WorldWideScience

Sample records for scatter search algorithm

  1. An implementation of modified scatter search algorithm to transmission expansion planning

    OpenAIRE

    MEYMAND, Majid ZEINADDINI; RASHIDINEJAD, Masoud; KHORASANI, Hamid

    2011-01-01

    Transmission network expansion planning (TNEP) is one of the most important tasks in the field of power systems, especially in deregulated power system environments. TNEP is a nonlinear mixed integer programming problem that can be solved via hybrid heuristic algorithms. This paper presents a modified scatter search algorithm (MSSA) to reinforce the ordinary scatter search algorithm (SSA) to be equipped for handling large scale transmission expansion planning (TEP) problems. The prop...

  2. The Scatter Search Based Algorithm to Revenue Management Problem in Broadcasting Companies

    Science.gov (United States)

    Pishdad, Arezoo; Sharifyazdi, Mehdi; Karimpour, Reza

    2009-09-01

    The problem under question in this paper which is faced by broadcasting companies is how to benefit from a limited advertising space. This problem is due to the stochastic behavior of customers (advertiser) in different fare classes. To address this issue we propose a mathematical constrained nonlinear multi period model which incorporates cancellation and overbooking. The objective function is to maximize the total expected revenue and our numerical method performs it by determining the sales limits for each class of customer to present the revenue management control policy. Scheduling the advertising spots in breaks is another area of concern and we consider it as a constraint in our model. In this paper an algorithm based on Scatter search is developed to acquire a good feasible solution. This method uses simulation over customer arrival and in a continuous finite time horizon [0, T]. Several sensitivity analyses are conducted in computational result for depicting the effectiveness of proposed method. It also provides insight into better results of considering revenue management (control policy) compared to "no sales limit" policy in which sooner demand will served first.

  3. Backtrack Orbit Search Algorithm

    Science.gov (United States)

    Knowles, K.; Swick, R.

    2002-12-01

    A Mathematical Solution to a Mathematical Problem. With the dramatic increase in satellite-born sensor resolution traditional methods of spatially searching for orbital data have become inadequate. As data volumes increase end-users of the data have become increasingly intolerant of false positives. And, as computing power rapidly increases end-users have come to expect equally rapid search speeds. Meanwhile data archives have an interest in delivering the minimum amount of data that meets users' needs. This keeps their costs down and allows them to serve more users in a more timely manner. Many methods of spatial search for orbital data have been tried in the past and found wanting. The ever popular lat/lon bounding box on a flat Earth is highly inaccurate. Spatial search based on nominal "orbits" is somewhat more accurate at much higher implementation cost and slower performance. Spatial search of orbital data based on predict orbit models are very accurate at a much higher maintenance cost and slower performance. This poster describes the Backtrack Orbit Search Algorithm--an alternative spatial search method for orbital data. Backtrack has a degree of accuracy that rivals predict methods while being faster, less costly to implement, and less costly to maintain than other methods.

  4. Genetic Algorithms and Local Search

    Science.gov (United States)

    Whitley, Darrell

    1996-01-01

    The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.

  5. Optimal Fungal Space Searching Algorithms.

    Science.gov (United States)

    Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V

    2016-10-01

    Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.

  6. Quantum walks and search algorithms

    CERN Document Server

    Portugal, Renato

    2013-01-01

    This book addresses an interesting area of quantum computation called quantum walks, which play an important role in building quantum algorithms, in particular search algorithms. Quantum walks are the quantum analogue of classical random walks. It is known that quantum computers have great power for searching unsorted databases. This power extends to many kinds of searches, particularly to the problem of finding a specific location in a spatial layout, which can be modeled by a graph. The goal is to find a specific node knowing that the particle uses the edges to jump from one node to the next. This book is self-contained with main topics that include: Grover's algorithm, describing its geometrical interpretation and evolution by means of the spectral decomposition of the evolution operater Analytical solutions of quantum walks on important graphs like line, cycles, two-dimensional lattices, and hypercubes using Fourier transforms Quantum walks on generic graphs, describing methods to calculate the limiting d...

  7. A review on quantum search algorithms

    Science.gov (United States)

    Giri, Pulak Ranjan; Korepin, Vladimir E.

    2017-12-01

    The use of superposition of states in quantum computation, known as quantum parallelism, has significant advantage in terms of speed over the classical computation. It is evident from the early invented quantum algorithms such as Deutsch's algorithm, Deutsch-Jozsa algorithm and its variation as Bernstein-Vazirani algorithm, Simon algorithm, Shor's algorithms, etc. Quantum parallelism also significantly speeds up the database search algorithm, which is important in computer science because it comes as a subroutine in many important algorithms. Quantum database search of Grover achieves the task of finding the target element in an unsorted database in a time quadratically faster than the classical computer. We review Grover's quantum search algorithms for a singe and multiple target elements in a database. The partial search algorithm of Grover and Radhakrishnan and its optimization by Korepin called GRK algorithm are also discussed.

  8. The Light Scattering and Fast Mie Algorithm

    OpenAIRE

    Gliwa, Pawel

    2001-01-01

    The main topics of this paper is to shown a Fast Mie Algorithm FMA as the best way to use the Mie scattering theory for cross section calculation. This fast algorithm used recursion for summing a long timed sum of cylindrical functions.

  9. Adiabatic quantum search algorithm for structured problems

    International Nuclear Information System (INIS)

    Roland, Jeremie; Cerf, Nicolas J.

    2003-01-01

    The study of quantum computation has been motivated by the hope of finding efficient quantum algorithms for solving classically hard problems. In this context, quantum algorithms by local adiabatic evolution have been shown to solve an unstructured search problem with a quadratic speedup over a classical search, just as Grover's algorithm. In this paper, we study how the structure of the search problem may be exploited to further improve the efficiency of these quantum adiabatic algorithms. We show that by nesting a partial search over a reduced set of variables into a global search, it is possible to devise quantum adiabatic algorithms with a complexity that, although still exponential, grows with a reduced order in the problem size

  10. Searching Algorithms Implemented on Probabilistic Systolic Arrays

    Czech Academy of Sciences Publication Activity Database

    Kramosil, Ivan

    1996-01-01

    Roč. 25, č. 1 (1996), s. 7-45 ISSN 0308-1079 R&D Projects: GA ČR GA201/93/0781 Keywords : searching algorithms * probabilistic algorithms * systolic arrays * parallel algorithms Impact factor: 0.214, year: 1996

  11. Utilizing Centralized Diamond Architecture for Searching Algorithms

    Science.gov (United States)

    Damrudi, Masumeh; Jadidy Aval, Kamal

    2017-09-01

    Searching data elements and information in a fraction of time is still an important task for many areas of works. The importance of finding the best answer leads to use different algorithms which consume time. To improve the speed of searching information within mass information, employing parallel processing is inevitable. A search algorithm with constant time(CS) is proposed on centralized diamond architecture. We have optimized this algorithm to find the location and the number of occurrence of data, if there exists any.

  12. A DE-Based Scatter Search for Global Optimization Problems

    Directory of Open Access Journals (Sweden)

    Kun Li

    2015-01-01

    Full Text Available This paper proposes a hybrid scatter search (SS algorithm for continuous global optimization problems by incorporating the evolution mechanism of differential evolution (DE into the reference set updated procedure of SS to act as the new solution generation method. This hybrid algorithm is called a DE-based SS (SSDE algorithm. Since different kinds of mutation operators of DE have been proposed in the literature and they have shown different search abilities for different kinds of problems, four traditional mutation operators are adopted in the hybrid SSDE algorithm. To adaptively select the mutation operator that is most appropriate to the current problem, an adaptive mechanism for the candidate mutation operators is developed. In addition, to enhance the exploration ability of SSDE, a reinitialization method is adopted to create a new population and subsequently construct a new reference set whenever the search process of SSDE is trapped in local optimum. Computational experiments on benchmark problems show that the proposed SSDE is competitive or superior to some state-of-the-art algorithms in the literature.

  13. Search algorithms, hidden labour and information control

    Directory of Open Access Journals (Sweden)

    Paško Bilić

    2016-06-01

    Full Text Available The paper examines some of the processes of the closely knit relationship between Google’s ideologies of neutrality and objectivity and global market dominance. Neutrality construction comprises an important element sustaining the company’s economic position and is reflected in constant updates, estimates and changes to utility and relevance of search results. Providing a purely technical solution to these issues proves to be increasingly difficult without a human hand in steering algorithmic solutions. Search relevance fluctuates and shifts through continuous tinkering and tweaking of the search algorithm. The company also uses third parties to hire human raters for performing quality assessments of algorithmic updates and adaptations in linguistically and culturally diverse global markets. The adaptation process contradicts the technical foundations of the company and calculations based on the initial Page Rank algorithm. Annual market reports, Google’s Search Quality Rating Guidelines, and reports from media specialising in search engine optimisation business are analysed. The Search Quality Rating Guidelines document provides a rare glimpse into the internal architecture of search algorithms and the notions of utility and relevance which are presented and structured as neutral and objective. Intertwined layers of ideology, hidden labour of human raters, advertising revenues, market dominance and control are discussed throughout the paper.

  14. 6. Algorithms for Sorting and Searching

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Algorithms - Algorithms for Sorting and Searching. R K Shyamasundar. Series Article ... Author Affiliations. R K Shyamasundar1. Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...

  15. Learning Search Algorithms: An Educational View

    Directory of Open Access Journals (Sweden)

    Ales Janota

    2014-12-01

    Full Text Available Artificial intelligence methods find their practical usage in many applications including maritime industry. The paper concentrates on the methods of uninformed and informed search, potentially usable in solving of complex problems based on the state space representation. The problem of introducing the search algorithms to newcomers has its technical and psychological dimensions. The authors show how it is possible to cope with both of them through design and use of specialized authoring systems. A typical example of searching a path through the maze is used to demonstrate how to test, observe and compare properties of various search strategies. Performance of search methods is evaluated based on the common criteria.

  16. Hybridizing Evolutionary Algorithms with Opportunistic Local Search

    DEFF Research Database (Denmark)

    Gießen, Christian

    2013-01-01

    There is empirical evidence that memetic algorithms (MAs) can outperform plain evolutionary algorithms (EAs). Recently the first runtime analyses have been presented proving the aforementioned conjecture rigorously by investigating Variable-Depth Search, VDS for short (Sudholt, 2008). Sudholt...... of this new operator is demonstrated on the Rastrigin function encoded for binary hypercubes. Our results provide further insight into the problem of how to prevent local search algorithms to get stuck in local optima from a theoretical perspective. The methods stem from discrete probability theory...

  17. Genetic algorithms as global random search methods

    Science.gov (United States)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  18. Enhanced algorithms for enterprise expert search system

    Science.gov (United States)

    Molokanov, Valentin; Romanov, Dmitry; Tsibulsky, Valentin

    2013-03-01

    We present the results of our enterprise expert search system application to the task introduced at the Text Retrieval Conference (TREC) in 2007. The expert search system is based on analysis of content and communications topology in an enterprise information space. An optimal set of weighting coefficients for three query-candidate associating algorithms is selected for achieving the best search efficiency on the search collection. The obtained performance proved to be better than at most TREC participants. The hypothesis of additional efficiency improvement by means of query classification is proposed.

  19. Comparison Searching Process of Linear, Binary and Interpolation Algorithm

    Science.gov (United States)

    Rahim, Robbi; Nurarif, Saiful; Ramadhan, Mukhlis; Aisyah, Siti; Purba, Windania

    2017-12-01

    Searching is a process that cannot be issued for a transaction and communication process, many search algorithms that can be used to facilitate the search, linear, binary, and interpolation algorithms are some searching algorithms that can be utilized, the comparison of the three algorithms is performed by testing to search data with different length with pseudo process approach, and the result achieved that the interpolation algorithm is slightly faster than the other two algorithms.

  20. Nuclear expert web search and crawler algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Thiago; Barroso, Antonio C.O.; Baptista, Benedito Filho D., E-mail: thiagoreis@usp.br, E-mail: barroso@ipen.br, E-mail: bdbfilho@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In this paper we present preliminary research on web search and crawling algorithm applied specifically to nuclear-related web information. We designed a web-based nuclear-oriented expert system guided by a web crawler algorithm and a neural network able to search and retrieve nuclear-related hyper textual web information in autonomous and massive fashion. Preliminary experimental results shows a retrieval precision of 80% for web pages related to any nuclear theme and a retrieval precision of 72% for web pages related only to nuclear power theme. (author)

  1. Nuclear expert web search and crawler algorithm

    International Nuclear Information System (INIS)

    Reis, Thiago; Barroso, Antonio C.O.; Baptista, Benedito Filho D.

    2013-01-01

    In this paper we present preliminary research on web search and crawling algorithm applied specifically to nuclear-related web information. We designed a web-based nuclear-oriented expert system guided by a web crawler algorithm and a neural network able to search and retrieve nuclear-related hyper textual web information in autonomous and massive fashion. Preliminary experimental results shows a retrieval precision of 80% for web pages related to any nuclear theme and a retrieval precision of 72% for web pages related only to nuclear power theme. (author)

  2. A Direct Search Algorithm for Global Optimization

    Directory of Open Access Journals (Sweden)

    Enrique Baeyens

    2016-06-01

    Full Text Available A direct search algorithm is proposed for minimizing an arbitrary real valued function. The algorithm uses a new function transformation and three simplex-based operations. The function transformation provides global exploration features, while the simplex-based operations guarantees the termination of the algorithm and provides global convergence to a stationary point if the cost function is differentiable and its gradient is Lipschitz continuous. The algorithm’s performance has been extensively tested using benchmark functions and compared to some well-known global optimization algorithms. The results of the computational study show that the algorithm combines both simplicity and efficiency and is competitive with the heuristics-based strategies presently used for global optimization.

  3. Algorithms for Academic Search and Recommendation Systems

    DEFF Research Database (Denmark)

    Amolochitis, Emmanouil

    2014-01-01

    are part of a developed Movie Recommendation system, the first such system to be commercially deployed in Greece by a major Triple Play services provider. In the third part of the work we present the design of a quantitative association rule mining algorithm. The introduced mining algorithm processes......In this work we present novel algorithms for academic search, recommendation and association rules mining. In the first part of the work we introduce a novel hierarchical heuristic scheme for re-ranking academic publications. The scheme is based on the hierarchical combination of a custom...... implementation of the term frequency heuristic, a time-depreciated citation score and a graph-theoretic computed score that relates the paper’s index terms with each other. On the second part we describe the design of hybrid recommender ensemble (user, item and content based). The newly introduced algorithms...

  4. THE QUASIPERIODIC AUTOMATED TRANSIT SEARCH ALGORITHM

    International Nuclear Information System (INIS)

    Carter, Joshua A.; Agol, Eric

    2013-01-01

    We present a new algorithm for detecting transiting extrasolar planets in time-series photometry. The Quasiperiodic Automated Transit Search (QATS) algorithm relaxes the usual assumption of strictly periodic transits by permitting a variable, but bounded, interval between successive transits. We show that this method is capable of detecting transiting planets with significant transit timing variations without any loss of significance— s mearing — as would be incurred with traditional algorithms; however, this is at the cost of a slightly increased stochastic background. The approximate times of transit are standard products of the QATS search. Despite the increased flexibility, we show that QATS has a run-time complexity that is comparable to traditional search codes and is comparably easy to implement. QATS is applicable to data having a nearly uninterrupted, uniform cadence and is therefore well suited to the modern class of space-based transit searches (e.g., Kepler, CoRoT). Applications of QATS include transiting planets in dynamically active multi-planet systems and transiting planets in stellar binary systems.

  5. Tabu search algorithms for water network optimization

    OpenAIRE

    Cunha, Maria da Conceição; Ribeiro, Luísa

    2004-01-01

    In this paper we propose a tabu search algorithm to find the least-cost design of looped water distribution networks. The mathematical nature of this optimization problem, a nonlinear mixed integer problem, is at the origin of a multitude of contributions to the literature in the last 25 years. In fact, exact optimization methods have not been found for this type of problem, and, in the past, classical optimization methods, like linear and nonlinear programming, were tried at the cost of dras...

  6. Implementing Quantum Search Algorithm with Metamaterials.

    Science.gov (United States)

    Zhang, Weixuan; Cheng, Kaiyang; Wu, Chao; Wang, Yi; Li, Hongqiang; Zhang, Xiangdong

    2018-01-01

    Metamaterials, artificially structured electromagnetic (EM) materials, have enabled the realization of many unconventional EM properties not found in nature, such as negative refractive index, magnetic response, invisibility cloaking, and so on. Based on these man-made materials with novel EM properties, various devices are designed and realized. However, quantum analog devices based on metamaterials have not been achieved so far. Here, metamaterials are designed and printed to perform quantum search algorithm. The structures, comprising of an array of 2D subwavelength air holes with different radii perforated on the dielectric layer, are fabricated using a 3D-printing technique. When an incident wave enters in the designed metamaterials, the profile of beam wavefront is processed iteratively as it propagates through the metamaterial periodically. After ≈N roundtrips, precisely the same as the efficiency of quantum search algorithm, searched items will be found with the incident wave all focusing on the marked positions. Such a metamaterial-based quantum searching simulator may lead to remarkable achievements in wave-based signal processors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. VPD residue search by monitoring scattered x-rays

    International Nuclear Information System (INIS)

    Mori, Y.; Yamagami, M.; Yamada, T.

    2000-01-01

    Recently, VPD-TXRF has come into wide use for semiconductor analysis. In VPD-TXRF technique, adjusting the mechanical measuring point to the center of dried residue is of importance for accurate determination. Until now, the following searching methods have been used: monitoring light scattering under bright illumination, using laser scattering particle mapper, applying internal standard as a marker. However, each method has individual disadvantage. For example, interference of Kβ line (ex. Sc-Kβ to Ti-Kα) occurs in the internal standard method. We propose a new searching method 'scattered x-ray search' which utilizes x-ray scattering form the dried residue as a marker. Since the line profile of x-ray scattering agrees with that of fluorescent x-rays, scattered x-ray can be used as an alternative marker instead of internal standard. According to our experimental results, this search method shows the same accuracy as internal standard method. The merits are as follows: 1) no need to add internal standard, 2) rapid search because of high intensity of scattered x-rays, 3) searching software for internal standard can be applied without any modification. In this method, diffraction of incident x-rays by substrate causes irregular change over the detected scattering x-rays. Therefore, this method works better under x-y controlled stage than r-Θ one. (author)

  8. DIFFERENTIAL SEARCH ALGORITHM BASED EDGE DETECTION

    Directory of Open Access Journals (Sweden)

    M. A. Gunen

    2016-06-01

    Full Text Available In this paper, a new method has been presented for the extraction of edge information by using Differential Search Optimization Algorithm. The proposed method is based on using a new heuristic image thresholding method for edge detection. The success of the proposed method has been examined on fusion of two remote sensed images. The applicability of the proposed method on edge detection and image fusion problems have been analysed in detail and the empirical results exposed that the proposed method is useful for solving the mentioned problems.

  9. Search and optimization by metaheuristics techniques and algorithms inspired by nature

    CERN Document Server

    Du, Ke-Lin

    2016-01-01

    This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computin...

  10. Scattering quantum random-walk search with errors

    International Nuclear Information System (INIS)

    Gabris, A.; Kiss, T.; Jex, I.

    2007-01-01

    We analyze the realization of a quantum-walk search algorithm in a passive, linear optical network. The specific model enables us to consider the effect of realistic sources of noise and losses on the search efficiency. Photon loss uniform in all directions is shown to lead to the rescaling of search time. Deviation from directional uniformity leads to the enhancement of the search efficiency compared to uniform loss with the same average. In certain cases even increasing loss in some of the directions can improve search efficiency. We show that while we approach the classical limit of the general search algorithm by introducing random phase fluctuations, its utility for searching is lost. Using numerical methods, we found that for static phase errors the averaged search efficiency displays a damped oscillatory behavior that asymptotically tends to a nonzero value

  11. Wolf Search Algorithm for Solving Optimal Reactive Power Dispatch Problem

    Directory of Open Access Journals (Sweden)

    Kanagasabai Lenin

    2015-03-01

    Full Text Available This paper presents a new bio-inspired heuristic optimization algorithm called the Wolf Search Algorithm (WSA for solving the multi-objective reactive power dispatch problem. Wolf Search algorithm is a new bio – inspired heuristic algorithm which based on wolf preying behaviour. The way wolves search for food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the reactive power dispatches. And the speciality  of wolf is  possessing  both individual local searching ability and autonomous flocking movement and this special property has been utilized to formulate the search algorithm .The proposed (WSA algorithm has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the good performance of the proposed algorithm .

  12. Multiobjective scatter search approach with new combination scheme applied to solve environmental/economic dispatch problem

    International Nuclear Information System (INIS)

    Athayde Costa e Silva, Marsil de; Klein, Carlos Eduardo; Mariani, Viviana Cocco; Santos Coelho, Leandro dos

    2013-01-01

    The environmental/economic dispatch (EED) is an important daily optimization task in the operation of many power systems. It involves the simultaneous optimization of fuel cost and emission objectives which are conflicting ones. The EED problem can be formulated as a large-scale highly constrained nonlinear multiobjective optimization problem. In recent years, many metaheuristic optimization approaches have been reported in the literature to solve the multiobjective EED. In terms of metaheuristics, recently, scatter search approaches are receiving increasing attention, because of their potential to effectively explore a wide range of complex optimization problems. This paper proposes an improved scatter search (ISS) to deal with multiobjective EED problems based on concepts of Pareto dominance and crowding distance and a new scheme for the combination method. In this paper, we have considered the standard IEEE (Institute of Electrical and Electronics Engineers) 30-bus system with 6-generators and the results obtained by proposed ISS algorithm are compared with the other recently reported results in the literature. Simulation results demonstrate that the proposed ISS algorithm is a capable candidate in solving the multiobjective EED problems. - Highlights: ► Economic dispatch. ► We solve the environmental/economic economic power dispatch problem with scatter search. ► Multiobjective scatter search can effectively improve the global search ability

  13. A hybrid search algorithm for swarm robots searching in an unknown environment.

    Science.gov (United States)

    Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao

    2014-01-01

    This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.

  14. Flexible Triangle Search Algorithm for Block-Based Motion Estimation

    Directory of Open Access Journals (Sweden)

    Andreas Antoniou

    2007-01-01

    Full Text Available A new fast algorithm for block-based motion estimation, the flexible triangle search (FTS algorithm, is presented. The algorithm is based on the simplex method of optimization adapted to an integer grid. The proposed algorithm is highly flexible due to its ability to quickly change its search direction and to move towards the target of the search criterion. It is also capable of increasing or decreasing its search step size to allow coarser or finer search. Unlike other fast search algorithms, the FTS can escape from inferior local minima and thus converge to better solutions. The FTS was implemented as part of the H.264 encoder and was compared with several other block matching algorithms. The results obtained show that the FTS can reduce the number of block matching comparisons by around 30–60% with negligible effect on the image quality and compression ratio.

  15. Advancing X-ray scattering metrology using inverse genetic algorithms

    Science.gov (United States)

    Hannon, Adam F.; Sunday, Daniel F.; Windover, Donald; Kline, R. Joseph

    2016-01-01

    We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real space structure in periodic gratings measured using critical dimension small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real space structure of our nanogratings. The study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting. PMID:27551326

  16. Progressive-Search Algorithms for Large-Vocabulary Speech Recognition

    National Research Council Canada - National Science Library

    Murveit, Hy; Butzberger, John; Digalakis, Vassilios; Weintraub, Mitch

    1993-01-01

    .... An algorithm, the "Forward-Backward Word-Life Algorithm," is described. It can generate a word lattice in a progressive search that would be used as a language model embedded in a succeeding recognition pass to reduce computation requirements...

  17. Algebraic Algorithm Design and Local Search

    National Research Council Canada - National Science Library

    Graham, Robert

    1996-01-01

    .... Algebraic techniques have been applied successfully to algorithm synthesis by the use of algorithm theories and design tactics, an approach pioneered in the Kestrel Interactive Development System (KIDS...

  18. Improved Degree Search Algorithms in Unstructured P2P Networks

    Directory of Open Access Journals (Sweden)

    Guole Liu

    2012-01-01

    Full Text Available Searching and retrieving the demanded correct information is one important problem in networks; especially, designing an efficient search algorithm is a key challenge in unstructured peer-to-peer (P2P networks. Breadth-first search (BFS and depth-first search (DFS are the current two typical search methods. BFS-based algorithms show the perfect performance in the aspect of search success rate of network resources, while bringing the huge search messages. On the contrary, DFS-based algorithms reduce the search message quantity and also cause the dropping of search success ratio. To address the problem that only one of performances is excellent, we propose two memory function degree search algorithms: memory function maximum degree algorithm (MD and memory function preference degree algorithm (PD. We study their performance including the search success rate and the search message quantity in different networks, which are scale-free networks, random graph networks, and small-world networks. Simulations show that the two performances are both excellent at the same time, and the performances are improved at least 10 times.

  19. 2nd International Conference on Harmony Search Algorithm

    CERN Document Server

    Geem, Zong

    2016-01-01

    The Harmony Search Algorithm (HSA) is one of the most well-known techniques in the field of soft computing, an important paradigm in the science and engineering community.  This volume, the proceedings of the 2nd International Conference on Harmony Search Algorithm 2015 (ICHSA 2015), brings together contributions describing the latest developments in the field of soft computing with a special focus on HSA techniques. It includes coverage of new methods that have potentially immense application in various fields. Contributed articles cover aspects of the following topics related to the Harmony Search Algorithm: analytical studies; improved, hybrid and multi-objective variants; parameter tuning; and large-scale applications.  The book also contains papers discussing recent advances on the following topics: genetic algorithms; evolutionary strategies; the firefly algorithm and cuckoo search; particle swarm optimization and ant colony optimization; simulated annealing; and local search techniques.   This book ...

  20. An efficient cuckoo search algorithm for numerical function optimization

    Science.gov (United States)

    Ong, Pauline; Zainuddin, Zarita

    2013-04-01

    Cuckoo search algorithm which reproduces the breeding strategy of the best known brood parasitic bird, the cuckoos has demonstrated its superiority in obtaining the global solution for numerical optimization problems. However, the involvement of fixed step approach in its exploration and exploitation behavior might slow down the search process considerably. In this regards, an improved cuckoo search algorithm with adaptive step size adjustment is introduced and its feasibility on a variety of benchmarks is validated. The obtained results show that the proposed scheme outperforms the standard cuckoo search algorithm in terms of convergence characteristic while preserving the fascinating features of the original method.

  1. An improved harmony search algorithm for power economic load dispatch

    International Nuclear Information System (INIS)

    Santos Coelho, Leandro dos; Mariani, Viviana Cocco

    2009-01-01

    A meta-heuristic algorithm called harmony search (HS), mimicking the improvisation process of music players, has been recently developed. The HS algorithm has been successful in several optimization problems. The HS algorithm does not require derivative information and uses stochastic random search instead of a gradient search. In addition, the HS algorithm is simple in concept, few in parameters, and easy in implementation. This paper presents an improved harmony search (IHS) algorithm based on exponential distribution for solving economic dispatch problems. A 13-unit test system with incremental fuel cost function taking into account the valve-point loading effects is used to illustrate the effectiveness of the proposed IHS method. Numerical results show that the IHS method has good convergence property. Furthermore, the generation costs of the IHS method are lower than those of the classical HS and other optimization algorithms reported in recent literature.

  2. Neutron scattering and the search for mechanisms of superconductivity

    DEFF Research Database (Denmark)

    Aeppli, G.; Bishop, D.J.; Broholm, C.

    1999-01-01

    Neutron scattering is a direct probe of mass and magnetization density in solids. We start with a brief review of experimental strategies for determining the mechanisms of superconductivity and how neutron scattering contributed towards our understanding of conventional superconductors. The remai......Neutron scattering is a direct probe of mass and magnetization density in solids. We start with a brief review of experimental strategies for determining the mechanisms of superconductivity and how neutron scattering contributed towards our understanding of conventional superconductors....... The remainder of the article gives examples of neutron results with impact on the search for the mechanism of superconductivity in more recently discovered, 'exotic', materials, namely the heavy fermion compounds and the layered cuprates, (C) 1999 Elsevier Science B.V. All rights reserved....

  3. Cuckoo search and firefly algorithm theory and applications

    CERN Document Server

    2014-01-01

    Nature-inspired algorithms such as cuckoo search and firefly algorithm have become popular and widely used in recent years in many applications. These algorithms are flexible, efficient and easy to implement. New progress has been made in the last few years, and it is timely to summarize the latest developments of cuckoo search and firefly algorithm and their diverse applications. This book will review both theoretical studies and applications with detailed algorithm analysis, implementation and case studies so that readers can benefit most from this book.  Application topics are contributed by many leading experts in the field. Topics include cuckoo search, firefly algorithm, algorithm analysis, feature selection, image processing, travelling salesman problem, neural network, GPU optimization, scheduling, queuing, multi-objective manufacturing optimization, semantic web service, shape optimization, and others.   This book can serve as an ideal reference for both graduates and researchers in computer scienc...

  4. A review: search visualization with Knuth Morris Pratt algorithm

    Science.gov (United States)

    Rahim, Robbi; Zulkarnain, Iskandar; Jaya, Hendra

    2017-09-01

    In this research modeled a search process of the Knuth-Morris-Pratt algorithm in the form of easy-to-understand visualization, Knuth-Morris-Pratt algorithm selection because this algorithm is easy to learn and easy to implement into many programming languages.

  5. Search for heavy resonances in vector boson scattering

    CERN Document Server

    Zhang, Guangyi; The ATLAS collaboration

    2016-01-01

    If the Higgs boson discovered at the LHC is not exactly the one predicted by the Standard Model the theory becomes strongly coupled at high energy and vector boson scattering violates unitarity in the TeV range. This can be regularised by the introduction of new heavy resonances. These resonances may also couple to quark pairs and can be searched for in their decay to vector or Higgs bosons. The ATLAS detector at the LHC is collecting data at 13 TeV since 2015. A search for new heavy resonances arising from WW scattering in vector boson fusion events using these data is presented. Interference effects between the new resonances and the Standard Model amplitude are fully taken into account. In addition searches for heavy resonances in the decay to a pair of bosons without tagging the initial state are shown.

  6. A hybrid search algorithm for swarm robots searching in an unknown environment.

    Directory of Open Access Journals (Sweden)

    Shoutao Li

    Full Text Available This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.

  7. Combinatorial search from algorithms to systems

    CERN Document Server

    Hamadi, Youssef

    2013-01-01

    This book details key techniques in constraint networks, dealing in particular with constraint satisfaction, search, satisfiability, and applications in machine learning and constraint programming. Includes case studies.

  8. Conditionally-uniform Feasible Grid Search Algorithm

    DEFF Research Database (Denmark)

    Dziubinski, Matt P.

    We present and evaluate a numerical optimization method (together with an algorithm for choosing the starting values) pertinent to the constrained optimization problem arising in the estimation of the GARCH models with inequality constraints, in particular the Simplied Component GARCH Model (SCGA...... (SCGARCH), together with algorithms for the objective function and analytical gradient computation for SCGARCH....

  9. Smoothed Analysis of Local Search Algorithms

    NARCIS (Netherlands)

    Manthey, Bodo; Dehne, Frank; Sack, Jörg-Rüdiger; Stege, Ulrike

    2015-01-01

    Smoothed analysis is a method for analyzing the performance of algorithms for which classical worst-case analysis fails to explain the performance observed in practice. Smoothed analysis has been applied to explain the performance of a variety of algorithms in the last years. One particular class of

  10. Search Parameter Optimization for Discrete, Bayesian, and Continuous Search Algorithms

    Science.gov (United States)

    2017-09-01

    sensor with some non-uniform probability of detection • Game theory approach with a target counter-detecting and evading. 40 APPENDIX A: Figures A.1...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Search and Detection Theory is the overarching field of study that covers many scenarios. These range from...SUBJECT TERMS Search Theory , Undersea Warfare, South China Sea, Anti-Submarine Warfare 15. NUMBER OF PAGES 253 16. PRICE CODE 17. SECURITY

  11. Merged Search Algorithms for Radio Frequency Identification Anticollision

    Directory of Open Access Journals (Sweden)

    Bih-Yaw Shih

    2012-01-01

    The arbitration algorithm for RFID system is used to arbitrate all the tags to avoid the collision problem with the existence of multiple tags in the interrogation field of a transponder. A splitting algorithm which is called Binary Search Tree (BST is well known for multitags arbitration. In the current study, a splitting-based schema called Merged Search Tree is proposed to capture identification codes correctly for anticollision. Performance of the proposed algorithm is compared with the original BST according to time and power consumed during the arbitration process. The results show that the proposed model can reduce searching time and power consumed to achieve a better performance arbitration.

  12. Underwater Sensor Network Redeployment Algorithm Based on Wolf Search.

    Science.gov (United States)

    Jiang, Peng; Feng, Yang; Wu, Feng

    2016-10-21

    This study addresses the optimization of node redeployment coverage in underwater wireless sensor networks. Given that nodes could easily become invalid under a poor environment and the large scale of underwater wireless sensor networks, an underwater sensor network redeployment algorithm was developed based on wolf search. This study is to apply the wolf search algorithm combined with crowded degree control in the deployment of underwater wireless sensor networks. The proposed algorithm uses nodes to ensure coverage of the events, and it avoids the prematurity of the nodes. The algorithm has good coverage effects. In addition, considering that obstacles exist in the underwater environment, nodes are prevented from being invalid by imitating the mechanism of avoiding predators. Thus, the energy consumption of the network is reduced. Comparative analysis shows that the algorithm is simple and effective in wireless sensor network deployment. Compared with the optimized artificial fish swarm algorithm, the proposed algorithm exhibits advantages in network coverage, energy conservation, and obstacle avoidance.

  13. Optimization of machining processes using pattern search algorithm

    Directory of Open Access Journals (Sweden)

    Miloš Madić

    2014-04-01

    Full Text Available Optimization of machining processes not only increases machining efficiency and economics, but also the end product quality. In recent years, among the traditional optimization methods, stochastic direct search optimization methods such as meta-heuristic algorithms are being increasingly applied for solving machining optimization problems. Their ability to deal with complex, multi-dimensional and ill-behaved optimization problems made them the preferred optimization tool by most researchers and practitioners. This paper introduces the use of pattern search (PS algorithm, as a deterministic direct search optimization method, for solving machining optimization problems. To analyze the applicability and performance of the PS algorithm, six case studies of machining optimization problems, both single and multi-objective, were considered. The PS algorithm was employed to determine optimal combinations of machining parameters for different machining processes such as abrasive waterjet machining, turning, turn-milling, drilling, electrical discharge machining and wire electrical discharge machining. In each case study the optimization solutions obtained by the PS algorithm were compared with the optimization solutions that had been determined by past researchers using meta-heuristic algorithms. Analysis of obtained optimization results indicates that the PS algorithm is very applicable for solving machining optimization problems showing good competitive potential against stochastic direct search methods such as meta-heuristic algorithms. Specific features and merits of the PS algorithm were also discussed.

  14. Tunable output-frequency filter algorithm for imaging through scattering media under LED illumination

    Science.gov (United States)

    Zhou, Meiling; Singh, Alok Kumar; Pedrini, Giancarlo; Osten, Wolfgang; Min, Junwei; Yao, Baoli

    2018-03-01

    We present a tunable output-frequency filter (TOF) algorithm to reconstruct the object from noisy experimental data under low-power partially coherent illumination, such as LED, when imaging through scattering media. In the iterative algorithm, we employ Gaussian functions with different filter windows at different stages of iteration process to reduce corruption from experimental noise to search for a global minimum in the reconstruction. In comparison with the conventional iterative phase retrieval algorithm, we demonstrate that the proposed TOF algorithm achieves consistent and reliable reconstruction in the presence of experimental noise. Moreover, the spatial resolution and distinctive features are retained in the reconstruction since the filter is applied only to the region outside the object. The feasibility of the proposed method is proved by experimental results.

  15. Differential harmony search algorithm to optimize PWRs loading pattern

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► Exploit of DHS algorithm in LP optimization reveals its flexibility, robustness and reliability. ► Upshot of our experiments with DHS shows that the search approach to optimal LP is quickly. ► On the average, the final band width of DHS fitness values is narrow relative to HS and GHS. -- Abstract: The objective of this work is to develop a core loading optimization technique using differential harmony search algorithm in the context of obtaining an optimal configuration of fuel assemblies in pressurized water reactors. To implement and evaluate the proposed technique, differential harmony search nodal expansion package for 2-D geometry, DHSNEP-2D, is developed. The package includes two modules; in the first modules differential harmony search (DHS) is implemented and nodal expansion code which solves two dimensional-multi group neutron diffusion equations using fourth degree flux expansion with one node per a fuel assembly is in the second module. For evaluation of DHS algorithm, classical harmony search (HS) and global-best harmony search (GHS) algorithms are also included in DHSNEP-2D in order to compare the outcome of techniques together. For this purpose, two PWR test cases have been investigated to demonstrate the DHS algorithm capability in obtaining near optimal loading pattern. Results show that the convergence rate of DHS and execution times are quite promising and also is reliable for the fuel management operation. Moreover, numerical results show the good performance of DHS relative to other competitive algorithms such as genetic algorithm (GA), classical harmony search (HS) and global-best harmony search (GHS) algorithms

  16. A New Algorithm for Inclusive Search of SUSY Signal

    CERN Document Server

    Duchovni, Ehud; Renkel, Peter; Duchovni, Ehud; Prosso, Eugene; Renkel, Peter

    2005-01-01

    A new algorithm designed to reduce the model dependence in future SUSY searches at the LHC is described. This algorithm can dynamically adapt itself to a wide range of possible SUSY final states thus reducing the need for detailed model-driven analysis. Preliminary study of its performance on simulated MSSM, GMSB and AMSB final states is described, and a comparison with traditional search procedures, whenever available, is performed.

  17. Gradient gravitational search: An efficient metaheuristic algorithm for global optimization.

    Science.gov (United States)

    Dash, Tirtharaj; Sahu, Prabhat K

    2015-05-30

    The adaptation of novel techniques developed in the field of computational chemistry to solve the concerned problems for large and flexible molecules is taking the center stage with regard to efficient algorithm, computational cost and accuracy. In this article, the gradient-based gravitational search (GGS) algorithm, using analytical gradients for a fast minimization to the next local minimum has been reported. Its efficiency as metaheuristic approach has also been compared with Gradient Tabu Search and others like: Gravitational Search, Cuckoo Search, and Back Tracking Search algorithms for global optimization. Moreover, the GGS approach has also been applied to computational chemistry problems for finding the minimal value potential energy of two-dimensional and three-dimensional off-lattice protein models. The simulation results reveal the relative stability and physical accuracy of protein models with efficient computational cost. © 2015 Wiley Periodicals, Inc.

  18. 3D protein structure prediction with genetic tabu search algorithm.

    Science.gov (United States)

    Zhang, Xiaolong; Wang, Ting; Luo, Huiping; Yang, Jack Y; Deng, Youping; Tang, Jinshan; Yang, Mary Qu

    2010-05-28

    Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic

  19. Nature-inspired novel Cuckoo Search Algorithm for genome ...

    Indian Academy of Sciences (India)

    This study aims to produce a novel optimization algorithm, called the Cuckoo Search Algorithm (CS), for solving the genome sequence assembly problem. Assembly of genome sequence is a technique that attempts to rebuild the target sequence from the collection of fragments. This study is the first application of the CS for ...

  20. Nature-inspired novel Cuckoo Search Algorithm for genome

    Indian Academy of Sciences (India)

    This study aims to produce a novel optimization algorithm, called the Cuckoo Search Algorithm (CS), for solving the genome sequence assembly problem. ... Department of Electronics and Communication Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, India; Department of Information Technology, ...

  1. Visual Approach of Searching Process using Boyer-Moore Algorithm

    Science.gov (United States)

    Rahim, Robbi; Saleh Ahmar, Ansari; Putri Ardyanti, Ayu; Nofriansyah, Dicky

    2017-12-01

    This research shows the process of string matching using a Boyer-Moore algorithm in the form of visual simulation by doing string searching of a pattern string, the result of visualization is recognized that Boyer-Moore algorithm will compare a n string from the right and will test to n-1 String to get the appropriate character of the desired input string.

  2. Reasoning about Grover's Quantum Search Algorithm using Probabilistic wp

    NARCIS (Netherlands)

    Butler, M.J.; Hartel, Pieter H.

    Grover's search algorithm is designed to be executed on a quantum mechanical computer. In this paper, the probabilistic wp-calculus is used to model and reason about Grover's algorithm. It is demonstrated that the calculus provides a rigorous programming notation for modelling this and other quantum

  3. A Functional Programming Approach to AI Search Algorithms

    Science.gov (United States)

    Panovics, Janos

    2012-01-01

    The theory and practice of search algorithms related to state-space represented problems form the major part of the introductory course of Artificial Intelligence at most of the universities and colleges offering a degree in the area of computer science. Students usually meet these algorithms only in some imperative or object-oriented language…

  4. International Timetabling Competition 2011: An Adaptive Large Neighborhood Search algorithm

    DEFF Research Database (Denmark)

    Sørensen, Matias; Kristiansen, Simon; Stidsen, Thomas Riis

    2012-01-01

    An algorithm based on Adaptive Large Neighborhood Search (ALNS) for solving the generalized High School Timetabling problem in XHSTT-format (Post et al (2012a)) is presented. This algorithm was among the nalists of round 2 of the International Timetabling Competition 2011 (ITC2011). For problem...

  5. International Timetabling Competition 2011: An Adaptive Large Neighborhood Search algorithm

    OpenAIRE

    Sørensen, Matias; Kristiansen, Simon; Stidsen, Thomas Riis

    2012-01-01

    An algorithm based on Adaptive Large Neighborhood Search (ALNS) for solving the generalized High School Timetabling problem in XHSTT-format (Post et al (2012a)) is presented. This algorithm was among the nalists of round 2 of the International Timetabling Competition 2011 (ITC2011). For problem description and results we refer to Post et al (2012b).

  6. A Novel Self-Adaptive Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Kaiping Luo

    2013-01-01

    Full Text Available The harmony search algorithm is a music-inspired optimization technology and has been successfully applied to diverse scientific and engineering problems. However, like other metaheuristic algorithms, it still faces two difficulties: parameter setting and finding the optimal balance between diversity and intensity in searching. This paper proposes a novel, self-adaptive search mechanism for optimization problems with continuous variables. This new variant can automatically configure the evolutionary parameters in accordance with problem characteristics, such as the scale and the boundaries, and dynamically select evolutionary strategies in accordance with its search performance. The new variant simplifies the parameter setting and efficiently solves all types of optimization problems with continuous variables. Statistical test results show that this variant is considerably robust and outperforms the original harmony search (HS, improved harmony search (IHS, and other self-adaptive variants for large-scale optimization problems and constrained problems.

  7. Fast sampling algorithm for the simulation of photon Compton scattering

    International Nuclear Information System (INIS)

    Brusa, D.; Salvat, F.

    1996-01-01

    A simple algorithm for the simulation of Compton interactions of unpolarized photons is described. The energy and direction of the scattered photon, as well as the active atomic electron shell, are sampled from the double-differential cross section obtained by Ribberfors from the relativistic impulse approximation. The algorithm consistently accounts for Doppler broadening and electron binding effects. Simplifications of Ribberfors' formula, required for efficient random sampling, are discussed. The algorithm involves a combination of inverse transform, composition and rejection methods. A parameterization of the Compton profile is proposed from which the simulation of Compton events can be performed analytically in terms of a few parameters that characterize the target atom, namely shell ionization energies, occupation numbers and maximum values of the one-electron Compton profiles. (orig.)

  8. A Mathematical and Sociological Analysis of Google Search Algorithm

    Science.gov (United States)

    2013-01-16

    available through the world wide web , a search engine or similar ser- vice is now absolutely necessary in order to find relevant information on-line. About 12...and its computation. See [25], [16], [9], [8], [31], [32] and a recent survey in [2]. The search algorithm also becomes a very useful tool in many Web ...search technologies such as spam detection, crawler configuration, trust networks, and etc.. and find many applications in [12], [13] and etc.. Today

  9. Fast search algorithms for computational protein design.

    Science.gov (United States)

    Traoré, Seydou; Roberts, Kyle E; Allouche, David; Donald, Bruce R; André, Isabelle; Schiex, Thomas; Barbe, Sophie

    2016-05-05

    One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state-of-the-art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well-established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of A* to produce conformations in increasing order of energy, we defined new A* strategies combining CFN lower bounds, with new side-chain positioning-based branching scheme. Beyond the speedups obtained in the new A*-CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/ A* combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms. © 2016 Wiley Periodicals, Inc.

  10. A novel line segment detection algorithm based on graph search

    Science.gov (United States)

    Zhao, Hong-dan; Liu, Guo-ying; Song, Xu

    2018-02-01

    To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).

  11. Fault-tolerant search algorithms reliable computation with unreliable information

    CERN Document Server

    Cicalese, Ferdinando

    2013-01-01

    Why a book on fault-tolerant search algorithms? Searching is one of the fundamental problems in computer science. Time and again algorithmic and combinatorial issues originally studied in the context of search find application in the most diverse areas of computer science and discrete mathematics. On the other hand, fault-tolerance is a necessary ingredient of computing. Due to their inherent complexity, information systems are naturally prone to errors, which may appear at any level - as imprecisions in the data, bugs in the software, or transient or permanent hardware failures. This book pr

  12. A Hybrid Intelligent Search Algorithm for Automatic Test Data Generation

    Directory of Open Access Journals (Sweden)

    Ying Xing

    2015-01-01

    Full Text Available The increasing complexity of large-scale real-world programs necessitates the automation of software testing. As a basic problem in software testing, the automation of path-wise test data generation is especially important, which is in essence a constraint optimization problem solved by search strategies. Therefore, the constraint processing efficiency of the selected search algorithm is a key factor. Aiming at the increase of search efficiency, a hybrid intelligent algorithm is proposed to efficiently search the solution space of potential test data by making full use of both global and local search methods. Branch and bound is adopted for global search, which gives definite results with relatively less cost. In the search procedure for each variable, hill climbing is adopted for local search, which is enhanced with the initial values selected heuristically based on the monotonicity analysis of branching conditions. They are highly integrated by an efficient ordering method and the backtracking operation. In order to facilitate the search methods, the solution space is represented as state space. Experimental results show that the proposed method outperformed some other methods used in test data generation. The heuristic initial value selection strategy improves the search efficiency greatly and makes the search basically backtrack-free. The results also demonstrate that the proposed method is applicable in engineering.

  13. Computer Algorithms in the Search for Unrelated Stem Cell Donors

    Directory of Open Access Journals (Sweden)

    David Steiner

    2012-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is a medical procedure in the field of hematology and oncology, most often performed for patients with certain cancers of the blood or bone marrow. A lot of patients have no suitable HLA-matched donor within their family, so physicians must activate a “donor search process” by interacting with national and international donor registries who will search their databases for adult unrelated donors or cord blood units (CBU. Information and communication technologies play a key role in the donor search process in donor registries both nationally and internationaly. One of the major challenges for donor registry computer systems is the development of a reliable search algorithm. This work discusses the top-down design of such algorithms and current practice. Based on our experience with systems used by several stem cell donor registries, we highlight typical pitfalls in the implementation of an algorithm and underlying data structure.

  14. Adaptive symbiotic organisms search (SOS algorithm for structural design optimization

    Directory of Open Access Journals (Sweden)

    Ghanshyam G. Tejani

    2016-07-01

    Full Text Available The symbiotic organisms search (SOS algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.

  15. Interior search algorithm (ISA): a novel approach for global optimization.

    Science.gov (United States)

    Gandomi, Amir H

    2014-07-01

    This paper presents the interior search algorithm (ISA) as a novel method for solving optimization tasks. The proposed ISA is inspired by interior design and decoration. The algorithm is different from other metaheuristic algorithms and provides new insight for global optimization. The proposed method is verified using some benchmark mathematical and engineering problems commonly used in the area of optimization. ISA results are further compared with well-known optimization algorithms. The results show that the ISA is efficiently capable of solving optimization problems. The proposed algorithm can outperform the other well-known algorithms. Further, the proposed algorithm is very simple and it only has one parameter to tune. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. An ICP algorithm based on block path closest point search

    Science.gov (United States)

    Wang, Kuisheng; Li, Xing; Lei, Hongwei; Zhang, Xiaorui

    2017-08-01

    At present, the traditional ICP algorithm has the problems of low efficiency and low precision. To solve these two problems, an ICP algorithm based on block path closest point search is proposed in this paper. The idea of the algorithm is as follows: firstly, the point cloud data is divided into blocks, and the nearest point block corresponding to the target point cloud is searched by the path method. Secondly, according to the global method, the nearest point can be determined only by finding the nearest point block, and complete all the closest match. The experimental results show that the improved ICP algorithm has faster speed and higher precision than the traditional ICP algorithm, for a large number of point cloud data advantage is more obvious.

  17. Adiabatic quantum algorithm for search engine ranking.

    Science.gov (United States)

    Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A

    2012-06-08

    We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.

  18. Modified cuckoo search: A new gradient free optimisation algorithm

    International Nuclear Information System (INIS)

    Walton, S.; Hassan, O.; Morgan, K.; Brown, M.R.

    2011-01-01

    Highlights: → Modified cuckoo search (MCS) is a new gradient free optimisation algorithm. → MCS shows a high convergence rate, able to outperform other optimisers. → MCS is particularly strong at high dimension objective functions. → MCS performs well when applied to engineering problems. - Abstract: A new robust optimisation algorithm, which can be regarded as a modification of the recently developed cuckoo search, is presented. The modification involves the addition of information exchange between the top eggs, or the best solutions. Standard optimisation benchmarking functions are used to test the effects of these modifications and it is demonstrated that, in most cases, the modified cuckoo search performs as well as, or better than, the standard cuckoo search, a particle swarm optimiser, and a differential evolution strategy. In particular the modified cuckoo search shows a high convergence rate to the true global minimum even at high numbers of dimensions.

  19. PWR loading pattern optimization using Harmony Search algorithm

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► Numerical results reveal that the HS method is reliable. ► The great advantage of HS is significant gain in computational cost. ► On the average, the final band width of search fitness values is narrow. ► Our experiments show that the search approaches the optimal value fast. - Abstract: In this paper a core reloading technique using Harmony Search, HS, is presented in the context of finding an optimal configuration of fuel assemblies, FA, in pressurized water reactors. To implement and evaluate the proposed technique a Harmony Search along Nodal Expansion Code for 2-D geometry, HSNEC2D, is developed to obtain nearly optimal arrangement of fuel assemblies in PWR cores. This code consists of two sections including Harmony Search algorithm and Nodal Expansion modules using fourth degree flux expansion which solves two dimensional-multi group diffusion equations with one node per fuel assembly. Two optimization test problems are investigated to demonstrate the HS algorithm capability in converging to near optimal loading pattern in the fuel management field and other subjects. Results, convergence rate and reliability of the method are quite promising and show the HS algorithm performs very well and is comparable to other competitive algorithms such as Genetic Algorithm and Particle Swarm Intelligence. Furthermore, implementation of nodal expansion technique along HS causes considerable reduction of computational time to process and analysis optimization in the core fuel management problems

  20. Dynamic Vehicle Routing Using an Improved Variable Neighborhood Search Algorithm

    Directory of Open Access Journals (Sweden)

    Yingcheng Xu

    2013-01-01

    Full Text Available In order to effectively solve the dynamic vehicle routing problem with time windows, the mathematical model is established and an improved variable neighborhood search algorithm is proposed. In the algorithm, allocation customers and planning routes for the initial solution are completed by the clustering method. Hybrid operators of insert and exchange are used to achieve the shaking process, the later optimization process is presented to improve the solution space, and the best-improvement strategy is adopted, which make the algorithm can achieve a better balance in the solution quality and running time. The idea of simulated annealing is introduced to take control of the acceptance of new solutions, and the influences of arrival time, distribution of geographical location, and time window range on route selection are analyzed. In the experiment, the proposed algorithm is applied to solve the different sizes' problems of DVRP. Comparing to other algorithms on the results shows that the algorithm is effective and feasible.

  1. A Hybrid Backtracking Search Optimization Algorithm with Differential Evolution

    Directory of Open Access Journals (Sweden)

    Lijin Wang

    2015-01-01

    Full Text Available The backtracking search optimization algorithm (BSA is a new nature-inspired method which possesses a memory to take advantage of experiences gained from previous generation to guide the population to the global optimum. BSA is capable of solving multimodal problems, but it slowly converges and poorly exploits solution. The differential evolution (DE algorithm is a robust evolutionary algorithm and has a fast convergence speed in the case of exploitive mutation strategies that utilize the information of the best solution found so far. In this paper, we propose a hybrid backtracking search optimization algorithm with differential evolution, called HBD. In HBD, DE with exploitive strategy is used to accelerate the convergence by optimizing one worse individual according to its probability at each iteration process. A suit of 28 benchmark functions are employed to verify the performance of HBD, and the results show the improvement in effectiveness and efficiency of hybridization of BSA and DE.

  2. Noise propagation in iterative reconstruction algorithms with line searches

    International Nuclear Information System (INIS)

    Qi, Jinyi

    2003-01-01

    In this paper we analyze the propagation of noise in iterative image reconstruction algorithms. We derive theoretical expressions for the general form of preconditioned gradient algorithms with line searches. The results are applicable to a wide range of iterative reconstruction problems, such as emission tomography, transmission tomography, and image restoration. A unique contribution of this paper comparing to our previous work [1] is that the line search is explicitly modeled and we do not use the approximation that the gradient of the objective function is zero. As a result, the error in the estimate of noise at early iterations is significantly reduced

  3. Efficient sequential and parallel algorithms for planted motif search.

    Science.gov (United States)

    Nicolae, Marius; Rajasekaran, Sanguthevar

    2014-01-31

    Motif searching is an important step in the detection of rare events occurring in a set of DNA or protein sequences. One formulation of the problem is known as (l,d)-motif search or Planted Motif Search (PMS). In PMS we are given two integers l and d and n biological sequences. We want to find all sequences of length l that appear in each of the input sequences with at most d mismatches. The PMS problem is NP-complete. PMS algorithms are typically evaluated on certain instances considered challenging. Despite ample research in the area, a considerable performance gap exists because many state of the art algorithms have large runtimes even for moderately challenging instances. This paper presents a fast exact parallel PMS algorithm called PMS8. PMS8 is the first algorithm to solve the challenging (l,d) instances (25,10) and (26,11). PMS8 is also efficient on instances with larger l and d such as (50,21). We include a comparison of PMS8 with several state of the art algorithms on multiple problem instances. This paper also presents necessary and sufficient conditions for 3 l-mers to have a common d-neighbor. The program is freely available at http://engr.uconn.edu/~man09004/PMS8/. We present PMS8, an efficient exact algorithm for Planted Motif Search. PMS8 introduces novel ideas for generating common neighborhoods. We have also implemented a parallel version for this algorithm. PMS8 can solve instances not solved by any previous algorithms.

  4. Stochastic search in structural optimization - Genetic algorithms and simulated annealing

    Science.gov (United States)

    Hajela, Prabhat

    1993-01-01

    An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.

