WorldWideScience

Sample records for scatter diffraction ebsd

  1. Structures of Astromaterials Revealed by EBSD

    Science.gov (United States)

    Zolensky, M.

    2018-01-01

    Groups at the Johnson Space Center and the University of Tokyo have been using electron back-scattered diffraction (EBSD) to reveal the crystal structures of extraterrestrial minerals for many years. Even though we also routinely use transmission electron microscopy, synchrotron X-ray diffraction (SXRD), and conventional electron diffraction, we find that EBSD is the most powerful technique for crystal structure elucidation in many instances. In this talk I describe a few of the cases where we have found EBSD to provide crucial, unique information. See attachment.

  2. Electron back scattered diffraction study of SmCo magnets

    International Nuclear Information System (INIS)

    Yonamine, T.; Fukuhara, M.; Machado, R.; Missell, F.P.

    2008-01-01

    The remanence and energy product of permanent magnets is a strong function of their crystallographic texture. Electron back scattered diffraction (EBSD) is a tool for texture analysis providing information about the atomic layers up to 50 nm below the surface of the material. This paper discusses experimental requirements for performing EBSD measurements on rare-earth permanent magnets and presents results on commercial SmCo magnet material. EBSD measurements proved to be very sensitive to misaligned grains and were sensitive to texture in good agreement with information provided by X-ray diffraction scans. Results for nanostructured Sm(CoFeCuZr) z magnets are also discussed

  3. Acquisition of an Electron Back Scatter Diffraction (EBSD) system for the Zeiss Sigma SEM at Portland State University -- Planetary Major Equipment

    Science.gov (United States)

    Ruzicka, Alex

    To build on our parent Origins program award, entitled "Shock histories of chondrites as revealed by combined microstructural (TEM), petrographic, and X-ray microtomographic (micro-CT) analysis", we are requesting as Planetary Major Equipment the acquisition of an Electron Back Scatter Diffraction (EBSD) system, which will integrate with a Zeiss Sigma SEM that was installed at Portland State University last year (2010). This EBSD system will greatly augment the science return of the parent grant by allowing quantitative measurements of strain and textural fabrics in grains of all sizes and types across an entire thin section. Such measurements will help link data that are already being obtained with optical light microscopy, transmission electron microscopy, and micro- tomography methods. More generally, the EBSD system will augment the PI's research on the petrology of extraterrestrial materials by providing an additional tool for petrographic analyses, with data that can be used to evaluate strain, grain orientations, grain size distributions, phase proportions, and mineralogy. The equipment will enable quantitative characterization of the crystallography of primitive extraterrestrial materials, which will contribute to a better understanding of the formation and evolution of planetary systems, a major goal of NASA.

  4. Acquisition of an Electron Back Scatter Diffraction (EBSD) system for the Zeiss Sigma SEM at Portland State University Planetary Major Equipment

    Science.gov (United States)

    Ruzicka, Alex

    To build on our parent Origins program award, entitled "Shock histories of chondrites as revealed by combined microstructural (TEM), petrographic, and X-ray microtomographic (micro-CT) analysis", we are requesting as Planetary Major Equipment the acquisition of an Electron Back Scatter Diffraction (EBSD) system, which will integrate with a Zeiss Sigma SEM that was installed at Portland State University last year (2010). This EBSD system will greatly augment the science return of the parent grant by allowing quantitative measurements of strain and textural fabrics in grains of all sizes and types across an entire thin section. Such measurements will help link data that are already being obtained with optical light microscopy, transmission electron microscopy, and micro- tomography methods. More generally, the EBSD system will augment the PI's research on the petrology of extraterrestrial materials by providing an additional tool for petrographic analyses, with data that can be used to evaluate strain, grain orientations, grain size distributions, phase proportions, and mineralogy. The equipment will enable quantitative characterization of the crystallography of primitive extraterrestrial materials, which will contribute to a better understanding of the formation and evolution of planetary systems, a major goal of NASA.

  5. Application of electron back-scatter diffraction to texture research

    International Nuclear Information System (INIS)

    Randle, V.

    1996-01-01

    The application of electron back-scatter diffraction (EBSD) to materials research is reviewed. A brief history of the technique is given, followed by a description of present-day operation. The methodology of 'microtexture', i.e. spatially specific orientations, is described and recent examples of its application using EBSD are given, in particular to interstitial-free steel processing, growth of phases in a white iron and grain boundary phenomena in a superplastic alloy. The advantages and disadvantages of EBSD compared to use of X-rays for texture determination are discussed in detail

  6. Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)

    Science.gov (United States)

    Britton, T. B.; Hickey, J. L. R.

    2018-01-01

    High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.

  7. In situ electron backscatter diffraction (EBSD) during the compression of micropillars

    International Nuclear Information System (INIS)

    Niederberger, C.; Mook, W.M.; Maeder, X.; Michler, J.

    2010-01-01

    For the first time, in situ electron backscatter diffraction (EBSD) measurements during compression experiments by a modified nanoindenter on micron-sized single crystal pillars are demonstrated here. The experimental setup and the requirements concerning the compression sample are described in detail. EBSD mappings have been acquired before loading, under load and after unloading for consecutive compression cycles on a focused ion beam (FIB) milled GaAs micropillar. In situ EBSD allows for the determination of crystallographic orientation with sub-100 nm spatial resolution. Thereby, it provides highly localized information pertaining to the deformation phenomena such as elastic bending of the micropillar or the formation of deformation twins and plastic orientation gradients due to geometrically necessary dislocations. The most striking features revealed by in situ EBSD are the non-negligible amount of reversible (elastic) bending of the micropillar and the fact that deformation twinning and dislocation glide initiate where the bending is strongest. Due to this high spatial and orientation resolution, in situ EBSD measurements during micromechanical testing are demonstrated to be a promising technique for the investigation of deformation phenomena at the nano- to micro-scale.

  8. High resolution electron backscatter diffraction (EBSD) data from calcite biominerals in recent gastropod shells.

    Science.gov (United States)

    Pérez-Huerta, Alberto; Dauphin, Yannicke; Cuif, Jean Pierre; Cusack, Maggie

    2011-04-01

    Electron backscatter diffraction (EBSD) is a microscopy technique that reveals in situ crystallographic information. Currently, it is widely used for the characterization of geological materials and in studies of biomineralization. Here, we analyze high resolution EBSD data from biogenic calcite in two mollusk taxa, Concholepas and Haliotis, previously used in the understanding of complex biomineralization and paleoenvironmental studies. Results indicate that Concholepas has less ordered prisms than in Haliotis, and that in Concholepas the level of order is not homogenous in different areas of the shell. Overall, the usefulness of data integration obtained from diffraction intensity and crystallographic orientation maps, and corresponding pole figures, is discussed as well as its application to similar studies. © 2010 Elsevier Ltd. All rights reserved.

  9. On the optimum resolution of transmission-electron backscattered diffraction (t-EBSD)

    Energy Technology Data Exchange (ETDEWEB)

    Bremen, R. van; Ribas Gomes, D.; Jeer, L.T.H. de; Ocelík, V., E-mail: v.ocelik@rug.nl; De Hosson, J.Th.M.

    2016-01-15

    The work presented aims at determining the optimum physical resolution of the transmission-electron backscattered diffraction (t-EBSD) technique. The resolution depends critically on intrinsic factors such as the density, atomic number and thickness of the specimen but also on the extrinsic experimental set-up of the electron beam voltage, specimen tilt and detector position. In the present study, the so-called physical resolution of a typical t-EBSD set-up was determined with the use of Monte Carlo simulations and confronted to experimental findings. In the case of a thin Au film of 20 nm, the best resolution obtained was 9 nm whereas for a 100 nm Au film the best resolution was 66 nm. The precise dependence of resolution on thickness was found to vary differently depending on the specific elements involved. This means that the resolution of each specimen should be determined individually. Experimentally the median probe size of the t-EBSD for a 140 nm thick AuAg specimen was measured to be 87 nm. The first and third quartiles of the probe size measurements were found to be 60 nm and 118 nm. Simulation of this specimen resulted in a resolution of 94 nm which fits between these quartiles. - Highlights: • Intrinsic and extrinsic factors affecting resolution of t-EBSD are determined and characterized. • Distinction between resolutions of transmitted and detected electrons is determined. • The simulated results are confirmed experimentally on 140 nm thick AuAg foil.

  10. Acquisition parameters optimization of a transmission electron forward scatter diffraction system in a cold-field emission scanning electron microscope for nanomaterials characterization.

    Science.gov (United States)

    Brodusch, Nicolas; Demers, Hendrix; Trudeau, Michel; Gauvin, Raynald

    2013-01-01

    Transmission electron forward scatter diffraction (t-EFSD) is a new technique providing crystallographic information with high resolution on thin specimens by using a conventional electron backscatter diffraction (EBSD) system in a scanning electron microscope. In this study, the impact of tilt angle, working distance, and detector distance on the Kikuchi pattern quality were investigated in a cold-field emission scanning electron microscope (CFE-SEM). We demonstrated that t-EFSD is applicable for tilt angles ranging from -20° to -40°. Working distance (WD) should be optimized for each material by choosing the WD for which the EBSD camera screen illumination is the highest, as the number of detected electrons on the screen is directly dependent on the scattering angle. To take advantage of the best performances of the CFE-SEM, the EBSD camera should be close to the sample and oriented towards the bottom to increase forward scattered electron collection efficiency. However, specimen chamber cluttering and beam/mechanical drift are important limitations in the CFE-SEM used in this work. Finally, the importance of t-EFSD in materials science characterization was illustrated through three examples of phase identification and orientation mapping. © Wiley Periodicals, Inc.

  11. Microstructural evolution and mechanical properties on an ARB processed IF steel studied by X-ray diffraction and EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Gandarilla, Francisco, E-mail: fcruz@ipn.mx [Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, Edificio 9, U.P.A.L.M., Zacatenco, Del. G. A. Madero, México, D.F. C.P. 07738, México (Mexico); Salcedo-Garrido, Ana María, E-mail: salcedo_marya@yahoo.com.mx [Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, Edificio 9, U.P.A.L.M., Zacatenco, Del. G. A. Madero, México, D.F. C.P. 07738, México (Mexico); Bolmaro, Raúl E., E-mail: bolmaro@ifir-conicet.gov.ar [Instituto de Física Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000 Rosario (Argentina); Baudin, Thierry, E-mail: thierry.baudin@u-psud.fr [CNRS, UMR 8182, ICMMO, Lab. de Synthèse, Propriétés et Modélisation des Matériaux, Université de Paris-Sud, Orsay F-91405 (France); De Vincentis, Natalia S., E-mail: devincentis@ifir-conicet.gov.ar [Instituto de Física Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000 Rosario (Argentina); and others

    2016-08-15

    Accumulative Roll Bonding (ARB) is one of the so-called severe plastic deformation (SPD) processes, allowing the production of metals and alloys with ultrafine (micro-nano) structures. Materials with ultrafine grains present attractive properties like the simultaneous increase in strength and ductility. Our interest in these materials is focused on their microstructural evolution during ARB processing, eventually responsible for the enhancement of those mechanical properties. In the current work we follow the evolution of the microstructure in an interstitial-free (IF) steel deformed by ARB after consecutive processing cycles, by means of Electron BackScatter Diffraction (EBSD) and X-ray diffraction (XRD). Particularly, we present results related to texture, grain (GS) and domain sizes, grain boundary character, density of Geometrically Necessary Dislocations (GND), Grain Orientation Spread (GOS), lattice parameters, microstrain, dislocation density and their spatial arrangement. After 5 ARB cycles the system shows a microstructure constituted mainly by submicrometric grains with high angle boundaries and low presence of dislocations inside the grains. - Highlights: •The evolution of microstructure is followed simultaneously by using GAM, GOS and GND (EBSD) and XRD. •LAGBs and subgrains disappear after few cycles SSDs and HAGBs persist at the end. •Dynamic recrystallization counterbalances dislocation arrays and diminishes hardening rate. •Grain size stabilization is revealed as a mechanism for increasing ductility after few ARB cycles.

  12. Experimental evidence concerning the significant information depth of electron backscatter diffraction (EBSD)

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, Wolfgang, E-mail: wolfgang.w@uni-jena.de [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany); Saager, Stefan [Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Winterbergstraße 28, 01277 Dresden (Germany); Böbenroth, Andrea [Fraunhofer Institute for the Microstructure of Materials and Systems IMWS, Walter-Huelse-Straße 1, 06120 Halle (Saale) (Germany); Rüssel, Christian [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2017-02-15

    Experiments concerning the information depth of electron backscatter diffraction (EBSD) are performed on samples featuring an amorphous wedge on a crystalline substrate and a crystalline wedge on an amorphous substrate. The effects of the acceleration voltage and exemplary software settings on the ability to measure through an amorphous layer are presented. Changes in the EBSD-signal could be detected through a ≈142 nm thick layer of amorphous Si while orientation measurements could be performed through a ≈116 nm thick layer when using a voltage of 30 kV. The complexity of the information depth significant to a given EBSD-pattern and the multiple parameters influencing it are discussed. It is suggested that a “core information depth” is significant to high quality patterns while a larger “maximum information depth” becomes relevant when the pattern quality decreases or the sample is inhomogeneous within the information volume, i.e. in the form of partially crystalline materials or crystal layers in the nm scale. - Highlights: • Experimental evidence of the significant information depth of EBSD is presented. • Effects of the voltage and exemplary software settings are discussed. • Dependence of the significant information depth on the pattern quality is proposed. • The information depth may reach up to 142 nm in Si when using a voltage of 30 kV. • The information depth depends on the available technology.

  13. Tackling pseudosymmetry problems in electron backscatter diffraction (EBSD) analyses of perovskite structures

    Science.gov (United States)

    Mariani, Elisabetta; Kaercher, Pamela; Mecklenburgh, Julian; Wheeler, John

    2016-04-01

    Perovskite minerals form an important mineral group that has applications in Earth science and emerging alternative energy technologies, however crystallographic quantification of these minerals with electron backscatter diffraction (EBSD) is not accurate due to pseudosymmetry problems. The silicate perovskite Bridgmanite, (Mg,Fe)SiO3, is understood to be the dominant phase in the Earth's lower mantle. Gaining insight into its physical and rheological properties is therefore vital to understand the dynamics of the Earth's deep interior. Rock deformation experiments on analogue perovskite phases, for example (Ca,Sr)TiO3, combined with quantitative microstructural analyses of the recovered samples by EBSD, yield datasets that can reveal what deformation mechanisms may dominate the flow of perovskite in the lower mantle. Additionally, perovskite structures have important technological applications as new, suitable cathodes for the operation of more efficient and environmentally-friendly solid oxide fuel cells (SOFC). In recent years they have also been recognised as a potential substitute for silicon in the next generation of photovoltaic cells for the construction of economic and energy efficient solar panels. EBSD has the potential to be a valuable tool for the study of crystal orientations achieved in perovskite substrates as crystal alignment has a direct control on the properties of these materials. However, perovskite structures currently present us with challenges during the automated indexing of Kikuchi bands in electron backscatter diffraction patterns (EBSPs). Such challenges are represented by the pseudosymmetric character of perovskites, where atoms are subtly displaced (0.005 nm to 0.05 nm) from their higher symmetry positions. In orthorhombic Pbnm perovskites, for example, pseudosymmetry may be evaluated from the c/a unit cell parameter ratio, which is very close to 1. Two main types of distortions from the higher symmetry structure are recognised: a

  14. Mapping 180° polar domains using electron backscatter diffraction and dynamical scattering simulations

    Energy Technology Data Exchange (ETDEWEB)

    Burch, Matthew J.; Fancher, Chris M.; Patala, Srikanth [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC (United States); De Graef, Marc [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburg, PA (United States); Dickey, Elizabeth C. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC (United States)

    2017-02-15

    A novel technique, which directly and nondestructively maps polar domains using electron backscatter diffraction (EBSD) is described and demonstrated. Through dynamical diffraction simulations and quantitative comparison to experimental EBSD patterns, the absolute orientation of a non-centrosymmetric crystal can be determined. With this information, the polar domains of a material can be mapped. The technique is demonstrated by mapping the non-ferroelastic, or 180°, ferroelectric domains in periodically poled LiNbO{sub 3} single crystals. Further, the authors demonstrate the possibility of mapping polarity using this technique in other polar materials system. - Highlights: • A novel technique to directly polar domains utilizing EBSD is demonstrated. • The technique relies on dynamical diffraction simulations of EBSD patterns. • The technique is demonstrated by mapping 180° domains in LiNbO{sub 3} single crystals. • Further application of this technique to other materials classes is discussed.

  15. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    Science.gov (United States)

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Characterisation of hydrides in a zirconium alloy, by EBSD

    International Nuclear Information System (INIS)

    Ubhi, H.S.; Larsen, K.

    2012-01-01

    Zirconium alloys are used in nuclear reactors owing to their low capture cross-section for thermal neutrons and good mechanical and corrosion properties. However, they do suffer from delayed hydrogen cracking (DHC) due to formation of hydride particles. This study shows how the electron back-scatter diffraction (EBSD) technique can be used to characterise hydrides and their orientation relationship with the matrix. Hydrided EB weld specimens were prepared by electro-polishing, characterised using Oxford instruments AZtecHKL EBSD apparatus and software attached to a FEG SEM. Hydrides were found to exist as fine intra granular plates and having the Blackburn orientation relationship, i.e. (0002)Zr//(111)hydride and (1120)Zr//(1-10)hydride. The hydrides were also found to contain sigma 3 boundaries as well as local misorientations. (author)

  17. Analysis of dynamic recrystallization of ice from EBSD orientation mapping

    Directory of Open Access Journals (Sweden)

    Maurine eMontagnat

    2015-12-01

    Full Text Available We present high resolution observations of microstructure and texture evolution during dynamicrecrystallization (DRX of ice polycrystals deformed in the laboratory at high temperature(≈0.98Tm. Ice possesses a significant viscoplastic anisotropy that induces strong strainheterogeneities, which result in an early occurrence of DRX mechanisms. It is thereforea model material to explore these mechanisms. High resolution c-axis measurements atsample scale by optical techniques and full crystallographic orientation measurements by cryo-Electron Back Scattering Diffraction (EBSD provide a solid database for analyzing the relativeimpact of the macroscopic imposed stress versus the local and internal stress field on DRXmechanisms. Analysis of misorientation gradients in the EBSD data highlights a heterogeneousdislocation distribution, which is quantified by the Nye tensor estimation. Joint analyses of thedislocation density maps and microstructural observations highlight spatial correlation betweenhigh dislocation density sites and the onset of nucleation taking place by grain-boundary bulging,subgrain rotation or by the formation of kink-bands.

  18. Microstructural evolution of uranium dioxide following compression creep tests: An EBSD and image analysis study

    Energy Technology Data Exchange (ETDEWEB)

    Iltis, X., E-mail: xaviere.iltis@cea.fr [CEA, DEN, DEC, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Gey, N. [Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS UMR 7239, Université de Lorraine, Ile du Saulcy, 57045 Metz Cedex 1 (France); Cagna, C. [CEA, DEN, DEC, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Hazotte, A. [Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS UMR 7239, Université de Lorraine, Ile du Saulcy, 57045 Metz Cedex 1 (France); Sornay, Ph. [CEA, DEN, DEC, Cadarache, 13108 Saint-Paul-Lez-Durance (France)

    2015-01-15

    Highlights: • Image analysis and EBSD are performed on creep tested UO{sub 2} pellets. • Development of intergranular voids, with increasing strain, is quantified. • EBSD evidences a sub-structuration process within the grains and quantifies it. • Creep mechanisms are discussed on the basis of these results. - Abstract: Sintered UO{sub 2} pellets with relatively large grains (∼25 μm) are tested at 1500 °C under a compressive stress of 50 MPa, at different deformation levels up to 12%. Electron Back Scattered Diffraction (EBSD) is used to follow the evolution, with deformation, of grains (size, shape, orientation) and sub-grains. Image analyses of SEM images are performed to characterize emergence of a population of micron size voids. For the considered microstructure and test conditions, the results show that the deformation process of UO{sub 2} globally corresponds to grain boundary sliding, partly accommodated by a dislocational creep within the grains, leading to a highly sub-structured state.

  19. CONFERENCE: Elastic and diffractive scattering

    Energy Technology Data Exchange (ETDEWEB)

    White, Alan

    1989-09-15

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago.

  20. CONFERENCE: Elastic and diffractive scattering

    International Nuclear Information System (INIS)

    White, Alan

    1989-01-01

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago

  1. EBSD-assisted fractographic analysis of crack paths in magnesium alloy

    Directory of Open Access Journals (Sweden)

    S. Takaya

    2015-10-01

    Full Text Available Magnesium (Mg alloys are attractive as structural materials due to their light weight and high specific strength. It is well known that Mg alloy has hexagonal close-packed (HCP structure and only basal slip or twinning can operate during plastic deformation because critical resolved shear stresses of the other slip systems such as pyramidal or prismatic slips are much higher than the basal slip. Thus sometimes characteristic fracture surfaces are formed during stress corrosion cracking (SCC or fatigue crack propagation (FCP in Mg alloys, where many parallel lines are formed. These lines are different from so-called fatigue striations, because they are formed even under sustained load condition of SCC. Consequently, electron back scattered diffraction (EBSD technique was applied on the fracture surface, and the formation mechanism of parallel lines was investigated. EBSD-assisted fractography had revealed that the characteristic parallel lines were formed due to the operation of basal slips, not twining. It is considered that hydrogen-enhanced localized plasticity (HELP mechanism had been activated under corrosive environment

  2. Hard scattering and a diffractive trigger

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-02-01

    Conclusions concerning the properties of hard scattering in diffractively produced systems are summarized. One motivation for studying diffractive hard scattering is to investigate the interface between Regge theory and perturbative QCD. Another is to see whether diffractive triggering can result in an improvement in the signal-to-background ratio of measurements of production of very heavy quarks. 5 refs

  3. Diffractive scattering

    CERN Document Server

    De Wolf, E.A.

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken-x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wusthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed.

  4. Diffractive Scattering

    International Nuclear Information System (INIS)

    Wolf, E.A. de

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken - x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wuesthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed. (author)

  5. Light-scattering theory of diffraction.

    Science.gov (United States)

    Guo, Wei

    2010-03-01

    Since diffraction is a scattering process in principle, light propagation through one aperture in a screen is discussed in the light-scattering theory. Through specific calculation, the expression of the electric field observed at an observation point is obtained and is used not only to explain why Kirchhoff's diffraction theory is a good approximation when the screen is both opaque and sufficiently thin but also to demonstrate that the mathematical and physical problems faced by Kirchhoff's theory are avoided in the light-scattering theory.

  6. A study of intergranular corrosion of austenitic stainless steel by electrochemical potentiodynamic reactivation, electron back-scattering diffraction and cellular automaton

    Energy Technology Data Exchange (ETDEWEB)

    Yu Xiaofei [Department of Chemistry, Shandong University, Jinan 250100 (China); Chen Shenhao [Department of Chemistry, Shandong University, Jinan 250100 (China); State Key Laboratory for Corrosion and Protection, Shenyang 110016 (China)], E-mail: shchen@sdu.edu.cn; Liu Ying; Ren Fengfeng [Department of Chemistry, Shandong University, Jinan 250100 (China)

    2010-06-15

    The impact of solution and sensitization treatments on the intergranular corrosion (IGC) of austenitic stainless steel (316) was studied by electrochemical potentiodynamic reactivation (EPR) test, and the results showed the degree of sensitization (DOS) decreased as solution treatment temperature and time went up, but it increased as sensitization temperature prolonged. Factors that affected IGC were investigated by field emission scanning electron microscope (FE-SEM) and electron back-scattering diffraction (EBSD). Furthermore, the precipitation evolution of Cr-rich carbides and the distribution of chromium concentration were simulated by cellular automaton (CA), clearly showing the effects of solution and sensitization treatments on IGC.

  7. Diffraction in nuclear scattering

    International Nuclear Information System (INIS)

    Wojciechowski, H.

    1986-01-01

    The elastic scattering amplitudes for charged and neutral particles have been decomposed into diffractive and refractive parts by splitting the nuclear elastic scattering matrix elements into components responsible for these effects. It has been shown that the pure geometrical diffractive effect which carries no information about the nuclear interaction is always predominant at forward angle of elastic angular distributions. This fact suggests that for strongly absorbed particles only elastic cross section at backward angles, i.e. the refractive cross section, can give us basic information about the central nuclear potential. 12 refs., 4 figs., 1 tab. (author)

  8. A method to correct coordinate distortion in EBSD maps

    International Nuclear Information System (INIS)

    Zhang, Y.B.; Elbrønd, A.; Lin, F.X.

    2014-01-01

    Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct different local distortions in the electron backscatter diffraction maps. - Highlights: • A new method is suggested to correct nonlinear spatial distortion in EBSD maps. • The method corrects EBSD maps more precisely than presently available methods. • Errors less than 1–2 pixels are typically obtained. • Direct quantitative analysis of dynamic data are available after this correction

  9. EBSD spatial resolution for detecting sigma phase in steels

    Energy Technology Data Exchange (ETDEWEB)

    Bordín, S. Fernandez; Limandri, S. [Instituto de Física Enrique Gaviola, CONICET. M. Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina); Ranalli, J.M. [Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, 1650 Buenos Aires (Argentina); Castellano, G. [Instituto de Física Enrique Gaviola, CONICET. M. Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina)

    2016-12-15

    The spatial resolution of the electron backscatter diffraction signal is explored by Monte Carlo simulation for the sigma phase in steel at a typical instrumental set-up. In order to estimate the active volume corresponding to the diffracted electrons, the fraction of the backscattered electrons contributing to the diffraction signal was inferred by extrapolating the Kikuchi pattern contrast measured by other authors, as a function of the diffracted electron energy. In the resulting estimation, the contribution of the intrinsic incident beam size and the software capability to deconvolve patterns were included. A strong influence of the beam size on the lateral resolution was observed, resulting in 20 nm for the aperture considered. For longitudinal and depth directions the resolutions obtained were 75 nm and 16 nm, respectively. The reliability of this last result is discussed in terms of the survey of the last large-angle deflection undergone by the backscattered electrons involved in the diffraction process. Bearing in mind the mean transversal resolution found, it was possible to detect small area grains of sigma phase by EBSD measurements, for a stabilized austenitic AISI 347 stainless steel under heat treatments, simulating post welding (40 h at 600 °C) and aging (284 h at 484 °C) effects—as usually occurring in nuclear reactor pressure vessels. - Highlights: • EBSD spatial resolution is studied by Monte Carlo simulation for σ-phase in steel. • The contribution of the intrinsic incident beam size was included. • A stabilized austenitic stainless steel under heat treatments was measured by EBSD. • With the transversal resolution found, small area σ-phase grains could be identified.

  10. Application of Electron Backscattered Diffraction (EBSD) and Atomic Force Microscopy (AFM) to Determine Texture, Mesotexture, and Grain Boundary Energies in Ceramics

    International Nuclear Information System (INIS)

    Glass, S.J.; Rohrer, G.S.; Saylor, D.M.; Vedula, V.R.

    1999-01-01

    Crystallographic orientations in alumina (Al 2 0 3 ) and magnesium aluminate spinel (MgAl 2 0 4 ) were obtained using electron backscattered diffraction (EBSD) patterns. The texture and mesotexture (grain boundary mis-orientations) were random and no special boundaries were observed. The relative grain boundary energies were determined by thermal groove geometries using atomic force microscopy (AFM) to identify relationships between the grain boundary energies and mis-orientations

  11. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    International Nuclear Information System (INIS)

    Teague, Melissa C; Gorman, Brian P.; Miller, Brandon D; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel

  12. Diffractive scattering on nuclei in multiple scattering theory with inelastic screening

    International Nuclear Information System (INIS)

    Zoller, V.R.

    1988-01-01

    The cross sections for the diffractive scattering of hadrons on nuclei are calculated in the two-channel approximation of multiple scattering theory. In contrast to the standard Glauber approach, it is not assumed that the nucleon scattering profile is a Gaussian or that the Regge radius of the hadron is small compared to the nuclear radius. The AGK Reggeon diagrammatic technique is used to calculate the topological cross sections and the cross sections for coherent and incoherent diffractive dissociation and quasielastic scattering. The features of hadron-nucleus scattering at superhigh energies are discussed

  13. Comparison between magnetic force microscopy and electron back-scatter diffraction for ferrite quantification in type 321 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.D., E-mail: Xander.Warren@bristol.ac.uk [Interface Analysis Centre, HH Wills Laboratory, University of Bristol, Bristol BS8 1FD (United Kingdom); Harniman, R.L. [School of Chemistry, University of Bristol, Bristol BS8 1 TS (United Kingdom); Collins, A.M. [School of Chemistry, University of Bristol, Bristol BS8 1 TS (United Kingdom); Bristol Centre for Functional Nanomaterials, Nanoscience and Quantum Information Centre, University of Bristol, Bristol BS8 1FD (United Kingdom); Davis, S.A. [School of Chemistry, University of Bristol, Bristol BS8 1 TS (United Kingdom); Younes, C.M. [Interface Analysis Centre, HH Wills Laboratory, University of Bristol, Bristol BS8 1FD (United Kingdom); Flewitt, P.E.J. [Interface Analysis Centre, HH Wills Laboratory, University of Bristol, Bristol BS8 1FD (United Kingdom); School of Physics, HH Wills Laboratory, University of Bristol, Bristol BS8 1FD (United Kingdom); Scott, T.B. [Interface Analysis Centre, HH Wills Laboratory, University of Bristol, Bristol BS8 1FD (United Kingdom)

    2015-01-15

    Several analytical techniques that are currently available can be used to determine the spatial distribution and amount of austenite, ferrite and precipitate phases in steels. The application of magnetic force microscopy, in particular, to study the local microstructure of stainless steels is beneficial due to the selectivity of this technique for detection of ferromagnetic phases. In the comparison of Magnetic Force Microscopy and Electron Back-Scatter Diffraction for the morphological mapping and quantification of ferrite, the degree of sub-surface measurement has been found to be critical. Through the use of surface shielding, it has been possible to show that Magnetic Force Microscopy has a measurement depth of 105–140 nm. A comparison of the two techniques together with the depth of measurement capabilities are discussed. - Highlights: • MFM used to map distribution and quantify ferrite in type 321 stainless steels. • MFM results compared with EBSD for same region, showing good spatial correlation. • MFM gives higher area fraction of ferrite than EBSD due to sub-surface measurement. • From controlled experiments MFM depth sensitivity measured from 105 to 140 nm. • A correction factor to calculate area fraction from MFM data is estimated.

  14. High resolution electron back-scatter diffraction analysis of thermally and mechanically induced strains near carbide inclusions in a superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Karamched, Phani S., E-mail: phani.karamched@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2011-01-15

    Cross-correlation-based analysis of electron back-scatter diffraction (EBSD) patterns has been used to obtain high angular resolution maps of lattice rotations and elastic strains near carbides in a directionally solidified superalloy MAR-M-002. Lattice curvatures were determined from the EBSD measurements and used to estimate the distribution of geometrically necessary dislocations (GNDs) induced by the deformation. Significant strains were induced by thermal treatment due to the lower thermal expansion coefficient of the carbide inclusions compared to that of the matrix. In addition to elastic strains the mismatch was sufficient to have induced localized plastic deformation in the matrix leading to a GND density of 3 x 10{sup 13} m{sup -2} in regions around the carbide. Three-point bending was then used to impose strain levels within the range {+-}12% across the height of the bend bar. EBSD lattice curvature measurements were then made at both carbide-containing and carbide-free regions at different heights across the bar. The average GND density increases with the magnitude of the imposed strain (both in tension and compression), and is markedly higher near the carbides particles. The higher GND densities near the carbides (order of 10{sup 14} m{sup -2}) are generated by the large strain gradients produced around the plastically rigid inclusion during mechanical deformation with some minor contribution from the pre-existing residual deformation caused by the thermal mismatch between carbide and nickel matrix.

  15. Factorization and non-factorization in diffractive hard scattering

    International Nuclear Information System (INIS)

    Berera, Arjun

    1997-01-01

    Factorization, in the sense defined for inclusive hard scattering, is discussed for diffractive hard scattering. A factorization theorem similar to its inclusive counterpart is presented for diffractive DIS. For hadron-hadron diffractive hard scattering, in contrast to its inclusive counterpart, the expected breakdown of factorization is discussed. Cross section estimates are given from a simple field theory model for non-factorizing double-pomeron-exchange (DPE) dijet production with and without account for Sudakov suppression

  16. A 3D tomographic EBSD analysis of a CVD diamond thin film

    International Nuclear Information System (INIS)

    Liu Tao; Raabe, Dierk; Zaefferer, Stefan

    2008-01-01

    We have studied the nucleation and growth processes in a chemical vapor deposition (CVD) diamond film using a tomographic electron backscattering diffraction method (3D EBSD). The approach is based on the combination of a focused ion beam (FIB) unit for serial sectioning in conjunction with high-resolution EBSD. Individual diamond grains were investigated in 3-dimensions particularly with regard to the role of twinning.

  17. A 3D tomographic EBSD analysis of a CVD diamond thin film

    Directory of Open Access Journals (Sweden)

    Tao Liu, Dierk Raabe and Stefan Zaefferer

    2008-01-01

    Full Text Available We have studied the nucleation and growth processes in a chemical vapor deposition (CVD diamond film using a tomographic electron backscattering diffraction method (3D EBSD. The approach is based on the combination of a focused ion beam (FIB unit for serial sectioning in conjunction with high-resolution EBSD. Individual diamond grains were investigated in 3-dimensions particularly with regard to the role of twinning.

  18. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gazder, Azdiar A., E-mail: azdiar@uow.edu.au [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Al-Harbi, Fayez; Spanke, Hendrik Th. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Mitchell, David R.G. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Pereloma, Elena V. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia)

    2014-12-15

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. - Highlights: • Multi-condition segmentation of austenite, martensite, polygonal ferrite and ferrite in bainite. • Ferrites in granular bainite and bainitic ferrite segmented by variation in relative carbon counts. • Carbon partitioning during growth explains variation in carbon content of ferrites in bainites. • Developed EBSD image processing tools can be applied to the microstructures of a variety of alloys. • EBSD-based segmentation procedure verified by correlative TEM results.

  19. Tutorial: Crystal orientations and EBSD — Or which way is up?

    International Nuclear Information System (INIS)

    Britton, T.B.; Jiang, J.; Guo, Y.; Vilalta-Clemente, A.; Wallis, D.; Hansen, L.N.; Winkelmann, A.; Wilkinson, A.J.

    2016-01-01

    Electron backscatter diffraction (EBSD) is an automated technique that can measure the orientation of crystals in a sample very rapidly. There are many sophisticated software packages that present measured data. Unfortunately, due to crystal symmetry and differences in the set-up of microscope and EBSD software, there may be accuracy issues when linking the crystal orientation to a particular microstructural feature. In this paper we outline a series of conventions used to describe crystal orientations and coordinate systems. These conventions have been used to successfully demonstrate that a consistent frame of reference is used in the sample, unit cell, pole figure and diffraction pattern frames of reference. We establish a coordinate system rooted in measurement of the diffraction pattern and subsequently link this to all other coordinate systems. A fundamental outcome of this analysis is to note that the beamshift coordinate system needs to be precisely defined for consistent 3D microstructure analysis. This is supported through a series of case studies examining particular features of the microscope settings and/or unambiguous crystallographic features. These case studies can be generated easily in most laboratories and represent an opportunity to demonstrate confidence in use of recorded orientation data. Finally, we include a simple software tool, written in both MATLAB® and Python, which the reader can use to compare consistency with their own microscope set-up and which may act as a springboard for further offline analysis. - Highlights: • Presentation of conventions used to describe crystal orientations • Three case studies that outline how conventions are consistent • Demonstrates a pathway for calibration and validation of EBSD based orientation measurements • EBSD computer code supplied for validation by the reader

  20. Tutorial: Crystal orientations and EBSD — Or which way is up?

    Energy Technology Data Exchange (ETDEWEB)

    Britton, T.B., E-mail: b.britton@imperial.ac.uk [Department of Materials, Imperial College London, Prince Consort Road, SW7 2AZ (United Kingdom); Jiang, J. [Department of Materials, Imperial College London, Prince Consort Road, SW7 2AZ (United Kingdom); Guo, Y.; Vilalta-Clemente, A. [Department of Materials, University of Oxford, Parks Road, OX1 3PH (United Kingdom); Wallis, D.; Hansen, L.N. [Department of Earth Sciences, University of Oxford, South Parks Road, OX1 3AN (United Kingdom); Winkelmann, A. [Bruker Nano GmbH, Am Studio 2D, 12489 Berlin (Germany); Wilkinson, A.J. [Department of Materials, University of Oxford, Parks Road, OX1 3PH (United Kingdom)

    2016-07-15

    Electron backscatter diffraction (EBSD) is an automated technique that can measure the orientation of crystals in a sample very rapidly. There are many sophisticated software packages that present measured data. Unfortunately, due to crystal symmetry and differences in the set-up of microscope and EBSD software, there may be accuracy issues when linking the crystal orientation to a particular microstructural feature. In this paper we outline a series of conventions used to describe crystal orientations and coordinate systems. These conventions have been used to successfully demonstrate that a consistent frame of reference is used in the sample, unit cell, pole figure and diffraction pattern frames of reference. We establish a coordinate system rooted in measurement of the diffraction pattern and subsequently link this to all other coordinate systems. A fundamental outcome of this analysis is to note that the beamshift coordinate system needs to be precisely defined for consistent 3D microstructure analysis. This is supported through a series of case studies examining particular features of the microscope settings and/or unambiguous crystallographic features. These case studies can be generated easily in most laboratories and represent an opportunity to demonstrate confidence in use of recorded orientation data. Finally, we include a simple software tool, written in both MATLAB® and Python, which the reader can use to compare consistency with their own microscope set-up and which may act as a springboard for further offline analysis. - Highlights: • Presentation of conventions used to describe crystal orientations • Three case studies that outline how conventions are consistent • Demonstrates a pathway for calibration and validation of EBSD based orientation measurements • EBSD computer code supplied for validation by the reader.

  1. Assessment of geometrically necessary dislocation levels derived by 3D EBSD

    International Nuclear Information System (INIS)

    Konijnenberg, P.J.; Zaefferer, S.; Raabe, D.

    2015-01-01

    Existing alternatives for the calculation of geometrically necessary dislocation (GND) densities from orientation fields are discussed. Importantly, we highlight the role of reference frames and consider different sources of error. A well-controlled micro cantilever bending experiment on a copper bicrystal has been analyzed by 3-dimensional electron back scatter diffraction (3D EBSD). The GND density is determined experimentally by two different approaches and assessed theoretically, assuming a homogeneous bending of the cantilever. Experiment and theory agree very well. It is further shown that the deformation is accommodated mainly by GNDs, which carry and store lattice rotation, and not (only) by mobile dislocations that leave a crystal portion inspected, without lattice rotations. A detailed GND analysis reveals a local density minimum close to the grain boundary and a distinct difference in edge to screw ratios for both grains

  2. Small area analysis using micro-diffraction techniques

    International Nuclear Information System (INIS)

    Goehner, Raymond P.; Tissot, Ralph G. Jr.; Michael, Joseph R.

    2000-01-01

    An overall trend toward smaller electronic packages and devices makes it increasingly important and difficult to obtain meaningful diffraction information from small areas. X-ray micro-diffraction, electron back-scattered diffraction (EBSD) and Kossel are micro-diffraction techniques used for crystallographic analysis including texture, phase identification and strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements of areas between 10 microm to 100 microm. For areas this small glass capillary optics are used for producing a usable collimated x-ray beam. These optics are designed to reflect x-rays below the critical angle therefore allowing for larger solid acceptance angle at the x-ray source resulting in brighter smaller x-ray beams. The determination of residual strain using micro-diffraction techniques is very important to the semiconductor industry. Residual stresses have caused voiding of the interconnect metal which then destroys electrical continuity. Being able to determine the residual stress helps industry to predict failures from the aging effects of interconnects due to this stress voiding. Stress measurements would be impossible using a conventional x-ray diffractometer; however, utilizing a 30 microm glass capillary these small areas are readily assessable for analysis. Kossel produces a wide angle diffraction pattern from fluorescent x-rays generated in the sample by an e-beam in a SEM. This technique can yield very precise lattice parameters for determining strain. Fig. 2 shows a Kossel pattern from a Ni specimen. Phase analysis on small areas is also possible using an energy dispersive spectrometer (EBSD) and x-ray micro-diffraction techniques. EBSD has the advantage of allowing the user to observe the area of interest using the excellent imaging capabilities of the SEM. An EDS detector has been

  3. Diffractive hard scattering and the SSC

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-01-01

    Events in high energy hadron collisions are discussed that contain a hard scattering, in the sense that very heavy quarks or high P/sub T/ jets are produced, yet are diffractive, in the sense that one of the incident hadrons is scattered with only a small energy loss. 12 refs., 6 figs

  4. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Donius, Amalie E., E-mail: amalie.donius@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Obbard, Rachel W., E-mail: Rachel.W.Obbard@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Burger, Joan N., E-mail: ridge.of.the.ancients@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hunger, Philipp M., E-mail: philipp.m.hunger@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Baker, Ian, E-mail: Ian.Baker@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Doherty, Roger D., E-mail: dohertrd@drexel.edu [Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Wegst, Ulrike G.K., E-mail: ulrike.wegst@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States)

    2014-07-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment.

  5. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    International Nuclear Information System (INIS)

    Donius, Amalie E.; Obbard, Rachel W.; Burger, Joan N.; Hunger, Philipp M.; Baker, Ian; Doherty, Roger D.; Wegst, Ulrike G.K.

    2014-01-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment

  6. Time-domain Brillouin scattering assisted by diffraction gratings

    Science.gov (United States)

    Matsuda, Osamu; Pezeril, Thomas; Chaban, Ievgeniia; Fujita, Kentaro; Gusev, Vitalyi

    2018-02-01

    Absorption of ultrashort laser pulses in a metallic grating deposited on a transparent sample launches coherent compression/dilatation acoustic pulses in directions of different orders of acoustic diffraction. Their propagation is detected by delayed laser pulses, which are also diffracted by the metallic grating, through the measurement of the transient intensity change of the first-order diffracted light. The obtained data contain multiple frequency components, which are interpreted by considering all possible angles for the Brillouin scattering of light achieved through multiplexing of the propagation directions of light and coherent sound by the metallic grating. The emitted acoustic field can be equivalently presented as a superposition of plane inhomogeneous acoustic waves, which constitute an acoustic diffraction grating for the probe light. Thus the obtained results can also be interpreted as a consequence of probe light diffraction by both metallic and acoustic gratings. The realized scheme of time-domain Brillouin scattering with metallic gratings operating in reflection mode provides access to wide range of acoustic frequencies from minimal to maximal possible values in a single experimental optical configuration for the directions of probe light incidence and scattered light detection. This is achieved by monitoring the backward and forward Brillouin scattering processes in parallel. Potential applications include measurements of the acoustic dispersion, simultaneous determination of sound velocity and optical refractive index, and evaluation of samples with a single direction of possible optical access.

  7. Distinguishing Biologically Controlled Calcareous Biomineralization in Fossil Organisms Using Electron Backscatter Diffraction (EBSD)

    Science.gov (United States)

    Päßler, Jan-Filip; Jarochowska, Emilia; Bestmann, Michel; Munnecke, Axel

    2018-02-01

    Although carbonate-precipitating cyanobacteria are ubiquitous in aquatic ecosystems today, the criteria used to identify them in the geological record are subjective and rarely testable. Differences in the mode of biomineralization between cyanobacteria and eukaryotes, i.e. biologically induced calcification (BIM) vs. biologically controlled calcification (BCM), result in different crystallographic structures which might be used as a criterion to test cyanobacterial affinities. Cyanobacteria are often used as a ‘wastebasket taxon’, to which various microfossils are assigned. The lack of a testable criterion for the identification of cyanobacteria may bias their fossil record severely. We employed electron backscatter diffraction (EBSD) to investigate the structure of calcareous skeletons in two microproblematica widespread in Palaeozoic marine ecosystems: Rothpletzella, hypothesized to be a cyanobacterium, and an incertae sedis microorganism Allonema. We used a calcareous trilobite shell as a BCM reference. The mineralized structure of Allonema has a simple single-layered structure of acicular crystals perpendicular to the surface of the organism. The c-axes of these crystals are parallel to the elongation and thereby normal to the surface of the organism. EBSD pole figures and misorientation axes distribution reveal a fibre texture around the c-axis with a small degree of variation (up to 30°), indicating a highly ordered structure. A comparable pattern was found in the trilobite shell. This structure allows excluding biologically induced mineralization as the mechanism of shell formation in Allonema. In Rothpletzella, the c-axes of the microcrystalline sheath show a broader clustering compared to Allonema, but still reveal crystals tending to be perpendicular to the surface of the organism. The misorientation axes of adjacent crystals show an approximately random distribution. Rothpletzella also shares morphological similarities with extant cyanobacteria. We

  8. Initial microstructural study of a Ce-La alloy using electron backscattered diffraction

    International Nuclear Information System (INIS)

    Scott, Thomas B.; Younes, Charles M.; Ling, Michael; Jones, Christopher P.; Nicholson, John A.; Heard, Peter J.; Jenkins, Roderick

    2011-01-01

    Research highlights: → First ever successful EBSD microstructural analysis of Ce-La alloy. → Successful preparation using electro-polishing in the open laboratory. → Equiaxed grains 20-40 μm in size dominate the microstructure, with random orientations, relatively straight grain boundary contacts and no evidence for crystal twinning. → All grains matched to a fcc γ-phase. → Problematic presence of entrapped oxide particles. - Abstract: To better understand and exploit the unique electronic and structural properties of f-block metals and their alloys it is perceived that an improved knowledge of the microstructural characteristics and phase changes as a function of temperature and pressure, is necessary. For other different types of metallic systems, the use of electron back-scattered diffraction (EBSD) is becoming a common practice in order to obtain detailed microstructural information, but this has, as yet, been very limited in case of f-block metals. Because of their extreme affinity to oxygen and rapid surface reaction, EBSD studies of this metal-category are very sparse with only one work published on cerium metal providing an example of technical hurdles for a prerequisite oxide-free metal surface. Specifically the need to remove the oxide by ion etching was considered essential to enable a successful EBSD analysis. The current work presents the results of a first attempt to characterise the microstructure of a Ce-La alloy using EBSD. It demonstrates that high quality diffraction patterns and crystal orientation maps can be successfully obtained following a carefully controlled preparation of the alloy surface in the open laboratory by applying a simple and reproducible electro-polishing procedure without a further need for ion etching in vaccuo.

