETDEWEB)

    Leguees, Fernando A. Leyton

    2016-07-01

    Cardiologist and other staff members receive high doses of scattered radiation. Cases of radiation-induced cataract among cardiology professionals have been reported in studies, estimates for the dose to eye lens ranged from 450 to 900 mSv per year (without ceiling suspended screen), over several years. Recent surveys regarding high prevalence of lens changes likely induced by radiation exposure suggest an urgent need for improved radiation safety and training, use of eye protection during catheterization procedures, and improved occupational dosimetry. In view of the evidence of radiation injuries, the ICRP recommends limiting the radiation dose to the lens to 20 mSv per year for occupational exposure. A system for optimizing the radiation exposure is the measurement of entrance surface air kerma (K{sub a,e}) and kerma-area product (P{sub KA}) for patient and scattered dose or dose rate at the position for the staff, under clinical working conditions using phantoms and defined technical factors. Correlating K{sub a,e} and P{sub KA} with the scatter dose, applying the attenuation factors protective devices can enable estimation of the lens doses for operators. The purpose of this work is: to study the possibility of establishing a procedure which is useful for scientific societies and the regulatory authority in the prevention and control of IOE dose and to control and improve the quality of procedures in interventional cardiology as an initiative to raise awareness and optimization of radiological protection. Measurements were taken in different cardiac laboratories. Clinical working conditions were reproduced during the experiments for the different hemodynamic angiographic projections and operating modes used in fluoroscopy and cine. A first K{sub a,e} rate reference proposal for the characterization of angiography for the different acquisition modes were 16; 35; 40 and 220 (mGy/min), respectively. Considering the typical PKA values to patient in interventional

  13. Enhancement of heat transfer from a continuously moving porous fin exposed in convective–radiative environment

    International Nuclear Information System (INIS)

    Bhanja, Dipankar; Kundu, Balaram; Aziz, Abdul

    2014-01-01

    Highlights: • Analytical model for thermal analysis of moving porous fins. • Heat transfer from the fin surface due to convection and radiation. • For practical design aspects, optimization analysis was carried out. • Comparative study was made between the solid and porous moving fins. • Porous moving fin has more heat transfer ability than the stationary fin. - Abstract: In the present article, an exercise has been devoted to establish an analytical model for the determination of temperature distribution, fin efficiency and optimum design parameters of a porous moving fin which is losing heat by simultaneous convection and radiation to its surroundings. For the adaptation of this consideration, the governing equation becomes highly nonlinear. An analytical technique called Adomian decomposition method (ADM) is proposed for the solution methodology. The accuracy of the analytic solution is validated by using a numeric scheme called finite difference method. The results indicate that the numerical data and analytical approach are in agreement with each other. As the present study is an analytic, it is extended to the analysis for determination of optimum dimensions of said fin by satisfying either the maximization of rate of heat transfer for a given fin volume or by the minimization of fin volume for a desired heat transfer rate. The study is further extended to the porous fin in stationary condition and it is found that porous fin in moving condition transfers more heat than stationary condition. Investigation has also been made on solid moving fin to compare the outcomes of these parameters

  14. Changing of optical absorption and scattering coefficients in nonlinear-optical crystal lithium triborate before and after interaction with UV-radiation

    Science.gov (United States)

    Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.

    2016-04-01

    In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.

  15. Investigation of the topological shape of bovine serum albumin in solution by small-angle x-ray scattering at Beijing synchrotron radiation facility

    International Nuclear Information System (INIS)

    Dong Shuqiang; Chen Ximeng; Li Liqin; Liu Peng; Dong Yuhui

    2008-01-01

    This paper reports that at a newly constructed small-angle x-ray scattering station of Beijing Synchrotron Radiation Facility, the topological shape of ligand-free bovine serum albumin in solution has been investigated. An appropriate scattering curve is obtained and the calculated value of the gyration radius is 31.2ű0.25A (1Å=0.1 nm) which is coincident with other ones' results. It finds that the low-resolution structure models obtained by making use of ab initio reconstruction methods are fitting the crystal structure of human serum albumin very well. All of these results perform the potential of the beamline to apply to structural biology studies. The characteristics, the defects, and the improving measures of the station in future are also discussed. (condensed matter: structure, thermal and mechanical properties)

  16. Calculation of radiative corrections to virtual compton scattering - absolute measurement of the energy of Jefferson Lab. electron beam (hall A) by a magnetic method: arc project

    International Nuclear Information System (INIS)

    Marchand, D.

    1998-11-01

    This thesis presents the radiative corrections to the virtual compton scattering and the magnetic method adopted in the Hall A at Jefferson Laboratory, to measure the electrons beam energy with an accuracy of 10 4 . The virtual compton scattering experiments allow the access to the generalised polarizabilities of the protons. The extraction of these polarizabilities is obtained by the experimental and theoretical cross sections comparison. That's why the systematic errors and the radiative effects of the experiments have to be controlled very seriously. In this scope, a whole calculation of the internal radiative corrections has been realised in the framework of the quantum electrodynamic. The method of the dimensional regularisation has been used to the treatment of the ultraviolet and infra-red divergences. The absolute measure method of the energy, takes into account the magnetic deviation, made up of eight identical dipoles. The energy is determined from the deviation angle calculation of the beam and the measure of the magnetic field integral along the deviation

  17. H(10) due to radiation scattered in a 6 MV Linac for tomotherapy; H*(10) debida a la radiacion dispersada en un LINAC de 6 MV para tomoterapia

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Esparza H, A. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico); Garcia R, M. G. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Zacatecas, Calz. Pedro Coronel 16, Dependencias Federales, 98600 Guadalupe, Zacatecas (Mexico); Reyes R, E. [Universidad de Guanajuato, Campus Leon, Division de Ciencias e Ingenierias, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Hernandez A, L. [Consejo Nacional de Ciencia y Tecnologia, CIBNOR, Mar Bermejo 195, Col. Playa Palo de Santa Rita, 23090 La Paz, Baja California Sur (Mexico); Rivera, T., E-mail: fermineutron@yahoo.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Calz. Legaria 694, Col. Irrigacion, 11500 Ciudad de Mexico (Mexico)