  5. A random search algorithm for cyclic delivery synchronization problem

    Directory of Open Access Journals (Sweden)

    Katarzyna Gdowska

    2017-09-01

    Full Text Available Background: The paper is devoted to the cyclic delivery synchronization problem with vehicles serving fixed routes. Each vehicle is assigned to a fixed route: the series of supplier’s and logistic centers to be visited one after another. For each route the service frequency is fixed and known in advance. A vehicle loads at a supplier’s, then it delivers goods to a logistic center and either loads other goods there and delivers them to the next logistic center along the route or goes to another logistic center. Each logistic center can belong to several routes, so goods are delivered there with one vehicle and then they departure for the further journey with another truck. The objective of this cyclic delivery synchronization problem is to maximize the total number of synchronizations of vehicles arrivals in logistic centers and their load times, so that it is possible to organize their arrivals in repeatable blocks. Methods: Basing on the previously developed mathematical model for the cyclic delivery synchronization problem we built a random search algorithm for cyclic delivery synchronization problem. The random heuristic search utilizes objective-oriented randomizing. In the paper the newly-developed random search algorithm for cyclic delivery synchronization problem is presented. Results: A computational experiment consisted of employing the newly-developed random search algorithm for solving a series of cyclic delivery synchronization problems. Results obtained with the algorithm were compared with solutions computed with the exact method. Conclusions: The newly-developed random search algorithm for cyclic delivery synchronization problem gives results which are considerably close to the ones obtained with mixed-integer programming. The main advantage of the algorithm is reduction of computing time; it is relevant for utilization of this method in practice, especially for large-sized problems.

  6. A Cooperative Harmony Search Algorithm for Function Optimization

    Directory of Open Access Journals (Sweden)

    Gang Li

    2014-01-01

    Full Text Available Harmony search algorithm (HS is a new metaheuristic algorithm which is inspired by a process involving musical improvisation. HS is a stochastic optimization technique that is similar to genetic algorithms (GAs and particle swarm optimizers (PSOs. It has been widely applied in order to solve many complex optimization problems, including continuous and discrete problems, such as structure design, and function optimization. A cooperative harmony search algorithm (CHS is developed in this paper, with cooperative behavior being employed as a significant improvement to the performance of the original algorithm. Standard HS just uses one harmony memory and all the variables of the object function are improvised within the harmony memory, while the proposed algorithm CHS uses multiple harmony memories, so that each harmony memory can optimize different components of the solution vector. The CHS was then applied to function optimization problems. The results of the experiment show that CHS is capable of finding better solutions when compared to HS and a number of other algorithms, especially in high-dimensional problems.

  7. Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm.

    Science.gov (United States)

    Wu, Haizhou; Zhou, Yongquan; Luo, Qifang; Basset, Mohamed Abdel

    2016-01-01

    Symbiotic organisms search (SOS) is a new robust and powerful metaheuristic algorithm, which stimulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. In the supervised learning area, it is a challenging task to present a satisfactory and efficient training algorithm for feedforward neural networks (FNNs). In this paper, SOS is employed as a new method for training FNNs. To investigate the performance of the aforementioned method, eight different datasets selected from the UCI machine learning repository are employed for experiment and the results are compared among seven metaheuristic algorithms. The results show that SOS performs better than other algorithms for training FNNs in terms of converging speed. It is also proven that an FNN trained by the method of SOS has better accuracy than most algorithms compared.

  8. Archiving, ordering and searching: search engines, algorithms, databases and deep mediatization

    DEFF Research Database (Denmark)

    Andersen, Jack

    2018-01-01

    This article argues that search engines, algorithms, and databases can be considered as a way of understanding deep mediatization (Couldry & Hepp, 2016). They are embedded in a variety of social and cultural practices and as such they change our communicative actions to be shaped by their logic...... of archiving, ordering, and searching. I argue that that increasingly and in particular ways, search engines, algorithms and databases shape our everyday communicative actions as they make us think, internalize and act along the lines of their particular modes of communication action. After having briefly...

  9. An enhanced dynamic hash TRIE algorithm for lexicon search

    Science.gov (United States)

    Yang, Lai; Xu, Lida; Shi, Zhongzhi

    2012-11-01

    Information retrieval (IR) is essential to enterprise systems along with growing orders, customers and materials. In this article, an enhanced dynamic hash TRIE (eDH-TRIE) algorithm is proposed that can be used in a lexicon search in Chinese, Japanese and Korean (CJK) segmentation and in URL identification. In particular, the eDH-TRIE algorithm is suitable for Unicode retrieval. The Auto-Array algorithm and Hash-Array algorithm are proposed to handle the auxiliary memory allocation; the former changes its size on demand without redundant restructuring, and the latter replaces linked lists with arrays, saving the overhead of memory. Comparative experiments show that the Auto-Array algorithm and Hash-Array algorithm have better spatial performance; they can be used in a multitude of situations. The eDH-TRIE is evaluated for both speed and storage and compared with the naïve DH-TRIE algorithms. The experiments show that the eDH-TRIE algorithm performs better. These algorithms reduce memory overheads and speed up IR.

  10. Performance of genetic algorithms in search for water splitting perovskites

    DEFF Research Database (Denmark)

    Jain, A.; Castelli, Ivano Eligio; Hautier, G.

    2013-01-01

    We examine the performance of genetic algorithms (GAs) in uncovering solar water light splitters over a space of almost 19,000 perovskite materials. The entire search space was previously calculated using density functional theory to determine solutions that fulfill constraints on stability, band...

  11. Nature-inspired novel Cuckoo Search Algorithm for genome ...

    Indian Academy of Sciences (India)

    one of the well known evolutionary algorithms namely, particle swarm optimization. (PSO) and its variants. Keywords. Bioinformatics; Cuckoo search; genome sequence assembly; meta- heuristics. 1. Introduction. The innovation in the cutting edge of soft computing technology proposes solutions to solve many challenging ...

  12. Computing gap free Pareto front approximations with stochastic search algorithms.

    Science.gov (United States)

    Schütze, Oliver; Laumanns, Marco; Tantar, Emilia; Coello, Carlos A Coello; Talbi, El-Ghazali

    2010-01-01

    Recently, a convergence proof of stochastic search algorithms toward finite size Pareto set approximations of continuous multi-objective optimization problems has been given. The focus was on obtaining a finite approximation that captures the entire solution set in some suitable sense, which was defined by the concept of epsilon-dominance. Though bounds on the quality of the limit approximation-which are entirely determined by the archiving strategy and the value of epsilon-have been obtained, the strategies do not guarantee to obtain a gap free approximation of the Pareto front. That is, such approximations A can reveal gaps in the sense that points f in the Pareto front can exist such that the distance of f to any image point F(a), a epsilon A, is "large." Since such gap free approximations are desirable in certain applications, and the related archiving strategies can be advantageous when memetic strategies are included in the search process, we are aiming in this work for such methods. We present two novel strategies that accomplish this task in the probabilistic sense and under mild assumptions on the stochastic search algorithm. In addition to the convergence proofs, we give some numerical results to visualize the behavior of the different archiving strategies. Finally, we demonstrate the potential for a possible hybridization of a given stochastic search algorithm with a particular local search strategy-multi-objective continuation methods-by showing that the concept of epsilon-dominance can be integrated into this approach in a suitable way.

  13. An Elite Decision Making Harmony Search Algorithm for Optimization Problem

    Directory of Open Access Journals (Sweden)

    Lipu Zhang

    2012-01-01

    Full Text Available This paper describes a new variant of harmony search algorithm which is inspired by a well-known item “elite decision making.” In the new algorithm, the good information captured in the current global best and the second best solutions can be well utilized to generate new solutions, following some probability rule. The generated new solution vector replaces the worst solution in the solution set, only if its fitness is better than that of the worst solution. The generating and updating steps and repeated until the near-optimal solution vector is obtained. Extensive computational comparisons are carried out by employing various standard benchmark optimization problems, including continuous design variables and integer variables minimization problems from the literature. The computational results show that the proposed new algorithm is competitive in finding solutions with the state-of-the-art harmony search variants.

  14. A Cooperative Coevolutionary Cuckoo Search Algorithm for Optimization Problem

    Directory of Open Access Journals (Sweden)

    Hongqing Zheng

    2013-01-01

    Full Text Available Taking inspiration from an organizational evolutionary algorithm for numerical optimization, this paper designs a kind of dynamic population and combining evolutionary operators to form a novel algorithm, a cooperative coevolutionary cuckoo search algorithm (CCCS, for solving both unconstrained, constrained optimization and engineering problems. A population of this algorithm consists of organizations, and an organization consists of dynamic individuals. In experiments, fifteen unconstrained functions, eleven constrained functions, and two engineering design problems are used to validate the performance of CCCS, and thorough comparisons are made between the CCCS and the existing approaches. The results show that the CCCS obtains good performance in the solution quality. Moreover, for the constrained problems, the good performance is obtained by only incorporating a simple constraint handling technique into the CCCS. The results show that the CCCS is quite robust and easy to use.

  15. Reactive power planning with FACTS devices using gravitational search algorithm

    Directory of Open Access Journals (Sweden)

    Biplab Bhattacharyya

    2015-09-01

    Full Text Available In this paper, Gravitational Search Algorithm (GSA is used as optimization method in reactive power planning using FACTS (Flexible AC transmission system devices. The planning problem is formulated as a single objective optimization problem where the real power loss and bus voltage deviations are minimized under different loading conditions. GSA based optimization algorithm and particle swarm optimization techniques (PSO are applied on IEEE 30 bus system. Results show that GSA can also be a very effective tool for reactive power planning.

  16. Implementation of the Grover search algorithm with Josephson charge qubits

    International Nuclear Information System (INIS)

    Zheng Xiaohu; Dong Ping; Xue Zhengyuan; Cao Zhuoliang

    2007-01-01

    A scheme of implementing the Grover search algorithm based on Josephson charge qubits has been proposed, which would be a key step to scale more complex quantum algorithms and very important for constructing a real quantum computer via Josephson charge qubits. The present scheme is simple but fairly efficient, and easily manipulated because any two-charge-qubit can be selectively and effectively coupled by a common inductance. More manipulations can be carried out before decoherence sets in. Our scheme can be realized within the current technology

  17. Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta

    Science.gov (United States)

    Memarsadeghi, Nargess; Mcfadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.

    2012-01-01

    A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres.

  18. Detecting circumbinary planets: A new quasi-periodic search algorithm

    Directory of Open Access Journals (Sweden)

    Pollacco D.

    2013-04-01

    Full Text Available We present a search method based around the grouping of data residuals, suitable for the detection of many quasi-periodic signals. Combined with an efficient and easily implemented method to predict the maximum transit timing variations of a transiting circumbinary exoplanet, we form a fast search algorithm for such planets. We here target the Kepler dataset in particular, where all the transiting examples of circumbinary planets have been found to date. The method is presented and demonstrated on two known systems in the Kepler data.

  19. An Improved Tabu Search Algorithm Based on Grid Search Used in the Antenna Parameters Optimization

    OpenAIRE

    He, Di; Hong, Yunlv

    2015-01-01

    In the mobile system covering big areas, many small cells are often used. And the base antenna’s azimuth angle, vertical down angle, and transmit power are the most important parameters to affect the coverage of an antenna. This paper makes mathematical model and analyzes different algorithm’s performance in model. Finally we propose an improved Tabu search algorithm based on grid search, to get the best parameters of antennas, which can maximize the coverage area and minimize the interferenc...

  20. Biclustering of Gene Expression Data by Correlation-Based Scatter Search

    Science.gov (United States)

    2011-01-01

    Background The analysis of data generated by microarray technology is very useful to understand how the genetic information becomes functional gene products. Biclustering algorithms can determine a group of genes which are co-expressed under a set of experimental conditions. Recently, new biclustering methods based on metaheuristics have been proposed. Most of them use the Mean Squared Residue as merit function but interesting and relevant patterns from a biological point of view such as shifting and scaling patterns may not be detected using this measure. However, it is important to discover this type of patterns since commonly the genes can present a similar behavior although their expression levels vary in different ranges or magnitudes. Methods Scatter Search is an evolutionary technique that is based on the evolution of a small set of solutions which are chosen according to quality and diversity criteria. This paper presents a Scatter Search with the aim of finding biclusters from gene expression data. In this algorithm the proposed fitness function is based on the linear correlation among genes to detect shifting and scaling patterns from genes and an improvement method is included in order to select just positively correlated genes. Results The proposed algorithm has been tested with three real data sets such as Yeast Cell Cycle dataset, human B-cells lymphoma dataset and Yeast Stress dataset, finding a remarkable number of biclusters with shifting and scaling patterns. In addition, the performance of the proposed method and fitness function are compared to that of CC, OPSM, ISA, BiMax, xMotifs and Samba using Gene the Ontology Database. PMID:21261986

  1. Oscillating feature subset search algorithm for text categorization

    Czech Academy of Sciences Publication Activity Database

    Novovičová, Jana; Somol, Petr; Pudil, Pavel

    2006-01-01

    Roč. 44, č. 4225 (2006), s. 578-587 ISSN 0302-9743 R&D Projects: GA AV ČR IAA2075302; GA MŠk 2C06019 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : text classification * feature selection * oscillating search algorithm * Bhattacharyya distance Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.402, year: 2005

  2. 3rd International Conference on Harmony Search Algorithm

    CERN Document Server

    2017-01-01

    This book presents state-of-the-art technical contributions based around one of the most successful evolutionary optimization algorithms published to date: Harmony Search. Contributions span from novel technical derivations of this algorithm to applications in the broad fields of civil engineering, energy, transportation & mobility and health, among many others and focus not only on its cross-domain applicability, but also on its core evolutionary operators, including elements inspired from other meta-heuristics. The global scientific community is witnessing an upsurge in groundbreaking, new advances in all areas of computational intelligence, with a particular flurry of research focusing on evolutionary computation and bio-inspired optimization. Observed processes in nature and sociology have provided the basis for innovative algorithmic developments aimed at leveraging the inherent capability to adapt characterized by various animals, including ants, fireflies, wolves and humans. However, it is the beha...

  3. Penguins Search Optimisation Algorithm for Association Rules Mining

    Directory of Open Access Journals (Sweden)

    Youcef Gheraibia

    2016-06-01

    Full Text Available Association Rules Mining (ARM is one of the most popular and well-known approaches for the decision-making process. All existing ARM algorithms are time consuming and generate a very large number of association rules with high overlapping. To deal with this issue, we propose a new ARM approach based on penguins search optimization algorithm (Pe-ARM for short. Moreover, an efficient measure is incorporated into the main process to evaluate the amount of overlapping among the generated rules. The proposed approach also ensures a good diversification over the whole solutions space. To demonstrate the effectiveness of the proposed approach, several experiments have been carried out on different datasets and specifically on the biological ones. The results reveal that the proposed approach outperforms the well-known ARM algorithms in both execution time and solution quality.

  4. Ant colony search algorithm for optimal reactive power optimization

    Directory of Open Access Journals (Sweden)

    Lenin K.

    2006-01-01

    Full Text Available The paper presents an (ACSA Ant colony search Algorithm for Optimal Reactive Power Optimization and voltage control of power systems. ACSA is a new co-operative agents’ approach, which is inspired by the observation of the behavior of real ant colonies on the topic of ant trial formation and foraging methods. Hence, in the ACSA a set of co-operative agents called "Ants" co-operates to find good solution for Reactive Power Optimization problem. The ACSA is applied for optimal reactive power optimization is evaluated on standard IEEE, 30, 57, 191 (practical test bus system. The proposed approach is tested and compared to genetic algorithm (GA, Adaptive Genetic Algorithm (AGA.

  5. Concise quantum associative memories with nonlinear search algorithm

    International Nuclear Information System (INIS)

    Tchapet Njafa, J.P.; Nana Engo, S.G.

    2016-01-01

    The model of Quantum Associative Memories (QAM) we propose here consists in simplifying and generalizing that of Rigui Zhou et al. [1] which uses the quantum matrix with the binary decision diagram put forth by David Rosenbaum [2] and the Abrams and Lloyd's nonlinear search algorithm [3]. Our model gives the possibility to retrieve one of the sought states in multi-values retrieving scheme when a measurement is done on the first register in O(c-r) time complexity. It is better than Grover's algorithm and its modified form which need O(√((2 n )/(m))) steps when they are used as the retrieval algorithm. n is the number of qubits of the first register and m the number of x values for which f(x) = 1. As the nonlinearity makes the system highly susceptible to the noise, an analysis of the influence of the single qubit noise channels on the Nonlinear Search Algorithm of our model of QAM shows a fidelity of about 0.7 whatever the number of qubits existing in the first register, thus demonstrating the robustness of our model. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Electron scattering on molecules: search for semi-empirical indications

    Science.gov (United States)

    Fedus, Kamil; Karwasz, Grzegorz P.

    2017-06-01

    Reliable cross-sections for electron-molecule collisions are urgently needed for numerical modeling of various processes important from technological point of view. Unfortunately, a significant progress in theory and experiment over the last decade is not usually accompanied by the convergence of cross-sections measured at different laboratories and calculated with different methods. Moreover the most advanced contemporary theories involve such large basis sets and complicated equations that they are not easily applied to each specific molecule for which data are needed. For these reasons the search for semi-empirical indications in angular and energy dependencies of scattering cross-section becomes important. In this paper we make a brief review of the applicability of the Born-dipole approximation for elastic, rotational, vibrational and ionization processes that can occur during electron-molecule collisions. We take into account the most recent experimental findings as the reference points. Contribution to the Topical Issue "Atomic and Molecular Data and Their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, and Grzegorz Karwasz.

  7. Archiving, ordering and searching: search engines, algorithms, databases and deep mediatization

    DEFF Research Database (Denmark)

    Andersen, Jack

    2018-01-01

    This article argues that search engines, algorithms, and databases can be considered as a way of understanding deep mediatization (Couldry & Hepp, 2016). They are embedded in a variety of social and cultural practices and as such they change our communicative actions to be shaped by their logic...... of archiving, ordering, and searching. I argue that that increasingly and in particular ways, search engines, algorithms and databases shape our everyday communicative actions as they make us think, internalize and act along the lines of their particular modes of communication action. After having briefly...... reviewed recent trends in mediatization research, the argument is discussed and unfolded in-between the material and social constructivist-phenomenological interpretations of mediatization. In conclusion, it is discussed how deep this form of mediatization can be taken to be....

  8. Hybrid Projected Gradient-Evolutionary Search Algorithm for Mixed Integer Nonlinear Optimization Problems

    National Research Council Canada - National Science Library

    Homaifar, Abdollah; Esterline, Albert; Kimiaghalam, Bahram

    2005-01-01

    The Hybrid Projected Gradient-Evolutionary Search Algorithm (HPGES) algorithm uses a specially designed evolutionary-based global search strategy to efficiently create candidate solutions in the solution space...

  9. Car painting process scheduling with harmony search algorithm

    Science.gov (United States)

    Syahputra, M. F.; Maiyasya, A.; Purnamawati, S.; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.

    2018-02-01

    Automotive painting program in the process of painting the car body by using robot power, making efficiency in the production system. Production system will be more efficient if pay attention to scheduling of car order which will be done by considering painting body shape of car. Flow shop scheduling is a scheduling model in which the job-job to be processed entirely flows in the same product direction / path. Scheduling problems often arise if there are n jobs to be processed on the machine, which must be specified which must be done first and how to allocate jobs on the machine to obtain a scheduled production process. Harmony Search Algorithm is a metaheuristic optimization algorithm based on music. The algorithm is inspired by observations that lead to music in search of perfect harmony. This musical harmony is in line to find optimal in the optimization process. Based on the tests that have been done, obtained the optimal car sequence with minimum makespan value.

  10. Bridging Ground Validation and Algorithms: Using Scattering and Integral Tables to Incorporate Observed DSD Correlations into Satellite Algorithms

    Science.gov (United States)

    Williams, C. R.

    2012-12-01

    The NASA Global Precipitation Mission (GPM) raindrop size distribution (DSD) Working Group is composed of NASA PMM Science Team Members and is charged to "investigate the correlations between DSD parameters using Ground Validation (GV) data sets that support, or guide, the assumptions used in satellite retrieval algorithms." Correlations between DSD parameters can be used to constrain the unknowns and reduce the degrees-of-freedom in under-constrained satellite algorithms. Over the past two years, the GPM DSD Working Group has analyzed GV data and has found correlations between the mass-weighted mean raindrop diameter (Dm) and the mass distribution standard deviation (Sm) that follows a power-law relationship. This Dm-Sm power-law relationship appears to be robust and has been observed in surface disdrometer and vertically pointing radar observations. One benefit of a Dm-Sm power-law relationship is that a three parameter DSD can be modeled with just two parameters: Dm and Nw that determines the DSD amplitude. In order to incorporate observed DSD correlations into satellite algorithms, the GPM DSD Working Group is developing scattering and integral tables that can be used by satellite algorithms. Scattering tables describe the interaction of electromagnetic waves on individual particles to generate cross sections of backscattering, extinction, and scattering. Scattering tables are independent of the distribution of particles. Integral tables combine scattering table outputs with DSD parameters and DSD correlations to generate integrated normalized reflectivity, attenuation, scattering, emission, and asymmetry coefficients. Integral tables contain both frequency dependent scattering properties and cloud microphysics. The GPM DSD Working Group has developed scattering tables for raindrops at both Dual Precipitation Radar (DPR) frequencies and at all GMI radiometer frequencies less than 100 GHz. Scattering tables include Mie and T-matrix scattering with H- and V

  11. An algorithm for 3D target scatterer feature estimation from sparse SAR apertures

    Science.gov (United States)

    Jackson, Julie Ann; Moses, Randolph L.

    2009-05-01

    We present an algorithm for extracting 3D canonical scattering features from complex targets observed over sparse 3D SAR apertures. The algorithm begins with complex phase history data and ends with a set of geometrical features describing the scene. The algorithm provides a pragmatic approach to initialization of a nonlinear feature estimation scheme, using regularization methods to deconvolve the point spread function and obtain sparse 3D images. Regions of high energy are detected in the sparse images, providing location initializations for scattering center estimates. A single canonical scattering feature, corresponding to a geometric shape primitive, is fit to each region via nonlinear optimization of fit error between the regularized data and parametric canonical scattering models. Results of the algorithm are presented using 3D scattering prediction data of a simple scene for both a densely-sampled and a sparsely-sampled SAR measurement aperture.

  12. Induction Motor Parameter Identification Using a Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Omar Avalos

    2016-04-01

    Full Text Available The efficient use of electrical energy is a topic that has attracted attention for its environmental consequences. On the other hand, induction motors represent the main component in most industries. They consume the highest energy percentages in industrial facilities. This energy consumption depends on the operation conditions of the induction motor imposed by its internal parameters. Since the internal parameters of an induction motor are not directly measurable, an identification process must be conducted to obtain them. In the identification process, the parameter estimation is transformed into a multidimensional optimization problem where the internal parameters of the induction motor are considered as decision variables. Under this approach, the complexity of the optimization problem tends to produce multimodal error surfaces for which their cost functions are significantly difficult to minimize. Several algorithms based on evolutionary computation principles have been successfully applied to identify the optimal parameters of induction motors. However, most of them maintain an important limitation: They frequently obtain sub-optimal solutions as a result of an improper equilibrium between exploitation and exploration in their search strategies. This paper presents an algorithm for the optimal parameter identification of induction motors. To determine the parameters, the proposed method uses a recent evolutionary method called the gravitational search algorithm (GSA. Different from most of the existent evolutionary algorithms, the GSA presents a better performance in multimodal problems, avoiding critical flaws such as the premature convergence to sub-optimal solutions. Numerical simulations have been conducted on several models to show the effectiveness of the proposed scheme.

  13. Automated Spectroscopic Analysis Using the Particle Swarm Optimization Algorithm: Implementing a Guided Search Algorithm to Autofit

    Science.gov (United States)

    Ervin, Katherine; Shipman, Steven

    2017-06-01

    While rotational spectra can be rapidly collected, their analysis (especially for complex systems) is seldom straightforward, leading to a bottleneck. The AUTOFIT program was designed to serve that need by quickly matching rotational constants to spectra with little user input and supervision. This program can potentially be improved by incorporating an optimization algorithm in the search for a solution. The Particle Swarm Optimization Algorithm (PSO) was chosen for implementation. PSO is part of a family of optimization algorithms called heuristic algorithms, which seek approximate best answers. This is ideal for rotational spectra, where an exact match will not be found without incorporating distortion constants, etc., which would otherwise greatly increase the size of the search space. PSO was tested for robustness against five standard fitness functions and then applied to a custom fitness function created for rotational spectra. This talk will explain the Particle Swarm Optimization algorithm and how it works, describe how Autofit was modified to use PSO, discuss the fitness function developed to work with spectroscopic data, and show our current results. Seifert, N.A., Finneran, I.A., Perez, C., Zaleski, D.P., Neill, J.L., Steber, A.L., Suenram, R.D., Lesarri, A., Shipman, S.T., Pate, B.H., J. Mol. Spec. 312, 13-21 (2015)

  14. An Improved Tabu Search Algorithm Based on Grid Search Used in the Antenna Parameters Optimization

    Directory of Open Access Journals (Sweden)

    Di He

    2015-01-01

    Full Text Available In the mobile system covering big areas, many small cells are often used. And the base antenna’s azimuth angle, vertical down angle, and transmit power are the most important parameters to affect the coverage of an antenna. This paper makes mathematical model and analyzes different algorithm’s performance in model. Finally we propose an improved Tabu search algorithm based on grid search, to get the best parameters of antennas, which can maximize the coverage area and minimize the interference.

  15. Gravitation search algorithm: Application to the optimal IIR filter design

    Directory of Open Access Journals (Sweden)

    Suman Kumar Saha

    2014-01-01

    Full Text Available This paper presents a global heuristic search optimization technique known as Gravitation Search Algorithm (GSA for the design of 8th order Infinite Impulse Response (IIR, low pass (LP, high pass (HP, band pass (BP and band stop (BS filters considering various non-linear characteristics of the filter design problems. This paper also adopts a novel fitness function in order to improve the stop band attenuation to a great extent. In GSA, law of gravity and mass interactions among different particles are adopted for handling the non-linear IIR filter design optimization problem. In this optimization technique, searcher agents are the collection of masses and interactions among them are governed by the Newtonian gravity and the laws of motion. The performances of the GSA based IIR filter designs have proven to be superior as compared to those obtained by real coded genetic algorithm (RGA and standard Particle Swarm Optimization (PSO. Extensive simulation results affirm that the proposed approach using GSA outperforms over its counterparts not only in terms of quality output, i.e., sharpness at cut-off, smaller pass band ripple, higher stop band attenuation, but also the fastest convergence speed with assured stability.

  16. Two Kinds of Classifications Based on Improved Gravitational Search Algorithm and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Hongping Hu

    2017-01-01

    Full Text Available Gravitational Search Algorithm (GSA is a widely used metaheuristic algorithm. Although fewer parameters in GSA were adjusted, GSA has a slow convergence rate. In this paper, we change the constant acceleration coefficients to be the exponential function on the basis of combination of GSA and PSO (PSO-GSA and propose an improved PSO-GSA algorithm (written as I-PSO-GSA for solving two kinds of classifications: surface water quality and the moving direction of robots. I-PSO-GSA is employed to optimize weights and biases of backpropagation (BP neural network. The experimental results show that, being compared with combination of PSO and GSA (PSO-GSA, single PSO, and single GSA for optimizing the parameters of BP neural network, I-PSO-GSA outperforms PSO-GSA, PSO, and GSA and has better classification accuracy for these two actual problems.

  17. Categorization and Searching of Color Images Using Mean Shift Algorithm

    Directory of Open Access Journals (Sweden)

    Prakash PANDEY

    2009-07-01

    Full Text Available Now a day’s Image Searching is still a challenging problem in content based image retrieval (CBIR system. Most CBIR system operates on all images without pre-sorting the images. The image search result contains many unrelated image. The aim of this research is to propose a new object based indexing system Based on extracting salient region representative from the image, categorizing the image into different types and search images that are similar to given query images.In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique, Dominant objects are obtained by performing region grouping of segmented thumbnails. The category for an image is generated automatically by analyzing the image for the presence of a dominant object. The images in the database are clustered based on region feature similarity using Euclidian distance. Placing an image into a category can help the user to navigate retrieval results more effectively. Extensive experimental results illustrate excellent performance.

  18. Visual tracking method based on cuckoo search algorithm

    Science.gov (United States)

    Gao, Ming-Liang; Yin, Li-Ju; Zou, Guo-Feng; Li, Hai-Tao; Liu, Wei

    2015-07-01

    Cuckoo search (CS) is a new meta-heuristic optimization algorithm that is based on the obligate brood parasitic behavior of some cuckoo species in combination with the Lévy flight behavior of some birds and fruit flies. It has been found to be efficient in solving global optimization problems. An application of CS is presented to solve the visual tracking problem. The relationship between optimization and visual tracking is comparatively studied and the parameters' sensitivity and adjustment of CS in the tracking system are experimentally studied. To demonstrate the tracking ability of a CS-based tracker, a comparative study of tracking accuracy and speed of the CS-based tracker with six "state-of-art" trackers, namely, particle filter, meanshift, PSO, ensemble tracker, fragments tracker, and compressive tracker are presented. Comparative results show that the CS-based tracker outperforms the other trackers.

  19. Optimization of search algorithms for a mass spectra library

    International Nuclear Information System (INIS)

    Domokos, L.; Henneberg, D.; Weimann, B.

    1983-01-01

    The SISCOM mass spectra library search is mainly an interpretative system producing a ''hit list'' of similar spectra based on six comparison factors. This paper deals with extension of the system; the aim is exact identification (retrieval) of those reference spectra in the SISCOM hit list that correspond to the unknown compounds or components of the mixture. Thus, instead of a similarity measure, a decision (retrieval) function is needed to establish the identity of reference and unknown compounds by comparison of their spectra. To facilitate estimation of the weightings of the different variables in the retrieval function, pattern recognition algorithms were applied. Numerous statistical evaluations of three different library collections were made to check the quality of data bases and to derive appropriate variables for the retrieval function. (Auth.)

  20. Modified cuckoo search algorithm in microscopic image segmentation of hippocampus.

    Science.gov (United States)

    Chakraborty, Shouvik; Chatterjee, Sankhadeep; Dey, Nilanjan; Ashour, Amira S; Ashour, Ahmed S; Shi, Fuqian; Mali, Kalyani

    2017-10-01

    Microscopic image analysis is one of the challenging tasks due to the presence of weak correlation and different segments of interest that may lead to ambiguity. It is also valuable in foremost meadows of technology and medicine. Identification and counting of cells play a vital role in features extraction to diagnose particular diseases precisely. Different segments should be identified accurately in order to identify and to count cells in a microscope image. Consequently, in the current work, a novel method for cell segmentation and identification has been proposed that incorporated marking cells. Thus, a novel method based on cuckoo search after pre-processing step is employed. The method is developed and evaluated on light microscope images of rats' hippocampus which used as a sample for the brain cells. The proposed method can be applied on the color images directly. The proposed approach incorporates the McCulloch's method for lévy flight production in cuckoo search (CS) algorithm. Several objective functions, namely Otsu's method, Kapur entropy and Tsallis entropy are used for segmentation. In the cuckoo search process, the Otsu's between class variance, Kapur's entropy and Tsallis entropy are employed as the objective functions to be optimized. Experimental results are validated by different metrics, namely the peak signal to noise ratio (PSNR), mean square error, feature similarity index and CPU running time for all the test cases. The experimental results established that the Kapur's entropy segmentation method based on the modified CS required the least computational time compared to Otsu's between-class variance segmentation method and the Tsallis entropy segmentation method. Nevertheless, Tsallis entropy method with optimized multi-threshold levels achieved superior performance compared to the other two segmentation methods in terms of the PSNR. © 2017 Wiley Periodicals, Inc.

  1. Algorithm for shortest path search in Geographic Information Systems by using reduced graphs.

    Science.gov (United States)

    Rodríguez-Puente, Rafael; Lazo-Cortés, Manuel S

    2013-01-01

    The use of Geographic Information Systems has increased considerably since the eighties and nineties. As one of their most demanding applications we can mention shortest paths search. Several studies about shortest path search show the feasibility of using graphs for this purpose. Dijkstra's algorithm is one of the classic shortest path search algorithms. This algorithm is not well suited for shortest path search in large graphs. This is the reason why various modifications to Dijkstra's algorithm have been proposed by several authors using heuristics to reduce the run time of shortest path search. One of the most used heuristic algorithms is the A* algorithm, the main goal is to reduce the run time by reducing the search space. This article proposes a modification of Dijkstra's shortest path search algorithm in reduced graphs. It shows that the cost of the path found in this work, is equal to the cost of the path found using Dijkstra's algorithm in the original graph. The results of finding the shortest path, applying the proposed algorithm, Dijkstra's algorithm and A* algorithm, are compared. This comparison shows that, by applying the approach proposed, it is possible to obtain the optimal path in a similar or even in less time than when using heuristic algorithms.

  2. Search for charge symmetry violation in np elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Abegg, R. (TRIUMF, Vancouver, BC (Canada)); Davis, C.A. (TRIUMF, Vancouver, BC (Canada)); Delheij, P.P.J. (TRIUMF, Vancouver, BC (Canada)); Helmer, R. (TRIUMF, Vancouver, BC (Canada)); Miller, C.A. (TRIUMF, Vancouver, BC (Canada)); Berdoz, A.R. (Univ. of Manitoba, Winnipeg (Canada)); Birchall, J. (Univ. of Manitoba, Winnipeg (Canada)); Campbell, J.R. (Univ. of Manitoba, Winnipeg (Canada)); Page, S.A. (Univ. of Manitoba, Winnipeg (Canada)); Ramsay, W.D. (Univ. of Manitoba, Winnipeg (Canada)); Van Oers, W.T.H. (Univ. of Manitoba, Winnipeg (Canada)); Zhao, J. (Univ. of Manitoba, Winnipeg (Canada)); Green, P.W. (Univ. of Alberta, Edmonton (Canada)); Greeniaus, L.G. (Univ. of Alberta, Edmonton (Canada)); Kolb, N. (Univ. of Alberta, Edmonton (Canada)); Korkmaz, E. (Univ. of Alberta, Edmonton (Canada)); Li, J. (Univ. of Alberta, Edmonton (Canada)); Opper, A. (Univ. of Alberta, Edmonton (Canada))

    1993-06-01

    At TRIUMF we are measuring charge symmetry violation in np elastic scattering. If charge symmetry holds the analyzing powers A[sub n] and A[sub p] are equal. The measurements will therefore determine the difference from zero of [Delta]A triple bond A[sub n] - A[sub p]. The measurements are carried out in the vicinity where the analyzing powers cross zero in order to minimize systematic errors. A 350 MeV polarized (P[sub n] [approx equal] 0.5) or unpolarized neutron beam is incident onto respectively an unpolarized or polarized (P[sub p] [approx equal] 0.65) target of the butanol frozen spin type. A symmetric (about the beam axis and in the scattering plane) system of proton detectors and neutron arrays records neutron-proton coincidence events. The detection system allows measurements in the centre-of-mass angular range of 50 -90 . (orig.)

  3. General Quantum Meet-in-the-Middle Search Algorithm Based on Target Solution of Fixed Weight

    Science.gov (United States)

    Fu, Xiang-Qun; Bao, Wan-Su; Wang, Xiang; Shi, Jian-Hong

    2016-10-01

    Similar to the classical meet-in-the-middle algorithm, the storage and computation complexity are the key factors that decide the efficiency of the quantum meet-in-the-middle algorithm. Aiming at the target vector of fixed weight, based on the quantum meet-in-the-middle algorithm, the algorithm for searching all n-product vectors with the same weight is presented, whose complexity is better than the exhaustive search algorithm. And the algorithm can reduce the storage complexity of the quantum meet-in-the-middle search algorithm. Then based on the algorithm and the knapsack vector of the Chor-Rivest public-key crypto of fixed weight d, we present a general quantum meet-in-the-middle search algorithm based on the target solution of fixed weight, whose computational complexity is \\sumj = 0d {(O(\\sqrt {Cn - k + 1d - j }) + O(C_kj log C_k^j))} with Σd i =0 Ck i memory cost. And the optimal value of k is given. Compared to the quantum meet-in-the-middle search algorithm for knapsack problem and the quantum algorithm for searching a target solution of fixed weight, the computational complexity of the algorithm is lower. And its storage complexity is smaller than the quantum meet-in-the-middle-algorithm. Supported by the National Basic Research Program of China under Grant No. 2013CB338002 and the National Natural Science Foundation of China under Grant No. 61502526

  4. An algorithm to determine backscattering ratio and single scattering albedo

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Matondkar, S.G.P.; Mascarenhas, A.A.M.Q.; Nayak, S.R.; Naik, P.

    and backscattering coefficients and the remote sensing reflectance are used to obtain a relationship for the backscattering ratio, which is defined as the ratio of the total backscattering to the total scattering in terms of the remote sensing reflectance of two...

  5. Error tolerance in an NMR implementation of Grover's fixed-point quantum search algorithm

    International Nuclear Information System (INIS)

    Xiao Li; Jones, Jonathan A.

    2005-01-01

    We describe an implementation of Grover's fixed-point quantum search algorithm on a nuclear magnetic resonance quantum computer, searching for either one or two matching items in an unsorted database of four items. In this algorithm the target state (an equally weighted superposition of the matching states) is a fixed point of the recursive search operator, so that the algorithm always moves towards the desired state. The effects of systematic errors in the implementation are briefly explored

  6. Multi objective design optimization of plate fin heat sinks using improved differential search algorithm

    OpenAIRE

    Turgut, Oguz Emrah

    2018-01-01

    This study provides the multi-objective optimization of plate fin heat sinks equipped with flow – through and impingement-flow air-cooling system by using Improved Differential Search algorithm. Differential Search algorithm mimics the subsistence characteristics of the living beings through the migration process. Convergence speed of the algorithm is enhanced with the local search based perturbation schemes and this improvement yields favorable solution outputs according to the results obtai...

  7. Q-learning-based adjustable fixed-phase quantum Grover search algorithm

    International Nuclear Information System (INIS)

    Guo Ying; Shi Wensha; Wang Yijun; Hu, Jiankun

    2017-01-01

    We demonstrate that the rotation phase can be suitably chosen to increase the efficiency of the phase-based quantum search algorithm, leading to a dynamic balance between iterations and success probabilities of the fixed-phase quantum Grover search algorithm with Q-learning for a given number of solutions. In this search algorithm, the proposed Q-learning algorithm, which is a model-free reinforcement learning strategy in essence, is used for performing a matching algorithm based on the fraction of marked items λ and the rotation phase α. After establishing the policy function α = π(λ), we complete the fixed-phase Grover algorithm, where the phase parameter is selected via the learned policy. Simulation results show that the Q-learning-based Grover search algorithm (QLGA) enables fewer iterations and gives birth to higher success probabilities. Compared with the conventional Grover algorithms, it avoids the optimal local situations, thereby enabling success probabilities to approach one. (author)

  8. From Schrцdinger's equation to the quantum search algorithm£

    Indian Academy of Sciences (India)

    . Physics Research Laboratory, 1D435 Bell Labs, Lucent Technologies, 700 Mountain Avenue,. Murray Hill, NJ07974, USA. Email: lkgrover@bell-labs.com. Abstract. The quantum search algorithm is a technique for searching Ж possibilities in ...

  9. An enhanced search algorithm for the charged fuel enrichment in equilibrium cycle analysis of REBUS-3

    International Nuclear Information System (INIS)

    Park, Tongkyu; Yang, Won Sik; Kim, Sang-Ji

    2017-01-01

    Highlights: • An enhanced search algorithm for charged fuel enrichment was developed for equilibrium cycle analysis with REBUS-3. • The new search algorithm is not sensitive to the user-specified initial guesses. • The new algorithm reduces the computational time by a factor of 2–3. - Abstract: This paper presents an enhanced search algorithm for the charged fuel enrichment in equilibrium cycle analysis of REBUS-3. The current enrichment search algorithm of REBUS-3 takes a large number of iterations to yield a converged solution or even terminates without a converged solution when the user-specified initial guesses are far from the solution. To resolve the convergence problem and to reduce the computational time, an enhanced search algorithm was developed. The enhanced algorithm is based on the idea of minimizing the number of enrichment estimates by allowing drastic enrichment changes and by optimizing the current search algorithm of REBUS-3. Three equilibrium cycle problems with recycling, without recycling and of high discharge burnup were defined and a series of sensitivity analyses were performed with a wide range of user-specified initial guesses. Test results showed that the enhanced search algorithm is able to produce a converged solution regardless of the initial guesses. In addition, it was able to reduce the number of flux calculations by a factor of 2.9, 1.8, and 1.7 for equilibrium cycle problems with recycling, without recycling, and of high discharge burnup, respectively, compared to the current search algorithm.

  10. A Methodology for the Hybridization Based in Active Components: The Case of cGA and Scatter Search.

    Science.gov (United States)

    Villagra, Andrea; Alba, Enrique; Leguizamón, Guillermo

    2016-01-01

    This work presents the results of a new methodology for hybridizing metaheuristics. By first locating the active components (parts) of one algorithm and then inserting them into second one, we can build efficient and accurate optimization, search, and learning algorithms. This gives a concrete way of constructing new techniques that contrasts the spread ad hoc way of hybridizing. In this paper, the enhanced algorithm is a Cellular Genetic Algorithm (cGA) which has been successfully used in the past to find solutions to such hard optimization problems. In order to extend and corroborate the use of active components as an emerging hybridization methodology, we propose here the use of active components taken from Scatter Search (SS) to improve cGA. The results obtained over a varied set of benchmarks are highly satisfactory in efficacy and efficiency when compared with a standard cGA. Moreover, the proposed hybrid approach (i.e., cGA+SS) has shown encouraging results with regard to earlier applications of our methodology.

  11. A Methodology for the Hybridization Based in Active Components: The Case of cGA and Scatter Search

    Directory of Open Access Journals (Sweden)

    Andrea Villagra

    2016-01-01

    Full Text Available This work presents the results of a new methodology for hybridizing metaheuristics. By first locating the active components (parts of one algorithm and then inserting them into second one, we can build efficient and accurate optimization, search, and learning algorithms. This gives a concrete way of constructing new techniques that contrasts the spread ad hoc way of hybridizing. In this paper, the enhanced algorithm is a Cellular Genetic Algorithm (cGA which has been successfully used in the past to find solutions to such hard optimization problems. In order to extend and corroborate the use of active components as an emerging hybridization methodology, we propose here the use of active components taken from Scatter Search (SS to improve cGA. The results obtained over a varied set of benchmarks are highly satisfactory in efficacy and efficiency when compared with a standard cGA. Moreover, the proposed hybrid approach (i.e., cGA+SS has shown encouraging results with regard to earlier applications of our methodology.

  12. A Methodology for the Hybridization Based in Active Components: The Case of cGA and Scatter Search

    Science.gov (United States)

    Alba, Enrique; Leguizamón, Guillermo

    2016-01-01

    This work presents the results of a new methodology for hybridizing metaheuristics. By first locating the active components (parts) of one algorithm and then inserting them into second one, we can build efficient and accurate optimization, search, and learning algorithms. This gives a concrete way of constructing new techniques that contrasts the spread ad hoc way of hybridizing. In this paper, the enhanced algorithm is a Cellular Genetic Algorithm (cGA) which has been successfully used in the past to find solutions to such hard optimization problems. In order to extend and corroborate the use of active components as an emerging hybridization methodology, we propose here the use of active components taken from Scatter Search (SS) to improve cGA. The results obtained over a varied set of benchmarks are highly satisfactory in efficacy and efficiency when compared with a standard cGA. Moreover, the proposed hybrid approach (i.e., cGA+SS) has shown encouraging results with regard to earlier applications of our methodology. PMID:27403153

  13. Channel Parameter Estimation for Scatter Cluster Model Using Modified MUSIC Algorithm

    Directory of Open Access Journals (Sweden)

    Jinsheng Yang

    2012-01-01

    Full Text Available Recently, the scatter cluster models which precisely evaluate the performance of the wireless communication system have been proposed in the literature. However, the conventional SAGE algorithm does not work for these scatter cluster-based models because it performs poorly when the transmit signals are highly correlated. In this paper, we estimate the time of arrival (TOA, the direction of arrival (DOA, and Doppler frequency for scatter cluster model by the modified multiple signal classification (MUSIC algorithm. Using the space-time characteristics of the multiray channel, the proposed algorithm combines the temporal filtering techniques and the spatial smoothing techniques to isolate and estimate the incoming rays. The simulation results indicated that the proposed algorithm has lower complexity and is less time-consuming in the dense multipath environment than SAGE algorithm. Furthermore, the estimations’ performance increases with elements of receive array and samples length. Thus, the problem of the channel parameter estimation of the scatter cluster model can be effectively addressed with the proposed modified MUSIC algorithm.

  14. A Search for Axions by Nuclear Resonance Scattering

    CERN Multimedia

    2002-01-01

    Experimental efforts to prove the existence of an axion - a light neutral pseudoscalar boson predicted theoretically from a solution of the CP conservation problem - have failed so far. The most stringent laboratory limit on the axion mass $ m _{a} $ $<$20 keV makes a search by the axion analog to the Moessbauer effect, which is restricted to $ m _{a} $ $\\leq$100 keV, an attractive possibility. We conduct an experiment utilizing a strong high-purity source of $^1

  15. Finding people, papers, and posts: Vertical search algorithms and evaluation

    NARCIS (Netherlands)

    Berendsen, R.W.

    2015-01-01

    There is a growing diversity of information access applications. While general web search has been dominant in the past few decades, a wide variety of so-called vertical search tasks and applications have come to the fore. Vertical search is an often used term for search that targets specific

  16. A hardware-oriented concurrent TZ search algorithm for High-Efficiency Video Coding

    Science.gov (United States)

    Doan, Nghia; Kim, Tae Sung; Rhee, Chae Eun; Lee, Hyuk-Jae

    2017-12-01

    High-Efficiency Video Coding (HEVC) is the latest video coding standard, in which the compression performance is double that of its predecessor, the H.264/AVC standard, while the video quality remains unchanged. In HEVC, the test zone (TZ) search algorithm is widely used for integer motion estimation because it effectively searches the good-quality motion vector with a relatively small amount of computation. However, the complex computation structure of the TZ search algorithm makes it difficult to implement it in the hardware. This paper proposes a new integer motion estimation algorithm which is designed for hardware execution by modifying the conventional TZ search to allow parallel motion estimations of all prediction unit (PU) partitions. The algorithm consists of the three phases of zonal, raster, and refinement searches. At the beginning of each phase, the algorithm obtains the search points required by the original TZ search for all PU partitions in a coding unit (CU). Then, all redundant search points are removed prior to the estimation of the motion costs, and the best search points are then selected for all PUs. Compared to the conventional TZ search algorithm, experimental results show that the proposed algorithm significantly decreases the Bjøntegaard Delta bitrate (BD-BR) by 0.84%, and it also reduces the computational complexity by 54.54%.

  17. Prospects for solar axion searches with crystals via Bragg scattering

    International Nuclear Information System (INIS)

    Irastorza, I. G.; Cebrian, S.; Garcia, E.; Gonzalez, D.; Morales, A.; Morales, J.; Ortiz de Solorzano, A.; Peruzzi, A.; Puimedon, J.; Sarsa, M. L.; Scopel, S.; Villar, J. A.

    2000-01-01

    A calculation of the expected signal due to Primakov coherent conversion of solar axions into photons via Bragg scattering in several solid-state detectors is presented and compared with present and future experimental sensitivities. The axion window m a > or approx. 0.03 eV (not accessible at present by other techniques) could be explored in the foreseeable future with crystal detectors to constrain the axion-photon coupling constant g aγγ below the latest bounds coming from helioseismology. On the contrary a positive signal in the sensitivity region of such devices would imply revisiting other more stringent astrophysical limits derived for the same range of the axion mass. The application of this technique to the COSME germanium detector which is taking data at the Canfranc Underground Laboratory leads to a 95% C.L. limit g aγγ ≤ 2.8 x 10 -9 GeV -1

  18. An improved algorithm for fast resonant Mie scatter correction of infrared spectra of cells and tissues.

    Science.gov (United States)

    Konevskikh, Tatiana; Lukacs, Rozalia; Kohler, Achim

    2018-01-01

    Mie scattering effects create serious problems for the interpretation of Fourier-transform infrared spectroscopy spectra of single cells and tissues. During recent years, different techniques were proposed to retrieve pure absorbance spectra from spectra with Mie distortions. Recently, we published an iterative algorithm for correcting Mie scattering in spectra of single cells and tissues, which we called "the fast resonant Mie scatter correction algorithm." The algorithm is based on extended multiplicative signal correction (EMSC) and employs a meta-model for a parameter range of refractive index and size parameters. In the present study, we suggest several improvements of the algorithm. We demonstrate that the improved algorithm reestablishes chemical features of the measured spectra, and show that it tends away from the reference spectrum employed in the EMSC. We suggest strategies for choosing parameter ranges and other model parameters such as the number of principal components of the meta-model and the number of iterations. We demonstrate that the suggested algorithm optimizes an error function of the refractive index in a forward Mie model. We suggest a stop criterion for the iterative algorithm based on the error function of the forward model. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A reconstruction algorithm for coherent scatter computed tomography based on filtered back-projection

    International Nuclear Information System (INIS)

    Stevendaal, U. van; Schlomka, J.-P.; Harding, A.; Grass, M.

    2003-01-01

    Coherent scatter computed tomography (CSCT) is a reconstructive x-ray imaging technique that yields the spatially resolved coherent-scatter form factor of the investigated object. Reconstruction from coherently scattered x-rays is commonly done using algebraic reconstruction techniques (ART). In this paper, we propose an alternative approach based on filtered back-projection. For the first time, a three-dimensional (3D) filtered back-projection technique using curved 3D back-projection lines is applied to two-dimensional coherent scatter projection data. The proposed algorithm is tested with simulated projection data as well as with projection data acquired with a demonstrator setup similar to a multi-line CT scanner geometry. While yielding comparable image quality as ART reconstruction, the modified 3D filtered back-projection algorithm is about two orders of magnitude faster. In contrast to iterative reconstruction schemes, it has the advantage that subfield-of-view reconstruction becomes feasible. This allows a selective reconstruction of the coherent-scatter form factor for a region of interest. The proposed modified 3D filtered back-projection algorithm is a powerful reconstruction technique to be implemented in a CSCT scanning system. This method gives coherent scatter CT the potential of becoming a competitive modality for medical imaging or nondestructive testing

  20. Motion Vector Estimation Using Line-Square Search Block Matching Algorithm for Video Sequences

    Directory of Open Access Journals (Sweden)

    Guo Bao-long

    2004-09-01

    Full Text Available Motion estimation and compensation techniques are widely used for video coding applications but the real-time motion estimation is not easily achieved due to its enormous computations. In this paper, a new fast motion estimation algorithm based on line search is presented, in which computation complexity is greatly reduced by using the line search strategy and a parallel search pattern. Moreover, the accurate search is achieved because the small square search pattern is used. It has a best-case scenario of only 9 search points, which is 4 search points less than the diamond search algorithm. Simulation results show that, compared with the previous techniques, the LSPS algorithm significantly reduces the computational requirements for finding motion vectors, and also produces close performance in terms of motion compensation errors.

  1. Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search

    Directory of Open Access Journals (Sweden)

    Xingwang Huang

    2017-01-01

    Full Text Available Binary bat algorithm (BBA is a binary version of the bat algorithm (BA. It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO. Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.

  2. A recursive centered T-matrix algorithm to solve the multiple scattering equation: numerical validation

    CERN Document Server

    Auger, J C

    2003-01-01

    The multiple scattering problem can be solved using various analytical techniques. One of these techniques, the T-matrix formalism, is at the present time generally solved using iterative algorithms, because the initially proposed recursive algorithms appeared to be numerically unstable. We present here a new set of recursive relations to solve the multiple scattering equation, and discuss their range of application. In order to validate this new formalism, we compare numerical results for various complex systems with the Generalized Multi-particle Mie solution. We show that the results obtained with the recursive method are in very good agreement with those given by iterative techniques.

  3. Oriented multicast routing algorithm applied to network-level agent search

    Directory of Open Access Journals (Sweden)

    Damien Magoni

    2001-12-01

    Full Text Available Many protocols need a discovery mechanism to enable a given node to locate one or several nodes involved in the same communication. However, there is no protocol ready to fulfill this service at the network-layer. Every protocol usually implements its own solution. In particular, multicast protocols often use a searching technique based on an algorithm called expanding rings search. This algorithm searches for nodes in all directions and thus uses much bandwidth. However a typical search can usually restrict its scan in a specific direction. To enable this broadcast restriction, we propose an oriented multicast routing algorithm. The algorithm's principle is to direct the multicast of packets towards a special node, involved in the communication, in order to search only in a limited area. The area must be as small as possible to reduce network flooding but still has to contain many nodes satisfying the search criteria. This new algorithm is the core part of a network-level node search framework also defined herein. A search protocol based on this framework could provide a network-level agent discovery service to current protocols. We have simulated an agent search with our algorithm on one side and with the expanding rings' algorithm on the other side and we give comparative results.

  4. Improved Multiobjective Harmony Search Algorithm with Application to Placement and Sizing of Distributed Generation

    Directory of Open Access Journals (Sweden)

    Wanxing Sheng

    2014-01-01

    Full Text Available To solve the comprehensive multiobjective optimization problem, this study proposes an improved metaheuristic searching algorithm with combination of harmony search and the fast nondominated sorting approach. This is a kind of the novel intelligent optimization algorithm for multiobjective harmony search (MOHS. The detailed description and the algorithm formulating are discussed. Taking the optimal placement and sizing issue of distributed generation (DG in distributed power system as one example, the solving procedure of the proposed method is given. Simulation result on modified IEEE 33-bus test system and comparison with NSGA-II algorithm has proved that the proposed MOHS can get promising results for engineering application.

  5. Algorithms for Electromagnetic Scattering Analysis of Electrically Large Structures

    DEFF Research Database (Denmark)

    Borries, Oscar Peter

    Accurate analysis of electrically large antennas is often done using either Physical Optics (PO) or Method of Moments (MoM), where the former typically requires fewer computational resources but has a limited application regime. This study has focused on fast variants of these two methods......, by several authors, been dismissed as being too memory intensive. In the present work, we demonstrate for the first time that by including a range of both novel and previously presented modifications to the standard MLFMM implementation, HO MLFMM can achieve both memory reduction and significant speed...... band. Accelerating PO is an entirely different matter. A few authors have discussed applying the Fast-PO technique to far fields, achieving relative errors of 0.1%−1% for moderately sized scatterers. For near-fields, the state-of-the-art implementation of Fast-PO has several difficulties, in particular...

  6. Algorithm of search and track of static and moving large-scale objects

    Directory of Open Access Journals (Sweden)

    Kalyaev Anatoly

    2017-01-01

    Full Text Available We suggest an algorithm for processing of a sequence, which contains images of search and track of static and moving large-scale objects. The possible software implementation of the algorithm, based on multithread CUDA processing, is suggested. Experimental analysis of the suggested algorithm implementation is performed.