  9. Diffractive hard scattering at ep and p antip colliders

    International Nuclear Information System (INIS)

    Bruni, P.; Ingelman, G.; Uppsala Univ.

    1993-12-01

    Models for diffractive scattering based on the exchange of a pomeron with a parton structure are analysed in terms of hard scattering processes and the resulting characteristics of the final state. Diffractive deep inelastic ep scattering is considered in connection with the recently observed rapidity gap events at HERA. Heavy flavour and W, Z production in p anti p interactions are interesting measures of the gluon and quark component, respectively, in the pomeron. (orig.)

  10. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Laureys, A., E-mail: Aurelie.Laureys@UGent.be [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Depover, T. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Petrov, R. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Verbeken, K. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium)

    2016-02-15

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses just after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of

  11. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    International Nuclear Information System (INIS)

    Laureys, A.; Depover, T.; Petrov, R.; Verbeken, K.

    2016-01-01

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses just after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of

  12. Application of SEM/EBSD and FEG-TEM/CBED to determine eutectic solidification mechanisms

    International Nuclear Information System (INIS)

    Nogita, K.; Dahle, A.K.; Drennan, J.

    2002-01-01

    Full text: This study shows the application of electron backscatter diffraction (EBSD) in SEM and convergent beam electron diffraction (CBED) in FEG-TEM to determine eutectic nucleation and growth in hypoeutectic Al-Si foundry alloys. Because the eutectic reaction is often the final stage of solidification it can be expected to have a significant impact on the formation of casting defects, particularly porosity. Previous EBSD work by Nogita and Dahle (2001), Dahle et al (2001), has shown that the eutectic nucleates on the primary phase in the unmodified alloy, and eutectic grains are nucleated in the intergranular liquid, instead of filling the dendrite envelopes, when Sr or Sb is added. However, the orientation relationship between silicon and aluminium in the eutectic has so far not been determined because of difficulties with sample preparation for EBSD and also detection limitations of Kikuchi refraction of silicon and aluminium, particularly in modified alloys with a refined eutectic. The combination of the EBSD technique in SEM and CBED in TEM analyses can provide crystallographic orientation relationships between primary aluminium dendrites, eutectic aluminium and silicon, which are important to explicitly define the solidification mode of the eutectic in hypoeutectic Al-Si alloys. These relationships are influenced, and altered, by the addition of certain elements. This paper also describes the sample preparation techniques for SEM and TEM for samples with different eutectic structures. The advantages the techniques are discussed. Copyright (2002) Australian Society for Electron Microscopy Inc

  13. Phase analysis in duplex stainless steel: comparison of EBSD and quantitative metallography methods

    International Nuclear Information System (INIS)

    Michalska, J; Chmiela, B

    2014-01-01

    The purpose of the research was to work out the qualitative and quantitative analysis of phases in DSS in as-received state and after thermal aging. For quantitative purposes, SEM observations, EDS analyses and electron backscattered diffraction (EBSD) methods were employed. Qualitative analysis of phases was performed by two methods: EBSD and classical quantitative metallography. A juxtaposition of different etchants for the revealing of microstructure and brief review of sample preparation methods for EBSD studies were presented. Different ways of sample preparation were tested and based on these results a detailed methodology of DSS phase analysis was developed including: surface finishing, selective etching methods and image acquisition. The advantages and disadvantages of applied methods were pointed out and compared the accuracy of the analysis phase performed by both methods

  14. A review and reassessment of diffraction, scattering, and shadows in electrodynamics

    Science.gov (United States)

    Berg, Matthew J.; Sorensen, Christopher M.

    2018-05-01

    The concepts of diffraction and scattering are well known and considered fundamental in optics and other wave phenomena. For any type of wave, one way to define diffraction is the spreading of waves, i.e., no change in the average propagation direction, while scattering is the deflection of waves with a clear change of propagation direction. However, the terms "diffraction" and "scattering" are often used interchangeably, and hence, a clear distinction between the two is difficult to find. This review considers electromagnetic waves and retains the simple definition that diffraction is the spreading of waves but demonstrates that all diffraction patterns are the result of scattering. It is shown that for electromagnetic waves, the "diffracted" wave from an object is the Ewald-Oseen extinction wave in the far-field zone. The intensity distribution of this wave yields what is commonly called the diffraction pattern. Moreover, this is the same Ewald-Oseen wave that cancels the incident wave inside the object and thereafter continues to do so immediately behind the object to create a shadow. If the object is much wider than the beam but has a hole, e.g., a screen with an aperture, the Ewald-Oseen extinction wave creates the shadow behind the screen and the incident light that passes through the aperture creates the diffraction pattern. This point of view also illustrates Babinet's principle. Thus, it is the Ewald-Oseen extinction theorem that binds together diffraction, scattering, and shadows.

  15. Thermal stability of electrodeposited Ni and Ni-Co layers; an EBSD-study

    DEFF Research Database (Denmark)

    Rasmussen, Anette Alsted; Gholinia, A.; Trimby, P.W.

    2004-01-01

    The influence of heat treatment on the microstructure and the microtexture of electrodeposited Ni and Ni-Co layers was investigated with Electron Backscatter Diffraction (EBSD) with high resolution. Samples were annealed for 1 hour at 523 K and 673 K, the temperature region wherein...

  16. Novel EBSD preparation method for Cu/Sn microbumps using a focused ion beam

    International Nuclear Information System (INIS)

    Liu, Tao-Chi; Chen, Chih; Chiu, Kuo-Jung; Lin, Han-Wen; Kuo, Jui-Chao

    2012-01-01

    We proposed a novel technique developed from focused ion beam (FIB) polishing for sample preparation of electron backscatter diffraction (EBSD) measurement. A low-angle incident gallium ion beam with a high acceleration voltage of 30 kV was used to eliminate the surface roughness of cross-sectioned microbumps resulting from mechanical polishing. This work demonstrates the application of the FIB polishing technique to solders for a high-quality sample preparation for EBSD measurement after mechanical polishing. - Highlights: ► The novel FIB technique of sample preparation is fast, effective and low-cost. ► It can enhance the process precision to the specific area of the sample. ► It is convenient for analyzing the metallurgy of the microbump in 3DIC packaging. ► The EBSD image quality can be enhanced by just using a common FIB instrument.

  17. The effect of length scale on the determination of geometrically necessary dislocations via EBSD continuum dislocation microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruggles, T.J., E-mail: timmyruggs@gmail.com [National Institute of Aerospace, 100 Exploration Way, Hampton, VA 23666 (United States); Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602 (United States); Rampton, T.M. [EDAX Inc., 91 McKee Drive, Mahwah, NJ 07430 (United States); Khosravani, A. [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Fullwood, D.T. [Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602 (United States)

    2016-05-15

    Electron backscatter diffraction (EBSD) dislocation microscopy is an important, emerging field in metals characterization. Currently, calculation of geometrically necessary dislocation (GND) density is problematic because it has been shown to depend on the step size of the EBSD scan used to investigate the sample. This paper models the change in calculated GND density as a function of step size statistically. The model provides selection criteria for EBSD step size as well as an estimate of the total dislocation content. Evaluation of a heterogeneously deformed tantalum specimen is used to asses the method. - Highlights: • The GND to SSD transition with increasing step size is analytically modeled. • Dislocation density of a microindented tantalum single crystal is measured. • Guidelines for step size selection in EBSD dislocation microscopy are presented.

  18. EBSD study of purity effects during hot working in austenitic stainless steels

    International Nuclear Information System (INIS)

    El Wahabi, M.; Gavard, L.; Cabrera, J.M.; Prado, J.M.; Montheillet, F.

    2005-01-01

    The technique of electron back scattering diffraction (EBSD) is considered as a powerful instrument for the study of the microstructural changes during hot forming processes and gives the possibility to present the information in different ways (OIM, misorientation diagram and pole figures). The present work is focused on the observation by EBSD of the microstructure evolution during deformation at high temperature of three austenitic stainless steels: AISI-304H, AISI-304L and a high purity steel HP. The difference between the three steels is the content carbon and the presence of residual elements. To this aim compression tests were carried out at a constant strain rate of 0.001 s -1 and different temperatures. The study showed an increase of twin boundary fractions and a diminution of substructure (low angle densities boundaries) at increasing temperatures. On the other hand, increasing carbon content promotes lower twin boundary fractions and larger amounts of low angle boundaries. This effect can be explained by the reduction of grain boundary mobility caused by increasing carbon contents, which in turn reduces the migration rate and consequently the probability of twin boundary generation. Moreover, the increment of low angle boundaries with carbon content accelerates the twin character loss. It was also found that the dynamically recrystallized grain size decreased at increasing carbon content due to a typical drag effect. No important features on textures were found during DDRX

  19. High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study

    International Nuclear Information System (INIS)

    Tokarski, Tomasz; Cios, Grzegorz; Kula, Anna; Bała, Piotr

    2016-01-01

    Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis of very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.

  20. A model of diffraction scattering with unitary corrections

    International Nuclear Information System (INIS)

    Etim, E.; Malecki, A.; Satta, L.

    1989-01-01

    The inability of the multiple scattering model of Glauber and similar geometrical picture models to fit data at Collider energies, to fit low energy data at large momentum transfers and to explain the absence of multiple diffraction dips in the data is noted. It is argued and shown that a unitary correction to the multiple scattering amplitude gives rise to a better model and allows to fit all available data on nucleon-nucleon and nucleus-nucleus collisions at all energies and all momentum transfers. There are no multiple diffraction dips

  1. Diffraction scattering and the parton model in QCD

    International Nuclear Information System (INIS)

    White, A.

    1985-01-01

    Arguments are presented that the validity of the parton model for hadron scattering in QCD is directly related to the occurrence of the Critical Pomeron description of diffraction scattering. An attractive route suggested for Electroweak and Grand Unification is also briefly described

  2. Solving protein nanocrystals by cryo-EM diffraction: Multiple scattering artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Ganesh [Department of Materials Science and Engineering, Arizona State University, Tempe, AZ (United States); Basu, Shibom [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ (United States); Liu, Haiguang [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States); Zuo, Jian-Min [Department of Materials Science and Engineering, University of Illinois, Urbana, IL (United States); Spence, John C.H., E-mail: spence@asu.edu [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)

    2015-01-15

    The maximum thickness permissible within the single-scattering approximation for the determination of the structure of perfectly ordered protein microcrystals by transmission electron diffraction is estimated for tetragonal hen-egg lysozyme protein crystals using several approaches. Multislice simulations are performed for many diffraction conditions and beam energies to determine the validity domain of the required single-scattering approximation and hence the limit on crystal thickness. The effects of erroneous experimental structure factor amplitudes on the charge density map for lysozyme are noted and their threshold limits calculated. The maximum thickness of lysozyme permissible under the single-scattering approximation is also estimated using R-factor analysis. Successful reconstruction of density maps is found to result mainly from the use of the phase information provided by modeling based on the protein data base through molecular replacement (MR), which dominates the effect of poor quality electron diffraction data at thicknesses larger than about 200 Å. For perfectly ordered protein nanocrystals, a maximum thickness of about 1000 Å is predicted at 200 keV if MR can be used, using R-factor analysis performed over a subset of the simulated diffracted beams. The effects of crystal bending, mosaicity (which has recently been directly imaged by cryo-EM) and secondary scattering are discussed. Structure-independent tests for single-scattering and new microfluidic methods for growing and sorting nanocrystals by size are reviewed. - Highlights: • Validity domain of single-scattering approximation for protein electron diffraction is assessed • Electron Diffraction for tetragonal hen-egg lysozyme is simulated using multislice. • Bias from the use of phase information in modeling by molecular replacement (MR) is evaluated. • We find an approximate upper thickness limit, if MR is used, of 100 nm. • A 35% error in structure factor magnitudes may be

  3. An electron back-scattered diffraction study on the microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion

    International Nuclear Information System (INIS)

    Jin Li; Lin Dongliang; Mao Dali; Zeng Xiaoqin; Ding Wenjiang

    2006-01-01

    Microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion (ECAE) was investigated by electron back-scattered diffraction (EBSD). The grains of AZ31 Mg alloy were refined significantly after ECAE 1-8 passes at 498 K and the distributions of grain size tended to be more uniform with pass number increasing. Frequency of sub-boundaries and low angle grain boundaries (LAGBs) increased at initial stage of deformation, and sub-boundaries and LAGBs evolved into high angle grain boundaries (HAGBs) with further deformation, which resulted in the high frequency of HAGBs in the alloy after ECAE 8 passes. Preferred misorientation angle with frequency peak near 30 deg. and 90 deg. were observed. The frequency peaks were weak after ECAE 1 pass but became stronger with the increase of pass numbers. Micro-textures were formed in AZ31 microstructure during ECAE and were stronger with the pass number increasing

  4. A scattering approach to sea wave diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L., E-mail: letizia.corradini@unicam.it; Garbuglia, M., E-mail: milena.garbuglia@unicam.it; Maponi, P., E-mail: pierluigi.maponi@unicam.it [University of Camerino, via Madonna delle Carceri, 9, 62032, Camerino (Italy); Ruggeri, M., E-mail: ru.marco@faggiolatipumps.it [Faggiolati Pumps S.p.A., Z.Ind Sforzacosta, 62100, Macerata (Italy)

    2016-06-08

    This paper intends to show a model for the diffraction of sea waves approaching an OWC device, which converts the sea waves motion into mechanical energy and then electrical energy. This is a preliminary study to the optimisation of the device, in fact the computation of sea waves diffraction around the device allows the estimation of the sea waves energy which enters into the device. The computation of the diffraction phenomenon is the result of a sea waves scattering problem, solved with an integral equation method.

  5. Semiclassical perturbation theory for diffraction in heavy atom surface scattering.

    Science.gov (United States)

    Miret-Artés, Salvador; Daon, Shauli; Pollak, Eli

    2012-05-28

    The semiclassical perturbation theory formalism of Hubbard and Miller [J. Chem. Phys. 78, 1801 (1983)] for atom surface scattering is used to explore the possibility of observation of heavy atom diffractive scattering. In the limit of vanishing ℏ the semiclassical theory is shown to reduce to the classical perturbation theory. The quantum diffraction pattern is sensitive to the characteristics of the beam of incoming particles. Necessary conditions for observation of quantum diffraction are derived for the angular width of the incoming beam. An analytic expression for the angular distribution as a function of the angular and momentum variance of the incoming beam is obtained. We show both analytically and through some numerical results that increasing the angular width of the incident beam leads to decoherence of the quantum diffraction peaks and one approaches the classical limit. However, the incoherence of the beam in the parallel direction does not destroy the diffraction pattern. We consider the specific example of Ar atoms scattered from a rigid LiF(100) surface.

  6. Introduction and comparison of new EBSD post-processing methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Stuart I.; Nowell, Matthew M.; Lindeman, Scott P. [EDAX, 392 East 12300 South, Suite H, Draper, UT 84020 (United States); Camus, Patrick P. [EDAX, 91 McKee Drive, Mahwah, NJ 07430 (United States); De Graef, Marc [Carnegie Mellon University, Department of Material Science and Engineering, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Jackson, Michael A. [BlueQuartz Software, 400 S. Pioneer Blvd, Springboro, OH 45066 (United States)

    2015-12-15

    Electron Backscatter Diffraction (EBSD) provides a useful means for characterizing microstructure. However, it can be difficult to obtain index-able diffraction patterns from some samples. This can lead to noisy maps reconstructed from the scan data. Various post-processing methodologies have been developed to improve the scan data generally based on correlating non-indexed or mis-indexed points with the orientations obtained at neighboring points in the scan grid. Two new approaches are introduced (1) a re-scanning approach using local pattern averaging and (2) using the multiple solutions obtained by the triplet indexing method. These methodologies are applied to samples with noise introduced into the patterns artificially and by the operational settings of the EBSD camera. They are also applied to a heavily deformed and a fine-grained sample. In all cases, both techniques provide an improvement in the resulting scan data, the local pattern averaging providing the most improvement of the two. However, the local pattern averaging is most helpful when the noise in the patterns is due to the camera operating conditions as opposed to inherent challenges in the sample itself. A byproduct of this study was insight into the validity of various indexing success rate metrics. A metric based given by the fraction of points with CI values greater than some tolerance value (0.1 in this case) was confirmed to provide an accurate assessment of the indexing success rate. - Highlights: • Re-indexing of saved EBSD patterns after neighbor pattern averaging can provide significant improvements on the indexing success rate particularly with noisy patterns. • Neighbor pattern averaging is most effective on patterns where noise is introduced by the camera operating conditions as opposed to inherent challenges presented by the sample itself. • Confidence Index based metrics are confirmed to generally provide accurate estimates of the indexing success rate albeit increasingly

  7. Application of new synchrotron powder diffraction techniques to anomalous scattering from glasses

    International Nuclear Information System (INIS)

    Beno, M.A.; Knapp, G.S.; Armand, P.; Price, D.L.; Saboungi, M.

    1995-01-01

    We have applied two synchrotron powder diffraction techniques to the measurement of high quality anomalous scattering diffraction data for amorphous materials. One of these methods, which uses a curved perfect crystal analyzer to simultaneously diffract multiple powder lines into a position sensitive detector has been shown to possess high resolution, low background, and very high counting rates. This data measurement technique provides excellent energy resolution while minimizing systematic errors resulting from detector nonlinearity. Anomalous scattering data for a Cesium Germanate glass collected using this technique will be presented. The second powder diffraction technique uses a flat analyzer crystal to deflect multiple diffraction lines out of the equatorial plane. Calculations show that this method possesses sufficient energy resolution for anomalous scattering experiments when a perfect crystal analyzer is used and is experimentally much simpler. Future studies will make use of a rapid sample changer allowing the scattering from the sample and a standard material (a material not containing the anomalous scatterer) to be measured alternately at each angle, reducing systematic errors due to beam instability or sample misalignment

  8. Inverse scattering theory foundations of tomography with diffracting wavefields

    International Nuclear Information System (INIS)

    Devaney, A.J.

    1987-01-01

    The underlying mathematical models employed in reflection and transmission computed tomography using diffracting wavefields (called diffraction tomography) are reviewed and shown to have a rigorous basis in inverse scattering theory. In transmission diffraction tomography the underlying wave model is shown to be the Rytov approximation to the complex phase of the wavefield transmitted by the object being probed while in reflection diffraction tomography the underlying wave model is shown to be the Born approximation to the backscattered wavefield from the object. In both cases the goal of the reconstruction process is the determination of the objects's complex index of refraction as a function of position r/sup →/ and, possibly, the frequency ω of the probing wavefield. By use of these approximations the reconstruction problem for both transmission and reflection diffraction tomography can be cast into the simple and elegant form of linearized inverse scattering theory. Linearized inverse scattering theory is shown to lead directly to generalized projection-slice theorems for both reflection and transmission diffraction tomography that provide a simple mathematical relationship between the object's complex index of refraction (the unknown) and the data (the complex phase of the transmitted wave or the complex amplitude of the reflected wave). The conventional projection-slice theorem of X-ray CT is shown to result from the generalized projection-slice theorem for transmission diffraction tomography in the limit of vanishing wavelength (in the absence of wave effects). Fourier based and back-projection type reconstruction algorithms are shown to be directly derivable from the generalized projection-slice theorems

  9. 11. international conference on elastic and diffractive scattering: towards high energy frontiers

    International Nuclear Information System (INIS)

    2005-01-01

    This conference is held every 2 years. Every time these conferences on elastic and diffractive scattering adapt their content to the most recent experimental and theoretical results concerning not only quantum chromodynamics (QCD) but also other fields of particle physics where diffractive physics is present. This year, besides classical themes such as: -) forward scattering, -) total cross-sections, -) real parts, and -) pomeron and odderon, the participants have addressed many other subjects such as: -) LHC physics, -) non-perturbative approaches to high-energy scattering, -) the dipole model, -) small-x evolution, -) hard diffraction in QCD, -) nuclear shadowing, -) diffractive Higgs studies, -) spin effects, -) 4-quarks and 5-quarks, or -) B-physics

  10. 11. international conference on elastic and diffractive scattering: towards high energy frontiers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This conference is held every 2 years. Every time these conferences on elastic and diffractive scattering adapt their content to the most recent experimental and theoretical results concerning not only quantum chromodynamics (QCD) but also other fields of particle physics where diffractive physics is present. This year, besides classical themes such as: -) forward scattering, -) total cross-sections, -) real parts, and -) pomeron and odderon, the participants have addressed many other subjects such as: -) LHC physics, -) non-perturbative approaches to high-energy scattering, -) the dipole model, -) small-x evolution, -) hard diffraction in QCD, -) nuclear shadowing, -) diffractive Higgs studies, -) spin effects, -) 4-quarks and 5-quarks, or -) B-physics.

  11. Damage Assessment of Heat Resistant Steels through Electron BackScatter Diffraction Strain Analysis under Creep and Creep-Fatigue Conditions

    Science.gov (United States)

    Fujiyama, Kazunari; Kimachi, Hirohisa; Tsuboi, Toshiki; Hagiwara, Hiroyuki; Ogino, Shotaro; Mizutani, Yoshiki

    EBSD(Electron BackScatter Diffraction) analyses were conducted for studying the quantitative microstructural metrics of creep and creep-fatigue damage for austenitic SUS304HTB boiler tube steel and ferritic Mod.9Cr piping steel. KAM(Kernel Average Misorientation) maps and GOS(Grain Orientation Spread) maps were obtained for these samples and the area averaged values KAMave and GOSave were obtained. While the increasing trends of these misorientation metrics were observed for SUS304HTB steel, the decreasing trends were observed for damaged Mod.9Cr steel with extensive recovery of subgrain structure. To establish more universal parameter representing the accumulation of damage to compensate these opposite trends, the EBSD strain parameters were introduced for converting the misorientation changes into the quantities representing accumulated permanent strains during creep and creep-fatigue damage process. As KAM values were dependent on the pixel size (inversely proportional to the observation magnification) and the permanent strain could be expressed as the shear strain which was the product of dislocation density, Burgers vector and dislocation movement distance, two KAM strain parameters MεKAMnet and MεδKAMave were introduced as the sum of product of the noise subtracted KAMnet and the absolute change from initial value δKAMave with dislocation movement distance divided by pixel size. MεδKAMave parameter showed better relationship both with creep strain in creep tests and accumulated creep strain range in creep-fatigue tests. This parameter can be used as the strain-based damage evaluation and detector of final failure.

  12. Characterization of fracture and deformation mechanism in a high strength beta titanium alloy Ti-10-2-3 using EBSD technique

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jalaj, E-mail: jalaj@dmrl.drdo.in; Singh, Vajinder; Ghosal, Partha; Kumar, Vikas

    2015-01-19

    In the present study, fracture toughness tested specimens in longitudinal (LT) and transverse loading (TL) directions of beta titanium alloy have been investigated using Electron Back Scattered Diffraction (EBSD) technique. The orientation images captured at three different locations i.e. machine notch, fatigue pre-crack and final fracture have been compared. The LT sample exhibits with more facets than TL sample. The faceted aspect of the crack is generally associated with quasi-cleavage mechanism. The EBSD analysis clearly points out that in the LT specimen, the hexagonal orientation has moved towards near basal during the test. This may be the reason for the observance of facets in the LT specimen. The cracking in TL specimen might have been taken over by the bcc phase as it is oriented with harder planes of cubic {001} planes. Further, the Schmid factor has also been computed based on the defined loading conditions. Significant variation has been observed in the slip plane orientations and distributions at these three locations. The Schmid analysis has highlighted the significant contribution of different slip systems towards deformation and cracking in LT and TL specimens.

  13. Electron backscatter diffraction: Strategies for reliable data acquisition and processing

    International Nuclear Information System (INIS)

    Randle, Valerie

    2009-01-01

    In electron backscatter diffraction (EBSD) software packages there are many user choices both in data acquisition and in data processing and display. In order to extract maximum scientific value from an inquiry, it is helpful to have some guidelines for best practice in conducting an EBSD investigation. The purpose of this article therefore is to address selected topics of EBSD practice, in a tutorial manner. The topics covered are a brief summary on the principles of EBSD, specimen preparation, calibration of an EBSD system, experiment design, speed of data acquisition, data clean-up, microstructure characterisation (including grain size) and grain boundary characterisation. This list is not meant to cover exhaustively all areas where EBSD is used, but rather to provide a resource consisting of some useful strategies for novice EBSD users.

  14. Diffraction dissociation and elastic scattering

    International Nuclear Information System (INIS)

    Verebryusov, V.S.; Ponomarev, L.A.; Smorodinskaya, N.Ya.

    1987-01-01

    In the framework of Regge scheme with supercritical pomeron a model is suggested for the NN-scattering amplitude which takes into account the contribution introduced to the intermediate state by diffraction dissociation (DD) processes. The DD amplitude is written in terms of the Deck model which has been previously applied to describing the main DD features. The calculated NN cross sections are compared with those obtained experimentally. Theoretical predictions for higher energy are presented

  15. Dijet production in diffractive deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2007-08-01

    The production of dijets in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 61 pb -1 . The dijet cross section has been measured for virtualities of the exchanged virtual photon, 5 2 2 , and γ * p centre-of-mass energies, 100 T algorithm in the γ * p frame, were required to have a transverse energy E * T,jet >4 GeV and the jet with the highest transverse energy was required to have E * T,jet >5 GeV. All jets were required to be in the pseudorapidity range -3.5 * jet <0. The differential cross sections are compared to leading-order predictions and next-to-leading- order QCD calculations based on recent diffractive parton densities extracted from inclusive diffractive deep inelastic scattering data. (orig.)

  16. EBSD and FIB/TEM examination of shape memory effect deformation structures in U-14 at.% Nb

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, A.J. [Materials Science and Technology Division, Mail Stop G770, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: aclarke@lanl.gov; Field, R.D.; McCabe, R.J.; Cady, C.M.; Hackenberg, R.E.; Thoma, D.J. [Materials Science and Technology Division, Mail Stop G770, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2008-06-15

    Detailed examinations of shape memory effect (SME) deformation structures in martensite of U-14 at.% Nb were performed with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). An accommodation strain analysis, which has been previously used to predict SME deformation structures and texture evolution in polycrystalline material, was also performed. Martensite variants and twin relationships observed with EBSD after compressive or tensile deformation were determined to be consistent with those expected from calculated accommodation strains. Focused ion beam (FIB) was used to select twinned regions identified with EBSD for more detailed TEM analysis to verify the presence of these specific twins. The observed SME twinning systems in the martensite agree with previous TEM observations and the predicted {l_brace}1-bar76{r_brace} twinning system was observed experimentally for the first time in U-14 at.% Nb using these complementary techniques.

  17. Imaging the proton via hard exclusive production in diffractive pp scattering

    International Nuclear Information System (INIS)

    Charles Hyde; Leonid Frankfurt; Mark Strikman; Christian Weiss

    2007-01-01

    We discuss the prospects for probing Generalized Parton Distributions (GPDs) via exclusive production of a high-mass system (H = heavy quarkonium, di-photon, di-jet, Higgs boson) in diffractive pp scattering, pp -> p + H + p. In such processes the interplay of hard and soft interactions gives rise to a diffraction pattern in the final-state proton transverse momenta, which is sensitive to the transverse spatial distribution of partons in the colliding protons. We comment on the plans for diffractive pp measurements at RHIC and LHC. Such studies could complement future measurements of GPDs in hard exclusive ep scattering (JLab, COMPASS, EIC)

  18. EBSD study of hydrogen-induced cracking in API-5 L-X46 pipeline steel

    International Nuclear Information System (INIS)

    Venegas, V.; Caleyo, F.; Gonzalez, J.L.; Baudin, T.; Hallen, J.M.; Penelle, R.

    2005-01-01

    The spatial distribution of plastic deformation and grain orientation surrounding hydrogen-induced cracks (HIC) is investigated in samples of API-5L-X46 pipeline steel using scanning electron microscopy and electron backscattering diffraction (EBSD). This work shows direct experimental evidence of the influence of microstructure, microtexture and mesotexture on HIC crack path

  19. EBSD-based investigations of upper mantle xenoliths, snowball garnets and advanced ceramics

    OpenAIRE

    Vonlanthen, Pierre; Grobéty, Bernard

    2007-01-01

    L’automatisation au début des années ’90 de la technique de diffraction par électrons rétro-diffusés ou electron backscatter diffraction (EBSD) a complètement révolutionné les analyses de textures menées tant sur les roches que sur les matériaux industriels. Parmi plusieurs avancées majeures, cette méthode permet une détermination relativement rapide et simple de l’orientation cristallographique des grains contenus dans les solides polycristallins. L’intérêt est de taille non seulement dans l...

  20. Renormalized multiple-scattering theory of photoelectron diffraction

    International Nuclear Information System (INIS)

    Biagini, M.

    1993-01-01

    The current multiple-scattering cluster techniques for the calculation of x-ray photoelectron and Auger-electron diffraction patterns consume much computer time in the intermediate-energy range (200--1000 eV); in fact, because of the large value of the electron mean free path and of the large forward-scattering amplitude at such energies, the electron samples a relatively large portion of the crystal, so that the number of paths to be considered becomes dramatically high. An alternative method is developed in the present paper: instead of calculating the individual contribution from each single path, the scattering matrix of each plane parallel to the surface is calculated with a renormalization process that calculates every scattering event in the plane up to infinite order. Similarly the scattering between two planes is calculated up to infinite order, and the double-plane scattering matrix is introduced. The process may then be applied to the calculation of a larger set of atomic layers. The advantage of the method is that a relatively small number of internuclear vectors have been used to obtain convergence in the calculation

  1. Hard diffraction and deep inelastic scattering

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1994-04-01

    Since the advent of hard-collision physics, the study of diffractive processes - shadow physics - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word diffraction is sometimes used by high-energy physicists in a loose way. The author defines this term to mean: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the open-quotes legoclose quotes phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width Δη does not have a power-law decrease with increasing subenergy s=e Δη , but behaves at most like some power of pseudorapidity Δη∼log(s). The term hard diffraction shall simply refer to those diffractive process which have jets in the final-state phase-space

  2. Generalized parton distributions and rapidity gap survival in exclusive diffractive pp scattering

    Energy Technology Data Exchange (ETDEWEB)

    Leonid Frankfurt; Charles Hyde-Wright; Mark Strikman; Christian Weiss

    2007-03-01

    We propose a new approach to the problem of rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp-->p + (gap) + H + (gap) + p. It is based on the idea that hard and soft interactions proceed over widely different time- and distance scales and are thus approximately independent. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons. Its amplitude is calculable in terms of the gluon generalized parton distributions (GPDs) in the protons, which can be measured in J= production in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate in a model-independent way in terms of the pp elastic scattering amplitude. Contributions from inelastic intermediate states are suppressed. A simple geometric picture of the interplay of hard and soft interactions in diffraction is obtained. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton, or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons (''diffraction pattern''). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the LHC.

  3. Generalized parton distributions and rapidity gap survival in exclusive diffractive pp scattering

    International Nuclear Information System (INIS)

    Leonid Frankfurt; Charles Hyde-Wright; Mark Strikman; Christian Weiss

    2006-01-01

    We propose a new approach to the problem of rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp-->p + (gap) + H + (gap) + p. It is based on the idea that hard and soft interactions proceed over widely different time- and distance scales and are thus approximately independent. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons. Its amplitude is calculable in terms of the gluon generalized parton distributions (GPDs) in the protons, which can be measured in J= production in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate in a model-independent way in terms of the pp elastic scattering amplitude. Contributions from inelastic intermediate states are suppressed. A simple geometric picture of the interplay of hard and soft interactions in diffraction is obtained. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton, or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons (''diffraction pattern''). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the LHC

  4. About statistical process contribution to elastic diffraction scattering

    International Nuclear Information System (INIS)

    Ismanov, E.I.; Dzhuraev, Sh. Kh.; Paluanov, B.K.

    1999-01-01

    The experimental data on angular distribution show two basic properties. The first one is the presence of back and front peaks. The second one is the angular isotropic distribution near 90 degree, and has a big energy dependence. Different models for partial amplitudes a dl of the diffraction statistical scattering, particularly the model with Gaussian and exponential density distribution, were considered. The experimental data on pp-scattering were analyzed using the examined models

  5. EBSD and EDS of nickel sulfide inclusions in glass

    International Nuclear Information System (INIS)

    Miflin, G.E.; Barry, J.C.

    2002-01-01

    Full text: A delayed phase transformation in small nickel sulfide inclusions can cause spontaneous fracture in toughened glass. Typically, a phase transformation within a 5 ?g nickel sulphide inclusion may break a window which weighs more than 50 kg. In most cases the nickel sulfide inclusions are detected only after window failure, although it is possible to detect the inclusions within intact glass. It is known that only type three nickel sulphide inclusions, that is, inclusions with a composition in the range Ni 7 S 6 to NiS 1.03 , break the glass. The solid-state phase transformation of alpha Ni 1-x S to beta NiS which induces a 2.5% volume increase has been given as the main reason for the spontaneous fracture. The aim of this present study is to investigate the crystal structure of phases within the type three inclusions using scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). With EBSD it is possible to map regions of alpha Ni 1-x S and to distinguish those regions from regions with beta Ni 1-x S when the elemental compositions of the two regions are identical. The inclusions of this study came from two sources. One set of inclusions were found at initiation-of-fracture in glass windows that had failed by spontaneous fracture, while the other set were found in intact windows. All of the inclusions came from windows on buildings in the Brisbane area. The EBSD analysis was done at 20kV with the stage tilted to 70 degrees on a Philips XL30 SEM with LaB 6 filament, and with attached Oxford/Link Opal camera and software. EBSD mapping was done for alpha nickel sulfide (Ni 1-x S), beta nickel sulphide (NiS), heazelwoodite (Ni 3 S 2 ), and godlevskite (Ni 9 S 8 ). The integration time was 1.3 seconds for each point. Colour coded crystal phase and grain orientation maps were produced. EDS analysis was also done on the Philips XL30 with attached EDAX EDS detector. We found that although the EBSD technique is successful in identifying alpha

  6. Large-t elastic scattering and diffraction dissocation

    International Nuclear Information System (INIS)

    Timmermans, J.

    1985-05-01

    Recent results, both from the ISR and the SantippS Collider, on proton-antiproton elastic scattering at large values of the four-momentum transfer squared, are presented. The results are compared with predictions of several theoretical models of high-energy collisions. Single diffraction dissociation at the Collider is also discussed. (orig.)

  7. Dijet production in diffractive deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2007-08-15

    The production of dijets in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 61 pb{sup -1}. The dijet cross section has been measured for virtualities of the exchanged virtual photon, 54 GeV and the jet with the highest transverse energy was required to have E{sup *}{sub T,jet}>5 GeV. All jets were required to be in the pseudorapidity range -3.5<{eta}{sup *}{sub jet}<0. The differential cross sections are compared to leading-order predictions and next-to-leading- order QCD calculations based on recent diffractive parton densities extracted from inclusive diffractive deep inelastic scattering data. (orig.)

  8. Diffraction and angular momentum effects in semiclassical atomic scattering theory

    International Nuclear Information System (INIS)

    Russek, A.

    1979-01-01

    The semiclassical scattering theory of Mott and Massey and Ford and Wheeler is here extended to multichannel scattering as occurs at a crossing or pseudocrossing of the transient molecule formed by the colliding atoms. The generalized theory incorporates both interference and diffraction phenomena, but the emphasis in this work is on diffraction. For small-angle scattering, diffraction effects become broader, not narrower, as the collision energy increases: ΔbΔtau > or = h[E/sub inc//(2m)]/sup 1/2/ relates the uncertainties in impact parameter b and reduced scattering angle tau = E/sub inc/theta, and determines the range in b required to resolve a structure in the deflection function of height Δtau. In the kilovolt range of collision energies, the effects of local maxima and minima in the deflection function are washed out, and the Airy-function approximation of Ford and Wheeler is inappropriate to describe the differential cross section. More generally, it is shown that at keV collision energies the stationary-phase approximation, heretofore essential in the reduction to the semiclassical limit, breaks down in the vicinity of a level crossing. An approximate theorem is proposed which remains valid in this region and elsewhere reduces to the standard stationary-phase approximation. Several illustrative examples are considered. A separate development treats the effect on the differential scattering cross section of a change in electronic angular momentum when electronic excitation occurs

  9. Assessment of Multiple Scattering Errors of Laser Diffraction Instruments

    National Research Council Canada - National Science Library

    Strakey, Peter

    2003-01-01

    The accuracy of two commercial laser diffraction instruments was compared under conditions of multiple scattering designed to simulate the high droplet number densities encountered in liquid propellant rocket combustors...

  10. Large-t elastic scattering and diffraction dissocation

    International Nuclear Information System (INIS)

    Timmermans, J.

    1985-01-01

    Recent results, both from the ISR and the S anti p pS Collider, on proton-antiproton elastic scattering at large values of the four-momentum transfer squared, are presented. The results are compared with predictions of several theoretical models of high-energy collisions. Single diffraction dissociation at the Collider is also discussed. (author)

  11. New focus for elastic and diffractive scattering

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1995-01-01

    A regular feature of the international physics calendar is the International Conference on Elastic and Diffractive Scattering, known also as the Blois Workshops, after their 1985 birthplace in France. The content of this year's meeting embraced a broad spectrum of problems ranging from the classical analysis of elastic scattering and total cross-sections to the ''hard'' or deep inelastic phenomena which test the underlying quark-gluon structure of hadrons. These meetings have traditionally concentrated on broad questions of elastic and diffractive scattering, however the shift of emphasis in physics is now reflected at Blois by interest in the wide range of 'soft' hadronic processes which dominate reaction cross-sections. On the traditional side, a substantial part of the conference was devoted to analysis of forward scattering parameters like total cross-sections, real parts etc, using dispersion relations and fundamental asymptotic theorems which bound the possible growth of those parameters with energy. The present experimental situation in this field was summarized by S. Pruss, followed by theoretical presentations by B. Nicolescu, A. Donnachie, T.T. Wu, A. Martin and others. The data for proton-proton and proton-antiproton scattering seem to support dominance of the 'crossing-even' part of the scattering amplitude (which contributes equally to both proton-proton and protonantiproton scattering), with little evidence for a substantial 'odderon' term which contributes with opposite sign in the two cases. The 'pomeron' physics of high energy behaviour was a central feature of the conference. The experimental data seem to suggest that behaviour with increasing energy depends on the magnitude of the scale which characterizes the process - i.e. whether the process is ''soft'' or ''hard''. Hard processes, in general, show a much more rapid increase with increasing

  12. Identifying deformation mechanisms in the NEEM ice core using EBSD measurements

    Science.gov (United States)

    Kuiper, Ernst-Jan; Weikusat, Ilka; Drury, Martyn R.; Pennock, Gill M.; de Winter, Matthijs D. A.

    2015-04-01

    Deformation of ice in continental sized ice sheets determines the flow behavior of ice towards the sea. Basal dislocation glide is assumed to be the dominant deformation mechanism in the creep deformation of natural ice, but non-basal glide is active as well. Knowledge of what types of deformation mechanisms are active in polar ice is critical in predicting the response of ice sheets in future warmer climates and its contribution to sea level rise, because the activity of deformation mechanisms depends critically on deformation conditions (such as temperature) as well as on the material properties (such as grain size). One of the methods to study the deformation mechanisms in natural materials is Electron Backscattered Diffraction (EBSD). We obtained ca. 50 EBSD maps of five different depths from a Greenlandic ice core (NEEM). The step size varied between 8 and 25 micron depending on the size of the deformation features. The size of the maps varied from 2000 to 10000 grid point. Indexing rates were up to 95%, partially by saving and reanalyzing the EBSP patterns. With this method we can characterize subgrain boundaries and determine the lattice rotation configurations of each individual subgrain. Combining these observations with arrangement/geometry of subgrain boundaries the dislocation types can be determined, which form these boundaries. Three main types of subgrain boundaries have been recognized in Antarctic (EDML) ice core¹². Here, we present the first results obtained from EBSD measurements performed on the NEEM ice core samples from the last glacial period, focusing on the relevance of dislocation activity of the possible slip systems. Preliminary results show that all three subgrain types, recognized in the EDML core, occur in the NEEM samples. In addition to the classical boundaries made up of basal dislocations, subgrain boundaries made of non-basal dislocations are also common. ¹Weikusat, I.; de Winter, D. A. M.; Pennock, G. M.; Hayles, M

  13. Quantitative microstructure characterization of self-annealed copper films with electron backscatter diffraction

    DEFF Research Database (Denmark)

    Pantleon, Karen; Gholinia, A.; Somers, Marcel A. J.

    2008-01-01

    Electron backscatter diffraction (EBSD) was applied to analyze cross sections of self-annealed copper electrodeposits, for which earlier the kinetics of self-annealing had been investigated by in-situ X-ray diffraction (XRD). The EBSD investigations on the grain size, grain boundary character...... and crystallographic texture of copper films with different thicknesses essentially supplement results from in-situ XRD. Twin relations between neighboring grains were identified from the orientation maps and the observed twin chains confirm multiple twinning in copper electrodeposits as the mechanism...

  14. Diffractive dijet production in deep inelastic scattering at ZEUS

    International Nuclear Information System (INIS)

    Bonato, A.

    2008-03-01

    This thesis presents a measurement of dijet production of diffractive deep inelastic scattering ep collisions. This type of process is specially relevant for the experimental validity of the perturbative QCD approach to diffractive physics. The measurement was based on an integrated luminosity of 61 pb -1 collected at the HERA collider with the ZEUS experiment. The events were selected for virtualities of the photon, γ*, 5 2 2 , and energies of the γ*p centre-of-mass, 100 T algorithm in the γ*p frame. The jets were required to have a transverse energy in the γ*p frame E T jet *>4 GeV. The jet with the highest transverse energy was required to have E T jet *>5 GeV. All jets were required to be in the pseudorapidity range -3.5 jet * P , was required to be x P TOT D (ep→ep jet 1 jet 2 X')=9.15±1.2 (stat.) 5.4 3.3 (syst.) -5.3 +6.4 (corr.)pb. Single and double differential cross sections were extracted and compared to leading-order predictions and next-to-leading-order QCD calculations. The latter used several diffractive parton densities extracted from inclusive diffractive deep inelastic scattering data. The agreement with the leading and next-to-leading order predictions is good and no hints of factorisation breaking are observed. The double differential measurement can be a previous input for the extraction of more accurate diffractive parton densities. (orig.)

  15. Thermal diffuse scattering in angular-dispersive neutron diffraction

    International Nuclear Information System (INIS)

    Popa, N.C.; Willis, B.T.M.

    1998-01-01

    The theoretical treatment of one-phonon thermal diffuse scattering (TDS) in single-crystal neutron diffraction at fixed incident wavelength is reanalysed in the light of the analysis given by Popa and Willis [Acta Cryst. (1994), (1997)] for the time-of-flight method. Isotropic propagation of sound with different velocities for the longitudinal and transverse modes is assumed. As in time-of-flight diffraction, there exists, for certain scanning variables, a forbidden range in the one-phonon TDS of slower-than-sound neutrons, and this permits the determination of the sound velocity in the crystal. A fast algorithm is given for the TDS correction of neutron diffraction data collected at a fixed wavelength: this algorithm is similar to that reported earlier for the time-of-flight case. (orig.)

  16. Diffractive dijet production in deep inelastic scattering at ZEUS

    Energy Technology Data Exchange (ETDEWEB)

    Bonato, A.

    2008-03-15

    This thesis presents a measurement of dijet production of diffractive deep inelastic scattering ep collisions. This type of process is specially relevant for the experimental validity of the perturbative QCD approach to diffractive physics. The measurement was based on an integrated luminosity of 61 pb{sup -1} collected at the HERA collider with the ZEUS experiment. The events were selected for virtualities of the photon, {gamma}*, 54 GeV. The jet with the highest transverse energy was required to have E{sub T} {sub jet}*>5 GeV. All jets were required to be in the pseudorapidity range -3.5<{eta}{sub jet}*<0 as measured in the {gamma}*p frame. The selection of diffractive events was carried out by requiring a large rapidity gap in the direction of the scattered proton. The value of the fraction of initial proton momentum entering in the hard process, x{sub P}, was required to be x{sub P}<0.03. The total cross section for the process was measured to be {sigma}{sub TOT}{sup D}(ep{yields}ep jet{sub 1}jet{sub 2} X')=9.15{+-}1.2 (stat.){sub 5.4}{sup 3.3} (syst.){sub -5.3}{sup +6.4} (corr.)pb. Single and double differential cross sections were extracted and compared to leading-order predictions and next-to-leading-order QCD calculations. The latter used several diffractive parton densities extracted from inclusive diffractive deep inelastic scattering data. The agreement with the leading and next-to-leading order predictions is good and no hints of factorisation breaking are observed. The double differential measurement can be a previous input for the extraction of more accurate diffractive parton densities. (orig.)