    2017-10-15

    In order to determine the environmental equivalent dose (H(10)), due to the radiation that is dispersed over the body of a patient, 100 thermoluminescent dosimeters (TLD) around 6 MV TomoLINAC were used. The characteristics of the tomotherapy have the disadvantage that the shielding of the bunker increases considerably and for its design validated parameters are used for the conventional Linacs. In order to determine H(10) due to scattered radiation, measurements were made in the vicinity of the isocenter, while the 6 MeV photon beam was applied on a phantom. Also, TLDs were placed on the walls of the bunker that remained for 7 days, where approximately 50 patients were treated per day. At points close to the isocenter, the H(10) has an angular distribution caused by the phantom shape. In the bunker walls the highest H(10) was observed in the primary barriers. In the labyrinth, the impact of the scattered radiation was observed when measuring a greater value of the environmental equivalent dose in the wall furthest from the isocenter compared to the point located closest to it. (Author)

  18. Variation method for optimization of Raman fiber amplifier pumped by continuous-spectrum radiation

    International Nuclear Information System (INIS)

    Ghasempour Ardekani, A.; Bahrampour, A. R.; Feizpour, A.

    2007-01-01

    In Raman fiber amplifiers, reduction of gain ripple versus frequency has a great importance. In this article using variational method and continuous pump, gain ripple is optimized. It is shown here that for a 40 km line the average gain is 1.3dB and the gain ripple is 0.12 dB, that is lower than the latest published data.

  19. U-turn type continuous irradiation method and device for radiation-irradiated capsule

    International Nuclear Information System (INIS)

    Kikuchi, Takayuki.

    1997-01-01

    A capsule to be irradiated is moved while being rotated in one of conveying shafts disposed in a reactor to conduct irradiation treatment. Then, the irradiated capsule is made U-turn in the reactor, inserted to the other conveying shaft and moved while being rotated to conduct irradiation treatment again, and then transported out of the reactor. The device comprises a rotational conveying shaft for moving the irradiated capsule while rotating it, a conveying gear for U-turning the irradiated capsule in the reactor and inserting it to the conveying shaft and a driving mechanism for synchronously rotating the conveying gear relative to the conveying shaft at a constant ratio. Mechanical time loss and manual operation time loss can be reduced upon loading and taking up of the irradiated capsule. Then, the amount of irradiation treatment per unit time is increased, and an optional neutron irradiation amount can be obtained thereby enabling to reduce operator's radiation exposure. (N.H.)

  20. Continuing dental education in radiation protection: knowledge retention following a postgraduate course.

    Science.gov (United States)

    Absi, E G; Drage, N A; Thomas, H S; Newcombe, R G; Cowpe, J

    2011-08-01

    To evaluate medium-term knowledge retention of dental personnel following attendance at a postgraduate course in radiation protection. Knowledge was measured using identical pre- and post-course validated single best-answer multiple-choice instruments, administered immediately before and after training and at follow-up at 6 or 12 months. These comprise 16 questions each with 5 choices. The range of possible scores was from 0 to 16, and scores were scaled to percentages. Participants were predominantly dental practitioners, but a minority consisted of dental care professionals (dental nurses, hygienists and therapists). Of 285 participants, 272 (95.4%) completed both pre- and post-course questionnaires. One hundred and seventeen (43%) of these also completed the follow-up test, but only 109 (40%) individuals could be linked to the original course. Mean (standard deviation) pre-, post-course and follow-up-corrected percentage scores were 39.1 (16.1), 74.6 (16.9) and 58.9 (22.7), respectively. There was attrition in knowledge at follow-up: the average increase in adjusted score after training was 35.5 points, but only 56% of this was retained at follow-up. Paired t-tests confirmed that the mean score at follow-up was firmly intermediate between the pre- and post-course scores. Of the 109 participants, 7 (6%) achieved a satisfactory score pre-training, 82 (75%) immediately post-training and 41 (38%) at follow-up. There were gross differences between the levels of performance achieved for the eight subject areas tested. Immediate post-course assessments have indicated that current postgraduate courses in radiation protection are effective. However, a substantial amount of knowledge is lost by 6-12 months following course attendance. To achieve long-term knowledge retention, early or repeated reinforcement may be necessary. © 2011 John Wiley & Sons A/S.

  1. Method for continuous exposure of blood in vitro and in vivo to light, radiation or gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kook-Hyun (Seoul National Univ. (Republic of Korea). Coll. of Medicine); Takeshita, Jiro; Kushiyama, Sanzo; Morioka, Tohru

    1989-07-01

    Various medical treatments with extracorporeal circulation have increased the opportunities of exposing blood to light, radiation, or gas. In this paper, several simple methods of exposing blood to these bioactive exogenic agents are introduced. In in vitro method, blood is divided into two cylindrical glass bottles which have openings on both ends. After the bottles are connected with a vinyl tube to make a circuit, they are mounted parallel on the axis of a rotating rod. The air (or laboratory gas) is circulated by a vibration pump incorporated into this gas circuit to equalize the temperature in the two bottles. When the rod is rotated, a thin film of blood is formed over the internal surface of the bottles. This method permits blood to be in contact with the gas inside and to be exposed to light from the outside of the bottle. In in vitro method, blood is divided into two thin-walled, transparent, rectangular bags placed parallel on a tilting board. When the board is tilted intermittently, a thin blood layer is formed in each bag. If the bags are installed with inlet and outlet tubes and connected with blood accesses to either animals or humans, this device will become a circuit for an in vivo study. When one of the two bottles or bags is covered with metal foil to shield it from light or radiation, it can be used as a control. These devices will offer a laboratory method to study the effects of the exposure of blood to some exogenous bioactive agents as well as a new therapeutic method with such agents. (author).

  2. A conversion method of air-kerma from the primary, scatter and leakage radiations to ambient dose equivalent for calculating the mamography x-ray shielding barrier

    International Nuclear Information System (INIS)

    Kharrati, H.