  7. An Educational System for Learning Search Algorithms and Automatically Assessing Student Performance

    Science.gov (United States)

    Grivokostopoulou, Foteini; Perikos, Isidoros; Hatzilygeroudis, Ioannis

    2017-01-01

    In this paper, first we present an educational system that assists students in learning and tutors in teaching search algorithms, an artificial intelligence topic. Learning is achieved through a wide range of learning activities. Algorithm visualizations demonstrate the operational functionality of algorithms according to the principles of active…

  8. A Distributed Election and Spanning Tree Algorithm Based on Depth First Search Traversals

    DEFF Research Database (Denmark)

    Skyum, Sven

    The existence of an effective distributed traversal algorithm for a class of graphs has proven useful in connection with election problems for those classes. In this paper we show how a general traversal algorithm, such as depth first search, can be turned into an effective election algorithm using...... modular techniques. The presented method also constructs a spanning tree for the graph....

  9. A fast calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations

    Science.gov (United States)

    Fiorino, Steven T.; Elmore, Brannon; Schmidt, Jaclyn; Matchefts, Elizabeth; Burley, Jarred L.

    2016-05-01

    Properly accounting for multiple scattering effects can have important implications for remote sensing and possibly directed energy applications. For example, increasing path radiance can affect signal noise. This study describes the implementation of a fast-calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations into the Laser Environmental Effects Definition and Reference (LEEDR) atmospheric characterization and radiative transfer code. The multiple scattering algorithm fully solves for molecular, aerosol, cloud, and precipitation single-scatter layer effects with a Mie algorithm at every calculation point/layer rather than an interpolated value from a pre-calculated look-up-table. This top-down cumulative diffusivity method first considers the incident solar radiance contribution to a given layer accounting for solid angle and elevation, and it then measures the contribution of diffused energy from previous layers based on the transmission of the current level to produce a cumulative radiance that is reflected from a surface and measured at the aperture at the observer. Then a unique set of asymmetry and backscattering phase function parameter calculations are made which account for the radiance loss due to the molecular and aerosol constituent reflectivity within a level and allows for a more accurate characterization of diffuse layers that contribute to multiple scattered radiances in inhomogeneous atmospheres. The code logic is valid for spectral bands between 200 nm and radio wavelengths, and the accuracy is demonstrated by comparing the results from LEEDR to observed sky radiance data.

  10. Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm.

    Science.gov (United States)

    Di Simone, Alessio

    2016-06-25

    Synthetic Aperture Radar (SAR) imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D) despeckling filter, named Scattering-Based (SB)-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions.

  11. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    Science.gov (United States)

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

  12. In Search Of The Consensus Among Musical Pattern Discovery Algorithms

    NARCIS (Netherlands)

    Ren, Iris Yuping; Koops, Hendrik Vincent; Volk, Anja; Swierstra, Wouter

    2017-01-01

    Patterns are an essential part of music and there are many different algorithms that aim to discover them. Based on the improvements brought by using data fusion methods to find the consensus of algorithms on other MIR tasks, we hypothesize that fusing the output from musical pattern discovery

  13. Adaptive switching gravitational search algorithm: an attempt to ...

    Indian Academy of Sciences (India)

    Nor Azlina Ab Aziz

    The proposed ASw-GSA is also compared to original GSA, particle swarm optimization (PSO), ... Nature has inspired many optimization algorithms, includ- ...... optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks. Appl. Math. Model. 39(14): 3990–4012. [45] Osman I H and ...

  14. Genetic local search algorithm for optimization design of diffractive optical elements.

    Science.gov (United States)

    Zhou, G; Chen, Y; Wang, Z; Song, H

    1999-07-10

    We propose a genetic local search algorithm (GLSA) for the optimization design of diffractive optical elements (DOE's). This hybrid algorithm incorporates advantages of both genetic algorithm (GA) and local search techniques. It appears better able to locate the global minimum compared with a canonical GA. Sample cases investigated here include the optimization design of binary-phase Dammann gratings, continuous surface-relief grating array generators, and a uniform top-hat focal plane intensity profile generator. Two GLSA's whose incorporated local search techniques are the hill-climbing method and the simulated annealing algorithm are investigated. Numerical experimental results demonstrate that the proposed algorithm is highly efficient and robust. DOE's that have high diffraction efficiency and excellent uniformity can be achieved by use of the algorithm we propose.

  15. Pattern Nulling of Linear Antenna Arrays Using Backtracking Search Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kerim Guney

    2015-01-01

    Full Text Available An evolutionary method based on backtracking search optimization algorithm (BSA is proposed for linear antenna array pattern synthesis with prescribed nulls at interference directions. Pattern nulling is obtained by controlling only the amplitude, position, and phase of the antenna array elements. BSA is an innovative metaheuristic technique based on an iterative process. Various numerical examples of linear array patterns with the prescribed single, multiple, and wide nulls are given to illustrate the performance and flexibility of BSA. The results obtained by BSA are compared with the results of the following seventeen algorithms: particle swarm optimization (PSO, genetic algorithm (GA, modified touring ant colony algorithm (MTACO, quadratic programming method (QPM, bacterial foraging algorithm (BFA, bees algorithm (BA, clonal selection algorithm (CLONALG, plant growth simulation algorithm (PGSA, tabu search algorithm (TSA, memetic algorithm (MA, nondominated sorting GA-2 (NSGA-2, multiobjective differential evolution (MODE, decomposition with differential evolution (MOEA/D-DE, comprehensive learning PSO (CLPSO, harmony search algorithm (HSA, seeker optimization algorithm (SOA, and mean variance mapping optimization (MVMO. The simulation results show that the linear antenna array synthesis using BSA provides low side-lobe levels and deep null levels.

  16. A Novel Hexagonal Search Algorithm for Fast Block Matching Motion Estimation

    Directory of Open Access Journals (Sweden)

    Anastasios Hamosfakidis

    2002-06-01

    Full Text Available Based on real-world image sequence characteristics of center-biased motion vector distribution, a Hexagonal (HS algorithm with center-biased checking point pattern for fast block motion estimation is proposed. The HS is compared with full search (FS, four-step search (4SS, new three-step search (NTSS, and recently proposed diamond search (DS methods. Experimental results show that the proposed technique provides competitive performance with reduced computational complexity.

  17. A numerical study of super-resolution through fast 3D wideband algorithm for scattering in highly-heterogeneous media

    KAUST Repository

    Létourneau, Pierre-David

    2016-09-19

    We present a wideband fast algorithm capable of accurately computing the full numerical solution of the problem of acoustic scattering of waves by multiple finite-sized bodies such as spherical scatterers in three dimensions. By full solution, we mean that no assumption (e.g. Rayleigh scattering, geometrical optics, weak scattering, Born single scattering, etc.) is necessary regarding the properties of the scatterers, their distribution or the background medium. The algorithm is also fast in the sense that it scales linearly with the number of unknowns. We use this algorithm to study the phenomenon of super-resolution in time-reversal refocusing in highly-scattering media recently observed experimentally (Lemoult et al., 2011), and provide numerical arguments towards the fact that such a phenomenon can be explained through a homogenization theory.

  18. Experimental implementation of a quantum random-walk search algorithm using strongly dipolar coupled spins

    International Nuclear Information System (INIS)

    Lu Dawei; Peng Xinhua; Du Jiangfeng; Zhu Jing; Zou Ping; Yu Yihua; Zhang Shanmin; Chen Qun

    2010-01-01

    An important quantum search algorithm based on the quantum random walk performs an oracle search on a database of N items with O(√(phN)) calls, yielding a speedup similar to the Grover quantum search algorithm. The algorithm was implemented on a quantum information processor of three-qubit liquid-crystal nuclear magnetic resonance (NMR) in the case of finding 1 out of 4, and the diagonal elements' tomography of all the final density matrices was completed with comprehensible one-dimensional NMR spectra. The experimental results agree well with the theoretical predictions.

  19. Numerical Algorithms for Personalized Search in Self-organizing Information Networks

    CERN Document Server

    Kamvar, Sep

    2010-01-01

    This book lays out the theoretical groundwork for personalized search and reputation management, both on the Web and in peer-to-peer and social networks. Representing much of the foundational research in this field, the book develops scalable algorithms that exploit the graphlike properties underlying personalized search and reputation management, and delves into realistic scenarios regarding Web-scale data. Sep Kamvar focuses on eigenvector-based techniques in Web search, introducing a personalized variant of Google's PageRank algorithm, and he outlines algorithms--such as the now-famous quad

  20. Hybrid fuzzy charged system search algorithm based state estimation in distribution networks

    Directory of Open Access Journals (Sweden)

    Sachidananda Prasad

    2017-06-01

    Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.

  1. Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media

    Science.gov (United States)

    Li, Runze; Peng, Tong; Liang, Yansheng; Yang, Yanlong; Yao, Baoli; Yu, Xianghua; Min, Junwei; Lei, Ming; Yan, Shaohui; Zhang, Chunmin; Ye, Tong

    2017-10-01

    Focusing and imaging through scattering media has been proved possible with high resolution wavefront shaping. A completely scrambled scattering field can be corrected by applying a correction phase mask on a phase only spatial light modulator (SLM) and thereby the focusing quality can be improved. The correction phase is often found by global searching algorithms, among which Genetic Algorithm (GA) stands out for its parallel optimization process and high performance in noisy environment. However, the convergence of GA slows down gradually with the progression of optimization, causing the improvement factor of optimization to reach a plateau eventually. In this report, we propose an interleaved segment correction (ISC) method that can significantly boost the improvement factor with the same number of iterations comparing with the conventional all segment correction method. In the ISC method, all the phase segments are divided into a number of interleaved groups; GA optimization procedures are performed individually and sequentially among each group of segments. The final correction phase mask is formed by applying correction phases of all interleaved groups together on the SLM. The ISC method has been proved significantly useful in practice because of its ability to achieve better improvement factors when noise is present in the system. We have also demonstrated that the imaging quality is improved as better correction phases are found and applied on the SLM. Additionally, the ISC method lowers the demand of dynamic ranges of detection devices. The proposed method holds potential in applications, such as high-resolution imaging in deep tissue.

  2. Hybrid Artificial Bee Colony Algorithm and Particle Swarm Search for Global Optimization

    Directory of Open Access Journals (Sweden)

    Wang Chun-Feng

    2014-01-01

    Full Text Available Artificial bee colony (ABC algorithm is one of the most recent swarm intelligence based algorithms, which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in ABC regarding its solution search equation, which is good at exploration but poor at exploitation. To overcome this problem, we propose a novel artificial bee colony algorithm based on particle swarm search mechanism. In this algorithm, for improving the convergence speed, the initial population is generated by using good point set theory rather than random selection firstly. Secondly, in order to enhance the exploitation ability, the employed bee, onlookers, and scouts utilize the mechanism of PSO to search new candidate solutions. Finally, for further improving the searching ability, the chaotic search operator is adopted in the best solution of the current iteration. Our algorithm is tested on some well-known benchmark functions and compared with other algorithms. Results show that our algorithm has good performance.

  3. Model Justified Search Algorithms for Scheduling Under Uncertainty

    National Research Council Canada - National Science Library

    Howe, Adele; Whitley, L. D

    2008-01-01

    .... We also identified plateaus as a significant barrier to superb performance of local search on scheduling and have studied several canonical discrete optimization problems to discover and model the nature of plateaus...

  4. Efficient algorithm for binary search enhancement | Bennett | Journal ...

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 22, No 1 (2015) >. Log in or Register to get access to full text downloads.

  5. State-of-the-Art Review on Relevance of Genetic Algorithm to Internet Web Search

    Directory of Open Access Journals (Sweden)

    Kehinde Agbele

    2012-01-01

    Full Text Available People use search engines to find information they desire with the aim that their information needs will be met. Information retrieval (IR is a field that is concerned primarily with the searching and retrieving of information in the documents and also searching the search engine, online databases, and Internet. Genetic algorithms (GAs are robust, efficient, and optimizated methods in a wide area of search problems motivated by Darwin’s principles of natural selection and survival of the fittest. This paper describes information retrieval systems (IRS components. This paper looks at how GAs can be applied in the field of IR and specifically the relevance of genetic algorithms to internet web search. Finally, from the proposals surveyed it turns out that GA is applied to diverse problem fields of internet web search.

  6. Verification of Single-Peptide Protein Identifications by the Application of Complementary Database Search Algorithms

    National Research Council Canada - National Science Library

    Rohrbough, James G; Breci, Linda; Merchant, Nirav; Miller, Susan; Haynes, Paul A

    2005-01-01

    .... One such technique, known as the Multi-Dimensional Protein Identification Technique, or MudPIT, involves the use of computer search algorithms that automate the process of identifying proteins...

  7. An Efficient VQ Codebook Search Algorithm Applied to AMR-WB Speech Coding

    Directory of Open Access Journals (Sweden)

    Cheng-Yu Yeh

    2017-04-01

    Full Text Available The adaptive multi-rate wideband (AMR-WB speech codec is widely used in modern mobile communication systems for high speech quality in handheld devices. Nonetheless, a major disadvantage is that vector quantization (VQ of immittance spectral frequency (ISF coefficients takes a considerable computational load in the AMR-WB coding. Accordingly, a binary search space-structured VQ (BSS-VQ algorithm is adopted to efficiently reduce the complexity of ISF quantization in AMR-WB. This search algorithm is done through a fast locating technique combined with lookup tables, such that an input vector is efficiently assigned to a subspace where relatively few codeword searches are required to be executed. In terms of overall search performance, this work is experimentally validated as a superior search algorithm relative to a multiple triangular inequality elimination (MTIE, a TIE with dynamic and intersection mechanisms (DI-TIE, and an equal-average equal-variance equal-norm nearest neighbor search (EEENNS approach. With a full search algorithm as a benchmark for overall search load comparison, this work provides an 87% search load reduction at a threshold of quantization accuracy of 0.96, a figure far beyond 55% in the MTIE, 76% in the EEENNS approach, and 83% in the DI-TIE approach.

  8. Memetic Algorithms with Local Search Chains in R: The Rmalschains Package

    Directory of Open Access Journals (Sweden)

    Christoph Bergmeir

    2016-12-01

    Full Text Available Global optimization is an important field of research both in mathematics and computer sciences. It has applications in nearly all fields of modern science and engineering. Memetic algorithms are powerful problem solvers in the domain of continuous optimization, as they offer a trade-off between exploration of the search space using an evolutionary algorithm scheme, and focused exploitation of promising regions with a local search algorithm. In particular, we describe the memetic algorithms with local search chains (MA-LS-Chains paradigm, and the R package Rmalschains, which implements them. MA-LS-Chains has proven to be effective compared to other algorithms, especially in high-dimensional problem solving. In an experimental study, we demonstrate the advantages of using Rmalschains for high-dimension optimization problems in comparison to other optimization methods already available in R.

  9. Kernel Clustering with a Differential Harmony Search Algorithm for Scheme Classification

    Directory of Open Access Journals (Sweden)

    Yu Feng

    2017-01-01

    Full Text Available This paper presents a kernel fuzzy clustering with a novel differential harmony search algorithm to coordinate with the diversion scheduling scheme classification. First, we employed a self-adaptive solution generation strategy and differential evolution-based population update strategy to improve the classical harmony search. Second, we applied the differential harmony search algorithm to the kernel fuzzy clustering to help the clustering method obtain better solutions. Finally, the combination of the kernel fuzzy clustering and the differential harmony search is applied for water diversion scheduling in East Lake. A comparison of the proposed method with other methods has been carried out. The results show that the kernel clustering with the differential harmony search algorithm has good performance to cooperate with the water diversion scheduling problems.

  10. Parallel algorithms for unconstrained optimization by multisplitting with inexact subspace search - the abstract

    Energy Technology Data Exchange (ETDEWEB)

    Renaut, R.; He, Q. [Arizona State Univ., Tempe, AZ (United States)

    1994-12-31

    In a new parallel iterative algorithm for unconstrained optimization by multisplitting is proposed. In this algorithm the original problem is split into a set of small optimization subproblems which are solved using well known sequential algorithms. These algorithms are iterative in nature, e.g. DFP variable metric method. Here the authors use sequential algorithms based on an inexact subspace search, which is an extension to the usual idea of an inexact fine search. Essentially the idea of the inexact line search for nonlinear minimization is that at each iteration the authors only find an approximate minimum in the line search direction. Hence by inexact subspace search, they mean that, instead of finding the minimum of the subproblem at each interation, they do an incomplete down hill search to give an approximate minimum. Some convergence and numerical results for this algorithm will be presented. Further, the original theory will be generalized to the situation with a singular Hessian. Applications for nonlinear least squares problems will be presented. Experimental results will be presented for implementations on an Intel iPSC/860 Hypercube with 64 nodes as well as on the Intel Paragon.

  11. New Search Space Reduction Algorithm for Vertical Reference Trajectory Optimization

    Directory of Open Access Journals (Sweden)

    Alejandro MURRIETA-MENDOZA

    2016-06-01

    Full Text Available Burning the fuel required to sustain a given flight releases pollution such as carbon dioxide and nitrogen oxides, and the amount of fuel consumed is also a significant expense for airlines. It is desirable to reduce fuel consumption to reduce both pollution and flight costs. To increase fuel savings in a given flight, one option is to compute the most economical vertical reference trajectory (or flight plan. A deterministic algorithm was developed using a numerical aircraft performance model to determine the most economical vertical flight profile considering take-off weight, flight distance, step climb and weather conditions. This algorithm is based on linear interpolations of the performance model using the Lagrange interpolation method. The algorithm downloads the latest available forecast from Environment Canada according to the departure date and flight coordinates, and calculates the optimal trajectory taking into account the effects of wind and temperature. Techniques to avoid unnecessary calculations are implemented to reduce the computation time. The costs of the reference trajectories proposed by the algorithm are compared with the costs of the reference trajectories proposed by a commercial flight management system using the fuel consumption estimated by the FlightSim® simulator made by Presagis®.

  12. Nearby Search Indekos Based Android Using A Star (A*) Algorithm

    Science.gov (United States)

    Siregar, B.; Nababan, EB; Rumahorbo, JA; Andayani, U.; Fahmi, F.

    2018-03-01

    Indekos or rented room is a temporary residence for months or years. Society of academicians who come from out of town need a temporary residence, such as Indekos or rented room during their education, teaching, or duties. They are often found difficulty in finding a Indekos because lack of information about the Indekos. Besides, new society of academicians don’t recognize the areas around the campus and desire the shortest path from Indekos to get to the campus. The problem can be solved by implementing A Star (A*) algorithm. This algorithm is one of the shortest path algorithm to a finding shortest path from campus to the Indekos application, where the faculties in the campus as the starting point of the finding. Determination of the starting point used in this study aims to allow students to determine the starting point in finding the Indekos. The mobile based application facilitates the finding anytime and anywhere. Based on the experimental results, A* algorithm can find the shortest path with 86,67% accuracy.

  13. Data classification using metaheuristic Cuckoo Search technique for Levenberg Marquardt back propagation (CSLM) algorithm

    Science.gov (United States)

    Nawi, Nazri Mohd.; Khan, Abdullah; Rehman, M. Z.

    2015-05-01

    A nature inspired behavior metaheuristic techniques which provide derivative-free solutions to solve complex problems. One of the latest additions to the group of nature inspired optimization procedure is Cuckoo Search (CS) algorithm. Artificial Neural Network (ANN) training is an optimization task since it is desired to find optimal weight set of a neural network in training process. Traditional training algorithms have some limitation such as getting trapped in local minima and slow convergence rate. This study proposed a new technique CSLM by combining the best features of two known algorithms back-propagation (BP) and Levenberg Marquardt algorithm (LM) for improving the convergence speed of ANN training and avoiding local minima problem by training this network. Some selected benchmark classification datasets are used for simulation. The experiment result show that the proposed cuckoo search with Levenberg Marquardt algorithm has better performance than other algorithm used in this study.

  14. An improved version of Inverse Distance Weighting metamodel assisted Harmony Search algorithm for truss design optimization

    Directory of Open Access Journals (Sweden)

    Y. Gholipour

    Full Text Available This paper focuses on a metamodel-based design optimization algorithm. The intention is to improve its computational cost and convergence rate. Metamodel-based optimization method introduced here, provides the necessary means to reduce the computational cost and convergence rate of the optimization through a surrogate. This algorithm is a combination of a high quality approximation technique called Inverse Distance Weighting and a meta-heuristic algorithm called Harmony Search. The outcome is then polished by a semi-tabu search algorithm. This algorithm adopts a filtering system and determines solution vectors where exact simulation should be applied. The performance of the algorithm is evaluated by standard truss design problems and there has been a significant decrease in the computational effort and improvement of convergence rate.

  15. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    Directory of Open Access Journals (Sweden)

    Zhihua Zhang

    2016-01-01

    Full Text Available Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO. Rechenberg’s 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter.

  16. On the use of harmony search algorithm in the training of wavelet neural networks

    Science.gov (United States)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2015-10-01

    Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.

  17. Cache-Oblivious Data Structures and Algorithms for Undirected Breadth-First Search and Shortest Paths

    DEFF Research Database (Denmark)

    Brodal, G.S.; Fagerberg, Rolf; Meyer, U.

    2004-01-01

    We present improved cache-oblivious data structures and algorithms for breadth-first search and the single-source shortest path problem on undirected graphs with non-negative edge weights. Our results removes the performance gap between the currently best cache-aware algorithms for these problems...

  18. Adaptive switching gravitational search algorithm: an attempt to ...

    Indian Academy of Sciences (India)

    Nor Azlina Ab Aziz

    and exploiting the search space, learning strategies are used to structure information in order to find efficiently near-optimal solutions'' [45]. Hence, iteration strategy is one of the fundamental aspects of a metaheuristic algo- rithm, especially in population-based metaheuristics like. GSA. It determines how the agents are ...

  19. Optimization of the genetic algorithm of jointly fitting different types of X-ray scattering curves

    International Nuclear Information System (INIS)

    Sutyrin, A. G.; Imamov, R. M.

    2011-01-01

    A method for jointly processing X-ray scattering data of different types is developed. It is shown that, by optimizing the genetic algorithm of the joint solution of the inverse problem of X-ray diffractometry and reflectometry, one can reduce the amount of calculations and reliably determine the parameters of layers in the structure under study, even when the information about them is a priori limited.

  20. Scatter-Reducing Sounding Filtration Using a Genetic Algorithm and Mean Monthly Standard Deviation

    Science.gov (United States)

    Mandrake, Lukas

    2013-01-01

    Retrieval algorithms like that used by the Orbiting Carbon Observatory (OCO)-2 mission generate massive quantities of data of varying quality and reliability. A computationally efficient, simple method of labeling problematic datapoints or predicting soundings that will fail is required for basic operation, given that only 6% of the retrieved data may be operationally processed. This method automatically obtains a filter designed to reduce scatter based on a small number of input features. Most machine-learning filter construction algorithms attempt to predict error in the CO2 value. By using a surrogate goal of Mean Monthly STDEV, the goal is to reduce the retrieved CO2 scatter rather than solving the harder problem of reducing CO2 error. This lends itself to improved interpretability and performance. This software reduces the scatter of retrieved CO2 values globally based on a minimum number of input features. It can be used as a prefilter to reduce the number of soundings requested, or as a post-filter to label data quality. The use of the MMS (Mean Monthly Standard deviation) provides a much cleaner, clearer filter than the standard ABS(CO2-truth) metrics previously employed by competitor methods. The software's main strength lies in a clearer (i.e., fewer features required) filter that more efficiently reduces scatter in retrieved CO2 rather than focusing on the more complex (and easily removed) bias issues.

  1. Modification of Brueschweiler quantum searching algorithm and realization by NMR experiment

    International Nuclear Information System (INIS)

    Yang Xiaodong; Wei Daxiu; Luo Jun; Miao Xijia

    2002-01-01

    In recent years, quantum computing research has made big progress, which exploit quantum mechanical laws, such as interference, superposition and parallelism, to perform computing tasks. The most inducing thing is that the quantum computing can provide large rise to the speedup in quantum algorithm. Quantum computing can solve some problems, which are impossible or difficult for the classical computing. The problem of searching for a specific item in an unsorted database can be solved with certain quantum algorithm, for example, Grover quantum algorithm and Brueschweiler quantum algorithm. The former gives a quadratic speedup, and the latter gives an exponential speedup comparing with the corresponding classical algorithm. In Brueschweiler quantum searching algorithm, the data qubit and the read-out qubit (the ancilla qubit) are different qubits. The authors have studied Brueschweiler algorithm and proposed a modified version, in which no ancilla qubit is needed to reach exponential speedup in the searching, the data and the read-out qubit are the same qubits. The modified Brueschweiler algorithm can be easier to design and realize. The authors also demonstrate the modified Brueschweiler algorithm in a 3-qubit molecular system by Nuclear Magnetic Resonance (NMR) experiment

  2. Identification of Fuzzy Inference Systems by Means of a Multiobjective Opposition-Based Space Search Algorithm

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2013-01-01

    Full Text Available We introduce a new category of fuzzy inference systems with the aid of a multiobjective opposition-based space search algorithm (MOSSA. The proposed MOSSA is essentially a multiobjective space search algorithm improved by using an opposition-based learning that employs a so-called opposite numbers mechanism to speed up the convergence of the optimization algorithm. In the identification of fuzzy inference system, the MOSSA is exploited to carry out the parametric identification of the fuzzy model as well as to realize its structural identification. Experimental results demonstrate the effectiveness of the proposed fuzzy models.

  3. Quantum Partial Searching Algorithm of a Database with Several Target Items

    International Nuclear Information System (INIS)

    Pu-Cha, Zhong; Wan-Su, Bao; Yun, Wei

    2009-01-01

    Choi and Korepin [Quantum Information Processing 6(2007)243] presented a quantum partial search algorithm of a database with several target items which can find a target block quickly when each target block contains the same number of target items. Actually, the number of target items in each target block is arbitrary. Aiming at this case, we give a condition to guarantee performance of the partial search algorithm to be performed and the number of queries to oracle of the algorithm to be minimized. In addition, by further numerical computing we come to the conclusion that the more uniform the distribution of target items, the smaller the number of queries

  4. A Greedy Search Algorithm for Maneuver-Based Motion Planning of Agile Vehicles

    OpenAIRE

    Neas, Charles Bennett

    2010-01-01

    This thesis presents a greedy search algorithm for maneuver-based motion planning of agile vehicles. In maneuver-based motion planning, vehicle maneuvers are solved offline and saved in a library to be used during motion planning. From this library, a tree of possible vehicle states can be generated through the search space. A depth-first, library-based algorithm called AD-Lib is developed and used to quickly provide feasible trajectories along the tree. AD-Lib combines greedy search tech...

  5. Comparison of Genetic Algorithm and Harmony Search for Generator Maintenance Scheduling

    Directory of Open Access Journals (Sweden)

    Laiq Khan

    2012-10-01

    Full Text Available GMS (Generator Maintenance Scheduling ranks very high in decision making of power generation management. Generators maintenance schedule decides the time period of maintenance tasks and a reliable reserve margin is also maintained during this time period. In this paper, a comparison of GA (Genetic Algorithm and HS (Harmony Search algorithm is presented to solve generators maintenance scheduling problem for WAPDA (Water And Power Development Authority Pakistan. GA is a search procedure, which is used in search problems to compute exact and optimized solution. GA is considered as global search heuristic technique. HS algorithm is quite efficient, because the convergence rate of this algorithm is very fast. HS algorithm is based on the concept of music improvisation process of searching for a perfect state of harmony. The two algorithms generate feasible and optimal solutions and overcome the limitations of the conventional methods including extensive computational effort, which increases exponentially as the size of the problem increases. The proposed methods are tested, validated and compared on the WAPDA electric system.

  6. An improved formalism for quantum computation based on geometric algebra—case study: Grover's search algorithm

    Science.gov (United States)

    Chappell, James M.; Iqbal, Azhar; Lohe, M. A.; von Smekal, Lorenz; Abbott, Derek

    2013-04-01

    The Grover search algorithm is one of the two key algorithms in the field of quantum computing, and hence it is desirable to represent it in the simplest and most intuitive formalism possible. We show firstly, that Clifford's geometric algebra, provides a significantly simpler representation than the conventional bra-ket notation, and secondly, that the basis defined by the states of maximum and minimum weight in the Grover search space, allows a simple visualization of the Grover search analogous to the precession of a spin-{1/2} particle. Using this formalism we efficiently solve the exact search problem, as well as easily representing more general search situations. We do not claim the development of an improved algorithm, but show in a tutorial paper that geometric algebra provides extremely compact and elegant expressions with improved clarity for the Grover search algorithm. Being a key algorithm in quantum computing and one of the most studied, it forms an ideal basis for a tutorial on how to elucidate quantum operations in terms of geometric algebra—this is then of interest in extending the applicability of geometric algebra to more complicated problems in fields of quantum computing, quantum decision theory, and quantum information.

  7. Genetic Algorithm-based Dynamic Vehicle Route Search using Car-to-Car Communication

    Directory of Open Access Journals (Sweden)

    KIM, J.

    2010-11-01

    Full Text Available Suggesting more efficient driving routes generate benefits not only for individuals by saving commute time, but also for society as a whole by reducing accident rates and social costs by lessening traffic congestion. In this paper, we suggest a new route search algorithm based on a genetic algorithm which is more easily installable into mutually communicating car navigation systems, and validate its usefulness through experiments reflecting real-world situations. The proposed algorithm is capable of searching alternative routes dynamically in unexpected events of system malfunctioning or traffic slow-downs due to accidents. Experimental results demonstrate that our algorithm searches the best route more efficiently and evolves with universal adaptability.

  8. Evaluation of mass spectral library search algorithms implemented in commercial software.

    Science.gov (United States)

    Samokhin, Andrey; Sotnezova, Ksenia; Lashin, Vitaly; Revelsky, Igor

    2015-06-01

    Performance of several library search algorithms (against EI mass spectral databases) implemented in commercial software products ( acd/specdb, chemstation, gc/ms solution and ms search) was estimated. Test set contained 1000 mass spectra, which were randomly selected from NIST'08 (RepLib) mass spectral database. It was shown that composite (also known as identity) algorithm implemented in ms search (NIST) software gives statistically the best results: the correct compound occupied the first position in the list of possible candidates in 81% of cases; the correct compound was within the list of top ten candidates in 98% of cases. It was found that use of presearch option can lead to rejection of the correct answer from the list of possible candidates (therefore presearch option should not be used, if possible). Overall performance of library search algorithms was estimated using receiver operating characteristic curves. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method

    International Nuclear Information System (INIS)

    Li Xiang-Tao; Yin Ming-Hao

    2012-01-01

    We study the parameter estimation of a nonlinear chaotic system, which can be essentially formulated as a multidimensional optimization problem. In this paper, an orthogonal learning cuckoo search algorithm is used to estimate the parameters of chaotic systems. This algorithm can combine the stochastic exploration of the cuckoo search and the exploitation capability of the orthogonal learning strategy. Experiments are conducted on the Lorenz system and the Chen system. The proposed algorithm is used to estimate the parameters for these two systems. Simulation results and comparisons demonstrate that the proposed algorithm is better or at least comparable to the particle swarm optimization and the genetic algorithm when considering the quality of the solutions obtained. (general)

  10. Optimization of Particle Search Algorithm for CFD-DEM Simulations

    Directory of Open Access Journals (Sweden)

    G. Baryshev

    2013-09-01

    Full Text Available Discrete element method has numerous applications in particle physics. However, simulating particles as discrete entities can become costly for large systems. In time-driven DEM simulation most computation time is taken by contact search stage. We propose an efficient collision detection method which is based on sorting particles by their coordinates. Using multiple sorting criteria allows minimizing number of potential neighbours and defines fitness of this approach for simulation of massive systems in 3D. This method is compared to a common approach that consists of placing particles onto a grid of cells. Advantage of the new approach is independence of simulation parameters upon particle radius and domain size.

  11. External Memory Graph Algorithms and Range Searching Data Structures

    DEFF Research Database (Denmark)

    Walderveen, Freek van

    Every day larger amounts of data are generated that describe our world in terms of networks or graphs. Think for example about maps of roads or rivers, social networks, or the internet (either as a network of computers or as a network of hyperlinks). Besides this, also surface models, such as hei......Every day larger amounts of data are generated that describe our world in terms of networks or graphs. Think for example about maps of roads or rivers, social networks, or the internet (either as a network of computers or as a network of hyperlinks). Besides this, also surface models......, such as height models of the Earth, are often represented using graph structures. Traditionally, graphs were easily processed by computers using algorithms taught to any computer science undergraduate. Nowadays, however, graphs are so big that the assumptions underlying traditional algorithms no longer hold......: what used to be a simple graph traversal taking no time worth mentioning, suddenly takes years to complete. This increase is not merely a direct result of the bigger amount of data being processed, but mostly a result of the fact that this amount of data does not t in the computer's main memory anymore...

  12. Multiagency Urban Search Experiment Detector and Algorithm Test Bed

    Science.gov (United States)

    Nicholson, Andrew D.; Garishvili, Irakli; Peplow, Douglas E.; Archer, Daniel E.; Ray, William R.; Swinney, Mathew W.; Willis, Michael J.; Davidson, Gregory G.; Cleveland, Steven L.; Patton, Bruce W.; Hornback, Donald E.; Peltz, James J.; McLean, M. S. Lance; Plionis, Alexander A.; Quiter, Brian J.; Bandstra, Mark S.

    2017-07-01

    In order to provide benchmark data sets for radiation detector and algorithm development, a particle transport test bed has been created using experimental data as model input and validation. A detailed radiation measurement campaign at the Combined Arms Collective Training Facility in Fort Indiantown Gap, PA (FTIG), USA, provides sample background radiation levels for a variety of materials present at the site (including cinder block, gravel, asphalt, and soil) using long dwell high-purity germanium (HPGe) measurements. In addition, detailed light detection and ranging data and ground-truth measurements inform model geometry. This paper describes the collected data and the application of these data to create background and injected source synthetic data for an arbitrary gamma-ray detection system using particle transport model detector response calculations and statistical sampling. In the methodology presented here, HPGe measurements inform model source terms while detector response calculations are validated via long dwell measurements using 2"×4"×16" NaI(Tl) detectors at a variety of measurement points. A collection of responses, along with sampling methods and interpolation, can be used to create data sets to gauge radiation detector and algorithm (including detection, identification, and localization) performance under a variety of scenarios. Data collected at the FTIG site are available for query, filtering, visualization, and download at muse.lbl.gov.

  13. THE DEVELOPMENT OF A PARAMETERIZED SCATTER REMOVAL ALGORITHM FOR NUCLEAR MATERIALS IDENTIFICATION SYSTEM IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Brandon R [ORNL

    2010-05-01

    This report presents a novel method for removing scattering effects from Nuclear Materials Identification System (NMIS) imaging. The NMIS uses fast neutron radiography to generate images of the internal structure of objects nonintrusively. If the correct attenuation through the object is measured, the positions and macroscopic cross sections of features inside the object can be determined. The cross sections can then be used to identify the materials, and a 3D map of the interior of the object can be reconstructed. Unfortunately, the measured attenuation values are always too low because scattered neutrons contribute to the unattenuated neutron signal. Previous efforts to remove the scatter from NMIS imaging have focused on minimizing the fraction of scattered neutrons that are misidentified as directly transmitted by electronically collimating and time tagging the source neutrons. The parameterized scatter removal algorithm (PSRA) approaches the problem from an entirely new direction by using Monte Carlo simulations to estimate the point scatter functions (PScFs) produced by neutrons scattering in the object. PScFs have been used to remove scattering successfully in other applications, but only with simple 2D detector models. This work represents the first time PScFs have ever been applied to an imaging detector geometry as complicated as the NMIS. By fitting the PScFs using a Gaussian function, they can be parameterized, and the proper scatter for a given problem can be removed without the need for rerunning the simulations each time. In order to model the PScFs, an entirely new method for simulating NMIS measurements was developed for this work. The development of the new models and the codes required to simulate them are presented in detail. The PSRA was used on several simulated and experimental measurements, and chi-squared goodness of fit tests were used to compare the corrected values to the ideal values that would be expected with no scattering. Using the

  14. The Development of a Parameterized Scatter Removal Algorithm for Nuclear Materials Identification System Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Brandon Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2010-03-01

    This dissertation presents a novel method for removing scattering effects from Nuclear Materials Identification System (NMIS) imaging. The NMIS uses fast neutron radiography to generate images of the internal structure of objects non-intrusively. If the correct attenuation through the object is measured, the positions and macroscopic cross-sections of features inside the object can be determined. The cross sections can then be used to identify the materials and a 3D map of the interior of the object can be reconstructed. Unfortunately, the measured attenuation values are always too low because scattered neutrons contribute to the unattenuated neutron signal. Previous efforts to remove the scatter from NMIS imaging have focused on minimizing the fraction of scattered neutrons which are misidentified as directly transmitted by electronically collimating and time tagging the source neutrons. The parameterized scatter removal algorithm (PSRA) approaches the problem from an entirely new direction by using Monte Carlo simulations to estimate the point scatter functions (PScFs) produced by neutrons scattering in the object. PScFs have been used to remove scattering successfully in other applications, but only with simple 2D detector models. This work represents the first time PScFs have ever been applied to an imaging detector geometry as complicated as the NMIS. By fitting the PScFs using a Gaussian function, they can be parameterized and the proper scatter for a given problem can be removed without the need for rerunning the simulations each time. In order to model the PScFs, an entirely new method for simulating NMIS measurements was developed for this work. The development of the new models and the codes required to simulate them are presented in detail. The PSRA was used on several simulated and experimental measurements and chi-squared goodness of fit tests were used to compare the corrected values to the ideal values that would be expected with no scattering. Using

  15. A Variable Depth Search Algorithm for Binary Constraint Satisfaction Problems

    Directory of Open Access Journals (Sweden)

    N. Bouhmala

    2015-01-01

    Full Text Available The constraint satisfaction problem (CSP is a popular used paradigm to model a wide spectrum of optimization problems in artificial intelligence. This paper presents a fast metaheuristic for solving binary constraint satisfaction problems. The method can be classified as a variable depth search metaheuristic combining a greedy local search using a self-adaptive weighting strategy on the constraint weights. Several metaheuristics have been developed in the past using various penalty weight mechanisms on the constraints. What distinguishes the proposed metaheuristic from those developed in the past is the update of k variables during each iteration when moving from one assignment of values to another. The benchmark is based on hard random constraint satisfaction problems enjoying several features that make them of a great theoretical and practical interest. The results show that the proposed metaheuristic is capable of solving hard unsolved problems that still remain a challenge for both complete and incomplete methods. In addition, the proposed metaheuristic is remarkably faster than all existing solvers when tested on previously solved instances. Finally, its distinctive feature contrary to other metaheuristics is the absence of parameter tuning making it highly suitable in practical scenarios.

  16. Ideal Node Enquiry Search Algorithm (INESH in MANETS

    Directory of Open Access Journals (Sweden)

    Mohammad Riyaz Belgaum

    2017-10-01

    Full Text Available The different routing protocols in Mobile Ad hoc Networks take after various methodologies to send the data starting from one node then onto the next. The nodes in the system are non-static and they move arbitrarily and are inclined to interface disappointment which makes dependably to discover new routes to the destination. During the forwarding of packets to the destination, various intermediate nodes take part in routing, where such node should be an ideal node. An algorithm is proposed here to know the ideal node after studying the features of the reactive routing protocols. The malicious node can be eliminated from the networking function and the overhead on the protocol can be reduced. The node chooses the neighbor which can be found in less number of bounces and with less time delay and keeping up the QoS.

  17. Generation of initial stepping pattern of a biped robot with modular dynamic encoding algorithm for searches

    Science.gov (United States)

    Kim, Taegyu; Kim, Jong-Wook

    2007-12-01

    In this paper, a modified version of dynamic encoding algorithm for searches (DEAS) is proposed and applied to generate walking patterns of a biped humanoid robot. For the controller of each joint motor to generate optimal trajectories, mDEAS is developed from the previous versions of exhaustive DEAS (eDEAS) and univariate DEAS (uDEAS). Modular DEAS (mDEAS) searches optimal coefficients of polynomials whose trajectories are assigned to joint motors. Since the number of the coefficients amounts up to 16, sharing search space and optimizing independently is expected to search efficiently. For validation of mDEAS, a simulation result about initial stepping is provided.

  18. Keyword-based Ciphertext Search Algorithm under Cloud Storage

    Directory of Open Access Journals (Sweden)

    Ren Xunyi

    2016-01-01

    Full Text Available With the development of network storage services, cloud storage have the advantage of high scalability , inexpensive, without access limit and easy to manage. These advantages make more and more small or medium enterprises choose to outsource large quantities of data to a third party. This way can make lots of small and medium enterprises get rid of costs of construction and maintenance, so it has broad market prospects. But now lots of cloud storage service providers can not protect data security.This result leakage of user data, so many users have to use traditional storage method.This has become one of the important factors that hinder the development of cloud storage. In this article, establishing keyword index by extracting keywords from ciphertext data. After that, encrypted data and the encrypted index upload cloud server together.User get related ciphertext by searching encrypted index, so it can response data leakage problem.

  19. Nature-inspired Cuckoo Search Algorithm for Side Lobe Suppression in a Symmetric Linear Antenna Array

    Directory of Open Access Journals (Sweden)

    K. N. Abdul Rani

    2012-09-01

    Full Text Available In this paper, we proposed a newly modified cuckoo search (MCS algorithm integrated with the Roulette wheel selection operator and the inertia weight controlling the search ability towards synthesizing symmetric linear array geometry with minimum side lobe level (SLL and/or nulls control. The basic cuckoo search (CS algorithm is primarily based on the natural obligate brood parasitic behavior of some cuckoo species in combination with the Levy flight behavior of some birds and fruit flies. The CS metaheuristic approach is straightforward and capable of solving effectively general N-dimensional, linear and nonlinear optimization problems. The array geometry synthesis is first formulated as an optimization problem with the goal of SLL suppression and/or null prescribed placement in certain directions, and then solved by the newly MCS algorithm for the optimum element or isotropic radiator locations in the azimuth-plane or xy-plane. The study also focuses on the four internal parameters of MCS algorithm specifically on their implicit effects in the array synthesis. The optimal inter-element spacing solutions obtained by the MCS-optimizer are validated through comparisons with the standard CS-optimizer and the conventional array within the uniform and the Dolph-Chebyshev envelope patterns using MATLABTM. Finally, we also compared the fine-tuned MCS algorithm with two popular evolutionary algorithm (EA techniques include particle swarm optimization (PSO and genetic algorithms (GA.

  20. First experimental demonstration of an exact quantum search algorithm in nuclear magnetic resonance system

    Science.gov (United States)

    Liu, Yang; Zhang, FeiHao

    2015-07-01

    The success probability of searching an objective item from an unsorted database using standard Grover's algorithm is usually not exactly 1. It is exactly 1 only when it is used to find the target state from a database with four items. Exact search is always important in theoretical and practical applications. The failure rate of Grover's algorithm becomes big when the database is small, and this hinders the use of the commonly used divide-and-verify strategy. Even for large database, the failure rate becomes considerably large when there are many marked items. This has put a serious limitation on the usability of the Grover's algorithm. An important improved version of the Grover's algorithm, also known as the improved Grover algorithm, solves this problem. The improved Grover algorithm searches arbitrary number of target states from an unsorted database with full success rate. Here, we give the first experimental realization of the improved Grover algorithm, which finds a marked state with certainty, in a nuclear magnetic resonance system. The optimal control theory is used to obtain an optimized control sequence. The experimental results agree well with the theoretical predictions.

  1. STAR: an algorithm to Search for Tandem Approximate Repeats.

    Science.gov (United States)

    Delgrange, Olivier; Rivals, Eric

    2004-11-01

    Tandem repeats consist in approximate and adjacent repetitions of a DNA motif. Such repeats account for large portions of eukaryotic genomes and have also been found in other life kingdoms. Owing to their polymorphism, tandem repeats have proven useful in genome cartography, forensic and population studies, etc. Nevertheless, they are not systematically detected nor annotated in genome projects. Partially because of this lack of data, their evolution is still poorly understood. In this work, we design an exact algorithm to locate approximate tandem repeats (ATR) of a motif in a DNA sequence. Given a motif and a DNA sequence, our method named STAR, identifies all segments of the sequence that correspond to significant approximate tandem repetitions of the motif. In our model, an Exact Tandem Repeat (ETR) comes from the tandem duplication of the motif and an ATR derives from an ETR by a series of point mutations. An ATR can then be encoded as a number of duplications of the motif together with a list of mutations. Consequently, any sequence that is not an ATR cannot be encoded efficiently by this description, while a true ATR can. Our method uses the minimum description length criterion to identify which sequence segments are ATR. Our optimization procedure guarantees that STAR finds a combination of ATR that minimizes this criterion. for use at http://atgc.lirmm.fr/star

  2. An Experience Oriented-Convergence Improved Gravitational Search Algorithm for Minimum Variance Distortionless Response Beamforming Optimum.

    Directory of Open Access Journals (Sweden)

    Soodabeh Darzi

    Full Text Available An experience oriented-convergence improved gravitational search algorithm (ECGSA based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α, is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents' positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness.

  3. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.

    Science.gov (United States)

    Adabor, Emmanuel S; Acquaah-Mensah, George K; Oduro, Francis T

    2015-02-01

    Bayesian Networks have been used for the inference of transcriptional regulatory relationships among genes, and are valuable for obtaining biological insights. However, finding optimal Bayesian Network (BN) is NP-hard. Thus, heuristic approaches have sought to effectively solve this problem. In this work, we develop a hybrid search method combining Simulated Annealing with a Greedy Algorithm (SAGA). SAGA explores most of the search space by undergoing a two-phase search: first with a Simulated Annealing search and then with a Greedy search. Three sets of background-corrected and normalized microarray datasets were used to test the algorithm. BN structure learning was also conducted using the datasets, and other established search methods as implemented in BANJO (Bayesian Network Inference with Java Objects). The Bayesian Dirichlet Equivalence (BDe) metric was used to score the networks produced with SAGA. SAGA predicted transcriptional regulatory relationships among genes in networks that evaluated to higher BDe scores with high sensitivities and specificities. Thus, the proposed method competes well with existing search algorithms for Bayesian Network structure learning of transcriptional regulatory networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Comparison of multiobjective harmony search, cuckoo search and bat-inspired algorithms for renewable distributed generation placement

    Directory of Open Access Journals (Sweden)

    John E. Candelo-Becerra

    2015-07-01

    Full Text Available Electric power losses have a significant impact on the total costs of distribution networks. The use of renewable energy sources is a major alternative to improve power losses and costs, although other important issues are also enhanced such as voltage magnitudes and network congestion. However, determining the best location and size of renewable energy generators can be sometimes a challenging task due to a large number of possible combinations in the search space. Furthermore, the multiobjective functions increase the complexity of the problem and metaheuristics are preferred to find solutions in a relatively short time. This paper evaluates the performance of the cuckoo search (CS, harmony search (HS, and bat-inspired (BA algorithms for the location and size of renewable distributed generation (RDG in radial distribution networks using a multiobjective function defined as minimizing the energy losses and the RDG costs. The metaheuristic algorithms were programmed in Matlab and tested using the 33-node radial distribution network. The three algorithms obtained similar results for the two objectives evaluated, finding points close to the best solutions in the Pareto front. Comparisons showed that the CS obtained the minimum results for most points evaluated, but the BA and the HS were close to the best solution.

  5. Pipelining Memetic Algorithms, Constraint Satisfaction, and Local Search for Course Timetabling

    Science.gov (United States)

    Conant-Pablos, Santiago E.; Magaña-Lozano, Dulce J.; Terashima-Marín, Hugo

    This paper introduces a hybrid algorithm that combines local search and constraint satisfaction techniques with memetic algorithms for solving Course Timetabling hard problems. These problems require assigning a set of courses to a predetermined finite number of classrooms and periods of time, complying with a complete set of hard constraints while maximizing the consistency with a set of preferences (soft constraints). The algorithm works in a three-stage sequence: first, it creates an initial population of approximations to the solution by partitioning the variables that represent the courses and solving each partition as a constraint-satisfaction problem; second, it reduces the number of remaining hard and soft constraint violations applying a memetic algorithm; and finally, it obtains a complete and fully consistent solution by locally searching around the best memetic solution. The approach produces competitive results, always getting feasible solutions with a reduced number of soft constraints inconsistencies, when compared against the methods running independently.

  6. Search for novel order in URu2Si2 by neutron scattering

    OpenAIRE

    Bull, M. J.; Fåk, B.; McEwen, K. A.; Mydosh, J. A.

    2002-01-01

    We have made extensive reciprocal space maps in the heavy-fermion superconductor URu2Si2 using high-resolution time-of-flight single-crystal neutron diffraction to search for signs of a hidden order parameter related to the 17.5 K phase transition. Within the present sensitivity of the experiment (0.007 mu(B)/U-ion for sharp peaks), no additional features such as incommensurate structures or short-range order have been found in the (hOl) or (hhl) scattering planes. The only additional low-tem...

  7. A genetic similarity algorithm for searching the Gene Ontology terms and annotating anonymous protein sequences.

    Science.gov (United States)

    Othman, Razib M; Deris, Safaai; Illias, Rosli M

    2008-02-01

    A genetic similarity algorithm is introduced in this study to find a group of semantically similar Gene Ontology terms. The genetic similarity algorithm combines semantic similarity measure algorithm with parallel genetic algorithm. The semantic similarity measure algorithm is used to compute the similitude strength between the Gene Ontology terms. Then, the parallel genetic algorithm is employed to perform batch retrieval and to accelerate the search in large search space of the Gene Ontology graph. The genetic similarity algorithm is implemented in the Gene Ontology browser named basic UTMGO to overcome the weaknesses of the existing Gene Ontology browsers which use a conventional approach based on keyword matching. To show the applicability of the basic UTMGO, we extend its structure to develop a Gene Ontology -based protein sequence annotation tool named extended UTMGO. The objective of developing the extended UTMGO is to provide a simple and practical tool that is capable of producing better results and requires a reasonable amount of running time with low computing cost specifically for offline usage. The computational results and comparison with other related tools are presented to show the effectiveness of the proposed algorithm and tools.

  8. Providing an imputation algorithm for missing values of longitudinal data using Cuckoo search algorithm: A case study on cervical dystonia.

    Science.gov (United States)

    Golabpour, Amin; Etminani, Kobra; Doosti, Hassan; Miri, Hamid Heidarian; Ghanbari, Reza

    2017-06-01

    Missing values in data are found in a large number of studies in the field of medical sciences, especially longitudinal ones, in which repeated measurements are taken from each person during the study. In this regard, several statistical endeavors have been performed on the concepts, issues, and theoretical methods during the past few decades. Herein, we focused on the missing data related to patients excluded from longitudinal studies. To this end, two statistical parameters of similarity and correlation coefficient were employed. In addition, metaheuristic algorithms were applied to achieve an optimal solution. The selected metaheuristic algorithm, which has a great search functionality, was the Cuckoo search algorithm. Profiles of subjects with cervical dystonia (CD) were used to evaluate the proposed model after applying missingness. It was concluded that the algorithm used in this study had a higher accuracy (98.48%), compared with similar approaches. Concomitant use of similar parameters and correlation coefficients led to a significant increase in accuracy of missing data imputation.

  9. Comparison of stochastic search optimization algorithms for the laminated composites under mechanical and hygrothermal loadings

    OpenAIRE

    Aydın, Levent; Artem, Hatice Seçil

    2011-01-01

    The aim of the present study is to design the stacking sequence of the laminated composites that have low coefficient of thermal expansion and high elastic moduli. In design process, multi-objective genetic algorithm optimization of the carbon fiber laminated composite plates is verified by single objective optimization approach using three different stochastic optimization methods: genetic algorithm, generalized pattern search, and simulated annealing. However, both the multi- and single-obj...

  10. An improved harmony search algorithm for synchronization of discrete-time chaotic systems

    International Nuclear Information System (INIS)

    Santos Coelho, Leandro dos; Andrade Bernert, Diego Luis de

    2009-01-01

    The harmony search (HS) algorithm is a recently developed meta-heuristic algorithm, and has been very successful in a wide variety of optimization problems. HS was conceptualized using an analogy with music improvisation process where music players improvise the pitches of their instruments to obtain better harmony. The HS algorithm does not require initial values and uses a random search instead of a gradient search, so derivative information is unnecessary. Furthermore, the HS algorithm is simple in concept, few in parameters, easy in implementation, imposes fewer mathematical requirements, and does not require initial value settings of the decision variables. In recent years, the investigation of synchronization and control problem for discrete chaotic systems has attracted much attention, and many possible applications. The tuning of a proportional-integral-derivative (PID) controller based on an improved HS (IHS) algorithm for synchronization of two identical discrete chaotic systems subject the different initial conditions is investigated in this paper. Simulation results of the IHS to determine the PID parameters to synchronization of two Henon chaotic systems are compared with other HS approaches including classical HS and global-best HS. Numerical results reveal that the proposed IHS method is a powerful search and controller design optimization tool for synchronization of chaotic systems.

  11. Improved gravitational search algorithm for parameter identification of water turbine regulation system

    International Nuclear Information System (INIS)

    Chen, Zhihuan; Yuan, Xiaohui; Tian, Hao; Ji, Bin

    2014-01-01

    Highlights: • We propose an improved gravitational search algorithm (IGSA). • IGSA is applied to parameter identification of water turbine regulation system (WTRS). • WTRS is modeled by considering the impact of turbine speed on torque and water flow. • Weighted objective function strategy is applied to parameter identification of WTRS. - Abstract: Parameter identification of water turbine regulation system (WTRS) is crucial in precise modeling hydropower generating unit (HGU) and provides support for the adaptive control and stability analysis of power system. In this paper, an improved gravitational search algorithm (IGSA) is proposed and applied to solve the identification problem for WTRS system under load and no-load running conditions. This newly algorithm which is based on standard gravitational search algorithm (GSA) accelerates convergence speed with combination of the search strategy of particle swarm optimization and elastic-ball method. Chaotic mutation which is devised to stepping out the local optimal with a certain probability is also added into the algorithm to avoid premature. Furthermore, a new kind of model associated to the engineering practices is built and analyzed in the simulation tests. An illustrative example for parameter identification of WTRS is used to verify the feasibility and effectiveness of the proposed IGSA, as compared with standard GSA and particle swarm optimization in terms of parameter identification accuracy and convergence speed. The simulation results show that IGSA performs best for all identification indicators

  12. An Improved Harmony Search algorithm for optimal scheduling of the diesel generators in oil rig platforms

    International Nuclear Information System (INIS)

    Yadav, Parikshit; Kumar, Rajesh; Panda, S.K.; Chang, C.S.

    2011-01-01

    Harmony Search (HS) algorithm is music based meta-heuristic optimization method which is analogous with the music improvisation process where musician continue to polish the pitches in order to obtain better harmony. The paper focuses on the optimal scheduling of the generators to reduce the fuel consumption in the oil rig platform. The accurate modeling of the specific fuel consumption is significant in this optimization. The specific fuel consumption has been modeled using cubic spline interpolation. The SFC curve is non-linear and discrete in nature, hence conventional methods fail to give optimal solution. HS algorithm has been used for optimal scheduling of the generators of both equal and unequal rating. Furthermore an Improved Harmony Search (IHS) method for generating new solution vectors that enhances accuracy and convergence rate of HS has been employed. The paper also focuses on the impacts of constant parameters on Harmony Search algorithm. Numerical results show that the IHS method has good convergence property. Moreover, the fuel consumption for IHS algorithm is lower when compared to HS and other heuristic or deterministic methods and is a powerful search algorithm for various engineering optimization problems.