  17. Insights to Meteorites and Impact Processes provided by Advanced EBSD Analysis

    Science.gov (United States)

    Palasse, Laurie; Berlin, Jana; Goran, Daniel; Tagle, Roald; Hamers, Maartje; Assis Fernandes, Vera; Deutsch, Alexander; Schulte, Peter; Salge, Tobias

    2013-04-01

    Electron backscatter diffraction (EBSD) is a powerful analytical technique for assessing the petrographic texture of rocks and the crystallographic orientation of minerals therein using a scanning electron microscope (SEM). Innovations in EBSD technology include colour-coded forescattered electron (FSE) images, high resolution and highly sensitive EBSD detectors, together with advanced EDS integration. It allows to accurately identify and discriminate different phases, and to investigate microstructures related to shock metamorphism. As an example, shocked carbonates and shocked quartz reveal a complex thermal history during post-shock cooling. (A) EBSD studies of calcite ejecta particles from the Chicxulub impact event, at the K-Pg boundary of El Guayal, Mexico (~520 km SW of the Chicxulub crater centre) display various microstructures [1] and spherulitic calcite ejecta particles reveal a fibre texture of elongated crystals with a preferred orientation. This indicates the presence of carbonate melts which were ejected at T>1240°C and P>40 bar from upper target lithologies and crystallized at cooling rates of ~100´s °C/s [2]. The calcite particles of El Guayal and the K/Pg boundary of La Lajilla (~1000 km W of the crater centre) show distinct microstructures represented by unoriented, equiaxed crystals with random orientation distribution. It documents recrystallization upon impact induced thermal stress at T>550°C during prolonged atmospheric transport. (B) Combined EBSD, FSE and cathodoluminescence (CL) studies of semi-amorphous shocked quartz of Chicxulub, Ries and Popigai impactites, reveal various microstructures. Colour-coded FSE imaging reveal recrystallized/deformed bands in Ries and Popigai samples indicative of planar deformation features. EBSD studies of Popigai allow to distinguish twinned Qz, α-Qz and α-cristobalite along the transition zone between shocked gneiss clast and impact melt. Recrystallized Qz grains are associated with amorphous SiO2

  18. Memory sparing, fast scattering formalism for rigorous diffraction modeling

    Science.gov (United States)

    Iff, W.; Kämpfe, T.; Jourlin, Y.; Tishchenko, A. V.

    2017-07-01

    The basics and algorithmic steps of a novel scattering formalism suited for memory sparing and fast electromagnetic calculations are presented. The formalism, called ‘S-vector algorithm’ (by analogy with the known scattering-matrix algorithm), allows the calculation of the collective scattering spectra of individual layered micro-structured scattering objects. A rigorous method of linear complexity is applied to model the scattering at individual layers; here the generalized source method (GSM) resorting to Fourier harmonics as basis functions is used as one possible method of linear complexity. The concatenation of the individual scattering events can be achieved sequentially or in parallel, both having pros and cons. The present development will largely concentrate on a consecutive approach based on the multiple reflection series. The latter will be reformulated into an implicit formalism which will be associated with an iterative solver, resulting in improved convergence. The examples will first refer to 1D grating diffraction for the sake of simplicity and intelligibility, with a final 2D application example.

  19. Electron backscatter diffraction characterization of laser-induced periodic surface structures on nickel surface

    Energy Technology Data Exchange (ETDEWEB)

    Sedao, Xxx, E-mail: sedao.xxx@gmail.com [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France); Maurice, Claire [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 St-Etienne (France); Garrelie, Florence; Colombier, Jean-Philippe; Reynaud, Stéphanie [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France); Quey, Romain; Blanc, Gilles [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 St-Etienne (France); Pigeon, Florent [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France)

    2014-05-01

    Graphical abstract: -- Highlight: •Lattice rotation and its distribution in laser-induced periodic surface structures (LIPSS) and the subsurface region on a nickel substrate are revealed using electron backscatter diffraction (EBSD). -- Abstract: We report on the structural investigation of laser-induced periodic surface structures (LIPSS) generated in polycrystalline nickel target after multi-shot irradiation by femtosecond laser pulses. Electron backscatter diffraction (EBSD) is used to reveal lattice rotation caused by dislocation storage during LIPSS formation. Localized crystallographic damages in the LIPSS are detected from both surface and cross-sectional EBSD studies. A surface region (up to 200 nm) with 1–3° grain disorientation is observed in localized areas from the cross-section of the LIPSS. The distribution of the local disorientation is inhomogeneous across the LIPSS and the subsurface region.

  20. Diffractive vector meson production in deep inelastic scattering

    International Nuclear Information System (INIS)

    Kamps, M. de.

    1997-01-01

    This thesis seeks to bring comfort to those who are appalled by the usual high level of violence in high energy physics. Although also here we engage in the customary vandalistic smashing together of two particles, the reaction we will study has a happy end in store for both of them. The subject of this thesis will be the reaction: e + p→e + pV where V is one of the vector mesons ρ, ω, φ, J/ψ. We will investigate the situation where the final state positron enters the ZEUS main detector, which indicates that a violent reaction has taken place between the initial state particles, but nevertheless the proton does not break up. The violence with which the positron is scattered characterises the reaction as a Deep Inelastic Scattering (DIS), the fact that the proton does not break up characterises the reaction as diffractive which explains the title of the thesis. Both DIS and diffractive physics will be defined and discussed in the context of this thesis. (orig./WL)

  1. Phase identification of individual crystalline particles by combining EDX and EBSD: application to workplace aerosols.

    Science.gov (United States)

    Ervik, Torunn Kringlen; Benker, Nathalie; Weinbruch, Stephan; Skogstad, Asbjørn; Thomassen, Yngvar; Ellingsen, Dag G; Berlinger, Balázs

    2018-04-01

    This paper discusses the combined use of electron backscatter diffraction (EBSD) and energy dispersive X-ray microanalysis (EDX) to identify unknown phases in particulate matter from different workplace aerosols. Particles of α-silicon carbide (α-SiC), manganese oxide (MnO) and α-quartz (α-SiO 2 ) were used to test the method. Phase identification of spherical manganese oxide particles from ferromanganese production, with diameter less than 200 nm, was unambiguous, and phases of both MnO and Mn 3 O 4 were identified in the same agglomerate. The same phases were identified by selected area electron diffraction (SAED) in transmission electron microscopy (TEM). The method was also used to identify the phases of different SiC fibres, and both β-SiC and α-SiC fibres were found. Our results clearly demonstrate that EBSD combined with EDX can be successfully applied to the characterisation of workplace aerosols. Graphical abstract Secondary electron image of an agglomerate of manganese oxide particles collected at a ferromanganese smelter (a). EDX spectrum of the particle highlighted by an arrow (b). Indexed patterns after dynamic background subtraction from three particles shown with numbers in a (c).

  2. Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction

    NARCIS (Netherlands)

    Streekstra, G. J.; Hoekstra, A. G.; Nijhof, E. J.; Heethaar, R. M.

    1993-01-01

    In the present literature on ektacytometry, small angle light scattering by ellipsoidal red blood cells is commonly approximated by Fraunhofer diffraction. Calculations on a sphere with the size and relative refractive index of a red cell, however, show that Fraunhofer diffraction deviates

  3. Measurement of D* production in diffractive deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Begzsuren, K.; Ravdandorj, T. [Academy of Sciences, Institute of Physics and Technology of the Mongolian, Ulaanbaatar (Mongolia); Bolz, A.; Huber, F.; Sauter, M.; Schoening, A. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Boudry, V.; Specka, A. [LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau (France); Brandt, G. [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F. [LAL, Universite Paris-Sud, CNRS/IN2P3, Orsay (France); Britzger, D.; Campbell, A.J.; Dodonov, V.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Haidt, D.; Jung, A.; Jung, H.; Katzy, J.; Kleinwort, C.; Kruecker, D.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Buniatyan, A.; Newman, P.R.; Thompson, P.D. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Bylinkin, A. [Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region (Russian Federation); Bystritskaya, L.; Fedotov, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Avila, K.B.C.; Contreras, J.G. [CINVESTAV, Departamento de Fisica Aplicada, Merida, Yucatan (Mexico); Cerny, K.; Jansova, M.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Chekelian, V.; Grindhammer, G.; Kiesling, C.; Lobodzinski, B. [Max-Planck-Institut fuer Physik, Munich (Germany); Cvach, J.; Hladky, J.; Reimer, P. [Academy of Sciences of the Czech Republic, Institute of Physics, Prague (Czech Republic); Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kostka, P.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Daum, K.; Meyer, H. [Fachbereich C, Universitaet Wuppertal, Wuppertal (Germany); Diaconu, C.; Hoffmann, D.; Vallee, C. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Dobre, M.; Rotaru, M. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest (Romania); Egli, S.; Horisberger, R.; Ozerov, D. [Paul Scherrer Institute, Villigen (Switzerland); Favart, L.; Grebenyuk, A.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P. van [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Feltesse, J.; Schoeffel, L. [Irfu/SPP, CE Saclay, Gif-sur-Yvette (France); Ferencei, J. [Nuclear Physics Institute of the CAS, Rez (Czech Republic); Goerlich, L.; Mikocki, S.; Nowak, G.; Sopicki, P. [Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Gouzevitch, M.; Petrukhin, A. [IPNL, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Villeurbanne (France); Grab, C. [Institut fuer Teilchenphysik, ETH, Zurich (Switzerland); Henderson, R.C.W. [University of Lancaster, Department of Physics, Liverpool (United Kingdom); Kapichine, M.; Morozov, A.; Spaskov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kogler, R. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Landon, M.P.J.; Rizvi, E.; Traynor, D. [University of London, School of Physics and Astronomy, London (United Kingdom); Lange, W.; Naumann, T. [DESY, Zeuthen (Germany); Martyn, H.U. [I. Physikalisches Institut der RWTH, Aachen (Germany); Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P. [Physik-Institut der Universitaet Zuerich, Zurich (Switzerland); Perez, E. [CERN, Geneva (Switzerland); Picuric, I.; Raicevic, N. [University of Montenegro, Faculty of Science, Podgorica (Montenegro); Polifka, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); University of Toronto, Department of Physics, Toronto, ON (Canada); Radescu, V. [Oxford University, Department of Physics, Oxford (United Kingdom); Rostovtsev, A. [Institute for Information Transmission Problems RAS, Moscow (Russian Federation); Sankey, D.P.C. [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire (United Kingdom); Sauvan, E. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Universite de Savoie, CNRS/IN2P3, LAPP, Annecy-le-Vieux (France); Shushkevich, S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Stella, B. [Dipartimento di Fisica Universita di Roma Tre (Italy); INFN Roma 3, Rome (Italy); Sykora, T. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Tsakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Tseepeldorj, B. [Academy of Sciences, Institute of Physics and Technology of the Mongolian, Ulaanbaatar (Mongolia); Ulaanbaatar University, Ulaanbaatar (Mongolia); Wegener, D. [Institut fuer Physik, TU Dortmund, Dortmund (Germany)

    2017-05-15

    Measurements of D*(2010) meson production in diffractive deep inelastic scattering (5 < Q{sup 2} < 100 GeV{sup 2}) are presented which are based on HERA data recorded at a centre-of-mass energy √(s) = 319 GeV with an integrated luminosity of 287 pb{sup -1}. The reaction ep → eXY is studied, where the system X, containing at least one D*(2010) meson, is separated from a leading low-mass proton dissociative system Y by a large rapidity gap. The kinematics of D* candidates are reconstructed in the D* → Kππ decay channel. The measured cross sections compare favourably with next-to-leading order QCD predictions, where charm quarks are produced via boson-gluon fusion. The charm quarks are then independently fragmented to the D* mesons. The calculations rely on the collinear factorisation theorem and are based on diffractive parton densities previously obtained by H1 from fits to inclusive diffractive cross sections. The data are further used to determine the diffractive to inclusive D* production ratio in deep inelastic scattering. (orig.)

  4. Structure analysis of liquids and disordered materials using pulsed neutron diffraction and total scattering

    International Nuclear Information System (INIS)

    Suzuya, Kentaro

    2011-01-01

    Neutron diffraction·total scattering at pulsed neutron source is a powerful method to analyze the complex structure of disordered materials: liquids, glasses, amorphous materials and disordered crystals. The basic idea of the structure of disordered materials, the fundamental diffraction theory for disordered materials, and structure analysis of disordered materials using pulsed neutron diffraction·total scattering technique (TOF method) are described in detail. In addition, the precise information of the world highest class J-PARC MLF spallation neutron source and typical J-PARC neutron total scattering instrument NOVA are also given. Recent structural modelling methods of disordered materials such like reverse Monte Carlo (RMC) simulation method is briefly described using an example of the analysis of a typical disordered material silica glass. (author)

  5. Electron diffraction patterns with thermal diffuse scattering maxima around Kikuchi lines

    International Nuclear Information System (INIS)

    Karakhanyan, R. K.; Karakhanyan, K. R.

    2011-01-01

    Transmission electron diffraction patterns of silicon with thermal diffuse maxima around Kikuchi lines, which are analogs of the maxima of thermal diffuse electron scattering around point reflections, have been recorded. Diffuse maxima are observed only around Kikuchi lines with indices that are forbidden for the silicon structure. The diffraction conditions for forming these maxima are discussed.

  6. Transverse Imaging of the Proton in Exclusive Diffractive pp Scattering

    International Nuclear Information System (INIS)

    Christian Weiss; Leonid Frankfurt; Charles Hyde-Wright; Mark Strikman

    2006-01-01

    In a forthcoming paper we describe a new approach to rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, Higgs, etc.) in exclusive double-gap diffractive pp scattering, pp -> p + H + p. It is based on the idea that hard and soft interactions are approximately independent (QCD factorization), and allows us to calculate the RGS probability in a model-independent way in terms of the gluon generalized parton distributions (GPDs) in the colliding protons and the pp elastic scattering amplitude. Here we focus on the transverse momentum dependence of the cross section. By measuring the ''diffraction pattern'', one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton from the data

  7. Elastic and Diffractive Scattering - Proceedings of the International Conference on Vth Blois Workshop

    Science.gov (United States)

    Kang, K.; Fried, H. M.; Tan, C.-I.

    1994-02-01

    The Table of Contents for the book is as follows: * Preface * `Overview' on Elastic Scattering and Total Cross-Sections * A Precise Measurement of the Real Part of the Elastic Scattering Amplitude at the {S bar{p}pS} * Luminosity Dependent Measurement of the p bar{p} Total Cross Section at √{s} = 541 GeV * Status of Fermilab E-710 * Luminosity-Independent Measurement of bar{p}p Elastic Scattering, Single Diffraction, Dissociation and Total Cross Section at √{s} = 546 and 1800 GeV * Phase Relations Revisited: A Challenge for SSC and LHC * Status of Near-Forward Elastic Scattering * bar{p}p Collisions at √{s} = 1.8 TeV: p, σt and B * p bar{p} Forward Scattering Parameters Results from Fermilab E760 * Photoproduction Results from H1 at HERA * Total and Jet Photoproduction Cross Sections at HERA and Fermilab * Minijet Model for High Energy γp Cross Sections * The Pomeron as Massive Gluons * Large N Theories with Glueball-like Spectra * Unitarity Relations for Gluonic Pomeron * The Donnachie-Landshoff Pomeron vs. QCD * The Odderon Intercept in Perturbative QCD * Theoret. and Phenomenol. Aspects of the Odderon * First Theorist's Gaze at HERA Data at Low xB * H1 Results for Structure Functions at Small x * Partial Photoproduction Cross Sections at √{s} ≈prox 180 GeV and First Results on F2 of the Proton from the ZEUS Experiment * Observation of a New Class of Events in Deep Inelastic Scattering * Jet Production in Muon-Proton and Muon-Nuclei Scattering at Fermilab-E665 * D0 Studies of Perturbative QCD * Large Rapidity Gaps and Single Diffraction Dissociation in High Energy pp and bar{p}p Collisions * Hadron and Reggeon Structure in High Energy Collisions * Monte Carlo Studies of Diffractive Processes in Deep Inelastic Scattering * Elastic Parton-Parton Amplitudes in Geometrical Models * Non-Perturbative QCD Calculations of High-Energy Observables * Effective Field Theory for Diffractive QCD Processes * High Energy Behavior of σtot, ρ, and B - Asymptotic

  8. Dark-field imaging based on post-processed electron backscatter diffraction patterns of bulk crystalline materials in a scanning electron microscope.

    Science.gov (United States)

    Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald

    2015-01-01

    Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Spatially resolved determination of lattice distortions in silicon nanostructures by means of electron-backscattering diffraction

    International Nuclear Information System (INIS)

    Krause, Michael

    2013-01-01

    In the submitted thesis, a novel combined approach of both focused ion beam (FIB) based target preparation and strain determination using electron backscatter diffraction (EBSD) in semiconductor nanostructures is presented. In the first part, a powerful cross-correlation algorithm for detecting small feature shifts within EBSD patterns and, consequently, determining the strain, is presented. The corresponding strain sensitivity is demonstrated using dynamically simulated diffraction patterns. Furthermore, novel procedures for automated pattern analysis are introduced. Results of systematic studies concerning the influence of ion species, ion energy and dose density on the surface quality of silicon surfaces are presented in the second part. For that matter, the assessment of surface amorphization and rippling is based on high resolution microstructural diagnostics (TEM, AFM, Raman) and molecular dynamics simulation. The high application potential of combined FIB preparation and strain analysis using EBSD is exemplarily demonstrated for a 60 nm thick sSOI-sample. The good agreement with established techniques like Raman spectroscopy and X-ray diffraction is also shown.

  10. Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F., E-mail: robert.cook@nist.gov

    2016-04-15

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA–AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2×10{sup −4} in strain. CRM was similarly precise, but was limited in accuracy to several times this value. - Highlights: • We map strain by electron backscatter diffraction and confocal Raman microscopy. • The test vehicle is the multi-axial strain field of wedge-indented silicon. • Strain accuracy is assessed by direct experimental intercomparison. • Accuracy is also assessed by atomic force microscopy and finite element analyses. • Electron diffraction measurements are accurate; Raman measurements need refinement.

  11. Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si

    International Nuclear Information System (INIS)

    Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F.

    2016-01-01

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA–AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2×10"−"4 in strain. CRM was similarly precise, but was limited in accuracy to several times this value. - Highlights: • We map strain by electron backscatter diffraction and confocal Raman microscopy. • The test vehicle is the multi-axial strain field of wedge-indented silicon. • Strain accuracy is assessed by direct experimental intercomparison. • Accuracy is also assessed by atomic force microscopy and finite element analyses. • Electron diffraction measurements are accurate; Raman measurements need refinement.

  12. EBSD analysis of the Shergottite Meteorites: New developments within the technique and their implication on what we know about the preferred orientation of Martian minerals

    Science.gov (United States)

    Stephen, N.; Benedix, G. K.; Bland, P.; Berlin, J.; Salge, T.; Goran, D.

    2011-12-01

    What we know about the geology and mineralogy of the Martian surface has been characterised by both the use of remote sensing techniques and the analysis of Martian meteorites. Various techniques are employed to conduct these analyses including crystallographic, geochemical and spectral measurements, all of which enable us to infer a geological history for these rocks. Several references have been made to the potential for preferred orientation of crystals within the Shergottites [1] and their implication for the cooling history of the respective magmas on Mars [2]. We have already shown that a preferred orientation of the two pyroxenes, augite and pigeonite, can be seen in the Zagami meteorite using electron back-scatter diffraction (EBSD) analysis [3]. However, when compared to previous modal studies of the same meteorites [4], it becomes apparent that the current EBSD datasets for Martian meteorites are incomplete. Indexing of some minerals can be hampered by the lack of available matches within library databases for EBSD, or become difficult to resolve between minerals where crystallographic differences between similar minerals fall below the technical limitations of the instrument [3]. Recent advances in EBSD technologies combined with the simultaneous acquisition of energy-dispersive spectra (EDS) however now allow us to determine a more comprehensive set of analyses in a much shorter period of time, fully resolving even similar minerals where areas have been left with no indexing previously [5]. Preliminary investigations suggest that the new technology can successfully index >90% of the sample. The most recent EBSD analyses potentially reveals previously unseen fabrics in the meteorites alongside the EDS hyper-spectral imaging helping to resolve any unknown or questionable phases within them. In this study we will present new data from an investigation using EDS alongside EBSD analysis on 2 Shergottite meteorites, SAU 005 and Zagami, to further resolve

  13. Error analysis of the crystal orientations obtained by the dictionary approach to EBSD indexing.

    Science.gov (United States)

    Ram, Farangis; Wright, Stuart; Singh, Saransh; De Graef, Marc

    2017-10-01

    The efficacy of the dictionary approach to Electron Back-Scatter Diffraction (EBSD) indexing was evaluated through the analysis of the error in the retrieved crystal orientations. EBSPs simulated by the Callahan-De Graef forward model were used for this purpose. Patterns were noised, distorted, and binned prior to dictionary indexing. Patterns with a high level of noise, with optical distortions, and with a 25 × 25 pixel size, when the error in projection center was 0.7% of the pattern width and the error in specimen tilt was 0.8°, were indexed with a 0.8° mean error in orientation. The same patterns, but 60 × 60 pixel in size, were indexed by the standard 2D Hough transform based approach with almost the same orientation accuracy. Optimal detection parameters in the Hough space were obtained by minimizing the orientation error. It was shown that if the error in detector geometry can be reduced to 0.1% in projection center and 0.1° in specimen tilt, the dictionary approach can retrieve a crystal orientation with a 0.2° accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope

    International Nuclear Information System (INIS)

    Trimby, Patrick W.; Cao, Yang; Chen, Zibin; Han, Shuang; Hemker, Kevin J.; Lian, Jianshe; Liao, Xiaozhou; Rottmann, Paul; Samudrala, Saritha; Sun, Jingli; Wang, Jing Tao; Wheeler, John; Cairney, Julie M.

    2014-01-01

    Graphical abstract: -- Abstract: The recent development of transmission Kikuchi diffraction (TKD) in a scanning electron microscope enables fast, automated orientation mapping of electron transparent samples using standard electron backscatter diffraction (EBSD) hardware. TKD in a scanning electron microscope has significantly better spatial resolution than conventional EBSD, enabling routine characterization of nanocrystalline materials and allowing effective measurement of samples that have undergone severe plastic deformation. Combining TKD with energy dispersive X-ray spectroscopy (EDS) provides complementary chemical information, while a standard forescatter detector system below the EBSD detector can be used to generate dark field and oriented dark field images. Here we illustrate the application of this exciting new approach to a range of deformed, ultrafine grained and nanocrystalline samples, including duplex stainless steel, nanocrystalline copper and highly deformed titanium and nickel–cobalt. The results show that TKD combined with EDS is a highly effective and widely accessible tool for measuring key microstructural parameters at resolutions that are inaccessible using conventional EBSD

  15. Diffraction scattering and disintegration of 3He nuclei by atomic nuclei

    International Nuclear Information System (INIS)

    Koval'chuk, V.I.

    2006-01-01

    Within diffraction model framework a method of cross sections calculation for scattering and disintegration of weakly-bounded two-clustered nuclei by nuclei when both of its clusters are changed has been proposed. The experimental elastic scattering cross sections of 3 He by 40 Ca, 90 Zr and coincidence spectra of disintegration products from 28 Si( 3 He,dp) have been described

  16. Identification of phases in zinc alloy powders using electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Martin G. [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States); Kenik, Edward A. [Oak Ridge National Laboratory, 100 Bethel Valley Rd., Bldg. 4515, MS-6064, P.O. Box 2008, Oak Ridge, TN 37831 (United States); O' Keefe, Matthew J. [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States)]. E-mail: mjokeefe@umr.edu; Miller, F. Scott [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States); Johnson, Benedict [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States)

    2006-05-25

    Scanning electron microscopy and electron backscatter diffraction (EBSD) were used for the structural characterization of phases in Zn alloy powders. Commercial Zn alloy powders contained additions of <1000 ppm of Bi, In, Al or Mg. Bismuth and In have extremely low solubility in Zn and form intermetallic Bi-In compounds which segregate to the Zn grain boundaries. The Bi-In phases were <0.3 {mu}m in size, had low melting points, and were not abundant enough for EBSD analysis. Increasing the alloying additions 20-40-fold resulted in Bi-In phases >1 {mu}m that could be used for EBSD analysis for phase characterization. Deformation-free microstructures were obtained by mechanical polishing and ion milling. The Zn matrix was characterized as Zn via EBSD. A BiIn{sub 2} phase was identified in the powder microstructures via EBSD. An In phase with 8-9 wt.% Bi was identified using low voltage energy dispersive spectroscopy and closely matched the composition predicted by the Bi-In phase diagram.

  17. Scattering and Diffraction of Electromagnetic Radiation: An Effective Probe to Material Structure

    Science.gov (United States)

    Xu, Yu-Lin

    2016-01-01

    Scattered electromagnetic waves from material bodies of different forms contain, in an intricate way, precise information on the intrinsic, geometrical and physical properties of the objects. Scattering theories, ever deepening, aim to provide dependable interpretation and prediction to the complicated interaction of electromagnetic radiation with matter. There are well-established multiple-scattering formulations based on classical electromagnetic theories. An example is the Generalized Multi-particle Mie-solution (GMM), which has recently been extended to a special version ? the GMM-PA approach, applicable to finite periodic arrays consisting of a huge number (e.g., >>106) of identical scattering centers [1]. The framework of the GMM-PA is nearly complete. When the size of the constituent unit scatterers becomes considerably small in comparison with incident wavelength, an appropriate array of such small element volumes may well be a satisfactory representation of a material entity having an arbitrary structure. X-ray diffraction is a powerful characterization tool used in a variety of scientific and technical fields, including material science. A diffraction pattern is nothing more than the spatial distribution of scattered intensity, determined by the distribution of scattering matter by way of its Fourier transform [1]. Since all linear dimensions entered into Maxwell's equations are normalized by wavelength, an analogy exists between optical and X-ray diffraction patterns. A large set of optical diffraction patterns experimentally obtained can be found in the literature [e.g., 2,3]. Theoretical results from the GMM-PA have been scrutinized using a large collection of publically accessible, experimentally obtained Fraunhofer diffraction patterns. As far as characteristic structures of the patterns are concerned, theoretical and experimental results are in uniform agreement; no exception has been found so far. Closely connected with the spatial distribution of

  18. Diffractive Deep-Inelastic Scattering with a Leading Proton at HERA

    OpenAIRE

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.

    2006-01-01

    The cross section for the diffractive deep-inelastic scattering process $ep \\to e X p$ is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range \\xpom

  19. Radius anomaly in the diffraction model for heavy-ion elastic scattering

    Science.gov (United States)

    Pandey, L. N.; Mukherjee, S. N.

    1984-04-01

    The elastic scattering of heavy ions, 20Ne on 208Pb, 20Ne on 235U, 84Kr on 208Pb, and 84Kr on 232Th, is examined within the framework of Frahn's diffraction model. An analysis of the experiment using the "quarter point recipe" of the expected Fresnel cross sections yields a larger radius for 208Pb than the radii for 235U and 232Th. It is shown that inclusion of the nuclear deformation in the model removes the above anomaly in the radii, and the assumption of smooth cutoff of the angular momentum simultaneously leads to a better fit to elastic scattering data, compared to those obtained by the earlier workers on the assumption of sharp cutoff. [NUCLEAR REACTIONS Elastic scattering, 20Ne+208Pb (161.2 MeV), 20Ne+235U (175 MeV), 84Kr+208Pb (500 MeV), 84Kr+232Th (500 MeV), diffraction model, nuclear deformation.

  20. Gold nanoparticle-polydimethylsiloxane films reflect light internally by optical diffraction and Mie scattering

    International Nuclear Information System (INIS)

    Dunklin, Jeremy R; Keith Roper, D; Forcherio, Gregory T

    2015-01-01

    Optical properties of polymer films embedded with plasmonic nanoparticles (NPs) are important in many implementations. In this work, optical extinction by polydimethylsiloxane (PDMS) films containing gold (Au) NPs was enhanced at resonance compared to AuNPs in suspensions, Beer–Lambert law, or Mie theory by internal reflection due to optical diffraction in 16 nm AuNP–PDMS films and Mie scattering in 76 nm AuNP–PDMS films. Resonant extinction per AuNP for 16 nm AuNPs with negligible resonant Mie scattering was enhanced up to 1.5-fold at interparticle separation (i.e., Wigner–Seitz radii) comparable to incident wavelength. It was attributable to diffraction through apertures formed by overlapping electric fields of adjacent, resonantly excited AuNPs at Wigner–Seitz radii equal to or less than incident wavelengths. Resonant extinction per AuNP for strongly Mie scattering 76 nm AuNPs was enhanced up to 1.3-fold at Wigner–Seitz radii four or more times greater than incident wavelength. Enhanced light trapping from diffraction and/or scattering is relevant to optoelectronic, biomedical, and catalytic activity of substrates embedded with NPs. (paper)

  1. Electron backscatter diffraction as a useful method for alloys microstructure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, Leszek; Pietrzyk, Bozena

    2004-11-17

    Microstructure examination of cast Co-Cr-Mo alloy is presented in this paper. The surface morphology and chemical composition of the alloy were investigated by means of scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis (EDX). An identification of alloy phases was carried out using electron backscatter diffraction (EBSD). Two different kinds of precipitates in metallic matrix were found. They were identified as MC and M{sub 23}C{sub 6} type of carbides in Co-lattice solid solution. The advantages and limits of the EBSD method are described. It is presented that EBSD, as excellent tool for phase identification, is a valuable supplementary method for materials research.

  2. Challenges of sample preparation for cross sectional EBSD analysis of electrodeposited nickel films

    DEFF Research Database (Denmark)

    Alimadadi, Hossein; Pantleon, Karen

    2009-01-01

    Thorough microstructure and crystallographic orientation analysis of thin films by means of electron backscatter diffraction requires cross section preparation of the film-substrate compound. During careful preparation, changes of the rather non-stable as-deposited microstructure must be avoided....... Different procedures for sample preparation including mechanical grinding and polishing, electropolishing and focused ion beam milling have been applied to a nickel film electrodeposited on top of an amorphous Ni-P layer on a Cu-substrate. Reliable EBSD analysis of the whole cross section can be obtained...

  3. Forward diffraction amplitude of pp and pp elastic scattering at accelerator energies

    International Nuclear Information System (INIS)

    Kawasaki, M.; Maehara, T.; Yonezawa, M.

    2004-01-01

    A simple relation between the total cross section and the forward exponential slope of the elastic differential cross section of pp and pp scattering is indicated. An interpretation of this relation is presented as the formation of a black-disk structure for the elastic diffraction interaction of hadron-hadron scattering at the nonasymptotic energy region

  4. Rainbow and Fresnel diffraction effects in the heavy ion scattering

    International Nuclear Information System (INIS)

    Salvadori, M.C.B.S.

    1984-01-01

    A detailed theoretical analysis of the heavy-ion elastic scattering differential cross section, using the uniform semiclassical approximation of Berry in the sharp cut-off limit is presented. A decomposition of the cross section into four physically well-defined components is used in the analysis. The aim of the analysis is to explore the possibility of distinguishing at the cross-section level, between a pure raibow or Fresnel diffraction nature of the heavy-ion elastic scattering at above-barrier energies and not too large angles. (Author) [pt

  5. A preliminary electron backscattered diffraction study of sintered NdFeB-type magnets.

    Science.gov (United States)

    Lillywhite, S J; Williams, A J; Davies, B E; Harris, I R

    2002-03-01

    This paper reports, for the first time, the use of electron backscattered diffraction (EBSD) to study orientation in sintered NdFeB type magnets. The magnetic properties of NdFeB magnets are greatly improved if a strong crystallographic texture is firstly achieved, namely, the direction of the c-axis is along the direction of magnetization. A systematic survey of sample preparation techniques showed that samples that were mechanically polished and then etched gave the most reliable EBSD data. Analyses were made using both fully automated EBSD scans and by EBSD measurements taken after manual movement of the beam. The EBSD results are presented as secondary electron SEM micrographs, orientation images and 001 pole figures. For the selection of grains investigated, the deviation of the c-axis was shown to be between 10 degrees and 30 degrees from the ideal [001]//magnetization direction. It is demonstrated that EBSD is a valuable tool for characterizing the microstructure and texture relationships and for assessing the performance of the processing routes of NdFeB magnets.

  6. Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite

    International Nuclear Information System (INIS)

    Berecz, Tibor; Jenei, Péter; Csóré, András; Lábár, János; Gubicza, Jenő

    2016-01-01

    The microstructure and the dislocation density in as-quenched ferrous lath martensite were studied by different methods. The blocks, packets and variants formed due to martensitic transformation were identified and their sizes were determined by electron backscatter diffraction (EBSD). Concomitant transmission electron microscopy (TEM) investigation revealed that the laths contain subgrains with the size between 50 and 100 nm. A novel evaluation procedure of EBSD images was elaborated for the determination of the density and the space distribution of geometrically necessary dislocations from the misorientation distribution. The total dislocation density obtained by X-ray diffraction line profile analysis was in good agreement with the value determined by EBSD, indicating that the majority of dislocations formed due to martensitic transformation during quenching are geometrically necessary dislocations.

  7. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    Science.gov (United States)

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  8. Experimental evidence for dual diffractive resonances in nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion-Mihai, R.

    1981-09-01

    Experimental data on nucleon-nucleus scattering for laboratory momenta between 0.9:10 GeV/c are analysed in terms of the dual diffractive resonance (DDR) mechanism. The experimental data for all the nuclei are found to agree well with the predictions of the collective DDR states dominance. (authors)

  9. Neutron scattering and diffraction instrument for structural study on biology in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)

    1994-12-31

    Neutron scattering and diffraction instruments in Japan which can be used for structural studies in biology are briefly introduced. Main specifications and general layouts of the instruments are shown.

  10. Physics-based simulation models for EBSD: advances and challenges

    Science.gov (United States)

    Winkelmann, A.; Nolze, G.; Vos, M.; Salvat-Pujol, F.; Werner, W. S. M.

    2016-02-01

    EBSD has evolved into an effective tool for microstructure investigations in the scanning electron microscope. The purpose of this contribution is to give an overview of various simulation approaches for EBSD Kikuchi patterns and to discuss some of the underlying physical mechanisms.

  11. EBSD in Antarctic and Greenland Ice

    Science.gov (United States)

    Weikusat, Ilka; Kuiper, Ernst-Jan; Pennock, Gill; Sepp, Kipfstuhl; Drury, Martyn

    2017-04-01

    Ice, particularly the extensive amounts found in the polar ice sheets, impacts directly on the global climate by changing the albedo and indirectly by supplying an enormous water reservoir that affects sea level change. The discharge of material into the oceans is partly controlled by the melt excess over snow accumulation, partly by the dynamic flow of ice. In addition to sliding over bedrock, an ice body deforms gravitationally under its own weight. In order to improve our description of this flow, ice microstructure studies are needed that elucidate the dominant deformation and recrystallization mechanisms involved. Deformation of hexagonal ice is highly anisotropic: ice is easily sheared in the basal plane and is about two orders of magnitude harder parallel to the c-axis. As dislocation creep is the dominant deformation mechanism in polar ice this strong anisotropy needs to be understood in terms of dislocation activity. The high anisotropy of the ice crystal is usually ascribed to a particular behaviour of dislocations in ice, namely the extension of dislocations into partials on the basal plane. Analysis of EBSD data can help our understanding of dislocation activity by characterizing subgrain boundary types thus providing a tool for comprehensive dislocation characterization in polar ice. Cryo-EBSD microstructure in combination with light microscopy measurements from ice core material from Antarctica (EPICA-DML deep ice core) and Greenland (NEEM deep ice core) are presented and interpreted regarding substructure identification and characterization. We examined one depth for each ice core (EDML: 656 m, NEEM: 719 m) to obtain the first comparison of slip system activity from the two ice sheets. The subgrain boundary to grain boundary threshold misorientation was taken to be 3-5° (Weikusat et al. 2011). EBSD analyses suggest that a large portion of edge dislocations with slip systems basal gliding on the basal plane were indeed involved in forming subgrain

  12. Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique

    International Nuclear Information System (INIS)

    Konrad, J.; Zaefferer, S.; Raabe, D.

    2006-01-01

    We present a study of the microstructure around a hard Laves particle in a warm-rolled intermetallic Fe 3 Al-based alloy. The experiments are conducted using a system for three-dimensional orientation microscopy (3D electron backscattering diffraction, EBSD). The approach is realized by a combination of a focused ion beam (FIB) unit for serial sectioning with high-resolution field emission scanning electron microscopy with EBSD. We observe the formation of steep 3D orientation gradients in the Fe 3 Al matrix around the rigid precipitate which entail in part particle-stimulated nucleation events in the immediate vicinity of the particle. The orientation gradients assume a characteristic pattern around the particle in the transverse plane while revealing an elongated tubular morphology in the rolling direction. However, they do not reveal a characteristic common rotation axis. Recovered areas in the matrix appear both in the transverse and rolling directions around the particle. The work demonstrates that the new 3D EBSD-FIB technique provides a new level of microstructure information that cannot be achieved by conventional 2D-EBSD analysis

  13. Diffraction and absorption of inelastically scattered electrons for K-shell ionization

    International Nuclear Information System (INIS)

    Josefsson, T.W.; Allen, L.J.

    1995-01-01

    An expression for the nonlocal inelastic scattering cross section for fast electrons in a crystalline environment, which explicitly includes diffraction as well as absorption for the inelastically scattered electrons, is used to carry out realistic calculations of K-shell electron energy loss spectroscopy (EELS) and energy dispersive x-ray (EDX) analysis cross sections. The calculations demonstrate quantitatively why, in EDX spectroscopy, integration over the dynamical states of the inelastically scattered electron averages in such a way that an effective plane wave representation of the scattered electrons is a good approximation. This is only the case for large enough acceptance angles of the detector in an EELS experiment. For EELS with smaller detector apertures, explicit integration over the dynamical final states is necessary and inclusion of absorption for the scattered electrons is important, particularly for thicker crystals. 50 refs., 7 figs

  14. Partial transformation of austenite in Al-Mn-Si TRIP steel upon tensile straining: an in situ EBSD study

    DEFF Research Database (Denmark)

    Lomholt, Trine Nybo; Adachi, Y.; da Silva Fanta, Alice Bastos

    2013-01-01

    The transformation of austenite to martensite in an Al–Mn–Si transformation-induced plasticity steel was investigated with in situ electron backscatter diffraction (EBSD) measurements under tensile straining. The visualisation of the microstructure upon straining allows for an investigation...... to be more stable than large grains, while austenite grains located beside bainitic ferrite are the most stable. Moreover, it is demonstrated that austenite grains transform gradually...

  15. EBSD characterization of the growth mechanism of SiC synthesized via direct microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jigang, E-mail: wangjigang@seu.edu.cn [Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Xizang Key Laboratory of Optical Information Processing and Visualization Technology, School of Information Engineering, Xizang Minzu University, Xianyang 712082 (China); Huang, Shan; Liu, Song; Qing, Zhou [Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2016-04-15

    Well-crystallized 3C-silicon carbide (SiC) grains/nanowires have been synthesized rapidly and conveniently via direct microwave heating, simply using silicon dioxide powders and artificial graphite as raw materials. The comprehensive characterizations have been employed to investigate the micro-structure of the obtained 3C-SiC products. Results indicated that, different from the classic screw dislocation growth mechanism, the 3C-SiC grains/nanowires synthesized via high-energy vacuum microwave irradiation were achieved through the two-dimension nucleation and laminar growth mechanism. Especially, the electron backscattered diffraction (EBSD) was employed to characterize the crystal planes of the as-grown SiC products. The calculated Euler angles suggested that the fastest-growing crystal planes (211) were overlapped gradually. Through the formation of the (421) transformation plane, (211) finally evolved to (220) which existed as the side face of SiC grains. The most stable crystal planes (111) became the regular hexagonal planes in the end, which could be explained by the Bravais rule. The characterization results of EBSD provided important experimental information for the evolution of crystal planes. - Graphical abstract: The formation of 3C-SiC prepared via direct microwave heating follows the mechanism of two-dimension nucleation and laminar growth. - Highlights: • 3C−SiC grains/nanowires were obtained via direct microwave heating. • 3C−SiC followed the mechanism of two-dimension nucleation and laminar growth. • In-situ EBSD analysis provided the experimental evidences of the growth.

  16. EBSD applications in the steel and nuclear industries

    International Nuclear Information System (INIS)

    Nave, M.D.

    2005-01-01

    EBSD has established itself as an invaluable tool for materials science problem-solving in the steel and nuclear industries. In the steel industry, it increases our understanding of the deformation and recrystallization processes that influence the formability of steel sheets. It is also used to improve welding procedures and identify phases that accelerate corrosion. In the nuclear industry, EBSD plays a central role in extending the life of fuel cladding materials by shedding new light on the mechanisms of hydride formation. It is also used in efforts to improve the processing of material used for the storage of nuclear waste. This presentation provides an overview of EBSD applications within these two industries, emphasizing the broad applicability and practical usefulness of the technique. (author)

  17. Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wallis, David, E-mail: davidwa@earth.ox.ac.uk [Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN (United Kingdom); Hansen, Lars N. [Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN (United Kingdom); Ben Britton, T. [Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford, Oxfordshire, OX1 3PH (United Kingdom)

    2016-09-15

    Dislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (<0.01°) than conventional EBSD (~0.5°), allowing very low dislocation densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earth's upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation. - Highlights: • Lattice orientation gradients in olivine were measured using HR-EBSD. • The limited number of olivine slip systems enable simple least squares inversion for GND

  18. EBSD analysis of subgrain boundaries and dislocation slip systems in Antarctic and Greenland ice

    Science.gov (United States)

    Weikusat, Ilka; Kuiper, Ernst-Jan N.; Pennock, Gill M.; Kipfstuhl, Sepp; Drury, Martyn R.

    2017-09-01

    Ice has a very high plastic anisotropy with easy dislocation glide on basal planes, while glide on non-basal planes is much harder. Basal glide involves dislocations with the Burgers vector b = 〈a〉, while glide on non-basal planes can involve dislocations with b = 〈a〉, b = [c], and b = 〈c + a〉. During the natural ductile flow of polar ice sheets, most of the deformation is expected to occur by basal slip accommodated by other processes, including non-basal slip and grain boundary processes. However, the importance of different accommodating processes is controversial. The recent application of micro-diffraction analysis methods to ice, such as X-ray Laue diffraction and electron backscattered diffraction (EBSD), has demonstrated that subgrain boundaries indicative of non-basal slip are present in naturally deformed ice, although so far the available data sets are limited. In this study we present an analysis of a large number of subgrain boundaries in ice core samples from one depth level from two deep ice cores from Antarctica (EPICA-DML deep ice core at 656 m of depth) and Greenland (NEEM deep ice core at 719 m of depth). EBSD provides information for the characterization of subgrain boundary types and on the dislocations that are likely to be present along the boundary. EBSD analyses, in combination with light microscopy measurements, are presented and interpreted in terms of the dislocation slip systems. The most common subgrain boundaries are indicative of basal 〈a〉 slip with an almost equal occurrence of subgrain boundaries indicative of prism [c] or 〈c + a〉 slip on prism and/or pyramidal planes. A few subgrain boundaries are indicative of prism 〈a〉 slip or slip of 〈a〉 screw dislocations on the basal plane. In addition to these classical polygonization processes that involve the recovery of dislocations into boundaries, alternative mechanisms are discussed for the formation of subgrain boundaries that are not related to the

  19. High pressure sample container for thermal neutron spectroscopy and diffraction on strongly scattering fluids

    International Nuclear Information System (INIS)

    Verkerk, P.; Pruisken, A.M.M.

    1979-01-01

    A description is presented of the construction and performance of a container for thermal neutron scattering on a fluid sample with about 1.5 cm -1 macroscopic cross section (neglecting absorption). The maximum pressure is about 900 bar. The container is made of 5052 aluminium capillary with inner diameter 0.75 mm and wall thickness 0.25 mm; it covers a neutron beam with a cross section of 9 X 2.5 cm 2 . The container has been successfully used in neutron diffraction and time-of-flight experiments on argon-36 at 120 K and several pressures up to 850 bar. It is shown that during these measurements the temperature gradient over the sample as well as the error in the absolute temperature were both less than 0.05 K. Subtraction of the Bragg peaks due to container scattering in diffraction experiments may be dfficult, but seems feasible because of the small amount of aluminium in the neutron beam. Correction for container scattering and multiple scattering in time-of-flight experiments may be difficult only in the case of coherently scattering samples and small scattering angles. (Auth.)

  20. An EBSD Evaluation of the Microstructure of Crept Nimonic 101 for the Validation of a Polycrystal-Plasticity Model

    Science.gov (United States)

    Reschka, S.; Munk, L.; Wriggers, P.; Maier, H. J.

    2017-12-01

    Nimonic 101 is one of the early nickel-based superalloys developed for the use in gas turbines. In such environments, the material is exposed to a combination of both high temperatures and mechanical loads for a long duration. Hence, thermal creep is of the utmost concern as it often limits service life. This study focuses on creep tests, carried out on Nimonic 101 at different temperatures under a constant tensile load of 735 MPa. To characterize the microstructural evolution, electron backscatter diffraction (EBSD) measurements were employed before and after loading. At higher temperatures, a significant change of the microstructure was observed. The grains elongated and aligned their orientation along the load axis. In parallel, a crystal plasticity material model has been set up in the classical large deformation framework. Modeling results are compared to the acquired EBSD data.

  1. Effect of diffraction on stimulated Brillouin scattering from a single laser hot spot

    International Nuclear Information System (INIS)

    Eliseev, V.V.; Rozmus, W.; Tikhonchuk, V.T.; Capjack, C.E.