    2005-01-01

    The primary, scatter, and leakage doses(in Gy), which constitute the data base for calculating shielding requirements for x-ray facilities, are often converted to the equivalent dose (in sievert) by using a constant of conversion of 1.145Sv/Gy. This constant is used for diagnostic radiology as well as for mammography spectra, and is derived by considering an exposure of 1 R corresponds to an air kerma of 8.73 m Gy, which renders by tradition an equivalent dose of 10 mSv. However, this conversion does not take into account the energy dependence of the conversion coefficients relating air kerma to the equivalent dose as described in ICRU report. Moreover, current radiation protection standards propose the use of the quantity ambient dose equivalent in order to qualify the efficiently of given radiation shielding. Therefore, in this study, a new approach has been introduced for derivation ambient dose equivalent from air kerma to calculate shielding requirements in mammography facilities. This new approach has been used to compute the conversion coefficients relating air kerma to ambient dose equivalent for mammography reference beam series of the Netherlands Metrology Institute Van Swinden Laboratorium (NMi), National Institute of Standards and Technology (NIST), and International Atomic Energy Agency (AIEA) laboratories. The calculation has been performed by the means of two methods which show a maximum deviation less than 10%2 for the primary, scatter, and leakage radiations. The results show that the conversion coefficients vary from 0.242 Sv/ Gy to 0.692 Sv/Gy with an average value of 0.436 Sv/Gy for the primary and the scatter radiations, and form 0.156 Sv/Gy to 1.329 Sv/Gy with an average value of 0.98 Sv/Gy for the leakage radiation. Simpkin et al. using an empirical approach propose a conversion value of 0.50 Sv/Gy for the mammography x-ray spectra. This value approximately coincides with the average conversion value of 0.436 Sv/Gy obtained in this work for

  3. Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres : numerical methods and application to the quiet, non-magnetic, surface of a solar-type star

    NARCIS (Netherlands)

    Hayek, W.; Asplund, M.; Carlsson, M.; Trampedach, R.; Collet, R.; Gudiksen, B.V.; Hansteen, V.H.; Leenaarts, J.|info:eu-repo/dai/nl/304837946

    2010-01-01

    Aims. We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes

  4. Use of mobile device technology to continuously collect patient-reported symptoms during radiation therapy for head and neck cancer: A prospective feasibility study

    Directory of Open Access Journals (Sweden)

    Aaron D. Falchook, MD

    2016-04-01

    Conclusions: A substantial percentage of patients used mobile devices to continuously report symptoms throughout a course of radiation therapy for head and neck cancer. Future studies should evaluate the impact of mobile device symptom reporting on improving patient outcomes.

  5. Efficacy of continuous treatment with radiation in a rat brain-tumor model

    International Nuclear Information System (INIS)

    Wheeler, K.T.; Kaufman, K.

    1981-01-01

    Rats bearing intracerebral 9L/Ro tumors were treated with 10 daily fractions of cesium-137 gamma-rays, BCNU, or combinations of these to agents beginning on either Day 10 or Day 12 after implantation. The treatments were administered either 5 days/week for 2 weeks, with the weekend off, or 10 consecutive days. The median day of death for untreated tumor-bearing rats was Day 15, so Day 12 tumors can be considered late tumors and Day 10 tumors can be considered moderately early. Although all single- and multiple-agent treatments significantly (p less than 0.05) increased the lifespan of tumor-bearing rats over that of the untreated controls, and all multiple-agent schedules significantly (p less than 0.05) increased the lifespan over that of the single-agent therapies, none of the 10 consecutive day schedules increased the lifespan of tumor-bearing rats significantly (p less than 0.2) over that obtained with the 5-day/week schedules. Thus, the evidence from this tumor model suggests that no significant improvement in lifespan would be expected if malignant brain tumors were treated with radiation 7 days a week, either alone or in combination with chemotherapeutic agents such as BCNU

  6. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, W.T.; Walker, B.A. [Environmental Evaluation Group, Albuquerque, NM (United States)

    1997-08-01

    Waste Isolation Pilot Plant (WIPP) alpha continuous air monitor (CAM) performance was evaluated to determine if CAMs could detect accidental releases of transuranic radioactivity from the underground repository. Anomalous alpha spectra and poor background subtraction were observed and attributed to salt deposits on the CAM sampling filters. Microscopic examination of salt laden sampling filters revealed that aerosol particles were forming dendritic structures on the surface of the sampling filters. Alpha CAM detection efficiency decreased exponentially as salt deposits increased on the sampling filters, suggesting that sampling-filter salt was performing like a fibrous filter rather than a membrane filter. Aerosol particles appeared to penetrate the sampling-filter salt deposits and alpha particle energy was reduced. These findings indicate that alpha CAMs may not be able to detect acute releases of radioactivity, and consequently CAMs are not used as part of the WIPP dynamic confinement system. 12 refs., 12 figs., 1 tab.

  7. Scattered radiation risk to the lens of the eyes for staff involved in using mobile C-arm fluoroscopy unit: Which position is riskiest?

    Energy Technology Data Exchange (ETDEWEB)

    Salleh, H.; Matori, M. K.; Isa, M. J. M. [Agensi Nuklear Malaysia, Bangi, 43000 Kajang, Selangor (Malaysia); Samat, S. B. [Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    Cataractogenesis is something to be concerned by radiologist and radiographer who work extensively in fluoroscopy. The increasing use of fluoroscopy or interventional fluoroscopy has to come with safety awareness on scattered radiation risk for staff performing the procedure. This study is looking into the radiation risk to the lens of the eyes for staff involved in fluoroscopy using the mobile C-arm fluoroscopy unit. The Toshiba SXT-1000A and Alderson Rando phantom were used in this study. Based on the results, it is found clearly that over couch (OC) procedure is riskier than under couch (UC) procedure. The cathode bound area is clearly riskier than anode bound area especially for UC procedure. More doses (at least +1,568 % of safest position) are received by the lens of the eyes for staff standing at the cathode bound area especially the position opposite to the x-ray tube.

  8. Scattered radiation risk to the lens of the eyes for staff involved in using mobile C-arm fluoroscopy unit: Which position is riskiest?

    International Nuclear Information System (INIS)

    Salleh, H.; Matori, M. K.; Isa, M. J. M.; Samat, S. B.