  13. Reduced Search Space Algorithm for Simultaneous Localization and Mapping in Mobile Robots

    Directory of Open Access Journals (Sweden)

    Hesam Omranpour

    2012-03-01

    Full Text Available In this paper, we propose a new algorithm for simultaneous localization and mapping in mobile robots which uses evolutionary algorithm and particle swarm optimization. The proposed method is based on both local and global heuristic search methods. In each step of robot movements, the local search is applied in the small search space of odometry errors to improve the map accuracy. A global search method is applied for loop closing. The proposed algorithm detects loops and closes them, detects and solves correspondence and avoids local extremums. With a proper representation of problem parameters in chromosome, the dimensionality of search space is reduced. The proposed algorithm utilizes occupancy grid and does not require land marks which are not available in most natural environments. A new fitness function is proposed that is computationally efficient and eliminates the need for complex statistical calculations as used in current approaches. Results of experiments on real datasets exhibit the superior performance of the proposed method compared to the current methods.

  14. A necessary condition for applying MUSIC algorithm in limited-view inverse scattering problem

    International Nuclear Information System (INIS)

    Park, Taehoon; Park, Won-Kwang

    2015-01-01

    Throughout various results of numerical simulations, it is well-known that MUltiple SIgnal Classification (MUSIC) algorithm can be applied in the limited-view inverse scattering problems. However, the application is somehow heuristic. In this contribution, we identify a necessary condition of MUSIC for imaging of collection of small, perfectly conducting cracks. This is based on the fact that MUSIC imaging functional can be represented as an infinite series of Bessel function of integer order of the first kind. Numerical experiments from noisy synthetic data supports our investigation. (paper)

  15. Simulation of small-angle scattering patterns using a CPU-efficient algorithm

    Science.gov (United States)

    Anitas, E. M.

    2017-12-01

    Small-angle scattering (of neutrons, x-ray or light; SAS) is a well-established experimental technique for structural analysis of disordered systems at nano and micro scales. For complex systems, such as super-molecular assemblies or protein molecules, analytic solutions of SAS intensity are generally not available. Thus, a frequent approach to simulate the corresponding patterns is to use a CPU-efficient version of the Debye formula. For this purpose, in this paper we implement the well-known DALAI algorithm in Mathematica software. We present calculations for a series of 2D Sierpinski gaskets and respectively of pentaflakes, obtained from chaos game representation.

  16. A GENETIC ALGORITHM USING THE LOCAL SEARCH HEURISTIC IN FACILITIES LAYOUT PROBLEM: A MEMETİC ALGORİTHM APPROACH

    Directory of Open Access Journals (Sweden)

    Orhan TÜRKBEY

    2002-02-01

    Full Text Available Memetic algorithms, which use local search techniques, are hybrid structured algorithms like genetic algorithms among evolutionary algorithms. In this study, for Quadratic Assignment Problem (QAP, a memetic structured algorithm using a local search heuristic like 2-opt is developed. Developed in the algorithm, a crossover operator that has not been used before for QAP is applied whereas, Eshelman procedure is used in order to increase thesolution variability. The developed memetic algorithm is applied on test problems taken from QAP-LIB, the results are compared with the present techniques in the literature.

  17. Design of binary patterns for speckle reduction in holographic display with compressive sensing and direct-binary search algorithm

    Science.gov (United States)

    Leportier, Thibault; Hwang, Do Kyung; Park, Min-Chul

    2017-08-01

    One problem common to imaging techniques based on coherent light is speckle noise. This phenomenon is caused mostly by random interference of light scattered by rough surfaces. Speckle noise can be avoided by using advanced holographic imaging techniques such as optical scanning holography. A more widely known method is to capture several holograms of the same object and to perform an averaging operation so that the signal to noise ratio can be improved. Several digital filters were also proposed to reduce noise in the numerical reconstruction plane of holograms, even though they usually require finding a compromise between noise reduction and edge preservation. In this study, we used a digital filter based on compressive sensing algorithm. This approach enables to obtain results equivalent to the average of multiple holograms, but only a single hologram is needed. Filters for speckle reduction are applied on numerical reconstructions of hologram, and not on the hologram itself. Then, optical reconstruction cannot be performed. We propose a method based on direct-binary search (DBS) algorithm to generate binary holograms that can be reconstructed optically after application of a speckle reduction filter. Since the optimization procedure of the DBS algorithm is performed in the image plane, speckle reduction techniques can be applied on the complex hologram and used as a reference to obtain a binary pattern where the speckle noise generated during the recording of the hologram has been filtered.

  18. A Line Search Multilevel Truncated Newton Algorithm for Computing the Optical Flow

    Directory of Open Access Journals (Sweden)

    Lluís Garrido

    2015-06-01

    Full Text Available We describe the implementation details and give the experimental results of three optimization algorithms for dense optical flow computation. In particular, using a line search strategy, we evaluate the performance of the unilevel truncated Newton method (LSTN, a multiresolution truncated Newton (MR/LSTN and a full multigrid truncated Newton (FMG/LSTN. We use three image sequences and four models of optical flow for performance evaluation. The FMG/LSTN algorithm is shown to lead to better optical flow estimation with less computational work than both the LSTN and MR/LSTN algorithms.

  19. Comparison of a constraint directed search to a genetic algorithm in a scheduling application

    International Nuclear Information System (INIS)

    Abbott, L.

    1993-01-01

    Scheduling plutonium containers for blending is a time-intensive operation. Several constraints must be taken into account; including the number of containers in a dissolver run, the size of each dissolver run, and the size and target purity of the blended mixture formed from these runs. Two types of algorithms have been used to solve this problem: a constraint directed search and a genetic algorithm. This paper discusses the implementation of these two different approaches to the problem and the strengths and weaknesses of each algorithm

  20. Investigation of candidate data structures and search algorithms to support a knowledge based fault diagnosis system

    Science.gov (United States)

    Bosworth, Edward L., Jr.

    1987-01-01

    The focus of this research is the investigation of data structures and associated search algorithms for automated fault diagnosis of complex systems such as the Hubble Space Telescope. Such data structures and algorithms will form the basis of a more sophisticated Knowledge Based Fault Diagnosis System. As a part of the research, several prototypes were written in VAXLISP and implemented on one of the VAX-11/780's at the Marshall Space Flight Center. This report describes and gives the rationale for both the data structures and algorithms selected. A brief discussion of a user interface is also included.

  1. Reduction rules-based search algorithm for opportunistic replacement strategy of multiple life-limited parts

    Directory of Open Access Journals (Sweden)

    Xuyun FU

    2018-01-01

    Full Text Available The opportunistic replacement of multiple Life-Limited Parts (LLPs is a problem widely existing in industry. The replacement strategy of LLPs has a great impact on the total maintenance cost to a lot of equipment. This article focuses on finding a quick and effective algorithm for this problem. To improve the algorithm efficiency, six reduction rules are suggested from the perspectives of solution feasibility, determination of the replacement of LLPs, determination of the maintenance occasion and solution optimality. Based on these six reduction rules, a search algorithm is proposed. This search algorithm can identify one or several optimal solutions. A numerical experiment shows that these six reduction rules are effective, and the time consumed by the algorithm is less than 38 s if the total life of equipment is shorter than 55000 and the number of LLPs is less than 11. A specific case shows that the algorithm can obtain optimal solutions which are much better than the result of the traditional method in 10 s, and it can provide support for determining to-be-replaced LLPs when determining the maintenance workscope of an aircraft engine. Therefore, the algorithm is applicable to engineering applications concerning opportunistic replacement of multiple LLPs in aircraft engines.

  2. CLUSTERING CATEGORICAL DATA USING k-MODES BASED ON CUCKOO SEARCH OPTIMIZATION ALGORITHM

    Directory of Open Access Journals (Sweden)

    Lakshmi K

    2017-10-01

    Full Text Available Cluster analysis is the unsupervised learning technique that finds the interesting patterns in the data objects without knowing class labels. Most of the real world dataset consists of categorical data. For example, social media analysis may have the categorical data like the gender as male or female. The k-modes clustering algorithm is the most widely used to group the categorical data, because it is easy to implement and efficient to handle the large amount of data. However, due to its random selection of initial centroids, it provides the local optimum solution. There are number of optimization algorithms are developed to obtain global optimum solution. Cuckoo Search algorithm is the population based metaheuristic optimization algorithms to provide the global optimum solution. Methods: In this paper, k-modes clustering algorithm is combined with Cuckoo Search algorithm to obtain the global optimum solution. Results: Experiments are conducted with benchmark datasets and the results are compared with k-modes and Particle Swarm Optimization with k-modes to prove the efficiency of the proposed algorithm.

  3. Function Optimization and Parameter Performance Analysis Based on Gravitation Search Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang

    2015-12-01

    Full Text Available The gravitational search algorithm (GSA is a kind of swarm intelligence optimization algorithm based on the law of gravitation. The parameter initialization of all swarm intelligence optimization algorithms has an important influence on the global optimization ability. Seen from the basic principle of GSA, the convergence rate of GSA is determined by the gravitational constant and the acceleration of the particles. The optimization performances on six typical test functions are verified by the simulation experiments. The simulation results show that the convergence speed of the GSA algorithm is relatively sensitive to the setting of the algorithm parameters, and the GSA parameter can be used flexibly to improve the algorithm’s convergence velocity and improve the accuracy of the solutions.

  4. MRS algorithm: a new method for searching myocardial region in SPECT myocardial perfusion images.

    Science.gov (United States)

    He, Yuan-Lie; Tian, Lian-Fang; Chen, Ping; Li, Bin; Mao, Zhong-Yuan

    2005-10-01

    First, the necessity of automatically segmenting myocardium from myocardial SPECT image is discussed in Section 1. To eliminate the influence of the background, the optimal threshold segmentation method modified for the MRS algorithm is explained in Section 2. Then, the image erosion structure is applied to identify the myocardium region and the liver region. The contour tracing method is introduced to extract the myocardial contour. To locate the centriod of the myocardium, the myocardial centriod searching method is developed. The protocol of the MRS algorithm is summarized in Section 6. The performance of the MRS algorithm is investigated and the conclusion is drawn in Section 7. Finally, the importance of the MRS algorithm and the improvement of the MRS algorithm are discussed.

  5. A Study on the Optimization Performance of Fireworks and Cuckoo Search Algorithms in Laser Machining Processes

    Science.gov (United States)

    Goswami, D.; Chakraborty, S.

    2014-11-01

    Laser machining is a promising non-contact process for effective machining of difficult-to-process advanced engineering materials. Increasing interest in the use of lasers for various machining operations can be attributed to its several unique advantages, like high productivity, non-contact processing, elimination of finishing operations, adaptability to automation, reduced processing cost, improved product quality, greater material utilization, minimum heat-affected zone and green manufacturing. To achieve the best desired machining performance and high quality characteristics of the machined components, it is extremely important to determine the optimal values of the laser machining process parameters. In this paper, fireworks algorithm and cuckoo search (CS) algorithm are applied for single as well as multi-response optimization of two laser machining processes. It is observed that although almost similar solutions are obtained for both these algorithms, CS algorithm outperforms fireworks algorithm with respect to average computation time, convergence rate and performance consistency.

  6. A Sustainable City Planning Algorithm Based on TLBO and Local Search

    Science.gov (United States)

    Zhang, Ke; Lin, Li; Huang, Xuanxuan; Liu, Yiming; Zhang, Yonggang

    2017-09-01

    Nowadays, how to design a city with more sustainable features has become a center problem in the field of social development, meanwhile it has provided a broad stage for the application of artificial intelligence theories and methods. Because the design of sustainable city is essentially a constraint optimization problem, the swarm intelligence algorithm of extensive research has become a natural candidate for solving the problem. TLBO (Teaching-Learning-Based Optimization) algorithm is a new swarm intelligence algorithm. Its inspiration comes from the “teaching” and “learning” behavior of teaching class in the life. The evolution of the population is realized by simulating the “teaching” of the teacher and the student “learning” from each other, with features of less parameters, efficient, simple thinking, easy to achieve and so on. It has been successfully applied to scheduling, planning, configuration and other fields, which achieved a good effect and has been paid more and more attention by artificial intelligence researchers. Based on the classical TLBO algorithm, we propose a TLBO_LS algorithm combined with local search. We design and implement the random generation algorithm and evaluation model of urban planning problem. The experiments on the small and medium-sized random generation problem showed that our proposed algorithm has obvious advantages over DE algorithm and classical TLBO algorithm in terms of convergence speed and solution quality.

  7. A comparative study of the A* heuristic search algorithm used to solve efficiently a puzzle game

    Science.gov (United States)

    Iordan, A. E.

    2018-01-01

    The puzzle game presented in this paper consists in polyhedra (prisms, pyramids or pyramidal frustums) which can be moved using the free available spaces. The problem requires to be found the minimum number of movements in order the game reaches to a goal configuration starting from an initial configuration. Because the problem is enough complex, the principal difficulty in solving it is given by dimension of search space, that leads to necessity of a heuristic search. The improving of the search method consists into determination of a strong estimation by the heuristic function which will guide the search process to the most promising side of the search tree. The comparative study is realized among Manhattan heuristic and the Hamming heuristic using A* search algorithm implemented in Java. This paper also presents the necessary stages in object oriented development of a software used to solve efficiently this puzzle game. The modelling of the software is achieved through specific UML diagrams representing the phases of analysis, design and implementation, the system thus being described in a clear and practical manner. With the purpose to confirm the theoretical results which demonstrates that Manhattan heuristic is more efficient was used space complexity criterion. The space complexity was measured by the number of generated nodes from the search tree, by the number of the expanded nodes and by the effective branching factor. From the experimental results obtained by using the Manhattan heuristic, improvements were observed regarding space complexity of A* algorithm versus Hamming heuristic.

  8. Focusing light through strongly scattering media using genetic algorithm with SBR discriminant

    Science.gov (United States)

    Zhang, Bin; Zhang, Zhenfeng; Feng, Qi; Liu, Zhipeng; Lin, Chengyou; Ding, Yingchun

    2018-02-01

    In this paper, we have experimentally demonstrated light focusing through strongly scattering media by performing binary amplitude optimization with a genetic algorithm. In the experiments, we control 160 000 mirrors of digital micromirror device to modulate and optimize the light transmission paths in the strongly scattering media. We replace the universal target-position-intensity (TPI) discriminant with signal-to-background ratio (SBR) discriminant in genetic algorithm. With 400 incident segments, a relative enhancement value of 17.5% with a ground glass diffuser is achieved, which is higher than the theoretical value of 1/(2π )≈ 15.9 % for binary amplitude optimization. According to our repetitive experiments, we conclude that, with the same segment number, the enhancement for the SBR discriminant is always higher than that for the TPI discriminant, which results from the background-weakening effect of SBR discriminant. In addition, with the SBR discriminant, the diameters of the focus can be changed ranging from 7 to 70 μm at arbitrary positions. Besides, multiple foci with high enhancement are obtained. Our work provides a meaningful reference for the study of binary amplitude optimization in the wavefront shaping field.

  9. On the Runtime of Randomized Local Search and Simple Evolutionary Algorithms for Dynamic Makespan Scheduling

    DEFF Research Database (Denmark)

    Neumann, Frank; Witt, Carsten

    2015-01-01

    combinatorial optimization problem, namely makespan scheduling. We study the model of a strong adversary which is allowed to change one job at regular intervals. Furthermore, we investigate the setting of random changes. Our results show that randomized local search and a simple evolutionary algorithm are very...

  10. From Schrödinger's equation to the quantum search algorithm

    Indian Academy of Sciences (India)

    ... Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 56; Issue 2-3. From Schrödinger's equation to the quantum search algorithm. Lov K Grover. Quantum information processing Volume 56 Issue 2-3 February-March 2001 pp 333- ...

  11. RDEL: Restart Differential Evolution algorithm with Local Search Mutation for global numerical optimization

    Directory of Open Access Journals (Sweden)

    Ali Wagdy Mohamed

    2014-11-01

    Full Text Available In this paper, a novel version of Differential Evolution (DE algorithm based on a couple of local search mutation and a restart mechanism for solving global numerical optimization problems over continuous space is presented. The proposed algorithm is named as Restart Differential Evolution algorithm with Local Search Mutation (RDEL. In RDEL, inspired by Particle Swarm Optimization (PSO, a novel local mutation rule based on the position of the best and the worst individuals among the entire population of a particular generation is introduced. The novel local mutation scheme is joined with the basic mutation rule through a linear decreasing function. The proposed local mutation scheme is proven to enhance local search tendency of the basic DE and speed up the convergence. Furthermore, a restart mechanism based on random mutation scheme and a modified Breeder Genetic Algorithm (BGA mutation scheme is combined to avoid stagnation and/or premature convergence. Additionally, an exponent increased crossover probability rule and a uniform scaling factors of DE are introduced to promote the diversity of the population and to improve the search process, respectively. The performance of RDEL is investigated and compared with basic differential evolution, and state-of-the-art parameter adaptive differential evolution variants. It is discovered that the proposed modifications significantly improve the performance of DE in terms of quality of solution, efficiency and robustness.

  12. An Adaptive Large Neighborhood Search Algorithm for the Multi-mode RCPSP

    DEFF Research Database (Denmark)

    Muller, Laurent Flindt

    We present an Adaptive Large Neighborhood Search algorithm for the Multi-mode Resource-Constrained Project Scheduling Problem (MRCPSP). We incorporate techniques for deriving additional precedence relations and propose a new method, so-called mode-diminution, for removing modes during execution...

  13. Day-ahead distributed energy resource scheduling using differential search algorithm

    DEFF Research Database (Denmark)

    Soares, J.; Lobo, C.; Silva, M.

    2015-01-01

    considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. This paper presents an application of differential search algorithm (DSA) for solving the day-ahead scheduling...

  14. Short-term economic environmental hydrothermal scheduling using improved multi-objective gravitational search algorithm

    International Nuclear Information System (INIS)

    Li, Chunlong; Zhou, Jianzhong; Lu, Peng; Wang, Chao

    2015-01-01

    Highlights: • Improved multi-objective gravitational search algorithm. • An elite archive set is proposed to guide evolutionary process. • Neighborhood searching mechanism to improve local search ability. • Adopt chaotic mutation for avoiding premature convergence. • Propose feasible space method to handle hydro plant constrains. - Abstract: With growing concerns about energy and environment, short-term economic environmental hydrothermal scheduling (SEEHS) plays a more and more important role in power system. Because of the two objectives and various constraints, SEEHS is a complex multi-objective optimization problem (MOOP). In order to solve the problem, we propose an improved multi-objective gravitational search algorithm (IMOGSA) in this paper. In IMOGSA, the mass of the agent is redefined by multiple objectives to make it suitable for MOOP. An elite archive set is proposed to keep Pareto optimal solutions and guide evolutionary process. For balancing exploration and exploitation, a neighborhood searching mechanism is presented to cooperate with chaotic mutation. Moreover, a novel method based on feasible space is proposed to handle hydro plant constraints during SEEHS, and a violation adjustment method is adopted to handle power balance constraint. For verifying its effectiveness, the proposed IMOGSA is applied to a hydrothermal system in two different case studies. The simulation results show that IMOGSA has a competitive performance in SEEHS when compared with other established algorithms

  15. A Local and Global Search Combined Particle Swarm Optimization Algorithm and Its Convergence Analysis

    Directory of Open Access Journals (Sweden)

    Weitian Lin

    2014-01-01

    Full Text Available Particle swarm optimization algorithm (PSOA is an advantage optimization tool. However, it has a tendency to get stuck in a near optimal solution especially for middle and large size problems and it is difficult to improve solution accuracy by fine-tuning parameters. According to the insufficiency, this paper researches the local and global search combine particle swarm algorithm (LGSCPSOA, and its convergence and obtains its convergence qualification. At the same time, it is tested with a set of 8 benchmark continuous functions and compared their optimization results with original particle swarm algorithm (OPSOA. Experimental results indicate that the LGSCPSOA improves the search performance especially on the middle and large size benchmark functions significantly.

  16. ACTION OF UNIFORM SEARCH ALGORITHM WHEN SELECTING LANGUAGE UNITS IN THE PROCESS OF SPEECH

    Directory of Open Access Journals (Sweden)

    Nekipelova Irina Mikhaylovna

    2013-04-01

    Full Text Available The article is devoted to research of action of uniform search algorithm when selecting by human of language units for speech produce. The process is connected with a speech optimization phenomenon. This makes it possible to shorten the time of cogitation something that human want to say, and to achieve the maximum precision in thoughts expression. The algorithm of uniform search works at consciousness and subconsciousness levels. It favours the forming of automatism produce and perception of speech. Realization of human's cognitive potential in the process of communication starts up complicated mechanism of self-organization and self-regulation of language. In turn, it results in optimization of language system, servicing needs not only human's self-actualization but realization of communication in society. The method of problem-oriented search is used for researching of optimization mechanisms, which are distinctive to speech producing and stabilization of language.

  17. Solving k-Barrier Coverage Problem Using Modified Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Yanhua Zhang

    2017-01-01

    Full Text Available Coverage problem is a critical issue in wireless sensor networks for security applications. The k-barrier coverage is an effective measure to ensure robustness. In this paper, we formulate the k-barrier coverage problem as a constrained optimization problem and introduce the energy constraint of sensor node to prolong the lifetime of the k-barrier coverage. A novel hybrid particle swarm optimization and gravitational search algorithm (PGSA is proposed to solve this problem. The proposed PGSA adopts a k-barrier coverage generation strategy based on probability and integrates the exploitation ability in particle swarm optimization to update the velocity and enhance the global search capability and introduce the boundary mutation strategy of an agent to increase the population diversity and search accuracy. Extensive simulations are conducted to demonstrate the effectiveness of our proposed algorithm.

  18. Parameter Identification of Steam Turbine Speed Governing System Using an Improved Gravitational Search Algorithm

    Science.gov (United States)

    Zhong, Jing-liang; Deng, Tong-tian; Wang, Jia-sheng

    2017-05-01

    Since most of the traditional parameter identification methods used in the steam turbine speed governing system (STSGS) have the shortages of great work load, poor fitness and long period by hand, a novel improved gravitational search algorithm (VGSA) method, whose gravitational parameter can be dynamically adjusted according to the current fitness and search space will keep being more and more narrow during the iteration process, is proposed in this paper based on an improved gravitational search algorithm (IGSA). The performance of this new method was identified through the comparisons of the steam turbine speed governing system identification results with IGSA using the measured data from a 600MW and a 300MW thermal power unit. The results show that the new method VGSA has the features of higher precision and higher speed during the identification process, and it brings a new scheme for steam turbine speed governing system identification.

  19. Hybridization of Strength Pareto Multiobjective Optimization with Modified Cuckoo Search Algorithm for Rectangular Array.

    Science.gov (United States)

    Abdul Rani, Khairul Najmy; Abdulmalek, Mohamedfareq; A Rahim, Hasliza; Siew Chin, Neoh; Abd Wahab, Alawiyah

    2017-04-20

    This research proposes the various versions of modified cuckoo search (MCS) metaheuristic algorithm deploying the strength Pareto evolutionary algorithm (SPEA) multiobjective (MO) optimization technique in rectangular array geometry synthesis. Precisely, the MCS algorithm is proposed by incorporating the Roulette wheel selection operator to choose the initial host nests (individuals) that give better results, adaptive inertia weight to control the positions exploration of the potential best host nests (solutions), and dynamic discovery rate to manage the fraction probability of finding the best host nests in 3-dimensional search space. In addition, the MCS algorithm is hybridized with the particle swarm optimization (PSO) and hill climbing (HC) stochastic techniques along with the standard strength Pareto evolutionary algorithm (SPEA) forming the MCSPSOSPEA and MCSHCSPEA, respectively. All the proposed MCS-based algorithms are examined to perform MO optimization on Zitzler-Deb-Thiele's (ZDT's) test functions. Pareto optimum trade-offs are done to generate a set of three non-dominated solutions, which are locations, excitation amplitudes, and excitation phases of array elements, respectively. Overall, simulations demonstrates that the proposed MCSPSOSPEA outperforms other compatible competitors, in gaining a high antenna directivity, small half-power beamwidth (HPBW), low average side lobe level (SLL) suppression, and/or significant predefined nulls mitigation, simultaneously.

  20. Hybridization of Strength Pareto Multiobjective Optimization with Modified Cuckoo Search Algorithm for Rectangular Array

    Science.gov (United States)

    Abdul Rani, Khairul Najmy; Abdulmalek, Mohamedfareq; A. Rahim, Hasliza; Siew Chin, Neoh; Abd Wahab, Alawiyah

    2017-04-01

    This research proposes the various versions of modified cuckoo search (MCS) metaheuristic algorithm deploying the strength Pareto evolutionary algorithm (SPEA) multiobjective (MO) optimization technique in rectangular array geometry synthesis. Precisely, the MCS algorithm is proposed by incorporating the Roulette wheel selection operator to choose the initial host nests (individuals) that give better results, adaptive inertia weight to control the positions exploration of the potential best host nests (solutions), and dynamic discovery rate to manage the fraction probability of finding the best host nests in 3-dimensional search space. In addition, the MCS algorithm is hybridized with the particle swarm optimization (PSO) and hill climbing (HC) stochastic techniques along with the standard strength Pareto evolutionary algorithm (SPEA) forming the MCSPSOSPEA and MCSHCSPEA, respectively. All the proposed MCS-based algorithms are examined to perform MO optimization on Zitzler-Deb-Thiele’s (ZDT’s) test functions. Pareto optimum trade-offs are done to generate a set of three non-dominated solutions, which are locations, excitation amplitudes, and excitation phases of array elements, respectively. Overall, simulations demonstrates that the proposed MCSPSOSPEA outperforms other compatible competitors, in gaining a high antenna directivity, small half-power beamwidth (HPBW), low average side lobe level (SLL) suppression, and/or significant predefined nulls mitigation, simultaneously.

  1. A novel optimization method, Gravitational Search Algorithm (GSA), for PWR core optimization

    International Nuclear Information System (INIS)

    Mahmoudi, S.M.; Aghaie, M.; Bahonar, M.; Poursalehi, N.

    2016-01-01

    Highlights: • The Gravitational Search Algorithm (GSA) is introduced. • The advantage of GSA is verified in Shekel’s Foxholes. • Reload optimizing in WWER-1000 and WWER-440 cases are performed. • Maximizing K eff , minimizing PPFs and flattening power density is considered. - Abstract: In-core fuel management optimization (ICFMO) is one of the most challenging concepts of nuclear engineering. In recent decades several meta-heuristic algorithms or computational intelligence methods have been expanded to optimize reactor core loading pattern. This paper presents a new method of using Gravitational Search Algorithm (GSA) for in-core fuel management optimization. The GSA is constructed based on the law of gravity and the notion of mass interactions. It uses the theory of Newtonian physics and searcher agents are the collection of masses. In this work, at the first step, GSA method is compared with other meta-heuristic algorithms on Shekel’s Foxholes problem. In the second step for finding the best core, the GSA algorithm has been performed for three PWR test cases including WWER-1000 and WWER-440 reactors. In these cases, Multi objective optimizations with the following goals are considered, increment of multiplication factor (K eff ), decrement of power peaking factor (PPF) and power density flattening. It is notable that for neutronic calculation, PARCS (Purdue Advanced Reactor Core Simulator) code is used. The results demonstrate that GSA algorithm have promising performance and could be proposed for other optimization problems of nuclear engineering field.

  2. Micro-seismic waveform matching inversion based on gravitational search algorithm and parallel computation

    Science.gov (United States)

    Jiang, Y.; Xing, H. L.

    2016-12-01

    Micro-seismic events induced by water injection, mining activity or oil/gas extraction are quite informative, the interpretation of which can be applied for the reconstruction of underground stress and monitoring of hydraulic fracturing progress in oil/gas reservoirs. The source characterises and locations are crucial parameters that required for these purposes, which can be obtained through the waveform matching inversion (WMI) method. Therefore it is imperative to develop a WMI algorithm with high accuracy and convergence speed. Heuristic algorithm, as a category of nonlinear method, possesses a very high convergence speed and good capacity to overcome local minimal values, and has been well applied for many areas (e.g. image processing, artificial intelligence). However, its effectiveness for micro-seismic WMI is still poorly investigated; very few literatures exits that addressing this subject. In this research an advanced heuristic algorithm, gravitational search algorithm (GSA) , is proposed to estimate the focal mechanism (angle of strike, dip and rake) and source locations in three dimension. Unlike traditional inversion methods, the heuristic algorithm inversion does not require the approximation of green function. The method directly interacts with a CPU parallelized finite difference forward modelling engine, and updating the model parameters under GSA criterions. The effectiveness of this method is tested with synthetic data form a multi-layered elastic model; the results indicate GSA can be well applied on WMI and has its unique advantages. Keywords: Micro-seismicity, Waveform matching inversion, gravitational search algorithm, parallel computation

  3. Gravity Search Algorithm hybridized Recursive Least Square method for power system harmonic estimation

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Singh

    2017-06-01

    Full Text Available This paper presents a new hybrid method based on Gravity Search Algorithm (GSA and Recursive Least Square (RLS, known as GSA-RLS, to solve the harmonic estimation problems in the case of time varying power signals in presence of different noises. GSA is based on the Newton’s law of gravity and mass interactions. In the proposed method, the searcher agents are a collection of masses that interact with each other using Newton’s laws of gravity and motion. The basic GSA algorithm strategy is combined with RLS algorithm sequentially in an adaptive way to update the unknown parameters (weights of the harmonic signal. Simulation and practical validation are made with the experimentation of the proposed algorithm with real time data obtained from a heavy paper industry. A comparative performance of the proposed algorithm is evaluated with other recently reported algorithms like, Differential Evolution (DE, Particle Swarm Optimization (PSO, Bacteria Foraging Optimization (BFO, Fuzzy-BFO (F-BFO hybridized with Least Square (LS and BFO hybridized with RLS algorithm, which reveals that the proposed GSA-RLS algorithm is the best in terms of accuracy, convergence and computational time.

  4. Muscle forces during running predicted by gradient-based and random search static optimisation algorithms.

    Science.gov (United States)

    Miller, Ross H; Gillette, Jason C; Derrick, Timothy R; Caldwell, Graham E

    2009-04-01

    Muscle forces during locomotion are often predicted using static optimisation and SQP. SQP has been criticised for over-estimating force magnitudes and under-estimating co-contraction. These problems may be related to SQP's difficulty in locating the global minimum to complex optimisation problems. Algorithms designed to locate the global minimum may be useful in addressing these problems. Muscle forces for 18 flexors and extensors of the lower extremity were predicted for 10 subjects during the stance phase of running. Static optimisation using SQP and two random search (RS) algorithms (a genetic algorithm and simulated annealing) estimated muscle forces by minimising the sum of cubed muscle stresses. The RS algorithms predicted smaller peak forces (42% smaller on average) and smaller muscle impulses (46% smaller on average) than SQP, and located solutions with smaller cost function scores. Results suggest that RS may be a more effective tool than SQP for minimising the sum of cubed muscle stresses in static optimisation.

  5. Voltage stability index based optimal placement of static VAR compensator and sizing using Cuckoo search algorithm

    Science.gov (United States)

    Venkateswara Rao, B.; Kumar, G. V. Nagesh; Chowdary, D. Deepak; Bharathi, M. Aruna; Patra, Stutee

    2017-07-01

    This paper furnish the new Metaheuristic algorithm called Cuckoo Search Algorithm (CSA) for solving optimal power flow (OPF) problem with minimization of real power generation cost. The CSA is found to be the most efficient algorithm for solving single objective optimal power flow problems. The CSA performance is tested on IEEE 57 bus test system with real power generation cost minimization as objective function. Static VAR Compensator (SVC) is one of the best shunt connected device in the Flexible Alternating Current Transmission System (FACTS) family. It has capable of controlling the voltage magnitudes of buses by injecting the reactive power to system. In this paper SVC is integrated in CSA based Optimal Power Flow to optimize the real power generation cost. SVC is used to improve the voltage profile of the system. CSA gives better results as compared to genetic algorithm (GA) in both without and with SVC conditions.

  6. CSLM: Levenberg Marquardt based Back Propagation Algorithm Optimized with Cuckoo Search

    Directory of Open Access Journals (Sweden)

    Nazri Mohd. Nawi

    2014-11-01

    Full Text Available Training an artificial neural network is an optimization task, since it is desired to find optimal weight sets for a neural network during training process. Traditional training algorithms such as back propagation have some drawbacks such as getting stuck in local minima and slow speed of convergence. This study combines the best features of two algorithms; i.e. Levenberg Marquardt back propagation (LMBP and Cuckoo Search (CS for improving the convergence speed of artificial neural networks (ANN training. The proposed CSLM algorithm is trained on XOR and OR datasets. The experimental results show that the proposed CSLM algorithm has better performance than other similar hybrid variants used in this study.

  7. A hybrid tabu search algorithm for automatically assigning patients to beds.

    Science.gov (United States)

    Demeester, Peter; Souffriau, Wouter; De Causmaecker, Patrick; Vanden Berghe, Greet

    2010-01-01

    We describe a patient admission scheduling algorithm that supports the operational decisions in a hospital. It involves efficiently assigning patients to beds in the appropriate departments, taking into account the medical needs of the patients as well as their preferences, while keeping the number of patients in the different departments balanced. Due to the combinatorial complexity of the admission scheduling problem, there is a need for an algorithm that intelligently assists the admission scheduler in taking decisions fast. To this end a hybridized tabu search algorithm is developed to tackle the admission scheduling problem. For testing, we use a randomly generated data set. The performance of the algorithm is compared with an integer programming approach. The metaheuristic allows flexible modelling and presents feasible solutions even when disrupted by the user at an early stage in the calculation. The integer programming approach is not able to find a solution in 1h of calculation time. 2009 Elsevier B.V. All rights reserved.

  8. Parameter Identification of the 2-Chlorophenol Oxidation Model Using Improved Differential Search Algorithm

    Directory of Open Access Journals (Sweden)

    Guang-zhou Chen

    2015-01-01

    Full Text Available Parameter identification plays a crucial role for simulating and using model. This paper firstly carried out the sensitivity analysis of the 2-chlorophenol oxidation model in supercritical water using the Monte Carlo method. Then, to address the nonlinearity of the model, two improved differential search (DS algorithms were proposed to carry out the parameter identification of the model. One strategy is to adopt the Latin hypercube sampling method to replace the uniform distribution of initial population; the other is to combine DS with simplex method. The results of sensitivity analysis reveal the sensitivity and the degree of difficulty identified for every model parameter. Furthermore, the posteriori probability distribution of parameters and the collaborative relationship between any two parameters can be obtained. To verify the effectiveness of the improved algorithms, the optimization performance of improved DS in kinetic parameter estimation is studied and compared with that of the basic DS algorithm, differential evolution, artificial bee colony optimization, and quantum-behaved particle swarm optimization. And the experimental results demonstrate that the DS with the Latin hypercube sampling method does not present better performance, while the hybrid methods have the advantages of strong global search ability and local search ability and are more effective than the other algorithms.

  9. A Novel Algorithm for Validating Peptide Identification from a Shotgun Proteomics Search Engine

    Science.gov (United States)

    Jian, Ling; Niu, Xinnan; Xia, Zhonghang; Samir, Parimal; Sumanasekera, Chiranthani; Zheng, Mu; Jennings, Jennifer L.; Hoek, Kristen L.; Allos, Tara; Howard., Leigh M.; Edwards, Kathryn M.; Weil, P. Anthony; Link, Andrew J.

    2013-01-01

    Liquid chromatography coupled with tandem mass spectrometry has revolutionized the proteomics analysis of complexes, cells, and tissues. In a typical proteomic analysis, the tandem mass spectra from a LC/MS/MS experiment are assigned to a peptide by a search engine that compares the experimental MS/MS peptide data to theoretical peptide sequences in a protein database. The peptide spectra matches are then used to infer a list of identified proteins in the original sample. However, the search engines often fail to distinguish between correct and incorrect peptides assignments. In this study, we designed and implemented a novel algorithm called De-Noise to reduce the number of incorrect peptide matches and maximize the number of correct peptides at a fixed false discovery rate using a minimal number of scoring outputs from the SEQUEST search engine. The novel algorithm uses a three step process: data cleaning, data refining through a SVM-based decision function, and a final data refining step based on proteolytic peptide patterns. Using proteomics data generated on different types of mass spectrometers, we optimized the De-Noise algorithm based on the resolution and mass accuracy of the mass spectrometer employed in the LC/MS/MS experiment. Our results demonstrate De-Noise improves peptide identification compared to other methods used to process the peptide sequence matches assigned by SEQUEST. Because De-Noise uses a limited number of scoring attributes, it can be easily implemented with other search engines. PMID:23402659

  10. Efficient and accurate optimal linear phase FIR filter design using opposition-based harmony search algorithm.

    Science.gov (United States)

    Saha, S K; Dutta, R; Choudhury, R; Kar, R; Mandal, D; Ghoshal, S P

    2013-01-01

    In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems.

  11. Efficient and Accurate Optimal Linear Phase FIR Filter Design Using Opposition-Based Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    S. K. Saha

    2013-01-01

    Full Text Available In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems.

  12. Parameter estimation of activated sludge process based on an improved cuckoo search algorithm.

    Science.gov (United States)

    Du, Xianjun; Wang, Junlu; Jegatheesan, Veeriah; Shi, Guohua

    2018-02-01

    It is essential to use appropriate values for kinetic parameters in activated sludge model when the model is applied for wastewater treatment processes under different environments. An improved cuckoo search (ICS) algorithm was proposed in this paper for the estimation of kinetic parameters used in Activated Sludge Model No. 1 (ASM1). ICS is tested for its speed and accuracy in reaching solution by searching global minima of six standard functions. Cyclical adjustment strategy was employed into the detected probability to increase searching ability. Meanwhile, the searching step was adaptively adjusted based on the optimal nest of the last generation and the current iteration numbers. Subsequently, ICS is used to estimate 7 sensitive parameters in ASM1 for practical applications. Field data are used to validate prediction accuracy of ASM1 with estimated parameters. Predicted results of the model are closer to the actual data with adjusted parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Search for baryonic resonances decaying to {xi}{pi} in deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, A. [DESY, Hamburg (Germany); Alexa, C. [DESY, Hamburg (Germany)]|[National Institute for Physics and Nuclear Engineering, Magurele, Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2007-04-15

    A search for narrow baryonic resonances decaying into {xi}{sup -}{pi}{sup -} or {xi}{sup -}{pi}{sup +} and their antiparticles is carried out with the H1 detector using deep inelastic scattering events at HERA in the range of negative photon four-momentum transfer squared 2

  14. Search for a two-photon exchange contribution to inclusive deep-inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Physikalisches Institut, Universitaet Giessen, 35392 Giessen (Germany); Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Akopov, N. [Yerevan Physics Institute, 375036 Yerevan (Armenia); Akopov, Z. [DESY, 22603 Hamburg (Germany); Aschenauer, E.C. [DESY, 15738 Zeuthen (Germany); Augustyniak, W. [Andrzej Soltan Institute for Nuclear Studies, 00-689 Warsaw (Poland); Avakian, R.; Avetissian, A. [Yerevan Physics Institute, 375036 Yerevan (Armenia); Avetisyan, E. [DESY, 22603 Hamburg (Germany); Ball, B. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Belostotski, S. [Petersburg Nuclear Physics Institute, Gatchina, Leningrad region 188300 (Russian Federation); Bianchi, N. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Blok, H.P. [National Institute for Subatomic Physics (Nikhef), 1009 DB Amsterdam (Netherlands); Department of Physics, VU University, 1081 HV Amsterdam (Netherlands); Boettcher, H. [DESY, 15738 Zeuthen (Germany); Bonomo, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara and Dipartimento di Fisica, Universita di Ferrara, 44100 Ferrara (Italy); Borissov, A. [DESY, 22603 Hamburg (Germany); Bowles, J. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Bryzgalov, V. [Institute for High Energy Physics, Protvino, Moscow region 142281 (Russian Federation); Burns, J. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Capitani, G.P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Cisbani, E. [Istituto Nazionale di Fisica Nucleare, Sezione Roma 1, Gruppo Sanita and Physics Laboratory, Istituto Superiore di Sanita, 00161 Roma (Italy)

    2010-01-04

    The transverse-target single-spin asymmetry for inclusive deep-inelastic scattering with effectively unpolarized electron and positron beams off a transversely polarized hydrogen target was measured, with the goal of searching for a two-photon exchange signal in the kinematic range 0.0071GeV{sup 2} and Q{sup 2}<1GeV{sup 2}, and for both electron and positron beams, the asymmetries are found to be consistent with zero within statistical and systematic uncertainties, which are of order 10{sup -3} for the asymmetries integrated over x{sub B}.

  15. A HYBRID HOPFIELD NEURAL NETWORK AND TABU SEARCH ALGORITHM TO SOLVE ROUTING PROBLEM IN COMMUNICATION NETWORK

    Directory of Open Access Journals (Sweden)

    MANAR Y. KASHMOLA

    2012-06-01

    Full Text Available The development of hybrid algorithms for solving complex optimization problems focuses on enhancing the strengths and compensating for the weakness of two or more complementary approaches. The goal is to intelligently combine the key elements of these approaches to find superior solutions to solve optimization problems. Optimal routing in communication network is considering a complex optimization problem. In this paper we propose a hybrid Hopfield Neural Network (HNN and Tabu Search (TS algorithm, this algorithm called hybrid HNN-TS algorithm. The paradigm of this hybridization is embedded. We embed the short-term memory and tabu restriction features from TS algorithm in the HNN model. The short-term memory and tabu restriction control the neuron selection process in the HNN model in order to get around the local minima problem and find an optimal solution using the HNN model to solve complex optimization problem. The proposed algorithm is intended to find the optimal path for packet transmission in the network which is fills in the field of routing problem. The optimal path that will be selected is depending on 4-tuples (delay, cost, reliability and capacity. Test results show that the propose algorithm can find path with optimal cost and a reasonable number of iterations. It also shows that the complexity of the network model won’t be a problem since the neuron selection is done heuristically.

  16. A novel symbiotic organisms search algorithm for optimal power flow of power system with FACTS devices

    Directory of Open Access Journals (Sweden)

    Dharmbir Prasad

    2016-03-01

    Full Text Available In this paper, symbiotic organisms search (SOS algorithm is proposed for the solution of optimal power flow (OPF problem of power system equipped with flexible ac transmission systems (FACTS devices. Inspired by interaction between organisms in ecosystem, SOS algorithm is a recent population based algorithm which does not require any algorithm specific control parameters unlike other algorithms. The performance of the proposed SOS algorithm is tested on the modified IEEE-30 bus and IEEE-57 bus test systems incorporating two types of FACTS devices, namely, thyristor controlled series capacitor and thyristor controlled phase shifter at fixed locations. The OPF problem of the present work is formulated with four different objective functions viz. (a fuel cost minimization, (b transmission active power loss minimization, (c emission reduction and (d minimization of combined economic and environmental cost. The simulation results exhibit the potential of the proposed SOS algorithm and demonstrate its effectiveness for solving the OPF problem of power system incorporating FACTS devices over the other evolutionary optimization techniques that surfaced in the recent state-of-the-art literature.

  17. New reference trajectory optimization algorithm for a flight management system inspired in beam search

    Directory of Open Access Journals (Sweden)

    Alejandro MURRIETA-MENDOZA

    2017-08-01

    Full Text Available With the objective of reducing the flight cost and the amount of polluting emissions released in the atmosphere, a new optimization algorithm considering the climb, cruise and descent phases is presented for the reference vertical flight trajectory. The selection of the reference vertical navigation speeds and altitudes was solved as a discrete combinatory problem by means of a graph-tree passing through nodes using the beam search optimization technique. To achieve a compromise between the execution time and the algorithm’s ability to find the global optimal solution, a heuristic methodology introducing a parameter called “optimism coefficient was used in order to estimate the trajectory’s flight cost at every node. The optimal trajectory cost obtained with the developed algorithm was compared with the cost of the optimal trajectory provided by a commercial flight management system(FMS. The global optimal solution was validated against an exhaustive search algorithm(ESA, other than the proposed algorithm. The developed algorithm takes into account weather effects, step climbs during cruise and air traffic management constraints such as constant altitude segments, constant cruise Mach, and a pre-defined reference lateral navigation route. The aircraft fuel burn was computed using a numerical performance model which was created and validated using flight test experimental data.

  18. An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network.

    Science.gov (United States)

    Cheng, Jing; Xia, Linyuan

    2016-08-31

    Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm.

  19. FAILURE CORRECTION OF LINEAR ARRAY ANTENNA WITH MULTIPLE NULL PLACEMENT USING CUCKOO SEARCH ALGORITHM

    Directory of Open Access Journals (Sweden)

    R. Muralidaran

    2014-03-01

    Full Text Available The influence of evolutionary algorithms enhanced its scope of getting its existence in almost every complex optimization problems. In this paper, cuckoo search algorithm, an algorithm based on the brood parasite behavior along with Levy weights has been proposed for the radiation pattern correction of a linear array of isotropic antennas with uniform spacing when failed with more than one antenna element. Even though deterioration produced by the failure of antenna elements results in various undesirable effects, consideration in this paper is given to the correction of side lobe level and null placement at two places. Various articles in the past have already shown that the idea to correct the radiation pattern is to alter the amplitude weights of the remaining unfailed elements, instead of replacing the faulty elements. This approach is made use of modifying the current excitations of unfailed elements using cuckoo search algorithm such that the resulting radiation pattern is similar to the unfailed original pattern in terms of side lobe level and null placement at two places. Examples shown in this paper demonstrate the effectiveness of this algorithm in achieving the desired objectives.

  20. Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns

    Science.gov (United States)

    2013-01-01

    Background It is well known that the search for homologous RNAs is more effective if both sequence and structure information is incorporated into the search. However, current tools for searching with RNA sequence-structure patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching large sequence databases because of the high computational costs of the underlying sequence-structure alignment problem. Results We present new fast index-based and online algorithms for approximate matching of RNA sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new index-based algorithm achieves a speedup of factor 560. Conclusions The presented methods achieve considerable speedups compared to the best previous method. This, together with the expected

  1. Linkage-Based Distance Metric in the Search Space of Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Yong-Hyuk Kim

    2015-01-01

    Full Text Available We propose a new distance metric, based on the linkage of genes, in the search space of genetic algorithms. This second-order distance measure is derived from the gene interaction graph and first-order distance, which is a natural distance in chromosomal spaces. We show that the proposed measure forms a metric space and can be computed efficiently. As an example application, we demonstrate how this measure can be used to estimate the extent to which gene rearrangement improves the performance of genetic algorithms.

  2. Heat Transfer Search Algorithm for Non-convex Economic Dispatch Problems

    Science.gov (United States)

    Hazra, Abhik; Das, Saborni; Basu, Mousumi

    2018-03-01

    This paper presents Heat Transfer Search (HTS) algorithm for the non-linear economic dispatch problem. HTS algorithm is based on the law of thermodynamics and heat transfer. The proficiency of the suggested technique has been disclosed on three dissimilar complicated economic dispatch problems with valve point effect; prohibited operating zone; and multiple fuels with valve point effect. Test results acquired from the suggested technique for the economic dispatch problem have been fitted to that acquired from other stated evolutionary techniques. It has been observed that the suggested HTS carry out superior solutions.

  3. Certain integrable system on a space associated with a quantum search algorithm

    International Nuclear Information System (INIS)

    Uwano, Y.; Hino, H.; Ishiwatari, Y.

    2007-01-01

    On thinking up a Grover-type quantum search algorithm for an ordered tuple of multiqubit states, a gradient system associated with the negative von Neumann entropy is studied on the space of regular relative configurations of multiqubit states (SR 2 CMQ). The SR 2 CMQ emerges, through a geometric procedure, from the space of ordered tuples of multiqubit states for the quantum search. The aim of this paper is to give a brief report on the integrability of the gradient dynamical system together with quantum information geometry of the underlying space, SR 2 CMQ, of that system

  4. CSA: A Credibility Search Algorithm Based on Different Query in Unstructured Peer-to-Peer Networks

    Directory of Open Access Journals (Sweden)

    Hongyan Mei

    2014-01-01

    Full Text Available Efficient searching for resources has become a challenging task with less network bandwidth consumption in unstructured peer-to-peer (P2P networks. Heuristic search mechanism is an effective method which depends on the previous searches to guide future ones. In the proposed methods, searching for high-repetition resources is more effective. However, the performances of the searches for nonrepetition or low-repetition or rare resources need to be improved. As for this problem, considering the similarity between social networks and unstructured P2P networks, we present a credibility search algorithm based on different queries according to the trust production principle in sociology and psychology. In this method, queries are divided into familiar queries and unfamiliar queries. For different queries, we adopt different ways to get the credibility of node to its each neighbor. And then queries should be forwarded by the neighbor nodes with higher credibility. Experimental results show that our method can improve query hit rate and reduce search delay with low bandwidth consumption in three different network topologies under static and dynamic network environments.

  5. Hooke–Jeeves Method-used Local Search in a Hybrid Global Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    V. D. Sulimov

    2014-01-01

    Full Text Available Modern methods for optimization investigation of complex systems are based on development and updating the mathematical models of systems because of solving the appropriate inverse problems. Input data desirable for solution are obtained from the analysis of experimentally defined consecutive characteristics for a system or a process. Causal characteristics are the sought ones to which equation coefficients of mathematical models of object, limit conditions, etc. belong. The optimization approach is one of the main ones to solve the inverse problems. In the main case it is necessary to find a global extremum of not everywhere differentiable criterion function. Global optimization methods are widely used in problems of identification and computation diagnosis system as well as in optimal control, computing to-mography, image restoration, teaching the neuron networks, other intelligence technologies. Increasingly complicated systems of optimization observed during last decades lead to more complicated mathematical models, thereby making solution of appropriate extreme problems significantly more difficult. A great deal of practical applications may have the problem con-ditions, which can restrict modeling. As a consequence, in inverse problems the criterion functions can be not everywhere differentiable and noisy. Available noise means that calculat-ing the derivatives is difficult and unreliable. It results in using the optimization methods without calculating the derivatives.An efficiency of deterministic algorithms of global optimization is significantly restrict-ed by their dependence on the extreme problem dimension. When the number of variables is large they use the stochastic global optimization algorithms. As stochastic algorithms yield too expensive solutions, so this drawback restricts their applications. Developing hybrid algo-rithms that combine a stochastic algorithm for scanning the variable space with deterministic local search

  6. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  7. A Novel adaptative Discrete Cuckoo Search Algorithm for parameter optimization in computer vision

    Directory of Open Access Journals (Sweden)

    loubna benchikhi

    2017-10-01

    Full Text Available Computer vision applications require choosing operators and their parameters, in order to provide the best outcomes. Often, the users quarry on expert knowledge and must experiment many combinations to find manually the best one. As performance, time and accuracy are important, it is necessary to automate parameter optimization at least for crucial operators. In this paper, a novel approach based on an adaptive discrete cuckoo search algorithm (ADCS is proposed. It automates the process of algorithms’ setting and provides optimal parameters for vision applications. This work reconsiders a discretization problem to adapt the cuckoo search algorithm and presents the procedure of parameter optimization. Some experiments on real examples and comparisons to other metaheuristic-based approaches: particle swarm optimization (PSO, reinforcement learning (RL and ant colony optimization (ACO show the efficiency of this novel method.

  8. An improved algorithm for searching all minimal cuts in modified networks

    International Nuclear Information System (INIS)

    Yeh, W.-C.

    2008-01-01

    A modified network is an updated network after inserting a branch string (a special path) between two nodes in the original network. Modifications are common for network expansion or reinforcement evaluation and planning. The problem of searching all minimal cuts (MCs) in a modified network is discussed and solved in this study. The existing best-known methods for solving this problem either needed extensive comparison and verification or failed to solve some special but important cases. Therefore, a more efficient, intuitive and generalized method for searching all MCs without an extensive research procedure is proposed. In this study, we first develop an intuitive algorithm based upon the reformation of all MCs in the original network to search for all MCs in a modified network. Next, the correctness of the proposed algorithm will be analyzed and proven. The computational complexity of the proposed algorithm is analyzed and compared with the existing best-known methods. Finally, two examples illustrate how all MCs are generated in a modified network using the information of all of the MCs in the corresponding original network

  9. A Prefiltered Cuckoo Search Algorithm with Geometric Operators for Solving Sudoku Problems

    Directory of Open Access Journals (Sweden)

    Ricardo Soto

    2014-01-01

    Full Text Available The Sudoku is a famous logic-placement game, originally popularized in Japan and today widely employed as pastime and as testbed for search algorithms. The classic Sudoku consists in filling a 9×9 grid, divided into nine 3×3 regions, so that each column, row, and region contains different digits from 1 to 9. This game is known to be NP-complete, with existing various complete and incomplete search algorithms able to solve different instances of it. In this paper, we present a new cuckoo search algorithm for solving Sudoku puzzles combining prefiltering phases and geometric operations. The geometric operators allow one to correctly move toward promising regions of the combinatorial space, while the prefiltering phases are able to previously delete from domains the values that do not conduct to any feasible solution. This integration leads to a more efficient domain filtering and as a consequence to a faster solving process. We illustrate encouraging experimental results where our approach noticeably competes with the best approximate methods reported in the literature.

  10. A prefiltered cuckoo search algorithm with geometric operators for solving Sudoku problems.

    Science.gov (United States)

    Soto, Ricardo; Crawford, Broderick; Galleguillos, Cristian; Monfroy, Eric; Paredes, Fernando

    2014-01-01

    The Sudoku is a famous logic-placement game, originally popularized in Japan and today widely employed as pastime and as testbed for search algorithms. The classic Sudoku consists in filling a 9 × 9 grid, divided into nine 3 × 3 regions, so that each column, row, and region contains different digits from 1 to 9. This game is known to be NP-complete, with existing various complete and incomplete search algorithms able to solve different instances of it. In this paper, we present a new cuckoo search algorithm for solving Sudoku puzzles combining prefiltering phases and geometric operations. The geometric operators allow one to correctly move toward promising regions of the combinatorial space, while the prefiltering phases are able to previously delete from domains the values that do not conduct to any feasible solution. This integration leads to a more efficient domain filtering and as a consequence to a faster solving process. We illustrate encouraging experimental results where our approach noticeably competes with the best approximate methods reported in the literature.

  11. THE ALGORITHM AND PROGRAM OF M-MATRICES SEARCH AND STUDY

    Directory of Open Access Journals (Sweden)

    Y. N. Balonin

    2013-05-01

    Full Text Available The algorithm and software for search and study of orthogonal bases matrices – minimax matrices (M-matrix are considered. The algorithm scheme is shown, comments on calculation blocks are given, and interface of the MMatrix software system developed with participation of the authors is explained. The results of the universal algorithm work are presented as Hadamard matrices, Belevitch matrices (C-matrices, conference matrices and matrices of even and odd orders complementary and closely related to those ones by their properties, in particular, the matrix of the 22-th order for which there is no C-matrix. Examples of portraits for alternative matrices of the 255-th and the 257-th orders are given corresponding to the sequences of Mersenne and Fermat numbers. A new way to get Hadamard matrices is explained, different from the previously known procedures based on iterative processes and calculations of Lagrange symbols, with theoretical and practical meaning.