    1996-01-01

    A single laser hot spot in an underdense plasma is represented as a focused Gaussian laser beam. Stimulated Brillouin scattering (SBS) from such a Gaussian beam with small f/numbers 2-4 has been studied in a three-dimensional slab geometry. It is shown that the SBS reflectivity from a single laser hot spot is much lower than that predicted by a simple three wave coupling model because of the diffraction of the scattered light from the spatially localized ion acoustic wave. SBS gain per one Rayleigh length of the incident laser beam is proposed as a quantitative measure of this effect. Diffraction-limited SBS from a randomized laser beam is also discussed. copyright 1996 American Institute of Physics

  2. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    International Nuclear Information System (INIS)

    Tanaka, Masahiko; Katsuya, Yoshio; Sakata, Osami

    2016-01-01

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe_2O_4 (inverse spinel structure) using X-rays near Fe K absorption edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe_2O_4 crystal structure.

  3. Microshear in the deep EDML ice core analyzed using cryogenic EBSD

    Science.gov (United States)

    Kuiper, Ernst-Jan; Pennock, Gill; Drury, Martyn; Kipfstuhl, Sepp; Faria, Sérgio; Weikusat, Ilka

    2017-04-01

    Ice sheets play an important role in sea level evolution by storing large amounts of fresh water on land. The ice in an ice sheet flows from the interior of the ice sheet to the edges where it either melts or calves into the ocean. This flow of ice results from internal deformation of the ice aggregate. Dislocation creep is assumed to be the dominant deformation mechanism for polar ice and is grain size insensitive. Recently, a different deformation mechanism was identified in the deeper part of the EDML ice core (Antarctica) where, at a depth of 2385 meters, the grain size strongly decreases, the grain aspect ratio increase and, the inclination of the grain elongation changes (Faria et al., 2006; Weikusat et al., 2017). At this depth the borehole displacement increases strongly (Weikusat et al., 2017), which indicates a relatively high strain rate. Part of this EDML ice core section was studied using cryogenic electron backscattered diffraction (cryo-EBSD) (Weikusat et al, 2011). EBSD produces high resolution, full crystallographic (a-axis and c-axis) maps of the ice core samples. EBSD samples were taken from an ice core section at 2392.2 meter depth. This section was chosen for its very small grain size and the strongly aligned grain boundaries. The EBSD maps show a very low orientation gradient of <0.3° per millimetre inside the grains, which is 5-10 times lower than the orientation gradients found in other parts of the ice core. Furthermore, close to some grain boundaries, a relatively strong orientation gradient of 1°-2° per millimetre was found. The subgrain boundaries developed such that they elongate the sliding boundaries in order to accommodate the incompatibilities and maintain the strongly aligned grain boundary network. We identify the dominant deformation mechanism in this part of the ice core as grain boundary sliding accommodated by localized dislocation creep, which is a process similar to microshear (Drury and Humpreys, 1988). The existence of

  4. Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Bystritskaya, L.; Fedotov, A.; Lubimov, V.; Ozerov, D.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Roosen, R.; Staykova, Z.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; Placakyte, R.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Radescu, V.; Sauter, M.; Schoening, A.; Joensson, L.; Jung, H.; Kapichine, M.; Makankine, A.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; Stella, B.; Sykora, T.; Tsakov, I.; Wegener, D.

    2012-01-01

    The cross section of diffractive deep-inelastic scattering ep→eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x P 2 in squared four-momentum transfer at the proton vertex and 4 2 2 in photon virtuality. The differential cross sections extrapolated to vertical stroke t vertical stroke 2 are in agreement with next-to-leading order QCD predictions based on diffractive parton distribution functions extracted from measurements of inclusive and dijet cross sections in diffractive deep-inelastic scattering. The data are also compared with leading order Monte Carlo models. (orig.)

  5. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    International Nuclear Information System (INIS)

    Tanaka, M; Katsuya, Y; Matsushita, Y

    2013-01-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe 2 O 4 and Fe 3 O 4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe 2+ /Fe 3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  6. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2016-07-27

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorption edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.

  7. Diffractive production in deep inelastic scattering and hadronic interactions

    International Nuclear Information System (INIS)

    Kaidalow, A.

    1996-01-01

    Diffractive processes in hadronic interactions are considered and important role of multi-Pomeron exchanges is emphasized. It is argued that in deep inelastic scattering these contributions are much less important and energy behavior of structure functions at Q 2 ≥ 1 GeV 2 is determined mostly by bare Pomeron intercept. It is shown that the model based on these ideas is in a perfect agreement with recent results from HERA. Diffractive production in DIS is discussed and theoretical predictions for the structure function of the Pomeron are compared with experimental observations. It is emphasized that both quarks and gluons in the Pomeron have hard distributions. Shadowing corrections to structure function of a nucleon are calculated and found to small in the region of x > 10 -4 . A good agreement with experimental data on the shadowing of structure functions of nuclei is obtained. Energy dependence for the cross sections of the diffractive production of vector mesons by real and virtual photons is calculated in the same approach and is found to be in an excellent agreement with experiment. (author)

  8. Measurement and Interpretation of Diffuse Scattering in X-Ray Diffraction for Macromolecular Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Michael E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-16

    X-ray diffraction from macromolecular crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering reflects the mean electron density in the unit cells of the crystal. The diffuse scattering arises from correlations in the variations of electron density that may occur from one unit cell to another, and therefore contains information about collective motions in proteins.

  9. Measurement and QCD analysis of diffractive jet cross sections in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Mozer, M.U.

    2006-07-24

    Differential cross sections for the production of two jets in diffractive deep inelastic scattering (DIS) at HERA are presented. The process studied is of the type ep{yields}eXY, where the central hadronic system X contains at least two jets and is separated from the system Y by a gap in rapidity. The forward system Y consists of an elastically scattered proton or a low mass dissociation system. The data were taken with the H1 detector during the years of 1999 and 2000 and correspond to an integrated luminosity of 51.5 pb{sup -1}. The measured cross sections are compared to fixed order NLO QCD predictions, that use diffractive parton densities which have previously been determined by a NLO QCD analysis of inclusive diffractive DIS at H1. The prediction and the data show significant differences. However, the dijet cross section is dominated by the diffractive gluon density, which can be extracted by the above mentioned analysis only with considerable uncertainty. Hence a combined QCD analysis of the previously published inclusive diffractive data and the dijet data is performed. This combined fit analysis allows the determination of diffractive quark and gluon densities with comparable precision. The common description of inclusive diffractive data and the dijet data confirms QCD factorization. (orig.)

  10. Genesis of diamond inclusions: An integrated cathodoluminescence (CL) and Electron backscatter diffraction (EBSD) study on eclogitic and peridotitic inclusions and their diamond host.

    Science.gov (United States)

    van den Heuvel, Quint; Matveev, Sergei; Drury, Martyn; Gress, Michael; Chinn, Ingrid; Davies, Gareth

    2017-04-01

    Diamond inclusions are potentially fundamental to understanding the formation conditions of diamond and the volatile cycles in the deep mantle. In order to fully understand the implications of the compositional information recorded by inclusions it is vital to know whether the inclusions are proto-, syn-, or epigenetic and the extent to which they have equilibrated with diamond forming fluids. In previous studies, the widespread assumption was made that the majority of diamond inclusions are syngenetic, based upon observation of cubo-octahedral morphology imposed on the inclusions. Recent work has reported the crystallographic relationship between inclusions and the host diamond to be highly complex and the lack of crystallographic relationships between inclusions and diamonds has led some to question the significance of imposed cubo-octahedral morphology. This study presents an integrated EBSD and CL study of 9 diamonds containing 20 pyropes, 2 diopsides, 1 forsterite and 1 rutile from the Jwaneng and Letlhakane kimberlite clusters, Botswana. A new method was developed to analyze the crystallographic orientation of the host diamond and the inclusions with EBSD. Diamonds plates were sequentially polished to expose inclusions at different levels in the diamond. CL imaging at different depths was performed in order to produce a 3D view of diamond growth zones around the inclusions. Standard diamond polishing techniques proved too aggressive for silicate inclusions as they were damaged to such a degree that EBSD measurements on the inclusions were impossible. The inclusions were milled with a Ga+ focused ion beam (FIB) at a 12° angle to clean the surface for EBSD measurements. Of the 24 inclusions, 9 have an imposed cubo-octahedral morphology. Of these inclusions, 6 have faces orientated parallel to diamond growth zones and/or appear to have nucleated on a diamond growth surface, implying syngenesis. In contrast, other diamonds record resorption events such that

  11. The Massive Yang-Mills Model and Diffractive Scattering

    CERN Document Server

    Forshaw, J R; Parrinello, C

    1999-01-01

    We argue that the massive Yang-Mills model of Kunimasa and Goto, Slavnov, and Cornwall, in which massive gauge vector bosons are introduced in a gauge-invariant way without resorting to the Higgs mechanism, may be useful for studying diffractive scattering of strongly interacting particles. With this motivation, we perform in this model explicit calculations of S-matrix elements between quark states, at tree level, one loop, and two loops, and discuss issues of renormalisability and unitarity. In particular, it is shown that the S-matrix element for quark scattering is renormalisable at one-loop order and is only logarithmically non-renormalisable at two loops. The discrepancies in the ultraviolet regime between the one-loop predictions of this model and those of massless QCD are discussed in detail. In addition, some of the similarities and differences between the massive Yang-Mills model and theories with a Higgs mechanism are analysed at the level of the S-matrix. As an elementary application of the model ...

  12. Measurement of Dijet Production in Diffractive Deep-Inelastic Scattering with a Leading Proton at HERA

    CERN Document Server

    Aaron, F.D.

    2012-04-18

    The cross section of diffractive deep-inelastic scattering ep \\rightarrow eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss xIP < 0.1 and covers the range 0.1 < |t| < 0.7 GeV2 in squared four-momentum transfer at the proton vertex and 4 < Q2 < 110 GeV2 in photon virtuality. The differential cross sections extrapolated to |t| < 1 GeV2 are in agreement with next-toleading order QCD predictions based on diffractive parton distribution functions extracted from measurements of inclusive and dijet cross sections in diffractive deep-inelastic scattering. The data are also compared with leading order Monte Carlo models.

  13. EBSD analysis of subgrain boundaries and dislocation slip systems in Antarctic and Greenland ice

    Directory of Open Access Journals (Sweden)

    I. Weikusat

    2017-09-01

    Full Text Available Ice has a very high plastic anisotropy with easy dislocation glide on basal planes, while glide on non-basal planes is much harder. Basal glide involves dislocations with the Burgers vector b = 〈a〉, while glide on non-basal planes can involve dislocations with b = 〈a〉, b = [c], and b = 〈c + a〉. During the natural ductile flow of polar ice sheets, most of the deformation is expected to occur by basal slip accommodated by other processes, including non-basal slip and grain boundary processes. However, the importance of different accommodating processes is controversial. The recent application of micro-diffraction analysis methods to ice, such as X-ray Laue diffraction and electron backscattered diffraction (EBSD, has demonstrated that subgrain boundaries indicative of non-basal slip are present in naturally deformed ice, although so far the available data sets are limited. In this study we present an analysis of a large number of subgrain boundaries in ice core samples from one depth level from two deep ice cores from Antarctica (EPICA-DML deep ice core at 656 m of depth and Greenland (NEEM deep ice core at 719 m of depth. EBSD provides information for the characterization of subgrain boundary types and on the dislocations that are likely to be present along the boundary. EBSD analyses, in combination with light microscopy measurements, are presented and interpreted in terms of the dislocation slip systems. The most common subgrain boundaries are indicative of basal 〈a〉 slip with an almost equal occurrence of subgrain boundaries indicative of prism [c] or 〈c + a〉 slip on prism and/or pyramidal planes. A few subgrain boundaries are indicative of prism 〈a〉 slip or slip of 〈a〉 screw dislocations on the basal plane. In addition to these classical polygonization processes that involve the recovery of dislocations into boundaries, alternative mechanisms are discussed for the formation of subgrain

  14. Diffraction scattering and disintegration of complex particles by nonspherical deformable nuclei

    International Nuclear Information System (INIS)

    Evlanov, M.V.; Isupov, V.Y.; Tartakovskii, V.K.

    1989-01-01

    We study the dependence of the differential and integrated cross sections for diffraction scattering and disintegration of complex particles by axially symmetric and non-axially-symmetric nuclei on the shape, deformability, and diffuseness of the nuclear surface, and also on the structure of the incident particles and rescattering processes. It is shown that when all of these factors are taken into account, as well as the interaction in the final state between the disintegration products of the incident particle, a satisfactory description of complicated coincidence experiments can be obtained, and also inelastic scattering experiments with excitation of collective states of the target nucleus

  15. Bragg's Law diffraction simulations for electron backscatter diffraction analysis

    International Nuclear Information System (INIS)

    Kacher, Josh; Landon, Colin; Adams, Brent L.; Fullwood, David

    2009-01-01

    In 2006, Angus Wilkinson introduced a cross-correlation-based electron backscatter diffraction (EBSD) texture analysis system capable of measuring lattice rotations and elastic strains to high resolution. A variation of the cross-correlation method is introduced using Bragg's Law-based simulated EBSD patterns as strain free reference patterns that facilitates the use of the cross-correlation method with polycrystalline materials. The lattice state is found by comparing simulated patterns to collected patterns at a number of regions on the pattern using the cross-correlation function and calculating the deformation from the measured shifts of each region. A new pattern can be simulated at the deformed state, and the process can be iterated a number of times to converge on the absolute lattice state. By analyzing an iteratively rotated single crystal silicon sample and recovering the rotation, this method is shown to have an angular resolution of ∼0.04 o and an elastic strain resolution of ∼7e-4. As an example of applications, elastic strain and curvature measurements are used to estimate the dislocation density in a single grain of a compressed polycrystalline Mg-based AZ91 alloy.

  16. Investigation of the critical scattering at the structural phase transition in RbCaF/sub 3/ using Moessbauer diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Maetz, J; Butt, N M; Jex, H; Muellner, M [Frankfurt Univ. (Germany, F.R.). Inst. fuer Kernphysik

    1979-01-01

    The critical scattering near the phase transition of RbCaF/sub 3/ from its cubic to the tetragonal structure at Tsub(c)=196 K is investigated. Moessbauer diffraction is applied to separate elastic and inelastic scattering intensities with energy resolution of 60 neV. The influence of domains is shown from X-ray diffraction.

  17. Future of Electron Scattering and Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Ernest [GE Global Research, Niskayuna, New York (United States); Stemmer, Susanne [Univ. of California, Santa Barbara, CA (United States); Zheng, Haimei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhu, Yimei [Brookhaven National Lab. (BNL), Upton, NY (United States); Maracas, George [Dept. of Energy (DOE), Washington DC (United States). Office of Science

    2014-02-25

    The ability to correlate the atomic- and nanoscale-structure of condensed matter with physical properties (e.g., mechanical, electrical, catalytic, and optical) and functionality forms the core of many disciplines. Directing and controlling materials at the quantum-, atomic-, and molecular-levels creates enormous challenges and opportunities across a wide spectrum of critical technologies, including those involving the generation and use of energy. The workshop identified next generation electron scattering and diffraction instruments that are uniquely positioned to address these grand challenges. The workshop participants identified four key areas where the next generation of such instrumentation would have major impact: A – Multidimensional Visualization of Real Materials B – Atomic-scale Molecular Processes C – Photonic Control of Emergence in Quantum Materials D – Evolving Interfaces, Nucleation, and Mass Transport Real materials are comprised of complex three-dimensional arrangements of atoms and defects that directly determine their potential for energy applications. Understanding real materials requires new capabilities for three-dimensional atomic scale tomography and spectroscopy of atomic and electronic structures with unprecedented sensitivity, and with simultaneous spatial and energy resolution. Many molecules are able to selectively and efficiently convert sunlight into other forms of energy, like heat and electric current, or store it in altered chemical bonds. Understanding and controlling such process at the atomic scale require unprecedented time resolution. One of the grand challenges in condensed matter physics is to understand, and ultimately control, emergent phenomena in novel quantum materials that necessitate developing a new generation of instruments that probe the interplay among spin, charge, orbital, and lattice degrees of freedom with intrinsic time- and length-scale resolutions. Molecules and soft matter require imaging and

  18. THE DECISION OF FORM FOR DIFFRACTIVE STRUCTURES IN THE PROBLEM OF SCATTERING OF RADIO WAVES.

    Directory of Open Access Journals (Sweden)

    A. P. Preobrazhensky

    2017-02-01

    Full Text Available This paper considers the problem of scattering of electromagnetic waves in different diffraction structures. The solution of the scattering problem is based on the method of integral equations. On diagrams of backscattering at various frequencies of the incident wave, the decision about the form of the object is carried out.

  19. The effect of pattern overlap on the accuracy of high resolution electron backscatter diffraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Vivian, E-mail: v.tong13@imperial.ac.uk [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Jiang, Jun [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Britton, T. Ben [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-08-15

    High resolution, cross-correlation-based, electron backscatter diffraction (EBSD) measures the variation of elastic strains and lattice rotations from a reference state. Regions near grain boundaries are often of interest but overlap of patterns from the two grains could reduce accuracy of the cross-correlation analysis. To explore this concern, patterns from the interior of two grains have been mixed to simulate the interaction volume crossing a grain boundary so that the effect on the accuracy of the cross correlation results can be tested. It was found that the accuracy of HR-EBSD strain measurements performed in a FEG-SEM on zirconium remains good until the incident beam is less than 18 nm from a grain boundary. A simulated microstructure was used to measure how often pattern overlap occurs at any given EBSD step size, and a simple relation was found linking the probability of overlap with step size. - Highlights: • Pattern overlap occurs at grain boundaries and reduces HR-EBSD accuracy. • A test is devised to measure the accuracy of HR-EBSD in the presence of overlap. • High pass filters can sometimes, but not generally, improve HR-EBSD measurements. • Accuracy of HR-EBSD remains high until the reference pattern intensity is <72%. • 9% of points near a grain boundary will have significant error for 200nm step size in Zircaloy-4.

  20. Diffractive interactions

    International Nuclear Information System (INIS)

    Del Duca, V.; Marage, P.

    1996-08-01

    The general framework of diffractive deep inelastic scattering is introduced and reports given in the session on diffractive interactions at the international workshop on deep-inelastic scattering and related phenomena, Rome, April 1996, are presented. (orig.)

  1. Detectors for X-ray diffraction and scattering: a user's overview

    International Nuclear Information System (INIS)

    Bruegemann, Lutz; Gerndt, E.K.E.

    2004-01-01

    An overview of the applications of X-ray detectors to material research is given. Four experimental techniques and their specific detector requirements are described. Detector types are classified and critical parameters described in the framework of X-ray diffraction and X-ray scattering experiments. The article aims at building a bridge between detector end-users and detector developers. It gives limits of critical detector parameters, like angular resolution, energy resolution, dynamic range, and active area

  2. Measurement of the cross section for diffractive deep-inelastic scattering with a leading proton at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Driesch, M. von den; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; List, B.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Urban, K.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Radescu, V.; Sauter, M.; Schoening, A.; Joensson, L.; Osman, S.; Jung, H.; Kapichine, M.; Makankine, A.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; South, D.; Wegener, D.; Stella, B.; Tsakov, I.

    2011-01-01

    The cross section for the diffractive deep-inelastic scattering process ep→eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data sample covers the range x P 2 in squared four-momentum transfer at the proton vertex and 4 2 2 in photon virtuality. The cross section is measured four-fold differentially in t,x P ,Q 2 and β=x/x P , where x is the Bjorken scaling variable. The t and x P dependences are interpreted in terms of an effective pomeron trajectory and a sub-leading exchange. The data are compared with perturbative QCD predictions at next-to-leading order based on diffractive parton distribution functions previously extracted from complementary measurements of inclusive diffractive deep-inelastic scattering. The ratio of the diffractive to the inclusive ep cross section is studied as a function of Q 2 ,β and x P . (orig.)

  3. Theoretical study of the influence of small angle scattering on diffraction enhanced imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: zhupp@ihep.ac.cn; Huang Wanxia; Yuan, Qingxi [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Wang Junyue; Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graduate School of the Chinese Academy of Sciences, 100864 Beijing (China); Chen Bo [Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: wuzy@ihep.ac.cn

    2007-07-15

    Small angle scattering plays an important role in diffraction enhanced imaging (DEI). The DEI equation proposed by Chapman is accepted and widely used by many applications in medical, biological and material researches. However, in this framework the contribution of the small angle scattering determined by the crystal analyzer is neglected and the extinction contrast caused by the rejection of the small angle scattering by the analyzer is not explicitly expressed. In this contribution we introduce two additional terms in the DEI equation that describe the additional background introduced by the small angle scattering collected by the analyzer crystal and the extinction contrast associated to the rejection of the small angle scattering by the analyzer crystal, respectively. Four kinds of images of the DEI method were considered by using these revised equations and results were presented and discussed.

  4. Theoretical study of the influence of small angle scattering on diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Zhu Peiping; Huang Wanxia; Yuan, Qingxi; Wang Junyue; Shu Hang; Chen Bo; Wu Ziyu

    2007-01-01

    Small angle scattering plays an important role in diffraction enhanced imaging (DEI). The DEI equation proposed by Chapman is accepted and widely used by many applications in medical, biological and material researches. However, in this framework the contribution of the small angle scattering determined by the crystal analyzer is neglected and the extinction contrast caused by the rejection of the small angle scattering by the analyzer is not explicitly expressed. In this contribution we introduce two additional terms in the DEI equation that describe the additional background introduced by the small angle scattering collected by the analyzer crystal and the extinction contrast associated to the rejection of the small angle scattering by the analyzer crystal, respectively. Four kinds of images of the DEI method were considered by using these revised equations and results were presented and discussed

  5. Characterization of diffraction gratings scattering in uv and ir for space applications

    Science.gov (United States)

    Achour, Sakina; Kuperman-Le Bihan, Quentin; Etcheto, Pierre

    2017-09-01

    The use of Bidirectional Scatter Distribution Function (BSDF) in space industry and especially when designing telescopes is a key feature. Indeed when speaking about space industry, one can immediately think about stray light issues. Those important phenomena are directly linked to light scattering. Standard BSDF measurement goniophotometers often have a resolution of about 0.1° and are mainly working in or close to the visible spectrum. This resolution is far too loose to characterize ultra-polished surfaces. Besides, wavelength range of BSDF measurements for space projects needs to be done far from visible range. How can we measure BSDF of ultra-polished surfaces and diffraction gratings in the UV and IR range with high resolution? We worked on developing a new goniophometer bench in order to be able to characterize scattering of ultra-polished surfaces and diffraction gratings used in everyday space applications. This ten meters long bench was developed using a collimated beam approach as opposed to goniophotometer using focused beam. Sources used for IR characterization were CO2 (10.6?m) and Helium Neon (3.39?m) lasers. Regarding UV sources, a collimated and spatially filtered UV LED was used. The detection was ensure by a photomultiplier coupled with synchronous detection as well as a MCT InSb detector. The so-built BSDF measurement instrument allowed us to measure BSDF of ultra-polished surfaces as well as diffraction gratings with an angular resolution of 0.02° and a dynamic of 1013 in the visible range. In IR as well as in UV we manage to get 109 with same angular resolution of 0.02°. The 1m arm and translation stages allows us to measure samples up to 200mm. Thanks to such a device allowing ultra-polished materials as well as diffraction gratings scattering characterization, it is possible to implement those BSDF measurements into simulation software and predict stray light issues. This is a big help for space industry engineers to apprehend stray light

  6. Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V. [Lebedev Physical Inst., Moscow (RU)] (and others)

    2011-09-15

    The cross section of diffractive deep-inelastic scattering ep{yields}eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x{sub P}<0.1 and covers the range 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4diffractive parton distribution functions extracted from measurements of inclusive and dijet cross sections in diffractive deep-inelastic scattering. The data are also compared with leading order Monte Carlo models. (orig.)

  7. Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Inst., Yerevan (Armenia); Barrelet, E. [CNRS/IN2P3, LPNHE, Univ. Pierre et Marie Curie Paris 6, Univ. Denis Diderot Paris 7, Paris (France); Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [CNRS/IN2P3, LAL, Univ. Paris-Sud, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [CNRS/IN2P3, LLR, Ecole Polytechnique, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Univ. of Belgrade, Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham (United Kingdom); Bruncko, D.; Cerny, V.; Ferencei, J. [Slovak Academy of Sciences, Kosice (Slovakia)] [and others

    2012-04-15

    The cross section of diffractive deep-inelastic scattering ep{yields}eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x{sub P}<0.1 and covers the range 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4diffractive parton distribution functions extracted from measurements of inclusive and dijet cross sections in diffractive deep-inelastic scattering. The data are also compared with leading order Monte Carlo models. (orig.)

  8. Diffractive open charm production in deep-inelastic scattering and photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Andreev, V. [Lebedev Physical Institute, Moscow (Russian Federation); Anthonis, T. [Inter-Univ. Institute for High Energies ULB-VUB, Brussels (Belgium)]|[Antwerp Univ. (BE)] (and others)

    2006-10-15

    Measurements are presented of diffractive open charm production at HERA. The event topology is given by ep{yields}eXY where the system X contains at least one charmed hadron and is well separated by a large rapidity gap from a leading low-mass proton remnant system Y. Two analysis techniques are used for the cross section measurements. In the first, the charm quark is tagged by the reconstruction of a D{sup *{+-}}(2010) meson. This technique is used in deep-inelastic scattering (DIS) and photoproduction ({gamma}p). In the second, a method based on the displacement of tracks from the primary vertex is used to measure the open charm contribution to the inclusive diffractive cross section in DIS. The measurements are compared with next-to-leading order QCD predictions based on diffractive parton density functions previously obtained from a QCD analysis of the inclusive diffractive cross section at H1. A good agreement is observed in the full kinematic regime, which supports the validity of QCD factorization for open charm production in diffractive DIS and {gamma}p. (orig.)

  9. Diffractive open charm production in deep-inelastic scattering and photoproduction at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-03-01

    Measurements are presented of diffractive open charm production at HERA. The event topology is given by ep→eXY where the system X contains at least one charmed hadron and is well separated by a large rapidity gap from a leading low-mass proton remnant system Y. Two analysis techniques are used for the cross section measurements. In the first, the charm quark is tagged by the reconstruction of a D*±(2010) meson. This technique is used in deep-inelastic scattering (DIS) and photoproduction (γp). In the second, a method based on the displacement of tracks from the primary vertex is used to measure the open charm contribution to the inclusive diffractive cross section in DIS. The measurements are compared with next-to-leading order QCD predictions based on diffractive parton density functions previously obtained from a QCD analysis of the inclusive diffractive cross section at H1. A good agreement is observed in the full kinematic regime, which supports the validity of QCD factorization for open charm production in diffractive DIS and γp.

  10. Measurement of Dijet Production in Diffractive Deep-Inelastic ep Scattering at HERA

    CERN Document Server

    Andreev, V.; Begzsuren, K.; Belousov, A.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Contreras, J.G.; Cvach, J.; Dainton, J.B.; Daum, K.; Diaconu, C.; Dobre, M.; Dodonov, V.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Haidt, D.; Henderson, R.C.W.; Herbst, M.; Hladky, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jung, H.; Kapichine, M.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Malinovski, E.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Morozov, A.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nowak, G.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Straumann, U.; Sykora, T.; Thompson, P.D.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zhang, Z.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.

    2015-03-18

    A measurement is presented of single- and double-differential dijet cross sections in diffractive deep-inelastic $ep$ scattering at HERA using data collected by the H1 experiment corresponding to an integrated luminosity of 290 pb^{-1}. The investigated phase space is spanned by the photon virtuality in the range of 4diffractive parton distribution functions and the value of the strong coupling constant is extracted.

  11. π−-12C elastic scattering above the ∆ resonance using diffraction ...

    Indian Academy of Sciences (India)

    the diffraction model framework using the recently proposed parametrization of the phase- ... For example, Hong and Kim [7] have used the conventional six- ... In a recent article, Ahmad and Arafah [9] (hereafter to be referred to as I) .... Here, it may be added that in multiparameter fitting of the elastic scattering angular.

  12. Comparison of grain to grain orientation and stiffness mapping by spatially resolved acoustic spectroscopy and EBSD.

    Science.gov (United States)

    Mark, A F; Li, W; Sharples, S; Withers, P J

    2017-07-01

    Our aim was to establish the capability of spatially resolved acoustic spectroscopy (SRAS) to map grain orientations and the anisotropy in stiffness at the sub-mm to micron scale by comparing the method with electron backscatter diffraction (EBSD) undertaken within a scanning electron microscope. In the former the grain orientations are deduced by measuring the spatial variation in elastic modulus; conversely, in EBSD the elastic anisotropy is deduced from direct measurements of the crystal orientations. The two test-cases comprise mapping the fusion zones for large TIG and MMA welds in thick power plant austenitic and ferritic steels, respectively; these are technologically important because, among other things, elastic anisotropy can cause ultrasonic weld inspection methods to become inaccurate because it causes bending in the paths of sound waves. The spatial resolution of SRAS is not as good as that for EBSD (∼100 μm vs. ∼a few nm), nor is the angular resolution (∼1.5° vs. ∼0.5°). However the method can be applied to much larger areas (currently on the order of 300 mm square), is much faster (∼5 times), is cheaper and easier to perform, and it could be undertaken on the manufacturing floor. Given these advantages, particularly to industrial users, and the on-going improvements to the method, SRAS has the potential to become a standard method for orientation mapping, particularly in cases where the elastic anisotropy is important over macroscopic/component length scales. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  13. Assessment of dynamic softening mechanisms in Allvac 718Plus{sup TM} by EBSD analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitsche, Stefan, E-mail: stefan.mitsche@felmi-zfe.at [Institute for Electron Microscopy, Graz University of Technology, Steyrergasse 17, Graz (Austria); Sommitsch, Christof [Institute for Material Science and Welding, Christian Doppler Laboratory for Materials Modelling and Simulation, Graz University of Technology, Graz (Austria); Huber, Daniel; Stockinger, Martin [Boehler Schmiedetechnik GmbH and Co KG, Kapfenberg (Austria); Poelt, Peter [Institute for Electron Microscopy, Graz University of Technology, Steyrergasse 17, Graz (Austria)

    2011-04-25

    Research highlights: {yields} EBSD investigations of hot deformed superalloy Allvac 718Plus{sup TM}. {yields} Dynamic softening (recovery, DDRX and CDRX) in dependence on the temperature and strain rate. {yields} At high temperature (1050 deg. C) and high strain rate (10 s{sup -1}) mainly DDRX. {yields} At high temperature (1050 deg. C) and low strain rate (0.1 s{sup -1}) combination of DDRX, CDRX and recovery. - Abstract: The nickel-based superalloy Allvac 718Plus{sup TM} is a future candidate for turbine disc applications, as this new material combines the formability and cost advantages of Alloy 718 with the higher temperature capability of Waspaloy. Due to the strong influence of the microstructure on the final mechanical properties, a fundamental knowledge of the dynamic recrystallization mechanism of Allvac 718Plus{sup TM} is of great importance in order to develop precise microstructure evolution models for this material. Compression tests were performed at temperatures of 900 deg. C to 1050 deg. C and strain rates between 0.1 s{sup -1} and 10 s{sup -1}. The microstructures obtained were analyzed by electron backscatter diffraction (EBSD) to evaluate the influence of the different hot forming parameters on the dynamic softening processes of Allvac 718Plus{sup TM}.

  14. Measurement of the diffractive cross section in deep inelastic scattering

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1996-02-01

    Diffractive scattering of γ*p→X+N, where N is either a proton or a nucleonic system with M N X of the system X up to 15 GeV at average Q 2 values of 14 and 31 GeV 2 . The diffractive cross section dσ diff /dM X is, within errors, found to rise linearly with W. Parameterizing the W dependence by the form dσ diff /dM X ∝(W 2 )sup((2 anti α IP -2)) the DIS data yield for the pomeron trajectory anti α IP =1.23±0.02(stat)±0.04(syst) averaged over t in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than anti α IP extracted from soft interactions. The value of anti α IP measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates form processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton F 2 D(3) (β, Q 2 , x IP ) has been determined, where β is the momentum fraction of the struck quark in the pomeron. The form F 2 D(3) =constant. (1/x IP ) a gives a good fit to the data in all β and Q 2 intervals with a=1.46±0.04(stat)±0.08(syst). (orig.)

  15. Production of exclusive dijets in diffractive deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H.; Gueta, O.; Kananov, S.; Levy, A.; Stern, A. [Tel Aviv University, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel Aviv (Israel); Abt, I.; Caldwell, A.; Schmidke, W.B.; Verbytskyi, A. [Max-Planck-Institut fuer Physik, Munich (Germany); Adamczyk, L.; Gach, G.; Guzik, M.; Kisielewska, D.; Przybycien, M. [AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Adamus, M.; Tymieniecka, T. [National Centre for Nuclear Research, Warsaw (Poland); Antonelli, S. [University, Bologna (Italy); INFN Bologna, Bologna (Italy); Aushev, V. [National Academy of Sciences, Institute for Nuclear Research, Kiev (Ukraine); National Taras Shevchenko University of Kyiv, Department of Nuclear Physics, Kiev (Ukraine); Aushev, Y.; Iudin, A.; Kadenko, I.; Kondrashova, N.; Kononenko, O.; Onishchuk, Yu.; Shevchenko, R.; Shkola, O.; Trofymov, A.; Viazlo, O.; Zakharchuk, N. [National Taras Shevchenko University of Kyiv, Department of Nuclear Physics, Kiev (Ukraine); Behnke, O.; Behrens, U.; Borras, K.; Ciesielski, R.; Dolinska, G.; Geiser, A.; Gizhko, A.; Grebenyuk, J.; Gregor, I.; Hain, W.; Januschek, F.; Klein, U.; Korol, I.; Koetz, U.; Kowalski, H.; Kuprash, O.; Libov, V.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Lontkovskyi, D.; Makarenko, I.; Malka, J.; Myronenko, V.; Notz, D.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Schoerner-Sadenius, T.; Stefaniuk, N.; Szuba, J.; Turkot, O.; Wichmann, K.; Wolf, G.; Zenaiev, O. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Bertolin, A.; Dusini, S.; Longhin, A.; Stanco, L. [INFN Padova, Padua (Italy); Bloch, I. [Deutsches Elektronen-Synchrotron DESY, Zeuthen (Germany); Boos, E.G.; Pokrovskiy, N.S.; Zhautykov, B.O. [Institute of Physics and Technology of Ministry of Education and Science of Kazakhstan, Almaty (Kazakhstan); Brock, I.; Mergelmeyer, S.; Paul, E. [Physikalisches Institut der Universitaet Bonn, Bonn (Germany); Brook, N.H.; Wing, M. [University College London, Physics and Astronomy Department, London (United Kingdom); Brugnera, R.; Garfagnini, A.; Limentani, S. [Dipartimento di Fisica e Astronomia, Univ., Padua (Italy); INFN, Padua (Italy); Bruni, A.; Corradi, M. [INFN Bologna, Bologna (Italy); Bussey, P.J.; Saxon, D.H.; Skillicorn, I.O. [University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom); Capua, M.; Schioppa, M.; Tassi, E. [Calabria University, Physics Department, Cosenza (Italy); INFN, Cosenza (Italy); Catterall, C.D. [York University, Department of Physics, Ontario (Canada); Chwastowski, J.; Figiel, J.; Krupa, B.; Stopa, P.; Zawiejski, L. [Polish Academy of Sciences, The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Ciborowski, J.; Grzelak, G.; Nowak, R.J.; Perlanski, W.; Tomaszewska, J.; Zarnecki, A.F. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Cooper-Sarkar, A.M.; Devenish, R.C.E.; Walczak, R. [University of Oxford, Department of Physics, Oxford (United Kingdom); Corriveau, F. [McGill University, Department of Physics, Montreal, Quebec (Canada); Dementiev, R.K.; Gladilin, L.K.; Golubkov, Yu.A.; Korzhavina, I.A.; Levchenko, B.B.; Lukina, O.Yu.; Shcheglova, L.M.; Zotkin, D.S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Foster, B.; Gallo, E.; Klanner, R.; Kovalchuk, N.; Lohrmann, E.; Sztuk-Dambietz, J.; Szuba, D.; Turcato, M. [Hamburg University, Institute of Experimental Physics, Hamburg (Germany); Hochman, D.; Karshon, U. [Weizmann Institute, Department of Particle Physics and Astrophysics, Rehovot (Israel); Hori, R.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y. [Institute of Particle and Nuclear Studies, KEK, Tsukuba (Japan); Ibrahim, Z.A.; Jomhari, N.Z.; Mohamad Idris, F.; Mohammad Nasir, N.; Wan Abdullah, W.A.T. [Universiti Malaya, National Centre for Particle Physics, Kuala Lumpur (Malaysia); Iga, Y. [Polytechnic University, Tokyo (Japan); Ishitsuka, M.; Kuze, M.; Nobe, T. [Tokyo Institute of Technology, Department of Physics, Tokyo (JP); Kaur, M.; Kaur, P.; Singh, I. [Panjab University, Department of Physics, Chandigarh (IN); Kotanski, A.; Slominski, W. [Jagellonian University, Department of Physics, Krakow (PL); Ruspa, M. [Universita del Piemonte Orientale, Novara (IT); INFN, Turin (IT); Shyrma, Yu.; Zhmak, N. [National Academy of Sciences, Institute for Nuclear Research, Kiev (UA); Solano, A. [Universita di Torino (IT); INFN, Turin (IT); Tsurugai, T. [Meiji Gakuin University, Faculty of General Education, Yokohama (JP); Collaboration: ZEUS Collaboration

    2016-01-15

    Production of exclusive dijets in diffractive deep inelastic e{sup ±}p scattering has been measured with the ZEUS detector atHERAusing an integrated luminosity of 372 pb{sup -1}. The measurement was performed for γ* - p centre-of-mass energies in the range 90 < W < 250 GeV and for photon virtualities Q{sup 2} > 25 GeV{sup 2}. Energy flows around the jet axis are presented. The cross section is presented as a function of β and φ, where β = x/x{sub P}, x is the Bjorken variable and x{sub P} is the proton fractional longitudinal momentum loss. The angle φ is defined by the γ*-dijet plane and the γ*-e{sup ±} plane in the rest frame of the diffractive final state. The φ cross section is measured in bins of β. The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange. (orig.)

  16. Production of exclusive dijets in diffractive deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.

    2015-05-01

    Production of exclusive dijets in diffractive deep inelastic e ± p scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 372 pb -1 . The measurement was performed for γ * -p centre-of-mass energies in the range 9025 GeV 2 . Energy and transverse-energy flows around the jet axis are presented. The cross section is presented as a function of β and φ, where β=x/x P , x is the Bjorken variable and x P is the proton fractional longitudinal momentum loss. The angle φ is defined by the γ * -dijet plane and the γ * -e ± plane in the rest frame of the diffractive final state. The φ cross section is measured in bins of β. The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange.

  17. Production of exclusive dijets in diffractive deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Gueta, O.; Kananov, S.; Levy, A.; Stern, A.; Abt, I.; Caldwell, A.; Schmidke, W.B.; Verbytskyi, A.; Adamczyk, L.; Gach, G.; Guzik, M.; Kisielewska, D.; Przybycien, M.; Adamus, M.; Tymieniecka, T.; Antonelli, S.; Aushev, V.; Aushev, Y.; Iudin, A.; Kadenko, I.; Kondrashova, N.; Kononenko, O.; Onishchuk, Yu.; Shevchenko, R.; Shkola, O.; Trofymov, A.; Viazlo, O.; Zakharchuk, N.; Behnke, O.; Behrens, U.; Borras, K.; Ciesielski, R.; Dolinska, G.; Geiser, A.; Gizhko, A.; Grebenyuk, J.; Gregor, I.; Hain, W.; Januschek, F.; Klein, U.; Korol, I.; Koetz, U.; Kowalski, H.; Kuprash, O.; Libov, V.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Lontkovskyi, D.; Makarenko, I.; Malka, J.; Myronenko, V.; Notz, D.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Schoerner-Sadenius, T.; Stefaniuk, N.; Szuba, J.; Turkot, O.; Wichmann, K.; Wolf, G.; Zenaiev, O.; Bertolin, A.; Dusini, S.; Longhin, A.; Stanco, L.; Bloch, I.; Boos, E.G.; Pokrovskiy, N.S.; Zhautykov, B.O.; Brock, I.; Mergelmeyer, S.; Paul, E.; Brook, N.H.; Wing, M.; Brugnera, R.; Garfagnini, A.; Limentani, S.; Bruni, A.; Corradi, M.; Bussey, P.J.; Saxon, D.H.; Skillicorn, I.O.; Capua, M.; Schioppa, M.; Tassi, E.; Catterall, C.D.; Chwastowski, J.; Figiel, J.; Krupa, B.; Stopa, P.; Zawiejski, L.; Ciborowski, J.; Grzelak, G.; Nowak, R.J.; Perlanski, W.; Tomaszewska, J.; Zarnecki, A.F.; Cooper-Sarkar, A.M.; Devenish, R.C.E.; Walczak, R.; Corriveau, F.; Dementiev, R.K.; Gladilin, L.K.; Golubkov, Yu.A.; Korzhavina, I.A.; Levchenko, B.B.; Lukina, O.Yu.; Shcheglova, L.M.; Zotkin, D.S.; Foster, B.; Gallo, E.; Klanner, R.; Kovalchuk, N.; Lohrmann, E.; Sztuk-Dambietz, J.; Szuba, D.; Turcato, M.; Hochman, D.; Karshon, U.; Hori, R.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Ibrahim, Z.A.; Jomhari, N.Z.; Mohamad Idris, F.; Mohammad Nasir, N.; Wan Abdullah, W.A.T.; Iga, Y.; Ishitsuka, M.; Kuze, M.; Nobe, T.; Kaur, M.; Kaur, P.; Singh, I.; Kotanski, A.; Slominski, W.; Ruspa, M.; Shyrma, Yu.; Zhmak, N.; Solano, A.; Tsurugai, T.

    2016-01-01

    Production of exclusive dijets in diffractive deep inelastic e ± p scattering has been measured with the ZEUS detector atHERAusing an integrated luminosity of 372 pb -1 . The measurement was performed for γ* - p centre-of-mass energies in the range 90 < W < 250 GeV and for photon virtualities Q 2 > 25 GeV 2 . Energy flows around the jet axis are presented. The cross section is presented as a function of β and φ, where β = x/x P , x is the Bjorken variable and x P is the proton fractional longitudinal momentum loss. The angle φ is defined by the γ*-dijet plane and the γ*-e ± plane in the rest frame of the diffractive final state. The φ cross section is measured in bins of β. The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange. (orig.)

  18. Measurement of the diffractive deep-inelastic scattering cross section with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2010-06-15

    The cross section for the diffractive deep-inelastic scattering process ep{yields}eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data sample covers the range x{sub P} < 0.1 in fractional proton longitudinal momentum loss, 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4diffractive parton distribution functions previously extracted from complementary measurements of inclusive diffractive deep-inelastic scattering. The ratio of the diffractive to the inclusive ep cross section is studied as a function of Q{sup 2}, {beta} and x{sub P}. (orig.)

  19. Multiple scattering in grazing-incidence X-ray diffraction: impact on lattice-constant determination in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Resel, Roland, E-mail: roland.resel@tugraz.at; Bainschab, Markus; Pichler, Alexander [Graz University of Technology, Graz (Austria); Dingemans, Theo [Delft University of Technology, Delft (Netherlands); Simbrunner, Clemens [Johannes Kepler University, Linz (Austria); University of Bremen, Bremen (Germany); Stangl, Julian [Johannes Kepler University, Linz (Austria); Salzmann, Ingo [Humboldt University, Berlin (Germany)

    2016-04-20

    The use of grazing-incidence X-ray diffraction to determine the crystal structure from thin films requires accurate positions of Bragg peaks. Refraction effects and multiple scattering events have to be corrected or minimized. Dynamical scattering effects are observed in grazing-incidence X-ray diffraction experiments using an organic thin film of 2,2′:6′,2′′-ternaphthalene grown on oxidized silicon as substrate. Here, a splitting of all Bragg peaks in the out-of-plane direction (z-direction) has been observed, the magnitude of which depends both on the incidence angle of the primary beam and the out-of-plane angle of the scattered beam. The incident angle was varied between 0.09° and 0.25° for synchrotron radiation of 10.5 keV. This study reveals comparable intensities of the split peaks with a maximum for incidence angles close to the critical angle of total external reflection of the substrate. This observation is rationalized by two different scattering pathways resulting in diffraction peaks at different positions at the detector. In order to minimize the splitting, the data suggest either using incident angles well below the critical angle of total reflection or angles well above, which sufficiently attenuates the contributions from the second scattering path. This study highlights that the refraction of X-rays in (organic) thin films has to be corrected accordingly to allow for the determination of peak positions with sufficient accuracy. Based thereon, a reliable determination of the lattice constants becomes feasible, which is required for crystallographic structure solutions from thin films.

  20. A detailed study of the amorphisation reaction in NiMo alloys by diffraction and scattering methods

    International Nuclear Information System (INIS)

    Rose, P.

    1995-01-01

    X-ray and neutron diffraction and neutron small angle scattering (SAS) measurements have been made on NiMo specimens prepared by mechanical alloying (MA). We have extended our earlier studies and measured a new series of MA treated NiMo samples. Molybdenum scatters X-rays more strongly than nickel, but with neutrons, the reverse is the case. Analysis of the X-ray and neutron diffraction patterns together, therefore provides an accurate measurement of the consumption of both constituents in the reaction. The diffraction data on the new samples confirm that the consumption of the parent crystalline materials follows an exponential dependence with the time of MA treatment and also provides evidence of a ''delayed start'' to the reaction. This is consistent with an initial period of mixing of the constituents before the onset of (atomic) interdiffusion and amorphisation. The neutron SAS experiments have been made on Ni 47.7 Mo 52.3 MA treated specimens, which can be ''contrast-matched'' to reduce the scattering from the external surfaces of the powder grains. The new neutron SAS data confirm the presence of fractal surfaces between the alloy constituents, for samples in the early stages of the MA process. (orig.)