    2015-01-01

    Cataractogenesis is something to be concerned by radiologist and radiographer who work extensively in fluoroscopy. The increasing use of fluoroscopy or interventional fluoroscopy has to come with safety awareness on scattered radiation risk for staff performing the procedure. This study is looking into the radiation risk to the lens of the eyes for staff involved in fluoroscopy using the mobile C-arm fluoroscopy unit. The Toshiba SXT-1000A and Alderson Rando phantom were used in this study. Based on the results, it is found clearly that over couch (OC) procedure is riskier than under couch (UC) procedure. The cathode bound area is clearly riskier than anode bound area especially for UC procedure. More doses (at least +1,568 % of safest position) are received by the lens of the eyes for staff standing at the cathode bound area especially the position opposite to the x-ray tube

  9. Continued Development Of An Inexpensive Simulator Based CT Scanner For Radiation Therapy Treatment Planning

    Science.gov (United States)

    Peschmann, K. R.; Parker, D. L.; Smith, V.

    1982-11-01

    An abundant number of different CT scanner models has been developed in the past ten years, meeting increasing standards of performance. From the beginning they remained a comparatively expensive piece of equipment. This is due not only to their technical complexity but is also due to the difficulties involved in assessing "true" specifications (avoiding "overde-sign"). Our aim has been to provide, for Radiation Therapy Treatment Planning, a low cost CT scanner system featuring large freedom in patient positioning. We have taken advantage of the concurrent tremendously increased amount of knowledge and experience in the technical area of CT1 . By way of extensive computer simulations we gained confidence that an inexpensive C-arm simulator gantry and a simple one phase-two pulse generator in connection with a standard x-ray tube could be used, without sacrificing image quality. These components have been complemented by a commercial high precision shaft encoder, a simple and effective fan beam collimator, a high precision, high efficiency, luminescence crystal-silicon photodiode detector with 256 channels, low noise electronic preamplifier and sampling filter stages, a simplified data aquisition system furnished by Toshiba/ Analogic and an LSI 11/23 microcomputer plus data storage disk as well as various smaller interfaces linking the electrical components. The quality of CT scan pictures of phantoms,performed by the end of last year confirmed that this simple approach is working well. As a next step we intend to upgrade this system with an array processor in order to shorten recon-struction time to one minute per slice. We estimate that the system including this processor could be manufactured for a selling price of $210,000.

  10. The Fukushima Daiichi Nuclear Power Plant accident and school bullying of affected children and adolescents: the need for continuous radiation education.

    Science.gov (United States)

    Sawano, Toyoaki; Nishikawa, Yoshitaka; Ozaki, Akihiko; Leppold, Claire; Tsubokura, Masaharu

    2018-04-09

    The health threats of radiation-release incidents are diverse and long term. In addition to direct radiation effects, it is imperative to manage the indirect effects of radiation such as stigma, prejudice and broader mental health impacts. Six years after the Fukushima Daiichi Nuclear Power Plant accident of March 2011, bullying caused by stigma and prejudice toward evacuees, including children, has become a social problem in Japan. This phenomenon may be associated with the fact that knowledge about radiation has still not reached the general public, and to a potential lack of motivation among Japanese citizens to learn about radiation and bullying. Continuous and sustained education regarding radiation is warranted in order to enhance the general knowledge level about the effects of radiation in Japan after the Fukushima Daiichi Nuclear Power Plant accident, and this education will become an important reference for education after future nuclear disasters.

  11. Using MERRA-2 analysis fields to simulate limb scattered radiance profiles for inhomogeneous atmospheric lines of sight: Preparation for data assimilation of OMPS LP radiances through 2D single-scattering GSLS radiative transfer model development

    Science.gov (United States)

    Loughman, R. P.; Bhartia, P. K.; Moy, L.; Kramarova, N. A.; Wargan, K.

    2016-12-01

    Many remote sensing techniques used to monitor the Earth's upper atmosphere fall into the broad category of "limb viewing" (LV) measurements, which includes any method for which the line of sight (LOS) fails to intersect the surface. Occultation, limb emission and limb scattering (LS) measurements are all LV methods that offer strong sensitivity to changes in the atmosphere near the tangent point of the LOS, due to the enhanced geometric path through the tangent layer (where the concentration also typically peaks, for most atmospheric species). But many of the retrieval algorithms used to interpret LV measurements assume that the atmosphere consists of "spherical shells", in which the atmospheric properties vary only with altitude (creating a 1D atmosphere). This assumption simplifies the analysis, but at the possible price of misinterpreting measurements made in the real atmosphere. In this presentation, we focus on the problem of LOS inhomogeneity for LS measurements made by the OMPS Limb Profiler (LP) instrument during the 2015 ozone hole period. The GSLS radiative transfer model (RTM) used in the default OMPS LP algorithms assumes a spherical-shell atmosphere defined at levels spaced 1 km apart, with extinction coefficients assumed to vary linearly with height between levels. Several recent improvements enable an updated single-scattering version of the GSLS RTM to ingest 3D MERRA-2 analysis fields (including temperature, pressure, and ozone concentration) when creating the model atmosphere, by introducing flexible altitude grids, flexible atmospheric specification along the LOS, and improved treatment of the radiative transfer within each atmospheric layer. As a result, the effect of LOS inhomogeneity on the current (1D) OMPS LP retrieval algorithm can now be studied theoretically, using realistic 3D atmospheric profiles. This work also represents a step towards enabling OMPS LP data to be ingested as part of future data assimilation efforts.

  12. Ion temperature measurements of H-, D- and He-plasmas in the TCA tokamak by collective Thomson scattering of D2O laser radiation

    International Nuclear Information System (INIS)

    Behn, R.; Dicken, D.; Hackmann, J.; Salito, S.A.; Siegrist, M.R.

    1989-01-01

    Development of collective Thomson scattering as a method to measure the ion temperature of a tokamak plasma has been successful and encouraging results have been obtained during experiments on TCA in H-, D- and He-plasmas. Using a laser source in the far-infrared spectral region allows scattering angles close to 90 o , which results in excellent spatial resolution. The system installed on the TCA tokamak comprises an optically pumped D 2 O laser emitting 0.5 J in a 1.4 μs pulse on its Raman transition at 385μm. A heterodyne receiver with a Schottky barrier diode mixer has been chosen to detect the scattered radiation and analyze its spectral distribution in 12 channels of 80 MHz. Recent improvements of the mixer and 1st IF-amplifier yielded a system NEP of 2.2·10 -19 W/Hz. As a consequence we have obtained results which allow for the first time to evaluate the ion temperature T i in a single laser shot. (author) 3 figs., 1 tab

  13. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    International Nuclear Information System (INIS)

    Bartlett, W.T.; Walker, B.A.