  12. Optimal gravitational search algorithm for automatic generation control of interconnected power systems

    Directory of Open Access Journals (Sweden)

    Rabindra Kumar Sahu

    2014-09-01

    Full Text Available An attempt is made for the effective application of Gravitational Search Algorithm (GSA to optimize PI/PIDF controller parameters in Automatic Generation Control (AGC of interconnected power systems. Initially, comparison of several conventional objective functions reveals that ITAE yields better system performance. Then, the parameters of GSA technique are properly tuned and the GSA control parameters are proposed. The superiority of the proposed approach is demonstrated by comparing the results of some recently published techniques such as Differential Evolution (DE, Bacteria Foraging Optimization Algorithm (BFOA and Genetic Algorithm (GA. Additionally, sensitivity analysis is carried out that demonstrates the robustness of the optimized controller parameters to wide variations in operating loading condition and time constants of speed governor, turbine, tie-line power. Finally, the proposed approach is extended to a more realistic power system model by considering the physical constraints such as reheat turbine, Generation Rate Constraint (GRC and Governor Dead Band nonlinearity.

  13. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm.

    Science.gov (United States)

    Mandal, Sudip; Saha, Goutam; Pal, Rajat Kumar

    2017-08-01

    Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.

  14. A heuristic algorithm based on tabu search for vehicle routing problems with backhauls

    Directory of Open Access Journals (Sweden)

    Jhon Jairo Santa Chávez

    2017-07-01

    Full Text Available In this paper, a heuristic algorithm based on Tabu Search Approach for solving the Vehicle Routing Problem with Backhauls (VRPB is proposed. The problem considers a set of customers divided in two subsets: Linehaul and Backhaul customers. Each Linehaul customer requires the delivery of a given quantity of product from the depot, whereas a given quantity of product must be picked up from each Backhaul customer and transported to the depot. In the proposed algorithm, each route consists of one sub-route in which only the delivery task is done, and one sub-route in which only the collection process is performed. The search process allows obtaining a correct order to visit all the customers on each sub-route. In addition, the proposed algorithm determines the best connections among the sub-routes in order to obtain a global solution with the minimum traveling cost. The efficiency of the algorithm is evaluated on a set of benchmark instances taken from the literature. The results show that the computing times are greatly reduced with a high quality of solutions. Finally, conclusions and suggestions for future works are presented.

  15. A mini-greedy algorithm for faster structural RNA stem-loop search.

    Science.gov (United States)

    Gorodkin, J; Lyngso, R B; Stormo, G D

    2001-01-01

    When a set of coregulated genes share a common structural RNA motif, e.g. a hairpin, most motif search approaches fail to locate the covarying but structurally conserved motif. There do exist methods that can locate structural RNA motifs, like FOLDALIGN, but the main problem with these methods is that they are computationally expensive. In FOLDALIGN, a major contribution to this is the use of a greedy algorithm to construct the multiple alignment. To ensure good quality many redundant computations must be made. However, by applying the greedy algorithm on a carefully selected subset of sequences, near full greedy quality can be obtained. The basic idea is to estimate the order in which the sequences entered a good greedy alignment. If such a ranking, found from all pairwise alignments, is in good agreement with the order of appearance in the multiple alignment, the core structural motif can be found by performing the greedy algorithm on just the top sequences in the ranking. The ranking used in this mini-greedy algorithm is found by using two complementing approaches: 1) When interpreting the FOLDALIGN score as an inner product (kernel), the sequences can be ranked according to their distance to their center of mass; 2) We construct an algorithm that attempts to find the K closest sequences in the vector space associated with the inner product, and the remaining sequences can be ranked by their minimum distance to any of the sequences, or to the center of mass in this set. The two approaches arecompared and merged, and the results discussed. We also show that structural alignments of near full greedy quality can found in significantly reduced time, using these methods. The algorithm is being included in the SLASH (Stem-Loop Align SearcH) server available at http://www.bioinf.au.dk/slash.

  16. Optimal IIR filter design using Gravitational Search Algorithm with Wavelet Mutation

    Directory of Open Access Journals (Sweden)

    S.K. Saha

    2015-01-01

    Full Text Available This paper presents a global heuristic search optimization technique, which is a hybridized version of the Gravitational Search Algorithm (GSA and Wavelet Mutation (WM strategy. Thus, the Gravitational Search Algorithm with Wavelet Mutation (GSAWM was adopted for the design of an 8th-order infinite impulse response (IIR filter. GSA is based on the interaction of masses situated in a small isolated world guided by the approximation of Newtonian’s laws of gravity and motion. Each mass is represented by four parameters, namely, position, active, passive and inertia mass. The position of the heaviest mass gives the near optimal solution. For better exploitation in multidimensional search spaces, the WM strategy is applied to randomly selected particles that enhance the capability of GSA for finding better near optimal solutions. An extensive simulation study of low-pass (LP, high-pass (HP, band-pass (BP and band-stop (BS IIR filters unleashes the potential of GSAWM in achieving better cut-off frequency sharpness, smaller pass band and stop band ripples, smaller transition width and higher stop band attenuation with assured stability.

  17. Iterated Local Search Algorithm with Strategic Oscillation for School Bus Routing Problem with Bus Stop Selection

    Directory of Open Access Journals (Sweden)

    Mohammad Saied Fallah Niasar

    2017-02-01

    Full Text Available he school bus routing problem (SBRP represents a variant of the well-known vehicle routing problem. The main goal of this study is to pick up students allocated to some bus stops and generate routes, including the selected stops, in order to carry students to school. In this paper, we have proposed a simple but effective metaheuristic approach that employs two features: first, it utilizes large neighborhood structures for a deeper exploration of the search space; second, the proposed heuristic executes an efficient transition between the feasible and infeasible portions of the search space. Exploration of the infeasible area is controlled by a dynamic penalty function to convert the unfeasible solution into a feasible one. Two metaheuristics, called N-ILS (a variant of the Nearest Neighbourhood with Iterated Local Search algorithm and I-ILS (a variant of Insertion with Iterated Local Search algorithm are proposed to solve SBRP. Our experimental procedure is based on the two data sets. The results show that N-ILS is able to obtain better solutions in shorter computing times. Additionally, N-ILS appears to be very competitive in comparison with the best existing metaheuristics suggested for SBRP

  18. Optimization of distribution piping network in district cooling system using genetic algorithm with local search

    International Nuclear Information System (INIS)

    Chan, Apple L.S.; Hanby, Vic I.; Chow, T.T.

    2007-01-01

    A district cooling system is a sustainable means of distribution of cooling energy through mass production. A cooling medium like chilled water is generated at a central refrigeration plant and supplied to serve a group of consumer buildings through a piping network. Because of the substantial capital investment involved, an optimal design of the distribution piping configuration is one of the crucial factors for successful implementation of the district cooling scheme. In the present study, genetic algorithm (GA) incorporated with local search techniques was developed to find the optimal/near optimal configuration of the piping network in a hypothetical site. The effect of local search, mutation rate and frequency of local search on the performance of the GA in terms of both solution quality and computation time were investigated and presented in this paper

  19. Analysis of an iterated local search algorithm for vertex cover in sparse random graphs

    DEFF Research Database (Denmark)

    Witt, Carsten

    2012-01-01

    based on the refined analysis of the Karp–Sipser algorithm by Aronson et al. (1998) [1]. Subsequently, theoretical supplements are given to experimental studies of search heuristics on random graphs. For csearch heuristic...... finds an optimal cover in polynomial time with a probability arbitrarily close to 1. This behavior relies on the absence of a giant component. As an additional insight into the randomized search, it is shown that the heuristic fails badly also on graphs consisting of a single tree component of maximum......Recently, various randomized search heuristics have been studied for the solution of the minimum vertex cover problem, in particular for sparse random instances according to the G(n,c/n) model, where c>0 is a constant. Methods from statistical physics suggest that the problem is easy if c...

  20. Scatter search based met heuristic for robust optimization of the deploying of "DWDM" technology on optical networks with survivability

    Directory of Open Access Journals (Sweden)

    Moreno-Pérez José A.

    2005-01-01

    Full Text Available In this paper we discuss the application of a met heuristic approach based on the Scatter Search to deal with robust optimization of the planning problem in the deploying of the Dense Wavelength Division Multiplexing (DWDM technology on an existing optical fiber network taking into account, in addition to the forecasted demands, the uncertainty in the survivability requirements.

  1. Design and economic investigation of shell and tube heat exchangers using Improved Intelligent Tuned Harmony Search algorithm

    Directory of Open Access Journals (Sweden)

    Oguz Emrah Turgut

    2014-12-01

    Full Text Available This study explores the thermal design of shell and tube heat exchangers by using Improved Intelligent Tuned Harmony Search (I-ITHS algorithm. Intelligent Tuned Harmony Search (ITHS is an upgraded version of harmony search algorithm which has an advantage of deciding intensification and diversification processes by applying proper pitch adjusting strategy. In this study, we aim to improve the search capacity of ITHS algorithm by utilizing chaotic sequences instead of uniformly distributed random numbers and applying alternative search strategies inspired by Artificial Bee Colony algorithm and Opposition Based Learning on promising areas (best solutions. Design variables including baffle spacing, shell diameter, tube outer diameter and number of tube passes are used to minimize total cost of heat exchanger that incorporates capital investment and the sum of discounted annual energy expenditures related to pumping and heat exchanger area. Results show that I-ITHS can be utilized in optimizing shell and tube heat exchangers.

  2. Monte-Carlo algorithm for line-by-line calculations of thermal radiation in multiple scattering layered atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Fomin, B.A. [CPTEC/INPE, Rod. Presidente Dutra, km.40, Cachoeira Paulsta, Sao Paulo, 12630-000 (Brazil)]. E-mail: fomin@cptec.inpe.br

    2006-03-15

    An algorithm for calculations of the longwave radiation in cloudy and aerosol slab atmospheres is described. It is based on the line-by-line and Monte-Carlo methods and is suitable for accurate treatment of both the gaseous absorption and the particulate multiple scattering in any spectral regions; other published algorithms as accurate as this can only make calculations in narrow spectral regions. It is recommended that this algorithm is well suited for radiation code validations as well as for theoretical investigations of radiative transfer in clouds and aerosols and satellite signal simulations.

  3. Robust total energy demand estimation with a hybrid Variable Neighborhood Search – Extreme Learning Machine algorithm

    International Nuclear Information System (INIS)

    Sánchez-Oro, J.; Duarte, A.; Salcedo-Sanz, S.

    2016-01-01

    Highlights: • The total energy demand in Spain is estimated with a Variable Neighborhood algorithm. • Socio-economic variables are used, and one year ahead prediction horizon is considered. • Improvement of the prediction with an Extreme Learning Machine network is considered. • Experiments are carried out in real data for the case of Spain. - Abstract: Energy demand prediction is an important problem whose solution is evaluated by policy makers in order to take key decisions affecting the economy of a country. A number of previous approaches to improve the quality of this estimation have been proposed in the last decade, the majority of them applying different machine learning techniques. In this paper, the performance of a robust hybrid approach, composed of a Variable Neighborhood Search algorithm and a new class of neural network called Extreme Learning Machine, is discussed. The Variable Neighborhood Search algorithm is focused on obtaining the most relevant features among the set of initial ones, by including an exponential prediction model. While previous approaches consider that the number of macroeconomic variables used for prediction is a parameter of the algorithm (i.e., it is fixed a priori), the proposed Variable Neighborhood Search method optimizes both: the number of variables and the best ones. After this first step of feature selection, an Extreme Learning Machine network is applied to obtain the final energy demand prediction. Experiments in a real case of energy demand estimation in Spain show the excellent performance of the proposed approach. In particular, the whole method obtains an estimation of the energy demand with an error lower than 2%, even when considering the crisis years, which are a real challenge.

  4. Algorithm of axial fuel optimization based in progressive steps of turned search

    International Nuclear Information System (INIS)

    Martin del Campo, C.; Francois, J.L.

    2003-01-01

    The development of an algorithm for the axial optimization of fuel of boiling water reactors (BWR) is presented. The algorithm is based in a serial optimizations process in the one that the best solution in each stage is the starting point of the following stage. The objective function of each stage adapts to orient the search toward better values of one or two parameters leaving the rest like restrictions. Conform to it advances in those optimization stages, it is increased the fineness of the evaluation of the investigated designs. The algorithm is based on three stages, in the first one are used Genetic algorithms and in the two following Tabu Search. The objective function of the first stage it looks for to minimize the average enrichment of the one it assembles and to fulfill with the generation of specified energy for the operation cycle besides not violating none of the limits of the design base. In the following stages the objective function looks for to minimize the power factor peak (PPF) and to maximize the margin of shutdown (SDM), having as restrictions the one average enrichment obtained for the best design in the first stage and those other restrictions. The third stage, very similar to the previous one, it begins with the design of the previous stage but it carries out a search of the margin of shutdown to different exhibition steps with calculations in three dimensions (3D). An application to the case of the design of the fresh assemble for the fourth fuel reload of the Unit 1 reactor of the Laguna Verde power plant (U1-CLV) is presented. The obtained results show an advance in the handling of optimization methods and in the construction of the objective functions that should be used for the different design stages of the fuel assemblies. (Author)

  5. Efficient Algorithms for Searching the Minimum Information Partition in Integrated Information Theory

    Science.gov (United States)

    Kitazono, Jun; Kanai, Ryota; Oizumi, Masafumi

    2018-03-01

    The ability to integrate information in the brain is considered to be an essential property for cognition and consciousness. Integrated Information Theory (IIT) hypothesizes that the amount of integrated information ($\\Phi$) in the brain is related to the level of consciousness. IIT proposes that to quantify information integration in a system as a whole, integrated information should be measured across the partition of the system at which information loss caused by partitioning is minimized, called the Minimum Information Partition (MIP). The computational cost for exhaustively searching for the MIP grows exponentially with system size, making it difficult to apply IIT to real neural data. It has been previously shown that if a measure of $\\Phi$ satisfies a mathematical property, submodularity, the MIP can be found in a polynomial order by an optimization algorithm. However, although the first version of $\\Phi$ is submodular, the later versions are not. In this study, we empirically explore to what extent the algorithm can be applied to the non-submodular measures of $\\Phi$ by evaluating the accuracy of the algorithm in simulated data and real neural data. We find that the algorithm identifies the MIP in a nearly perfect manner even for the non-submodular measures. Our results show that the algorithm allows us to measure $\\Phi$ in large systems within a practical amount of time.

  6. Modified Backtracking Search Optimization Algorithm Inspired by Simulated Annealing for Constrained Engineering Optimization Problems

    Directory of Open Access Journals (Sweden)

    Hailong Wang

    2018-01-01

    Full Text Available The backtracking search optimization algorithm (BSA is a population-based evolutionary algorithm for numerical optimization problems. BSA has a powerful global exploration capacity while its local exploitation capability is relatively poor. This affects the convergence speed of the algorithm. In this paper, we propose a modified BSA inspired by simulated annealing (BSAISA to overcome the deficiency of BSA. In the BSAISA, the amplitude control factor (F is modified based on the Metropolis criterion in simulated annealing. The redesigned F could be adaptively decreased as the number of iterations increases and it does not introduce extra parameters. A self-adaptive ε-constrained method is used to handle the strict constraints. We compared the performance of the proposed BSAISA with BSA and other well-known algorithms when solving thirteen constrained benchmarks and five engineering design problems. The simulation results demonstrated that BSAISA is more effective than BSA and more competitive with other well-known algorithms in terms of convergence speed.

  7. Parametric optimization of ultrasonic machining process using gravitational search and fireworks algorithms

    Directory of Open Access Journals (Sweden)

    Debkalpa Goswami

    2015-03-01

    Full Text Available Ultrasonic machining (USM is a mechanical material removal process used to erode holes and cavities in hard or brittle workpieces by using shaped tools, high-frequency mechanical motion and an abrasive slurry. Unlike other non-traditional machining processes, such as laser beam and electrical discharge machining, USM process does not thermally damage the workpiece or introduce significant levels of residual stress, which is important for survival of materials in service. For having enhanced machining performance and better machined job characteristics, it is often required to determine the optimal control parameter settings of an USM process. The earlier mathematical approaches for parametric optimization of USM processes have mostly yielded near optimal or sub-optimal solutions. In this paper, two almost unexplored non-conventional optimization techniques, i.e. gravitational search algorithm (GSA and fireworks algorithm (FWA are applied for parametric optimization of USM processes. The optimization performance of these two algorithms is compared with that of other popular population-based algorithms, and the effects of their algorithm parameters on the derived optimal solutions and computational speed are also investigated. It is observed that FWA provides the best optimal results for the considered USM processes.

  8. Solving Flexible Job-Shop Scheduling Problem Using Gravitational Search Algorithm and Colored Petri Net

    Directory of Open Access Journals (Sweden)

    Behnam Barzegar

    2012-01-01

    Full Text Available Scheduled production system leads to avoiding stock accumulations, losses reduction, decreasing or even eliminating idol machines, and effort to better benefitting from machines for on time responding customer orders and supplying requested materials in suitable time. In flexible job-shop scheduling production systems, we could reduce time and costs by transferring and delivering operations on existing machines, that is, among NP-hard problems. The scheduling objective minimizes the maximal completion time of all the operations, which is denoted by Makespan. Different methods and algorithms have been presented for solving this problem. Having a reasonable scheduled production system has significant influence on improving effectiveness and attaining to organization goals. In this paper, new algorithm were proposed for flexible job-shop scheduling problem systems (FJSSP-GSPN that is based on gravitational search algorithm (GSA. In the proposed method, the flexible job-shop scheduling problem systems was modeled by color Petri net and CPN tool and then a scheduled job was programmed by GSA algorithm. The experimental results showed that the proposed method has reasonable performance in comparison with other algorithms.

  9. Improved gravitational search algorithm for unit commitment considering uncertainty of wind power

    International Nuclear Information System (INIS)

    Ji, Bin; Yuan, Xiaohui; Chen, Zhihuan; Tian, Hao

    2014-01-01

    With increasing wind farm integrations, unit commitment (UC) is more difficult to solve because of the intermittent and fluctuation nature of wind power. In this paper, scenario generation and reduction technique is applied to simulate the impacts of its uncertainty on system operation. And then a model of thermal UC problem with wind power integration (UCW) is established. Combination of quantum-inspired binary gravitational search algorithm (GSA) and scenario analysis method is proposed to solve UCW problem. Meanwhile, heuristic search strategies are used to handle the constraints of thermal unit for each scenario. In addition, a priority list of thermal units based on the weight between average full-load cost and maximal power output is utilized during the optimization process. Moreover, two UC test systems with and without wind power integration are used to verify the feasibility and effectiveness of the proposed method as well as the performance of the algorithm. The results are analyzed in detail, which demonstrate the model and the proposed method is practicable. The comparison with other methods clearly shows that the proposed method has higher efficiency for solving UC problems with and even without wind farm integration. - Highlights: • Impact of wind fluctuation on unit commitment problem (UCW) is investigated. • Quantum-inspired gravitational search algorithm (QBGSA) is used to optimize UC. • A new method combines QBGSA with scenario analysis is proposed to solve UCW. • Heuristic search strategies are applied to handle the constraints of the UCW. • The results verify the proposed method is feasible and efficient for handling UCW

  10. SCATTER

    International Nuclear Information System (INIS)

    Broome, J.

    1965-11-01

    The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)

  11. Testing an alternative search algorithm for compound identification with the 'Wiley Registry of Tandem Mass Spectral Data, MSforID'.

    Science.gov (United States)

    Oberacher, Herbert; Whitley, Graeme; Berger, Bernd; Weinmann, Wolfgang

    2013-04-01

    A tandem mass spectral database system consists of a library of reference spectra and a search program. State-of-the-art search programs show a high tolerance for variability in compound-specific fragmentation patterns produced by collision-induced decomposition and enable sensitive and specific 'identity search'. In this communication, performance characteristics of two search algorithms combined with the 'Wiley Registry of Tandem Mass Spectral Data, MSforID' (Wiley Registry MSMS, John Wiley and Sons, Hoboken, NJ, USA) were evaluated. The search algorithms tested were the MSMS search algorithm implemented in the NIST MS Search program 2.0g (NIST, Gaithersburg, MD, USA) and the MSforID algorithm (John Wiley and Sons, Hoboken, NJ, USA). Sample spectra were acquired on different instruments and, thus, covered a broad range of possible experimental conditions or were generated in silico. For each algorithm, more than 30,000 matches were performed. Statistical evaluation of the library search results revealed that principally both search algorithms can be combined with the Wiley Registry MSMS to create a reliable identification tool. It appears, however, that a higher degree of spectral similarity is necessary to obtain a correct match with the NIST MS Search program. This characteristic of the NIST MS Search program has a positive effect on specificity as it helps to avoid false positive matches (type I errors), but reduces sensitivity. Thus, particularly with sample spectra acquired on instruments differing in their setup from tandem-in-space type fragmentation, a comparably higher number of false negative matches (type II errors) were observed by searching the Wiley Registry MSMS. Copyright © 2013 John Wiley & Sons, Ltd.

  12. System network planning expansion using mathematical programming, genetic algorithms and tabu search

    Energy Technology Data Exchange (ETDEWEB)

    Sadegheih, A. [Department of Industrial Engineering, University of Yazd, P.O. Box 89195-741, Yazd (Iran); Drake, P.R. [E-Business and Operations Management Division, University of Liverpool Management School, University of Liverpool, Liverpool (United Kingdom)

    2008-06-15

    In this paper, system network planning expansion is formulated for mixed integer programming, a genetic algorithm (GA) and tabu search (TS). Compared with other optimization methods, GAs are suitable for traversing large search spaces, since they can do this relatively rapidly and because the use of mutation diverts the method away from local minima, which will tend to become more common as the search space increases in size. GA's give an excellent trade off between solution quality and computing time and flexibility for taking into account specific constraints in real situations. TS has emerged as a new, highly efficient, search paradigm for finding quality solutions to combinatorial problems. It is characterized by gathering knowledge during the search and subsequently profiting from this knowledge. The attractiveness of the technique comes from its ability to escape local optimality. The cost function of this problem consists of the capital investment cost in discrete form, the cost of transmission losses and the power generation costs. The DC load flow equations for the network are embedded in the constraints of the mathematical model to avoid sub-optimal solutions that can arise if the enforcement of such constraints is done in an indirect way. The solution of the model gives the best line additions and also provides information regarding the optimal generation at each generation point. This method of solution is demonstrated on the expansion of a 10 bus bar system to 18 bus bars. Finally, a steady-state genetic algorithm is employed rather than generational replacement, also uniform crossover is used. (author)

  13. System network planning expansion using mathematical programming, genetic algorithms and tabu search

    International Nuclear Information System (INIS)

    Sadegheih, A.; Drake, P.R.

    2008-01-01

    In this paper, system network planning expansion is formulated for mixed integer programming, a genetic algorithm (GA) and tabu search (TS). Compared with other optimization methods, GAs are suitable for traversing large search spaces, since they can do this relatively rapidly and because the use of mutation diverts the method away from local minima, which will tend to become more common as the search space increases in size. GA's give an excellent trade off between solution quality and computing time and flexibility for taking into account specific constraints in real situations. TS has emerged as a new, highly efficient, search paradigm for finding quality solutions to combinatorial problems. It is characterized by gathering knowledge during the search and subsequently profiting from this knowledge. The attractiveness of the technique comes from its ability to escape local optimality. The cost function of this problem consists of the capital investment cost in discrete form, the cost of transmission losses and the power generation costs. The DC load flow equations for the network are embedded in the constraints of the mathematical model to avoid sub-optimal solutions that can arise if the enforcement of such constraints is done in an indirect way. The solution of the model gives the best line additions and also provides information regarding the optimal generation at each generation point. This method of solution is demonstrated on the expansion of a 10 bus bar system to 18 bus bars. Finally, a steady-state genetic algorithm is employed rather than generational replacement, also uniform crossover is used

  14. Multi-objective simultaneous placement of DG and DSTATCOM using novel lightning search algorithm

    Directory of Open Access Journals (Sweden)

    Yuvaraj Thangaraj

    2017-10-01

    Full Text Available In this proposed study, a new long term scheduling is proposed for simultaneous placement of Distributed Generation (DG and Distribution STATic COMpensator (DSTATCOM in the radial distribution networks. The proposed work has a unique multi-objective function which consists of minimizing power loss, and total voltage deviation (TVD, as well as maximizing the voltage stability index (VSI subject to equality and inequality system constraints. The multi-objective problem has been solved by a novel metaheuristic optimization algorithm called as lightning search algorithm (LSA. In the proposed approach, the feeder loads are varied linearly from light load (0.5 to peak load (1.6 with a step size of 1%. In each load step, the optimal sizing for DG and DSTATCOM are calculated by LSA. Through curve fitting technique (CFT, the optimal sizing for both DG and DSTATCOM per load level is formulated in the form of generalized equation. The proposed generalized equation will help the distribution network operators (DNOs to select the DG and DSTATCOM sizes according to the load changes. The proposed method is tested on two test systems of 33-bus and 69-bus in different cases. Keywords: Distributed Generation (DG, Distribution STATic COMpensator (DSTATCOM, Lightning search algorithm (LSA, Voltage stability index (VSI, Curve fitting technique (CFT, Distribution network operators (DNOs

  15. Defining Algorithmic Ideology: Using Ideology Critique to Scrutinize Corporate Search Engines

    Directory of Open Access Journals (Sweden)

    Astrid Mager

    2014-02-01

    Full Text Available This article conceptualizes “algorithmic ideology” as a valuable tool to understand and critique corporate search engines in the context of wider socio-political developments. Drawing on critical theory it shows how capitalist value-systems manifest in search technology, how they spread through algorithmic logics and how they are stabilized in society. Following philosophers like Althusser, Marx and Gramsci it elaborates how content providers and users contribute to Google’s capital accumulation cycle and exploitation schemes that come along with it. In line with contemporary mass media and neoliberal politics they appear to be fostering capitalism and its “commodity fetishism” (Marx. It further reveals that the capitalist hegemony has to be constantly negotiated and renewed. This dynamic notion of ideology opens up the view for moments of struggle and counter-actions. “Organic intellectuals” (Gramsci can play a central role in challenging powerful actors like Google and their algorithmic ideology. To pave the way towards more democratic information technology, however, requires more than single organic intellectuals. Additional obstacles need to be conquered, as I finally discuss.

  16. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    International Nuclear Information System (INIS)

    Wu, Xia; Wu, Genhua

    2014-01-01

    Highlights: • A high efficient method for optimization of atomic clusters is developed. • Its performance is studied by optimizing Lennard-Jones clusters and Ag clusters. • The method is proved to be quite efficient. • A new Ag 61 cluster with stacking-fault face-centered cubic motif is found. - Abstract: Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag 61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron

  17. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xia, E-mail: xiawu@mail.nankai.edu.cn; Wu, Genhua

    2014-08-31

    Highlights: • A high efficient method for optimization of atomic clusters is developed. • Its performance is studied by optimizing Lennard-Jones clusters and Ag clusters. • The method is proved to be quite efficient. • A new Ag{sub 61} cluster with stacking-fault face-centered cubic motif is found. - Abstract: Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag{sub 61} cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron.

  18. An Improved Hybrid Genetic Algorithm with a New Local Search Procedure

    Directory of Open Access Journals (Sweden)

    Wen Wan

    2013-01-01

    Full Text Available One important challenge of a hybrid genetic algorithm (HGA (also called memetic algorithm is the tradeoff between global and local searching (LS as it is the case that the cost of an LS can be rather high. This paper proposes a novel, simplified, and efficient HGA with a new individual learning procedure that performs a LS only when the best offspring (solution in the offspring population is also the best in the current parent population. Additionally, a new LS method is developed based on a three-directional search (TD, which is derivative-free and self-adaptive. The new HGA with two different LS methods (the TD and Neld-Mead simplex is compared with a traditional HGA. Four benchmark functions are employed to illustrate the improvement of the proposed method with the new learning procedure. The results show that the new HGA greatly reduces the number of function evaluations and converges much faster to the global optimum than a traditional HGA. The TD local search method is a good choice in helping to locate a global “mountain” (or “valley” but may not perform the Nelder-Mead method in the final fine tuning toward the optimal solution.

  19. ACTION OF UNIFORM SEARCH ALGORITHM WHEN SELECTING LANGUAGE UNITS IN THE PROCESS OF SPEECH

    Directory of Open Access Journals (Sweden)

    Ирина Михайловна Некипелова

    2013-05-01

    Full Text Available The article is devoted to research of action of uniform search algorithm when selecting by human of language units for speech produce. The process is connected with a speech optimization phenomenon. This makes it possible to shorten the time of cogitation something that human want to say, and to achieve the maximum precision in thoughts expression. The algorithm of uniform search works at consciousness  and subconsciousness levels. It favours the forming of automatism produce and perception of speech. Realization of human's cognitive potential in the process of communication starts up complicated mechanism of self-organization and self-regulation of language. In turn, it results in optimization of language system, servicing needs not only human's self-actualization but realization of communication in society. The method of problem-oriented search is used for researching of optimization mechanisms, which are distinctive to speech producing and stabilization of language.DOI: http://dx.doi.org/10.12731/2218-7405-2013-4-50

  20. An investigation of pulsar searching techniques with the fast folding algorithm

    Science.gov (United States)

    Cameron, A. D.; Barr, E. D.; Champion, D. J.; Kramer, M.; Zhu, W. W.

    2017-06-01

    Here, we present an in-depth study of the behaviour of the fast folding algorithm (FFA), an alternative pulsar searching technique to the fast Fourier transform (FFT). Weaknesses in the FFT, including a susceptibility to red noise, leave it insensitive to pulsars with long rotational periods (P > 1 s). This sensitivity gap has the potential to bias our understanding of the period distribution of the pulsar population. The FFA, a time-domain based pulsar searching technique, has the potential to overcome some of these biases. Modern distributed-computing frameworks now allow for the application of this algorithm to all-sky blind pulsar surveys for the first time. However, many aspects of the behaviour of this search technique remain poorly understood, including its responsiveness to variations in pulse shape and the presence of red noise. Using a custom CPU-based implementation of the FFA, ffancy, we have conducted an in-depth study into the behaviour of the FFA in both an ideal, white noise regime as well as a trial on observational data from the High Time Resolution Universe South Low Latitude pulsar survey, including a comparison to the behaviour of the FFT. We are able to both confirm and expand upon earlier studies that demonstrate the ability of the FFA to outperform the FFT under ideal white noise conditions, and demonstrate a significant improvement in sensitivity to long-period pulsars in real observational data through the use of the FFA.

  1. Hybrid water flow-like algorithm with Tabu search for traveling salesman problem

    Science.gov (United States)

    Bostamam, Jasmin M.; Othman, Zulaiha

    2016-08-01

    This paper presents a hybrid Water Flow-like Algorithm with Tabu Search for solving travelling salesman problem (WFA-TS-TSP).WFA has been proven its outstanding performances in solving TSP meanwhile TS is a conventional algorithm which has been used since decades to solve various combinatorial optimization problem including TSP. Hybridization between WFA with TS provides a better balance of exploration and exploitation criteria which are the key elements in determining the performance of one metaheuristic. TS use two different local search namely, 2opt and 3opt separately. The proposed WFA-TS-TSP is tested on 23 sets on the well-known benchmarked symmetric TSP instances. The result shows that the proposed WFA-TS-TSP has significant better quality solutions compared to WFA. The result also shows that the WFA-TS-TSP with 3-opt obtained the best quality solution. With the result obtained, it could be concluded that WFA has potential to be further improved by using hybrid technique or using better local search technique.

  2. Searching for continuous gravitational wave signals. The hierarchical Hough transform algorithm

    International Nuclear Information System (INIS)

    Papa, M.; Schutz, B.F.; Sintes, A.M.

    2001-01-01

    It is well known that matched filtering techniques cannot be applied for searching extensive parameter space volumes for continuous gravitational wave signals. This is the reason why alternative strategies are being pursued. Hierarchical strategies are best at investigating a large parameter space when there exist computational power constraints. Algorithms of this kind are being implemented by all the groups that are developing software for analyzing the data of the gravitational wave detectors that will come online in the next years. In this talk I will report about the hierarchical Hough transform method that the GEO 600 data analysis team at the Albert Einstein Institute is developing. The three step hierarchical algorithm has been described elsewhere [8]. In this talk I will focus on some of the implementational aspects we are currently concerned with. (author)

  3. MUSIC algorithm for location searching of dielectric anomalies from S-parameters using microwave imaging

    Science.gov (United States)

    Park, Won-Kwang; Kim, Hwa Pyung; Lee, Kwang-Jae; Son, Seong-Ho

    2017-11-01

    Motivated by the biomedical engineering used in early-stage breast cancer detection, we investigated the use of MUltiple SIgnal Classification (MUSIC) algorithm for location searching of small anomalies using S-parameters. We considered the application of MUSIC to functional imaging where a small number of dipole antennas are used. Our approach is based on the application of Born approximation or physical factorization. We analyzed cases in which the anomaly is respectively small and large in relation to the wavelength, and the structure of the left-singular vectors is linked to the nonzero singular values of a Multi-Static Response (MSR) matrix whose elements are the S-parameters. Using simulations, we demonstrated the strengths and weaknesses of the MUSIC algorithm in detecting both small and extended anomalies.

  4. Optimization of Filter by using Support Vector Regression Machine with Cuckoo Search Algorithm

    Directory of Open Access Journals (Sweden)

    M. İlarslan

    2014-09-01

    Full Text Available Herein, a new methodology using a 3D Electromagnetic (EM simulator-based Support Vector Regression Machine (SVRM models of base elements is presented for band-pass filter (BPF design. SVRM models of elements, which are as fast as analytical equations and as accurate as a 3D EM simulator, are employed in a simple and efficient Cuckoo Search Algorithm (CSA to optimize an ultra-wideband (UWB microstrip BPF. CSA performance is verified by comparing it with other Meta-Heuristics such as Genetic Algorithm (GA and Particle Swarm Optimization (PSO. As an example of the proposed design methodology, an UWB BPF that operates between the frequencies of 3.1 GHz and 10.6 GHz is designed, fabricated and measured. The simulation and measurement results indicate in conclusion the superior performance of this optimization methodology in terms of improved filter response characteristics like return loss, insertion loss, harmonic suppression and group delay.

  5. Parameter Estimation for Traffic Noise Models Using a Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Deok-Soon An

    2013-01-01

    Full Text Available A technique has been developed for predicting road traffic noise for environmental assessment, taking into account traffic volume as well as road surface conditions. The ASJ model (ASJ Prediction Model for Road Traffic Noise, 1999, which is based on the sound power level of the noise emitted by the interaction between the road surface and tires, employs regression models for two road surface types: dense-graded asphalt (DGA and permeable asphalt (PA. However, these models are not applicable to other types of road surfaces. Accordingly, this paper introduces a parameter estimation procedure for ASJ-based noise prediction models, utilizing a harmony search (HS algorithm. Traffic noise measurement data for four different vehicle types were used in the algorithm to determine the regression parameters for several road surface types. The parameters of the traffic noise prediction models were evaluated using another measurement set, and good agreement was observed between the predicted and measured sound power levels.

  6. Real Time Search Algorithm for Observation Outliers During Monitoring Engineering Constructions

    Science.gov (United States)

    Latos, Dorota; Kolanowski, Bogdan; Pachelski, Wojciech; Sołoducha, Ryszard

    2017-12-01

    Real time monitoring of engineering structures in case of an emergency of disaster requires collection of a large amount of data to be processed by specific analytical techniques. A quick and accurate assessment of the state of the object is crucial for a probable rescue action. One of the more significant evaluation methods of large sets of data, either collected during a specified interval of time or permanently, is the time series analysis. In this paper presented is a search algorithm for those time series elements which deviate from their values expected during monitoring. Quick and proper detection of observations indicating anomalous behavior of the structure allows to take a variety of preventive actions. In the algorithm, the mathematical formulae used provide maximal sensitivity to detect even minimal changes in the object's behavior. The sensitivity analyses were conducted for the algorithm of moving average as well as for the Douglas-Peucker algorithm used in generalization of linear objects in GIS. In addition to determining the size of deviations from the average it was used the so-called Hausdorff distance. The carried out simulation and verification of laboratory survey data showed that the approach provides sufficient sensitivity for automatic real time analysis of large amount of data obtained from different and various sensors (total stations, leveling, camera, radar).

  7. Spermatozoa motion detection and trajectory tracking algorithm based on orthogonal search

    Science.gov (United States)

    Chacon Murguia, Mario I.; Valdez Martinez, Antonio

    1999-10-01

    This paper presents a new algorithm for object motion detection and trajectory tracking. This method was developed as part of a machine vision system for human fertility analysis. Fertility analysis is based on the amount of spermatozoa in semen samples and their type of movement. Two approaches were tested to detect the movement of the spermatozoa, image subtraction, and optical flow. Image subtraction is a simple and fast method but it has some complications to detect individual motion when large amounts of objects are presented. The optical flow method is able to detect motion but it turns to be computationally time expensive. It does not generate a specific trajectory of each spermatozoon, and it does not detect static spermatozoa. The algorithm developed detects object motion through an orthogonal search of blocks in consecutive frames. Matching of two blocks in consecutive frames is defined by square differences. A dynamic control array is used to store the trajectory of each spermatozoon, and to deal with all the different situations in the trajectories like, new spermatozoa entering in a frame, spermatozoa leaving the frame, and spermatozoa collision. The algorithm developed turns out to be faster than the optical flow algorithm and solves the problem of the image subtraction method. It also detects static spermatozoa, and generates a motion vector for each spermatozoon that describes their trajectory.

  8. Real Time Search Algorithm for Observation Outliers During Monitoring Engineering Constructions

    Directory of Open Access Journals (Sweden)

    Latos Dorota

    2017-12-01

    Full Text Available Real time monitoring of engineering structures in case of an emergency of disaster requires collection of a large amount of data to be processed by specific analytical techniques. A quick and accurate assessment of the state of the object is crucial for a probable rescue action. One of the more significant evaluation methods of large sets of data, either collected during a specified interval of time or permanently, is the time series analysis. In this paper presented is a search algorithm for those time series elements which deviate from their values expected during monitoring. Quick and proper detection of observations indicating anomalous behavior of the structure allows to take a variety of preventive actions. In the algorithm, the mathematical formulae used provide maximal sensitivity to detect even minimal changes in the object’s behavior. The sensitivity analyses were conducted for the algorithm of moving average as well as for the Douglas-Peucker algorithm used in generalization of linear objects in GIS. In addition to determining the size of deviations from the average it was used the so-called Hausdorff distance. The carried out simulation and verification of laboratory survey data showed that the approach provides sufficient sensitivity for automatic real time analysis of large amount of data obtained from different and various sensors (total stations, leveling, camera, radar.

  9. Parameter estimation by Differential Search Algorithm from horizontal loop electromagnetic (HLEM) data

    Science.gov (United States)

    Alkan, Hilal; Balkaya, Çağlayan

    2018-02-01

    We present an efficient inversion tool for parameter estimation from horizontal loop electromagnetic (HLEM) data using Differential Search Algorithm (DSA) which is a swarm-intelligence-based metaheuristic proposed recently. The depth, dip, and origin of a thin subsurface conductor causing the anomaly are the parameters estimated by the HLEM method commonly known as Slingram. The applicability of the developed scheme was firstly tested on two synthetically generated anomalies with and without noise content. Two control parameters affecting the convergence characteristic to the solution of the algorithm were tuned for the so-called anomalies including one and two conductive bodies, respectively. Tuned control parameters yielded more successful statistical results compared to widely used parameter couples in DSA applications. Two field anomalies measured over a dipping graphitic shale from Northern Australia were then considered, and the algorithm provided the depth estimations being in good agreement with those of previous studies and drilling information. Furthermore, the efficiency and reliability of the results obtained were investigated via probability density function. Considering the results obtained, we can conclude that DSA characterized by the simple algorithmic structure is an efficient and promising metaheuristic for the other relatively low-dimensional geophysical inverse problems. Finally, the researchers after being familiar with the content of developed scheme displaying an easy to use and flexible characteristic can easily modify and expand it for their scientific optimization problems.

  10. Understanding Air Transportation Market Dynamics Using a Search Algorithm for Calibrating Travel Demand and Price

    Science.gov (United States)

    Kumar, Vivek; Horio, Brant M.; DeCicco, Anthony H.; Hasan, Shahab; Stouffer, Virginia L.; Smith, Jeremy C.; Guerreiro, Nelson M.

    2015-01-01

    This paper presents a search algorithm based framework to calibrate origin-destination (O-D) market specific airline ticket demands and prices for the Air Transportation System (ATS). This framework is used for calibrating an agent based model of the air ticket buy-sell process - Airline Evolutionary Simulation (Airline EVOS) -that has fidelity of detail that accounts for airline and consumer behaviors and the interdependencies they share between themselves and the NAS. More specificially, this algorithm simultaneous calibrates demand and airfares for each O-D market, to within specified threshold of a pre-specified target value. The proposed algorithm is illustrated with market data targets provided by the Transportation System Analysis Model (TSAM) and Airline Origin and Destination Survey (DB1B). Although we specify these models and datasources for this calibration exercise, the methods described in this paper are applicable to calibrating any low-level model of the ATS to some other demand forecast model-based data. We argue that using a calibration algorithm such as the one we present here to synchronize ATS models with specialized forecast demand models, is a powerful tool for establishing credible baseline conditions in experiments analyzing the effects of proposed policy changes to the ATS.

  11. A Rule-Based Local Search Algorithm for General Shift Design Problems in Airport Ground Handling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    We consider a generalized version of the shift design problem where shifts are created to cover a multiskilled demand and fit the parameters of the workforce. We present a collection of constraints and objectives for the generalized shift design problem. A local search solution framework with mul...... with multiple neighborhoods and a loosely coupled rule engine based on simulated annealing is presented. Computational experiments on real-life data from various airport ground handling organization show the performance and flexibility of the proposed algorithm....

  12. An Effective Hybrid Firefly Algorithm with Harmony Search for Global Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Lihong Guo

    2013-01-01

    Full Text Available A hybrid metaheuristic approach by hybridizing harmony search (HS and firefly algorithm (FA, namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods.

  13. PMSVM: An Optimized Support Vector Machine Classification Algorithm Based on PCA and Multilevel Grid Search Methods

    Directory of Open Access Journals (Sweden)

    Yukai Yao

    2015-01-01

    Full Text Available We propose an optimized Support Vector Machine classifier, named PMSVM, in which System Normalization, PCA, and Multilevel Grid Search methods are comprehensively considered for data preprocessing and parameters optimization, respectively. The main goals of this study are to improve the classification efficiency and accuracy of SVM. Sensitivity, Specificity, Precision, and ROC curve, and so forth, are adopted to appraise the performances of PMSVM. Experimental results show that PMSVM has relatively better accuracy and remarkable higher efficiency compared with traditional SVM algorithms.

  14. Optimization of Filter by using Support Vector Regression Machine with Cuckoo Search Algorithm

    OpenAIRE

    İlarslan, M.; Demirel, S.; Torpi, H.; Keskin, A. K.; Çağlar, M. F.

    2014-01-01

    Herein, a new methodology using a 3D Electromagnetic (EM) simulator-based Support Vector Regression Machine (SVRM) models of base elements is presented for band-pass filter (BPF) design. SVRM models of elements, which are as fast as analytical equations and as accurate as a 3D EM simulator, are employed in a simple and efficient Cuckoo Search Algorithm (CSA) to optimize an ultra-wideband (UWB) microstrip BPF. CSA performance is verified by comparing it with other Meta-Heuristics such as Genet...

  15. Solving the wind farm layout optimization problem using random search algorithm

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2015-01-01

    Wind farm (WF) layout optimization is to find the optimal positions of wind turbines (WTs) inside a WF, so as to maximize and/or minimize a single objective or multiple objectives, while satisfying certain constraints. In this work, a random search (RS) algorithm based on continuous formulation...... by expert guesses or other optimization methods, and as an optimization tool to find the optimal layout of WF with a certain number of WTs. A new strategy to evaluate layouts is also used, which can largely save the computation cost. This method is first applied to a widely studied ideal test problem...

  16. An Efficient Algorithm for EM Scattering from Anatomically Realistic Human Head Model Using Parallel CG-FFT Method

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    2014-01-01

    Full Text Available An efficient algorithm is proposed to analyze the electromagnetic scattering problem from a high resolution head model with pixel data format. The algorithm is based on parallel technique and the conjugate gradient (CG method combined with the fast Fourier transform (FFT. Using the parallel CG-FFT method, the proposed algorithm is very efficient and can solve very electrically large-scale problems which cannot be solved using the conventional CG-FFT method in a personal computer. The accuracy of the proposed algorithm is verified by comparing numerical results with analytical Mie-series solutions for dielectric spheres. Numerical experiments have demonstrated that the proposed method has good performance on parallel efficiency.

  17. Four-Component Scattering Power Decomposition Algorithm with Rotation of Covariance Matrix Using ALOS-PALSAR Polarimetric Data

    Directory of Open Access Journals (Sweden)

    Yasuhiro Nakamura

    2012-07-01

    Full Text Available The present study introduces the four-component scattering power decomposition (4-CSPD algorithm with rotation of covariance matrix, and presents an experimental proof of the equivalence between the 4-CSPD algorithms based on rotation of covariance matrix and coherency matrix. From a theoretical point of view, the 4-CSPD algorithms with rotation of the two matrices are identical. Although it seems obvious, no experimental evidence has yet been presented. In this paper, using polarimetric synthetic aperture radar (POLSAR data acquired by Phased Array L-band SAR (PALSAR on board of Advanced Land Observing Satellite (ALOS, an experimental proof is presented to show that both algorithms indeed produce identical results.

  18. Taboo search algorithm for item assignment in synchronized zone automated order picking system

    Science.gov (United States)

    Wu, Yingying; Wu, Yaohua

    2014-07-01

    The idle time which is part of the order fulfillment time is decided by the number of items in the zone; therefore the item assignment method affects the picking efficiency. Whereas previous studies only focus on the balance of number of kinds of items between different zones but not the number of items and the idle time in each zone. In this paper, an idle factor is proposed to measure the idle time exactly. The idle factor is proven to obey the same vary trend with the idle time, so the object of this problem can be simplified from minimizing idle time to minimizing idle factor. Based on this, the model of item assignment problem in synchronized zone automated order picking system is built. The model is a form of relaxation of parallel machine scheduling problem which had been proven to be NP-complete. To solve the model, a taboo search algorithm is proposed. The main idea of the algorithm is minimizing the greatest idle factor of zones with the 2-exchange algorithm. Finally, the simulation which applies the data collected from a tobacco distribution center is conducted to evaluate the performance of the algorithm. The result verifies the model and shows the algorithm can do a steady work to reduce idle time and the idle time can be reduced by 45.63% on average. This research proposed an approach to measure the idle time in synchronized zone automated order picking system. The approach can improve the picking efficiency significantly and can be seen as theoretical basis when optimizing the synchronized automated order picking systems.

  19. Search for the Single Production of Doubly-Charged Higgs Bosons and Constraints on their Couplings from Bhabha Scattering

    CERN Document Server

    Abbiendi, G; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Groll, M.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, G.W.; Wilson, D.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2003-01-01

    A search for single production of doubly-charged Higgs bosons has been performed using 600.7 pb^-1 of e+e- collision data with sqrt(s)=189--209GeV collected by the OPAL detector at LEP. No evidence for the existence of H++/-- is observed. Upper limits on the Yukawa coupling of the H++/-- to like-signed electron pairs are derived. Additionally, indirect constraints on the Yukawa coupling from Bhabha scattering, where the H++/-- would contribute via t-channel exchange, are derived for M(H++/--) < 2TeV. These are the first results for both a single production search and constraints from Bhabha scattering reported from LEP.

  20. Application of Harmony Search algorithm to the solution of groundwater management models

    Science.gov (United States)

    Tamer Ayvaz, M.

    2009-06-01

    This study proposes a groundwater resources management model in which the solution is performed through a combined simulation-optimization model. A modular three-dimensional finite difference groundwater flow model, MODFLOW is used as the simulation model. This model is then combined with a Harmony Search (HS) optimization algorithm which is based on the musical process of searching for a perfect state of harmony. The performance of the proposed HS based management model is tested on three separate groundwater management problems: (i) maximization of total pumping from an aquifer (steady-state); (ii) minimization of the total pumping cost to satisfy the given demand (steady-state); and (iii) minimization of the pumping cost to satisfy the given demand for multiple management periods (transient). The sensitivity of HS algorithm is evaluated by performing a sensitivity analysis which aims to determine the impact of related solution parameters on convergence behavior. The results show that HS yields nearly same or better solutions than the previous solution methods and may be used to solve management problems in groundwater modeling.

  1. Turn-Based War Chess Model and Its Search Algorithm per Turn

    Directory of Open Access Journals (Sweden)

    Hai Nan

    2016-01-01

    Full Text Available War chess gaming has so far received insufficient attention but is a significant component of turn-based strategy games (TBS and is studied in this paper. First, a common game model is proposed through various existing war chess types. Based on the model, we propose a theory frame involving combinational optimization on the one hand and game tree search on the other hand. We also discuss a key problem, namely, that the number of the branching factors of each turn in the game tree is huge. Then, we propose two algorithms for searching in one turn to solve the problem: (1 enumeration by order; (2 enumeration by recursion. The main difference between these two is the permutation method used: the former uses the dictionary sequence method, while the latter uses the recursive permutation method. Finally, we prove that both of these algorithms are optimal, and we analyze the difference between their efficiencies. An important factor is the total time taken for the unit to expand until it achieves its reachable position. The factor, which is the total number of expansions that each unit makes in its reachable position, is set. The conclusion proposed is in terms of this factor: Enumeration by recursion is better than enumeration by order in all situations.

  2. Obstacle Avoidance for Redundant Manipulators Utilizing a Backward Quadratic Search Algorithm

    Directory of Open Access Journals (Sweden)

    Tianjian Hu

    2016-06-01

    Full Text Available Obstacle avoidance can be achieved as a secondary task by appropriate inverse kinematics (IK resolution of redundant manipulators. Most prior literature requires the time-consuming determination of the closest point to the obstacle for every calculation step. Aiming at the relief of computational burden, this paper develops what is termed a backward quadratic search algorithm (BQSA as another option for solving IK problems in obstacle avoidance. The BQSA detects possible collisions based on the root property of a category of quadratic functions, which are derived from ellipse-enveloped obstacles and the positions of each link's end-points. The algorithm executes a backward search for possible obstacle collisions, from the end-effector to the base, and avoids obstacles by utilizing a hybrid IK scheme, incorporating the damped least-squares method, the weighted least-norm method and the gradient projection method. Some details of the hybrid IK scheme, such as values of the damped factor, weights and the clamping velocity, are discussed, along with a comparison of computational load between previous methods and BQSA. Simulations of a planar seven-link manipulator and a PUMA 560 robot verify the effectiveness of BQSA.

  3. Development of Future Rule Curves for Multipurpose Reservoir Operation Using Conditional Genetic and Tabu Search Algorithms

    Directory of Open Access Journals (Sweden)

    Anongrit Kangrang

    2018-01-01

    Full Text Available Optimal rule curves are necessary guidelines in the reservoir operation that have been used to assess performance of any reservoir to satisfy water supply, irrigation, industrial, hydropower, and environmental conservation requirements. This study applied the conditional genetic algorithm (CGA and the conditional tabu search algorithm (CTSA technique to connect with the reservoir simulation model in order to search optimal reservoir rule curves. The Ubolrat Reservoir located in the northeast region of Thailand was an illustrative application including historic monthly inflow, future inflow generated by the SWAT hydrological model using 50-year future climate data from the PRECIS regional climate model in case of B2 emission scenario by IPCC SRES, water demand, hydrologic data, and physical reservoir data. The future and synthetic inflow data of reservoirs were used to simulate reservoir system for evaluating water situation. The situations of water shortage and excess water were shown in terms of frequency magnitude and duration. The results have shown that the optimal rule curves from CGA and CTSA connected with the simulation model can mitigate drought and flood situations than the existing rule curves. The optimal future rule curves were more suitable for future situations than the other rule curves.

  4. A Hybrid alldifferent-Tabu Search Algorithm for Solving Sudoku Puzzles

    Directory of Open Access Journals (Sweden)

    Ricardo Soto

    2015-01-01

    Full Text Available The Sudoku problem is a well-known logic-based puzzle of combinatorial number-placement. It consists in filling a n2 × n2 grid, composed of n columns, n rows, and n subgrids, each one containing distinct integers from 1 to n2. Such a puzzle belongs to the NP-complete collection of problems, to which there exist diverse exact and approximate methods able to solve it. In this paper, we propose a new hybrid algorithm that smartly combines a classic tabu search procedure with the alldifferent global constraint from the constraint programming world. The alldifferent constraint is known to be efficient for domain filtering in the presence of constraints that must be pairwise different, which are exactly the kind of constraints that Sudokus own. This ability clearly alleviates the work of the tabu search, resulting in a faster and more robust approach for solving Sudokus. We illustrate interesting experimental results where our proposed algorithm outperforms the best results previously reported by hybrids and approximate methods.

  5. A Hybrid alldifferent-Tabu Search Algorithm for Solving Sudoku Puzzles.

    Science.gov (United States)

    Soto, Ricardo; Crawford, Broderick; Galleguillos, Cristian; Paredes, Fernando; Norero, Enrique

    2015-01-01

    The Sudoku problem is a well-known logic-based puzzle of combinatorial number-placement. It consists in filling a n(2) × n(2) grid, composed of n columns, n rows, and n subgrids, each one containing distinct integers from 1 to n(2). Such a puzzle belongs to the NP-complete collection of problems, to which there exist diverse exact and approximate methods able to solve it. In this paper, we propose a new hybrid algorithm that smartly combines a classic tabu search procedure with the alldifferent global constraint from the constraint programming world. The alldifferent constraint is known to be efficient for domain filtering in the presence of constraints that must be pairwise different, which are exactly the kind of constraints that Sudokus own. This ability clearly alleviates the work of the tabu search, resulting in a faster and more robust approach for solving Sudokus. We illustrate interesting experimental results where our proposed algorithm outperforms the best results previously reported by hybrids and approximate methods.