  1. Bragg's Law diffraction simulations for electron backscatter diffraction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kacher, Josh, E-mail: jkacherbyu@gmail.com [Department of Mechanical Engineering, Brigham Young University, 455B Crabtree Technology Building, Provo, UT 84602 (United States); Landon, Colin; Adams, Brent L.; Fullwood, David [Department of Mechanical Engineering, Brigham Young University, 455B Crabtree Technology Building, Provo, UT 84602 (United States)

    2009-08-15

    In 2006, Angus Wilkinson introduced a cross-correlation-based electron backscatter diffraction (EBSD) texture analysis system capable of measuring lattice rotations and elastic strains to high resolution. A variation of the cross-correlation method is introduced using Bragg's Law-based simulated EBSD patterns as strain free reference patterns that facilitates the use of the cross-correlation method with polycrystalline materials. The lattice state is found by comparing simulated patterns to collected patterns at a number of regions on the pattern using the cross-correlation function and calculating the deformation from the measured shifts of each region. A new pattern can be simulated at the deformed state, and the process can be iterated a number of times to converge on the absolute lattice state. By analyzing an iteratively rotated single crystal silicon sample and recovering the rotation, this method is shown to have an angular resolution of {approx}0.04{sup o} and an elastic strain resolution of {approx}7e-4. As an example of applications, elastic strain and curvature measurements are used to estimate the dislocation density in a single grain of a compressed polycrystalline Mg-based AZ91 alloy.

  2. Measurement of D* production in diffractive deep inelastic scattering at HERA

    Czech Academy of Sciences Publication Activity Database

    Andreev, V.; Baghdasaryan, A.; Begzsuren, K.; Cvach, Jaroslav; Ferencei, Jozef; Hladký, Jan; Reimer, Petr

    2017-01-01

    Roč. 77, č. 5 (2017), s. 1-14, č. článku 340. ISSN 1434-6044 R&D Projects: GA MŠk LG14033 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : diffractive deep inelastic scattering * charm meson production * boson-gluon fusion * next-to- leading order QCD Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 5.331, year: 2016

  3. Dijet production in diffractive deep-inelastic scattering in next-to-next-to-leading order QCD arXiv

    CERN Document Server

    Britzger, D.; Gehrmann, T.; Huss, A.; Niehues, J.; Žlebčík, R.

    Hard processes in diffractive deep-inelastic scattering can be described by a factorisation into parton-level subprocesses and diffractive parton distributions. In this framework, cross sections for inclusive dijet production in diffractive deep-inelastic electron-proton scattering (DIS) are computed to next-to-next-to-leading order (NNLO) QCD accuracy and compared to a comprehensive selection of data. Predictions for the total cross sections, 39 single-differential and four double-differential distributions for six measurements at HERA by the H1 and ZEUS collaborations are calculated. In the studied kinematical range, the NNLO corrections are found to be sizeable and positive. The NNLO predictions typically exceed the data, while the kinematical shape of the data is described better at NNLO than at next-to-leading order (NLO). A significant reduction of the scale uncertainty is achieved in comparison to NLO predictions. Our results use the currently available NLO diffractive parton distributions, and the dis...

  4. Measurement of the diffractive structure function of the proton in deep inelastic ep scattering with the ZEUS detector

    International Nuclear Information System (INIS)

    Doeker, T.

    1995-10-01

    The analysis of deep inelastic scattering events at the ep collider HERA at DESY has shown that in about 7% of the recorded events a large rapidity gap of at least 3 units is observed between the proton direction and the observed hadronic system. The observation can be understood in terms of soft photon-hadron reactions, where the hadronic final state is interpreted as arising from the dissociation of a virtual photon in the field of a diffractively scattered proton. The cross section of this process can be expressed in terms of the diffractive structure function of the proton. Here a measurement with the ZEUS detector is presented of the diffractive structure function of the proton as a function of x IP , the momentum fraction lost by the proton, of β, the momentum fraction of the struck constituent with respect to x IP , and of Q 2 , the virtuality of the exchanged photon. The kinematic range of this measurement is 6.3.10 -4 IP -2 , 0.1 2 2 2 . The x IP dependence is consistent with the form (1/x IP ) a where a=1.30±0.08(stat) -0.14 +0.08 (sys) in all bins of β and Q 2 . The diffractive structure function scales with Q 2 at fixed β. The results are compared with theoretical predictions of diffractive dissociation in deep inelastic scattering. (orig.)

  5. Diffractive Open Charm Production in Deep-Inelastic Scattering and Photoproduction at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Gwilliam, C.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.I.; Lueders, H.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T.N.; Truoel, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, Marcel; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, C.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-01-01

    Measurements are presented of diffractive open charm production at HERA. The event topology is given by ep -> eX Y where the system X contains at least one charmed hadron and is well separated by a large rapidity gap from a leading low-mass proton remnant system Y. Two analysis techniques are used for the cross section measurements. In the first, the charm quark is tagged by the reconstruction of a D*(2010) meson. This technique is used in deep-inelastic scattering (DIS) and photoproduction. In the second, a method based on the displacement of tracks from the primary vertex is used to measure the open charm contribution to the inclusive diffractive cross section in DIS. The measurements are compared with next-to-leading order QCD predictions based on diffractive parton density functions previously obtained from a QCD analysis of the inclusive diffractive cross section at H1. A good agreement is observed in the full kinematic regime, which supports the validity of QCD factorization for open charm production in...

  6. Asian conference on x-rays and related techniques in research and industry. Proceedings

    International Nuclear Information System (INIS)

    1996-01-01

    This proceedings compile the paper presented at the conference. The papers for presentation are from wide spectrum stressing the interdisciplinary nature of the conference i.e. x-ray fluorescence spectrometry (XRF), x-ray diffraction (XRD), TEM, scanning electron microscope (SEM), energy dispersive x-ray (EDX), auger electron microscopy, electron back scatter diffraction (EBSD)

  7. Electron Backscatter Diffraction (EBSD) Analysis and U-Pb Geochronology of the Oldest Lunar Zircon: Constraining Early Lunar Differentiation and Dating Impact-Related Deformation

    Science.gov (United States)

    Timms, Nick; Nemchin, Alexander; Grange, Marion; Reddy, Steve; Pidgeon, Bob; Geisler, Thorsten; Meyer, Chuck

    2009-01-01

    The evolution of the early moon was dominated by two processes (i) crystallization of the Lunar Magma Ocean (LMO) and differentiation of potassium-rare earth element-phosphorous-rich residual magma reservoir referred to as KREEP, and (ii) an intense meteorite bombardment referred to as lunar cataclysm . The exact timing of these processes is disputed, and resolution relies on collection and interpretation of precise age data. This study examines the microstructure and geochronology of zircon from lunar impact breccias collected during the Apollo 17 mission. A large zircon clast within lunar breccia 72215,195 shows sector zoning in optical microscopy, cathodoluminescence (CL) imaging and Raman mapping, and indicates that it was a relict fragment of a much larger magmatic grain. Sensitive high resolution ion microprobe (SHRIMP) U-Pb analysis of the zircon shows that U and Th concentration correlate with sector zoning, with darkest CL domains corresponding with high-U and Th (approx.150 and approx.100 ppm respectively), and the brightest-CL sectors containing approx.30-50 ppm U and approx.10-20 ppm Th. This indicates that variations in optical CL and Raman properties correspond to differential accumulation of alpha-radiation damage in each sector. Electron backscatter diffraction (EBSD) mapping shows that the quality of electron backscatter patterns (band contrast) varies with sector zoning, with the poorest quality patterns obtained from high-U and Th, dark-CL zones. EBSD mapping also reveals a deformation microstructure that is cryptic in optical, CL and Raman imaging. Two orthogonal sets of straight discrete and gradational low-angle boundaries accommodate approx.12 misorientation across the grain. The deformation bands are parallel to the crystallographic {a}-planes of the zircon, have misorientation axes parallel to the c-axis, and are geometrically consistent with formation by dislocation creep associated with {010} slip. The deformation bands are unlike curved

  8. Diffractive scattering of H atoms from the (001) surface of LiF at 78 K

    International Nuclear Information System (INIS)

    Caracciolo, G.; Iannotta, S.; Scoles, G.; Valbusa, U.

    1980-01-01

    We have built an apparatus for the measurement of high resolution diffractive scattering of hydrogen atoms from crystal surfaces. The apparatus comprises a hydrogen atom beam source, a hexapolar magnetic field velocity selector, a variable temperature UHV crystal manipulator, and a rotatable bolometer detector. The diffraction pattern of a beam of hydrogen atoms scattered by a (001) LiF surface at 78 K has been obtained for different angles of incidence and different orientations of the crystal. The Debye--Waller factor has been measured leading to a surface Debye temperature theta/sub S/=550 +- 38 K. The corrugated-hard-wall-with-a-well model of Garibaldi et al. [Surf. Sci. 48, 649 (1975)] has been used for the interpretation of the intensities of the diffracted peaks. By means of a best fit procedure we obtain a main ''corrugation'' parameter xi 0 =0.095 A. By comparison of the data with the theory of Cabrera et al. [Surf. Sci. 19, 70 (1967] at the first order, the strength parameters of a periodic Morse potential have been determined

  9. Steel research using neutron beam techniques. In-situ neutron diffraction, small-angle neutron scattering and residual stress analysis

    International Nuclear Information System (INIS)

    Sueyoshi, Hitoshi; Ishikawa, Nobuyuki; Yamada, Katsumi; Sato, Kaoru; Nakagaito, Tatsuya; Matsuda, Hiroshi; Arakaki, Yu; Tomota, Yo

    2014-01-01

    Recently, the neutron beam techniques have been applied for steel researches and industrial applications. In particular, the neutron diffraction is a powerful non-destructive method that can analyze phase transformation and residual stress inside the steel. The small-angle neutron scattering is also an effective method for the quantitative evaluation of microstructures inside the steel. In this study, in-situ neutron diffraction measurements during tensile test and heat treatment were conducted in order to investigate the deformation and transformation behaviors of TRIP steels. The small-angle neutron scattering measurements of TRIP steels were also conducted. Then, the neutron diffraction analysis was conducted on the high strength steel weld joint in order to investigate the effect of the residual stress distribution on the weld cracking. (author)

  10. Photon diffractive dissociation in deep inelastic scattering

    International Nuclear Information System (INIS)

    Ryskin, M.G.

    1990-01-01

    The new ep-collider HERA gives us the possibility to study the diffractive dissociation of virtual photon in deep inelastic ep-collision. The process of photon dissociation in deep inelastic scattering is the most direct way to measure the value of triple-pomeron vertex G 3P . It was shown that the value of the correct bare vertex G 3P may more than 4 times exceeds its effective value measuring in the triple-reggeon region and reaches the value of about 40-50% of the elastic pp-pomeron vertex. On the contrary in deep inelastic processes the perpendicular momenta q t of the secondary particles are large enough. Thus in deep inelastic reactions one can measure the absolute value of G 3P vertex in the most direct way and compare its value and q t dependence with the leading log QCD predictions

  11. Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel

    International Nuclear Information System (INIS)

    Lillo, T.M.; Rooyen, I.J. van; Wu, Y.Q.

    2016-01-01

    Highlights: • SiC grain orientation determined by TEM-based precession electron diffraction. • Orientation data improved with increasing TEM sample thickness. • Fraction of low angle grain boundaries lower from PED data than EBSD data. • Fractions of high angle and CSL-related boundaries similar to EBSD data. - Abstract: Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. This work reports the effect of transmission electron microscope (TEM) lamella thickness on the quality of data and establishes a baseline comparison to SiC grain boundary characteristics, in an unirradiated TRISO particle, determined previously using a conventional electron backscatter diffraction (EBSD) scanning electron microscope (SEM)-based technique. In general, it was determined that the lamella thickness produced using the standard focused ion beam (FIB) fabrication process (∼80 nm), is sufficient to provide reliable PED measurements, although thicker lamellae (∼120 nm) were found to produce higher quality orientation data. Also, analysis of SiC grain boundary character from the TEM-based PED data showed a much lower fraction of low-angle grain boundaries compared to SEM-based EBSD data from the SiC layer of a TRISO-coated particle made using the same fabrication parameters and a SiC layer deposited at a slightly lower temperature from a surrogate TRISO particle. However, the fractions of high-angle and coincident site lattice (CSL)-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm (Kirchhofer et al., 2013), depending on the fabrication parameters, and since grain boundary fission product precipitates in irradiated TRISO fuel can be nano-sized, the TEM-based PED orientation data

  12. Measurement of the cross section for diffractive deep-inelastic scattering with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Inst., Yerevan (Armenia); Barrelet, E. [Univ. Pierre et Marie Curie Paris 6, Univ. Denis Diderot Paris 7, CNRS/IN2P3, LPNHE, Paris (France); Bartel, W.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Driesch, M. von den; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [Universite Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham, Birmingham (United Kingdom)

    2011-03-15

    The cross section for the diffractive deep-inelastic scattering process ep{yields}eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data sample covers the range x{sub P}<0.1 in fractional proton longitudinal momentum loss, 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4diffractive parton distribution functions previously extracted from complementary measurements of inclusive diffractive deep-inelastic scattering. The ratio of the diffractive to the inclusive ep cross section is studied as a function of Q{sup 2},{beta} and x{sub P}. (orig.)

  13. Process of diffractive scattering and disintegration of complex particles by nonspherical deformed nuclei

    International Nuclear Information System (INIS)

    Evlanov, M.V.

    1989-01-01

    The differential and integral cross sections of diffractive elastic and inelastic scattering and of the disintegration of complex particles by axial and nonaxial deformed nuclei are investigated depending on the shape, deformability and diffuseness of nuclear boundary as well as on the structure of the incident particles and of the rescattering processes. It is shown that the complicated coincidence experiments and experimnts on inelastic scattering with excitation of the target nucleus collective states are satisfactorily described taking simultaneously into account all factors mentioned above and the final-state interaction between the disintegration products of the incident particle

  14. A quasi-in-situ EBSD observation of the transformation from rolling texture to recrystallization texture in V-4Cr-4Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Lixia [Institute of Materials Research, China Academy of Engineering Physics, Jiangyou, Sichuan Province 621908 (China); Li, Xiongwei [Institute of Metal Research, China Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Fan, Zhijian [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan Province 621900 (China); Jiang, Chunli; Zhou, Ping [Institute of Materials Research, China Academy of Engineering Physics, Jiangyou, Sichuan Province 621908 (China); Lai, Xinchun, E-mail: laixinchun@caep.cn [Institute of Materials Research, China Academy of Engineering Physics, Jiangyou, Sichuan Province 621908 (China)

    2017-04-15

    Recrystallization texture evolution of rolled V-4Cr-4Ti alloy has been investigated by quasi-in-situ EBSD (electron back-scattering diffraction) method. Concurrently, the precipitates were characterized by SEM (Scanning Electron Microscopy). It was found that both the initial rolling textures and the distribution of the precipitates affected the formation of the recrystallization texture. It was revealed that the texture transformations of (558) 〈110〉 + (665) 〈110〉 to (334) 〈483〉 + (665) 〈1 1 2.4〉 were possibly attributed to the selective drag induced by the sparsely dispersed Ti-rich precipitates. While the densely distributed Ti-rich precipitates were responsible for the randomized recrystallization texture. Finally, when the precipitates were absent, the orientation changes from (112) 〈110〉 and (558) 〈110〉 to (111) 〈112〉 and (001) <110> to (001) <520> were observed. - Highlights: • Micro recrystallization texture evolution in V-4Cr-4Ti alloys is reported for the first time. • The volume fraction of Ti-rich precipitates has significant effect on the recrystallization texture evolution. • The dissolution of the Ti-rich precipitates above 1100 °C induces the strengthening of (111) <112> texture.

  15. Study of EBSD Experiment Parameters Influence on Computation of Polycrystalline Pole Figures and Orientation Distribution Function

    Directory of Open Access Journals (Sweden)

    Antonova Anastasia O.

    2016-01-01

    Full Text Available Mathematical model for a polycrystalline specimen and EBSD experiment is proposed. As the measurement parameters, the scanning step and the threshold disorientation angle are considered. To study the impact of the measurement parameters Pole Figures and Orientation Distribution Function of model specimen and corresponding ones, calculated from model EBSD measurements, are compared. The real EBSD experiment was also performed. The results of the model experiment are correlated with such detected in the real EBSD data. The most significant results are formulated in the given work.

  16. Exact scattering and diffraction of antiplane shear waves by a vertical edge crack

    Science.gov (United States)

    Tsaur, Deng-How

    2010-06-01

    Scattering and diffraction problems of a vertical edge crack connected to the surface of a half space are considered for antiplane shear wave incidence. The method of separation of variables is adopted to derive an exact series solution. The total displacement field is expressed as infinite series containing products of radial and angular Mathieu functions with unknown coefficients. An exact analytical determination of unknown coefficients is carried out by insuring the vanishing of normal stresses on crack faces. Frequency-domain results are given for extremely near, near, and far fields, whereas time-domain ones are for horizontal surface and subsurface motions. Comparisons with published data for the dynamic stress intensity factor show good agreement. The exact analytical nature of proposed solutions can be applied very conveniently and rapidly to high-frequency steady-state cases, enhancing the computation efficiency in transient cases when performing the fast Fourier transform. A sampled set of time slices for underground wave propagation benefits the interpretation of scattering and diffraction phenomena induced by a vertical edge crack.

  17. Properties of hadronic final states in diffractive deep inelastic ep scattering at DESY HERA

    International Nuclear Information System (INIS)

    2002-01-01

    Characteristics of the hadronic final state of diffractive deep inelastic scattering events ep→eXp were studied in the kinematic range 4 X 2 2 , 70 P <0.03 with the ZEUS detector at the DESY ep collider HERA using an integrated luminosity of 13.8 pb-1. The events were tagged by identifying the diffractively scattered proton using the leading proton spectrometer. The properties of the hadronic final state X were studied in its center-of-mass frame using thrust, thrust angle, sphericity, energy flow, transverse energy flow, and 'seagull' distributions. As the invariant mass of the system increases, the final state becomes more collimated, more aligned, and more asymmetric in the average transverse momentum with respect to the direction of the virtual photon. Comparisons of the properties of the hadronic final state with predictions from various Monte Carlo model generators suggest that the final state is dominated by qq-barg states at the parton level

  18. Thermal diffuse scattering in time-of-flight neutron diffraction studied on SBN single crystals

    International Nuclear Information System (INIS)

    Prokert, F.; Savenko, B.N.; Balagurov, A.M.

    1994-01-01

    At time-of-flight (TOF) diffractometer D N-2, installed at the pulsed reactor IBR-2 in Dubna, Sr x Ba 1-x Nb 2 O 6 mixed single crystals (SBN-x) of different compositions (0.50 < x< 0.75) were investigated between 15 and 773 K. The diffraction patterns were found to be strongly influenced by the thermal diffuse scattering (TDS). The appearance of the TDS from the long wavelength acoustic models of vibration in single crystals is characterized by the ratio of the velocity of sound to the velocity of neutron. Due to the nature of the TOF Laue diffraction technique used on D N-2, the TDS around Bragg peaks has rather a complex profile. An understanding of the TDS close to Bragg peaks is essential in allowing the extraction of the diffuse scattering occurring at the diffuse ferroelectric phase transition in SBN crystals. 11 refs.; 9 figs.; 1 tab. (author)

  19. Measurement of the diffractive structure function in deep inelastic scattering hat HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-05-01

    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in ep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of x IP , the momentum fraction lost by the proton, of β, the momentum fraction of the struck quark with respect to x IP , and of Q 2 . The x IP dependence is consistent with the form (1/x IP ) a where a=1.30-±0.80(stat) -0.14 +0.08 (sys) in all bins of βand Q 2 . In the measured Q 2 range, the diffractive structure function approximately scales with Q 2 at fixed β. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule. (orig.)

  20. Diffractive Production of Jets and Weak Bosons, and Tests of Hard-Scattering Factorization

    CERN Document Server

    Alvero, L; Terrón, J; Whitmore, J; Alvero, Lyndon; Collins, John C.; Terron, Juan; Whitmore, Jim

    1999-01-01

    We extract diffractive parton densities from diffractive, deep inelastic (DIS) ep data from the ZEUS experiment. Then we use these fits to predict the diffractive production of jets and of W's and Z's in p\\bar p collisions at the Tevatron. Although the DIS data require a hard quark density in the pomeron, we find fairly low rates for the Tevatron processes (a few percent of the inclusive cross section). This results from the combined effects of Q^{2} evolution and of a normalization of the parton densities to the data. The calculated rates for W production are generally consistent with the preliminary data from the Tevatron. However, the jet data from CDF with a ``Roman pot'' trigger are substantially lower than the results of our calculations; if confirmed, this would signal a breakdown of hard-scattering factorization.

  1. EBSD Analysis of Relationship Between Microstructural Features and Toughness of a Medium-Carbon Quenching and Partitioning Bainitic Steel

    Science.gov (United States)

    Li, Qiangguo; Huang, Xuefei; Huang, Weigang

    2017-12-01

    A multiphase microstructure of bainite, martensite and retained austenite in a 0.3C bainitic steel was obtained by a novel bainite isothermal transformation plus quenching and partitioning (B-QP) process. The correlations between microstructural features and toughness were investigated by electron backscatter diffraction (EBSD), and the results showed that the multiphase microstructure containing approximately 50% bainite exhibits higher strength (1617 MPa), greater elongation (18.6%) and greater impact toughness (103 J) than the full martensite. The EBSD analysis indicated that the multiphase microstructure with a smaller average local misorientation (1.22°) has a lower inner stress concentration possibility and that the first formed bainitic ferrite plates in the multiphase microstructure can refine subsequently generated packets and blocks. The corresponding packet and block average size decrease from 11.9 and 2.3 to 8.4 and 1.6 μm, respectively. A boundary misorientation analysis indicated that the multiphase microstructure has a higher percentage of high-angle boundaries (67.1%) than the full martensite (57.9%) because of the larger numbers and smaller sizes of packets and blocks. The packet boundary obstructs crack propagation more effectively than the block boundary.

  2. π- -12C elastic scattering above the Δ resonance using diffraction model

    International Nuclear Information System (INIS)

    Arafah, M.R.

    2008-01-01

    Phenomenological analysis of the π - - 12 C elastic scattering differential cross-section at 400, 486, 500, 584, 663, 672 and 766 MeV is presented. The analysis is made in the diffraction model framework using recently proposed parameterization of the phase-shift function. Good description of the experimental data is achieved at all energies. Microscopic interpretation of the parameters of the phase-shift function is provided in terms of Helm's model density parameters. (author)

  3. Thermodynamic model for the elastic form factor in diffraction scattering of protons

    International Nuclear Information System (INIS)

    Grashin, A.F.; Evstratenko, A.S.; Lepeshkin, M.V.

    1988-01-01

    An explicit expression is obtained for the differential pp(p-bar)-scattering cross section in the diffraction-cone region by employing the thermodynamic model for the elastic form factor previously proposed in Ref. 4. Data for the energy region 16.3≤(s)/sup 1/2/ ≤546 GeV have been analyzed and significant deviations have been discovered from the commonly used approximations in the form of linear or quadratic exponentials

  4. Disappearance of the laue spots of the downward X-ray diffraction and huge recoil Thomson scattering in solid helium as some prominent peculiarities of a quantum crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Tetsuo

    1996-02-01

    In topographs of the downward X-ray diffraction, no Laue spots could be observed using a horizontally thin line-focussed beam. The disappearance of the Laue spots by the downward X-ray diffraction could be explained by two main factors besides a synergistic effect of the smallness of the atomic-scattering factors, the absorption coefficients, the densities etc. One is that the downward X-ray diffraction is completely inelastic scattering, and, as a result, diffracted X-ray beams may become entirely diffuse scattering. The other is that the great difference in the linear scatterer density between the forward and downward directions resulted from the fact that the irradiation of a line-focussed X-ray beam to take section topographs weakens the downward X-ray diffraction. The main reason is not due to the zero-point vibration. (J.P.N.).

  5. Disappearance of the laue spots of the downward X-ray diffraction and huge recoil Thomson scattering in solid helium as some prominent peculiarities of a quantum crystal

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo.

    1996-02-01

    In topographs of the downward X-ray diffraction, no Laue spots could be observed using a horizontally thin line-focussed beam. The disappearance of the Laue spots by the downward X-ray diffraction could be explained by two main factors besides a synergistic effect of the smallness of the atomic-scattering factors, the absorption coefficients, the densities etc. One is that the downward X-ray diffraction is completely inelastic scattering, and, as a result, diffracted X-ray beams may become entirely diffuse scattering. The other is that the great difference in the linear scatterer density between the forward and downward directions resulted from the fact that the irradiation of a line-focussed X-ray beam to take section topographs weakens the downward X-ray diffraction. The main reason is not due to the zero-point vibration. (J.P.N.)

  6. Practical considerations in the calculation of orientation distribution functions from electron back-scattered diffraction patterns

    International Nuclear Information System (INIS)

    Bowen, A.W.

    1994-01-01

    Using model data sets for the Brass orientation, the importance of scatter width, angular accuracy and grain size and volume fraction on the sensitivity of the calculated Orientation Distribution Functions have been determined in order to highlight some of the practical considerations needed in the processing of experimental data from individual grain orientation measurements determined by the Electron Back-Scattered Diffraction technique. It is suggested that the most appropriate scatter width can be calculated from the maximum function height versus scatter width curve in order to accommodate variations in texture sharpness. The sensitivity of the ODF to careful sample preparation, mounting and pattern analysis, in order to keep errors in angular accuracy to 1 or less is demonstrated, as is the imperative need to correct for the size of grains, and their volume fractions. (orig.)

  7. Review of high energy diffraction in real and virtual photon proton scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, G.

    2009-07-15

    The electron-proton collider HERA at DESY opened the door for the study of diffraction in real and virtual photon-proton scattering at center-of-mass energies W up to 250 GeV and for large negative mass squared -Q{sup 2} of the virtual photon up to Q{sup 2}=1600 GeV{sup 2}. At W = 220 GeV and Q{sup 2}=4 GeV{sup 2}, diffraction accounts for about 15% of the total virtual photon proton cross section decreasing to {approx}5% at Q{sup 2}=200 GeV{sup 2}. An overview of the results obtained by the experiments H1 and ZEUS on the production of neutral vector mesons and on inclusive diffraction up to the year 2008 is presented. (orig.)

  8. A unified model for diffractive and inelastic scattering of a light atom from a solid surface

    International Nuclear Information System (INIS)

    Adams, J.E.; Miller, W.H.

    1979-01-01

    A simple model for gas-surface scattering is presented which permits treatment of inelastic effects in diffractive systems. The model, founded on an impulsive collision assumption, leads to an intensity distribution which is just a sum of contributions from n-phonon scattering events. Furthemore, by using a convenient form for the repulsive interaction potential, analytic expressions are obtained for the elastic and one-phonon intensities that are in qualitative agreement with experimental results. (Auth.)

  9. Studies of diffractive scattering of photons at large momentum transfer and of the VFPS detector at HERA

    International Nuclear Information System (INIS)

    Hreus, Tomas

    2008-09-01

    In this thesis, two studies of the diffractive phenomena in the electron proton collisions with the H1 detector at HERA are presented. The rst is the study of the inclusive elastic diffractive events ep → eXp in the regime of high photon virtuality (Q 2 >few GeV 2 ), with the scattered proton detected by the Very Forward Proton Spectrometer (VFPS). The VFPS detector, designed to measure diffractive scattered protons with high acceptance, has been installed in 2004 to benefit from the HERA II luminosity increase. The selected event sample of an integrated luminosity of 130.2 pb -1 was collected in years 2006-2007. Data sample distributions are compared to the prediction based on the diffractive parton distribution functions, as extracted from the H1 measurement of the diffractive structure function F D(3) 2 at HERA I. After the study of the VFPS efficiency, the VFPS acceptance as a function of x P is estimated and studied in relation to the forward proton beam optics. The second study leads to the cross section measurement of the diffractive scattering of quasi-real photons off protons, γp → γY, with the large momentum transfer, vertical stroke t vertical stroke. The final state photon is separated from the proton dissociation system, Y, by a large rapidity gap and has a large transverse momentum, p T > 2 GeV. Large p T imply the presence of the hard scale t (vertical stroke t vertical stroke ≅ p 2 T ) and allows predictions of the perturbative QCD to be applied. The measurement is based on an integrated luminosity 46.2 pb -1 of data collected in the 1999-2000 running period. Cross sections σ(W) as a function of the incident photon-proton centre of mass energy, W, and dσ/d vertical stroke t vertical stroke are measured in the range Q 2 2 , 175 2 and y P <0.05. The cross section measurements have been compared to predictions of LLA BFKL calculations. (orig.)

  10. Influence of multiple small-angle neutron scattering on diffraction peak broadening in ferritic steel

    Czech Academy of Sciences Publication Activity Database

    Woo, W.; Em, V.; Shin, E.; Mikula, Pavol; Ryukhtin, Vasyl

    2015-01-01

    Roč. 48, APR (2015), s. 350-356 ISSN 0021-8898 R&D Projects: GA ČR GB14-36566G; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : peak broadening * small-angle neutron scattering * neutron diffraction * magnetic domain Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.720, year: 2014

  11. Tests of QCD factorisation in the diffractive production of dijets in deep-inelastic scattering and photoproduction at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schätzel, S.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-08-01

    Measurements are presented of differential dijet cross sections in diffractive photoproduction (Q2<0.01 GeV2) and deep-inelastic scattering processes (DIS, 4diffractive parton densities previously obtained from a QCD analysis of inclusive diffractive DIS cross sections by H1. In DIS, the dijet data are well described, supporting the validity of QCD factorisation. The diffractive DIS dijet data are more sensitive to the diffractive gluon density at high fractional parton momentum than the measurements of inclusive diffractive DIS. In photoproduction, the predicted dijet cross section has to be multiplied by a factor of approximately 0.5 for both direct and resolved photon interactions to describe the measurements. The ratio of measured dijet cross section to NLO prediction in photoproduction is a factor 0.5±0.1 smaller than the same ratio in DIS. This suppression is the first clear observation of QCD hard scattering factorisation breaking at HERA. The measurements are also compared to the two soft colour neutralisation models SCI and GAL. The SCI model describes diffractive dijet production in DIS but not in photoproduction. The GAL model fails in both kinematic regions.

  12. Investigation of solid solution of hydrogen in α-manganese by neutron diffraction and inelastic neutron scattering

    International Nuclear Information System (INIS)

    Fedotov, V.K.; Antonov, V.E.; Kolesnikov, A.I.; Kornell, K.; Vipf, G.; Grosse, G.; Vagner, F.Eh.; Sikolenko, V.V.; Sumin, V.V.; )

    1997-01-01

    The FCC-lattice of the solid solution α-MnH 0.073 with the mass of 8.45 g is investigated by the neutron diffraction method and the inelastic neutron scattering technique. The neutron diffraction measurements are made by the diffractometer D1B with pyrographite monochromator and the high-resolution Fourier diffractometer HRFD at 300 K. The study of the inelastic incoherent neutron scattering is carried out by means of the inverse geometry spectrometer KDSOG-M at 90 K. The comparative analysis of α-MnH 0.073 and α-Mn spectra is fulfilled for the more correct separation of effects of hydrogen introduction. It is found out that the structure of the solid solution α-MnH 0.073 belongs to the same spatial group I-43m as the structure of α-Mn [ru

  13. Three-Dimensional FIB/EBSD Characterization of Irradiated HfAl3-Al Composite

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Zilong; Guillen, Donna Post; Harris, William; Ban, Heng

    2016-09-01

    A thermal neutron absorbing material, comprised of 28.4 vol% HfAl3 in an Al matrix, was developed to serve as a conductively cooled thermal neutron filter to enable fast flux materials and fuels testing in a pressurized water reactor. In order to observe the microstructural change of the HfAl3-Al composite due to neutron irradiation, an EBSD-FIB characterization approach is developed and presented in this paper. Using the focused ion beam (FIB), the sample was fabricated to 25µm × 25µm × 20 µm and mounted on the grid. A series of operations were carried out repetitively on the sample top surface to prepare it for scanning electron microscopy (SEM). First, a ~100-nm layer was removed by high voltage FIB milling. Then, several cleaning passes were performed on the newly exposed surface using low voltage FIB milling to improve the SEM image quality. Last, the surface was scanned by Electron Backscattering Diffraction (EBSD) to obtain the two-dimensional image. After 50 to 100 two-dimensional images were collected, the images were stacked to reconstruct a three-dimensional model using DREAM.3D software. Two such reconstructed three-dimensional models were obtained from samples of the original and post-irradiation HfAl3-Al composite respectively, from which the most significant microstructural change caused by neutron irradiation apparently is the size reduction of both HfAl3 and Al grains. The possible reason is the thermal expansion and related thermal strain from the thermal neutron absorption. This technique can be applied to three-dimensional microstructure characterization of irradiated materials.

  14. Photon diffractive dissociation in deep inelastic scattering

    International Nuclear Information System (INIS)

    Wuesthoff, M.

    1995-09-01

    The cross section of the Photon Diffractive Dissociation in Deep Inelastic Scattering is calculated in the frame work of perturbative QCD. In the triple Regge region the BFKL-approximation is used to evaluate the leading contributions of the corresponding Feynman diagrams with a subsequent resummation in terms of integral equations. These equations are partly solved leading to an effective two to four gluons transition vertex. This exhibits remarkable properties like the total symmetry under the interchange of gluons, the conformal invariance and a simple colour structure. The presence of four interacting gluons in the t-channel does not support the simple triple Pomeron picture with solely a local vertex. A dimensional conservation law is found for zero momentum transfer with the consequence that a direct coupling of the three BFKL-singularities is absent. Another consequence is the dominance of small transverse momenta at the triple Pomeron vertex. Beyond the triple Regge limit a slightly different approach is used in which the diagrams are calculated with leading log(Q 2 ) accuracy. Higher twist contributions are neglected except for the longitudinal part of the cross section which dominates at small invariant masses M in accordance with QCD-predictions and measurements for the exclusive production of vector mesons. For the comparison with the recently measured Photon Diffractive Dissociation-data from H1 and ZEUS a model for the Pomeron is introduced based on the F 2 -data. In the spirit of the k t -factorization theorem this model is inserted in place of the BFKL-Pomeron. Considering the fact that this approach does not contain free parameters the agreement between the theoretical prediction and the data is found to be good. (orig.)

  15. A phase quantification method based on EBSD data for a continuously cooled microalloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, H.; Wynne, B.P.; Palmiere, E.J., E-mail: e.j.palmiere@sheffield.ac.uk

    2017-01-15

    Mechanical properties of steels depend on the phase constitutions of the final microstructures which can be related to the processing parameters. Therefore, accurate quantification of different phases is necessary to investigate the relationships between processing parameters, final microstructures and mechanical properties. Point counting on micrographs observed by optical or scanning electron microscopy is widely used as a phase quantification method, and different phases are discriminated according to their morphological characteristics. However, it is difficult to differentiate some of the phase constituents with similar morphology. Differently, for EBSD based phase quantification methods, besides morphological characteristics, other parameters derived from the orientation information can also be used for discrimination. In this research, a phase quantification method based on EBSD data in the unit of grains was proposed to identify and quantify the complex phase constitutions of a microalloyed steel subjected to accelerated coolings. Characteristics of polygonal ferrite/quasi-polygonal ferrite, acicular ferrite and bainitic ferrite on grain averaged misorientation angles, aspect ratios, high angle grain boundary fractions and grain sizes were analysed and used to develop the identification criteria for each phase. Comparing the results obtained by this EBSD based method and point counting, it was found that this EBSD based method can provide accurate and reliable phase quantification results for microstructures with relatively slow cooling rates. - Highlights: •A phase quantification method based on EBSD data in the unit of grains was proposed. •The critical grain area above which GAM angles are valid parameters was obtained. •Grain size and grain boundary misorientation were used to identify acicular ferrite. •High cooling rates deteriorate the accuracy of this EBSD based method.

  16. Detectors for X-ray diffraction and scattering: current technology and future challenges

    International Nuclear Information System (INIS)

    Bahr, D.; Brugemann, L.; Gerndt, E.

    2003-01-01

    Full text: Detectors are crucial devices determining the quality, the reliability and the throughput of x-ray diffraction (XRD) and scattering investigations. This is of utmost importance in an industrial environment where in many cases untrained personnel or even without human intervention the experiments and data evaluations are running. The currently used technology of 0-dimensional to 2-dim XRD detectors is presented using selected examples. The application specific requirements on e.g. energy range and resolution, count rate limit, background and dynamic range, and size versus price are discussed. Due to the fact that x-ray diffraction investigations are becoming increasingly attractive in science, research and industry the advance in detector technology is pushed beyond existing limits. The discussion of the resultant market opportunities versus the cost of ownership and market entrance barrier is the final section of the presentation

  17. Diffraction attraction

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Elastic scattering – when colliding particles 'bounce' off each other like billiard balls – has always had a special interest for high energy physicists. While its simplicity makes for deep analogies with classical ideas like diffraction, its jbtle details also test our understanding of the intricate inner mechanisms which drive particle interactions. With a new stock of elastic scattering data now available thanks to experiments at the CERN proton-antiproton Collider, and with studies at higher energies imminent or planned, some seventy physicists gathered in the magnificent chateau at Blois, France, for a 'Workshop on Elastic and Diffractive Scattering at the Collider and Beyond'

  18. Diffraction attraction

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-03-15

    Elastic scattering – when colliding particles 'bounce' off each other like billiard balls – has always had a special interest for high energy physicists. While its simplicity makes for deep analogies with classical ideas like diffraction, its jbtle details also test our understanding of the intricate inner mechanisms which drive particle interactions. With a new stock of elastic scattering data now available thanks to experiments at the CERN proton-antiproton Collider, and with studies at higher energies imminent or planned, some seventy physicists gathered in the magnificent chateau at Blois, France, for a 'Workshop on Elastic and Diffractive Scattering at the Collider and Beyond'.

  19. Suppression of resonance Raman scattering via ground state depletion towards sub-diffraction-limited label-free microscopy

    NARCIS (Netherlands)

    Rieger, S.; Fischedick, M.; Boller, Klaus J.; Fallnich, Carsten

    2016-01-01

    We report on the first experimental demonstration of the suppression of spontaneous Raman scattering via ground state depletion. The concept of Raman suppression can be used to achieve sub-diffraction-limited resolution in label-free microscopy by exploiting spatially selective signal suppression

  20. Effects of focused ion beam milling on electron backscatter diffraction patterns in strontium titanate and stabilized zirconia

    DEFF Research Database (Denmark)

    Saowadee, Nath; Agersted, Karsten; Bowen, Jacob R.

    2012-01-01

    This study investigates the effect of focused ion beam (FIB) current and accelerating voltage on electron backscatter diffraction pattern quality of yttria‐stabilized zirconia (YSZ) and Nb‐doped strontium titanate (STN) to optimize data quality and acquisition time for 3D‐EBSD experiments by FIB...

  1. The Uniform geometrical Theory of Diffraction for elastodynamics: Plane wave scattering from a half-plane.

    Science.gov (United States)

    Djakou, Audrey Kamta; Darmon, Michel; Fradkin, Larissa; Potel, Catherine

    2015-11-01

    Diffraction phenomena studied in electromagnetism, acoustics, and elastodynamics are often modeled using integrals, such as the well-known Sommerfeld integral. The far field asymptotic evaluation of such integrals obtained using the method of steepest descent leads to the classical Geometrical Theory of Diffraction (GTD). It is well known that the method of steepest descent is inapplicable when the integrand's stationary phase point coalesces with its pole, explaining why GTD fails in zones where edge diffracted waves interfere with incident or reflected waves. To overcome this drawback, the Uniform geometrical Theory of Diffraction (UTD) has been developed previously in electromagnetism, based on a ray theory, which is particularly easy to implement. In this paper, UTD is developed for the canonical elastodynamic problem of the scattering of a plane wave by a half-plane. UTD is then compared to another uniform extension of GTD, the Uniform Asymptotic Theory (UAT) of diffraction, based on a more cumbersome ray theory. A good agreement between the two methods is obtained in the far field.

  2. The dynamics of diffracted rays in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A., E-mail: tufaile@usp.br; Tufaile, A.P.B.

    2015-12-18

    We have studied some aspects of the optics of the light scattering in foams. This paper describes the difference between rays and diffracted rays from the point of view of geometrical theory of diffraction. We have represented some bifurcations of light rays using dynamical systems. Based on our observations of foams, we created a solid optical device. The interference patterns of light scattering in foams forming Airy fringes were explored observing the pattern named as the eye of Horus. In the cases we examine, these Airy fringes are associated with light scattering in curved surfaces, while the halo formation is related to the law of edge diffraction. We are proposing a Pohl interferometer using a three-sided bubble/Plateau border system. - Highlights: • We obtained halos scattering light in foams. • We model the light scattering in foams using the geometrical theory of diffraction. • We examine the difference between rays and the diffracted rays. • We developed optical devices for diffracted rays.

  3. EDS'09: 13th International Conference on Elastic & Diffractive Scattering

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The series of International Conferences on Elastic and Diffractive Scattering was founded in 1985 in the picturesque old French town of Blois, famous for its XIV - XVIIth century château, inside of which the first meeting took place. Since then, meetings have been organised every two years in different places of the world: New York (1987), Evanston (1989), Isola d'Elba (1991), Providence (1993), Blois (1995), Seoul (1997), Protvino (1999), Prague (2001), Helsinki (2003), Blois (2005) and Hamburg (2007). The conference will focus on the most recent experimental and theoretical results in particle physics with an emphasis on Quantum Chromodynamics (QCD). http://cern.ch/eds09/ The conference agenda is now full. No further contributions can be accepted.

  4. Diffraction dissociation

    International Nuclear Information System (INIS)

    Abarbanel, H.

    1972-01-01

    An attempt is made to analyse the present theoretical situation in the field of diffraction scattering. Two not yet fully answered questions related with a typical diffraction process AB→CD, namely: what is the structure of the transition matrix elements, and what is the structure of the exchange mechanism responsible for the scattering, are formulated and various proposals for answers are reviewed. Interesting general statement that the products (-1)sup(J)P, where J and P are respectively spin and parity, is conserved at each vertex has been discussed. The exchange mechanism in diffractive scattering has been considered using the language of the complex J-plane as the most appropriate. The known facts about the exchange mechanism are recalled and several routs to way out are proposed. The idea to consider the moving pole and associated branch points as like a particle and the associated two and many particle unitarity cuts is described in more details. (S.B.)

  5. Studies of diffractive scattering of photons at large momentum transfer and of the VFPS detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Hreus, Tomas

    2008-11-15

    In this thesis, two studies of the diffractive phenomena in the electron proton collisions with the H1 detector at HERA are presented. The rst is the study of the inclusive elastic diffractive events ep {yields} eXp in the regime of high photon virtuality (Q{sup 2}>few GeV{sup 2}), with the scattered proton detected by the Very Forward Proton Spectrometer (VFPS). The VFPS detector, designed to measure diffractive scattered protons with high acceptance, has been installed in 2004 to benefit from the HERA II luminosity increase. The selected event sample of an integrated luminosity of 130.2 pb{sup -1} was collected in years 2006-2007. Data sample distributions are compared to the prediction based on the diffractive parton distribution functions, as extracted from the H1 measurement of the diffractive structure function F{sup D(3)}{sub 2} at HERA I. After the study of the VFPS efficiency, the VFPS acceptance as a function of x{sub P} is estimated and studied in relation to the forward proton beam optics. The second study leads to the cross section measurement of the diffractive scattering of quasi-real photons off protons, {gamma}p {yields} {gamma}Y, with the large momentum transfer, vertical stroke t vertical stroke. The final state photon is separated from the proton dissociation system, Y, by a large rapidity gap and has a large transverse momentum, p{sub T} > 2 GeV. Large p{sub T} imply the presence of the hard scale t (vertical stroke t vertical stroke {approx_equal} p{sup 2}{sub T}) and allows predictions of the perturbative QCD to be applied. The measurement is based on an integrated luminosity 46.2 pb{sup -1} of data collected in the 1999-2000 running period. Cross sections {sigma}(W) as a function of the incident photon-proton centre of mass energy, W, and d{sigma}/d vertical stroke t vertical stroke are measured in the range Q{sup 2}<0.01 GeV{sup 2}, 175

  6. The effect of a non-hermitian crystal potential on the scattering matrix in reflection electron diffraction

    International Nuclear Information System (INIS)

    Smith, A.E.; Josefsson, T.W.

    1994-01-01

    An extension to include general inelastic scattering effects is developed for the case of reflection electron diffraction scattering from surfaces. In this extension of work by Lynch and Moodie, it is shown how the resultant non-Hermitian matrix problem can be recast in a form that is suitable for computation. In particular, a computational method is outlined based on techniques developed by Eberlein for matrix diagonalisation using complex rotations and shears. The resultant methods are applied to the problem of Convergent Beam RHEED. 23 refs., 3 figs

  7. Anomalous diffraction approximation for light scattering cross section: Case of random clusters of non-absorbent spheres

    Energy Technology Data Exchange (ETDEWEB)

    Jacquier, Sandra [Ecole Nationale Superieure des Mines de Saint-Etienne, 158 Cours Fauriel, 42023 F-St. Etienne (France); Gruy, Frederic [Ecole Nationale Superieure des Mines de Saint-Etienne, 158 Cours Fauriel, 42023 F-St. Etienne (France)], E-mail: fgruy@emse.fr

    2008-11-15

    We previously [Jacquier S, Gruy F. Approximation of the light scattering cross-section for aggregated spherical non-absorbent particles. JQSRT 2008;109:789-810] reformulated the anomalous diffraction (AD) approximation to calculate the light scattering cross section of aggregates by introducing their chord length distribution (CLD). It was applied to several ordered aggregates. This new method is entitled ADr, with the r for rapid because this one is at least 100 times faster than the standard AD method. In this article, we are searching for an approximated expression for CLD suitable all at once for ordered and disordered aggregates. The corresponding scattering cross-section values are compared to the ones coming from the standard AD approximation.