    1996-01-01

    Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs

  14. Remote and continuous gamma spectrometry for environmental radiation protection: A review of potential applications

    International Nuclear Information System (INIS)

    Put, Ph. V.; Debauche, A.; Lacroix, J-P.; Lellis, C. D.; Delecaut, G.

    2006-01-01

    than for seawater due to the fact that it has been measured in a 25-litres shielded vessel. This indicated that placing the detection system in an infinite medium offers clearly a better sensitivity. From now, the use of this tool is to detect routine and accidental releases of nuclear installations (power station, reprocessing plant, radioisotopes production). An example is the HYDROTELERAY measurement stations network that monitors continuously the radioactivity level of the French rivers for the benefit of the IRSN. Following the 'zero-release' policy, industries are at present concerned by the continuous surveillance of the effluents generated by their activities. As an illustration, the 99mTc concentration observed in a water purification plant collecting sewage water from hospitals clearly shows the days when the nuclear medicine department is operational. Let's also mention the psychological importance that represents this control in the sector of drinking water and in the sector of fish farms that use warm water directly supplied from a nuclear power plant third loop. The interest of these systems is also demonstrated following incidents involving nuclear driven submarines in the Mediterranean Sea and the threats of malignity acts by natural resources radiological contamination ('dirty bombs'). Such an instrument finds also some uses in research applications as in the fields of pollutants dispersion modeling, hydrogeology, oil prospecting etc

  15. O(α2L2) radiative corrections to deep inelastic ep scattering for different kinematical variables

    International Nuclear Information System (INIS)

    Bluemlein, J.

    1994-03-01

    The QED radiative corrections are calculated in the leading log approximation up to O(α 2 ) for different definitions of the kinematical variables using jet measurement, the 'mixed' variables, the double angle method, and a measurement based on θ e and y JB . Higher order contributions due to exponentiation of soft radiation are included. (orig.)

  16. Study on excitation of vibrational levels of osmium tetroxide molecule by the continuous CO2 laser radiation

    International Nuclear Information System (INIS)

    Kompanets, O.N.; Letokhov, V.S.; Minogin, V.G.

    1975-01-01

    The mechanism of nonlinear infrared absorption in OsO 4 has been studied using a single-frequence continuous-wave CO 2 laser (10.6 μ). Measured are relationships between the OsO 4 absorption coefficient and the laser radiation intensity, the week beam transmission through a cell filled with OsO 4 and the frequency of the intensity modulation of the strong beam which saturates the absorption. It is indicated that the thermal mechanism prevails in OsO 4 bleaching under pressure (>=) 1mm Hg. A strong infrared fluorescence observed and studied at 5.3 and 10.6 μ in the molecular OsO 4 in the field of the high-power CO 2 laser has supplied another proof of the conclusion. The thermal diffusion rate and the coefficient of thermal conductivity for OsO 4 vapours have been determined. It has been revealed that the hot bands represent a significant part in thermal mechanism of the laser radiation absorption by the molecule

  17. A comparative study of the plasmon effect in nanoelectrode THz emitters: Pulse vs. continuous-wave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Kiwon; Lee, Eui Su; Lee, Il-Min; Han, Sang-Pil; Kim, Hyun-Soo; Park, Kyung Hyun, E-mail: khp@etri.re.kr [Terahertz Basic Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Choi, Jeongyong [Metal-Insulator Transition Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Lee, Donghun [Optical Internet Components Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)

    2016-08-15

    Plasmonic field enhancement in terahertz (THz) generation is one of the recently arisen techniques in the THz field that has attracted considerable interest. However, the reported levels of enhancement of THz output power in the literature are significantly different from each other, from less than two times to about two orders of magnitude of enhancement in power, which implies the existence of other major limiting factors yet to be revealed. In this work, the contribution of the plasmonic effect to the power enhancement of THz emitters is revisited. We show that the carrier collection efficiency in a THz emitter with plasmonic nanostructures is more critical to the device performance than the plasmonic field enhancement itself. The strong reverse fields induced by the highly localized plasmonic carriers in the vicinity of the nanoelectrodes screen the carrier collections and seriously limit the power enhancement. This is supported by our experimental observations of the significantly enhanced power in a plasmonic nanoelectrode THz emitter in continuous-wave radiation mode, while the same device has limited enhancement with pulsed radiation. We hope that our study may provide an intuitive but practical guideline in adopting plasmonic nanostructures with an aim of enhancing the efficiency of optoelectronic devices.

  18. Stationary theory of scattering

    International Nuclear Information System (INIS)

    Kato, T.

    1977-01-01

    A variant of the stationary methods is described, and it is shown that it is useful in a wide range of problems, including scattering, by long-range potentials, two-space scattering, and multichannel scattering. The method is based on the notion of spectral forms. The paper is restricted to the simplest case of continuous spectral forms defined on a Banach space embedded in the basic Hilbert space. (P.D.)

  19. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen, E-mail: stephen.avery@uphs.upenn.edu

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  20. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    International Nuclear Information System (INIS)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen

    2014-01-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V 18 Gy ), stomach (mean and V 20 Gy ), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V 18 Gy ), liver (mean dose), total bowel (V 20 Gy and mean dose), and small bowel (V 15 Gy absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose escalation and combining with radiosensitizing

  1. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  2. Study of the radiation scattered and produced by concrete shielding of radiotherapy rooms and its effects on equivalent doses in patients' organs

    International Nuclear Information System (INIS)

    Braga, K.L.; Rebello, W.F.; Andrade, E.R.; Gavazza, S.; Medeiros, M.P.C.; Mendes, R.M.S.; Gomes, R.G.; Silva, M.G.; Thalhofer, J.L.; Silva, A.X.; Santos, R.F.G.