  6. A study of multi-jet events at the CERN anti pp collider and a search for double parton scattering

    International Nuclear Information System (INIS)

    Alitti, J.; Ambrosini, G.; Ansari, R.; Autiero, D.; Bareyre, P.; Bertram, I.A.; Blaylock, G.; Bonamy, P.; Borer, K.; Bourliaud, M.; Buskulic, D.; Carboni, G.; Cavalli, D.; Cavasinni, V.; Cenci, P.; Chollet, J.C.; Conta, C.; Costa, G.; Costantini, F.; Cozzi, L.; Cravero, A.; Curatolo, M.; Dell'Acqua, A.; DelPrete, T.; DeWolf, R.S.; DiLella, L.; Ducros, Y.; Egan, G.F.; Einsweiler, K.F.; Esposito, B.; Fayard, L.; Federspiel, A.; Ferrari, R.; Fraternali, M.; Froidevaux, D.; Fumagalli, G.; Gaillard, J.M.; Gianotti, F.; Gildemeister, O.; Goessling, C.; Goggi, V.G.; Gruenendahl, S.; Hara, K.; Hellman, S.; Hrivnac, J.; Hufnagel, H.; Hugentobler, E.; Hultqvist, K.; Iacopini, E.; Incandela, J.; Jakobs, K.; Jenni, P.; Kluge, E.E.; Kurz, N.; Lami, S.; Lariccia, P.; Lefebvre, M.; Linssen, L.; Livan, M.; Lubrano, P.; Magneville, C.; Mandelli, L.; Mapelli, L.; Mazzanti, M.; Meier, K.; Merkel, B.; Meyer, J.P.; Moniez, M.; Moning, R.; Morganti, M.; Mueller, L.; Munday, D.J.; Nessi, M.; Nessi-Tedaldi, F.; Onions, C.; Pal, T.; Parker, M.A.; Parrour, G.; Pastore, F.; Pennacchio, E.; Pentney, J.M.; Pepe, M.; Perini, L.; Petridou, C.; Petroff, P.; Plothow-Besch, H.; Polesello, G.; Poppleton, A.; Pretzl, K.; Primavera, M.; Punturo, M.; Repellin, J.P.; Rimoldi, A.; Sacchi, M.; Scampoli, P.; Schacher, J.; Simak, V.; Sing, S.L.; Sondermann, V.; Stapnes, S.; Talamonti, C.; Tondini, F.; Tovey, S.N.; Tsesmelis, E.; Unal, G.; Valdata-Nappi, M.; Vercesi, V.; Weidberg, A.R.; Wells, P.S.; White, T.O.; Wood, D.R.; Wotton, S.A.; Zaccone, H.; Zylberstejn, A.

    1991-01-01

    A study of events containing at least four high transverse momentum jets and a search for double parton scattering (DPS) have been performed using data collected with the UA2 detector at the CERN anti pp Collider (√s=630 GeV). The results are in good agreement with leading order QCD calculations. A value of σ DPS <0.82 nb at 95% confidence level (CL) is obtained for the DPS cross section. (orig.)

  7. Music algorithm for imaging of a sound-hard arc in limited-view inverse scattering problem

    Science.gov (United States)

    Park, Won-Kwang

    2017-07-01

    MUltiple SIgnal Classification (MUSIC) algorithm for a non-iterative imaging of sound-hard arc in limited-view inverse scattering problem is considered. In order to discover mathematical structure of MUSIC, we derive a relationship between MUSIC and an infinite series of Bessel functions of integer order. This structure enables us to examine some properties of MUSIC in limited-view problem. Numerical simulations are performed to support the identified structure of MUSIC.

  8. FTIR microscopy of biological cells and tissue: data analysis using resonant Mie scattering (RMieS) EMSC algorithm.

    Science.gov (United States)

    Bassan, Paul; Sachdeva, Ashwin; Kohler, Achim; Hughes, Caryn; Henderson, Alex; Boyle, Jonathan; Shanks, Jonathan H; Brown, Michael; Clarke, Noel W; Gardner, Peter

    2012-03-21

    Transmission and transflection infrared microscopy of biological cells and tissue suffer from significant baseline distortions due to scattering effects, predominantly resonant Mie scattering (RMieS). This scattering can also distort peak shapes and apparent peak positions making interpretation difficult and often unreliable. A correction algorithm, the resonant Mie scattering extended multiplicative signal correction (RMieS-EMSC), has been developed that can be used to remove these distortions. The correction algorithm has two key user defined parameters that influence the accuracy of the correction. The first is the number of iterations used to obtain the best outcome. The second is the choice of the initial reference spectrum required for the fitting procedure. The choice of these parameters influences computational time. This is not a major concern when correcting individual spectra or small data sets of a few hundred spectra but becomes much more significant when correcting spectra from infrared images obtained using large focal plane array detectors which may contain tens of thousands of spectra. In this paper we show that, classification of images from tissue can be achieved easily with a few (<10) iterations but a reliable interpretation of the biochemical differences between classes could require more iterations. Regarding the choice of reference spectrum, it is apparent that the more similar it is to the pure absorption spectrum of the sample, the fewer iterations required to obtain an accurate corrected spectrum. Importantly however, we show that using three different non-ideal reference spectra, the same unique correction solution can be obtained.

  9. Optimum Design of Gravity Retaining Walls Using Charged System Search Algorithm

    Directory of Open Access Journals (Sweden)

    S. Talatahari

    2012-01-01

    Full Text Available This study focuses on the optimum design retaining walls, as one of the familiar types of the retaining walls which may be constructed of stone masonry, unreinforced concrete, or reinforced concrete. The material cost is one of the major factors in the construction of gravity retaining walls therefore, minimizing the weight or volume of these systems can reduce the cost. To obtain an optimal seismic design of such structures, this paper proposes a method based on a novel meta-heuristic algorithm. The algorithm is inspired by the Coulomb's and Gauss’s laws of electrostatics in physics, and it is called charged system search (CSS. In order to evaluate the efficiency of this algorithm, an example is utilized. Comparing the results of the retaining wall designs obtained by the other methods illustrates a good performance of the CSS. In this paper, we used the Mononobe-Okabe method which is one of the pseudostatic approaches to determine the dynamic earth pressure.

  10. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem

    Science.gov (United States)

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585

  11. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem.

    Science.gov (United States)

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.

  12. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem

    Directory of Open Access Journals (Sweden)

    Wee Loon Lim

    2016-01-01

    Full Text Available The quadratic assignment problem (QAP is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO, a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.

  13. Forecasting solar radiation using an optimized hybrid model by Cuckoo Search algorithm

    International Nuclear Information System (INIS)

    Wang, Jianzhou; Jiang, He; Wu, Yujie; Dong, Yao

    2015-01-01

    Due to energy crisis and environmental problems, it is very urgent to find alternative energy sources nowadays. Solar energy, as one of the great potential clean energies, has widely attracted the attention of researchers. In this paper, an optimized hybrid method by CS (Cuckoo Search) on the basis of the OP-ELM (Optimally Pruned Extreme Learning Machine), called CS-OP-ELM, is developed to forecast clear sky and real sky global horizontal radiation. First, MRSR (Multiresponse Sparse Regression) and LOO-CV (leave-one-out cross-validation) can be applied to rank neurons and prune the possibly meaningless neurons of the FFNN (Feed Forward Neural Network), respectively. Then, Direct strategy and Direct-Recursive strategy based on OP-ELM are introduced to build a hybrid model. Furthermore, CS (Cuckoo Search) optimized algorithm is employed to determine the proper weight coefficients. In order to verify the effectiveness of the developed method, hourly solar radiation data from six sites of the United States has been collected, and methods like ARMA (Autoregression moving average), BP (Back Propagation) neural network and OP-ELM can be compared with CS-OP-ELM. Experimental results show the optimized hybrid method CS-OP-ELM has the best forecasting performance. - Highlights: • An optimized hybrid method called CS-OP-ELM is proposed to forecast solar radiation. • CS-OP-ELM adopts multiple variables dataset as input variables. • Direct and Direct-Recursive strategy are introduced to build a hybrid model. • CS (Cuckoo Search) algorithm is used to determine the optimal weight coefficients. • The proposed method has the best performance compared with other methods

  14. Hybrid geometric-random template-placement algorithm for gravitational wave searches from compact binary coalescences

    Science.gov (United States)

    Roy, Soumen; Sengupta, Anand S.; Thakor, Nilay

    2017-05-01

    Astrophysical compact binary systems consisting of neutron stars and black holes are an important class of gravitational wave (GW) sources for advanced LIGO detectors. Accurate theoretical waveform models from the inspiral, merger, and ringdown phases of such systems are used to filter detector data under the template-based matched-filtering paradigm. An efficient grid over the parameter space at a fixed minimal match has a direct impact on the overall time taken by these searches. We present a new hybrid geometric-random template placement algorithm for signals described by parameters of two masses and one spin magnitude. Such template banks could potentially be used in GW searches from binary neutron stars and neutron star-black hole systems. The template placement is robust and is able to automatically accommodate curvature and boundary effects with no fine-tuning. We also compare these banks against vanilla stochastic template banks and show that while both are equally efficient in the fitting-factor sense, the bank sizes are ˜25 % larger in the stochastic method. Further, we show that the generation of the proposed hybrid banks can be sped up by nearly an order of magnitude over the stochastic bank. Generic issues related to optimal implementation are discussed in detail. These improvements are expected to directly reduce the computational cost of gravitational wave searches.

  15. Modification of the collective Thomson scattering radiometer in the search for parametric decay on TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bongers, W.

    2012-01-01

    Strong scattering of high-power millimeter waves at 140 GHz has been shown to take place in heating and current-drive experiments at TEXTOR when a tearing mode is present in the plasma. The scattering signal is at present supposed to be generated by the parametric decay instability. Here we descr...

  16. A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects

    International Nuclear Information System (INIS)

    Secui, Dinu Calin

    2016-01-01

    This paper proposes a new metaheuristic algorithm, called Modified Symbiotic Organisms Search (MSOS) algorithm, to solve the economic dispatch problem considering the valve-point effects, the prohibited operating zones (POZ), the transmission line losses, multi-fuel sources, as well as other operating constraints of the generating units and power system. The MSOS algorithm introduces, in all of its phases, new relations to update the solutions to improve its capacity of identifying stable and of high-quality solutions in a reasonable time. Furthermore, to increase the capacity of exploring the MSOS algorithm in finding the most promising zones, it is endowed with a chaotic component generated by the Logistic map. The performance of the modified algorithm and of the original algorithm Symbiotic Organisms Search (SOS) is tested on five systems of different characteristics, constraints and dimensions (13-unit, 40-unit, 80-unit, 160-unit and 320-unit). The results obtained by applying the proposed algorithm (MSOS) show that this has a better performance than other techniques of optimization recently used in solving the economic dispatch problem with valve-point effects. - Highlights: • A new modified SOS algorithm (MSOS) is proposed to solve the EcD problem. • Valve-point effects, ramp-rate limits, POZ, multi-fuel sources, transmission losses were considered. • The algorithm is tested on five systems having 13, 40, 80, 160 and 320 thermal units. • MSOS algorithm outperforms many other optimization techniques.

  17. The collapsed cone algorithm for (192)Ir dosimetry using phantom-size adaptive multiple-scatter point kernels.

    Science.gov (United States)

    Tedgren, Åsa Carlsson; Plamondon, Mathieu; Beaulieu, Luc

    2015-07-07

    The aim of this work was to investigate how dose distributions calculated with the collapsed cone (CC) algorithm depend on the size of the water phantom used in deriving the point kernel for multiple scatter. A research version of the CC algorithm equipped with a set of selectable point kernels for multiple-scatter dose that had initially been derived in water phantoms of various dimensions was used. The new point kernels were generated using EGSnrc in spherical water phantoms of radii 5 cm, 7.5 cm, 10 cm, 15 cm, 20 cm, 30 cm and 50 cm. Dose distributions derived with CC in water phantoms of different dimensions and in a CT-based clinical breast geometry were compared to Monte Carlo (MC) simulations using the Geant4-based brachytherapy specific MC code Algebra. Agreement with MC within 1% was obtained when the dimensions of the phantom used to derive the multiple-scatter kernel were similar to those of the calculation phantom. Doses are overestimated at phantom edges when kernels are derived in larger phantoms and underestimated when derived in smaller phantoms (by around 2% to 7% depending on distance from source and phantom dimensions). CC agrees well with MC in the high dose region of a breast implant and is superior to TG43 in determining skin doses for all multiple-scatter point kernel sizes. Increased agreement between CC and MC is achieved when the point kernel is comparable to breast dimensions. The investigated approximation in multiple scatter dose depends on the choice of point kernel in relation to phantom size and yields a significant fraction of the total dose only at distances of several centimeters from a source/implant which correspond to volumes of low doses. The current implementation of the CC algorithm utilizes a point kernel derived in a comparatively large (radius 20 cm) water phantom. A fixed point kernel leads to predictable behaviour of the algorithm with the worst case being a source/implant located well within a patient

  18. Scattered-Field FDTD and PSTD Algorithms with CPML Absorbing Boundary Conditions for Light Scattering by Aerosols

    Science.gov (United States)

    2013-07-19

    ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory ATTN: RDRL-CIE-S 2800 Powder Mill Road Adelphi, MD 20783-1197 8. PERFORMING ORGANIZATION...article.)bu ¼ eΔtððsu=εoκuÞþðau=ε0ÞÞ; ð6aÞ cu ¼ ðbu1Þsu suκu þ κ2uau ð6bÞ The CPML properties (ax,κx,sx), (ay,κy,sy), and (az,κz,sz) are scaled tensor ...House; 1995. [12] Yang P, Liou KN. Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J Opt Soc

  19. Influence of different contributions of scatter and attenuation on the threshold values in contrast-based algorithms for volume segmentation.

    Science.gov (United States)

    Matheoud, Roberta; Della Monica, Patrizia; Secco, Chiara; Loi, Gianfranco; Krengli, Marco; Inglese, Eugenio; Brambilla, Marco

    2011-01-01

    The aim of this work is to evaluate the role of different amount of attenuation and scatter on FDG-PET image volume segmentation using a contrast-oriented method based on the target-to-background (TB) ratio and target dimensions. A phantom study was designed employing 3 phantom sets, which provided a clinical range of attenuation and scatter conditions, equipped with 6 spheres of different volumes (0.5-26.5 ml). The phantoms were: (1) the Hoffman 3-dimensional brain phantom, (2) a modified International Electro technical Commission (IEC) phantom with an annular ring of water bags of 3 cm thickness fit over the IEC phantom, and (3) a modified IEC phantom with an annular ring of water bags of 9 cm. The phantoms cavities were filled with a solution of FDG at 5.4 kBq/ml activity concentration, and the spheres with activity concentration ratios of about 16, 8, and 4 times the background activity concentration. Images were acquired with a Biograph 16 HI-REZ PET/CT scanner. Thresholds (TS) were determined as a percentage of the maximum intensity in the cross section area of the spheres. To reduce statistical fluctuations a nominal maximum value is calculated as the mean from all voxel > 95%. To find the TS value that yielded an area A best matching the true value, the cross section were auto-contoured in the attenuation corrected slices varying TS in step of 1%, until the area so determined differed by less than 10 mm² versus its known physical value. Multiple regression methods were used to derive an adaptive thresholding algorithm and to test its dependence on different conditions of attenuation and scatter. The errors of scatter and attenuation correction increased with increasing amount of attenuation and scatter in the phantoms. Despite these increasing inaccuracies, PET threshold segmentation algorithms resulted not influenced by the different condition of attenuation and scatter. The test of the hypothesis of coincident regression lines for the three phantoms used

  20. A new method for decoding an encrypted text by genetic algorithms and its comparison with tabu search and simulated annealing

    Directory of Open Access Journals (Sweden)

    Mahdi Sadeghzadeh

    2014-02-01

    Full Text Available Genetic Algorithm is an algorithm based on population and many optimization problems are solved with this method, successfully. With increasing demand for computer attacks, security, efficient and reliable Internet has increased. Cryptographic systems have studied the science of communication is hidden, and includes two case categories including encryption, password and analysis. In this paper, several code analyses based on genetic algorithms, tabu search and simulated annealing for a permutation of encrypted text are investigated. The study also attempts to provide and to compare the performance in terms of the amount of check and control algorithms and the results are compared.

  1. A stochastic pseudospectral and T-matrix algorithm for acoustic scattering by a class of multiple particle configurations

    International Nuclear Information System (INIS)

    Ganesh, M.; Hawkins, S.C.

    2013-01-01

    We consider absorption and scattering of acoustic waves from uncertain configurations comprising multiple two dimensional bodies with various material properties (sound-soft, sound-hard, absorbing and penetrable) and develop tools to address the problem of quantifying uncertainties in the acoustic cross sections of the configurations. The uncertainty arises because the locations and orientations of the particles in the configurations are described through random variables, and statistical moments of the far-fields induced by the stochastic configurations facilitate quantification of the uncertainty. We develop an efficient algorithm, based on a hybrid of the stochastic pseudospectral discretization (to truncate the infinite dimensional stochastic process) and an efficient stable truncated version of Waterman's T-matrix approach (for cost effective realization at each multiple particle configuration corresponding to the pseudospectral quadrature points) to simulate the statistical properties of the stochastic model. We demonstrate the efficiency of the algorithm for configurations with non-smooth and non-convex bodies with distinct material properties, and random locations and orientations with normal and log-normal distributions. -- Highlights: ► Uncertainty quantification (UQ) of stochastic multiple scattering models is considered. ► A novel hybrid algorithm combining deterministic and stochastic methods is developed. ► An exponentially accurate stable a priori estimate based T-matrix method is used. ► The stochastic approximation is a spectrally accurate discrete polynomial chaos method. ► Multiple stochastic particle simulations highlight efficiency of the UQ algorithm

  2. GPU Based N-Gram String Matching Algorithm with Score Table Approach for String Searching in Many Documents

    Science.gov (United States)

    Srinivasa, K. G.; Shree Devi, B. N.

    2017-10-01

    String searching in documents has become a tedious task with the evolution of Big Data. Generation of large data sets demand for a high performance search algorithm in areas such as text mining, information retrieval and many others. The popularity of GPU's for general purpose computing has been increasing for various applications. Therefore it is of great interest to exploit the thread feature of a GPU to provide a high performance search algorithm. This paper proposes an optimized new approach to N-gram model for string search in a number of lengthy documents and its GPU implementation. The algorithm exploits GPGPUs for searching strings in many documents employing character level N-gram matching with parallel Score Table approach and search using CUDA API. The new approach of Score table used for frequency storage of N-grams in a document, makes the search independent of the document's length and allows faster access to the frequency values, thus decreasing the search complexity. The extensive thread feature in a GPU has been exploited to enable parallel pre-processing of trigrams in a document for Score Table creation and parallel search in huge number of documents, thus speeding up the whole search process even for a large pattern size. Experiments were carried out for many documents of varied length and search strings from the standard Lorem Ipsum text on NVIDIA's GeForce GT 540M GPU with 96 cores. Results prove that the parallel approach for Score Table creation and searching gives a good speed up than the same approach executed serially.

  3. Assessment of an MCMC algorithm convergence for Bayesian estimation of the particle size distribution from multiangle dynamic light scattering measurements

    Science.gov (United States)

    Boualem, Abdelbassit; Jabloun, Meryem; Ravier, Philippe; Naiim, Marie; Jalocha, Alain

    2015-01-01

    Recovering the particle size distribution (PSD) from dynamic light scattering (DLS) measurements is known to be a highly ill-posed inverse problem. In a former study, we proposed a new Bayesian inference method applied directly to the multiangle DLS measurements to improve the estimation of multimodal PSDs. The posterior probability density of interest is sampled using a MCMC Metropolis-within-Gibbs algorithm. In this work, we experimentally examined the convergence of the used MCMC strategy using the simulation method recently proposed by Chauveau and Vandekerkhove (2013). This method is based on the evolution in time (iterations) of the Kullback-Leibler divergence between the target posterior density and the successive densities of the algorithm of interest. The convergence of the used MCMC algorithm was examined when processing simulated and experimental data.

  4. Multi-robot path planning in a dynamic environment using improved gravitational search algorithm

    Directory of Open Access Journals (Sweden)

    P.K. Das

    2016-09-01

    Full Text Available This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm (IGSA in a dynamic environment. GSA is improved based on memory information, social, cognitive factor of PSO (particle swarm optimization and then, population for next generation is decided by the greedy strategy. A path planning scheme has been developed using IGSA to optimally obtain the succeeding positions of the robots from the existing position. Finally, the analytical and experimental results of the multi-robot path planning have been compared with those obtained by IGSA, GSA and PSO in a similar environment. The simulation and the Khepera environmental results outperform IGSA as compared to GSA and PSO with respect to performance matrix.

  5. An Optimization Model and Modified Harmony Search Algorithm for Microgrid Planning with ESS

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    2017-01-01

    Full Text Available To solve problems such as the high cost of microgrids (MGs, balance between supply and demand, stability of system operation, and optimizing the MG planning model, the energy storage system (ESS and harmony search algorithm (HSA are proposed. First, the conventional MG planning optimization model is constructed and the constraint conditions are defined: the supply and demand balance and reserve requirements. Second, an ESS is integrated into the optimal model of MG planning. The model with an ESS can solve and identify parameters such as the optimal power, optimal capacity, and optimal installation year. Third, the convergence speed and robustness of the ESS are optimized and improved. A case study comprising three different cases concludes the paper. The results show that the modified HSA (MHSA can effectively improve the stability and economy of MG operation with an ESS.

  6. Searching of fuel recharges by means of genetic algorithms and neural networks in BWRs

    International Nuclear Information System (INIS)

    Ortiz S, J.J.; Montes T, J.L.; Castillo M, J.A.; Perusquia del C, R.

    2004-01-01

    In this work improvements to the systems RENOR and RECOPIA are presented, that were developed to optimize fuel recharges in boiling water reactors. The RENOR system is based on a Multi state recurrent neural network while RECOPIA is based on a Genetic Algorithm. In the new versions of these systems there is incorporate the execution of the Turned off Margin in Cold and the Excess of Reactivity in Hot. The new systems were applied to an operation cycle of the Unit 1 of the Nuclear Power station of Laguna Verde. The recharges of fuel obtained by both methods are compared among if being observed that RENOR has better performance that RECOPIA, due to the nature of its search process. RECOPIA requires of approximately 1.4 times more time that RENOR to find a satisfactory recharge of fuel. (Author)

  7. A multilevel probabilistic beam search algorithm for the shortest common supersequence problem.

    Directory of Open Access Journals (Sweden)

    José E Gallardo

    Full Text Available The shortest common supersequence problem is a classical problem with many applications in different fields such as planning, Artificial Intelligence and especially in Bioinformatics. Due to its NP-hardness, we can not expect to efficiently solve this problem using conventional exact techniques. This paper presents a heuristic to tackle this problem based on the use at different levels of a probabilistic variant of a classical heuristic known as Beam Search. The proposed algorithm is empirically analysed and compared to current approaches in the literature. Experiments show that it provides better quality solutions in a reasonable time for medium and large instances of the problem. For very large instances, our heuristic also provides better solutions, but required execution times may increase considerably.

  8. The association rules search of Indonesian university graduate’s data using FP-growth algorithm

    Science.gov (United States)

    Faza, S.; Rahmat, R. F.; Nababan, E. B.; Arisandi, D.; Effendi, S.

    2018-02-01

    The attribute varieties in university graduates data have caused frustrations to the institution in finding the combinations of attributes that often emerge and have high integration between attributes. Association rules mining is a data mining technique to determine the integration of the data or the way of a data set affects another set of data. By way of explanation, there are possibilities in finding the integration of data on a large scale. Frequent Pattern-Growth (FP-Growth) algorithm is one of the association rules mining technique to determine a frequent itemset in an FP-Tree data set. From the research on the search of university graduate’s association rules, it can be concluded that the most common attributes that have high integration between them are in the combination of State-owned High School outside Medan, regular university entrance exam, GPA of 3.00 to 3.49 and over 4-year-long study duration.

  9. Comparing Evolutionary Programs and Evolutionary Pattern Search Algorithms: A Drug Docking Application

    Energy Technology Data Exchange (ETDEWEB)

    Hart, W.E.

    1999-02-10

    Evolutionary programs (EPs) and evolutionary pattern search algorithms (EPSAS) are two general classes of evolutionary methods for optimizing on continuous domains. The relative performance of these methods has been evaluated on standard global optimization test functions, and these results suggest that EPSAs more robustly converge to near-optimal solutions than EPs. In this paper we evaluate the relative performance of EPSAs and EPs on a real-world application: flexible ligand binding in the Autodock docking software. We compare the performance of these methods on a suite of docking test problems. Our results confirm that EPSAs and EPs have comparable performance, and they suggest that EPSAs may be more robust on larger, more complex problems.

  10. Intelligent energy allocation strategy for PHEV charging station using gravitational search algorithm

    Science.gov (United States)

    Rahman, Imran; Vasant, Pandian M.; Singh, Balbir Singh Mahinder; Abdullah-Al-Wadud, M.

    2014-10-01

    Recent researches towards the use of green technologies to reduce pollution and increase penetration of renewable energy sources in the transportation sector are gaining popularity. The development of the smart grid environment focusing on PHEVs may also heal some of the prevailing grid problems by enabling the implementation of Vehicle-to-Grid (V2G) concept. Intelligent energy management is an important issue which has already drawn much attention to researchers. Most of these works require formulation of mathematical models which extensively use computational intelligence-based optimization techniques to solve many technical problems. Higher penetration of PHEVs require adequate charging infrastructure as well as smart charging strategies. We used Gravitational Search Algorithm (GSA) to intelligently allocate energy to the PHEVs considering constraints such as energy price, remaining battery capacity, and remaining charging time.

  11. Optimized Aircraft Electric Control System Based on Adaptive Tabu Search Algorithm and Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Saifullah Khalid

    2016-09-01

    Full Text Available Three conventional control constant instantaneous power control, sinusoidal current control, and synchronous reference frame techniques for extracting reference currents for shunt active power filters have been optimized using Fuzzy Logic control and Adaptive Tabu search Algorithm and their performances have been compared. Critical analysis of Comparison of the compensation ability of different control strategies based on THD and speed will be done, and suggestions will be given for the selection of technique to be used. The simulated results using MATLAB model are presented, and they will clearly prove the value of the proposed control method of aircraft shunt APF. The waveforms observed after the application of filter will be having the harmonics within the limits and the power quality will be improved.

  12. Genetic algorithm with small population size for search feasible control parameters for parallel hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Yu-Huei Cheng

    2017-11-01

    Full Text Available The control strategy is a major unit in hybrid electric vehicles (HEVs. In order to provide suitable control parameters for reducing fuel consumptions and engine emissions while maintaining vehicle performance requirements, the genetic algorithm (GA with small population size is applied to search for feasible control parameters in parallel HEVs. The electric assist control strategy (EACS is used as the fundamental control strategy of parallel HEVs. The dynamic performance requirements stipulated in the Partnership for a New Generation of Vehicles (PNGV is considered to maintain the vehicle performance. The known ADvanced VehIcle SimulatOR (ADVISOR is used to simulate a specific parallel HEV with urban dynamometer driving schedule (UDDS. Five population sets with size 5, 10, 15, 20, and 25 are used in the GA. The experimental results show that the GA with population size of 25 is the best for selecting feasible control parameters in parallel HEVs.

  13. Fuzzy rule base design using tabu search algorithm for nonlinear system modeling.

    Science.gov (United States)

    Bagis, Aytekin

    2008-01-01

    This paper presents an approach to fuzzy rule base design using tabu search algorithm (TSA) for nonlinear system modeling. TSA is used to evolve the structure and the parameter of fuzzy rule base. The use of the TSA, in conjunction with a systematic neighbourhood structure for the determination of fuzzy rule base parameters, leads to a significant improvement in the performance of the model. To demonstrate the effectiveness of the presented method, several numerical examples given in the literature are examined. The results obtained by means of the identified fuzzy rule bases are compared with those belonging to other modeling approaches in the literature. The simulation results indicate that the method based on the use of a TSA performs an important and very effective modeling procedure in fuzzy rule base design in the modeling of the nonlinear or complex systems.

  14. A search algorithm to meta-optimize the parameters for an extended Kalman filter to improve classification on hyper-temporal images

    CSIR Research Space (South Africa)

    Salmon, BP

    2012-07-01

    Full Text Available In this paper the Bias Variance Search Algorithm is proposed as an algorithm to optimize a candidate set of initial parameters for an Extended Kalman filter (EKF). The search algorithm operates on a Bias Variance Equilibrium Point criterion...

  15. The integration of improved Monte Carlo compton scattering algorithms into the Integrated TIGER Series

    International Nuclear Information System (INIS)

    Quirk, Thomas J. IV

    2004-01-01

    The Integrated TIGER Series (ITS) is a software package that solves coupled electron-photon transport problems. ITS performs analog photon tracking for energies between 1 keV and 1 GeV. Unlike its deterministic counterpart, the Monte Carlo calculations of ITS do not require a memory-intensive meshing of phase space; however, its solutions carry statistical variations. Reducing these variations is heavily dependent on runtime. Monte Carlo simulations must therefore be both physically accurate and computationally efficient. Compton scattering is the dominant photon interaction above 100 keV and below 5-10 MeV, with higher cutoffs occurring in lighter atoms. In its current model of Compton scattering, ITS corrects the differential Klein-Nishina cross sections (which assumes a stationary, free electron) with the incoherent scattering function, a function dependent on both the momentum transfer and the atomic number of the scattering medium. While this technique accounts for binding effects on the scattering angle, it excludes the Doppler broadening the Compton line undergoes because of the momentum distribution in each bound state. To correct for these effects, Ribbefor's relativistic impulse approximation (IA) will be employed to create scattering cross section differential in both energy and angle for each element. Using the parameterizations suggested by Brusa et al., scattered photon energies and angle can be accurately sampled at a high efficiency with minimal physical data. Two-body kinematics then dictates the electron's scattered direction and energy. Finally, the atomic ionization is relaxed via Auger emission or fluorescence. Future work will extend these improvements in incoherent scattering to compounds and to adjoint calculations.

  16. Process planning optimization on turning machine tool using a hybrid genetic algorithm with local search approach

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    2015-04-01

    Full Text Available A turning machine tool is a kind of new type of machine tool that is equipped with more than one spindle and turret. The distinctive simultaneous and parallel processing abilities of turning machine tool increase the complexity of process planning. The operations would not only be sequenced and satisfy precedence constraints, but also should be scheduled with multiple objectives such as minimizing machining cost, maximizing utilization of turning machine tool, and so on. To solve this problem, a hybrid genetic algorithm was proposed to generate optimal process plans based on a mixed 0-1 integer programming model. An operation precedence graph is used to represent precedence constraints and help generate a feasible initial population of hybrid genetic algorithm. Encoding strategy based on data structure was developed to represent process plans digitally in order to form the solution space. In addition, a local search approach for optimizing the assignments of available turrets would be added to incorporate scheduling with process planning. A real-world case is used to prove that the proposed approach could avoid infeasible solutions and effectively generate a global optimal process plan.

  17. Kombinasi Firefly Algorithm-Tabu Search untuk Penyelesaian Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Riyan Naufal Hay's

    2017-07-01

    Full Text Available Traveling Salesman Problem (TSP adalah masalah optimasi kombinatorial klasik dan memiliki peran dalam perencanaan, penjadwalan, dan pencarian pada bidang rekayasa dan pengetahuan (Dong, 2012. TSP juga merupakan objek yang baik untuk menguji kinerja metode optimasi, beberapa metode seperti Cooperative Genetic Ant System (CGAS (Dong, 2012, Parallelized Genetic Ant Colony System (PGAS Particle Swarm Optimization and Ant Colony Optimization Algorithms (PSO–ACO (Elloumi, 2014, dan Ant Colony Hyper-Heuristics (ACO HH (Aziz, 2015 telah dikembangkan untuk memecahkan TSP. Sehingga, pada penelitian ini diimplementasikan kombinasi metode baru untuk meningkatkan akurasi penyelesaian TSP. Firefly Algorithm (FA merupakan salah satu algoritma yang dapat digunakan untuk memecahkan masalah optimasi kombinatorial (Layeb, 2014. FA merupakan algoritma yang berpotensi kuat dalam memecahkan kasus optimasi dibanding algoritma yang ada termasuk Particle Swarm Optimization (Yang, 2010. Namun, FA memiliki kekurangan dalam memecahkan masalah optimasi dengan skala besar (Baykasoğlu dan Ozsoy, 2014. Tabu Search (TS merupakan metode optimasi yang terbukti efektif untuk memecahkan masalah optimasi dengan skala besar (Pedro, 2013. Pada penelitian ini, TS akan diterapkan pada FA (FATS untuk memecahkan kasus TSP. Hasil FATS akan dibandingkan terhadap penelitian sebelumnya yaitu ACOHH. Perbandingan hasil menunjukan peningkatan akurasi sebesar 0.89% pada dataset Oliver30, 0.14% dataset Eil51, 3.81% dataset Eil76 dan 1.27% dataset KroA100.

  18. A load shedding scheme for DG integrated islanded power system utilizing backtracking search algorithm

    Directory of Open Access Journals (Sweden)

    Aziah Khamis

    2018-03-01

    Full Text Available In a dispersed generation (DG integrated distribution system, several technical issues should be resolved if the grid disconnects and forms an islanded system. The most critical challenge in such a situation is to maintain the stability of the islanded system. The common practice is to reject several loads through a load shedding scheme. This study introduces a development of an optimal load shedding scheme based on backtracking search algorithm (BSA. To handle this optimization problem, a constraint multiobjective function that considers the linear static voltage stability margin (VSM and amount of load curtailment is formulated. It also handles the load priority and various operating conditions of DGs. The performance of the proposed load shedding scheme was evaluated through an extensive test conducted on the IEEE 33-bus radial distribution system with four DG units considering several scenarios such as load shedding under various operating points and at various islands using the MATLAB® software. Moreover, the effectiveness of the proposed scheme was validated by comparing its results with those obtained using the genetic algorithm (GA. The optimization results indicate that the proposed BSA technique is more effective in determining the optimal amount of load to be shed in any islanded system compared with GA.

  19. Differential search algorithm-based parametric optimization of electrochemical micromachining processes

    Directory of Open Access Journals (Sweden)

    Debkalpa Goswami

    2014-01-01

    Full Text Available Electrochemical micromachining (EMM appears to be a very promising micromachining process for having higher machining rate, better precision and control, reliability, flexibility, environmental acceptability, and capability of machining a wide range of materials. It permits machining of chemically resistant materials, like titanium, copper alloys, super alloys and stainless steel to be used in biomedical, electronic, micro-electromechanical system and nano-electromechanical system applications. Therefore, the optimal use of an EMM process for achieving enhanced machining rate and improved profile accuracy demands selection of its various machining parameters. Various optimization tools, primarily Derringer’s desirability function approach have been employed by the past researchers for deriving the best parametric settings of EMM processes, which inherently lead to sub-optimal or near optimal solutions. In this paper, an attempt is made to apply an almost new optimization tool, i.e. differential search algorithm (DSA for parametric optimization of three EMM processes. A comparative study of optimization performance between DSA, genetic algorithm and desirability function approach proves the wide acceptability of DSA as a global optimization tool.

  20. SIMMER extension for multigroup energy structure search using genetic algorithm with different fitness functions

    Directory of Open Access Journals (Sweden)

    Mattia Massone

    2017-09-01

    Full Text Available The multigroup transport theory is the basis for many neutronics modules. A significant point of the cross-section (XS generation procedure is the choice of the energy groups' boundaries in the XS libraries, which must be carefully selected as an unsuitable energy meshing can easily lead to inaccurate results. This decision can require considerable effort and is particularly difficult for the common user, especially if not well-versed in reactor physics. This work investigates a genetic algorithm-based tool which selects an appropriate XS energy structure (ES specific for the considered problem, to be used for the condensation of a fine multigroup library. The procedure is accelerated by results storage and fitness calculation speed-up and can be easily parallelized. The extension is applied to the coupled code SIMMER and tested on the European Sustainable Nuclear Industrial Initiative (ESNII+ Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID-like reactor system with different fitness functions. The results show that, when the libraries are condensed based on the ESs suggested by the algorithm, the code actually returns the correct multiplication factor, in both reference and voided conditions. The computational effort reduction obtained by using the condensed library rather than the fine one is assessed and is much higher than the time required for the ES search.

  1. A Framing Link Based Tabu Search Algorithm for Large-Scale Multidepot Vehicle Routing Problems

    Directory of Open Access Journals (Sweden)

    Xuhao Zhang

    2014-01-01

    Full Text Available A framing link (FL based tabu search algorithm is proposed in this paper for a large-scale multidepot vehicle routing problem (LSMDVRP. Framing links are generated during continuous great optimization of current solutions and then taken as skeletons so as to improve optimal seeking ability, speed up the process of optimization, and obtain better results. Based on the comparison between pre- and postmutation routes in the current solution, different parts are extracted. In the current optimization period, links involved in the optimal solution are regarded as candidates to the FL base. Multiple optimization periods exist in the whole algorithm, and there are several potential FLs in each period. If the update condition is satisfied, the FL base is updated, new FLs are added into the current route, and the next period starts. Through adjusting the borderline of multidepot sharing area with dynamic parameters, the authors define candidate selection principles for three kinds of customer connections, respectively. Link split and the roulette approach are employed to choose FLs. 18 LSMDVRP instances in three groups are studied and new optimal solution values for nine of them are obtained, with higher computation speed and reliability.

  2. Optimization of Nano-Process Deposition Parameters Based on Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Norlina Mohd Sabri

    2016-06-01

    Full Text Available This research is focusing on the radio frequency (RF magnetron sputtering process, a physical vapor deposition technique which is widely used in thin film production. This process requires the optimized combination of deposition parameters in order to obtain the desirable thin film. The conventional method in the optimization of the deposition parameters had been reported to be costly and time consuming due to its trial and error nature. Thus, gravitational search algorithm (GSA technique had been proposed to solve this nano-process parameters optimization problem. In this research, the optimized parameter combination was expected to produce the desirable electrical and optical properties of the thin film. The performance of GSA in this research was compared with that of Particle Swarm Optimization (PSO, Genetic Algorithm (GA, Artificial Immune System (AIS and Ant Colony Optimization (ACO. Based on the overall results, the GSA optimized parameter combination had generated the best electrical and an acceptable optical properties of thin film compared to the others. This computational experiment is expected to overcome the problem of having to conduct repetitive laboratory experiments in obtaining the most optimized parameter combination. Based on this initial experiment, the adaptation of GSA into this problem could offer a more efficient and productive way of depositing quality thin film in the fabrication process.

  3. Addressing Data Analysis Challenges in Gravitational Wave Searches Using the Particle Swarm Optimization Algorithm

    Science.gov (United States)

    Weerathunga, Thilina Shihan

    2017-08-01

    Gravitational waves are a fundamental prediction of Einstein's General Theory of Relativity. The first experimental proof of their existence was provided by the Nobel Prize winning discovery by Taylor and Hulse of orbital decay in a binary pulsar system. The first detection of gravitational waves incident on earth from an astrophysical source was announced in 2016 by the LIGO Scientific Collaboration, launching the new era of gravitational wave (GW) astronomy. The signal detected was from the merger of two black holes, which is an example of sources called Compact Binary Coalescences (CBCs). Data analysis strategies used in the search for CBC signals are derivatives of the Maximum-Likelihood (ML) method. The ML method applied to data from a network of geographically distributed GW detectors--called fully coherent network analysis--is currently the best approach for estimating source location and GW polarization waveforms. However, in the case of CBCs, especially for lower mass systems (O(1M solar masses)) such as double neutron star binaries, fully coherent network analysis is computationally expensive. The ML method requires locating the global maximum of the likelihood function over a nine dimensional parameter space, where the computation of the likelihood at each point requires correlations involving O(104) to O(106) samples between the data and the corresponding candidate signal waveform template. Approximations, such as semi-coherent coincidence searches, are currently used to circumvent the computational barrier but incur a concomitant loss in sensitivity. We explored the effectiveness of Particle Swarm Optimization (PSO), a well-known algorithm in the field of swarm intelligence, in addressing the fully coherent network analysis problem. As an example, we used a four-detector network consisting of the two LIGO detectors at Hanford and Livingston, Virgo and Kagra, all having initial LIGO noise power spectral densities, and show that PSO can locate the global

  4. A Method for Estimating View Transformations from Image Correspondences Based on the Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Erik Cuevas

    2015-01-01

    Full Text Available In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC algorithm and the evolutionary method harmony search (HS. With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness.

  5. An Effective Framework For Economic Dispatch Using Modified Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Advik Kumar

    2017-09-01

    Full Text Available The effects of ever-increasing wind power generation for solving the economic dispatch ED problem have led to high penetration of renewable energy source in new power systems. Continuing search for better utilizing of wind turbine associated with thermal sources to find the optimal allocation of output power is necessary in which pro-vide more reliability and efficiency. Dynamic nature of wind energy has imposed uncertainties characteristics in the poser systems. To deal with this problem an effective probabilistic method to investigate all unpredictability would be a good idea to make more realistic analysis. This paper presents a heuristics optimization method based on harmony search HS algorithm to solve non-convex ED problems while uncertainties effects caused by wind turbines are considered. To involve a realistic analysis as a more practical investigation the proposed probabilistic ED PED approach includes prohibited operating zone POZ system spinning reserve ramp rate limits variety of fuel is considered in this studies. Point Estimate Method PEM as a proposed PED model the uncertainties of wind speed for wind turbines to present better realization to the problem. Optimal solution are presented for vari-ous test system and these solutions demonstrate the benefits of our approach in terms of cost over existing ED techniques.

  6. qPMS9: An Efficient Algorithm for Quorum Planted Motif Search

    Science.gov (United States)

    Nicolae, Marius; Rajasekaran, Sanguthevar

    2015-01-01

    Discovering patterns in biological sequences is a crucial problem. For example, the identification of patterns in DNA sequences has resulted in the determination of open reading frames, identification of gene promoter elements, intron/exon splicing sites, and SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have led to domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, discovery of short functional motifs, etc. In this paper we focus on the identification of an important class of patterns, namely, motifs. We study the (l, d) motif search problem or Planted Motif Search (PMS). PMS receives as input n strings and two integers l and d. It returns all sequences M of length l that occur in each input string, where each occurrence differs from M in at most d positions. Another formulation is quorum PMS (qPMS), where the motif appears in at least q% of the strings. We introduce qPMS9, a parallel exact qPMS algorithm that offers significant runtime improvements on DNA and protein datasets. qPMS9 solves the challenging DNA (l, d)-instances (28, 12) and (30, 13). The source code is available at https://code.google.com/p/qpms9/.

  7. Optimal design of a solar-hybrid cogeneration cycle using Cuckoo Search algorithm

    International Nuclear Information System (INIS)

    Khoshgoftar Manesh, M.H.; Ameryan, M.

    2016-01-01

    Highlights: • Effective time-saving procedure. • Using simple parallel computing exergoeconomic optimization. • Optimum design of solar-hybrid cogeneration cycle based on the Cuckoo Search. • Appears effective in optimizing thermodynamic cycles. - Abstract: In this paper optimum design of solar-hybrid cogeneration cycle based on the Cuckoo Search (CS) algorithm is presented. The CS is one of the recently developed population based algorithms inspired by the behavior of some cuckoo species together via the Levy flight behavior of some birds and fruit flies. Moreover, solar power tower technology is practical for utilization in conventional fossil fired power cycles, in part because it can achieve temperatures as high as 1000 °C. An exergoeconomic optimization is reported here of a solar-hybrid cogeneration cycle. Modifications are applied to the well-known the prescribed simple cogeneration (CGAM) problem through hybridization by appropriate heliostat field design around the power tower to meet the plant’s annual demand. The hybrid cycle is optimized utilizing a CS and compared with the results of the Genetic Algorithm (GA) in Matlab toolbox. Considering exergy efficiency and product cost as objective functions, and principal variables as decision variables, the optimum point is determined. The corresponding optimum decision variables are set as inputs of the system and the technical results are a 48% reduction in fuel consumption which leads to a corresponding decrease in CO 2 emissions and a considerable decrease in chemical exergy destruction as the main source of irreversibility. In the analyses, the net power generated is fixed at 30 MW with a marginal deviation in order to compare the results with the conventional cycle. Despite the technical advantages of this scheme, the total product cost rises significantly (by about 87%), which is an expected economic outcome. Effective time-saving procedure using simple parallel computing, as well as utilizing

  8. Security Analysis of Image Encryption Based on Gyrator Transform by Searching the Rotation Angle with Improved PSO Algorithm.

    Science.gov (United States)

    Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong

    2015-08-05

    Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms.

  9. Security Analysis of Image Encryption Based on Gyrator Transform by Searching the Rotation Angle with Improved PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Jun Sang

    2015-08-01

    Full Text Available Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms.

  10. Breadth-First Search-Based Single-Phase Algorithms for Bridge Detection in Wireless Sensor Networks

    Science.gov (United States)

    Akram, Vahid Khalilpour; Dagdeviren, Orhan

    2013-01-01

    Wireless sensor networks (WSNs) are promising technologies for exploring harsh environments, such as oceans, wild forests, volcanic regions and outer space. Since sensor nodes may have limited transmission range, application packets may be transmitted by multi-hop communication. Thus, connectivity is a very important issue. A bridge is a critical edge whose removal breaks the connectivity of the network. Hence, it is crucial to detect bridges and take preventions. Since sensor nodes are battery-powered, services running on nodes should consume low energy. In this paper, we propose energy-efficient and distributed bridge detection algorithms for WSNs. Our algorithms run single phase and they are integrated with the Breadth-First Search (BFS) algorithm, which is a popular routing algorithm. Our first algorithm is an extended version of Milic's algorithm, which is designed to reduce the message length. Our second algorithm is novel and uses ancestral knowledge to detect bridges. We explain the operation of the algorithms, analyze their proof of correctness, message, time, space and computational complexities. To evaluate practical importance, we provide testbed experiments and extensive simulations. We show that our proposed algorithms provide less resource consumption, and the energy savings of our algorithms are up by 5.5-times. PMID:23845930

  11. ∊-constraint heat transfer search (∊-HTS algorithm for solving multi-objective engineering design problems

    Directory of Open Access Journals (Sweden)

    Mohamed A. Tawhid

    2018-01-01

    Full Text Available In this paper, an effective ∊-constraint heat transfer search (∊-HTS algorithm for the multi-objective engineering design problems is presented. This algorithm is developed to solve multi-objective optimization problems by evaluating a set of single objective sub-problems. The effectiveness of the proposed algorithm is checked by implementing it on multi-objective benchmark problems that have various characteristics of Pareto front such as discrete, convex, and non-convex. This algorithm is also tested for several distinctive multi-objective engineering design problems, such as four bar truss problem, gear train problem, multi-plate disc brake design, speed reducer problem, welded beam design, and spring design problem. Moreover, the numerical experimentation shows that the proposed algorithm generates the solution to represent true Pareto front.

  12. Waste Load Allocation Based on Total Maximum Daily Load Approach Using the Charged System Search (CSS Algorithm

    Directory of Open Access Journals (Sweden)

    Elham Faraji

    2016-03-01

    Full Text Available In this research, the capability of a charged system search algorithm (CSS in handling water management optimization problems is investigated. First, two complex mathematical problems are solved by CSS and the results are compared with those obtained from other metaheuristic algorithms. In the last step, the optimization model developed by the CSS algorithm is applied to the waste load allocation in rivers based on the total maximum daily load (TMDL concept. The results are presented in Tables and Figures for easy comparison. The study indicates the superiority of the CSS algorithm in terms of its speed and performance over the other metaheuristic algorithms while its precision in water management optimization problems is verified.

  13. Application of quantum-inspired binary gravitational search algorithm for thermal unit commitment with wind power integration

    International Nuclear Information System (INIS)

    Ji, Bin; Yuan, Xiaohui; Li, Xianshan; Huang, Yuehua; Li, Wenwu

    2014-01-01

    Highlights: • Chance constrained programming is used to build UC with wind power model (TUCPW). • Quantum-inspired gravitational search algorithm (QBGSA) is proposed to solve TUCPW. • QBGSA based on priority list is adopted to optimize on/off status of units. • Heuristic search strategy is applied to handle the constraints of TUCPW. • Local mutation adjustment strategy is proposed to improve the performance of QBGSA. - Abstract: As the application of wind power energy is rapidly developing, it is very important to analyze the effects of wind power fluctuation on power system operation. In this paper, a model of thermal unit commitment problem with wind power integration is established and chance constrained programming is applied to simulate the effects of wind power fluctuation. Meanwhile, a combination of quantum-inspired binary gravitational search algorithm and chance constrained programming is proposed to solve the thermal unit commitment problem with wind power integration. In order to reduce the searching time and avoid the premature convergence, a priority list of thermal units and a local mutation adjustment strategy are utilized during the optimization process. The priority list of thermal units is based on the weight between average full-load cost and maximal power output. Then, a stochastic simulation technique is used to deal with the probabilistic constraints. In addition, heuristic search strategies are used to handle deterministic constraints of thermal units. Furthermore, the impacts of different confidence levels and different prediction errors of wind fluctuation on system operation are analyzed respectively. The feasibility and effectiveness of the proposed method are verified by the test system with wind power integration, and the results are compared with those using binary gravitational search algorithm and binary particle swarm optimization. The simulation results demonstrate that the proposed quantum-inspired binary gravitational

  14. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment.

    Science.gov (United States)

    Abdullahi, Mohammed; Ngadi, Md Asri

    2016-01-01

    Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.

  15. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment.

    Directory of Open Access Journals (Sweden)

    Mohammed Abdullahi

    Full Text Available Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS has been shown to perform competitively with Particle Swarm Optimization (PSO. The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA based SOS (SASOS in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.

  16. A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality.

    Science.gov (United States)

    Wang, Xueyi

    2012-02-08

    The k-nearest neighbors (k-NN) algorithm is a widely used machine learning method that finds nearest neighbors of a test object in a feature space. We present a new exact k-NN algorithm called kMkNN (k-Means for k-Nearest Neighbors) that uses the k-means clustering and the triangle inequality to accelerate the searching for nearest neighbors in a high dimensional space. The kMkNN algorithm has two stages. In the buildup stage, instead of using complex tree structures such as metric trees, kd-trees, or ball-tree, kMkNN uses a simple k-means clustering method to preprocess the training dataset. In the searching stage, given a query object, kMkNN finds nearest training objects starting from the nearest cluster to the query object and uses the triangle inequality to reduce the distance calculations. Experiments show that the performance of kMkNN is surprisingly good compared to the traditional k-NN algorithm and tree-based k-NN algorithms such as kd-trees and ball-trees. On a collection of 20 datasets with up to 10(6) records and 10(4) dimensions, kMkNN shows a 2-to 80-fold reduction of distance calculations and a 2- to 60-fold speedup over the traditional k-NN algorithm for 16 datasets. Furthermore, kMkNN performs significant better than a kd-tree based k-NN algorithm for all datasets and performs better than a ball-tree based k-NN algorithm for most datasets. The results show that kMkNN is effective for searching nearest neighbors in high dimensional spaces.

  17. Fast quantum search algorithm for databases of arbitrary size and its implementation in a cavity QED system

    International Nuclear Information System (INIS)

    Li, H.Y.; Wu, C.W.; Liu, W.T.; Chen, P.X.; Li, C.Z.

    2011-01-01

    We propose a method for implementing the Grover search algorithm directly in a database containing any number of items based on multi-level systems. Compared with the searching procedure in the database with qubits encoding, our modified algorithm needs fewer iteration steps to find the marked item and uses the carriers of the information more economically. Furthermore, we illustrate how to realize our idea in cavity QED using Zeeman's level structure of atoms. And the numerical simulation under the influence of the cavity and atom decays shows that the scheme could be achieved efficiently within current state-of-the-art technology. -- Highlights: ► A modified Grover algorithm is proposed for searching in an arbitrary dimensional Hilbert space. ► Our modified algorithm requires fewer iteration steps to find the marked item. ► The proposed method uses the carriers of the information more economically. ► A scheme for a six-item Grover search in cavity QED is proposed. ► Numerical simulation under decays shows that the scheme can be achieved with enough fidelity.

  18. A Hybrid Seasonal Mechanism with a Chaotic Cuckoo Search Algorithm with a Support Vector Regression Model for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Yongquan Dong

    2018-04-01

    Full Text Available Providing accurate electric load forecasting results plays a crucial role in daily energy management of the power supply system. Due to superior forecasting performance, the hybridizing support vector regression (SVR model with evolutionary algorithms has received attention and deserves to continue being explored widely. The cuckoo search (CS algorithm has the potential to contribute more satisfactory electric load forecasting results. However, the original CS algorithm suffers from its inherent drawbacks, such as parameters that require accurate setting, loss of population diversity, and easy trapping in local optima (i.e., premature convergence. Therefore, proposing some critical improvement mechanisms and employing an improved CS algorithm to determine suitable parameter combinations for an SVR model is essential. This paper proposes the SVR with chaotic cuckoo search (SVRCCS model based on using a tent chaotic mapping function to enrich the cuckoo search space and diversify the population to avoid trapping in local optima. In addition, to deal with the cyclic nature of electric loads, a seasonal mechanism is combined with the SVRCCS model, namely giving a seasonal SVR with chaotic cuckoo search (SSVRCCS model, to produce more accurate forecasting performances. The numerical results, tested by using the datasets from the National Electricity Market (NEM, Queensland, Australia and the New York Independent System Operator (NYISO, NY, USA, show that the proposed SSVRCCS model outperforms other alternative models.

  19. A multifrequency MUSIC algorithm for locating small inhomogeneities in inverse scattering

    International Nuclear Information System (INIS)

    Griesmaier, Roland; Schmiedecke, Christian

    2017-01-01

    We consider an inverse scattering problem for time-harmonic acoustic or electromagnetic waves with sparse multifrequency far field data-sets. The goal is to localize several small penetrable objects embedded inside an otherwise homogeneous background medium from observations of far fields of scattered waves corresponding to incident plane waves with one fixed incident direction but several different frequencies. We assume that the far field is measured at a few observation directions only. Taking advantage of the smallness of the scatterers with respect to wavelength we utilize an asymptotic representation formula for the far field to design and analyze a MUSIC-type reconstruction method for this setup. We establish lower bounds on the number of frequencies and receiver directions that are required to recover the number and the positions of an ensemble of scatterers from the given measurements. Furthermore we briefly sketch a possible application of the reconstruction method to the practically relevant case of multifrequency backscattering data. Numerical examples are presented to document the potentials and limitations of this approach. (paper)

  20. Novel search space updating heuristics-based genetic algorithm for optimizing medium-scale airline crew pairing problems

    Directory of Open Access Journals (Sweden)

    Nihan Cetin Demirel

    2017-01-01

    Full Text Available This study examines the crew pairing problem, which is one of the most comprehensive problems encountered in airline planning, to generate a set of crew pairings that has minimal cost, covers all flight legs and fulfils legal criteria. In addition, this study examines current research related to crew pairing optimization. The contribution of this study is developing heuristics based on an improved dynamic-based genetic algorithm, a deadhead-minimizing pairing search and a partial solution approach (less-costly alternative pairing search. This study proposes genetic algorithm variants and a memetic algorithm approach. In addition, computational results based on real-world data from a local airline company in Turkey are presented. The results demonstrate that the proposed approach can successfully handle medium sets of crew pairings and generate higher-quality solutions than previous methods.

  1. Search for Novel Short-Range Forces between Elementary Particles in Neutron Scattering

    Science.gov (United States)

    Voronin, V. V.; Kuznetsov, I. A.; Shapiro, D. D.