  8. Anomalous diffraction approximation for light scattering cross section: Case of random clusters of non-absorbent spheres

    International Nuclear Information System (INIS)

    Jacquier, Sandra; Gruy, Frederic

    2008-01-01

    We previously [Jacquier S, Gruy F. Approximation of the light scattering cross-section for aggregated spherical non-absorbent particles. JQSRT 2008;109:789-810] reformulated the anomalous diffraction (AD) approximation to calculate the light scattering cross section of aggregates by introducing their chord length distribution (CLD). It was applied to several ordered aggregates. This new method is entitled ADr, with the r for rapid because this one is at least 100 times faster than the standard AD method. In this article, we are searching for an approximated expression for CLD suitable all at once for ordered and disordered aggregates. The corresponding scattering cross-section values are compared to the ones coming from the standard AD approximation

  9. Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy

    NARCIS (Netherlands)

    Cleff, C.; Gross, P.; Fallnich, C.; Offerhaus, Herman L.; Herek, Jennifer Lynn; Kruse, K.; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.

    2013-01-01

    We present a theoretical investigation of stimulated emission pumping to achieve sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. A pair of control light fields is used to prepopulate the Raman state involved in the CARS process prior to the CARS

  10. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    International Nuclear Information System (INIS)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Padmore, H. A.

    2016-01-01

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs via numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4"t"h or 5"t"h order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.

  11. Study of thermal stability of ultrafine-grained copper by means of electron back scattering diffraction

    Czech Academy of Sciences Publication Activity Database

    Man, O.; Pantělejev, L.; Kunz, Ludvík

    2010-01-01

    Roč. 51, č. 2 (2010), s. 209-213 ISSN 1345-9678 R&D Projects: GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultra-fine grained copper * thermal stability of microstructure * electron back scattering diffraction * grain size * texture Subject RIV: JG - Metallurgy Impact factor: 0.779, year: 2010

  12. Grazing incidence x-ray diffraction at free-standing nanoscale islands: fine structure of diffuse scattering

    International Nuclear Information System (INIS)

    Grigoriev, D; Hanke, M; Schmidbauer, M; Schaefer, P; Konovalov, O; Koehler, R

    2003-01-01

    We have investigated the x-ray intensity distribution around 220 reciprocal lattice point in case of grazing incidence diffraction at SiGe nanoscale free-standing islands grown on Si(001) substrate by LPE. Experiments and computer simulations based on the distorted wave Born approximation utilizing the results of elasticity theory obtained by FEM modelling have been carried out. The data reveal fine structure in the distribution of scattered radiation with well-pronounced maxima and complicated fringe pattern. Explanation of the observed diffraction phenomena in their relation to structure and morphology of the island is given. An optimal island model including its shape, size and Ge spatial distribution was elaborated

  13. Dichroism and resonant diffraction in x-ray scattering by complex materials

    International Nuclear Information System (INIS)

    Collins, S P; Lovesey, S W; Balcar, E

    2007-01-01

    We survey universal concepts that influence dichroism and resonant Bragg diffraction, aiming to reach across the range of scientific disciplines that benefit from x-ray techniques, namely, chemistry, physics, life-sciences, and the science of materials. To this end, we adopt a top down discussion of the aspects of symmetry and concomitant selection rules. Starting from selection rules that can be deduced from the global condition that an observable quantity is unchanged on reversing the directions of both space and time separately, to selection rules that flow from bulk symmetry properties of electrons imposed by elements of a point group or crystal class to, finally, atomic selection rules that emerge from the details of the electronic structure. As a motivation for the latter we discuss, with a new calculation of the x-ray scattering length, E 1-M 1 absorption and scattering events that particularly interest scientists studying the chirality of life. In the main text there is modest use of mathematics, with appropriate details relegated to a few appendices. (topical review)

  14. Synchronous scattering and diffraction from gold nanotextured surfaces with structure factors

    Science.gov (United States)

    Gu, Min-Jhong; Lee, Ming-Tsang; Huang, Chien-Hsun; Wu, Chi-Chun; Chen, Yu-Bin

    2018-05-01

    Synchronous scattering and diffraction were demonstrated using reflectance from gold nanotextured surfaces at oblique (θi = 15° and 60°) incidence of wavelength λ = 405 nm. Two samples of unique auto-correlation functions were cost-effectively fabricated. Multiple structure factors of their profiles were confirmed with Fourier expansions. Bi-directional reflectance function (BRDF) from these samples provided experimental proofs. On the other hand, standard deviation of height and unique auto-correlation function of each sample were used to generate surfaces numerically. Comparing their BRDF with those of totally random rough surfaces further suggested that structure factors in profile could reduce specular reflection more than totally random roughness.

  15. Applied electromagnetic scattering theory

    CERN Document Server

    Osipov, Andrey A

    2017-01-01

    Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...

  16. Analysis of Heuristic Uniform Theory of Diffraction Coefficients for Electromagnetic Scattering Prediction

    Directory of Open Access Journals (Sweden)

    Diego Tami

    2018-01-01

    Full Text Available We discuss three sets of heuristic coefficients used in uniform theory of diffraction (UTD to characterize the electromagnetic scattering in realistic urban scenarios and canonical examples of diffraction by lossy conducting wedges using the three sets of heuristic coefficients and the Malyuzhinets solution as reference model. We compare not only the results of the canonical models but also their implementation in real outdoor scenarios. To predict the coverage of mobile networks, we used propagation models for outdoor environments by using a 3D ray-tracing model based on a brute-force algorithm for ray launching and a propagation model based on image theory. To evaluate each set of coefficients, we analyzed the mean and standard deviation of the absolute error between estimates and measured data in Ottawa, Canada; Valencia, Spain; and Cali, Colombia. Finally, we discuss the path loss prediction for each set of heuristic UTD coefficients in outdoor environment, as well as the comparison with the canonical results.

  17. Diffraction scattering of strongly bound system

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.

    1982-04-01

    The scattering of a hadron on a strongly bound system of two hadrons (dihadron) is considered in the high-energy limit for the relative hadron-dihadron motion. The dihadron scatterer motion and the internal interaction are included in our consideration. It is shown that only small values of the internal transfer momentum of dihadron particles bring the principal contribution to the three-particle propagator in eikonal approximation. On the basis of the exact analytical solution of the integral equation for the total Green function the scattering amplitude is derived. It is shown that the scattering amplitude contains only single, double, and triple scattering terms. The three new terms to the Glauber formula for the total cross section are obtained. These terms decrease both the true total hadron-hadron cross section and the screening correction. (orig.)

  18. Diffraction scattering of 7Be and 8B on 12C taking into account the coulomb interaction

    International Nuclear Information System (INIS)

    Davydovskyy, V.V.; Evlanov, M.V.; Tartakovsky, V.K.

    2004-01-01

    The differential cross sections for scattering of 7 Be and 8 B nuclei on 12 C nuclei are calculated in the framework of general theory of diffraction interactions of nuclei consisting of two charged weakly-bound clusters. Available experimental data are analyzed. (author)

  19. Small-scale mechanical property characterization of ferrite formed during deformation of super-cooled austenite by nanoindentation

    International Nuclear Information System (INIS)

    Ahn, Tae-Hong; Um, Kyung-Keun; Choi, Jong-Kyo; Kim, Do Hyun; Oh, Kyu Hwan; Kim, Miyoung; Han, Heung Nam

    2009-01-01

    The mechanical properties of dynamically and statically transformed ferrites were analyzed using a nanoindentater-EBSD (Electron BackScattered Diffraction) correlation technique, which can distinguish indenting positions according to the grains in the specimen. The dilatometry and the band slope and contrast maps by EBSD were used to evaluate the volume fractions of two kinds of ferrite and pearlite. Fine ferrites induced by a dynamic transformation had higher nano-hardness than the statically transformed coarse ferrites. Transmission electron microscopy (TEM) showed the dynamic ferrites to have a higher dislocation density than the statically transformed ferrites.

  20. Cube Texture Formation of Cu-33at.%Ni Alloy Substrates and CeO2 Buffer Layer for YBCO Coated Conductors

    DEFF Research Database (Denmark)

    Tian, Hui; Li, Suo Hong; Ru, Liang Ya

    2014-01-01

    Cube texture formation of Cu-33 at.%Ni alloy substartes and CeO2 buffer layer prepared by chemical solution deposition on the textured substrate were investigated by electron back scattered diffraction (EBSD) and XRD technics systematically. The results shown that a strong cube textured Cu-33at...

  1. Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance

    OpenAIRE

    Abreu,Hamilton Ferreira Gomes de; Carvalho,Sheyla Santana de; Lima Neto,Pedro de; Santos,Ricardo Pires dos; Freire,Válder Nogueira; Silva,Paulo Maria de Oliveira; Tavares,Sérgio Souto Maior

    2007-01-01

    In austenitic stainless steels, plastic deformation can induce martensite formation. The induced martensite is related to the austenite (gamma) instability at temperatures close or below room temperature. The metastability of austenite stainless steels increases with the decreasing of stacking fault energy (SFE). In this work, the deformation induced martensite was analyzed by X ray diffraction, electron back scatter diffraction (EBSD), magnetic methods and atomic force microscope (AFM) in sa...

  2. A comparison of EBSD based strain indicators for the study of Fe-3Si steel subjected to cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Schayes, Claire [Université Lille 1 sciences et technologies, UMET – UMR CNRS 8207/ENSCL/Université de Lille, team Métallurgie Physique et Génie des Matériaux, Bâtiment C6, 59655 Villeneuve d' Ascq (France); Valeo Engine Electrical Systems, 2 Rue André Boulle, 94046 Créteil (France); Bouquerel, Jérémie, E-mail: jeremie.bouquerel@univ-lille1.fr [Université Lille 1 sciences et technologies, UMET – UMR CNRS 8207/ENSCL/Université de Lille, team Métallurgie Physique et Génie des Matériaux, Bâtiment C6, 59655 Villeneuve d' Ascq (France); Vogt, Jean-Bernard [Université Lille 1 sciences et technologies, UMET – UMR CNRS 8207/ENSCL/Université de Lille, team Métallurgie Physique et Génie des Matériaux, Bâtiment C6, 59655 Villeneuve d' Ascq (France); Palleschi, Frédéric [Valeo Engine Electrical Systems, 2 Rue André Boulle, 94046 Créteil (France); Zaefferer, Stefan [Max-Planck-Institut für Eisenforschung, Abteilung Mikrostrukturphysik und Umformtechnik, Max-Planck-Strasse 1, 40237 Düsseldorf (Germany)

    2016-05-15

    The current work aims at proposing an EBSD-based indicator for fatigue damage of a Fe-3Si steel. At the same time direct observation of dislocation structures is provided by electron channelling contrast imaging (ECCI). The investigation consisted in processing the EBSD data from patterns collected on specimen subjected to low cycle fatigue. It revealed two different regimes depending on the applied total strain variation which is explained by the identification of the dislocations structures and their evolution. At low strain variation, strain accommodation occurs by planar glide of dislocations uniformly distributed throughout the grains. No misorientation evolution is observed. At higher strain variation, the vein-channel structure is observed within the grain and the wall-channel structure in the vicinity of grain boundaries. The misorientation between these two dislocation structures is evaluated at about 0.7° which is detected by the EBSD analyses and explains the increase of the different misorientation based criteria. The EBSD study enables also the prediction of crack initiation mode. Finally, this study points out the limits of the EBSD technique as no misorientation evolution is detected at small strain variation. Indeed, the lattice distortion is too weak to be detected by conventional EBSD. - Highlights: • Microstructure investigation of the fatigue behaviour of an iron-silicon steel • Use of cECCI to investigate the fatigue dislocations structures • Characterisation of local plastic accommodation through EBSD misorientation criteria.

  3. Inclusive diffractive cross sections in deep inelastic ep scattering at HERA

    International Nuclear Information System (INIS)

    Sola, Valentina

    2012-04-01

    Diffractive deep-inelastic scattering events in ep collisions at HERA are the subject of this thesis. The cross sections for inclusive diffraction, ep → eXp, measured by the H1 and ZEUS Collaborations were combined, providing a model-independent check of the data consistency and a cross calibration between the two experiments, and resulting in single data sets with improved accuracy and precision. Two sets of combined results were obtained. The cross sections measured using the proton-spectrometer data were combined, both in the range of t, the squared four-momentum transfer at the proton vertex, common to the two experiments (0.09 2 ) and in the extended t-range vertical stroke t vertical stroke 2 . The resulting cross sections cover the region 2.5≤ Q 2 ≤200 GeV 2 in photon virtualities, 0.0003≤x P ≤0.09 in the proton fractional momentum losses and 0.0018≤ β ≤0.816 in β=x/x P , where x is the Bjorken scaling variable. The cross sections obtained from data with the large rapidity gap signature were also combined in the kinematic range 2.5≤ Q 2 ≤1600 GeV 2 , 0.0003≤x P ≤0.03 and 0.0017≤ β ≤0.8, for masses of the hadronic final state M X >4 GeV. The inclusive diffractive reduced cross section σ r D(3) was measured with data collected by the ZEUS detector, at two different centre-of-mass energies, 318 and 225 GeV. The diffractive data were selected with the large rapidity gap method in the kinematic region 20 2 2 , 0.05 P or similar 0.55), the inelasticity of the interaction.

  4. Microstructural Development in a TRIP-780 Steel Joined by Friction Stir Welding (FSW: Quantitative Evaluations and Comparisons with EBSD Predictions

    Directory of Open Access Journals (Sweden)

    Gladys Perez Medina

    Full Text Available Abstract The present work describes the effect of FSW on the result microstructure in the stir zone (SZ, thermo-mechanically affected zone (TMAZ, heat affected zone (HAZ and base metal (BM of a TRIP-780 steel. X-ray diffraction (XRD, optical microscopy (OM and EBSD were used for determinations retained austenite (RA in the SZ, It was found that the amount of RA developed in SZ was relatively large, (approximately 11% to 15%. In addition, recrystallization and the formation of a grain texture were resolved using EBSD. During FSW, the SZ experienced severe plastic deformation which lead to an increase in the temperature and consequently grain recrystallization. Moreover, it was found that the recrystallized grain structure and relatively high martensite levels developed in the SZ lead to a significant drop in the mechanical properties of the steel. In addition, microhardness profiles of the welded regions indicated that the hardness in both the SZ and TMAZ were relatively elevated confirming the development of martensite in these regions. In particular, to evaluate the mechanical strength of the weld, lap shear tensile test was conducted; exhibited the fracture zone in the SZ with shear fracture with uniformly distributed elongation shear dimples.

  5. Diffraction tomography for plasma refractive index measurements

    International Nuclear Information System (INIS)

    Howard, J.; Nazikian, R.; Sharp, L.E.

    1989-01-01

    Measurement of the properties of probing beams of coherent electromagnetic radiation yields essential information about the line of sight integrated plasma refractive index. Presented is a scalar diffraction treatment of forward angle scattering plasma diagnostics based on the diffraction projection theorem first presented by E. Wolf in 1969. New results are obtained for near field scattering from probing Gaussian beams and it is demonstrated that the effects of diffraction need to be addressed for tomographic inversion of near field scattering and interferometry data. 33 refs., 10 figs

  6. Grazing incidence diffraction : A review

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, B [LTPCM, ENSEEG. St. Martin d` Heres. (France)

    1996-09-01

    Different Grazing Incidence Diffraction (GID) methods for the analysis of thin films and multilayer structures are reviewed in three sections: the reflectivity is developed in the first one, which includes the non-specular diffuse scattering. The second one is devoted to the extremely asymmetric Bragg diffraction and the third one to the in-plane Bragg diffraction. Analytical formulations of the scattered intensities are developed for each geometry, in the framework of the kinetical analysis as well as the dynamical theory. Experimental examples are given to illustrate the quantitative possibility of the GID techniques.

  7. A new theory for X-ray diffraction.

    Science.gov (United States)

    Fewster, Paul F

    2014-05-01

    This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the `Bragg position' even if the `Bragg condition' is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many `Bragg positions'. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on `Bragg-type' scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the `background'. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models.

  8. Theoretical studies of molecule surface scattering: Rotationally inelastic diffraction and dissociative dynamics of H2 on metals

    International Nuclear Information System (INIS)

    Cruz Pol, A.J.

    1993-01-01

    The interaction of H 2 and its isotopes with metal surfaces has been the subject of many investigations. The scattering experiments provide data such as the final rotational state distribution, sticking coefficients, kinetic energy distribution, and diffraction data. In the first study of this thesis the author implemented a model for looking at the rotationally inelastic diffraction probabilities for H 2 , HD, and D 2 , as a function of surface temperature. The surface is treated in a quantum mechanical fashion using a recently developed formalism. The center of mass translational motion is treated semiclassically using Gaussian wave packets, and the rotations are described quantum mechanically. The phonon summed rotation-diffraction probabilities as well as the probability distribution for a scattering molecule exchanging an amount of energy ΔE with the surface were computed. In the second and third study of this thesis the author implemented a mixed quantum-classical model to compute the probability for dissociation and rotational excitation for H 2 , HD, and D 2 scattered from Ni(100) dimensionally in dynamics simulations. Of the six degrees of freedom for the dissociative adsorption of a diatomic molecule on a static surface, the author treats Z,d the center of mass distance above the surface plan, r, the internuclear separation, θ, the polar orientation angle, quantum mechanically. The remaining three degrees of freedom, X and Y, the center of mass position on the surface plane, and oe, the azimuthal orientation angle, are treated classically. Probabilities for dissociation and ro-vibrational excitation are computed as a function of incident translational energy. Two sudden approximations are tested, in which either the center of mass translation parallel to the surface or the azimuthal orientation of the molecule are frozen. Comparisons are made between low and high dimensionality results and with fully classical results

  9. Inclusive diffractive cross sections in deep inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Sola, Valentina

    2012-04-15

    Diffractive deep-inelastic scattering events in ep collisions at HERA are the subject of this thesis. The cross sections for inclusive diffraction, ep {yields} eXp, measured by the H1 and ZEUS Collaborations were combined, providing a model-independent check of the data consistency and a cross calibration between the two experiments, and resulting in single data sets with improved accuracy and precision. Two sets of combined results were obtained. The cross sections measured using the proton-spectrometer data were combined, both in the range of t, the squared four-momentum transfer at the proton vertex, common to the two experiments (0.09< vertical stroke t vertical stroke <0.55 GeV{sup 2}) and in the extended t-range vertical stroke t vertical stroke <1 GeV{sup 2}. The resulting cross sections cover the region 2.5{<=} Q{sup 2} {<=}200 GeV{sup 2} in photon virtualities, 0.0003{<=}x{sub P}{<=}0.09 in the proton fractional momentum losses and 0.0018{<=} {beta} {<=}0.816 in {beta}=x/x{sub P}, where x is the Bjorken scaling variable. The cross sections obtained from data with the large rapidity gap signature were also combined in the kinematic range 2.5{<=} Q{sup 2} {<=}1600 GeV{sup 2}, 0.0003{<=}x{sub P}{<=}0.03 and 0.0017{<=} {beta} {<=}0.8, for masses of the hadronic final state M{sub X}>4 GeV. The inclusive diffractive reduced cross section {sigma}{sub r}{sup D(3)} was measured with data collected by the ZEUS detector, at two different centre-of-mass energies, 318 and 225 GeV. The diffractive data were selected with the large rapidity gap method in the kinematic region 20< Q{sup 2} <130 GeV{sup 2}, 0.05< {beta} <0.85 and 0.00063or similar 0.55), the inelasticity of the interaction.

  10. EBSD analysis of polysilicon films formed by aluminium induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tuezuen, O. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France)], E-mail: Ozge.Tuzun@iness.c-strasbourg.fr; Auger, J.M. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); SMS Centre, UMR CNRS 5146, Ecole des Mines de Saint Etienne, 158 Cours Fauriel, 42023 Saint Etienne Cedex 2 (France); Gordon, I. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Focsa, A.; Montgomery, P.C. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); Maurice, C. [SMS Centre, UMR CNRS 5146, Ecole des Mines de Saint Etienne, 158 Cours Fauriel, 42023 Saint Etienne Cedex 2 (France); Slaoui, A. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); Beaucarne, G.; Poortmans, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2008-08-30

    Among the methods for enlarging the grain size of polycrystalline silicon (poly-Si) thin films, aluminium induced crystallization (AIC) of amorphous silicon is considered to be a very promising approach. In the AIC process, a thin a-Si layer on top of an aluminium layer crystallizes at temperatures well below the eutectic temperature of the Al/Si system (T{sub eu} = 577 deg. C). By means of electron backscattering diffraction (EBSD), we have mainly studied the effect of the aluminium layer quality varying the deposition system on the grain size, the defects and the preferential crystallographic orientation. We have found a strong correlation between the mean grain size and the size distribution with the Al deposition system and the surface quality. Furthermore, we show for the first time that more than 50% of the surface of the AIC films grown on alumina substrates are (103) preferentially oriented, instead of the commonly observed (100) preferential orientation. This may have important consequences for epitaxial thickening of the AIC layer into polysilicon absorber layers for solar cells.

  11. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    Science.gov (United States)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  12. High-energy particle diffraction

    International Nuclear Information System (INIS)

    Barone, V.; Predazzi, E.

    2002-01-01

    This monograph gives a comprehensive and up-to-date overview of soft and hard diffraction processes in strong interaction physics. The first part covers the general formalism (the optical analogy, the eikonal picture, high-energy kinematics, S-matrix theory) and soft hadron-hadron scattering (including the Regge theory) in a complete and mature presentation. It can be used as a textbook in particle physics classes. The remainder of the book is devoted to the 'new diffraction': the pomeron in QCD, low-x physics, diffractive deep inelastic scattering and related processes, jet production etc. It presents recent results and experimental findings and their phenomenological interpretations. This part addresses graduate students as well as researchers. (orig.)

  13. The magnetic order of GdMn₂Ge₂ studied by neutron diffraction and x-ray resonant magnetic scattering.

    Science.gov (United States)

    Granovsky, S A; Kreyssig, A; Doerr, M; Ritter, C; Dudzik, E; Feyerherm, R; Canfield, P C; Loewenhaupt, M

    2010-06-09

    The magnetic structure of GdMn₂Ge₂ (tetragonal I4/mmm) has been studied by hot neutron powder diffraction and x-ray resonant magnetic scattering techniques. These measurements, along with the results of bulk experiments, confirm the collinear ferrimagnetic structure with moment direction parallel to the c-axis below T(C) = 96 K and the collinear antiferromagnetic phase in the temperature region T(C) < T < T(N) = 365 K. In the antiferromagnetic phase, x-ray resonant magnetic scattering has been detected at Mn K and Gd L₂ absorption edges. The Gd contribution is a result of an induced Gd 5d electron polarization caused by the antiferromagnetic order of Mn-moments.

  14. Electron backscatter diffraction applied to lithium sheets prepared by broad ion beam milling.

    Science.gov (United States)

    Brodusch, Nicolas; Zaghib, Karim; Gauvin, Raynald

    2015-01-01

    Due to its very low hardness and atomic number, pure lithium cannot be prepared by conventional methods prior to scanning electron microscopy analysis. Here, we report on the characterization of pure lithium metallic sheets used as base electrodes in the lithium-ion battery technology using electron backscatter diffraction (EBSD) and X-ray microanalysis using energy dispersive spectroscopy (EDS) after the sheet surface was polished by broad argon ion milling (IM). No grinding and polishing were necessary to achieve the sufficiently damage free necessary for surface analysis. Based on EDS results the impurities could be characterized and EBSD revealed the microsctructure and microtexture of this material with accuracy. The beam damage and oxidation/hydration resulting from the intensive use of IM and the transfer of the sample into the microscope chamber was estimated to be effect on the surface temperature. However, a cryo-stage should be used if available during milling to guaranty a heating artefact free surface after the milling process. © 2014 Wiley Periodicals, Inc.

  15. Measurement and QCD analysis of the diffractive deep-inelastic scattering cross section at HERA

    International Nuclear Information System (INIS)

    Aktas, A.; Andreev, V.; Anthonis, T.

    2006-05-01

    A detailed analysis is presented of the diffractive deep-inelastic scattering process ep→eXY, where Y is a proton or a low mass proton excitation carrying a fraction 1-x P >0.95 of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies t 2 . Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range 3.5 ≤Q 2 ≤1600 GeV 2 , triple differentially in x P , Q 2 and β=x/x P , where x is the Bjorken scaling variable. At low x P , the data are consistent with a factorisable x P dependence, which can be described by the exchange of an effective pomeron trajectory with intercept α P (0)=1.118 ±0.008(exp.) +0.029 -0.010 (model). Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q 2 and β dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the Q 2 range studied. Total and differential cross sections are also measured for the diffractive charged current process e + p → anti ν e XY and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current ep cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on Q 2 at fixed x P and x or on x at fixed Q 2 and β. (Orig.)

  16. Measurement and QCD analysis of the diffractive deep-inelastic scattering cross section at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Coppens, Y. R.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, C. L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-12-01

    A detailed analysis is presented of the diffractive deep-inelastic scattering process ep→eXY, where Y is a proton or a low mass proton excitation carrying a fraction 1-xIP>0.95 of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies |t|<1 GeV2. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range 3.5≤Q2≤1600 GeV2, triple differentially in xIP, Q2 and β=x/xIP, where x is the Bjorken scaling variable. At low xIP, the data are consistent with a factorisable xIP dependence, which can be described by the exchange of an effective pomeron trajectory with intercept αIP(0)=1.118±0.008(exp.)+0.029 -0.010(model). Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q2 and β dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the Q2 range studied. Total and differential cross sections are also measured for the diffractive charged current process e+p→ν¯eXY and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current ep cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on Q2 at fixed xIP and x or on x at fixed Q2 and β.

  17. He atom scattering from ZnO surfaces: calculation of diffraction peak intensities using the close-coupling approach

    Energy Technology Data Exchange (ETDEWEB)

    MartInez-Casado, R [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain); Meyer, B [Interdisziplinaeres Zentrum fuer Molekulare Materialien ICMM and Computer-Chemie-Centrum CCC, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Naegelsbachstrasse 25, 91052 Erlangen (Germany); Traeger, F [Lehrstuhl fuer Physikalische Chemie I, Ruhr-Universitaet Bochum, 44801 Bochum (Germany); Woell, Ch, E-mail: r.martinezcasado@imperial.ac.u [Institut fuer Funktionelle Grenzflaechen, Karlsruher Institut fuer Technologie KIT, Kaiserstrasse 12, 76131 Karlsruhe (Germany)

    2010-08-04

    Diffraction intensities of a molecular He beam scattered off the clean and water-covered ZnO(101-bar0) surface have been simulated using a new potential model in conjunction with the close-coupling formalism. The effective corrugation functions for the systems He-ZnO(101-bar0) and He-H{sub 2}O/ZnO(101-bar0) have been obtained from density functional theory calculations within the Esbjerg-Noerskov approximation. Using these data a potential model is constructed consisting of a corrugated Morse potential at small He-surface distances and a semiempiric attractive part at larger distances. The diffraction patterns obtained from close-coupling calculations agree with the experimental data within about 10%, which opens the possibility to simulate He diffraction from surfaces of any structural complexity and to verify surface and adsorbate structures proposed theoretically by employing this kind of analysis.

  18. Fine structure characterization of martensite/austenite constituent in low-carbon low-alloy steel by transmission electron forward scatter diffraction.

    Science.gov (United States)

    Li, C W; Han, L Z; Luo, X M; Liu, Q D; Gu, J F

    2016-11-01

    Transmission electron forward scatter diffraction and other characterization techniques were used to investigate the fine structure and the variant relationship of the martensite/austenite (M/A) constituent of the granular bainite in low-carbon low-alloy steel. The results demonstrated that the M/A constituents were distributed in clusters throughout the bainitic ferrite. Lath martensite was the main component of the M/A constituent, where the relationship between the martensite variants was consistent with the Nishiyama-Wassermann orientation relationship and only three variants were found in the M/A constituent, suggesting that the variants had formed in the M/A constituent according to a specific mechanism. Furthermore, the Σ3 boundaries in the M/A constituent were much longer than their counterparts in the bainitic ferrite region. The results indicate that transmission electron forward scatter diffraction is an effective method of crystallographic analysis for nanolaths in M/A constituents. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  19. Appearance of maxima of combined type in Moessbauer diffraction

    International Nuclear Information System (INIS)

    Kolpakov, A.V.; Ovchinnikova, E.N.; Kuz'min, R.N.

    1978-01-01

    An appearance of Bragg maxima in the Moessbauer diffraction pattern due to a combined hyperfine interaction on nuclei in a crystal is discussed. By a combined interaction one means presence on the nuclei of a magnetic field and tensor of electric field gradient. The structure RFe 2 R=Pu, Np, V, Zr, Tm) is considered. It has been shown that when a scattering system is in fields of several actions with various symmetries, the diffraction pattern is not an additive superposition of diffraction patterns of magnetic and electric quadrupole scatterings. In this case the diffraction patterns of magnetic and electric quadrupole scatterings. In this case the diffraction spectra have maxima forbidden by the extinction laws in diffraction in the presence of only a magnetic field or only electric quadrupole interaction

  20. Analysis of soft magnetic materials by electron backscatter diffraction as a powerful tool

    Directory of Open Access Journals (Sweden)

    David Schuller

    2018-04-01

    Full Text Available The current work demonstrates that electron backscatter diffraction (EBSD is a powerful and versatile characterization technique for investigating soft magnetic materials. The properties of soft magnets, e.g., magnetic losses strongly depend on the materials chemical composition and microstructure, including grain size and shape, texture, degree of plastic deformation and elastic strain. In electrical sheet stacks for e-motor applications, the quality of the machined edges/surfaces of each individual sheet is of special interest. Using EBSD, the influence of the punching process on the microstructure at the cutting edge is quantitatively assessed by evaluating the crystallographic misorientation distribution of the deformed grains. Using an industrial punching process, the maximum affected deformation depth is determined to be 200 - 300 μm. In the case of laser cutting, the affected deformation depth is determined to be approximately zero. Reliability and detection limits of the developed EBSD approach are evaluated on non-affected sample regions and model samples containing different indentation test bodies. A second application case is the investigation of the recrystallization process during the annealing step of soft magnetic composites (SMC toroids produced by powder metallurgy as a function of compaction pressure, annealing parameters and powder particle size. With increasing pressure and temperature, the recrystallized area fraction (e.g., grains with crystallographic misorientations 3°.

  1. The combined use of EBSD and EDX analyses for the identification of complex intermetallic phases in multicomponent Al-Si piston alloys

    International Nuclear Information System (INIS)

    Chen, C.-L.; Thomson, R.C.

    2010-01-01

    Multicomponent Al-Si based casting alloys are used for a variety of engineering applications, including for example, piston alloys. Properties include good castability, high strength, light weight, good wear resistance and low thermal expansion. In order for such alloys to continue operation to increasingly higher temperatures, alloy element modifications are continually being made to further enhance the properties. Improved mechanical and physical properties are strongly dependent upon the morphologies, type and distribution of the second phases, which are in turn a function of alloy composition and cooling rate. The presence of additional elements in the Al-Si alloy system allows many complex intermetallic phases to form, which make characterisation non-trivial. These include, for example, CuAl 2 , Al 3 Ni 2 , Al 7 Cu 4 Ni, Al 9 FeNi and Al 5 Cu 2 Mg 8 Si 6 phases, all of which may have some solubility for additional elements. Identification is often non-trivial due to the fact that some of the phases have either similar crystal structures or only subtle changes in their chemistries. A combination of electron backscatter diffraction (EBSD) and energy dispersive X-ray analysis (EDX) has therefore been used for the identification of the various phases. This paper will present comparisons of phase identification methodologies using EBSD alone, and in combination with chemical information, either directly or through post processing.

  2. Measurement of diffractive scattering of photons with large momentum transfer at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Andreev, V.

    2008-09-01

    The first measurement of diffractive scattering of quasi-real photons with large momentum transfer γp → γY, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q 2 2 . Cross sections are measured as a function of W, the incident photonproton centre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175 2 . The W dependence is well described by a model based on perturbative QCD using a leading logarithmic approximation of the BFKL evolution. The measured vertical stroke t vertical stroke dependence is harder than that predicted by the model and those observed in exclusive vector meson production. (orig.)

  3. X-ray diffraction 2 - diffraction principles

    International Nuclear Information System (INIS)

    O'Connor, B.

    1999-01-01

    Full text: The computation of powder diffraction intensities is based on the principle that the powder pattern comprises the summation of the intensity contributions from each of the crystallites (or single crystals) in the material. Therefore, it is of value for powder diffractionists to appreciate the form of the expression for calculating single crystal diffraction pattern intensities. This knowledge is especially important for Rietveld analysis practitioners in terms of the (i) mathematics of the method and (ii) retrieving single crystal structure data from the literature. We consider the integrated intensity from a small single crystal being rotated at velocity ω through the Bragg angle θ for reflection (hkl).... I(hkl) = [l o /ω]. [e 4 /m 2 c 4 ]. [λ 3 δV F(hkl) 2 /υ 2 ].[(1+cos 2 2θ)/2sin2θ] where e, m and c are the usual fundamental constants; λ is the x-ray wavelength, δV is the crystallite volume; F(hkl) is the structure factor; υ is the unit cell volume; and (1+cos 2 θ)/2sin2θ] is the Lorentz-polarisation factor for an unpolarised incident beam. The expression does not include a contribution for extinction. The influence of factors λ, δV, F(hkl) and υ on the intensities should be appreciated by powder diffractionists, especially the structure factor, F(hkl), which is responsible for the fingerprint nature of diffraction patterns, such as the rise and fall of intensity from peak to peak. The structure factor expression represents the summation of the scattered waves from each of the j scattering centres (i e atoms) in the unit cell: F(hkl) Σ f j exp[2πi (h.x j +k.y i +l. z i )] T j . Symbol f is the scattering factor (representing the atom-type scattering efficiency); (x, y, z) are the fractional position coordinates of atom j within the unit cell; and T is the thermal vibration factor for the atom given by: T j = 8π 2 2 > sin 2 θ/λ 2 with 2 > being the mean-square vibration amplitude of the atom (assumed to be isotropic). The

  4. Novel Aspects of Hard Diffraction in QCD

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2005-01-01

    Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, and nuclear shadowing and antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency

  5. Deformation behavior of Mg-alloy-based composites at different temperatures studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Gergely [Department of Metal Physics, Charles University, Ke Karlovu, 5, CZ-121 16 Prague (Czech Republic); Nuclear Physics Institute, v. v. i., 250 68 Řež (Czech Republic); Máthis, Kristian [Department of Metal Physics, Charles University, Ke Karlovu, 5, CZ-121 16 Prague (Czech Republic); Pilch, Ján [Nuclear Physics Institute, v. v. i., 250 68 Řež (Czech Republic); Minárik, Peter [Department of Metal Physics, Charles University, Ke Karlovu, 5, CZ-121 16 Prague (Czech Republic); Lukáš, Petr [Nuclear Physics Institute, v. v. i., 250 68 Řež (Czech Republic); Vinogradov, Alexei, E-mail: alexei.vinogradov@ntnu.no [Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology - NTNU, Trondheim N-7491 (Norway); Institute of Advanced Technologies, Togliatti State University, 445020 (Russian Federation)

    2017-02-08

    The influence of the reinforcement short Saffil fibers on the deformation behavior of Mg-Al-Ca alloy-based composite with two different fiber plane orientations is investigated and clarified using in-situ neutron diffraction at room and elevated temperatures. The measured lattice strain evolution points to a more efficient reinforcing effect of fibers at parallel fiber plane orientation, which decreases at elevated temperature. A significant decrement of compressive lattice strain was incidentally observed in the matrix in the direction of load axis when deformation due to the elevated temperature occurred. Electron microscopy revealed the influence of the temperature and fiber orientation on fiber cracking. The EBSD observations corroborated neutron diffraction results highlighting significant twin growth at elevated testing temperatures.

  6. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  7. Possible effect of static surface disorder on diffractive scattering of H2 from Ru(0001): Comparison between theory and experiment.

    Science.gov (United States)

    Kroes, G J; Wijzenbroek, Mark; Manson, J R

    2017-12-28

    Specific features of diffractive scattering of H 2 from metal surfaces can serve as fingerprints of the reactivity of the metal towards H 2 , and in principle theory-experiment comparisons for molecular diffraction can help with the validation of semi-empirical functionals fitted to experiments of sticking of H 2 on metals. However, a recent comparison of calculated and Debye-Waller (DW) extrapolated experimental diffraction probabilities, in which the theory was done on the basis of a potential energy surface (PES) accurately describing sticking to Ru(0001), showed substantial discrepancies, with theoretical and experimental probabilities differing by factors of 2 and 3. We demonstrate that assuming a particular amount of random static disorder to be present in the positions of the surface atoms, which can be characterized through a single parameter, removes most of the discrepancies between experiment and theory. Further improvement might be achievable by improving the accuracy of the DW extrapolation, the model of the H 2 rotational state distribution in the experimental beams, and by fine-tuning the PES. However, the question of whether the DW model is applicable to attenuation of diffractive scattering in the presence of a sizable van der Waals well (depth ≈ 50 meV) should also receive attention, in addition to the question of whether the amount of static surface disorder effectively assumed in the modeling by us could have been present in the experiments.

  8. Hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Brandt, A.

    1995-09-01

    The field of hard diffraction, which studies events with a rapidity gap and a hard scattering, has expanded dramatically recently. A review of new results from CDF, D OE, H1 and ZEUS will be given. These results include diffractive jet production, deep-inelastic scattering in large rapidity gap events, rapidity gaps between high transverse energy jets, and a search for diffractive W-boson production. The combination of these results gives new insight into the exchanged object, believed to be the pomeron. The results axe consistent with factorization and with a hard pomeron that contains both quarks and gluons. There is also evidence for the exchange of a strongly interacting color singlet in high momentum transfer (36 2 ) events

  9. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  10. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  11. Analysis of the dependence parametrization of the allocations of heavy ions on light nuclei elastic scattering diffraction maxima from the projectile energy

    International Nuclear Information System (INIS)

    Ponkratenko, O.A.; Pyirnak, Val. M.; Rudchik, A.A.; Stepanenko, Yu.M.; Uleshchenko, V.V.; Shirma, Yu.O.

    2015-01-01

    Diffraction range of available experimental differential cross sections of heavy ions on light nuclei elastic scattering for the interactive nuclei 17 pairs with 4 ≤ A ≤ 20 have been analyzed in the projectile energy wide interval from 1 to 100 MeV/nucleon. Diffraction maxima and minima positions in the transferred momentum coordinates depending on projectile energy demonstrate smooth behavior at energies higher 2 - 4 MeV/nucleon and at energies to 30 - 40 MeV/nucleon - practically does not depend on energy. These energy dependences of maxima (minima) position. can be parameterized by simple functions. It was found the suitable approximations that describe reasonable the energy dependence of the maxima (minima) positions of the experimental elastic scattering differential cross sections. These approximations were evaluated with the same parameters for all colliding nuclei groups

  12. PF-AR NW14, a new time-resolved diffraction/scattering beamline

    Science.gov (United States)

    Nozawa, Shunsuke; Adachi, Shin-ichi; Tazaki, Ryoko; Takahashi, Jun-ichi; Itatani, Jiro; Daimon, Masahiro; Mori, Takeharu; Sawa, Hiroshi; Kawata, Hiroshi; Koshihara, Shin-ya

    2005-01-01

    NW14 is a new insertion device beamline at the Photon Factory Advanced Ring (PF-AR), which is a unique ring with full-time single-bunched operation, aiming for timeresolved x-ray diffraction/scattering and XAFS experiments. The primary scientific goal of this beamline is to observe the ultrafast dynamics of condensed matter systems such as organic and inorganic crystals, biological systems and liquids triggered by optical pulses. With the large photon fluxes derived from the undulator, it should become possible to take a snapshoot an atomic-scale image of the electron density distribution. By combining a series of images it is possible to produce a movie of the photo-induced dynamics with 50-ps resolution. The construction of the beamline is being funded by the ERATO Koshihara Non-equilibrium Dynamics Project of the Japan Science and Technology Agency (JST), and the beamline will be operational from autumn 2005.

  13. PF-AR NW14, a new time-resolved diffraction/scattering beamline

    International Nuclear Information System (INIS)

    Nozawa, Shunsuke; Adachi, Shin-ichi; Tazaki, Ryoko; Takahashi, Jun-ichi; Itatani, Jiro; Daimon, Masahiro; Mori, Takeharu; Sawa, Hiroshi; Kawata, Hiroshi; Koshihara, Shin-ya

    2005-01-01

    NW14 is a new insertion device beamline at the Photon Factory Advanced Ring (PF-AR), which is a unique ring with full-time single-bunched operation, aiming for timeresolved x-ray diffraction/scattering and XAFS experiments. The primary scientific goal of this beamline is to observe the ultrafast dynamics of condensed matter systems such as organic and inorganic crystals, biological systems and liquids triggered by optical pulses. With the large photon fluxes derived from the undulator, it should become possible to take a snapshoot an atomic-scale image of the electron density distribution. By combining a series of images it is possible to produce a movie of the photo-induced dynamics with 50-ps resolution. The construction of the beamline is being funded by the ERATO Koshihara Non-equilibrium Dynamics Project of the Japan Science and Technology Agency (JST), and the beamline will be operational from autumn 2005

  14. Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification

    Science.gov (United States)

    Isasti, Nerea; Jorge-Badiola, Denis; Taheri, Mitra L.; Uranga, Pello

    2013-08-01

    A complete microstructural characterization and phase transformation analysis has been performed for several Nb and Nb-Mo microalloyed low-carbon steels using electron backscattered diffraction (EBSD) and dilatometry tests. Compression thermomechanical schedules were designed resulting in the undeformed and deformed austenite structures before final transformation. The effects of microalloying additions and accumulated deformation were analyzed after CCT diagram development and microstructural quantification. The resulting microstructures ranged from polygonal ferrite and pearlite at slow cooling ranges, to a combination of quasipolygonal ferrite and granular ferrite for intermediate cooling rates, and finally, to bainitic ferrite with martensite for fast cooling rates. The addition of Mo promotes a shift in the CCT diagrams to lower transformation start temperatures. When the amount of Nb is increased, CCT diagrams show little variations for transformations from the undeformed austenite and higher initial transformation temperatures in the transformations from the deformed austenite. This different behavior is due to the effect of niobium on strain accumulation in austenite and its subsequent acceleration of transformation kinetics. This article shows the complex interactions between chemical composition, deformation, and the phases formed, as well as their effect on microstructural unit sizes and homogeneity.

  15. Multiorder nonlinear diffraction in frequency doubling processes

    DEFF Research Database (Denmark)

    Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw

    2009-01-01

    We analyze experimentally light scattering from 2 nonlinear gratings and observe two types of second-harmonic frequency-scattering processes. The first process is identified as Raman–Nath type nonlinear diffraction that is explained by applying only transverse phase-matching conditions. The angular...... position of this type of diffraction is defined by the ratio of the second-harmonic wavelength and the grating period. In contrast, the second type of nonlinear scattering process is explained by the longitudinal phase matching only, being insensitive to the nonlinear grating...

  16. Measurement of diffractive scattering of photons with large momentum transfer at HERA

    Science.gov (United States)

    H1 Collaboration; Aaron, F. D.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Bacchetta, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deák, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Kutak, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Mudrinic, M.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G. D.; Pejchal, O.; Peng, H.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J. E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Tran, T. H.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wegener, D.; Wessels, M.; Wissing, Ch.; Wünsch, E.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2009-02-01

    The first measurement of diffractive scattering of quasi-real photons with large momentum transfer γp→γY, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q<0.01 GeV. Single differential cross sections are measured as a function of W, the incident photon-proton centre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175

  17. Measurement and QCD Analysis of the Diffractive Deep-Inelastic Scattering Cross Section at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Coppens, Y.R.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.L.; Johnson, D.P.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schilling, F.P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \\xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|<1 {\\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \\leq Q^2 \\leq 1600 \\rm GeV^2$, triple differentially in $\\xpom$, $Q^2$ and $\\beta = x / \\xpom$, where $x$ is the Bjorken scaling variable. At low $\\xpom$, the data are consistent with a factorisable $\\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\\alphapom(0)= 1.118 \\pm 0.008 {\\rm (exp.)} ^{+0.029}_{-0.010} {\\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\\beta$ dependences of the cross section. The res...

  18. Exact and approximate multiple diffraction calculations

    International Nuclear Information System (INIS)

    Alexander, Y.; Wallace, S.J.; Sparrow, D.A.