    2015-01-01

    Within a radiotherapy room, in addition to the primary beam, there is also secondary radiation due to the leakage of the accelerator head and the radiation scattering from room objects, patient and even the room's shielding itself, which is projected to protect external individuals disregarding its effects on the patient. This work aims to study the effect of concrete shielding wall over the patient, taking into account its contribution on equivalent doses. The MCNPX code was used to model the linear accelerator Varian 2100/2300 C/D operating at 18MeV, with MAX phantom representing the patient undergoing radiotherapy treatment for prostate cancer following Brazilian Institute of Cancer four-fields radiation application protocol (0°, 90°, 180° and 270°). Firstly, the treatment was patterned within a standard radiotherapy room, calculating the equivalent doses on patient's organs individually. In a second step, this treatment was modeled withdrawing the walls, floor and ceiling from the radiotherapy room, and then the equivalent doses calculated again. Comparing these results, it was found that the concrete has an average shielding contribution of around 20% in the equivalent dose on the patient's organs. (author)

  3. A Raman scattering and FT-IR spectroscopic study on the effect of the solar radiation in Antarctica on bovine cornea

    Science.gov (United States)

    Yamamoto, Tatsuyuki; Murakami, Naoki; Yoshikiyo, Keisuke; Takahashi, Tetsuya; Yamamoto, Naoyuki

    2010-01-01

    The Raman scattering and FT-IR spectra of the corneas, transported to the Syowa station in Antarctica and exposed to the solar radiation of the mid-summer for four weeks, were studied to reveal that type IV collagen involved in corneas were fragmented. The amide I and III Raman bands were observed at 1660 and 1245 cm -1, respectively, and the amide I and II infrared bands were observed at 1655 and 1545 cm -1, respectively, for original corneas before exposure. The background of Raman signals prominently increased and the ratio of amide II infrared band versus amide I decreased by the solar radiation in Antarctica. The control experiment using an artificial UV lamp was also performed in laboratory. The decline rate of the amide II/amide I was utilized for estimating the degree of fragmentation of collagen, to reveal that the addition of vitamin C suppressed the reaction while the addition of sugars promoted it. The effect of the solar radiation in Antarctica on the corneas was estimated as the same as the artificial UV lamp of four weeks (Raman) or one week (FT-IR) exposure.

  4. Coherent scattering of CO2 light from ion-acoustic waves

    International Nuclear Information System (INIS)

    Peratt, A.L.; Watterson, R.L.; Derfler, H.

    1977-01-01

    Scattering of laser radiation from ion-acoustic waves in a plasma is investigated analytically and experimentally. The formulation predicts a coherent component of the scattered power on a largely incoherent background spectrum when the acoustic analog of Bragg's law and Doppler shift conditions are satisfied. The experiment consists of a hybrid CO 2 laser system capable of either low power continuous wave or high power pulsed mode operation. A heterodyne light mixing scheme is used to detect the scattered power. The proportionality predicted by the theory is verified by scattering from externally excited acoustic and ion-acoustic waves; continuous wave and pulsed modes in each case. Measurement of the ion-acoustic dispersion relation by continuous wave scattering is also presented

  5. Study on elastic scattering of 412 KeV γ radiation in elements of different atomic numbers

    International Nuclear Information System (INIS)

    Goncalves, O.D.

    1977-01-01

    The differentials cross sections for elastic scattering of 412 KeV γ rays was measured with Ge-Li detectors for elements of z = 78, 74, 56, 48 and 47. For the elements of z 78, 56 and 48 don't exist former measurements, while for z 74 and 48 exist only measurements done with NaI detectors, of poor resolution. Approximated theories calculated through H.F.S.D. form factors are discussed. From the analysis of the experimental and theoretical results, anomalies early pointed in this approximation could be explained. The experimental results presented good agreement with recent theoretical calculations done with second order perturbation theory. (author)

  6. Evaluation of the space scattered dose according to the position of the radiation workers in mammography room

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dept. of Radiation Oncology, Dongnam Inst. of Radiological and Medical Science, Busan (Korea, Republic of); Lee, Jin Soo [Dept. of Radiology, Inje University Heaundae Paik Hospital, Busan (Korea, Republic of)

    2016-09-15

    This study was conducted to evaluate the dose of the space to the controller located within the mammography room conducted a research on ways to the reduction exposure to the radiation workers. Results, the dose of 6.18 mGy/year was measured when there is no difference in the hilar area of the controller position, the dose of 2.35E-11 mGy/year was measured when installing the Shielding door. In addition, when the direction of the X-ray tube anode be heading this direction controller, low average level measured was 0.30 mGy/year. Based on this study, the mammography should be considered when installing the anode and cathod directions. And, by installing the shielding door, it must be able to completely separate shooting space and control room. This is the best way radiation protection method in radiation workers.

  7. A Multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR

    Energy Technology Data Exchange (ETDEWEB)

    Shestakov, A I; Offner, S R

    2006-09-21

    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory

  8. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation

    International Nuclear Information System (INIS)

    Rossle, Manfred; Panine, Pierre; Urban, Volker S.; Riekel, Christine

    2004-01-01

    The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with β-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 (micro)m beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

  9. Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle X-ray scattering technique with synchrotron radiation

    International Nuclear Information System (INIS)

    Ueki, Tatzuo; Inoko, Yoji; Izumi, Yoshinobu; Tagawa, Hiroyuki; Muroga, Yoshio

    1985-01-01

    A rapid mixing system of the stopped-flow type, used with small-angle X-ray scattering equipment using synchrotron radiation, is described. The process of aggregation of bovine serum albumin was traced with a time interval of 50 s, initiated upon cleavage of its disulfide bonds by reduction with dithiothreitol. The results indicate that a 218-fold molar excess of dithiothreitol over the number of moles of disulfide bonds in bovine serum albumin is sufficient to initiate the reaction immediately after mixing, which reaches equilibrium in about 15 min. On the other hand, half this amount is not sufficient to initiate the reaction, so that the reaction is delayed by about 150 s. Such a single-shot time-resolved experiment showed that experiments with a time interval of 100 ms are possible with repeated multi-shot runs. (Auth.)