    2018-01-01

    The sensitivity of the method of neutron scattering to novel neutron-nucleon interactions is analyzed. Upper limits on the coupling constant of such interactions are imposed using the available data on neutron powder diffraction on polycrystalline silicon. For the forces acting at ranges of λ limits are already competitive with the best existing constraints on their coupling constant. A dedicated experiment can help improve the sensitivity to this coupling constant by nearly two orders of magnitude.

  2. Improving Accuracy of River Flow Forecasting Using LSSVR with Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Rana Muhammad Adnan

    2017-01-01

    Full Text Available River flow prediction is essential in many applications of water resources planning and management. In this paper, the accuracy of multivariate adaptive regression splines (MARS, model 5 regression tree (M5RT, and conventional multiple linear regression (CMLR is compared with a hybrid least square support vector regression-gravitational search algorithm (HLGSA in predicting monthly river flows. In the first part of the study, all three regression methods were compared with each other in predicting river flows of each basin. It was found that the HLGSA method performed better than the MARS, M5RT, and CMLR in river flow prediction. The effect of log transformation on prediction accuracy of the regression methods was also examined in the second part of the study. Log transformation of the river flow data significantly increased the prediction accuracy of all regression methods. It was also found that log HLGSA (LHLSGA performed better than the other regression methods. In the third part of the study, the accuracy of the LHLGSA and HLGSA methods was examined in river flow estimation using nearby river flow data. On the basis of results of all applications, it was found that LHLGSA and HLGSA could be successfully used in prediction and estimation of river flow.

  3. Analysis of Economic Load Dispatch with a lot of Constraints Using Vortex Search Algorithm

    Directory of Open Access Journals (Sweden)

    Mustafa Saka

    2017-12-01

    Full Text Available In modern powers systems, one of the most considerable topics is economic load dispatch (ELD. ELD is non-linear problem and it became non-convex and non-smooth problem with some constraints such as valve point loading effect. ELD is very crucial for energy generation and distribution in power systems. For solving ELD problem, a lot of methods were developed and used at different power systems. Vortex search algorithm (VSA is proposed and applied for solving ELD problem in this paper. VSA method was developed in the form of stirring liquids. Transmission line losses, valve point loading effect, ramp rate limits and prohibited zones constraints were used to make the results of ELD problem the closest to the truth. The results which are obtained from VSA compared with PSO, CPSO, WIPSO, MFO, GA and MRPSO techniques. It can be clearly seen that VSA gave minimum cost values with optimum generator powers so it is very effective and useful method and it gave the best solutions for ELD.

  4. A constrained reduced-dimensionality search algorithm to follow chemical reactions on potential energy surfaces

    Science.gov (United States)

    Lankau, Timm; Yu, Chin-Hui

    2013-06-01

    A constrained reduced-dimensionality algorithm can be used to efficiently locate transition states and products in reactions involving conformational changes. The search path (SP) is constructed stepwise from linear combinations of a small set of manually chosen internal coordinates, namely the predictors. The majority of the internal coordinates, the correctors, are optimized at every step of the SP to minimize the total energy of the system so that the path becomes a minimum energy path connecting products and transition states with the reactants. Problems arise when the set of predictors needs to include weak coordinates, for example, dihedral angles, as well as strong ones such as bond distances. Two principal constraining methods for the weak coordinates are proposed to mend this situation: static and dynamic constraints. Dynamic constraints are automatically activated and revoked depending on the state of the weak coordinates among the predictors, while static ones require preset control factors and act permanently. All these methods enable the successful application (4 reactions are presented involving cyclohexane, alanine dipeptide, trimethylsulfonium chloride, and azafulvene) of the reduced dimensionality method to reactions where the reaction path covers large conformational changes in addition to the formation/breaking of chemical bonds. Dynamic constraints are found to be the most efficient method as they require neither additional information about the geometry of the transition state nor fine tuning of control parameters.

  5. Optimum Design of Composite Corrugated Web Beams Using Hunting Search Algorithm

    Directory of Open Access Journals (Sweden)

    Ferhat Erdal

    2017-07-01

    Full Text Available Over the past few years there has been sustainable development in the steel and composite construction technology. One of the recent additions to such developments is the I-girders with corrugated web beams. The use of these new generation beams results in a range of benefits, including flexible, free internal spaces and reduced foundation costs. Corrugated web beams are built-up girders with a thin-walled, corrugated web and wide plate flanges. The thin corrugated web affords a significant weight reduction of these beams, compared with hot-rolled or welded ones. In this paper, optimum design of corrugated composite beams is presented. A recent stochastic optimization algorithm coded that is based on hunting search is used for obtaining the solution of the design problem. In the optimisation process, besides the thickness of concrete slab and studs, web height and thickness, distance between the peaks of the two curves, the width and thickness of flange are considered as design variables. The design constraints are respectively implemented from BS EN1993-1:2005 (Annex-D, Eurocode 3 BS-8110 and DIN 18-800 Teil-1. Furthermore, these selections are also carried out such that the design limitations are satisfied and the weight of the composite corrugated web beam is the minimum.

  6. Fast and scalable algorithm for the simulation of multiple Mie scattering in optical systems.

    Science.gov (United States)

    Kalthoff, Oliver; Kampmann, Ronald; Streicher, Simon; Sinzinger, Stefan

    2016-05-20

    The Monte Carlo simulation of light propagation in optical systems requires the processing of a large number of photons to achieve a satisfactory statistical accuracy. Based on classical Mie scattering, we experimentally show that the independence of photons propagating through a turbid medium imposes a postulate for a concurrent and scalable programming paradigm of general purpose graphics processing units. This ensures that, without rewriting code, increasingly complex optical systems can be simulated if more processors are available in the future.

  7. A tabu search evalutionary algorithm for multiobjective optimization: Application to a bi-criterion aircraft structural reliability problem

    Science.gov (United States)

    Long, Kim Chenming

    Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this

  8. Improvement of the Gravitational Search Algorithm by means of Low-Discrepancy Sobol Quasi Random-Number Sequence Based Initialization

    Directory of Open Access Journals (Sweden)

    ALTINOZ, O. T.

    2014-08-01

    Full Text Available Nature-inspired optimization algorithms can obtain the optima by updating the position of each member in the population. At the beginning of the algorithm, the particles of the population are spread into the search space. The initial distribution of particles corresponds to the beginning points of the search process. Hence, the aim is to alter the position for each particle beginning with this initial position until the optimum solution will be found with respect to the pre-determined conditions like maximum iteration, and specific error value for the fitness function. Therefore, initial positions of the population have a direct effect on both accuracy of the optima and the computational cost. If any member in the population is close enough to the optima, this eases the achievement of the exact solution. On the contrary, individuals grouped far away from the optima might yield pointless efforts. In this study, low-discrepancy quasi-random number sequence is preferred for the localization of the population at the initialization phase. By this way, the population is distributed into the search space in a more uniform manner at the initialization phase. The technique is applied to the Gravitational Search Algorithm and compared via the performance on benchmark function solutions.

  9. Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization

    Science.gov (United States)

    Yang, Dixiong; Liu, Zhenjun; Zhou, Jilei

    2014-04-01

    Chaos optimization algorithms (COAs) usually utilize the chaotic map like Logistic map to generate the pseudo-random numbers mapped as the design variables for global optimization. Many existing researches indicated that COA can more easily escape from the local minima than classical stochastic optimization algorithms. This paper reveals the inherent mechanism of high efficiency and superior performance of COA, from a new perspective of both the probability distribution property and search speed of chaotic sequences generated by different chaotic maps. The statistical property and search speed of chaotic sequences are represented by the probability density function (PDF) and the Lyapunov exponent, respectively. Meanwhile, the computational performances of hybrid chaos-BFGS algorithms based on eight one-dimensional chaotic maps with different PDF and Lyapunov exponents are compared, in which BFGS is a quasi-Newton method for local optimization. Moreover, several multimodal benchmark examples illustrate that, the probability distribution property and search speed of chaotic sequences from different chaotic maps significantly affect the global searching capability and optimization efficiency of COA. To achieve the high efficiency of COA, it is recommended to adopt the appropriate chaotic map generating the desired chaotic sequences with uniform or nearly uniform probability distribution and large Lyapunov exponent.

  10. A Hybrid Evolutionary Algorithm to Quadratic Three-Dimensional Assignment Problem with Local Search for Many-Core Graphics Processors

    Science.gov (United States)

    Lipinski, Piotr

    This paper concerns the quadratic three-dimensional assignment problem (Q3AP), an extension of the quadratic assignment problem (QAP), and proposes an efficient hybrid evolutionary algorithm combining stochastic optimization and local search with a number of crossover operators, a number of mutation operators and an auto-adaptation mechanism. Auto-adaptation manages the pool of evolutionary operators applying different operators in different computation phases to better explore the search space and to avoid premature convergence. Local search additionally optimizes populations of candidate solutions and accelerates evolutionary search. It uses a many-core graphics processor to optimize a number of solutions in parallel, which enables its incorporation into the evolutionary algorithm without excessive increases in the computation time. Experiments performed on benchmark Q3AP instances derived from the classic QAP instances proposed by Nugent et al. confirmed that the proposed algorithm is able to find optimal solutions to Q3AP in a reasonable time and outperforms best known results found in the literature.

  11. Search for Active-State Conformation of Drug Target GPCR Using Real-Coded Genetic Algorithm

    Science.gov (United States)

    Ishino, Yoko; Harada, Takanori; Aida, Misako

    G-Protein coupled receptors (GPCRs) comprise a large superfamily of proteins and are a target for nearly 50% of drugs in clinical use today. GPCRs have a unique structural motif, seven transmembrane helices, and it is known that agonists and antagonists dock with a GPCR in its ``active'' and ``inactive'' condition, respectively. Knowing conformations of both states is eagerly anticipated for elucidation of drug action mechanism. Since GPCRs are difficult to crystallize, the 3D structures of these receptors have not yet been determined by X-ray crystallography, except the inactive-state conformation of two proteins. The conformation of them enabled the inactive form of other GPCRs to be modeled by computer-aided homology modeling. However, to date, the active form of GPCRs has not been solved. This paper describes a novel method to predict the 3D structure of an active-state GPCR aiming at molecular docking-based virtual screening using real-coded genetic algorithm (real-coded GA), receptor-ligand docking simulations, and molecular dynamics (MD) simulations. The basic idea of the method is that the MD is first used to calculate an average 3D coordinates of all atoms of a GPCR protein against heat fluctuation on the pico- or nano- second time scale, and then real-coded GA involving receptor-ligand docking simulations functions to determine the rotation angle of each helix as a movement on wider time scale. The method was validated using human leukotriene B4 receptor BLT1 as a sample GPCR. Our study demonstrated that the established evolutionary search for the active state of the leukotriene receptor provided the appropriate 3D structure of the receptor to dock with its agonists.

  12. Backtracking search algorithm in CVRP models for efficient solid waste collection and route optimization.

    Science.gov (United States)

    Akhtar, Mahmuda; Hannan, M A; Begum, R A; Basri, Hassan; Scavino, Edgar

    2017-03-01

    Waste collection is an important part of waste management that involves different issues, including environmental, economic, and social, among others. Waste collection optimization can reduce the waste collection budget and environmental emissions by reducing the collection route distance. This paper presents a modified Backtracking Search Algorithm (BSA) in capacitated vehicle routing problem (CVRP) models with the smart bin concept to find the best optimized waste collection route solutions. The objective function minimizes the sum of the waste collection route distances. The study introduces the concept of the threshold waste level (TWL) of waste bins to reduce the number of bins to be emptied by finding an optimal range, thus minimizing the distance. A scheduling model is also introduced to compare the feasibility of the proposed model with that of the conventional collection system in terms of travel distance, collected waste, fuel consumption, fuel cost, efficiency and CO 2 emission. The optimal TWL was found to be between 70% and 75% of the fill level of waste collection nodes and had the maximum tightness value for different problem cases. The obtained results for four days show a 36.80% distance reduction for 91.40% of the total waste collection, which eventually increases the average waste collection efficiency by 36.78% and reduces the fuel consumption, fuel cost and CO 2 emission by 50%, 47.77% and 44.68%, respectively. Thus, the proposed optimization model can be considered a viable tool for optimizing waste collection routes to reduce economic costs and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.

    Science.gov (United States)

    Audain, Enrique; Uszkoreit, Julian; Sachsenberg, Timo; Pfeuffer, Julianus; Liang, Xiao; Hermjakob, Henning; Sanchez, Aniel; Eisenacher, Martin; Reinert, Knut; Tabb, David L; Kohlbacher, Oliver; Perez-Riverol, Yasset

    2017-01-06

    In mass spectrometry-based shotgun proteomics, protein identifications are usually the desired result. However, most of the analytical methods are based on the identification of reliable peptides and not the direct identification of intact proteins. Thus, assembling peptides identified from tandem mass spectra into a list of proteins, referred to as protein inference, is a critical step in proteomics research. Currently, different protein inference algorithms and tools are available for the proteomics community. Here, we evaluated five software tools for protein inference (PIA, ProteinProphet, Fido, ProteinLP, MSBayesPro) using three popular database search engines: Mascot, X!Tandem, and MS-GF+. All the algorithms were evaluated using a highly customizable KNIME workflow using four different public datasets with varying complexities (different sample preparation, species and analytical instruments). We defined a set of quality control metrics to evaluate the performance of each combination of search engines, protein inference algorithm, and parameters on each dataset. We show that the results for complex samples vary not only regarding the actual numbers of reported protein groups but also concerning the actual composition of groups. Furthermore, the robustness of reported proteins when using databases of differing complexities is strongly dependant on the applied inference algorithm. Finally, merging the identifications of multiple search engines does not necessarily increase the number of reported proteins, but does increase the number of peptides per protein and thus can generally be recommended. Protein inference is one of the major challenges in MS-based proteomics nowadays. Currently, there are a vast number of protein inference algorithms and implementations available for the proteomics community. Protein assembly impacts in the final results of the research, the quantitation values and the final claims in the research manuscript. Even though protein

  14. Operation management of daily economic dispatch using novel hybrid particle swarm optimization and gravitational search algorithm with hybrid mutation strategy

    Science.gov (United States)

    Wang, Yan; Huang, Song; Ji, Zhicheng

    2017-07-01

    This paper presents a hybrid particle swarm optimization and gravitational search algorithm based on hybrid mutation strategy (HGSAPSO-M) to optimize economic dispatch (ED) including distributed generations (DGs) considering market-based energy pricing. A daily ED model was formulated and a hybrid mutation strategy was adopted in HGSAPSO-M. The hybrid mutation strategy includes two mutation operators, chaotic mutation, Gaussian mutation. The proposed algorithm was tested on IEEE-33 bus and results show that the approach is effective for this problem.

  15. Search for small-angle neutron scattering in MnO at 1700K

    International Nuclear Information System (INIS)

    Routbort, J.L.; Epperson, J.E.; Klippert, T.E.; Goretta, K.C.

    1986-01-01

    A preliminary small-angle scattering (SANS) experiment has been performed on MnO single crystal at the Intense Pulsed Neutron Source. The experiment was preformed at 1700 0 K at oxygen partial pressures of 2.2 x 10 -4 , 1 x 10 2 , and 2 x 10 2 Pa, which resulted in deviations from stoichiometry of about 0.0015, 0.082, and 0.127. No statistically significant change in SANS was observed at this temperature with the pressure changes. Neither was any significant change observed in the wavelength-dependent sample transmission, also measured in-situ as a function of pressure. Therefore, either clustering of cation vacancies is negligible in MnO for these conditions, or the clusters are smaller than about 5 A. Of proposed cluster configurations, only the existence of the smallest (4:1, 6:2, or possible 8:3) appears to be consistent with these results

  16. Exclusion limits on the WIMP nucleon elastic scattering cross-section from the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Golwala, Sunil Ramanlal [UC, Berkeley

    2000-01-01

    Extensive evidence indicates that a large fraction of the matter in the universe is nonluminous, nonbaryonic, and “cold” — nonrelativistic at the time matter began to dominate the energy density of the universe. Weakly Interacting Massive Particles (WIMPs) are an excellent candidate for nonbaryonic, cold dark matter. Minimal supersymmetry provides a natural WIMP candidate in the form of the lightest superpartner, with a typical mass Mδ ~ 100 GeV c-2 . WIMPs are expected to have collapsed into a roughly isothermal, spherical halo within which the visible portion of our galaxy resides. They would scatter off nuclei via the weak interaction, potentially allowingtheir direct detection. The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for WIMPs via their elastic-scatteringinteractions with nuclei while discriminatingagainst interactions of background particles. The former yield nuclear recoils while the latter produce electron recoils. The ionization yield (the ratio of ionization production to recoil energy in a semiconductor) of a particle interaction differs greatly for nuclear and electron recoils. CDMS detectors measure phonon and electron-hole-pair production to determine recoil energy and ionization yield for each event and thereby discriminate nuclear recoils from electron recoils. This dissertation reports new limits on the spin-independent WIMP-nucleon elastic-scattering cross section that exclude unexplored parameter space above 10 GeV c-2 WIMP mass and, at > 75% CL, the entire 3σ allowed region for the WIMP signal reported by the DAMA experiment. The experimental apparatus, detector performance, and data analysis are fully described.

  17. Computational study of scattering of a zero-order Bessel beam by large nonspherical homogeneous particles with the multilevel fast multipole algorithm

    Science.gov (United States)

    Yang, Minglin; Wu, Yueqian; Sheng, Xinqing; Ren, Kuan Fang

    2017-12-01

    Computation of scattering of shaped beams by large nonspherical particles is a challenge in both optics and electromagnetics domains since it concerns many research fields. In this paper, we report our new progress in the numerical computation of the scattering diagrams. Our algorithm permits to calculate the scattering of a particle of size as large as 110 wavelengths or 700 in size parameter. The particle can be transparent or absorbing of arbitrary shape, smooth or with a sharp surface, such as the Chebyshev particles or ice crystals. To illustrate the capacity of the algorithm, a zero order Bessel beam is taken as the incident beam, and the scattering of ellipsoidal particles and Chebyshev particles are taken as examples. Some special phenomena have been revealed and examined. The scattering problem is formulated with the combined tangential formulation and solved iteratively with the aid of the multilevel fast multipole algorithm, which is well parallelized with the message passing interface on the distributed memory computer platform using the hybrid partitioning strategy. The numerical predictions are compared with the results of the rigorous method for a spherical particle to validate the accuracy of the approach. The scattering diagrams of large ellipsoidal particles with various parameters are examined. The effect of aspect ratios, as well as half-cone angle of the incident zero-order Bessel beam and the off-axis distance on scattered intensity, is studied. Scattering by asymmetry Chebyshev particle with size parameter larger than 700 is also given to show the capability of the method for computing scattering by arbitrary shaped particles.

  18. Algorithms

    Indian Academy of Sciences (India)

    have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming language Is called a program. From activities 1-3, we can observe that: • Each activity is a command.

  19. An Efficient Two-Objective Hybrid Local Search Algorithm for Solving the Fuel Consumption Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Weizhen Rao

    2016-01-01

    Full Text Available The classical model of vehicle routing problem (VRP generally minimizes either the total vehicle travelling distance or the total number of dispatched vehicles. Due to the increased importance of environmental sustainability, one variant of VRPs that minimizes the total vehicle fuel consumption has gained much attention. The resulting fuel consumption VRP (FCVRP becomes increasingly important yet difficult. We present a mixed integer programming model for the FCVRP, and fuel consumption is measured through the degree of road gradient. Complexity analysis of FCVRP is presented through analogy with the capacitated VRP. To tackle the FCVRP’s computational intractability, we propose an efficient two-objective hybrid local search algorithm (TOHLS. TOHLS is based on a hybrid local search algorithm (HLS that is also used to solve FCVRP. Based on the Golden CVRP benchmarks, 60 FCVRP instances are generated and tested. Finally, the computational results show that the proposed TOHLS significantly outperforms the HLS.

  20. Cooperative Search and Rescue with Artificial Fishes Based on Fish-Swarm Algorithm for Underwater Wireless Sensor Networks

    Science.gov (United States)

    Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua

    2014-01-01

    This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties. PMID:24741341

  1. A parallel wavelet-enhanced PWTD algorithm for analyzing transient scattering from electrically very large PEC targets

    KAUST Repository

    Liu, Yang

    2014-07-01

    The computational complexity and memory requirements of classically formulated marching-on-in-time (MOT)-based surface integral equation (SIE) solvers scale as O(Nt Ns 2) and O(Ns 2), respectively; here Nt and Ns denote the number of temporal and spatial degrees of freedom of the current density. The multilevel plane wave time domain (PWTD) algorithm, viz., the time domain counterpart of the multilevel fast multipole method, reduces these costs to O(Nt Nslog2 Ns) and O(Ns 1.5) (Ergin et al., IEEE Trans. Antennas Mag., 41, 39-52, 1999). Previously, PWTD-accelerated MOT-SIE solvers have been used to analyze transient scattering from perfect electrically conducting (PEC) and homogeneous dielectric objects discretized in terms of a million spatial unknowns (Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003). More recently, an efficient parallelized solver that employs an advanced hierarchical and provably scalable spatial, angular, and temporal load partitioning strategy has been developed to analyze transient scattering problems that involve ten million spatial unknowns (Liu et. al., in URSI Digest, 2013).

  2. Algorithms and computer codes for atomic and molecular quantum scattering theory. Volume I

    International Nuclear Information System (INIS)

    Thomas, L.

    1979-01-01

    The goals of this workshop are to identify which of the existing computer codes for solving the coupled equations of quantum molecular scattering theory perform most efficiently on a variety of test problems, and to make tested versions of those codes available to the chemistry community through the NRCC software library. To this end, many of the most active developers and users of these codes have been invited to discuss the methods and to solve a set of test problems using the LBL computers. The first volume of this workshop report is a collection of the manuscripts of the talks that were presented at the first meeting held at the Argonne National Laboratory, Argonne, Illinois June 25-27, 1979. It is hoped that this will serve as an up-to-date reference to the most popular methods with their latest refinements and implementations

  3. Algorithms and computer codes for atomic and molecular quantum scattering theory. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, L. (ed.)

    1979-01-01

    The goals of this workshop are to identify which of the existing computer codes for solving the coupled equations of quantum molecular scattering theory perform most efficiently on a variety of test problems, and to make tested versions of those codes available to the chemistry community through the NRCC software library. To this end, many of the most active developers and users of these codes have been invited to discuss the methods and to solve a set of test problems using the LBL computers. The first volume of this workshop report is a collection of the manuscripts of the talks that were presented at the first meeting held at the Argonne National Laboratory, Argonne, Illinois June 25-27, 1979. It is hoped that this will serve as an up-to-date reference to the most popular methods with their latest refinements and implementations.

  4. Memetic Algorithm with Local Search as Modified Swine Influenza Model-Based Optimization and Its Use in ECG Filtering

    Directory of Open Access Journals (Sweden)

    Devidas G. Jadhav

    2014-01-01

    Full Text Available The Swine Influenza Model Based Optimization (SIMBO family is a newly introduced speedy optimization technique having the adaptive features in its mechanism. In this paper, the authors modified the SIMBO to make the algorithm further quicker. As the SIMBO family is faster, it is a better option for searching the basin. Thus, it is utilized in local searches in developing the proposed memetic algorithms (MAs. The MA has a faster speed compared to SIMBO with the balance in exploration and exploitation. So, MAs have small tradeoffs in convergence velocity for comprehensively optimizing the numerical standard benchmark test bed having functions with different properties. The utilization of SIMBO in the local searching is inherently the exploitation of better characteristics of the algorithms employed for the hybridization. The developed MA is applied to eliminate the power line interference (PLI from the biomedical signal ECG with the use of adaptive filter whose weights are optimized by the MA. The inference signal required for adaptive filter is obtained using the selective reconstruction of ECG from the intrinsic mode functions (IMFs of empirical mode decomposition (EMD.

  5. Improving search for low energy protein structures with an iterative niche genetic algorithm

    DEFF Research Database (Denmark)

    Helles, Glennie

    2010-01-01

    . Particularly parallel implementations have been demonstrated to generally outperform their sequential counterparts, but they are nevertheless used to a much lesser extent for protein structure prediction. In this work we focus strictly on parallel algorithms for protein structure prediction and propose......In attempts to predict the tertiary structure of proteins we use almost exclusively metaheuristics. However, despite known differences in performance of metaheuristics for different problems, the effect of the choice of metaheuristic has received precious little attention in this field...... that the iterative niche algorithm converges much faster at lower energy structures than both the traditional niche genetic algorithm and the parallel tempering algorithm....

  6. VLSI implementation of MIMO detection for 802.11n using a novel adaptive tree search algorithm

    Science.gov (United States)

    Heng, Yao; Haifang, Jian; Liguo, Zhou; Yin, Shi

    2013-10-01

    A 4×4 64-QAM multiple-input multiple-output (MIMO) detector is presented for the application of an IEEE 802.11n wireless local area network. The detectoris the implementation of a novel adaptive tree search(ATS) algorithm, and multiple ATS cores need to be instantiated to achieve the wideband requirement in the 802.11n standard. Both the ATS algorithm and the architectural considerations are explained. The latency of the detector is 0.75 μs, and the detector has a gate count of 848 k with a total of 19 parallel ATS cores. Each ATS core runs at 67 MHz. Measurement results show that compared with the floating-point ATS algorithm, the fixed-point implementation achieves a loss of 0.9 dB at a BER of 10-3.

  7. An improved Pattern Search based algorithm to solve the Dynamic Economic Dispatch problem with valve-point effect

    International Nuclear Information System (INIS)

    Alsumait, J.S.; Qasem, M.; Sykulski, J.K.; Al-Othman, A.K.

    2010-01-01

    In this paper, an improved algorithm based on Pattern Search method (PS) to solve the Dynamic Economic Dispatch is proposed. The algorithm maintains the essential unit ramp rate constraint, along with all other necessary constraints, not only for the time horizon of operation (24 h), but it preserves these constraints through the transaction period to the next time horizon (next day) in order to avoid the discontinuity of the power system operation. The Dynamic Economic and Emission Dispatch problem (DEED) is also considered. The load balance constraints, operating limits, valve-point loading and network losses are included in the models of both DED and DEED. The numerical results clarify the significance of the improved algorithm and verify its performance.

  8. Multi-objective optimization in the presence of practical constraints using non-dominated sorting hybrid cuckoo search algorithm

    Directory of Open Access Journals (Sweden)

    M. Balasubbareddy

    2015-12-01

    Full Text Available A novel optimization algorithm is proposed to solve single and multi-objective optimization problems with generation fuel cost, emission, and total power losses as objectives. The proposed method is a hybridization of the conventional cuckoo search algorithm and arithmetic crossover operations. Thus, the non-linear, non-convex objective function can be solved under practical constraints. The effectiveness of the proposed algorithm is analyzed for various cases to illustrate the effect of practical constraints on the objectives' optimization. Two and three objective multi-objective optimization problems are formulated and solved using the proposed non-dominated sorting-based hybrid cuckoo search algorithm. The effectiveness of the proposed method in confining the Pareto front solutions in the solution region is analyzed. The results for single and multi-objective optimization problems are physically interpreted on standard test functions as well as the IEEE-30 bus test system with supporting numerical and graphical results and also validated against existing methods.

  9. The use of a multiobjective evolutionary algorithm to increase flexibility in the search for better IMRT plans.

    Science.gov (United States)

    Holdsworth, Clay; Kim, Minsun; Liao, Jay; Phillips, Mark

    2012-04-01

    To evaluate how a more flexible and thorough multiobjective search of feasible IMRT plans affects performance in IMRT optimization. A multiobjective evolutionary algorithm (MOEA) was used as a tool to investigate how expanding the search space to include a wider range of penalty functions affects the quality of the set of IMRT plans produced. The MOEA uses a population of IMRT plans to generate new IMRT plans through deterministic minimization of recombined penalty functions that are weighted sums of multiple, tissue-specific objective functions. The quality of the generated plans are judged by an independent set of nonconvex, clinically relevant decision criteria, and all dominated plans are eliminated. As this process repeats itself, better plans are produced so that the population of IMRT plans will approach the Pareto front. Three different approaches were used to explore the effects of expanding the search space. First, the evolutionary algorithm used genetic optimization principles to search by simultaneously optimizing both the weights and tissue-specific dose parameters in penalty functions. Second, penalty function parameters were individually optimized for each voxel in all organs at risk (OARs) in the MOEA. Finally, a heuristic voxel-specific improvement (VSI) algorithm that can be used on any IMRT plan was developed that incrementally improves voxel-specific penalty function parameters for all structures (OARs and targets). Different approaches were compared using the concept of domination comparison applied to the sets of plans obtained by multiobjective optimization. MOEA optimizations that simultaneously searched both importance weights and dose parameters generated sets of IMRT plans that were superior to sets of plans produced when either type of parameter was fixed for four example prostate plans. The amount of improvement increased with greater overlap between OARs and targets. Allowing the MOEA to search for voxel-specific penalty functions

  10. SEARCH FOR RAYLEIGH SCATTERING IN THE ATMOSPHERE OF GJ1214b

    International Nuclear Information System (INIS)

    De Mooij, E. J. W.; Jayawardhana, R.; Brogi, M.; Snellen, I. A. G.; Hoekstra, H.; Otten, G. P. P. L.; Bekkers, D. H.; Haffert, S. Y.; Van Houdt, J. J.; De Kok, R. J.; Croll, B.

    2013-01-01

    We investigate the atmosphere of GJ1214b, a transiting super-Earth planet with a low mean density, by measuring its transit depth as a function of wavelength in the blue optical portion of the spectrum. It is thought that this planet is either a mini-Neptune, consisting of a rocky core with a thick, hydrogen-rich atmosphere, or a planet with a composition dominated by water. Most observations favor a water-dominated atmosphere with a small scale-height, however, some observations indicate that GJ1214b could have an extended atmosphere with a cloud layer muting the molecular features. In an atmosphere with a large scale-height, Rayleigh scattering at blue wavelengths is likely to cause a measurable increase in the apparent size of the planet toward the blue. We observed the transit of GJ1214b in the B band with the FOcal Reducing Spectrograph at the Very Large Telescope and in the g band with both ACAM on the William Herschel Telescope (WHT) and the Wide Field Camera at the Isaac Newton Telescope (INT). We find a planet-to-star radius ratio in the B band of 0.1162 ± 0.0017, and in the g band 0.1180 ± 0.0009 and 0.1174 ± 0.0017 for the WHT and INT observations, respectively. These optical data do not show significant deviations from previous measurements at longer wavelengths. In fact, a flat transmission spectrum across all wavelengths best describes the combined observations. When atmospheric models are considered, a small scale-height water-dominated model fits the data best.

  11. An Adaptive Large Neighborhood Search Algorithm for the Resource-constrained Project Scheduling Problem

    DEFF Research Database (Denmark)

    Muller, Laurent Flindt

    2009-01-01

    , where a set of destroy/repair neighborhoods compete to modify the current solution in each iteration of the algorithm. Experiments are performed on the wellknown J30, J60 and J120 benchmark instances, which show that the proposed algorithm is competitive and confirms the strength of the ALNS framework...... previously reported for different variants of the Vehicle Routing Problem....

  12. InfoRoute: the CISMeF Context-specific Search Algorithm.

    Science.gov (United States)

    Merabti, Tayeb; Lelong, Romain; Darmoni, Stefan

    2015-01-01

    The aim of this paper was to present a practical InfoRoute algorithm and applications developed by CISMeF to perform a contextual information retrieval across multiple medical websites in different health domains. The algorithm was developed to treat multiple types of queries: natural, Boolean and advanced. The algorithm also generates multiple types of queries: Boolean query, PubMed query or Advanced query. Each query can be extended via an inter alignments relationship from UMLS and HeTOP portal. A web service and two web applications have been developed based on the InfoRoute algorithm to generate links-query across multiple websites, i.e.: "PubMed" or "ClinicalTrials.org". The InfoRoute algorithm is a useful tool to perform contextual information retrieval across multiple medical websites in both English and French.

  13. Algorithms

    Indian Academy of Sciences (India)

    algorithms such as synthetic (polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language ... ·1 x:=sln(theta) x : = sm(theta) 1. ~. Idl d.t Read A.B,C. ~ lei ~ Print x.y.z. L;;;J. Figure 2 Symbols used In flowchart language to rep- resent Assignment, Read.

  14. Algorithms

    Indian Academy of Sciences (India)

    In the previous articles, we have discussed various common data-structures such as arrays, lists, queues and trees and illustrated the widely used algorithm design paradigm referred to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted ...

  15. Steady state load shedding to mitigate blackout in power systems using an improved harmony search algorithm

    Directory of Open Access Journals (Sweden)

    R. Mageshvaran

    2015-09-01

    The proposed algorithm is tested on IEEE 14, 30 and 118 bus test systems. The viability of the proposed method in terms of solution quality and convergence properties is compared with the other conventional methods reported earlier.

  16. A hybrid adaptive large neighborhood search algorithm applied to a lot-sizing problem

    DEFF Research Database (Denmark)

    Muller, Laurent Flindt; Spoorendonk, Simon

    This paper presents a hybrid of a general heuristic framework that has been successfully applied to vehicle routing problems and a general purpose MIP solver. The framework uses local search and an adaptive procedure which choses between a set of large neighborhoods to be searched. A mixed integer...... programming solver and its built-in feasibility heuristics is used to search a neighborhood for improving solutions. The general reoptimization approach used for repairing solutions is specifically suited for combinatorial problems where it may be hard to otherwise design operations to define a neighborhood...

  17. Multi-objective random search algorithm for simultaneously optimizing wind farm layout and number of turbines

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong; Xu, Chang

    2016-01-01

    A new algorithm for multi-objective wind farm layout optimization is presented. It formulates the wind turbine locations as continuous variables and is capable of optimizing the number of turbines and their locations in the wind farm simultaneously. Two objectives are considered. One is to maximize...... wind farm, the algorithm also obtains useful Pareto frontiers and provides a wide range of Pareto optimal layouts with different numbers of turbines for a real-life wind farm developer....

  18. Improving Limit Surface Search Algorithms in RAVEN Using Acceleration Schemes: Level II Milestone

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsi, Andrea [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Cogliati, Joshua Joseph [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Sen, Ramazan Sonat [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Smith, Curtis Lee [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    The RAVEN code is becoming a comprehensive tool to perform Probabilistic Risk Assessment (PRA); Uncertainty Quantification (UQ) and Propagation; and Verification and Validation (V&V). The RAVEN code is being developed to support the Risk-Informed Safety Margin Characterization (RISMC) pathway by developing an advanced set of methodologies and algorithms for use in advanced risk analysis. The RISMC approach uses system simulator codes applied to stochastic analysis tools. The fundamental idea behind this coupling approach to perturb (by employing sampling strategies) timing and sequencing of events, internal parameters of the system codes (i.e., uncertain parameters of the physics model) and initial conditions to estimate values ranges and associated probabilities of figures of merit of interest for engineering and safety (e.g. core damage probability, etc.). This approach applied to complex systems such as nuclear power plants requires performing a series of computationally expensive simulation runs. The large computational burden is caused by the large set of (uncertain) parameters characterizing those systems. Consequently, exploring the uncertain/parametric domain, with a good level of confidence, is generally not affordable, considering the limited computational resources that are currently available. In addition, the recent tendency to develop newer tools, characterized by higher accuracy and larger computational resources (if compared with the presently used legacy codes, that have been developed decades ago), has made this issue even more compelling. In order to overcome to these limitations, the strategy for the exploration of the uncertain/parametric space needs to use at best the computational resources focusing the computational effort in those regions of the uncertain/parametric space that are “interesting” (e.g., risk-significant regions of the input space) with respect the targeted Figures Of Merit (FOM): for example, the failure of the system

  19. Maximize Minimum Utility Function of Fractional Cloud Computing System Based on Search Algorithm Utilizing the Mittag-Leffler Sum

    Directory of Open Access Journals (Sweden)

    Rabha W. Ibrahim

    2018-01-01

    Full Text Available The maximum min utility function (MMUF problem is an important representative of a large class of cloud computing systems (CCS. Having numerous applications in practice, especially in economy and industry. This paper introduces an effective solution-based search (SBS algorithm for solving the problem MMUF. First, we suggest a new formula of the utility function in term of the capacity of the cloud. We formulate the capacity in CCS, by using a fractional diffeo-integral equation. This equation usually describes the flow of CCS. The new formula of the utility function is modified recent active utility functions. The suggested technique first creates a high-quality initial solution by eliminating the less promising components, and then develops the quality of the achieved solution by the summation search solution (SSS. This method is considered by the Mittag-Leffler sum as hash functions to determine the position of the agent. Experimental results commonly utilized in the literature demonstrate that the proposed algorithm competes approvingly with the state-of-the-art algorithms both in terms of solution quality and computational efficiency.

  20. Algorithms for Regular Tree Grammar Network Search and Their Application to Mining Human-viral Infection Patterns.

    Science.gov (United States)

    Smoly, Ilan; Carmel, Amir; Shemer-Avni, Yonat; Yeger-Lotem, Esti; Ziv-Ukelson, Michal

    2016-03-01

    Network querying is a powerful approach to mine molecular interaction networks. Most state-of-the-art network querying tools either confine the search to a prespecified topology in the form of some template subnetwork, or do not specify any topological constraints at all. Another approach is grammar-based queries, which are more flexible and expressive as they allow for expressing the topology of the sought pattern according to some grammar-based logic. Previous grammar-based network querying tools were confined to the identification of paths. In this article, we extend the patterns identified by grammar-based query approaches from paths to trees. For this, we adopt a higher order query descriptor in the form of a regular tree grammar (RTG). We introduce a novel problem and propose an algorithm to search a given graph for the k highest scoring subgraphs matching a tree accepted by an RTG. Our algorithm is based on the combination of dynamic programming with color coding, and includes an extension of previous k-best parsing optimization approaches to avoid isomorphic trees in the output. We implement the new algorithm and exemplify its application to mining viral infection patterns within molecular interaction networks. Our code is available online.

  1. The effect of neighborhood structures on tabu search algorithm in solving university course timetabling problem

    Science.gov (United States)

    Shakir, Ali; AL-Khateeb, Belal; Shaker, Khalid; Jalab, Hamid A.

    2014-12-01

    The design of course timetables for academic institutions is a very difficult job due to the huge number of possible feasible timetables with respect to the problem size. This process contains lots of constraints that must be taken into account and a large search space to be explored, even if the size of the problem input is not significantly large. Different heuristic approaches have been proposed in the literature in order to solve this kind of problem. One of the efficient solution methods for this problem is tabu search. Different neighborhood structures based on different types of move have been defined in studies using tabu search. In this paper, different neighborhood structures on the operation of tabu search are examined. The performance of different neighborhood structures is tested over eleven benchmark datasets. The obtained results of every neighborhood structures are compared with each other. Results obtained showed the disparity between each neighborhood structures and another in terms of penalty cost.

  2. Energy-angle correlation correction algorithm for monochromatic computed tomography based on Thomson scattering X-ray source

    Science.gov (United States)

    Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang

    2017-12-01

    The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.

  3. Solution Approach to Automatic Generation Control Problem Using Hybridized Gravitational Search Algorithm Optimized PID and FOPID Controllers

    Directory of Open Access Journals (Sweden)

    DAHIYA, P.

    2015-05-01

    Full Text Available This paper presents the application of hybrid opposition based disruption operator in gravitational search algorithm (DOGSA to solve automatic generation control (AGC problem of four area hydro-thermal-gas interconnected power system. The proposed DOGSA approach combines the advantages of opposition based learning which enhances the speed of convergence and disruption operator which has the ability to further explore and exploit the search space of standard gravitational search algorithm (GSA. The addition of these two concepts to GSA increases its flexibility for solving the complex optimization problems. This paper addresses the design and performance analysis of DOGSA based proportional integral derivative (PID and fractional order proportional integral derivative (FOPID controllers for automatic generation control problem. The proposed approaches are demonstrated by comparing the results with the standard GSA, opposition learning based GSA (OGSA and disruption based GSA (DGSA. The sensitivity analysis is also carried out to study the robustness of DOGSA tuned controllers in order to accommodate variations in operating load conditions, tie-line synchronizing coefficient, time constants of governor and turbine. Further, the approaches are extended to a more realistic power system model by considering the physical constraints such as thermal turbine generation rate constraint, speed governor dead band and time delay.

  4. Large-Scale Recurrent Neural Network Based Modelling of Gene Regulatory Network Using Cuckoo Search-Flower Pollination Algorithm.

    Science.gov (United States)

    Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat K

    2016-01-01

    The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process.

  5. Faster implementation of the hierarchical search algorithm for detection of gravitational waves from inspiraling compact binaries

    International Nuclear Information System (INIS)

    Sengupta, Anand S.; Dhurandhar, Sanjeev; Lazzarini, Albert

    2003-01-01

    The first scientific runs of kilometer scale laser interferometric detectors such as LIGO are under way. Data from these detectors will be used to look for signatures of gravitational waves from astrophysical objects such as inspiraling neutron-star-black-hole binaries using matched filtering. The computational resources required for online flat-search implementation of the matched filtering are large if searches are carried out for a small total mass. A flat search is implemented by constructing a single discrete grid of densely populated template waveforms spanning the dynamical parameters--masses, spins--which are correlated with the interferometer data. The correlations over the kinematical parameters can be maximized a priori without constructing a template bank over them. Mohanty and Dhurandhar showed that a significant reduction in computational resources can be accomplished by using a hierarchy of such template banks where candidate events triggered by a sparsely populated grid are followed up by the regular, dense flat-search grid. The estimated speedup in this method was a factor ∼25 over the flat search. In this paper we report an improved implementation of the hierarchical search, wherein we extend the domain of hierarchy to an extra dimension--namely, the time of arrival of the signal in the bandwidth of the interferometer. This is accomplished by lowering the Nyquist sampling rate of the signal in the trigger stage. We show that this leads to further improvement in the efficiency of data analysis and speeds up the online computation by a factor of ∼65-70 over the flat search. We also take into account and discuss issues related to template placement, trigger thresholds, and other peculiar problems that do not arise in earlier implementation schemes of the hierarchical search. We present simulation results for 2PN waveforms embedded in the noise expected for initial LIGO detectors

  6. SEARCH

    International Development Research Centre (IDRC) Digital Library (Canada)

    Chaitali Sinha

    Anexo B: Lista de verificación para presentar una nota conceptual en el marco de IDRC-SEARCH ....... 17 .... incluir investigación primaria y/o síntesis de estudios existentes, para generar nuevo conocimiento. Los .... de datos entre grupos diferentes de usuarios (trabajadores de la salud comunitaria, funcionarios de salud.

  7. Optimal clustering of MGs based on droop controller for improving reliability using a hybrid of harmony search and genetic algorithms.

    Science.gov (United States)

    Abedini, Mohammad; Moradi, Mohammad H; Hosseinian, S M

    2016-03-01

    This paper proposes a novel method to address reliability and technical problems of microgrids (MGs) based on designing a number of self-adequate autonomous sub-MGs via adopting MGs clustering thinking. In doing so, a multi-objective optimization problem is developed where power losses reduction, voltage profile improvement and reliability enhancement are considered as the objective functions. To solve the optimization problem a hybrid algorithm, named HS-GA, is provided, based on genetic and harmony search algorithms, and a load flow method is given to model different types of DGs as droop controller. The performance of the proposed method is evaluated in two case studies. The results provide support for the performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Design of an optimal SMES for automatic generation control of two-area thermal power system using Cuckoo search algorithm

    Directory of Open Access Journals (Sweden)

    Sabita Chaine

    2015-05-01

    Full Text Available This work presents a methodology adopted in order to tune the controller parameters of superconducting magnetic energy storage (SMES system in the automatic generation control (AGC of a two-area thermal power system. The gains of integral controllers of AGC loop, proportional controller of SMES loop and gains of the current feedback loop of the inductor in SMES are optimized simultaneously in order to achieve a desired performance. Recently proposed intelligent technique based algorithm known as Cuckoo search algorithm (CSA is applied for optimization. Sensitivity and robustness of the tuned gains tested at different operating conditions prove the effectiveness of fast acting energy storage devices like SMES in damping out oscillations in power system when their controllers are properly tuned.

  9. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification.

    Science.gov (United States)

    Wen, Tingxi; Zhang, Zhongnan

    2017-05-01

    In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.

  10. A new calibration of the effective scattering albedo and soil roughness parameters in the SMOS SM retrieval algorithm

    Science.gov (United States)

    Fernandez-Moran, R.; Wigneron, J.-P.; De Lannoy, G.; Lopez-Baeza, E.; Parrens, M.; Mialon, A.; Mahmoodi, A.; Al-Yaari, A.; Bircher, S.; Al Bitar, A.; Richaume, P.; Kerr, Y.

    2017-10-01

    This study focuses on the calibration of the effective vegetation scattering albedo (ω) and surface soil roughness parameters (HR, and NRp, p = H,V) in the Soil Moisture (SM) retrieval from L-band passive microwave observations using the L-band Microwave Emission of the Biosphere (L-MEB) model. In the current Soil Moisture and Ocean Salinity (SMOS) Level 2 (L2), v620, and Level 3 (L3), v300, SM retrieval algorithms, low vegetated areas are parameterized by ω = 0 and HR = 0.1, whereas values of ω = 0.06 - 0.08 and HR = 0.3 are used for forests. Several parameterizations of the vegetation and soil roughness parameters (ω, HR and NRp, p = H,V) were tested in this study, treating SMOS SM retrievals as homogeneous over each pixel instead of retrieving SM over a representative fraction of the pixel, as implemented in the operational SMOS L2 and L3 algorithms. Globally-constant values of ω = 0.10, HR = 0.4 and NRp = -1 (p = H,V) were found to yield SM retrievals that compared best with in situ SM data measured at many sites worldwide from the International Soil Moisture Network (ISMN). The calibration was repeated for collections of in situ sites classified in different land cover categories based on the International Geosphere-Biosphere Programme (IGBP) scheme. Depending on the IGBP land cover class, values of ω and HR varied, respectively, in the range 0.08-0.12 and 0.1-0.5. A validation exercise based on in situ measurements confirmed that using either a global or an IGBP-based calibration, there was an improvement in the accuracy of the SM retrievals compared to the SMOS L3 SM product considering all statistical metrics (R = 0.61, bias = -0.019 m3 m-3, ubRMSE = 0.062 m3 m-3 for the IGBP-based calibration; against R = 0.54, bias = -0.034 m3 m-3 and ubRMSE = 0.070 m3 m-3 for the SMOS L3 SM product). This result is a key step in the calibration of the roughness and vegetation parameters in the operational SMOS retrieval algorithm. The approach presented here is the

  11. From Schrцdinger's equation to the quantum search algorithm£

    Indian Academy of Sciences (India)

    paper also provides a self contained introduction to quantum computing algorithms from a new per- spective. .... In order to design quantum computing systems, we need a basic set of building blocks analogous to the NAND .... In Schrцdinger's framework, the basis states are continuous and uniformly distributed in space.

  12. Similarity-first search : A new algorithm with application to Robinsonian matrix recognition

    NARCIS (Netherlands)

    Laurent, Monique; Seminaroti, Matteo

    2017-01-01

    We present a new efficient combinatorial algorithm for recognizing if a given symmetric matrix is Robinsonian, i.e., if its rows and columns can be simultaneously reordered so that entries are monotone nondecreasing in rows and columns when moving toward the diagonal. As the main ingredient we

  13. Shifting Inductive Bias with Success-Story Algorithm, Adaptive Levin Search, and Incremental Self-Improvement

    NARCIS (Netherlands)

    Schmidhuber, J.; Zhao, J.; Wiering, M.A.

    1997-01-01

    We study task sequences that allow for speeding up the learners average reward intake through appropriate shifts of inductive bias changes of the learner's policy. To evaluate long-term effects of bias shifts setting the stage for later bias shifts we use the "success-story algorithm" (SSA).SSA

  14. Algorithms for recollection of search terms based on the Wikipedia category structure.

    Science.gov (United States)

    Vandamme, Stijn; De Turck, Filip

    2014-01-01

    The common user interface for a search engine consists of a text field where the user can enter queries consisting of one or more keywords. Keyword query based search engines work well when the users have a clear vision what they are looking for and are capable of articulating their query using the same terms as indexed. For our multimedia database containing 202,868 items with text descriptions, we supplement such a search engine with a category-based interface whose category structure is tailored to the content of the database. This facilitates browsing and offers the users the possibility to look for named entities, even if they forgot their names. We demonstrate that this approach allows users who fail to recollect the name of named entities to retrieve data with little effort. In all our experiments, it takes 1 query on a category and on average 2.49 clicks, compared to 5.68 queries on the database's traditional text search engine for a 68.3% success probability or 6.01 queries when the user also turns to Google, for a 97.1% success probability.

  15. Exploration of Nonribosomal Peptide Families with an Automated Informatic Search Algorithm.

    Science.gov (United States)

    Yang, Lian; Ibrahim, Ashraf; Johnston, Chad W; Skinnider, Michael A; Ma, Bin; Magarvey, Nathan A

    2015-09-17

    Microbial natural products are some of the most important pharmaceutical agents and possess unparalleled chemical diversity. Here we present an untargeted metabolomics algorithm that builds on our validated iSNAP platform to rapidly identify families of peptide natural products. By utilizing known or in silico-dereplicated seed structures, this algorithm screens tandem mass spectrometry data to elaborate extensive molecular families within crude microbial culture extracts with high confidence and statistical significance. Analysis of peptide natural product producers revealed an abundance of unreported congeners, revealing one of the largest families of natural products described to date, as well as a novel variant with greater potency. These findings demonstrate the effectiveness of the iSNAP platform as an accurate tool for rapidly profiling large families of nonribosomal peptides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Search of molecular ground state via genetic algorithm: Implementation on a hybrid SIMD-MIMD platform

    International Nuclear Information System (INIS)

    Pucello, N.; D'Agostino, G.; Pisacane, F.

    1997-01-01

    A genetic algorithm for the optimization of the ground-state structure of a metallic cluster has been developed and ported on a SIMD-MIMD parallel platform. The SIMD part of the parallel platform is represented by a Quadrics/APE100 consisting of 512 floating point units, while the MIMD part is formed by a cluster of workstations. The proposed algorithm is composed by a part where the genetic operators are applied to the elements of the population and a part which performs a further local relaxation and the fitness calculation via Molecular Dynamics. These parts have been implemented on the MIMD and on the SIMD part, respectively. Results have been compared to those generated by using Simulated Annealing

  17. Congestion management of deregulated power systems by optimal setting of Interline Power Flow Controller using Gravitational Search algorithm

    Directory of Open Access Journals (Sweden)

    Akanksha Mishra

    2017-05-01

    Full Text Available In a deregulated electricity market it may at times become difficult to dispatch all the required power that is scheduled to flow due to congestion in transmission lines. An Interline Power Flow Controller (IPFC can be used to reduce the system loss and power flow in the heavily loaded line, improve stability and loadability of the system. This paper proposes a Disparity Line Utilization Factor for the optimal placement and Gravitational Search algorithm based optimal tuning of IPFC to control the congestion in transmission lines. DLUF ranks the transmission lines in terms of relative line congestion. The IPFC is accordingly placed in the most congested and the least congested line connected to the same bus. Optimal sizing of IPFC is carried using Gravitational Search algorithm. A multi-objective function has been chosen for tuning the parameters of the IPFC. The proposed method is implemented on an IEEE-30 bus test system. Graphical representations have been included in the paper showing reduction in LUF of the transmission lines after the placement of an IPFC. A reduction in active power and reactive power loss of the system by about 6% is observed after an optimally tuned IPFC has been included in the power system. The effectiveness of the proposed tuning method has also been shown in the paper through the reduction in the values of the objective functions.

  18. Extending the inverse scattering series free-surface-multiple-elimination algorithm by accommodating the source property on data with interfering or proximal seismic events

    Science.gov (United States)

    Zhao, Lei; Yang, Jinlong; Weglein, Arthur B.

    2017-12-01

    The inverse scattering series free-surface-multiple-elimination (FSME) algorithm is modified and extended to accommodate the source property-source radiation pattern. That accommodation can provide additional value for the fidelity of the free-surface multiple predictions. The new extended FSME algorithm retains all the merits of the original algorithm, i.e., fully data-driven and with a requirement of no subsurface information. It is tested on a one-dimensional acoustic model with proximal and interfering seismic events, such as interfering primaries and multiples. The results indicate the new extended FSME algorithm can predict more accurate free-surface multiples than methods without the accommodation of the source property if the source has a radiation pattern. This increased effectiveness in prediction contributes to removing free-surface multiples without damaging primaries. It is important in such cases to increase predictive effectiveness because other prediction methods, such as the surface-related-multiple-elimination algorithm, has difficulties and problems in prediction accuracy, and those issues affect efforts to remove multiples through adaptive subtraction. Therefore accommodation of the source property can not only improve the effectiveness of the FSME algorithm, but also extend the method beyond the current algorithm (e.g. improving the internal multiple attenuation algorithm).

  19. Algorithms

    Indian Academy of Sciences (India)

    In the program shown in Figure 1, we have repeated the algorithm. M times and we can make the following observations. Each block is essentially a different instance of "code"; that is, the objects differ by the value to which N is initialized before the execution of the. "code" block. Thus, we can now avoid the repetition of the ...

  20. Algorithms

    Indian Academy of Sciences (India)

    algorithms built into the computer corresponding to the logic- circuit rules that are used to .... For the purpose of carrying ou t ari thmetic or logical operations the memory is organized in terms .... In fixed point representation, one essentially uses integer arithmetic operators assuming the binary point to be at some point other ...

  1. EVALUATION OF WEB SEARCHING METHOD USING A NOVEL WPRR ALGORITHM FOR TWO DIFFERENT CASE STUDIES

    Directory of Open Access Journals (Sweden)

    V. Lakshmi Praba

    2012-04-01

    Full Text Available The World-Wide Web provides every internet citizen with access to an abundance of information, but it becomes increasingly difficult to identify the relevant pieces of information. Research in web mining tries to address this problem by applying techniques from data mining and machine learning to web data and documents. Web content mining and web structure mining have important roles in identifying the relevant web page. Relevancy of web page denotes how well a retrieved web page or set of web pages meets the information need of the user. Page Rank, Weighted Page Rank and Hypertext Induced Topic Selection (HITS are existing algorithms which considers only web structure mining. Vector Space Model (VSM, Cover Density Ranking (CDR, Okapi similarity measurement (Okapi and Three-Level Scoring method (TLS are some of existing relevancy score methods which consider only web content mining. In this paper, we propose a new algorithm, Weighted Page with Relevant Rank (WPRR which is blend of both web content mining and web structure mining that demonstrates the relevancy of the page with respect to given query for two different case scenarios. It is shown that WPRR’s performance is better than the existing algorithms.

  2. Algorithms

    Indian Academy of Sciences (India)

    immediate successor as well as the immediate predecessor explicitly. Such a list is referred to as a doubly linked list. A typical doubly linked list is shown in Figure 3f. The ability to get to either the successor or predecessor not only makes access easy but also enables one to backtrack in a search. Two Dimensional Arrays: It ...