    1976-08-01

    A three-body potential scattering problem is solved in the fixed scatterer model exactly and approximately to test the validity of commonly used assumptions of multiple scattering calculations. The model problem involves two-body amplitudes that show diffraction-like differential scattering similar to high energy hadron-nucleon amplitudes. The exact fixed scatterer calculations are compared to Glauber approximation, eikonal-expansion results and a noneikonal approximation

  19. Atomic scattering in the diffraction limit: electron transfer in keV Li+-Na(3s, 3p) collisions

    International Nuclear Information System (INIS)

    Poel, M van der; Nielsen, C V; Rybaltover, M; Nielsen, S E; Machholm, M; Andersen, N

    2002-01-01

    We measure angle differential cross sections (DCS) in Li + + Na → Li + Na + electron transfer collisions in the 2.7-24 keV energy range. We do this with a newly constructed apparatus which combines the experimental technique of cold target recoil ion momentum spectroscopy with a laser-cooled target. This setup yields a momentum resolution of 0.12 au, an order of magnitude better angular resolution than previous measurements on this system. This enables us to clearly resolve Fraunhofer-type diffraction patterns in the angle DCS. In particular, the angular width of the ring structure is given by the ratio of the de Broglie wavelength λ dB = 150 fm at a velocity v = 0.20 au and the effective atomic diameter for electron capture 2R = 20 au. Parallel AO and MO semiclassical coupled-channel calculations of the Na(3s, 3p) → Li(2s, 2p) state-to-state collision amplitudes have been performed, and quantum scattering amplitudes are derived by the eikonal method. The resulting angle-differential electron transfer cross sections and their diffraction patterns agree with the experimental level-to-level results over most scattering angles in the energy range

  20. Diffractive Deep-Inelastic Scattering with a Leading Proton at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, Marcel; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    The cross section for the diffractive deep-inelastic scattering process $ep \\to e X p$ is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range \\xpom <0.1 in fractional proton longitudinal momentum loss, 0.08 < |t| < 0.5 GeV^{-2} in squared four-momentum transfer at the proton vertex, 2 < Q^2 < 50 GeV^2 in photon virtuality and 0.004 < \\beta = x / \\xpom < 1, where x is the Bjorken scaling variable. For $\\xpom \\lapprox 10^{-2}$, the differential cross section has a dependence of approximately ${\\rm d} \\sigma / {\\rm d} t \\propto e^{6 t}$, independently of \\xpom, \\beta and Q^2 within uncertainties. The cross section is also measured triple differentially in \\xpom, \\beta and Q^2. The \\xpom dependence is interpreted in terms of an effective pomeron trajectory with intercept $\\alpha_{\\pom}(0)=1.114 \\pm 0.018 ({\\rm stat.}) \\pm 0.012 ({\\rm syst.}) ^{+0.040}_{-0.020} ({\\rm model})$ and a sub-leading exchange. The data are in...

  1. X-ray diffraction microtomography using synchrotron radiation

    CERN Document Server

    Barroso, R C; Jesus, E F O; Oliveira, L F

    2001-01-01

    The X-ray diffraction computed tomography technique is based on the interference phenomena of the coherent scatter. For low-momentum transfer, it is most probable that the scattering interaction will be coherent. A selective discrimination of a given element in a scanned specimen can be realized by fixing the Bragg angle which produces an interference peak and then, to carry out the computed tomography in the standard mode. The image reconstructed exalts the presence of this element with respect to other ones in a sample. This work reports the feasibility of a non-destructive synchrotron radiation X-ray diffraction imaging technique. This research was performed at the X-ray Diffraction beam line of the National Synchrotron Light Laboratory (LNLS) in Brazil. The coherent scattering properties of different tissue and bone substitute materials were evaluated. Furthermore, diffraction patterns of some polycrystalline solids were studied due to industrial and environmental human exposure to these metals. The obtai...

  2. Orientation effects on indexing of electron backscatter diffraction patterns

    International Nuclear Information System (INIS)

    Nowell, Matthew M.; Wright, Stuart I.

    2005-01-01

    Automated Electron Backscatter Diffraction (EBSD) has become a well-accepted technique for characterizing the crystallographic orientation aspects of polycrystalline microstructures. At the advent of this technique, it was observed that patterns obtained from grains in certain crystallographic orientations were more difficult for the automated indexing algorithms to accurately identify than patterns from other orientations. The origin of this problem is often similarities between the EBSD pattern of the correct orientation and patterns from other orientations or phases. While practical solutions have been found and implemented, the identification of these problem orientations generally occurs only after running an automated scan, as problem orientations are often readily apparent in the resulting orientation maps. However, such an approach only finds those problem orientations that are present in the scan area. It would be advantageous to identify all regions of orientation space that may present problems for automated indexing prior to initiating an automated scan, and to minimize this space through the optimization of acquisition and indexing parameters. This work presents new methods for identifying regions in orientation space where the reliability of the automated indexing is suspect prior to performing a scan. This methodology is used to characterize the impact of various parameters on the indexing algorithm

  3. Inclusive measurements on diffractive processes in ep collisions

    International Nuclear Information System (INIS)

    Janssen, Xavier

    2007-01-01

    Measurements from the H1 and ZEUS collaborations of the diffractive deep-inelastic scattering process, ep → eXY, where Y is a proton or a low mass proton excitation, are presented for photon virtualities in the range 2.2 2 2 and squared four-momentum transfer at the proton vertex satisfying | t | 2 . Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis. Combining measurements of the inclusive diffractive deep-inelastic scattering process with an analysis of diffractive di jet production allows a very sensitive determination of both quark and gluon distributions. (author)

  4. Quantitative damage imaging using Lamb wave diffraction tomography

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Ruan Min; Zhu Wen-Fa; Chai Xiao-Dong

    2016-01-01

    In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated numerically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted S0 scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. (special topics)

  5. Analysis of the dependence parametrization of the allocations of heavy ions on light nuclei elastic scattering diffraction maxima from the projectile energy

    Directory of Open Access Journals (Sweden)

    O. A. Ponkratenko

    2015-10-01

    Full Text Available Diffraction range of available experimental differential cross sections of heavy ions on light nuclei elastic scattering for 17 pairs of the interacting nuclei with 4 ≤ А ≤ 20 have been analyzed in the projectile energy wide interval from 1 to 100 МеV/nucleon. Diffraction maxima and minima positions in the transferred momentum coordinates depending on projectile energy demonstrate smooth behavior at energies higher 2 - 4 МeV/nucleon, and practically do not depend on energy at energies up to 30 - 40 МеV/nucleon. These energy dependences of maxima (minima positions can be parameterized by simple functions. It was found the suitable approximations that describe reasonably the energy dependence of the maxima (minima positions of the experimental elastic scattering differential cross sections. These approximations were evaluated with the same parameters for all colliding nuclei groups.

  6. Computer simulation tools for X-ray analysis scattering and diffraction methods

    CERN Document Server

    Morelhão, Sérgio Luiz

    2016-01-01

    The main goal of this book is to break down the huge barrier of difficulties faced by beginners from many fields (Engineering, Physics, Chemistry, Biology, Medicine, Material Science, etc.) in using X-rays as an analytical tool in their research. Besides fundamental concepts, MatLab routines are provided, showing how to test and implement the concepts. The major difficult in analyzing materials by X-ray techniques is that it strongly depends on simulation software. This book teaches the users on how to construct a library of routines to simulate scattering and diffraction by almost any kind of samples. It provides to a young student the knowledge that would take more than 20 years to acquire by working on X-rays and relying on the available textbooks. In this book, fundamental concepts in applied X-ray physics are demonstrated through available computer simulation tools. Using MatLab, more than eighty routines are developed for solving the proposed exercises, most of which can be directly used in experimental...

  7. A diffraction based study of the deformation mechanisms in anomalously ductile B2 intermetallics

    Science.gov (United States)

    Mulay, Rupalee Prashant

    For many decades, the brittle nature of most intermetallic compounds (e.g. NiAl) has been the limiting factor in their practical application. Many B2 (CsCl prototypical structure) intermetallics are known to exhibit slip on the {110} slip mode, which provides only 3 independent slip systems and, hence, is unable to satisfy the von Mises (a.k.a. Taylor) criterion for polycrystalline ductility. As a result, inherent polycrystalline ductility is unexpected. Recent discovery of a number of ductile B2 intermetallics has raised questions about possible violation of the von Mises criterion by these alloys. These ductile intermetallic compounds are MR (metal (M) combined with a rare earth metal or group IV refractory metal (R)) alloys and are stoichiometric, ordered compounds. Single crystal slip trace analyses have only identified the presence of {011} or {010} slip systems. More than 100 other B2 MR compounds are known to exist and many of them have already been shown to be ductile (e.g., CuY, AgY, CuDy, CoZr, CoTi, etc.). Furthermore, these alloys exhibit a large Bauschinger effect. The present work uses several diffraction based techniques including electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and in-situ neutron diffraction; in conjunction with scanning electron microscopy (SEM), transmission electron microscopy (TEM), mechanical testing, and crystal plasticity modeling, to elucidate the reason for ductility in select B2 alloys, explore the spread of this ductility over the B2 family, and understand the Bauschinger effect in these alloys. Several possible explanations (e.g., slip of dislocations, strong texture, phase transformations and twinning) for the anomalous ductility were explored. An X-ray diffraction based analysis ruled out texture, phase purity and departure from order as explanations for the anomalous ductility in MR alloys. In-situ neutron diffraction and post deformation SEM, EBSD, and TEM were unable to detect any evidence for

  8. Study of the structure of intermetalics from Fe - Al system after the hot rolling

    Directory of Open Access Journals (Sweden)

    M. Jabłońska

    2015-10-01

    Full Text Available This paper presents the results of structure analysis of Fe - Al alloys after hot rolling deformation. Microstructure analysis were performed before and after deformation using a scanning transmission electron microscopy (STEM technique. The detailed quantities research of the structures was conducted using scanning electron microscopy (SEM equipped with the gun with cold field emission and the detector of electron back scattering diffraction (EBSD.

  9. Interpretation of small-angle diffraction experiments on opal-like photonic crystals

    Science.gov (United States)

    Marlow, F.; Muldarisnur, M.; Sharifi, P.; Zabel, H.

    2011-08-01

    Comprehensive structural information on artificial opals involving the deviations from the strongly dominating face-centered cubic structure is still missing. Recent structure investigations with neutrons and synchrotron sources have shown a high degree of order but also a number of unexpected scattering features. Here, we point out that the exclusion of the allowed 002-type diffraction peaks by a small atomic form factor is not obvious and that surface scattering has to be included as a possible source for the diffraction peaks. Our neutron diffraction data indicate that surface scattering is the main reason for the smallest-angle peaks in the diffraction patterns.

  10. Measurement of Diffractive Scattering of Photons with Large Momentum Transfer at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Bacchetta, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Peng, H.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wegener, D.; Wessels, M.; Wissing, Ch.; Wunsch, E.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2009-01-01

    The first measurement of diffractive scattering of quasi-real photons with large momentum transfer gamma p -> gamma Y, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q^2 < 0.01 GeV^2. Cross sections are measured as a function of W, the incident photon-proton entre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175 < W < 247 GeV and 4<|t|<36 GeV^2. The W dependence is well described by a model based on perturbative QCD using a leading logarithmic approximation of the BFKL evolution. The measured |t| dependence is harder than that predicted by the model and those observed in exclusive vector meson production.

  11. New results from HERA on photoproduction and diffraction, the proton structure function, deep inelastic scattering at low x, heavy flavour production, jets and searches for leptoquarks

    International Nuclear Information System (INIS)

    Barreiro, F.; Bhadra, S.; Lancaster, M.; Lim, J.N.; Soeldner-Rembold, S.; Straub, B.

    1994-11-01

    This report contains some of the papers presented by the ZEUS Collaboration at the 27th international conference on high energy physics in Glasgow (20-27 July 1994). These concern deep inelastic ep scattering at low x, photoproduction and diffraction in ep scattering, a measurement of the proton structure function and determination of the low-x gluon distribution, D * and J/Ψ production in ep scattering, multi-jet production and determination of α s in ep scattering, and the search for leptoquarks in ep collisions. (HSI)

  12. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings

    International Nuclear Information System (INIS)

    Schmitt, Thorsten; Groot, Frank M. F. de; Rubensson, Jan-Erik

    2014-01-01

    Diffraction-limited storage rings will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size in resonant inelastic X-ray scattering (RIXS) experiments to new limits. In this article the types of improved soft X-ray RIXS studies that will become possible with these instrumental improvements are envisioned. The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned

  13. Deformation micro-mechanism for compression of magnesium alloys at room temperature analyzed by electron backscatter diffraction

    International Nuclear Information System (INIS)

    Song, G.S.; Chen, Q.Q.; Zhang, S.H.; Xu, Y.

    2015-01-01

    Highlights: • In-situ tracking on the evolution of grains orientation of magnesium alloy was carried out by EBSD. • Distributions of twin bands were closely related to the activation of extension twin variants. • Activation of extension twin significantly changes the order of Schmid factor of slips. • Pyramidal slips become the dominant deformation mode at the late stage of compression. - Abstract: In-situ tracking on the evolution of grains orientation of rolled magnesium alloy sheets compressed uniaxially at room temperature was carried out by the method of electron backscatter diffraction (EBSD), and meanwhile, distributions of twin bands, activations of twin and slips were also analyzed. The results show that the distributions of twin bands were closely related to the activation of extension twin variants. The activation of extension twin significantly changes the order of Schmid factor of different slips, and accordingly affects the activation of slips during the subsequent deformation

  14. Magnetic photon scattering

    International Nuclear Information System (INIS)

    Lovesey, S.W.

    1987-05-01

    The report reviews, at an introductory level, the theory of photon scattering from condensed matter. Magnetic scattering, which arises from first-order relativistic corrections to the Thomson scattering amplitude, is treated in detail and related to the corresponding interaction in the magnetic neutron diffraction amplitude. (author)

  15. Mosaic dislocation structures in aluminium crystals deformed in multiple slip at 0.5 to 0.8TM

    DEFF Research Database (Denmark)

    Theyssier, M.C.; Chenal, B.; Driver, J.H.

    1995-01-01

    corresponding to the stable rolling texture components of polycrystalline f.c.c. metals, C {112} [111], S {421} [112] and B {110} [112] and one recrystallisation component {001} [250]. The deformation microstructures are investigated by different techniques over a wide range of scales and the local orientations...... have been measured by EBSD (electron back scattered diffraction) and by CBED (convergent beam electron diffraction). The deformation microstructures are subdivided by dislocation boundaries which bound cell blocks oriented at +/- 30 degrees to +/- 55 degrees with respect to the rolling direction...

  16. The use of combined three-dimensional electron backscatter diffraction and energy dispersive X-ray analysis to assess the characteristics of the gamma/gamma-prime microstructure in alloy 720Li™

    International Nuclear Information System (INIS)

    Child, D.J.; West, G.D.; Thomson, R.C.

    2012-01-01

    Multiple three-dimensional reconstructions of a γ/γ′ phase structure in Alloy 720Li have been carried out by employing a serial milling technique with simultaneous electron backscatter diffraction (EBSD) and energy dispersive x-ray (EDX) analysis data collection. Combining EBSD data with EDX is critical in obtaining maps to distinguish between the chemically differing, but crystallographically similar γ and γ′ phases present in the alloy studied. EDX is shown to allow the differentiation of γ and γ′ phases, with EBSD providing increased grain shape accuracy. The combination of data sources also allowed identification of coherent γ/γ′ phase interfaces that would not be identified using solely EBSD or EDX. The study identifies a region of grain banding within the alloy, which provides the basis for a three-dimensional comparison and discussion of γ′ phase size between coarse and fine grain regions, whilst also identifying coherent γ′ phase interfaces, possible only using both EDX and EBSD systems simultaneously. The majority of the γ′ phase lies in the range of 1–10 μm in non-banded regions, with a detectable particle size limit of 500 nm being established. The validity of the reconstruction has been demonstrated using an electron interaction volumes model, and an assessment of the validity of EBSD and EDX data sources is discussed showing γ′ phase connectivity in all dimensions. -- Highlights: ► Use of combined EBSD/EDX for the 3D analysis of gamma prime in a Ni-based alloy. ► Assessment of 3D reconstruction accuracy using CASINO. ► Observation and validation of gamma prime phase connectivity throughout the alloy. ► Identification and characterisation of grain banding in gamma prime. ► Distinction of phase coherency between gamma and gamma prime.

  17. CMS results on hard diffraction

    CERN Document Server

    INSPIRE-00107098

    2013-01-01

    In these proceedings we present CMS results on hard diffraction. Diffractive dijet production in pp collisions at $\\sqrt{s}$=7 TeV is discussed. The cross section for dijet production is presented as a function of $\\tilde{\\xi}$, representing the fractional momentum loss of the scattered proton in single-diffractive events. The observation of W and Z boson production in events with a large pseudo-rapidity gap is also presented.

  18. High energy diffraction

    International Nuclear Information System (INIS)

    Berger, C.

    1995-11-01

    Recent experiments on total hadronic cross sections are reviewed together with results on photo- and electroproduction of vector mesons. New data on diffractive deep inelastic scattering shed light on the nature of the pomeron. (orig.)

  19. Combined inclusive diffractive cross sections measured with forward proton spectrometers in deep inelastic ep scattering at HERA

    CERN Document Server

    Aaron, F.D.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Alexa, C.; Andreev, V.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Bamberger, A.; Barakbaev, A.N.; Barbagli, G.; Bari, G.; Barreiro, F.; Barrelet, E.; Bartel, W.; Bartosik, N.; Bartsch, D.; Basile, M.; Begzsuren, K.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Belousov, A.; Belov, P.; Bertolin, A.; Bhadra, S.; Bindi, M.; Bizot, J.C.; Blohm, C.; Bokhonov, V.; Bondarenko, K.; Boos, E.G.; Borras, K.; Boscherini, D.; Bot, D.; Boudry, V.; Bozovic-Jelisavcic, I.; Bold, T.; Brummer, N.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Brock, I.; Brownson, E.; Brugnera, R.; Bruncko, D.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bunyatyan, A.; Bussey, P.J.; Bylinkin, A.; Bylsma, B.; Bystritskaya, L.; Caldwell, A.; Campbell, A.J.; Cantun Avila, K.B.; Capua, M.; Carlin, R.; Catterall, C.D.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekanov, S.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Contreras, J.G.; Cooper-Sarkar, A.M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; Coughlan, J.A.; Cvach, J.; D'Agostini, G.; Dainton, J.B.; Dal Corso, F.; Daum, K.; Delcourt, B.; Delvax, J.; Dementiev, R.K.; Derrick, M.; Devenish, R.C.E.; De Pasquale, S.; De Wolf, E.A.; del Peso, J.; Diaconu, C.; Dobre, M.; Dobur, D.; Dodonov, V.; Dolgoshein, B.A.; Dolinska, G.; Dossanov, A.; Doyle, A.T.; Drugakov, V.; Dubak, A.; Durkin, L.S.; Dusini, S.; Eckerlin, G.; Egli, S.; Eisenberg, Y.; Eliseev, A.; Elsen, E.; Ermolov, P.F.; Eskreys, A.; Fang, S.; Favart, L.; Fazio, S.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrando, J.; Ferrero, M.I.; Figiel, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Forrest, M.; Foster, B.; Gabathuler, E.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gialas, I.; Gizhko, A.; Gladilin, L.K.; Gladkov, D.; Glasman, C.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gogota, O.; Golubkov, Yu.A.; Gottlicher, P.; Gouzevitch, M.; Grab, C.; Grabowska-Bold, I.; Grebenyuk, A.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grigorescu, G.; Grindhammer, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Huttmann, A.; Haas, T.; Habib, S.; Haidt, D.; Hain, W.; Hamatsu, R.; Hart, J.C.; Hartmann, H.; Hartner, G.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hilger, E.; Hiller, K.H.; Hladky, J.; Hochman, D.; Hoffmann, D.; Hori, R.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z.A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jacquet, M.; Jakob, H.P.; Janssen, X.; Januschek, F.; Jones, T.W.; Jonsson, L.; Jungst, M.; Jung, H.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Kapichine, M.; Karshon, U.; Karstens, F.; Katkov, I.I.; Kaur, P.; Kaur, M.; Kenyon, I.R.; Keramidas, A.; Khein, L.A.; Kiesling, C.; Kim, J.Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Koffeman, E.; Kogler, R.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I.A.; Kostka, P.; Kotanski, A.; Kotz, U.; Kowalski, H.; Kramer, M.; Kretzschmar, J.; Kruger, K.; Kuprash, O.; Kuze, M.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lee, A.; Lendermann, V.; Levchenko, B.B.; Levonian, S.; Levy, A.; Libov, V.; Limentani, S.; Ling, T.Y.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lobodzinski, B.; Lohmann, W.; Lohr, B.; Lohrmann, E.; Long, K.R.; Longhin, A.; Lontkovskyi, D.; Lopez-Fernandez, R.; Lubimov, V.; Lukina, O.Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malinovski, E.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J.F.; Martyn, H.U.; Mastroberardino, A.; Mattingly, M.C.K.; Maxfield, S.J.; Mehta, A.; Melzer-Pellmann, I.A.; Mergelmeyer, S.; Meyer, A.B.; Meyer, H.; Meyer, J.; Miglioranzi, S.; Mikocki, S.; Milcewicz-Mika, I.; Idris, F.Mohamad; Monaco, V.; Montanari, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Morris, J.D.; Mujkic, K.; Muller, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nigro, A.; Nikitin, D.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, G.; Nowak, K.; Nowak, R.J.; Nuncio-Quiroz, A.E.; Oh, B.Y.; Okazaki, N.; Olkiewicz, K.; Olsson, J.E.; Onishchuk, Yu.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Papageorgiu, K.; Parenti, A.; Pascaud, C.; Patel, G.D.; Paul, E.; Pawlak, J.M.; Pawlik, B.; Pelfer, P.G.; Pellegrino, A.; Perez, E.; Perlanski, W.; Perrey, H.; Petrukhin, A.; Picuric, I.; Piotrzkowski, K.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Plucinski, P.; Pokorny, B.; Pokrovskiy, N.S.; Polifka, R.; Polini, A.; Povh, B.; Proskuryakov, A.S.; Przybycien, M.; Radescu, V.; Raicevic, N.; Raval, A.; Ravdandorj, T.; Reeder, D.D.; Reimer, P.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y.D.; Rizvi, E.; Robertson, A.; Robmann, P.; Roloff, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Ruiz Tabasco, J.E.; Rusakov, S.; Ruspa, M.; Sacchi, R.; Salek, D.; Samson, U.; Sankey, D.P.C.; Sartorelli, G.; Sauter, M.; Sauvan, E.; Savin, A.A.; Saxon, D.H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W.B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schonberg, V.; Schoning, A.; Schorner-Sadenius, T.; Schultz-Coulon, H.C.; Schwartz, J.; Sciulli, F.; Sefkow, F.; Shcheglova, L.M.; Shehzadi, R.; Shimizu, S.; Shtarkov, L.N.; Shushkevich, S.; Singh, I.; Skillicorn, I.O.; Slominski, W.; Sloan, T.; Smith, W.H.; Sola, V.; Solano, A.; Soloviev, Y.; Son, D.; Sopicki, P.; Sosnovtsev, V.; South, D.; Spaskov, V.; Specka, A.; Spiridonov, A.; Stadie, H.; Stanco, L.; Staykova, Z.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stewart, T.P.; Stifutkin, A.; Stoicea, G.; Stopa, P.; Straumann, U.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sykora, T.; Sztuk-Dambietz, J.; Szuba, J.; Szuba, D.; Tapper, A.D.; Tassi, E.; Terron, J.; Theedt, T.; Thompson, P.D.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Tran, T.H.; Traynor, D.; Truol, P.; Trusov, V.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Turnau, J.; Tymieniecka, T.; Vazquez, M.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Viazlo, O.; Vlasov, N.N.; Walczak, R.; Wan Abdullah, W.A.T.; Wegener, D.; Whitmore, J.J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Wunsch, E.; Yagues-Molina, A.G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Zacek, J.; Zalesak, J.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhang, Z.; Zhautykov, B.O.; Zhmak, N.; Zhokin, A.; Zichichi, A.; Zlebcik, R.; Zohrabyan, H.; Zolkapli, Z.; Zomer, F.; Zotkin, D.S.; Zarnecki, A.F.

    2012-10-10

    A combination of the inclusive diffractive cross section measurements made by the H1 and ZEUS Collaborations at HERA is presented. The analysis uses samples of diffractive deep inelastic ep scattering data at a centre-of-mass energy sqrt(s) = 318 GeV where leading protons are detected by dedicated spectrometers. Correlations of systematic uncertainties are taken into account, resulting in an improved precision of the cross section measurement which reaches 6% for the most precise points. The combined data cover the range 2.5 < Q2 < 200 GeV2 in photon virtuality, 0.00035 < xIP < 0.09 in proton fractional momentum loss, 0.09 < |t| < 0.55 GeV2 in squared four-momentum transfer at the proton vertex and 0.0018 < beta < 0.816 in beta = x/xIP, where x is the Bjorken scaling variable.

  20. A QCD analysis of ZEUS diffractive data

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2009-11-15

    ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)

  1. A QCD analysis of ZEUS diffractive data

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2009-11-01

    ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)

  2. Report from the neutron diffraction work group

    International Nuclear Information System (INIS)

    1978-08-01

    This progress report of the neutron diffraction group at the Hahn Meitner Institute in Berlin comprises the following contributions: Three-dimensional critical properties of CsNiF 3 around the Neel point; Spin waves in CsNiF 3 with an applied magnetic field; Solitons in CsNiF 3 : Their experimental evidence and their thermodynamics; Neutron diffraction study of DAG at very low temperatures and in external magnetic field; Neutron diffraction investigation of tricritical behaviour in DyPO 4 ; Crystalline modifications and structural phase transitions of NaOH; Gitterdynamik von Cerhydrid; Investigation of the ferroelectric-ferroelastic phase transition in KH 2 PO 4 and RbH 2 PO 4 by means of γ-ray diffractometry; A γ-ray diffractometer for systematic measurements of absolute structure factors; Electron density in pyrite by combined γ-ray and neutron diffraction measurements: Thermal parameters from short wavelength neutron data; Accurate determination of temperature parameters from neutron diffraction data: Direct observation of the thermal diffuse scattering from silicon using perfect crystals; A Compton spectrometer for momentum density studies using 412 keV γ-radiation; Investigation of the electronic structure of Niobiumhydrides by means of gamma-ray Compton scattering; Interpretation of Compton profile data in position space; High resolution neutron scattering measurements on single crystals using a horizontally bent monochromator and a multidetecter; Statistical analysis of neutron diffraction studies of proteins. (orig.) [de

  3. Measurement of diffractive scattering of photons with large momentum transfer at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania)]|[Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2008-09-15

    The first measurement of diffractive scattering of quasi-real photons with large momentum transfer {gamma}p {yields} {gamma}Y, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q{sup 2} < 0.01 GeV{sup 2}. Cross sections are measured as a function of W, the incident photonproton centre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175 < W < 247 GeV and 4 < vertical stroke t vertical stroke < 36 GeV{sup 2}. The W dependence is well described by a model based on perturbative QCD using a leading logarithmic approximation of the BFKL evolution. The measured vertical stroke t vertical stroke dependence is harder than that predicted by the model and those observed in exclusive vector meson production. (orig.)

  4. Nuclear surface diffuseness revealed in nucleon-nucleus diffraction

    Science.gov (United States)

    Hatakeyama, S.; Horiuchi, W.; Kohama, A.

    2018-05-01

    The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.

  5. Anisotropy in tensile and ductile-brittle transition behavior of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kasada, R., E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Uji, Kyoto (Japan); Lee, S.G.; Isselin, J.; Lee, J.H.; Omura, T.; Kimura, A. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto (Japan); Okuda, T. [KOBELCO Research Institute, 1-5-5, Takatsukadai, Nishi-ku, Kobe 651-2271 (Japan); Inoue, M. [Japan Atomic Energy Agency, 4002 Narita, Oarai, Ibaraki 311-1393 (Japan); Ukai, S.; Ohnuki, S. [Materials Science and Engineering, Hokkaido University, N14 W8, Kita ku, Sapporo 060-8626 (Japan); Fujisawa, T. [Nagoya University, Furocho, Chikusa, Nagoya 464-8603 (Japan); Abe, F. [National Institute of Materials Science, Tsukuba, (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2011-10-01

    Anisotropic fracture behavior of SOC-1 oxide dispersion strengthened (ODS) ferritic steel has been investigated for a hot-extruded bar by tensile tests and Charpy impact tests. These mechanical properties are better in the longitudinal direction than in the transverse directions against extrusion direction (ED). Fracture surface observations by scanning electron microscopy and auger electron spectroscopy indicated bundle-like morphology with existence of segregation/precipitation/inclusions along ED. Pole figures of the hot-extruded bar characterized using electron back scattering diffraction (EBSD) technique and X-ray diffraction exhibited <1 1 0> fiber texture formation along ED. The EBSD orientation map showed a complex bundle-like grain morphology which consists of elongated grains having a specific orientation <1 1 0>// ED and relatively isotropic and small grains having other orientation. The results conclude that the combined effects of observed elongated grain morphology and these small grains with segregation/precipitation/inclusions along ED can explain the anisotropic fracture behavior of the hot-extruded ODS ferritic steel.

  6. Borehole radar diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong Jun; Kim, Jung Ho; Yi, Myeong Jong; Chung, Seung Hwan; Lee, Hee Il [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Tomography is widely used as imaging method for determining subsurface structure. Among the reconstruction algorithms for tomographic imaging, travel time tomography is almost applied to imaging subsurface. But isolated small body comparable with the wavelength could not be well recognized by travel time tomography. Other tomographic method are need to improve the imaging process. In the study of this year, diffraction tomography was investigated. The theory for diffraction tomography is based on the 1st-order Born approximation. Multisource holography, which is similar to Kirchihoff migration, is compared with diffraction tomography. To improve 1st-order Born diffraction tomography, two kinds of filter designed from multisource holography and 2-D green function, respectively, applied on the reconstructed image. The algorithm was tested for the numerical modeling data of which algorithm consists of the analytic computation of radar signal in transmitter and receiver regions and 2-D FDM scheme for the propagation of electromagnetic waves in media. The air-filled cavity model to show a typical diffraction pattern was applied to diffraction tomography imaging, and the result shows accurate location and area of cavity. But the calculated object function is not well matched the real object function, because the air-filled cavity model is not satisfied week scattered inhomogeneity for 1st born approximation, and the error term is included in estimating source wavelet from received signals. In spite of the object function error, the diffraction tomography assist for interpretation of subsurface as if conducted with travel time tomography. And the fracture model was tested, 1st born diffraction tomographic image is poor because of limited view angle coverage and violation of week scatter assumption, but the filtered image resolve the fracture somewhat better. The tested diffraction tomography image confirms effectiveness of filter for enhancing resolution. (author). 14

  7. Diffractive dijet and W production in CDF

    International Nuclear Information System (INIS)

    Goulianos, K.

    1998-01-01

    Results on diffractive dijet and W-boson production from CDF are reviewed and compared with predictions based on factorization of the diffractive structure function of the proton measured in deep inelastic scattering at HERA

  8. Preliminary small-angle X-ray scattering and X-ray diffraction studies of the BTB domain of lola protein from Drosophila melanogaster

    Science.gov (United States)

    Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Dorovatovskii, P. V.; Popov, V. O.

    2017-11-01

    The Drosophila genome has several dozens of transcription factors (TTK group) containing BTB domains assembled into octamers. The LOLA protein belongs to this family. The purification, crystallization, and preliminary X-ray diffraction and small-angle X-ray scattering (SAXS) studies of the BTB domain of this protein are reported. The crystallization conditions were found by the vapor-diffusion technique. A very low diffraction resolution (8.7 Å resolution) of the crystals was insufficient for the determination of the threedimensional structure of the BTB domain. The SAXS study demonstrated that the BTB domain of the LOLA protein exists as an octamer in solution.

  9. The triple-pomeron regime and structure function of the pomeron in diffractive deep inelastic scattering at very small x

    International Nuclear Information System (INIS)

    Nikolaev, N.N.; Zakharov, B.G.

    1994-01-01

    We develop the novel description of diffractive deep inelastic scattering based on the technique of lightcone wave functions of multiparton Fock states of the photon. The technique takes advantage of the exact diagonalization of the diffractive S-matrix in the dipole-cross section representation. In this paper we derive properties of the diffractive dissociation of virtual photons in the triple-pomeron regime. We demonstrate that the photon-pomeron interactions can be described by the partonic structure function, which satisfies the conventional GLDAP evolution equations. We identify the valence and sea (anti) quark and the valence gluon structure functions of the pomeron. We show how the gluon structure of the pomeron can be described by the constituent gluon wave function. We derive the leading unitarization correction to the rising structure functions at small x and conclude that the unitarized structure function satisfies the linear GLDAP evolution equations. This result holds even when the multipomeron exchanges are included. (orig.)

  10. Neutron Scattering from 36Ar and 4He Films

    DEFF Research Database (Denmark)

    Carneiro, K.

    1977-01-01

    Scale factors for neutron diffraction and neutron inelastic scattering are presented for common adsorbates, and the feasibility of experiments is discussed together with the information gained by each type of experiment. Diffraction, coherent inelastic scattering, and incoherent scattering are tr...

  11. Combined inclusive diffractive cross sections measured with foreward proton spectrometers in deep inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (DE)] (and others)

    2012-07-15

    A combination of the inclusive diffractive cross section measurements made by the H1 and ZEUS Collaborations at HERA is presented. The analysis uses samples of diffractive deep inelastic ep scattering data at a centre-of-mass energy {radical}(s)=318 GeV where leading protons are detected by dedicated spectrometers. Correlations of systematic uncertainties are taken into account, resulting in an improved precision of the cross section measurement which reaches 6% for the most precise points. The combined data cover the range 2.5

  12. Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles.

    Science.gov (United States)

    Krywonos, Andrey; Harvey, James E; Choi, Narak

    2011-06-01

    Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh-Rice, Beckmann-Kirchhoff. or Harvey-Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann-Kirchhoff surface scatter model, then a generalized Harvey-Shack theory that produces accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattered angles than the classical Beckmann-Kirchhoff and the original Harvey-Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles.

  13. The use of combined three-dimensional electron backscatter diffraction and energy dispersive X-ray analysis to assess the characteristics of the gamma/gamma-prime microstructure in alloy 720Li Trade-Mark-Sign

    Energy Technology Data Exchange (ETDEWEB)

    Child, D.J., E-mail: d.child@lboro.ac.uk [Department of Materials, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); West, G.D., E-mail: g.west@lboro.ac.uk [Department of Materials, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Thomson, R.C., E-mail: r.c.thomson@lboro.ac.uk [Department of Materials, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom)

    2012-03-15

    Multiple three-dimensional reconstructions of a {gamma}/{gamma} Prime phase structure in Alloy 720Li have been carried out by employing a serial milling technique with simultaneous electron backscatter diffraction (EBSD) and energy dispersive x-ray (EDX) analysis data collection. Combining EBSD data with EDX is critical in obtaining maps to distinguish between the chemically differing, but crystallographically similar {gamma} and {gamma} Prime phases present in the alloy studied. EDX is shown to allow the differentiation of {gamma} and {gamma} Prime phases, with EBSD providing increased grain shape accuracy. The combination of data sources also allowed identification of coherent {gamma}/{gamma} Prime phase interfaces that would not be identified using solely EBSD or EDX. The study identifies a region of grain banding within the alloy, which provides the basis for a three-dimensional comparison and discussion of {gamma} Prime phase size between coarse and fine grain regions, whilst also identifying coherent {gamma} Prime phase interfaces, possible only using both EDX and EBSD systems simultaneously. The majority of the {gamma} Prime phase lies in the range of 1-10 {mu}m in non-banded regions, with a detectable particle size limit of 500 nm being established. The validity of the reconstruction has been demonstrated using an electron interaction volumes model, and an assessment of the validity of EBSD and EDX data sources is discussed showing {gamma} Prime phase connectivity in all dimensions. -- Highlights: Black-Right-Pointing-Pointer Use of combined EBSD/EDX for the 3D analysis of gamma prime in a Ni-based alloy. Black-Right-Pointing-Pointer Assessment of 3D reconstruction accuracy using CASINO. Black-Right-Pointing-Pointer Observation and validation of gamma prime phase connectivity throughout the alloy. Black-Right-Pointing-Pointer Identification and characterisation of grain banding in gamma prime. Black-Right-Pointing-Pointer Distinction of phase coherency

  14. Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2.

    Science.gov (United States)

    Filik, J; Ashton, A W; Chang, P C Y; Chater, P A; Day, S J; Drakopoulos, M; Gerring, M W; Hart, M L; Magdysyuk, O V; Michalik, S; Smith, A; Tang, C C; Terrill, N J; Wharmby, M T; Wilhelm, H

    2017-06-01

    A software package for the calibration and processing of powder X-ray diffraction and small-angle X-ray scattering data is presented. It provides a multitude of data processing and visualization tools as well as a command-line scripting interface for on-the-fly processing and the incorporation of complex data treatment tasks. Customizable processing chains permit the execution of many data processing steps to convert a single image or a batch of raw two-dimensional data into meaningful data and one-dimensional diffractograms. The processed data files contain the full data provenance of each process applied to the data. The calibration routines can run automatically even for high energies and also for large detector tilt angles. Some of the functionalities are highlighted by specific use cases.

  15. Study of quartz-glass using Roentgen- and neutron-diffraction

    International Nuclear Information System (INIS)

    Sikkenk, P.J.

    1988-08-01

    An X-ray diffraction measurement, with wavelength 0.0711 nm, is made of a vitreous silica to kappa of 200nm -1 . (faculty of materials science) A second X-ray diffraction measurement has been executed (National Laboratory Oak Ridge). For this research we also used neutron diffraction measurement (IRI), with wavelength 0.085 nm of a vitreous silica to kappa of 132 nm -1 . The intermolecular scattering functions derived from the X-ray measurements and neutron measurements by omitting the intramolecular scattering contribution. A theoretical model for the structure of vitreous silica is used, derived from a mixture of Si en SiO-4 units. The partial scattering functions i-S-i---S-i is determined with help of the model and the intermolecular X-ray scattering functions and intermolecular neutron scattering functions and intermolecular neutron scatteirng functions. The fouriertransform of the partial scattering function i-S-i---S-i leads to the partial radial correlation function. When this partial radial correlation function is compared to a correlation function directly obtained by the intermolecular scattering function, a considerable increase of the resolution is observed in the partial correlation function if r > 0.29 nm and r < 0.45 nm. (author). 16 refs.; 30 figs.; 9 tabs

  16. Microscope Raman scattering and X-ray diffraction study of near-stoichiometric Ti:LiNbO3 waveguides

    International Nuclear Information System (INIS)

    Zhang, De-Long; Siu, G.G.; Pun, E.Y.B.

    2005-01-01

    The crystalline phase within guiding layers of near-stoichiometric strip and planar Ti:LiNbO 3 wave-guides, prepared by the method of simultaneous work of vapour transport equilibration (VTE) treatment and indiffusion of Ti film, was studied by combined confocal microscope Raman scattering and X-ray powder diffraction. The results show that the strip and planar waveguide layers still retain the LiNbO 3 phase and no other non-LiNbO 3 phases can be identified within the guiding layer. Li/Nb ratios inside and outside the strip and planar waveguide layers were determined from the microscope Raman scattering results and compared to those obtained from the measured optical absorption edge. It is shown that the Li/Nb ratios are homogeneous within the waveguide layer and are close inside and outside the waveguide layer. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Use of Local Electrochemical Methods (SECM, EC-STM) and AFM to Differentiate Microstructural Effects (EBSD) on Very Pure Copper

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Lombardia, Esther; Graeve, Iris De; Terryn, Herman [Vrije Universiteit Brussel, Brussels (Belgium); Lapeire, Linsey; Verbeken, Kim; Kestens, Leo [Ghent University, Zwijnaarde (Ghent) (Belgium); Maurice, Vincent; Klein, Lorena; Marcus, Philippe [Institut de Recherche de Chimie Paris, Paris (France); Gonzalez-Garcia, Yaiza; Mol, Arjan [Delft University of Technology, Delft (Netherlands)

    2017-02-15

    When aiming for an increased and more sustainable use of metals a thorough knowledge of the corrosion phenomenon as function of the local metal microstructure is of crucial importance. In this work, we summarize the information presented in our previous publications and present an overview of the different local (electrochemical) techniques that have been proven to be effective in studying the relation between different microstructural variables and their different electrochemical behavior. Atomic force microscopy (AFM), scanning electrochemical microscopy (SECM), and electrochemical scanning tunneling microscopy (EC-STM) were used in combination with electron backscatter diffraction (EBSD). Consequently, correlations could be identified between the grain orientation and grain boundary characteristics, on the one hand, and the electrochemical behavior on the other hand. The grain orientation itself has an influence on the corrosion, and the orientation of the neighboring grains also seems to play a decisive role in the dissolution rate. With respect to intergranular corrosion, only coherent twin boundaries seem to be resistant.

  18. A theoretical overview on single hard diffraction

    International Nuclear Information System (INIS)

    Wuesthoff, M.

    1996-01-01

    The concept of the Pomeron structure function and its application in Single Hard Diffraction at hadron colliders and in diffractive Deep Inelastic Scattering is critically reviewed. Some alternative approaches are briefly surveyed with a focus on QCD inspired models

  19. Complete k-space visualization of x-ray photoelectron diffraction

    International Nuclear Information System (INIS)

    Denlinger, J.D.; Lawrence Berkeley Lab., CA; Rotenberg, E.; Lawrence Berkeley Lab., CA; Kevan, S.D.; Tonner, B.P.

    1996-01-01

    A highly detailed x-ray photoelectron diffraction data set has been acquired for crystalline Cu(001). The data set for bulk Cu 3p emission encompasses a large k-space volume (k = 3--10 angstrom -1 ) with sufficient energy and angular sampling to monitor the continuous variation of diffraction intensities. The evolution of back-scattered intensity oscillations is visualized by energy and angular slices of this volume data set. Large diffraction data sets such as this will provide rigorous experimental tests of real-space reconstruction algorithms and multiple-scattering simulations

  20. Fermi surface of a disordered Cu-Al -alloy single crystal studied by high-resolution Compton scattering and electron diffraction

    Science.gov (United States)

    Kwiatkowska, J.; Maniawski, F.; Matsumoto, I.; Kawata, H.; Shiotani, N.; Lityńska, L.; Kaprzyk, S.; Bansil, A.

    2004-08-01

    We have measured high resolution Compton scattering profiles for momentum transfer along a series of 28 independent directions from Cu0.842Al0.158 disordered alloy single crystals with normals to the surfaces oriented along the [100], [110], and [111] directions. The experimental spectra are interpreted via parallel first-principles KKR-CPA (Korringa-Kohn-Rostoker coherent-potential approximation) computations of these directional profiles. The Fermi surface determined by inverting the Compton data is found to be in good agreement with the KKR-CPA predictions. An electron diffraction study of the present Cu0.842Al0.158 sample is additionally undertaken to gain insight into short-range ordering effects. The scattering pattern displays not only the familiar diffuse scattering peaks, but also shows the presence of weak streaks interconnecting the four diffuse scattering spots around the (110) reciprocal lattice points. This study provides a comprehensive picture of the evolution of the shape of the Fermi surface of Cu with the addition of Al . Our results are consistent with the notion that Fermi surface nesting is an important factor in driving short-range ordering effects in disordered alloys.

  1. Theory of edge diffraction in electromagnetics

    CERN Document Server

    Ufimtsev, Pyotr

    2009-01-01

    This book is an essential resource for researchers involved in designing antennas and RCS calculations. It is also useful for students studying high frequency diffraction techniques. It contains basic original ideas of the Physical Theory of Diffraction (PTD), examples of its practical application, and its validation by the mathematical theory of diffraction. The derived analytic expressions are convenient for numerical calculations and clearly illustrate the physical structure of the scattered field.

  2. Deep-inelastic electron-proton diffraction

    International Nuclear Information System (INIS)

    Dainton, J.B.

    1995-11-01

    Recent measurements by the H1 collaboration at HERA of the cross section for deep-inelastic electron-proton scattering in which the proton interacts with minimal energy transfer and limited 4-momentum transfer squared are presented in the form of the contribution F 2 D(3) to the proton structure function F 2 . By parametrising the cross section phenomenologically in terms of a leading effective Regge pole exchange and comparing the result with a similar parametrisation of hadronic pp physics, the proton interaction is demonstrated to be dominantly of a diffractive nature. The quantitative interpretation of the parametrisation in terms of the properties of an effective leading Regge pole exchange, the pomeron (IP), shows that there is no evidence for a 'harder' BFKL-motivated IP in such deep-inelastic proton diffraction. The total contribution of proton diffraction to deep-inelastic electron-proton scattering is measured to be ∝10% and to be rather insensitive to Bjorken-x and Q 2 . A first measurement of the partonic structure of diffractive exchange is presented. It is shown to be readily interpreted in terms of the exchange of gluons, and to suggest that the bulk of diffractive momentum transfer is carried by a leading gluon. (orig.)

  3. Assessment of surface hardening effects from shot peening on a Ni-based alloy using electron backscatter diffraction techniques

    International Nuclear Information System (INIS)

    Child, D.J.; West, G.D.; Thomson, R.C.

    2011-01-01

    An electron backscatter diffraction (EBSD)-based tool is described to assess the depth of strain-hardening effects of shot-peening treatments applied to the Ni-based superalloy, Udimet (copy right) alloy 720Li. The method consists of a statistical analysis of a number of data points from each grain scanned based on the grain orientation spread and their relative position from the shot-peened edge. The output is a quantitative measure of the depth of strain-hardening effects. The tool is used at various shot-peening intensities to demonstrate the ability to distinguish between these changes, using a range of intensities from 4 to 10 Almen. An increase in shot-peening intensity is observed to increase the depth of strain-hardening effects in the alloy. A comparison with residual stress measurements using X-ray diffraction for the same material shows that the strain-hardened depth determined by EBSD extends to approximately half the distance of the residual stress present due to shot peening. A comparison is also made with predicted profiles from the Peenstress SM model and subsequent microhardness testing. A positive correlation is observed between strained hardened depth and surface roughness of the peened samples. In each case, the increases in surface roughness and strain-hardened depth diminish toward the upper end of the shot-peening intensity range studied for this alloy.

  4. A multimodal microcharacterisation of trace-element zonation and crystallographic orientation in natural cassiterite by combining cathodoluminescence, EBSD, EPMA and contribution of confocal Raman-in-SEM imaging.