  10. Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle X-ray scattering technique with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Tatzuo; Inoko, Yoji; Hiragi, Yuzuru; Kataoka, Mikio; Amemiya, Yoshiyuki; Izumi, Yoshinobu; Tagawa, Hiroyuki; Muroga, Yoshio

    1985-11-01

    A rapid mixing system of the stopped-flow type, used with small-angle X-ray scattering equipment using synchrotron radiation, is described. The process of aggregation of bovine serum albumin was traced with a time interval of 50s, initiated upon cleavage of its disulfide bonds by reduction with dithiothreitol. The results indicate that a 218-fold molar excess of dithiothreitol over the number of moles of disulfide bonds in bovine serum albumin is sufficient to initiate the reaction immediately after mixing, which reaches equilibrium in about 15 min. On the other hand, half this amount is not sufficient to initiate the reaction, so that the reaction is delayed by about 150s. Such a single-shot time-resolved experiment showed that experiments with a time interval of 100 ms are possible with repeated multi-shot runs. 26 refs.; 8 figs.

  11. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rossle, Manfred [European Molecular Biology Laboratory (EMBL), France; Panine, Pierre [European Synchrotron Radiation Facility (ESRF); Urban, Volker S [ORNL; Riekel, Christine [European Synchrotron Radiation Facility (ESRF)

    2004-04-01

    The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with {beta}-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 {micro}m beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

  12. Study of the sensitivity of the radiation transport problem in a scattering medium; Estudo da sensibilidade do problema de transporte de radiacao em meio espalhador

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Rogerio Chaffin

    2002-03-15

    In this work, the system of differential equations obtained by the angular approach of the two-dimensional transport equation by the discrete ordinates method is solved through the formulation of finite elements with the objective of investigating the sensitivity of the outgoing flux of radiation with the incoming flux and the properties of absorption and scattering of the medium. The variational formulation for the system of differential equations of second order with the generalized boundary conditions of Neumann (third type) allows an easy implementation of the method of the finite elements with triangular mesh and approximation space of first order. The geometry chosen for the simulations is a circle with a non homogeneous circular form in its interior. The mapping of Dirichlet-Neumann is studied through various simulations involving the incoming flux, the outgoing flux and the properties of the medium. (author)

  13. Determination of the X-ray mass absorption coefficient by measurement of the intensity of AgKα Compton scattered radiation

    International Nuclear Information System (INIS)

    Franzini, M.; Leoni, L.; Saitta, M.

    1976-01-01

    By utilizing a reflection geometry, an accurate mass absorption coefficient of a sample can be determined by measuring the Ag Kα Compton intensity. Intensities of Ag Kα Compton scattered radiation have been collected by using either the usual reflection geometry of a Philips PW 1450 automatic x-ray spectrometer or a more refined reflection geometry, achieved on a Philips PW 1540/10A manual x-ray spectrometer. The experimental results have shown that the relationship between the Ag Kα Compton intensity and the mass absorption is a logarithmic function. The experimental results are not in agreement with those reported in literature, but a theoretical explanation to account for this fact has not been achieved as yet. (author)

  14. Characterization of explosives by x-ray diffraction and neutron scattering techniques: phase transformation study by synchrotron radiation XRD of forensically sourced ammonium nitrate pills

    International Nuclear Information System (INIS)

    Connor, B.O.; Blagojevic, N.

    2009-01-01

    Under direction of the Australian Department of Prime Minister and Cabinet ANSTO has commenced a three-year project with the title Characterisation of Explosives by XRD and Neutron Scattering Techniques. The initial focus is on Ammonium Nitrate (AN) based explosives with the intention to investigate all important energetic materials currently used in improvised explosives devices (IED) by various combative groups. The principal objective of the project is to use laboratory x-ray, synchrotron radiation (SR) and neutron scattering fingerprinting to establish associations between the diffraction pattern information and the manufacturing sources of AN and other energetic materials. Laboratory and SR experiments, at room temperature, of commercial AN show that the phase structure is principally AN-IV. Our earlier work observed other phases such as previously unreported transformation of AN-IV to AN-II, again at room temperature. Our interest is to also characterise added phase stabiliser material, solid-solution altered AN as well as desiccant and moisture barrier coatings. This prospect points strongly to the possibility of fingerprinting the materials for inferring source-association relations. The enhanced pattern definition achievable using powder SR diffraction is expected to improve the crystal structure characterisation of the materials. Other properties such as temperature dependent phase transformation and strain anisotropy as well as trace elemental impurities will provide information to further define association linkages. (Author)

  15. Development of a methodology for low-energy X-ray absorption correction in biological samples using radiation scattering techniques

    International Nuclear Information System (INIS)

    Pereira, Marcelo O.; Anjos, Marcelino J.; Lopes, Ricardo T.

    2009-01-01

    Non-destructive techniques with X-ray, such as tomography, radiography and X-ray fluorescence are sensitive to the attenuation coefficient and have a large field of applications in medical as well as industrial area. In the case of X-ray fluorescence analysis the knowledge of photon X-ray attenuation coefficients provides important information to obtain the elemental concentration. On the other hand, the mass attenuation coefficient values are determined by transmission methods. So, the use of X-ray scattering can be considered as an alternative to transmission methods. This work proposes a new method for obtain the X-ray absorption curve through superposition peak Rayleigh and Compton scattering of the lines L a e L β of Tungsten (Tungsten L lines of an X-ray tube with W anode). The absorption curve was obtained using standard samples with effective atomic number in the range from 6 to 16. The method were applied in certified samples of bovine liver (NIST 1577B) , milk powder and V-10. The experimental measurements were obtained using the portable system EDXRF of the Nuclear Instrumentation Laboratory (LIN-COPPE/UFRJ) with Tungsten (W) anode. (author)

  16. Continental pollution in the Western Mediterranean basin: large variability of the aerosol single scattering albedo and influence on the direct shortwave radiative effect

    Directory of Open Access Journals (Sweden)