  3. Forecasting Hoabinh Reservoir’s Incoming Flow: An Application of Neural Networks with the Cuckoo Search Algorithm

    Directory of Open Access Journals (Sweden)

    Jeng-Fung Chen

    2014-11-01

    Full Text Available The accuracy of reservoir flow forecasting has the most significant influence on the assurance of stability and annual operations of hydro-constructions. For instance, accurate forecasting on the ebb and flow of Vietnam’s Hoabinh Reservoir can aid in the preparation and prevention of lowland flooding and drought, as well as regulating electric energy. This raises the need to propose a model that accurately forecasts the incoming flow of the Hoabinh Reservoir. In this study, a solution to this problem based on neural network with the Cuckoo Search (CS algorithm is presented. In particular, we used hydrographic data and predicted total incoming flows of the Hoabinh Reservoir over a period of 10 days. The Cuckoo Search algorithm was utilized to train the feedforward neural network (FNN for prediction. The algorithm optimized the weights between layers and biases of the neuron network. Different forecasting models for the three scenarios were developed. The constructed models have shown high forecasting performance based on the performance indices calculated. These results were also compared with those obtained from the neural networks trained by the particle swarm optimization (PSO and back-propagation (BP, indicating that the proposed approach performed more effectively. Based on the experimental results, the scenario using the rainfall and the flow as input yielded the highest forecasting accuracy when compared with other scenarios. The performance criteria RMSE, MAPE, and R obtained by the CS-FNN in this scenario were calculated as 48.7161, 0.067268 and 0.8965, respectively. These results were highly correlated to actual values. It is expected that this work may be useful for hydrographic forecasting.

  4. A Novel Hierarchical Model to Locate Health Care Facilities with Fuzzy Demand Solved by Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Mehdi Alinaghian

    2014-08-01

    Full Text Available In the field of health losses resulting from failure to establish the facilities in a suitable location and the required number, beyond the cost and quality of service will result in an increase in mortality and the spread of diseases. So the facility location models have special importance in this area. In this paper, a successively inclusive hierarchical model for location of health centers in term of the transfer of patients from a lower level to a higher level of health centers has been developed. Since determination the exact number of demand for health care in the future is difficult and in order to make the model close to the real conditions of demand uncertainty, a fuzzy programming model based on credibility theory is considered. To evaluate the proposed model, several numerical examples are solved in small size. In order to solve large scale problems, a meta-heuristic algorithm based on harmony search algorithm was developed in conjunction with the GAMS software which indicants the performance of the proposed algorithm.

  5. Algorithms for solving atomic structures of nanodimensional clusters in single crystals based on X-ray and neutron diffuse scattering data

    International Nuclear Information System (INIS)

    Andrushevskii, N.M.; Shchedrin, B.M.; Simonov, V.I.

    2004-01-01

    New algorithms for solving the atomic structure of equivalent nanodimensional clusters of the same orientations randomly distributed over the initial single crystal (crystal matrix) have been suggested. A cluster is a compact group of substitutional, interstitial or other atoms displaced from their positions in the crystal matrix. The structure is solved based on X-ray or neutron diffuse scattering data obtained from such objects. The use of the mathematical apparatus of Fourier transformations of finite functions showed that the appropriate sampling of the intensities of continuous diffuse scattering allows one to synthesize multiperiodic difference Patterson functions that reveal the systems of the interatomic vectors of an individual cluster. The suggested algorithms are tested on a model one-dimensional structure

  6. Developing a Direct Search Algorithm for Solving the Capacitated Open Vehicle Routing Problem

    Science.gov (United States)

    Simbolon, Hotman

    2011-06-01

    In open vehicle routing problems, the vehicles are not required to return to the depot after completing service. In this paper, we present the first exact optimization algorithm for the open version of the well-known capacitated vehicle routing problem (CVRP). The strategy of releasing nonbasic variables from their bounds, combined with the "active constraint" method and the notion of superbasics, has been developed for efficiently requirements; this strategy is used to force the appropriate non-integer basic variables to move to their neighborhood integer points. A study of criteria for choosing a nonbasic variable to work with in the integerizing strategy has also been made.

  7. Optimal allocation of distributed generation and remote control switches for reliability enhancement of a radial distribution system using oppositional differential search algorithm

    Directory of Open Access Journals (Sweden)

    Saheli Ray

    2015-08-01

    Full Text Available Reliability enhancement of power distribution system has attained much significance in the present competitive electricity market. Accordingly, methodologies to assess and improve distribution system reliability are also gaining much importance. This study proposes oppositional differential search (ODS algorithm to solve reliability optimisation problem of radial distribution system. The objective of this study is to obtain the optimum number, size and location of distributed generation as well as optimal number and location of remote control switch simultaneously in radial distribution system in order to improve system reliability at a compromised cost. A multi-objective function has been formulated here. Differential search (DS algorithm imitates the seasonal migration behaviour of an organism in search of efficiency of food areas. Opposition-based DS (ODS algorithm has been used here to improve the quality of solution in minimum time. The proposed opposition-based DS (ODS algorithm utilises opposition-based learning for Superorganism initialisation and also for iteration wise update operation. Simulation results obtained by ODS algorithm have been compared with that of DS algorithm and differential evolutionary algorithm. Simulation results reveal that ODS algorithm provides considerably superior performance, in terms of quality of solution obtained and computational efficiency.

  8. A full-Newton step feasible interior-point algorithm for P∗(κ-LCP based on a new search direction

    Directory of Open Access Journals (Sweden)

    Behrouz Kheirfam

    2016-12-01

    Full Text Available In this paper, we present a full-Newton step feasible interior-point algorithm for a P∗(κ linear complementarity problem based on a new search direction. We apply a vector-valued function generated by a univariate function on nonlinear equations of the system which defines the central path. Furthermore, we derive the iteration bound for the algorithm, which coincides with the best-known iteration bound for these types of algorithms. Numerical results show that the proposed algorithm is competitive and reliable.

  9. An Evolutionary Search Algorithm for Covariate Models in Population Pharmacokinetic Analysis.

    Science.gov (United States)

    Yamashita, Fumiyoshi; Fujita, Atsuto; Sasa, Yukako; Higuchi, Yuriko; Tsuda, Masahiro; Hashida, Mitsuru

    2017-09-01

    Building a covariate model is a crucial task in population pharmacokinetics. This study develops a novel method for automated covariate modeling based on gene expression programming (GEP), which not only enables covariate selection, but also the construction of nonpolynomial relationships between pharmacokinetic parameters and covariates. To apply GEP to the extended nonlinear least squares analysis, the parameter consolidation and initial parameter value estimation algorithms were further developed and implemented. The entire program was coded in Java. The performance of the developed covariate model was evaluated for the population pharmacokinetic data of tobramycin. In comparison with the established covariate model, goodness-of-fit of the measured data was greatly improved by using only 2 additional adjustable parameters. Ten test runs yielded the same solution. In conclusion, the systematic exploration method is a potentially powerful tool for prescreening covariate models in population pharmacokinetic analysis. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Software Trigger Algorithms to Search for Magnetic Monopoles with the NO$\

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z. [Virginia U.; Dukes, E. [Virginia U.; Ehrlich, R. [Virginia U.; Frank, M. [Virginia U.; Group, C. [Fermilab; Norman, A. [Fermilab

    2014-01-01

    The NOvA far detector, due to its surface proximity, large size, good timing resolution, large energy dynamic range, and continuous readout, is sensitive to the detection of magnetic monopoles over a large range of velocities and masses. In order to record candidate magnetic monopole events with high efficiency we have designed a software-based trigger to make decisions based on the data recorded by the detector. The decisions must be fast, have high efficiency, and a large rejection factor for the over 100,000 cosmic rays that course through the detector every second. In this paper we briefly describe the simulation of magnetic monopoles, including the detector response, and then discuss the algorithms applied to identify magnetic monopole candidates. We also present the results of trigger efficiency and purity tests using simulated samples of magnetic monopoles with overlaid cosmic backgrounds and electronic noise.

  11. Crystal Structure Predictions Using Adaptive Genetic Algorithm and Motif Search methods

    Science.gov (United States)

    Ho, K. M.; Wang, C. Z.; Zhao, X.; Wu, S.; Lyu, X.; Zhu, Z.; Nguyen, M. C.; Umemoto, K.; Wentzcovitch, R. M. M.

    2017-12-01

    Material informatics is a new initiative which has attracted a lot of attention in recent scientific research. The basic strategy is to construct comprehensive data sets and use machine learning to solve a wide variety of problems in material design and discovery. In pursuit of this goal, a key element is the quality and completeness of the databases used. Recent advance in the development of crystal structure prediction algorithms has made it a complementary and more efficient approach to explore the structure/phase space in materials using computers. In this talk, we discuss the importance of the structural motifs and motif-networks in crystal structure predictions. Correspondingly, powerful methods are developed to improve the sampling of the low-energy structure landscape.

  12. Iterated local search algorithm for solving the orienteering problem with soft time windows.

    Science.gov (United States)

    Aghezzaf, Brahim; Fahim, Hassan El

    2016-01-01

    In this paper we study the orienteering problem with time windows (OPTW) and the impact of relaxing the time windows on the profit collected by the vehicle. The way of relaxing time windows adopted in the orienteering problem with soft time windows (OPSTW) that we study in this research is a late service relaxation that allows linearly penalized late services to customers. We solve this problem heuristically by considering a hybrid iterated local search. The results of the computational study show that the proposed approach is able to achieve promising solutions on the OPTW test instances available in the literature, one new best solution is found. On the newly generated test instances of the OPSTW, the results show that the profit collected by the OPSTW is better than the profit collected by the OPTW.

  13. Extracting T–S Fuzzy Models Using the Cuckoo Search Algorithm

    Directory of Open Access Journals (Sweden)

    Mourad Turki

    2017-01-01

    Full Text Available A new method called cuckoo search (CS is used to extract and learn the Takagi–Sugeno (T–S fuzzy model. In the proposed method, the particle or cuckoo of CS is formed by the structure of rules in terms of number and selected rules, the antecedent, and consequent parameters of the T–S fuzzy model. These parameters are learned simultaneously. The optimized T–S fuzzy model is validated by using three examples: the first a nonlinear plant modelling problem, the second a Box–Jenkins nonlinear system identification problem, and the third identification of nonlinear system, comparing the obtained results with other existing results of other methods. The proposed CS method gives an optimal T–S fuzzy model with fewer numbers of rules.

  14. Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm.

    Science.gov (United States)

    Islam, Md Mainul; Shareef, Hussain; Mohamed, Azah

    2017-01-01

    The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method.

  15. Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm

    Science.gov (United States)

    Shareef, Hussain; Mohamed, Azah

    2017-01-01

    The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method. PMID:29220396

  16. Application of a Dynamic Fuzzy Search Algorithm to Determine Optimal Wind Plant Sizes and Locations in Iowa

    International Nuclear Information System (INIS)

    Milligan, M. R.; Factor, T.

    2001-01-01

    This paper illustrates a method for choosing the optimal mix of wind capacity at several geographically dispersed locations. The method is based on a dynamic fuzzy search algorithm that can be applied to different optimization targets. We illustrate the method using two objective functions for the optimization: maximum economic benefit and maximum reliability. We also illustrate the sensitivity of the fuzzy economic benefit solutions to small perturbations of the capacity selections at each wind site. We find that small changes in site capacity and/or location have small effects on the economic benefit provided by wind power plants. We use electric load and generator data from Iowa, along with high-quality wind-speed data collected by the Iowa Wind Energy Institute

  17. Application of a Dynamic Fuzzy Search Algorithm to Determine Optimal Wind Plant Sizes and Locations in Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M. R., National Renewable Energy Laboratory; Factor, T., Iowa Wind Energy Institute

    2001-09-21

    This paper illustrates a method for choosing the optimal mix of wind capacity at several geographically dispersed locations. The method is based on a dynamic fuzzy search algorithm that can be applied to different optimization targets. We illustrate the method using two objective functions for the optimization: maximum economic benefit and maximum reliability. We also illustrate the sensitivity of the fuzzy economic benefit solutions to small perturbations of the capacity selections at each wind site. We find that small changes in site capacity and/or location have small effects on the economic benefit provided by wind power plants. We use electric load and generator data from Iowa, along with high-quality wind-speed data collected by the Iowa Wind Energy Institute.

  18. Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm.

    Directory of Open Access Journals (Sweden)

    Md Mainul Islam

    Full Text Available The electric vehicle (EV is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS planning. A novel optimization technique, called binary lightning search algorithm (BLSA, is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method.

  19. Blackout risk prevention in a smart grid based flexible optimal strategy using Grey Wolf-pattern search algorithms

    International Nuclear Information System (INIS)

    Mahdad, Belkacem; Srairi, K.

    2015-01-01

    Highlights: • A generalized optimal security power system planning strategy for blackout risk prevention is proposed. • A Grey Wolf Optimizer dynamically coordinated with Pattern Search algorithm is proposed. • A useful optimized database dynamically generated considering margin loading stability under severe faults. • The robustness and feasibility of the proposed strategy is validated in the standard IEEE 30 Bus system. • The proposed planning strategy will be useful for power system protection coordination and control. - Abstract: Developing a flexible and reliable power system planning strategy under critical situations is of great importance to experts and industrials to minimize the probability of blackouts occurrence. This paper introduces the first stage of this practical strategy by the application of Grey Wolf Optimizer coordinated with pattern search algorithm for solving the security smart grid power system management under critical situations. The main objective of this proposed planning strategy is to prevent the practical power system against blackout due to the apparition of faults in generating units or important transmission lines. At the first stage the system is pushed to its margin stability limit, the critical loads shedding are selected using voltage stability index. In the second stage the generator control variables, the reactive power of shunt and dynamic compensators are adjusted in coordination with minimization the active and reactive power at critical loads to maintain the system at security state to ensure service continuity. The feasibility and efficiency of the proposed strategy is applied to IEEE 30-Bus test system. Results are promising and prove the practical efficiency of the proposed strategy to ensure system security under critical situations

  20. Optimization In Searching Daily Rule Curve At Mosul Regulating Reservoir, North Iraq Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Thair M. Al-Taiee

    2013-05-01

    Full Text Available To obtain optimal operating rules for storage reservoirs, large numbers of simulation and optimization models have been developed over the past several decades, which vary significantly in their mechanisms and applications. Rule curves are guidelines for long term reservoir operation. An efficient technique is required to find the optimal rule curves that can mitigate water shortage in long term operation. The investigation of developed Genetic Algorithm (GA technique, which is an optimization approach base on the mechanics of natural selection, derived from the theory of natural evolution, was carried out to through the application to predict the daily rule curve of  Mosul regulating reservoir in Iraq.  Record daily inflows, outflow, water level in the reservoir for 19 year (1986-1990 and (1994-2007 were used in the developed model for assessing the optimal reservoir operation. The objective function is set to minimize the annual sum of squared deviation from the desired downstream release and desired storage volume in the reservoir. The decision variables are releases, storage volume, water level and outlet (demand from the reservoir. The results of the GA model gave a good agreement during the comparison with the actual rule curve and the designed rating curve of the reservoir. The simulated result shows that GA-derived policies are promising and competitive and can be effectively used for daily reservoir operation in addition to the rational monthly operation and predicting also rating curve of reservoirs.

  1. A comparative study of correspondence-search algorithms in MIS images.

    Science.gov (United States)

    Puerto, Gustavo A; Mariottini, Gian-Luca

    2012-01-01

    The ability to find image similarities (feature matching) between laparoscopic views is essential in many robotic-assisted Minimally-Invasive Surgery (MIS) applications. Differently from feature tracking methods, feature matching does not make any restrictive assumption about the sequential nature of the two images or about the organ motion, and could then be used, e.g., to recover tracked features that were lost due to a prolonged occlusion, a sudden endoscopic-camera retraction, or a strong illumination change. This paper provides researchers in the medical-imaging computing community with an extensive comparison of the most up-to-date feature-matching algorithms over a large (and annotated) data set of 100 MIS-image pairs obtained from real interventions. The accuracy of these methods, as well as their ability to consistently retrieve as many good matches as possible, are evaluated for popular feature detectors. In addition, the dataset and the software implementations of these methods are made freely available on the Internet.

  2. The use of quantum molecular calculations to guide a genetic algorithm: a way to search for new chemistry.

    Science.gov (United States)

    Durrant, Marcus C

    2007-01-01

    The process of gene-based molecular evolution has been simulated in silico by using massively parallel density functional theory quantum calculations, coupled with a genetic algorithm, to test for fitness with respect to a target chemical reaction in populations of genetically encoded molecules. The goal of this study was the identification of transition-metal complexes capable of mediating a known reaction, namely the cleavage of N(2) to give the metal nitride. Each complex within the search space was uniquely specified by a nanogene consisting of an eight-digit number. Propagation of an individual nanogene into successive generations was determined by the fitness of its phenotypic molecule to perform the target reaction and new generations were created by recombination and mutation of surviving nanogenes. In its simplest implementation, the quantum-directed genetic algorithm (QDGA) quickly located a local minimum on the evolutionary fitness hypersurface, but proved incapable of progressing towards the global minimum. A strategy for progressing beyond local minima consistent with the Darwinian paradigm by the use of environmental variations coupled with mass extinctions was therefore developed. This allowed for the identification of nitriding complexes that are very closely related to known examples from the chemical literature. Examples of mutations that appear to be beneficial at the genetic level but prove to be harmful at the phenotypic level are described. As well as revealing fundamental aspects of molecular evolution, QDGA appears to be a powerful tool for the identification of lead compounds capable of carrying out a target chemical reaction.

  3. A Hybrid Forecasting Model Based on Empirical Mode Decomposition and the Cuckoo Search Algorithm: A Case Study for Power Load

    Directory of Open Access Journals (Sweden)

    Jiani Heng

    2016-01-01

    Full Text Available Power load forecasting always plays a considerable role in the management of a power system, as accurate forecasting provides a guarantee for the daily operation of the power grid. It has been widely demonstrated in forecasting that hybrid forecasts can improve forecast performance compared with individual forecasts. In this paper, a hybrid forecasting approach, comprising Empirical Mode Decomposition, CSA (Cuckoo Search Algorithm, and WNN (Wavelet Neural Network, is proposed. This approach constructs a more valid forecasting structure and more stable results than traditional ANN (Artificial Neural Network models such as BPNN (Back Propagation Neural Network, GABPNN (Back Propagation Neural Network Optimized by Genetic Algorithm, and WNN. To evaluate the forecasting performance of the proposed model, a half-hourly power load in New South Wales of Australia is used as a case study in this paper. The experimental results demonstrate that the proposed hybrid model is not only simple but also able to satisfactorily approximate the actual power load and can be an effective tool in planning and dispatch for smart grids.

  4. A matter of timing: identifying significant multi-dose radiotherapy improvements by numerical simulation and genetic algorithm search.

    Directory of Open Access Journals (Sweden)

    Simon D Angus

    Full Text Available Multi-dose radiotherapy protocols (fraction dose and timing currently used in the clinic are the product of human selection based on habit, received wisdom, physician experience and intra-day patient timetabling. However, due to combinatorial considerations, the potential treatment protocol space for a given total dose or treatment length is enormous, even for relatively coarse search; well beyond the capacity of traditional in-vitro methods. In constrast, high fidelity numerical simulation of tumor development is well suited to the challenge. Building on our previous single-dose numerical simulation model of EMT6/Ro spheroids, a multi-dose irradiation response module is added and calibrated to the effective dose arising from 18 independent multi-dose treatment programs available in the experimental literature. With the developed model a constrained, non-linear, search for better performing cadidate protocols is conducted within the vicinity of two benchmarks by genetic algorithm (GA techniques. After evaluating less than 0.01% of the potential benchmark protocol space, candidate protocols were identified by the GA which conferred an average of 9.4% (max benefit 16.5% and 7.1% (13.3% improvement (reduction on tumour cell count compared to the two benchmarks, respectively. Noticing that a convergent phenomenon of the top performing protocols was their temporal synchronicity, a further series of numerical experiments was conducted with periodic time-gap protocols (10 h to 23 h, leading to the discovery that the performance of the GA search candidates could be replicated by 17-18 h periodic candidates. Further dynamic irradiation-response cell-phase analysis revealed that such periodicity cohered with latent EMT6/Ro cell-phase temporal patterning. Taken together, this study provides powerful evidence towards the hypothesis that even simple inter-fraction timing variations for a given fractional dose program may present a facile, and highly cost

  5. A matter of timing: identifying significant multi-dose radiotherapy improvements by numerical simulation and genetic algorithm search.

    Science.gov (United States)

    Angus, Simon D; Piotrowska, Monika Joanna

    2014-01-01

    Multi-dose radiotherapy protocols (fraction dose and timing) currently used in the clinic are the product of human selection based on habit, received wisdom, physician experience and intra-day patient timetabling. However, due to combinatorial considerations, the potential treatment protocol space for a given total dose or treatment length is enormous, even for relatively coarse search; well beyond the capacity of traditional in-vitro methods. In constrast, high fidelity numerical simulation of tumor development is well suited to the challenge. Building on our previous single-dose numerical simulation model of EMT6/Ro spheroids, a multi-dose irradiation response module is added and calibrated to the effective dose arising from 18 independent multi-dose treatment programs available in the experimental literature. With the developed model a constrained, non-linear, search for better performing cadidate protocols is conducted within the vicinity of two benchmarks by genetic algorithm (GA) techniques. After evaluating less than 0.01% of the potential benchmark protocol space, candidate protocols were identified by the GA which conferred an average of 9.4% (max benefit 16.5%) and 7.1% (13.3%) improvement (reduction) on tumour cell count compared to the two benchmarks, respectively. Noticing that a convergent phenomenon of the top performing protocols was their temporal synchronicity, a further series of numerical experiments was conducted with periodic time-gap protocols (10 h to 23 h), leading to the discovery that the performance of the GA search candidates could be replicated by 17-18 h periodic candidates. Further dynamic irradiation-response cell-phase analysis revealed that such periodicity cohered with latent EMT6/Ro cell-phase temporal patterning. Taken together, this study provides powerful evidence towards the hypothesis that even simple inter-fraction timing variations for a given fractional dose program may present a facile, and highly cost-effecitive means

  6. A new user-adapted search haptic algorithm to navigate along filiform structures.

    Science.gov (United States)

    Raya, Laura; Bayona, Sofia; Pastor, Luis; Garcia, Marcos

    2014-01-01

    One of the mayor research challenges of this century is the understanding of the human brain. Regarding this field line, simulation based research is gaining importance. A large amount of money is being spent in huge international projects such as The Human Brain Project [1] and The Blue Brain [2]. The behavior of the brain and, therefore, the behavior of brain simulations depend to a large extend on the neural topology. Neural elements are organized in a connected, dense, complex network of thread-like (i.e., filiform) structures. The analysis of a computer-based simulation using just the visual modality is a highly complex task due to the complexity of the neural topology and the large amounts of multi-variable and multi-modal data generated by computer simulations. In this paper, we propose the use of haptic devices to aid in the navigation along these neural structures, helping neurobiologists in the analysis of neural network topologies. However, haptic navigation constrained to complex filiform networks entails problems when these structures have high frequency features, noise and/or complex branching nodes. We address these issues by presenting a new user-adapted search haptic method that uses the forces exerted by the users to infer their intentions. In addition, we propose a specific calibration technique to adapt the haptic navigation to the user's skills and to the data. We validate this approach through a perceptual study. Finally, we show in this paper the application of our method to the analysis of dense and complex filiform structures in the neurobiology context. Additionally, our technique could be applied to other problems such as electronic circuits and graph exploration.

  7. Bioinformatics and mass spectrometry for microorganism identification: proteome-wide post-translational modifications and database search algorithms for characterization of intact H. pylori.

    Science.gov (United States)

    Demirev, P A; Lin, J S; Pineda, F J; Fenselaut, C

    2001-10-01

    MALDI-TOF mass spectrometry has been coupled with Internet-based proteome database search algorithms in an approach for direct microorganism identification. This approach is applied here to characterize intact H. pylori (strain 26695) Gram-negative bacteria, the most ubiquitous human pathogen. A procedure for including a specific and common posttranslational modification, N-terminal Met cleavage, in the search algorithm is described. Accounting for posttranslational modifications in putative protein biomarkers improves the identification reliability by at least an order of magnitude. The influence of other factors, such as number of detected biomarker peaks, proteome size, spectral calibration, and mass accuracy, on the microorganism identification success rate is illustrated as well.

  8. Calculating all local minima on liquidus surfaces using the FactSage software and databases and the Mesh Adaptive Direct Search algorithm

    International Nuclear Information System (INIS)

    Gheribi, Aimen E.; Robelin, Christian; Digabel, Sebastien Le; Audet, Charles; Pelton, Arthur D.

    2011-01-01

    Highlights: → Systematic search of low melting temperatures in multicomponent systems. → Calculation of eutectic in multicomponent systems. → The FactSage software and the direct search algorithm are used simultaneously. - Abstract: It is often of interest, for a multicomponent system, to identify the low melting compositions at which local minima of the liquidus surface occur. The experimental determination of these minima can be very time-consuming. An alternative is to employ the CALPHAD approach using evaluated thermodynamic databases containing optimized model parameters giving the thermodynamic properties of all phases as functions of composition and temperature. Liquidus temperatures are then calculated by Gibbs free energy minimization algorithms which access the databases. Several such large databases for many multicomponent systems have been developed over the last 40 years, and calculated liquidus temperatures are generally quite accurate. In principle, one could then search for local liquidus minima by simply calculating liquidus temperatures over a compositional grid. In practice, such an approach is prohibitively time-consuming for all but the simplest systems since the required number of grid points is extremely large. In the present article, the FactSage database computing system is coupled with the powerful Mesh Adaptive Direct Search (MADS) algorithm in order to search for and calculate automatically all liquidus minima in a multicomponent system. Sample calculations for a 4-component oxide system, a 7-component chloride system, and a 9-component ferrous alloy system are presented. It is shown that the algorithm is robust and rapid.

  9. Analysis of a systematic search-based algorithm for determining protein backbone structure from a minimum number of residual dipolar couplings.

    Science.gov (United States)

    Wang, Lincong; Donald, Bruce Randall

    2004-01-01

    We have developed an ab initio algorithm for determining a protein backbone structure using global orientational restraints on internuclear vectors derived from residual dipolar couplings (RDCs) measured in one or two different aligning media by solution nuclear magnetic resonance (NMR) spectroscopy [14, 15]. Specifically, the conformation and global orientations of individual secondary structure elements are computed, independently, by an exact solution, systematic search-based minimization algorithm using only 2 RDCs per residue. The systematic search is built upon a quartic equation for computing, exactly and in constant time, the directions of an internuclear vector from RDCs, and linear or quadratic equations for computing the sines and cosines of backbone dihedral (phi, psi) angles from two vectors in consecutive peptide planes. In contrast to heuristic search such as simulated annealing (SA) or Monte-Carlo (MC) used by other NMR structure determination algorithms, our minimization algorithm can be analyzed rigorously in terms of expected algorithmic complexity and the coordinate precision of the protein structure as a function of error in the input data. The algorithm has been successfully applied to compute the backbone structures of three proteins using real NMR data.

  10. Classical algorithms for automated parameter-search methods in compartmental neural models - A critical survey based on simulations using neuron

    International Nuclear Information System (INIS)

    Mutihac, R.; Mutihac, R.C.; Cicuttin, A.

    2001-09-01

    gradient-descent techniques are adequate if the parameter space is low-dimensional, relatively smooth, and has a few local minima (e.g., parameterizing single-neuron compartmental models). Only the fast algorithms and/or a decent (low) number of model parameters are candidates for automated parameter search because of practical reasons. Eventually, the size of the parameter space may be reduced and/or parallel supercomputers may be used. Data overfitting may negatively affect the generalization ability of the model. Bayesian methods include Occam's factor, which set the preference for simpler models. Proliferation of (neural) models raises the question of rigorous criteria for comparing the overall performance of various models designed to match the same type of data. Bayesian methods provide the best framework to assess the neural models quantitatively. Paradoxically, parameter-search methods may sometimes be more useful when they fail by discarding unrealistic mechanisms used in the model design, rather than fitting experimental data to an alleged model

  11. Feed-Forward Neural Network Soft-Sensor Modeling of Flotation Process Based on Particle Swarm Optimization and Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang

    2015-01-01

    Full Text Available For predicting the key technology indicators (concentrate grade and tailings recovery rate of flotation process, a feed-forward neural network (FNN based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO algorithm and gravitational search algorithm (GSA is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process.

  12. First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nucleus Deep Inelastic Scattering at MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, Joel A. [Univ. of Florida, Gainesville, FL (United States)

    2015-01-01

    Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets.

  13. Iterative algorithm based on a combination of vector similarity measure and B-spline functions for particle analysis in forward scattering

    Science.gov (United States)

    Wang, Tian'en; Shen, Jianqi; Lin, Chengjun

    2017-06-01

    The vector similarity measure (VSM) was recently introduced into the inverse problem for particle analysis based on forward light scattering and its modified version was proposed to adapt for multi-modal particle systems. It is found that the algorithm is stable and efficient but the extracted solutions are usually oscillatory, especially for widely distributed particle systems. In order to improve this situation, an iterative VSM method combined with cubic B-spline functions (B-VSM) is presented. Simulations and experiments show that, compared with the old versions, this modification is more robust and efficient.

  14. Search for a narrow baryonic state decaying to pKS0 and p‾KS0 in deep inelastic scattering at HERA

    Directory of Open Access Journals (Sweden)

    H. Abramowicz

    2016-08-01

    Full Text Available A search for a narrow baryonic state in the pKS0 and p‾KS0 system has been performed in ep collisions at HERA with the ZEUS detector using an integrated luminosity of 358pb−1 taken in 2003–2007. The search was performed with deep inelastic scattering events at an ep centre-of-mass energy of 318GeV for exchanged photon virtuality, Q2, between 20 and 100GeV2. Contrary to evidence presented for such a state around 1.52 GeV in a previous ZEUS analysis using a sample of 121 pb−1 taken in 1996–2000, no resonance peak was found in the p(p‾KS0 invariant-mass distribution in the range 1.45–1.7 GeV. Upper limits on the production cross section are set.

  15. Search for a narrow baryonic state decaying to ${pK^0_S}$ and ${\\overline{p}K^0_S}$ in deep inelastic scattering at HERA

    CERN Document Server

    Abramowicz, H.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Aushev, V.; Behnke, O.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Boos, E.G.; Brock, I.; Brook, N.H.; Brugnera, R.; Bruni, A.; Bussey, P.J.; Caldwell, A.; Capua, M.; Catterall, C.D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A.M.; Corradi, M.; Dementiev, R.K.; Devenish, RCE; Dusini, S.; Foster, B.; Gach, G; Gallo, E.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L.K.; Golubkov, Yu.A.; Grzelak, G.; Guzik, M.; Gwenlan, C.; Hain, W.; Hlushchenko, O.; Hochman, D.; Hori, R.; Ibrahim, Z.A.; Iga, Y.; Ishitsuka, M.; Januschek, F.; Jomhari, N.Z.; Kadenko, I.; Kananov, S.; Karshon, U.; Kaur, P.; Kisielewska, D.; Klanner, R.; Klein, U.; Korzhavina, I.A.; Kotański, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Krupa, B.; Kuprash, O.; Kuze, M; Levchenko, B.B.; Levy, A.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O.Yu.; Makarenko, I.; Malka, J.; Mastroberardino, A.; Mohamad Idris, F.; Mohammad Nasir, N; Myronenko, V.; Nagano, K.; Nobe, T.; Nowak, R.J.; Onishchuk, Yu.; Paul, E.; Perlański, W.; Pokrovskiy, N.S.; Polini, A.; Przybycien, M.; Roloff, P.; Ruspa, M.; Saxon, D.H.; Schioppa, M.; Schneekloth, U.; Schörner-Sadenius, T.; Shcheglova, L.M.; Shevchenko, R.; Shkola, O.; Shyrma, Yu.; Singh, I.; Skillicorn, I.O.; Słomiński, W.; Solano, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stopa, P.; Sztuk-Dambietz, J.; Tassi, E.; Tokushuku, K.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Wan Abdullah, W.A.T.; Wichmann, K.; Wing, M.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A.F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B.O.; Zotkin, D.S.; Mastroberardino, A

    2016-08-10

    A search for a narrow baryonic state in the $pK^0_S$ and $\\overline{p}K^0_S$ system has been performed in $ep$ collisions at HERA with the ZEUS detector using an integrated luminosity of 358 pb$^{-1}$ taken in 2003-2007. The search was performed with deep inelastic scattering events at an $ep$ centre-of-mass energy of 318 GeV for exchanged photon virtuality, $Q^2$, between 20 and 100 $\\rm{} GeV^{2}$. Contrary to evidence presented for such a state around 1.52 GeV in a previous ZEUS analysis using a sample of 121 pb$^{-1}$ taken in 1996-2000, no resonance peak was found in the $p(\\overline{p})K^0_S$ invariant-mass distribution in the range 1.45-1.7 GeV. Upper limits on the production cross section are set.

  16. A search algorithm to meta-optimize the parameters for an extended Kalman filter to improve classification on hyper-temporal images

    CSIR Research Space (South Africa)

    Salmon, P

    2012-07-01

    Full Text Available -1 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22-27 July 2012 A search algorithm to meta-optimize the parameters for an extended Kalman filter to improve classification on hyper-temporal images yzB.P. Salmon, yz...

  17. Global Warming: Predicting OPEC Carbon Dioxide Emissions from Petroleum Consumption Using Neural Network and Hybrid Cuckoo Search Algorithm.

    Science.gov (United States)

    Chiroma, Haruna; Abdul-kareem, Sameem; Khan, Abdullah; Nawi, Nazri Mohd; Gital, Abdulsalam Ya'u; Shuib, Liyana; Abubakar, Adamu I; Rahman, Muhammad Zubair; Herawan, Tutut

    2015-01-01

    Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research. The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN) adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods. An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks--hence, reducing global warming. The policy implications are discussed in the paper.

  18. A novel cooperative localization algorithm using enhanced particle filter technique in maritime search and rescue wireless sensor network.

    Science.gov (United States)

    Wu, Huafeng; Mei, Xiaojun; Chen, Xinqiang; Li, Junjun; Wang, Jun; Mohapatra, Prasant

    2017-09-29

    Maritime search and rescue (MSR) play a significant role in Safety of Life at Sea (SOLAS). However, it suffers from scenarios that the measurement information is inaccurate due to wave shadow effect when utilizing wireless Sensor Network (WSN) technology in MSR. In this paper, we develop a Novel Cooperative Localization Algorithm (NCLA) in MSR by using an enhanced particle filter method to reduce measurement errors on observation model caused by wave shadow effect. First, we take into account the mobility of nodes at sea to develop a motion model-Lagrangian model. Furthermore, we introduce both state model and observation model to constitute a system model for particle filter (PF). To address the impact of the wave shadow effect on the observation model, we develop an optimal parameter derived by Kullback-Leibler divergence (KLD) to mitigate the error. After the optimal parameter is acquired, an improved likelihood function is presented. Finally, the estimated position is acquired. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. TaBoo SeArch Algorithm with a Modified Inverse Histogram for Reproducing Biologically Relevant Rare Events of Proteins.

    Science.gov (United States)

    Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru

    2016-05-10

    The TaBoo SeArch (TBSA) algorithm [ Harada et al. J. Comput. Chem. 2015 , 36 , 763 - 772 and Harada et al. Chem. Phys. Lett. 2015 , 630 , 68 - 75 ] was recently proposed as an enhanced conformational sampling method for reproducing biologically relevant rare events of a given protein. In TBSA, an inverse histogram of the original distribution, mapped onto a set of reaction coordinates, is constructed from trajectories obtained by multiple short-time molecular dynamics (MD) simulations. Rarely occurring states of a given protein are statistically selected as new initial states based on the inverse histogram, and resampling is performed by restarting the MD simulations from the new initial states to promote the conformational transition. In this process, the definition of the inverse histogram, which characterizes the rarely occurring states, is crucial for the efficiency of TBSA. In this study, we propose a simple modification of the inverse histogram to further accelerate the convergence of TBSA. As demonstrations of the modified TBSA, we applied it to (a) hydrogen bonding rearrangements of Met-enkephalin, (b) large-amplitude domain motions of Glutamine-Binding Protein, and (c) folding processes of the B domain of Staphylococcus aureus Protein A. All demonstrations numerically proved that the modified TBSA reproduced these biologically relevant rare events with nanosecond-order simulation times, although a set of microsecond-order, canonical MD simulations failed to reproduce the rare events, indicating the high efficiency of the modified TBSA.

  20. The Sloan Digital Sky Survey-II Supernova Survey:Search Algorithm and Follow-up Observations

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Masao; /Pennsylvania U. /KIPAC, Menlo Park; Bassett, Bruce; /Cape Town U. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Cinabro, David; /Wayne State U.; DeJongh, Don Frederic; /Fermilab; Depoy, D.L.; /Ohio State U.; Doi, Mamoru; /Tokyo U.; Garnavich, Peter M.; /Notre Dame U.; Craig, Hogan, J.; /Washington U., Seattle, Astron. Dept.; Holtzman, Jon; /New Mexico State U.; Jha, Saurabh; /Stanford U., Phys. Dept.; Konishi, Kohki; /Tokyo U.; Lampeitl, Hubert; /Baltimore, Space; Marriner, John; /Fermilab; Miknaitis, Gajus; /Fermilab; Nichol, Robert C.; /Portsmouth U.; Prieto, Jose Luis; /Ohio State U.; Richmond, Michael W.; /Rochester Inst.; Schneider, Donald P.; /Penn State U., Astron. Astrophys.; Smith, Mathew; /Portsmouth U.; SubbaRao, Mark; /Chicago U. /Tokyo U. /Tokyo U. /South African Astron. Observ. /Tokyo

    2007-09-14

    The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 deg2 region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, Galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the Type Ia SNe, the main driver for the Survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.

  1. Global Warming: Predicting OPEC Carbon Dioxide Emissions from Petroleum Consumption Using Neural Network and Hybrid Cuckoo Search Algorithm.

    Directory of Open Access Journals (Sweden)

    Haruna Chiroma

    Full Text Available Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2 from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC CO2 emissions from petroleum consumption have motivated this research.The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods.An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks--hence, reducing global warming. The policy implications are discussed in the paper.

  2. Global Warming: Predicting OPEC Carbon Dioxide Emissions from Petroleum Consumption Using Neural Network and Hybrid Cuckoo Search Algorithm

    Science.gov (United States)

    Chiroma, Haruna; Abdul-kareem, Sameem; Khan, Abdullah; Nawi, Nazri Mohd.; Gital, Abdulsalam Ya’u; Shuib, Liyana; Abubakar, Adamu I.; Rahman, Muhammad Zubair; Herawan, Tutut

    2015-01-01

    Background Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research. Methods/Findings The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN) adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods. Conclusion An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks—hence, reducing global warming. The policy implications are discussed in the paper. PMID:26305483

  3. AR-RBFS: Aware-Routing Protocol Based on Recursive Best-First Search Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Farzad Kiani

    2016-01-01

    Full Text Available Energy issue is one of the most important problems in wireless sensor networks. They consist of low-power sensor nodes and a few base station nodes. They must be adaptive and efficient in data transmission to sink in various areas. This paper proposes an aware-routing protocol based on clustering and recursive search approaches. The paper focuses on the energy efficiency issue with various measures such as prolonging network lifetime along with reducing energy consumption in the sensor nodes and increasing the system reliability. Our proposed protocol consists of two phases. In the first phase (network development phase, the sensors are placed into virtual layers. The second phase (data transmission is related to routes discovery and data transferring so it is based on virtual-based Classic-RBFS algorithm in the lake of energy problem environments but, in the nonchargeable environments, all nodes in each layer can be modeled as a random graph and then begin to be managed by the duty cycle method. Additionally, the protocol uses new topology control, data aggregation, and sleep/wake-up schemas for energy saving in the network. The simulation results show that the proposed protocol is optimal in the network lifetime and packet delivery parameters according to the present protocols.

  4. A New Method for a Piezoelectric Energy Harvesting System Using a Backtracking Search Algorithm-Based PI Voltage Controller

    Directory of Open Access Journals (Sweden)

    Mahidur R. Sarker

    2016-09-01

    Full Text Available This paper presents a new method for a vibration-based piezoelectric energy harvesting system using a backtracking search algorithm (BSA-based proportional-integral (PI voltage controller. This technique eliminates the exhaustive conventional trial-and-error procedure for obtaining optimized parameter values of proportional gain (Kp, and integral gain (Ki for PI voltage controllers. The generated estimate values of Kp and Ki are executed in the PI voltage controller that is developed through the BSA optimization technique. In this study, mean absolute error (MAE is used as an objective function to minimize output error for a piezoelectric energy harvesting system (PEHS. The model for the PEHS is designed and analyzed using the BSA optimization technique. The BSA-based PI voltage controller of the PEHS produces a significant improvement in minimizing the output error of the converter and a robust, regulated pulse-width modulation (PWM signal to convert a MOSFET switch, with the best response in terms of rise time and settling time under various load conditions.

  5. A Hybrid Tabu Search Algorithm for a Real-World Open Vehicle Routing Problem Involving Fuel Consumption Constraints

    Directory of Open Access Journals (Sweden)

    Yunyun Niu

    2018-01-01

    Full Text Available Outsourcing logistics operation to third-party logistics has attracted more attention in the past several years. However, very few papers analyzed fuel consumption model in the context of outsourcing logistics. This problem involves more complexity than traditional open vehicle routing problem (OVRP, because the calculation of fuel emissions depends on many factors, such as the speed of vehicles, the road angle, the total load, the engine friction, and the engine displacement. Our paper proposed a green open vehicle routing problem (GOVRP model with fuel consumption constraints for outsourcing logistics operations. Moreover, a hybrid tabu search algorithm was presented to deal with this problem. Experiments were conducted on instances based on realistic road data of Beijing, China, considering that outsourcing logistics plays an increasingly important role in China’s freight transportation. Open routes were compared with closed routes through statistical analysis of the cost components. Compared with closed routes, open routes reduce the total cost by 18.5% with the fuel emissions cost down by nearly 29.1% and the diver cost down by 13.8%. The effect of different vehicle types was also studied. Over all the 60- and 120-node instances, the mean total cost by using the light-duty vehicles is the lowest.

  6. Frequency stability improvement of micro hydro power system using hybrid SMES and CES based on Cuckoo search algorithm

    Directory of Open Access Journals (Sweden)

    Muhammad Ruswandi Djalal

    2017-12-01

    Full Text Available Micro hydro has been chosen because it has advantages both economically, technically and as well as in terms of environmental friendliness. Micro hydro is suitable to be used in areas that difficult to be reached by the grid. Problems that often occur in the micro hydro system are not the constant rotation of the generator that caused by a change in load demand of the consumer. Thus causing frequency fluctuations in the system that can lead to damage both in the plant and in terms of consumer electrical appliances. The appropriate control technology should be taken to support the optimum performance of micro hydro. Therefore, this study will discuss a strategy of load frequency control by using Energy Storage. Superconducting magnetic energy storage (SMES and capacitor energy storage (CES are devices that can store energy in the form of a fast magnetic field in the superconducting coil. For the optimum performance, it is necessary to get the optimum tuning of SMES and CES parameters. The artificial intelligence methods, Cuckoo Search Algorithm (CSA are used to obtain the optimum parameters in the micro hydro system. The simulation results show that the application of the CSA that use to tune the parameters of hybrid SMES-CES-PID can reduce overshoot oscillation of frequency response in micro hydro power plant.

  7. A modified gravitational search algorithm based on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission dispatching

    International Nuclear Information System (INIS)

    Chen, Fang; Zhou, Jianzhong; Wang, Chao; Li, Chunlong; Lu, Peng

    2017-01-01

    Wind power is a type of clean and renewable energy, and reasonable utilization of wind power is beneficial to environmental protection and economic development. Therefore, a short-term hydro-thermal-wind economic emission dispatching (SHTW-EED) problem is presented in this paper. The proposed problem aims to distribute the load among hydro, thermal and wind power units to simultaneously minimize economic cost and pollutant emission. To solve the SHTW-EED problem with complex constraints, a modified gravitational search algorithm based on the non-dominated sorting genetic algorithm-III (MGSA-NSGA-III) is proposed. In the proposed MGSA-NSGA-III, a non-dominated sorting approach, reference-point based selection mechanism and chaotic mutation strategy are applied to improve the evolutionary process of the original gravitational search algorithm (GSA) and maintain the distribution diversity of Pareto optimal solutions. Moreover, a parallel computing strategy is introduced to improve the computational efficiency. Finally, the proposed MGSA-NSGA-III is applied to a typical hydro-thermal-wind system to verify its feasibility and effectiveness. The simulation results indicate that the proposed algorithm can obtain low economic cost and small pollutant emission when dealing with the SHTW-EED problem. - Highlights: • A hybrid algorithm is proposed to handle hydro-thermal-wind power dispatching. • Several improvement strategies are applied to the algorithm. • A parallel computing strategy is applied to improve computational efficiency. • Two cases are analyzed to verify the efficiency of the optimize mode.

  8. Search for the existence of circulating currents in high-Tc superconductors using the polarized neutron scattering technique

    International Nuclear Information System (INIS)

    Sidis, Y.; Fauque, B.; Aji, V.; Bourges, P.

    2007-01-01

    We review experimental attempts using polarized neutron scattering technique to reveal the existence in high temperature superconductors of a long-range ordered state characterized by the spontaneous appearance of current loops. We draw particular attention to our recent results (B. Fauque et al., Phys. Rev. Lett. 96 (2006) 197001) that, up to now, can be explained only by the theory of circulating currents proposed by Varma

  9. The index-based subgraph matching algorithm (ISMA): fast subgraph enumeration in large networks using optimized search trees.

    Science.gov (United States)

    Demeyer, Sofie; Michoel, Tom; Fostier, Jan; Audenaert, Pieter; Pickavet, Mario; Demeester, Piet

    2013-01-01

    Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/.

  10. The index-based subgraph matching algorithm (ISMA: fast subgraph enumeration in large networks using optimized search trees.

    Directory of Open Access Journals (Sweden)

    Sofie Demeyer

    Full Text Available Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA, a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/.

  11. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media

    Science.gov (United States)

    Stamnes, Knut; Tsay, S.-CHEE; Jayaweera, Kolf; Wiscombe, Warren

    1988-01-01

    The transfer of monochromatic radiation in a scattering, absorbing, and emitting plane-parallel medium with a specified bidirectional reflectivity at the lower boundary is considered. The equations and boundary conditions are summarized. The numerical implementation of the theory is discussed with attention given to the reliable and efficient computation of eigenvalues and eigenvectors. Ways of avoiding fatal overflows and ill-conditioning in the matrix inversion needed to determine the integration constants are also presented.

  12. A multilevel search algorithm for the maximization of submodular functions applied to the quadratic cost partition problem

    NARCIS (Netherlands)

    Goldengorin, B.; Ghosh, D.

    Maximization of submodular functions on a ground set is a NP-hard combinatorial optimization problem. Data correcting algorithms are among the several algorithms suggested for solving this problem exactly and approximately. From the point of view of Hasse diagrams data correcting algorithms use

  13. Comparison of the ESTRO formalism for monitor unit calculation with a Clarkson based algorithm of a treatment planning system and a traditional ''full-scatter'' methodology

    International Nuclear Information System (INIS)

    Pirotta, M.; Aquilina, D.; Bhikha, T.; Georg, D.

    2005-01-01

    The ESTRO formalism for monitor unit (MU) calculations was evaluated and implemented to replace a previous methodology based on dosimetric data measured in a full-scatter phantom. This traditional method relies on data normalised at the depth of dose maximum (z m ), as well as on the utilisation of the BJR 25 table for the conversion of rectangular fields into equivalent square fields. The treatment planning system (TPS) was subsequently updated to reflect the new beam data normalised at a depth z R of 10 cm. Comparisons were then carried out between the ESTRO formalism, the Clarkson-based dose calculation algorithm on the TPS (with beam data normalised at z m and z R ), and the traditional ''full-scatter'' methodology. All methodologies, except for the ''full-scatter'' methodology, separated head-scatter from phantom-scatter effects and none of the methodologies; except for the ESTRO formalism, utilised wedge depth dose information for calculations. The accuracy of MU calculations was verified against measurements in a homogeneous phantom for square and rectangular open and wedged fields, as well as blocked open and wedged fields, at 5, 10, and 20 cm depths, under fixed SSD and isocentric geometries for 6 and 10 MV. Overall, the ESTRO Formalism showed the most accurate performance, with the root mean square (RMS) error with respect to measurements remaining below 1% even for the most complex beam set-ups investigated. The RMS error for the TPS deteriorated with the introduction of a wedge, with a worse RMS error for the beam data normalised at z m (4% at 6 MV and 1.6% at 10 MV) than at z R (1.9% at 6 MV and 1.1% at 10 MV). The further addition of blocking had only a marginal impact on the accuracy of this methodology. The ''full-scatter'' methodology showed a loss in accuracy for calculations involving either wedges or blocking, and performed worst for blocked wedged fields (RMS errors of 7.1% at 6 MV and 5% at 10 MV). The origins of these discrepancies were

  14. Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller.

    Science.gov (United States)

    Niamul Islam, Naz; Hannan, M A; Mohamed, Azah; Shareef, Hussain

    2016-01-01

    Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.

  15. Cuckoo Search Algorithm with Lévy Flights for Global-Support Parametric Surface Approximation in Reverse Engineering

    Directory of Open Access Journals (Sweden)

    Andrés Iglesias

    2018-03-01

    Full Text Available This paper concerns several important topics of the Symmetry journal, namely, computer-aided design, computational geometry, computer graphics, visualization, and pattern recognition. We also take advantage of the symmetric structure of the tensor-product surfaces, where the parametric variables u and v play a symmetric role in shape reconstruction. In this paper we address the general problem of global-support parametric surface approximation from clouds of data points for reverse engineering applications. Given a set of measured data points, the approximation is formulated as a nonlinear continuous least-squares optimization problem. Then, a recent metaheuristics called Cuckoo Search Algorithm (CSA is applied to compute all relevant free variables of this minimization problem (namely, the data parameters and the surface poles. The method includes the iterative generation of new solutions by using the Lévy flights to promote the diversity of solutions and prevent stagnation. A critical advantage of this method is its simplicity: the CSA requires only two parameters, many fewer than any other metaheuristic approach, so the parameter tuning becomes a very easy task. The method is also simple to understand and easy to implement. Our approach has been applied to a benchmark of three illustrative sets of noisy data points corresponding to surfaces exhibiting several challenging features. Our experimental results show that the method performs very well even for the cases of noisy and unorganized data points. Therefore, the method can be directly used for real-world applications for reverse engineering without further pre/post-processing. Comparative work with the most classical mathematical techniques for this problem as well as a recent modification of the CSA called Improved CSA (ICSA is also reported. Two nonparametric statistical tests show that our method outperforms the classical mathematical techniques and provides equivalent results to ICSA

  16. Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller

    Science.gov (United States)

    Niamul Islam, Naz; Hannan, M. A.; Mohamed, Azah; Shareef, Hussain

    2016-01-01

    Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation. PMID:26745265

  17. NSGA-II Algorithm with a Local Search Strategy for Multiobjective Optimal Design of Dry-Type Air-Core Reactor

    Directory of Open Access Journals (Sweden)

    Chengfen Zhang

    2015-01-01

    Full Text Available Dry-type air-core reactor is now widely applied in electrical power distribution systems, for which the optimization design is a crucial issue. In the optimization design problem of dry-type air-core reactor, the objectives of minimizing the production cost and minimizing the operation cost are both important. In this paper, a multiobjective optimal model is established considering simultaneously the two objectives of minimizing the production cost and minimizing the operation cost. To solve the multi-objective optimization problem, a memetic evolutionary algorithm is proposed, which combines elitist nondominated sorting genetic algorithm version II (NSGA-II with a local search strategy based on the covariance matrix adaptation evolution strategy (CMA-ES. NSGA-II can provide decision maker with flexible choices among the different trade-off solutions, while the local-search strategy, which is applied to nondominated individuals randomly selected from the current population in a given generation and quantity, can accelerate the convergence speed. Furthermore, another modification is that an external archive is set in the proposed algorithm for increasing the evolutionary efficiency. The proposed algorithm is tested on a dry-type air-core reactor made of rectangular cross-section litz-wire. Simulation results show that the proposed algorithm has high efficiency and it converges to a better Pareto front.

  18. Simultaneous determination of aquifer parameters and zone structures with fuzzy c-means clustering and meta-heuristic harmony search algorithm

    Science.gov (United States)

    Ayvaz, M. Tamer

    2007-11-01

    This study proposes an inverse solution algorithm through which both the aquifer parameters and the zone structure of these parameters can be determined based on a given set of observations on piezometric heads. In the zone structure identification problem fuzzy c-means ( FCM) clustering method is used. The association of the zone structure with the transmissivity distribution is accomplished through an optimization model. The meta-heuristic harmony search ( HS) algorithm, which is conceptualized using the musical process of searching for a perfect state of harmony, is used as an optimization technique. The optimum parameter zone structure is identified based on three criteria which are the residual error, parameter uncertainty, and structure discrimination. A numerical example given in the literature is solved to demonstrate the performance of the proposed algorithm. Also, a sensitivity analysis is performed to test the performance of the HS algorithm for different sets of solution parameters. Results indicate that the proposed solution algorithm is an effective way in the simultaneous identification of aquifer parameters and their corresponding zone structures.

  19. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.

    Science.gov (United States)

    Ismail, Ahmad Muhaimin; Mohamad, Mohd Saberi; Abdul Majid, Hairudin; Abas, Khairul Hamimah; Deris, Safaai; Zaki, Nazar; Mohd Hashim, Siti Zaiton; Ibrahim, Zuwairie; Remli, Muhammad Akmal

    2017-12-01

    Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in

  20. Iterative solution of multiple radiation and scattering problems in structural acoustics using the BL-QMR algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, M. [Stanford Univ., CA (United States)

    1996-12-31

    Finite-element discretizations of time-harmonic acoustic wave problems in exterior domains result in large sparse systems of linear equations with complex symmetric coefficient matrices. In many situations, these matrix problems need to be solved repeatedly for different right-hand sides, but with the same coefficient matrix. For instance, multiple right-hand sides arise in radiation problems due to multiple load cases, and also in scattering problems when multiple angles of incidence of an incoming plane wave need to be considered. In this talk, we discuss the iterative solution of multiple linear systems arising in radiation and scattering problems in structural acoustics by means of a complex symmetric variant of the BL-QMR method. First, we summarize the governing partial differential equations for time-harmonic structural acoustics, the finite-element discretization of these equations, and the resulting complex symmetric matrix problem. Next, we sketch the special version of BL-QMR method that exploits complex symmetry, and we describe the preconditioners we have used in conjunction with BL-QMR. Finally, we report some typical results of our extensive numerical tests to illustrate the typical convergence behavior of BL-QMR method for multiple radiation and scattering problems in structural acoustics, to identify appropriate preconditioners for these problems, and to demonstrate the importance of deflation in block Krylov-subspace methods. Our numerical results show that the multiple systems arising in structural acoustics can be solved very efficiently with the preconditioned BL-QMR method. In fact, for multiple systems with up to 40 and more different right-hand sides we get consistent and significant speed-ups over solving the systems individually.