    C. Di Biagio

    2016-08-01

    Full Text Available Pollution aerosols strongly influence the composition of the Western Mediterranean basin, but at present little is known on their optical properties. We report in this study in situ observations of the single scattering albedo (ω of pollution aerosol plumes measured over the Western Mediterranean basin during the TRAQA (TRansport and Air QuAlity airborne campaign in summer 2012. Cases of pollution export from different source regions around the basin and at different altitudes between  ∼  160 and 3500 m above sea level were sampled during the flights. Data from this study show a large variability of ω, with values between 0.84–0.98 at 370 nm and 0.70–0.99 at 950 nm. The single scattering albedo generally decreases with the wavelength, with some exception associated to the mixing of pollution with sea spray or dust particles over the sea surface. The lowest values of ω (0.84–0.70 between 370 and 950 nm are measured in correspondence of a fresh plume possibly linked to ship emissions over the basin. The range of variability of ω observed in this study seems to be independent of the source region around the basin, as well as of the altitude and aging time of the plumes. The observed variability of ω reflects in a large variability for the complex refractive index of pollution aerosols, which is estimated to span in the large range 1.41–1.77 and 0.002–0.097 for the real and the imaginary parts, respectively, between 370 and 950 nm. Radiative calculations in clear-sky conditions were performed with the GAME radiative transfer model to test the sensitivity of the aerosol shortwave Direct Radiative Effect (DRE to the variability of ω as observed in this study. Results from the calculations suggest up to a 50 and 30 % change of the forcing efficiency (FE, i.e. the DRE per unit of optical depth, at the surface (−160/−235 W m−2 τ−1 at 60° solar zenith angle and at the Top-Of-Atmosphere (−137/−92

  17. Separation of radiated sound field components from waves scattered by a source under non-anechoic conditions

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2010-01-01

    to the source. Thus the radiated free-field component is estimated simultaneously with solving the inverse problem of reconstructing the sound field near the source. The method is particularly suited to cases in which the overall contribution of reflected sound in the measurement plane is significant....

  18. Impact of Scattered Radiation onTestosterone Deficiency and MaleHypogonadism in Rectal Cancer Treatedwith External Beam Pelvic Irradiation

    Directory of Open Access Journals (Sweden)

    Halimeh Khatoon Ahmadi

    2010-07-01

    Full Text Available Background: We performed a prospective study to evaluate the effects of pelvic irradiation on FSH, LH and testosterone levels in male patients with rectal adenocarcinoma. Our aim was to compare the level of male sex hormones in peripheral blood serum before and after pelvic irradiation.Methods:The eligible participants were 40 men with rectal adenocarcinoma who underwent pelvic radiotherapy as part of their treatment for primary tumor, either beforeor after surgery. All patients received a 50-Gy radiation dose to the pelvis, 2 Gy perfraction, five days per week. Blood was sampled three times during the study: once before radiation, at the end of the radiation course and 4 to 6 weeks after radiotherapy.Results:Median age of the patients was 58 years (range 18-82. The mean testis dose of radiation per fraction in all 40 patients was 16.3 cGy with a standard deviation of 15.22 (range 5.5-64.8. Serum levels of FSH revealed a significant increase from 7.5 ± 1.7 IU/L(before treatment to 20.9 ± 17.8 IU/L[end of radiotherapy (P<0.001]and 24.1 ± 20.5 IU/L[4 to 6 weeks after radiotherapy (P<0.001]. Serum LH levelswere significantly elevated from 8.04 ± 1.2 IU/L before radiation to 11.6 ± 11.5 IU/Lat the end of radiotherapy (P<0.001 and 12.5 ± 9.9 IU/L4 to 6 weeks after the final course of radiotherapy (P<0.001. There was a decrease in serum testosterone from5.3±2.1 ng/mL before radiation to 4.2 ± 1.9 ng/mLat the end of radiotherapy (P=0.004and 4.5 ± 2 ng/mL4 to 6 weeks after radiotherapy (P=0.035. No significant correlation was seen between age and differences in sex hormones (LH, P=0.605; FSH, P=0.380;testosterone,P=0.161.Conclusion:There was a significant change in serum levels of male sex hormones after pelvic irradiation for rectal cancer (total dose, 50 Gy that indicates considerable testicular damage under these circumstances. Thus, it seems logical to use techniques that reduce the radiation dose to the testicles and to consider the

  19. Compton scattering study of electron momentum distribution in lithium fluoride using 662 keV gamma radiations

    Science.gov (United States)

    Vijayakumar, R.; Shivaramu; Ramamurthy, N.; Ford, M. J.

    2008-12-01

    Here we report the first ever 137Cs Compton spectroscopy study of lithium fluoride. The spherical average Compton profiles of lithium fluoride are deduced from Compton scattering measurements on poly crystalline sample at gamma ray energy of 662 keV. To compare the experimental data, we have computed the spherical average Compton profiles using self-consistent Hartree-Fock wave functions employed on linear combination of atomic orbital (HF-LCAO) approximation. The directional Compton profiles and their anisotropic effects are also calculated using the same HF-LCAO approximation. The experimental spherical average profiles are found to be in good agreement with the corresponding HF-LCAO calculations and in qualitative agreement with Hartree-Fock free atom values. The present experimental isotropic and calculated directional profiles are also compared with the available experimental isotropic and directional Compton profiles using 59.54 and 159 keV γ-rays.

  20. Determination of the scattered radiation at the Neutron Calibration Laboratory of IPEN using the shadow cone method

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Tallyson S.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Freitas, Bruno M. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Fonseca, Evaldo S.; Pereira, Walsan W., E-mail: talvarenga@ipen.br, E-mail: lcaldas@ipen.br, E-mail: bfreitas@con.ufrj.br, E-mail: walsan@ird.gov.br, E-mail: evaldo@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Because of the increase in the demand for the calibration of neutron detectors, there is a need for new calibration services. In this context, the Calibration Laboratory of Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, which already offers calibration services of radiation detectors with standard X, gamma, beta and alpha beams, has recently projected a new test laboratory for neutron detectors. This work evaluated the contribution of dispersed neutron radiation in this laboratory, using the cone shadow method and a Bonner sphere spectrometer to take the measurements at a distance of 100 cm from the neutron source. The dosimetric quantities H⁎(10) and H⁎(10) were obtained at the laboratory, allowing the calibration of detectors. (author)