    Science.gov (United States)

    Wille, G; Lerouge, C; Schmidt, U

    2018-01-16

    In cassiterite, tin is associated with metals (titanium, niobium, tantalum, indium, tungsten, iron, manganese, mercury). Knowledge of mineral chemistry and trace-element distribution is essential for: the understanding of ore formation, the exploration phase, the feasibility of ore treatment, and disposal/treatment of tailings after the exploitation phase. However, the availability of analytical methods make these characterisations difficult. We present a multitechnical approach to chemical and structural data that includes scanning electron microscopy (SEM)-based imaging and microanalysis techniques such as: secondary and backscattered electrons, cathodoluminescence (CL), electron probe microanalyser (EPMA), electron backscattered diffraction (EBSD) and confocal Raman-imaging integrated in a SEM (RISE). The presented results show the complementarity of the used analytical techniques. SEM, CL, EBSD, EPMA provide information from the interaction of an electron beam with minerals, leading to atomistic information about their composition, whereas RISE, Raman spectroscopy and imaging completes the studies with information about molecular vibrations, which are sensitive to structural modifications of the minerals. The correlation of Raman bands with the presence/absence of Nb, Ta, Fe (heterovalent substitution) and Ti (homovalent substitution) is established at a submicrometric scale. Combination of the different techniques makes it possible to establish a direct link between chemical and crystallographic data of cassiterite. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  5. Branched needle microstructure in Ni-Mn-Ga 10M martensite: EBSD study

    Czech Academy of Sciences Publication Activity Database

    Chulist, R.; Straka, Ladislav; Sozinov, A.; Tokarski, T.; Skrotzki, W.

    2017-01-01

    Roč. 128, Apr (2017), s. 113-119 ISSN 1359-6454 R&D Projects: GA ČR GA16-00043S Institutional support: RVO:68378271 Keywords : EBSD * NiMnGa * seudoelasticity * twinning Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 5.301, year: 2016

  6. Pair distribution functions of carbonaceous solids, determined using energy filtered diffraction

    International Nuclear Information System (INIS)

    Petersen, T.C.; McCulloch, D.G.

    2002-01-01

    Full text: The structures of various carbonaceous solids were investigated using energy filtered diffraction patterns collected in two dimensions using a Gatan Imaging Filter (GIF). In order to reduce multiple scattering and eliminate inelastic scattering effects, the diffraction patterns were filtered using an energy -selecting slit around the zero-loss peak. Software has been developed for the extraction of radially averaged pair distributions functions from the diffraction data. This entails finding the position of the un-scattered beam, radially averaging the two dimensional intensity distributions, calibrating the resulting one dimensional intensity profiles and finally normalising the data to obtain structure factors. Techniques for improving and assessing data quality, pertaining to the methodology used here, have also been explored. Structure factors and radial distribution functions generated using this analysis will be discussed and, for the commercial V25 glassy carbon samples, compared to previous, work of one of the authors'. In order to answer questions regarding multiple scattering effects and structural homogeneity of the samples, neutron scattering was performed on the Medium Resolution Powder Diffractometer (MRPD), at the Australian Nuclear Science and Technology's (ANSTO) facility. A critical comparison of the neutron scattering and electron diffraction generated structure factors will be presented. Copyright (2002) Australian Society for Electron Microscopy Inc

  7. Analysis of soft magnetic materials by electron backscatter diffraction as a powerful tool

    Science.gov (United States)

    Schuller, David; Hohs, Dominic; Loeffler, Ralf; Bernthaler, Timo; Goll, Dagmar; Schneider, Gerhard

    2018-04-01

    The current work demonstrates that electron backscatter diffraction (EBSD) is a powerful and versatile characterization technique for investigating soft magnetic materials. The properties of soft magnets, e.g., magnetic losses strongly depend on the materials chemical composition and microstructure, including grain size and shape, texture, degree of plastic deformation and elastic strain. In electrical sheet stacks for e-motor applications, the quality of the machined edges/surfaces of each individual sheet is of special interest. Using EBSD, the influence of the punching process on the microstructure at the cutting edge is quantitatively assessed by evaluating the crystallographic misorientation distribution of the deformed grains. Using an industrial punching process, the maximum affected deformation depth is determined to be 200 - 300 μm. In the case of laser cutting, the affected deformation depth is determined to be approximately zero. Reliability and detection limits of the developed EBSD approach are evaluated on non-affected sample regions and model samples containing different indentation test bodies. A second application case is the investigation of the recrystallization process during the annealing step of soft magnetic composites (SMC) toroids produced by powder metallurgy as a function of compaction pressure, annealing parameters and powder particle size. With increasing pressure and temperature, the recrystallized area fraction (e.g., grains with crystallographic misorientations particle boundaries or areas with existing plastic deformation. The progress of recrystallization is visualized as a function of time and of different particle to grain size distributions. Here, large particles with coarse internal grain structures show a favorable recrystallization behavior which results in large bulk permeability of up to 600 - 700 and lower amount of residual misorientations (>3°).

  8. High-pressure cells for study of condensed matter by diffraction and inelastic neutron scattering at low temperatures and in strong magnetic fields

    Science.gov (United States)

    Sadykov, R. A.; Strassle, Th; Podlesnyak, A.; Keller, L.; Fak, B.; Mesot, J.

    2017-12-01

    We have developed and implemented series of new original clamp high-pressure cells for neutron diffraction and inelastic neutron scattering at low temperatures. The cells design allows one to place them in the standard cryostats or cryomagnets used on neutron sources. Some results obtained for ZnCr2Se4 are demonstrated as an example.

  9. Dynamics from diffraction

    International Nuclear Information System (INIS)

    Goodwin, Andrew L.; Tucker, Matthew G.; Cope, Elizabeth R.; Dove, Martin T.; Keen, David A.

    2006-01-01

    We explore the possibility that detailed dynamical information might be extracted from powder diffraction data. Our focus is a recently reported technique that employs statistical analysis of atomistic configurations to calculate dynamical properties from neutron total scattering data. We show that it is possible to access the phonon dispersion of low-frequency modes using such an approach, without constraining the results in terms of some pre-defined dynamical model. The high-frequency regions of the phonon spectrum are found to be less well preserved in the diffraction data

  10. Introductory theory of neutron scattering

    International Nuclear Information System (INIS)

    Gunn, J.M.F.

    1986-12-01

    The paper comprises a set of six lecture notes which were delivered to the summer school on 'Neutron Scattering at a pulsed source', Rutherford Laboratory, United Kingdom, 1986. The lectures concern the physical principles of neutron scattering. The topics of the lectures include: diffraction, incoherent inelastic scattering, connection with the Schroedinger equation, magnetic scattering, coherent inelastic scattering, and surfaces and neutron optics. (UK)

  11. The method of the generalised eikonal new approaches in the diffraction theory

    CERN Document Server

    Vesnik, Michael V

    2015-01-01

    The diffraction theory describes scattering mechanism for waves of various physical nature, scattered on objects of different shapes and composed of different materials. Using the diffraction theory, one can study a number of important effects connected with wave propagation, and create objects with given properties.

  12. Theoretical review of diffractive phenomena

    International Nuclear Information System (INIS)

    Golec-Biernat, K.

    2005-01-01

    We review QCD based descriptions of diffractive deep inelastic scattering emphasising the role of models with parton saturation. These models provide natural explanation of such experimentally observed facts as the constant ratio of σ diff /σ tot as a function of the Bjorken variable x, and Regge factorization of diffractive parton distributions. The Ingelman-Schlein model and the soft color interaction model are also presented

  13. The Aharonov–Bohm effect in scattering theory

    International Nuclear Information System (INIS)

    Sitenko, Yu.A.; Vlasii, N.D.

    2013-01-01

    The Aharonov–Bohm effect is considered as a scattering event with nonrelativistic charged particles of the wavelength which is less than the transverse size of an impenetrable magnetic vortex. The quasiclassical WKB method is shown to be efficient in solving this scattering problem. We find that the scattering cross section consists of two terms, one describing the classical phenomenon of elastic reflection and another one describing the quantum phenomenon of diffraction; the Aharonov–Bohm effect is manifested as a fringe shift in the diffraction pattern. Both the classical and the quantum phenomena are independent of the choice of a boundary condition at the vortex edge, providing that probability is conserved. We show that a propagation of charged particles can be controlled by altering the flux of a magnetic vortex placed on their way. -- Highlights: •Aharonov–Bohm effect as a scattering event. •Impenetrable magnetic vortex of nonzero transverse size. •Scattering cross section is independent of a self-adjoint extension employed. •Classical phenomenon of elastic reflection and quantum phenomenon of diffraction. •Aharonov–Bohm effect as a fringe shift in the diffraction pattern

  14. Theory of time-resolved inelastic x-ray diffraction

    DEFF Research Database (Denmark)

    Lorenz, Ulf; Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2010-01-01

    Starting from a general theory of time-resolved x-ray scattering, we derive a convenient expression for the diffraction signal based on a careful analysis of the relevant inelastic scattering processes. We demonstrate that the resulting inelastic limit applies to a wider variety of experimental...... conditions than similar, previously derived formulas, and it directly allows the application of selection rules when interpreting diffraction signals. Furthermore, we present a simple extension to systems simultaneously illuminated by x rays and a laser beam....

  15. Diffraction enhanced x-ray imaging

    International Nuclear Information System (INIS)

    Thomlinson, W.; Zhong, Z.; Johnston, R.E.; Sayers, D.

    1997-09-01

    Diffraction enhanced imaging (DEI) is a new x-ray radiographic imaging modality using synchrotron x-rays which produces images of thick absorbing objects that are almost completely free of scatter. They show dramatically improved contrast over standard imaging applied to the same phantoms. The contrast is based not only on attenuation but also the refraction and diffraction properties of the sample. The diffraction component and the apparent absorption component (absorption plus extinction contrast) can each be determined independently. This imaging method may improve the image quality for medical applications such as mammography

  16. Evaluation of Optical Quality: Ocular Scattering and Aberrations in Eyes Implanted with Diffractive Multifocal or Monofocal Intraocular Lenses.

    Science.gov (United States)

    Liao, Xuan; Lin, Jia; Tian, Jing; Wen, BaiWei; Tan, QingQing; Lan, ChangJun

    2018-06-01

    To compare objective optical quality, ocular scattering and aberrations of eyes implanted with an aspheric monofocal intraocular lens (IOL) or an aspheric apodized diffractive multifocal IOL three months after surgery. Prospective consecutive nonrandomized comparative cohort study. A total of 80 eyes from 57 cataract patients were bilaterally or unilaterally implanted with monofocal (AcrySof IQ SN60WF) or multifocal (AcrySof IQ ReSTOR SN6AD1) IOLs. Respectively, 40 eyes of 27 patients were implanted with monofocal IOLs, and 40 eyes of 30 patients were implanted with multifocal IOLs. Ocular high-order aberration (HOA) values were obtained using Hartmann-Shack aberrometer; objective scatter index (OSI), modulation transfer function (MTF) cutoff, Strehl ratio (SR), and contrast visual acuity OV at 100%, 20%, and 9% were measured using Objective Quality Analysis System II (OQAS II). Ocular aberrations performed similar in both groups (p > 0.05). However, significantly higher values of OSI and lower values of MTF cutoff, SR and OV were found in the SN6AD1 group (p < 0.05). Both ocular scattering and wave-front aberrations play essential role in retinal image quality, which may be overestimated when only aberrations were taken into account. Combining the effect of ocular scattering with HOA will result in a more accurate assessment of the visual and optical quality.

  17. Electron diffraction from carbon nanotubes

    International Nuclear Information System (INIS)

    Qin, L-C

    2006-01-01

    The properties of a carbon nanotube are dependent on its atomic structure. The atomic structure of a carbon nanotube can be defined by specifying its chiral indices (u, v), that specify its perimeter vector (chiral vector), with which the diameter and helicity are also determined. The fine electron beam available in a modern transmission electron microscope (TEM) offers a unique probe to reveal the atomic structure of individual nanotubes. This review covers two aspects related to the use of the electron probe in the TEM for the study of carbon nanotubes: (a) to understand the electron diffraction phenomena for inter-pretation of the electron diffraction patterns of carbon nanotubes and (b) to obtain the chiral indices (u, v), of the carbon nanotubes from the electron diffraction patterns. For a nanotube of a given structure, the electron scattering amplitude from the carbon nanotube is first described analytically in closed form using the helical diffraction theory. From a known structure as given by the chiral indices (u, v), its electron diffraction pattern can be calculated and understood. The reverse problem, i.e. assignment of the chiral indices from an electron diffraction pattern of a carbon nanotube, is approached from the relationship between the electron scattering intensity distribution and the chiral indices (u, v). We show that electron diffraction patterns can provide an accurate and unambiguous assignment of the chiral indices of carbon nanotubes. The chiral indices (u, v) can be read indiscriminately with a high accuracy from the intensity distribution on the principal layer lines in an electron diffraction pattern. The symmetry properties of electron diffraction from carbon nanotubes and the electron diffraction from deformed carbon nanotubes are also discussed in detail. It is shown that 2mm symmetry is always preserved for single-walled carbon nanotubes, but it can break down for multiwalled carbon nanotubes under some special circumstances

  18. When holography meets coherent diffraction imaging.

    Science.gov (United States)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner

    2012-12-17

    The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the

  19. Diffractive charm and jet production at HERA

    International Nuclear Information System (INIS)

    Savin, Alexander A.

    2003-01-01

    A new high precision inclusive measurement of the diffractive production of D* ± (2010) mesons in deep inelastic scattering (DIS) in the kinematic region Q 2 >1.5 GeV 2 , 0.02 IP 2 2 , 165 2 , χ IP < 0.03 are presented. Diffractive parton densities extracted using a NLO DGLAP QCD fit are used for comparisons with diffractive DIS and PHP dijet and open charm cross sections at HERA and the Tevatron, thus testing the factorization properties of hard diffraction

  20. Photoelectron diffraction and holography: Present status and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Fadley, C.S. [California Univ., Davis, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States); Thevuthasan, S. [California Univ., Davis, CA (United States). Dept. of Physics; Kaduwela, A.P. [Lawrence Berkeley Lab., CA (United States)] [and others

    1993-07-01

    Photoelectron diffraction and photoelectron holography, a newly developed variant of it, can provide a rich range of information concerning surface structure. These methods are sensitive to atomic type, chemical state, and spin state. The theoretical prediction of diffraction patterns is also well developed at both the single scattering and multiple scattering levels, and quantitative fits of experiment to theory can lead to structures with accuracies in the {plus_minus}0.03 {Angstrom} range. Direct structural information can also be derived from forward scattering in scanned-angle measurements at higher energies, path length differences contained in scanned-energy data at lower energies, and holographic inversions of data sets spanning some region in angle and energy space. Diffraction can also affect average photoelectron emission depths. Circular dichroism in core-level emission can be fruitfully interpreted in terms of photoelectron diffraction theory, as can measurements with spin-resolved core-spectra, and studies of surface magnetic structures and phase transitions should be possible with these methods. Synchrotron radiation is a key element of fully utilizing these techniques.

  1. Design and performance of U7B beamline and X-ray diffraction and scattering station at NSRL and its preliminary experiments in protein crystallography

    International Nuclear Information System (INIS)

    Pan Guoqiang; Xu, Chaoyin; Fan Rong; Gao Chen; Lou Xiaohua; Teng Maikun; Huang Qingqiu; Niu Liwen

    2005-01-01

    This publication describes the design and performance of the U7B beamline and X-ray diffraction and diffuse scattering station at National Synchrotron Radiation Laboratory (NSRL). The beamline optics comprise a Pt-coated toroidal focusing mirror and a double-crystal Si(1 1 1) monochromator. A preliminary experiment of diffraction data collection and processing was carried out using a commercial imaging plate detector system (Mar345). The data collected from one single crystal of acutohaemolysin, a Lys49-type PLA2 from Agkistrodon acutus venom, are of high quality

  2. A short note on physical properties to irradiated nuclear fuel by means of X-ray diffraction and neutron scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Yusof, E-mail: yusofabd@nuclearmalaysia.gov.my; Husain, Hishamuddin; Hak, Cik Rohaida Che; Alias, Nor Hayati; Yusof, Mohd Reusmaazran; Kasim, Norasiah Ab; Zali, Nurazila Mat [Malaysian Nuclear Agency, Bangi, Kajang 43000, Selangor (Malaysia); Mohamed, Abdul Aziz [College of Engineering, Universiti Tenaga National, Jalan Ikram-Uniten, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    For nuclear reactor applications, understanding the evolution of the fuel materials microstructure during irradiation are of great importance. This paper reviews the physical properties of irradiated nuclear fuel analysis which are considered to be of most importance in determining the performance behavior of fuel. X-rays diffraction was recognize as important tool to investigate the phase identification while neutron scattering analyses the interaction between uranium and other materials and also investigation of the defect structure.

  3. Non-eikonal effects in high-energy scattering IV. Inelastic scattering

    International Nuclear Information System (INIS)

    Gurvitz, S.A.; Kok, L.P.; Rinat, A.S.

    1978-01-01

    Amplitudes of inelastically scattered high-energy projections were calculated. In the scattering on 12 C(Tsub(P)=1 GeV) sizeable non-eikonal corrections in diffraction extrema even for relatively small q 2 are demonstrated. At least part of the anomaly in the 3 - distribution may be due to these non-eikonal effects. (B.G.)

  4. Neutron diffraction and lattice defects

    International Nuclear Information System (INIS)

    Hamaguchi, Yoshikazu

    1974-01-01

    Study on lattice defects by neutron diffraction technique is described. Wave length of neutron wave is longer than that of X-ray, and absorption cross-section is small. Number of defects observed by ESR is up to several defects, and the number studied with electron microscopes is more than 100. Information obtained by neutron diffraction concerns the number of defects between these two ranges. For practical analysis, several probable models are selected from the data of ESR or electron microscopes, and most probable one is determined by calculation. Then, defect concentration is obtained from scattering cross section. It is possible to measure elastic scattering exclusively by neutron diffraction. Minimum detectable concentration estimated is about 0.5% and 10 20 - 10 21 defects per unit volume. A chopper and a time of flight system are used as a measuring system. Cold neutrons are obtained from the neutron sources inserted into reactors. Examples of measurements by using similar equipments to PTNS-I system of Japan Atomic Energy Research Institute are presented. Interstitial concentration in the graphite irradiated by fast neutrons is shown. Defects in irradiated MgO were also investigated by measuring scattering cross section. Study of defects in Ge was made by measuring total cross section, and model analysis was performed in comparison with various models. (Kato, T.)

  5. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  6. Proton diffraction

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Allen, L.J.

    1998-01-01

    The Lindhard theory on ion channeling in crystals has been widely accepted throughout ion beam analysis for use in simulating such experiments. The simulations use a Monte Carlo method developed by Barret, which utilises the classical 'billiard ball' theory of ions 'bouncing' between planes or tubes of atoms in the crystal. This theory is not valid for 'thin' crystals where the planes or strings of atoms can no longer be assumed to be of infinite proportions. We propose that a theory similar to that used for high energy electron diffraction can be applied to MeV ions, especially protons, in thin crystals to simulate the intensities of transmission channeling and of RBS spectra. The diffraction theory is based on a Bloch wave solution of the Schroedinger equation for an ion passing through the periodic crystal potential. The widely used universal potential for proton-nucleus scattering is used to construct the crystal potential. Absorption due to thermal diffuse scattering is included. Experimental parameters such as convergence angle, beam tilt and scanning directions are considered in our calculations. Comparison between theory and experiment is encouraging and suggests that further work is justified. (authors)

  7. Inclusive measurement of diffractive deep-inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Habib, S.; Haidt, D.; Kleinwort, C.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Radescu, V.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Pandurovic, M.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Bylinkin, A.; Bystritskaya, L.; Fedotov, A.; Lubimov, V.; Ozerov, D.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Roosen, R.; Staykova, Z.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Hladky, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; Kogler, R.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Sauter, M.; Schoening, A.; Joensson, L.; Jung, H.; Kapichine, M.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; Stella, B.; Sykora, T.; Tsakov, I.; Wegener, D.

    2012-01-01

    The diffractive process ep→eXY, where Y denotes a proton or its low mass excitation with M Y 2 ≤ 1600 GeV 2 , the square of the four-momentum transfer at the proton vertex vertical stroke t vertical stroke 2 and the longitudinal momentum fraction of the incident proton carried by the colourless exchange x P P , Q 2 and β=x/x P where x is the Bjorken scaling variable. These measurements are made after selecting diffractive events by demanding a large empty rapidity interval separating the final state hadronic systems X and Y. High statistics measurements covering the data taking periods 1999-2000 and 2004-2007 are combined with previously published results in order to provide a single set of diffractive cross sections from the H1 experiment using the large rapidity gap selection method. The combined data represent a factor between three and thirty increase in statistics with respect to the previously published results. The measurements are compared with predictions from NLO QCD calculations based on diffractive parton densities and from a dipole model. The proton vertex factorisation hypothesis is tested. (orig.)

  8. Experimental studies of diffractive phenomena

    International Nuclear Information System (INIS)

    Cool, R.L.

    1984-01-01

    The coherent inelastic scattering process, usually called inclusive diffraction dissociation, is discussed. Topics include: t and M/sub x/ dependence, factorization, finite mass sum rule and charged particle multiplicities. 6 references, 14 figures

  9. Reconstructing an icosahedral virus from single-particle diffraction experiments

    Science.gov (United States)

    Saldin, D. K.; Poon, H.-C.; Schwander, P.; Uddin, M.; Schmidt, M.

    2011-08-01

    The first experimental data from single-particle scattering experiments from free electron lasers (FELs) are now becoming available. The first such experiments are being performed on relatively large objects such as viruses, which produce relatively low-resolution, low-noise diffraction patterns in so-called ``diffract-and-destroy'' experiments. We describe a very simple test on the angular correlations of measured diffraction data to determine if the scattering is from an icosahedral particle. If this is confirmed, the efficient algorithm proposed can then combine diffraction data from multiple shots of particles in random unknown orientations to generate a full 3D image of the icosahedral particle. We demonstrate this with a simulation for the satellite tobacco necrosis virus (STNV), the atomic coordinates of whose asymmetric unit is given in Protein Data Bank entry 2BUK.

  10. Electron backscatter diffraction studies of focused ion beam induced phase transformation in cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.G., E-mail: helen.jones@npl.co.uk [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Day, A.P. [Aunt Daisy Scientific Ltd, Claremont House, High St, Lydney GL15 5DX (United Kingdom); Cox, D.C. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2016-10-15

    A focused ion beam microscope was used to induce cubic to hexagonal phase transformation in a cobalt alloy, of similar composition to that of the binder phase in a hardmetal, in a controlled manner at 0°, 45° and 80° ion incident angles. The cobalt had an average grain size of ~ 20 μm, allowing multiple orientations to be studied, exposed to a range of doses between 6 × 10{sup 7} and 2 × 10{sup 10} ions/μm{sup 2}. Electron backscatter diffraction (EBSD) was used to determine the original and induced phase orientations, and area fractions, before and after the ion beam exposure. On average, less phase transformation was observed at higher incident angles and after lower ion doses. However there was an orientation effect where grains with an orientation close to (111) planes were most susceptible to phase transformation, and (101) the least, where grains partially and fully transformed at varying ion doses. - Highlights: •Ion-induced phase change in FCC cobalt was observed at multiple incidence angles. •EBSD was used to study the relationship between grain orientation and transformation. •Custom software analysed ion dose and phase change with respect to grain orientation. •A predictive capability of ion-induced phase change in cobalt was enabled.

  11. Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations

    International Nuclear Information System (INIS)

    Zaafarani, N.; Raabe, D.; Singh, R.N.; Roters, F.; Zaefferer, S.

    2006-01-01

    This paper reports a three-dimensional (3D) study of the microstructure and texture below a conical nanoindent in a (111) Cu single crystal at nanometer-scale resolution. The experiments are conducted using a joint high-resolution field emission scanning electron microscopy/electron backscatter diffraction (EBSD) set-up coupled with serial sectioning in a focused ion beam system in the form of a cross-beam 3D crystal orientation microscope (3D EBSD). The experiments (conducted in sets of subsequent (112-bar ) cross-section planes) reveal a pronounced deformation-induced 3D patterning of the lattice rotations below the indent. In the cross-section planes perpendicular to the (111) surface plane below the indenter tip the observed deformation-induced rotation pattern is characterized by an outer tangent zone with large absolute values of the rotations and an inner zone closer to the indenter axis with small rotations. The mapping of the rotation directions reveals multiple transition regimes with steep orientation gradients and frequent changes in sign. The experiments are compared to 3D elastic-viscoplastic crystal plasticity finite element simulations adopting the geometry and boundary conditions of the experiments. The simulations show a similar pattern for the absolute orientation changes but they fail to predict the fine details of the patterning of the rotation directions with the frequent changes in sign observed in the experiment. Also the simulations overemphasize the magnitude of the rotation field tangent to the indenter relative to that directly below the indenter tip

  12. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1995-06-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). (orig.)

  13. Caractérisation des fissures secondaires dans un acier faiblement allié par EBSD

    Czech Academy of Sciences Publication Activity Database

    Haušild, P.; Nohava, Jiří; Bompard, P.

    s. 141 ISSN 0035-1563. [Société francaise de Métallurgie et de Matériaux. 29.10.2001-31.10.2001, Paříž] Institutional research plan: CEZ:AV0Z2043910 Keywords : EBSD, secondary cracks, bainitic steel Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  14. Evidence for factorization breaking in diffractive low-Q2 dijet production

    International Nuclear Information System (INIS)

    Klasen, Michael; Kramer, Gustav

    2004-01-01

    We calculate diffractive dijet production in deep-inelastic scattering at next-to-leading order of perturbative QCD, including contributions from direct and resolved photons, and compare our predictions to preliminary data from the H1 Collaboration at DESY HERA. In contrast to recent experimental claims, evidence for factorization breaking is found only for resolved, and not direct, photon contributions. No evidence is found for large normalization uncertainties in diffractive parton densities. The results confirm theoretical expectations for the (non)cancellation of soft singularities in diffractive scattering as well as previous results for (almost) real photoproduction

  15. The magnetic order of GdMn{sub 2}Ge{sub 2} studied by neutron diffraction and x-ray resonant magnetic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, S A [M V Lomonosov Moscow State University, 119991 GSP-1 Moscow (Russian Federation); Kreyssig, A; Canfield, P C [Ames Laboratory USDOE, Iowa State University, Ames, IA 50011 (United States); Doerr, M; Loewenhaupt, M [TU Dresden, Institut fuer Festkoerperphysik, D-01062, Dresden (Germany); Ritter, C [Institut Laue-Langevin, F-38042 Grenoble Cedex 9 (France); Dudzik, E; Feyerherm, R, E-mail: ser@plms.r [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, BESSY, D-12489, Berlin (Germany)

    2010-06-09

    The magnetic structure of GdMn{sub 2}Ge{sub 2} (tetragonal I4/mmm) has been studied by hot neutron powder diffraction and x-ray resonant magnetic scattering techniques. These measurements, along with the results of bulk experiments, confirm the collinear ferrimagnetic structure with moment direction parallel to the c-axis below T{sub C} = 96 K and the collinear antiferromagnetic phase in the temperature region T{sub C} < T < T{sub N} = 365 K. In the antiferromagnetic phase, x-ray resonant magnetic scattering has been detected at Mn K and Gd L{sub 2} absorption edges. The Gd contribution is a result of an induced Gd 5d electron polarization caused by the antiferromagnetic order of Mn-moments.

  16. Deep inelastic inclusive and diffractive scattering at Q2 values from 25 to 320 GeV2 with the ZEUS forward plug calorimeter

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2008-01-01

    Deep inelastic scattering and its diffractive component, ep→e'γ * p→e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb -1 . The M X method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy W (37-245 GeV), photon virtuality Q 2 (20-450 GeV 2 ) and mass M X (0.28-35 GeV) is covered. The diffractive cross section for 2 X 2 increases. The data are also presented in terms of the diffractive structure function, F D(3) 2 , of the proton. For fixed Q 2 and fixed M X , x P F D(3) 2 shows a strong rise as x P →0, where x P is the fraction of the proton momentum carried by the Pomeron. For Bjorken-x -3 , x P F D(3) 2 shows positive log Q 2 scaling violations, while for x≥5 x 10 -3 negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken. (orig.)

  17. Crystal structure of fluorite-related Ln3SbO7 (Ln=La–Dy) ceramics studied by synchrotron X-ray diffraction and Raman scattering

    International Nuclear Information System (INIS)

    Siqueira, K.P.F.; Borges, R.M.; Granado, E.; Malard, L.M.; Paula, A.M. de; Moreira, R.L.; Bittar, E.M.; Dias, A.

    2013-01-01

    Ln 3 SbO 7 (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) ceramics were synthesized by solid-state reaction in optimized conditions of temperature and time to yield single-phase ceramics. The crystal structures of the obtained ceramics were investigated by synchrotron X-ray diffraction, second harmonic generation (SHG) and Raman scattering. All samples exhibited fluorite-type orthorhombic structures with different oxygen arrangements as a function of the ionic radius of the lanthanide metal. For ceramics with the largest ionic radii (La–Nd), the ceramics crystallized into the Cmcm space group, while the ceramics with intermediate and smallest ionic radii (Sm–Dy) exhibited a different crystal structure belonging to the same space group, described under the Ccmm setting. The results from SHG and Raman scattering confirmed these settings and ruled out any possibility for the non-centrosymmetric C222 1 space group describing the structure of the small ionic radii ceramics, solving a recent controversy in the literature. Besides, the Raman modes for all samples are reported for the first time, showing characteristic features for each group of samples. - Graphical abstract: Raman spectrum for La 3 SbO 7 ceramics showing their 22 phonon modes adjusted through Lorentzian lines. According to synchrotron X-ray diffraction and Raman scattering, this material belongs to the space group Cmcm. - Highlights: • Ln 3 SbO 7 ceramics belonging to the space groups Cmcm and Ccmm are synthesized. • SXRD, SHG and Raman scattering confirmed the orthorhombic structures. • Ccmm instead of C222 1 is the correct one based on SHG and Raman data

  18. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1996-01-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). copyright 1996 American Institute of Physics

  19. Dijet Cross Sections and Parton Densities in Diffractive DIS at HERA

    CERN Document Server

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-01-01

    Differential dijet cross sections in diffractive deep-inelastic scattering are measured with the H1 detector at HERA using an integrated luminosity of 51.5 pb-1. The selected events are of the type ep --> eXY, where the system X contains at least two jets and is well separated in rapidity from the low mass proton dissociation system Y. The dijet data are compared with QCD predictions at next-to-leading order based on diffractive parton distribution functions previously extracted from measurements of inclusive diffractive deep-inelastic scattering. The prediction describes the dijet data well at low and intermediate zpom (the fraction of the momentum of the diffractive exchange carried by the parton entering the hard interaction) where the gluon density is well determined from the inclusive diffractive data, supporting QCD factorisation. A new set of diffractive parton distribution functions is obtained through a simultaneous fit to the diffractive inclusive and dijet cross sections. This allows for a precise ...

  20. Cesium incorporation in hollandite-rich multiphasic ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Tumurugoti, P.; Clark, B.M. [Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY 14802 (United States); Edwards, D.J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Amoroso, Jake [Savannah River National Laboratory, Aiken, SC 29808 (United States); Sundaram, S.K. [Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY 14802 (United States)

    2017-02-15

    Hollandite-rich multiphase waste form compositions processed by melt-solidification and spark plasma sintering (SPS) were characterized, compared, and validated for nuclear waste incorporation. Phase identification by x-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) confirmed hollandite as the major phase present in these samples along with perovskite, pyrochlore and zirconolite. Distribution of selected elements observed by wavelength dispersive spectroscopy (WDS) maps indicated that Cs formed a secondary phase during SPS processing, which was considered undesirable. On the other hand, Cs partitioned into the hollandite phase in melt-processed samples. Further analysis of hollandite structure in melt-processed composition by selected area electron diffraction (SAED) revealed ordered arrangement of tunnel ions (Ba/Cs) and vacancies, suggesting efficient Cs incorporation into the lattice.

  1. Thermally-induced amphibole reaction rim development: EBSD insights into microlite orientation

    Science.gov (United States)

    De Angelis, Sarah; Lavallée, Yan; Larsen, Jessica; Mariani, Elisabetta

    2014-05-01

    Amphibole is an important mineral present in many calc-alkaline volcanic deposits. A hydrous phase, volcanic amphibole is only stable at pressures greater than 100 MPa (approx. 4 km), temperature less than ~860-870 oC, and in melts containing at least 4 wt % H2O. When removed from their thermal and barometric stability field, amphiboles decompose to form aggregate rims of anhydrous minerals. The thickness, texture, and mineralogy of these rims are thought to be reflective of the process driving amphibole disequilibrium (e.g. heating, decompression, etc). However, significant overlap in rim thicknesses and microlite textures means that distinguishing between processes it not simple. This study employed backscatter diffraction (EBSD) to examine both experimental heating-indced amphibole reaction rims and natural amphibole reaction rim from Augustine Volcano. We collected crystal orientation maps of amphibole reaction rims to investigate if different types of disequilibrium produce different patterns of microlite orientation. We identified two types of reaction rim: Type 1- reaction rim microlites are generally oriented at random and share little or no systematic relationship with the crystallographic orientation of the host amphibole, and; Type 2- reaction rim microlites exhibit a topotactic relationship with the host amphibole (they share the same crystallographic orientation). Experimentally produced heating reaction rims are without exception Type 2. However the natural reaction rims are evenly distributed between Types 1 and 2. Further experimental data on decompression induced reaction rim formation is needed to investigate if Type 1 reaction rims resemble the breakdown of amphibole due to decompression. If so, reaction rim microlite orientation could provide a clear method for distinguishing between heating and decompression processes in amphibole bearing magmas.

  2. X-ray scattering and diffraction from Xe-induced ripples in crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas; Pietsch, Ullrich; Grigorian, Souren [Universitaet Siegen (Germany); Grenzer, Joerg; Facsko, Stefan; Hanisch, Antje [Foschungszentrum Dresden-Rossendorf (Germany); Carbone, Dina; Metzger, Hartmut [ID Beamline, ESRF (France)

    2008-07-01

    The formation of surface-nanostructures with a characteristic size ranging from several nanometer up to microns has attracted significant interest in the last decades in the context of fabrication of novel opto-electronic and storage devices. One kind of those nanostructures are wave-like patterns (ripples) produced by an interplay between a roughening process caused by ion beam erosion (sputtering) of the surface and smoothening processes caused by surface diffusion. In this contribution we report on investigations of patterned Si(001) surfaces after irradiation with Xe{sup +}-ions using ion-energies up to 40 keV. During the sputtering, an amorphous surface-layer is formed followed by a rather sharp interface towards crystalline material, showing the same morphology as the surface. The structures of the amorphous layer and the amorphous-crystalline interface were studied by means of grazing-incidence-small angle scattering (GISAXS) and diffraction (GID) using synchrotron-radiation. We found that the crystal structure at the interface is expanded along the ripples, caused by the creation of defects inside the surface region, whereas this expansion is strongly reduced across the ripples. This different relaxation may play a driving role in pattern formation at the interface.

  3. High-resolution neutron diffraction studies of biological and industrial fibres

    Energy Technology Data Exchange (ETDEWEB)

    Langan, P; Mason, S A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Fuller, W; Forsyth, V T; Mahendrasingam, A; Shotton, M; Simpson, L [Keele Univ. (United Kingdom); Grimm, H [FZ, Juelich (Germany); Leberman, R [EMBL, (Country Unknown)

    1997-04-01

    Neutron diffraction is becoming an important tool for studying fibres due to its complementarity to X-ray diffraction. Unlike X-rays, scattering of neutrons by polymer atoms is not a function of their atomic number. In high-resolution studies (1.5-3 A) on D19 deuteration (replacing H by D) is being used to change the relative scattering power of chosen groups making them easier to locate. Recent studies on DNA and cellulose are described. (author). 6 refs.

  4. Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Britton, T. Ben; Birosca, Soran; Preuss, Michael; Wilkinson, Angus J.

    2010-01-01

    We compare the dislocation substructure within macrozone and non-macrozone regions of hot-rolled Ti-6Al-4 V. Hough-based and cross-correlation-based analysis of electron backscatter diffraction (EBSD) patterns are used to establish the grain orientations and intra-granular misorientations, respectively. The set of geometrically necessary dislocations (GNDs) that support measured lattice curvatures and minimize the total GND line energy are calculated. The GND content in the macrozone is approximately twice that in the non-macrozone region, and GNDs are present at densities ∼10 times higher than GNDs.

  5. Elastic and quasielastic scattering of light nuclei in the theory of multiple scattering

    International Nuclear Information System (INIS)

    Ismatov, E.I.; Kuterbekov, K.A.; Dzhuraev, Sh.Kh.; Ehsaniyazov, Sh.P.; Zholdasova, S.M.

    2005-01-01

    In the work the calculation method for diffraction scattering amplitudes of light nuclei by heavy nuclei is developed. For A 1 A 2 -scattering effects of pair-, three-fold, and four-fold screenings are estimated. It is shown, that in amplitude calculations for A 1 A 2 elastic scattering it is enough come to nothing more than accounting of total screenings in the first order. Analysis of nucleus-nucleus scattering sensitive characteristics to choice of single-particle nuclear densities parametrization is carried out

  6. Mineral Replacement Reactions as a Precursor to Strain Localisation: an (HR-)EBSD approach

    Science.gov (United States)

    Gardner, J.; Wheeler, J.; Wallis, D.; Hansen, L. N.; Mariani, E.

    2017-12-01

    Much remains to be learned about the links between metamorphism and deformation. Our work investigates the behaviour of fluid-mediated mineral replacement reaction products when exposed to subsequent shear stresses. We focus on albite from a metagabbro that has experienced metamorphism and subsequent deformation at greenschist facies, resulting in a reduction in grain size and associated strain localisation. EBSD maps show that prior to grain size reduction, product grains are highly distorted, yet they formed, and subsequently deformed, at temperatures at which extensive dislocation creep is unlikely. The Weighted Burgers Vector can be used to quantitatively describe the types of Burgers vectors present in geometrically necessary dislocation (GND) populations derived from 2-D EBSD map data. Application of this technique to the distorted product grains reveals the prominence of, among others, dislocations with apparent [010] Burgers vectors. This supports (with some caveats) the idea that dislocation creep is not responsible for the observed lattice distortion, as there are no known slip systems in plagioclase with a [010] Burgers vector. Distortion in a replacement microstructure has also been attributed to the presence of nanoscale product grains, which share very similar, but not identical, orientations due to topotactic nucleation from adjacent sites on the same substrate. As a precipitate, the product grains should be expected to be largely free of elastic strain. However, high angular resolution EBSD results demonstrate that product grains contain both elastic strains (> 10-3) and residual stresses (several hundred MPa), as well as GND densities on the order of 1014-1015 m-2. Thus we suggest the observed distortion (elastic strain plus rotations) in the lattice is produced during the mineral replacement reaction by a lattice mismatch and volume change between parent and product. Stored strain energy then provides a driving force for recovery and

  7. Colour-singlet exchange and tests of models of diffractive DIS

    International Nuclear Information System (INIS)

    Williams, J.C.

    2000-03-01

    Diffractive deep-inelastic scattering events observed at the HERA electron-proton collider are interpreted as an interaction involving a virtual photon scattering off a colour-singlet state within the proton. Models which attempt to describe the colour-singlet exchanged in diffractive interactions range from the purely phenomenological Donnachie-Landshoff form factor approach to the QCD-motivated gluon-exchange models and the scalar-pomeron model. It is important to find ways to test these models. In this thesis colour-singlet exchange models of diffractive DIS are compared with cross section and structure function data from the H1 detector. H1 select diffractive data by requiring there to be a large angle between the forward proton direction and any other significant detector activity. This pseudo-rapidity gap cut extracts colour-singlet exchange events from the standard DIS data sample. For a wide range of the parameter space covered by the HERA experiments, however, the pseudo-rapidity gap cuts restrict the final-state phase space available for diffractive scattering. One consequence is that pseudo-rapidity gap cuts can be used to select diffractive events in which the colour-singlet only couples to off-shell partons. To leading order in the strong coupling constant, the diffractive final state consists of a quark-antiquark pair. Higher-order events include diffractive production of quark-antiquark-gluon states. In the region where pseudo-rapidity gap cuts restrict the accessible phase space, the cuts reject low transverse momentum quark-antiquark diffractive events. Pseudo-rapidity gap data selection cuts also allow selection of an enhanced 3-jet data sample. The structure function and transverse momentum distribution data can be described by either a two-gluon model or by the Donnachie-Landshoff model, both models requiring a significant contribution from quark-antiquark-gluon diffractive final states to fit the full kinematic range of the diffractive data

  8. Quantum characteristics of occurrence scattering time in two-component non-ideal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang, 712-702 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590 (United States)

    2015-10-30

    The quantum diffraction and plasma screening effects on the occurrence time for the collision process are investigated in two-component non-ideal plasmas. The micropotential model taking into account the quantum diffraction and screening with the eikonal analysis is employed to derive the occurrence time as functions of the collision energy, density parameter, Debye length, de Broglie wavelength, and scattering angle. It is shown that the occurrence time for forward scattering directions decreases the tendency of time-advance with increasing scattering angle and de Broglie wavelength. However, it is found that the occurrence time shows the oscillatory time-advance and time-retarded behaviors with increasing scattering angle. It is found that the plasma screening effect enhances the tendency of time-advance on the occurrence time for forward scattering regions. It is also shown the quantum diffraction effect suppresses the occurrence time advance for forward scattering angles. In addition, it is shown that the occurrence time advance decreases with an increase of the collision energy. - Highlights: • The quantum diffraction and screening effects on the occurrence scattering time are investigated in non-ideal plasmas. • It is shown the quantum diffraction effect suppresses the occurrence time advance for forward scattering angles. • It is found that the plasma screening effect enhances the tendency of time-advance on the occurrence time.

  9. Inclusive measurement of diffractive deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2012-03-15

    The diffractive process ep {yields} eXY, where Y denotes a proton or its low mass excitation with M{sub Y}<1.6 GeV, is studied with the H1 experiment at HERA. The analysis is restricted to the phase space region of the photon virtuality 3{<=} Q{sup 2} {<=}1600 GeV{sup 2}, the square of the four-momentum transfer at the proton vertex vertical stroke t vertical stroke <1.0 GeV{sup 2} and the longitudinal momentum fraction of the incident proton carried by the colourless exchange x{sub P}<0.05. Triple differential cross sections are measured as a function of x{sub P}, Q{sup 2} and {beta}=x/x{sub P} where x is the Bjorken scaling variable. These measurements are made after selecting diffractive events by demanding a large empty rapidity interval separating the final state hadronic systems X and Y. High statistics measurements covering the data taking periods 1999-2000 and 2004-2007 are combined with previously published results in order to provide a single set of diffractive cross sections from the H1 experiment using the large rapidity gap selection method. The combined data represent a factor between three and thirty increase in statistics with respect to the previously published results. The measurements are compared with predictions from NLO QCD calculations based on diffractive parton densities and from a dipole model. The proton vertex factorisation hypothesis is tested. (orig.)

  10. Inclusive measurement of diffractive deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Habib, S.; Haidt, D.; Kleinwort, C.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Radescu, V.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Pandurovic, M.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Bylinkin, A.; Bystritskaya, L.; Fedotov, A.; Lubimov, V.; Ozerov, D.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Roosen, R.; Staykova, Z.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Hladky, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; Kogler, R.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Sauter, M.; Schoening, A.; Joensson, L.; Jung, H.; Kapichine, M.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; Stella, B.; Sykora, T.; Tsakov, I.; Wegener, D.; Collaboration: H1 Collaboration

    2012-07-15

    The diffractive process ep{yields}eXY, where Y denotes a proton or its low mass excitation with M{sub Y}<1.6 GeV, is studied with the H1 experiment at HERA. The analysis is restricted to the phase space region of the photon virtuality 3{<=}Q{sup 2}{<=} 1600 GeV {sup 2}, the square of the four-momentum transfer at the proton vertex vertical stroke t vertical stroke < 1.0 GeV {sup 2} and the longitudinal momentum fraction of the incident proton carried by the colourless exchange x{sub P}<0.05. Triple differential cross sections are measured as a function of x{sub P}, Q {sup 2} and {beta}=x/x{sub P} where x is the Bjorken scaling variable. These measurements are made after selecting diffractive events by demanding a large empty rapidity interval separating the final state hadronic systems X and Y. High statistics measurements covering the data taking periods 1999-2000 and 2004-2007 are combined with previously published results in order to provide a single set of diffractive cross sections from the H1 experiment using the large rapidity gap selection method. The combined data represent a factor between three and thirty increase in statistics with respect to the previously published results. The measurements are compared with predictions from NLO QCD calculations based on diffractive parton densities and from a dipole model. The proton vertex factorisation hypothesis is tested. (orig.)

  11. Diffractive interactions of hadrons at high energies

    International Nuclear Information System (INIS)

    Goulianos, K.

    1982-01-01

    Elastic scattering, inclusive single diffraction dissociation and total cross section results are reviewed, with emphasis on the inter-relationship among the parameters that characterize these processes

  12. Ion beam polishing for three-dimensional electron backscattered diffraction

    DEFF Research Database (Denmark)

    Saowadee, Nath; Agersted, Karsten; Ubhi, H.S.

    2013-01-01

    averaging and/or poor 3D-EBSD data quality. In this work a low kV focused ion beam was successfully implemented to automatically polish surfaces during 3D-EBSD of La- and Nb-doped strontium titanate of volume 12.6 × 12.6 × 3.0 μm. The key to achieving this technique is the combination of a defocused low k...

  13. The high-energy x-ray diffraction and scattering beamline at the Canadian Light Source

    Science.gov (United States)

    Gomez, A.; Dina, G.; Kycia, S.

    2018-06-01

    The optical design for the high-energy x-ray diffraction and scattering beamline of the Brockhouse sector at the Canadian Light Source is described. The design is based on a single side-bounce silicon focusing monochromator that steers the central part of a high-field permanent magnet wiggler beam into the experimental station. Two different configurations are proposed: a higher energy resolution with vertical focusing and a lower energy resolution with horizontal and vertical focusing. The monochromator will have the possibility of mounting three crystals: one crystal optimized for 35 keV that focuses in the horizontal and vertical directions using reflection (1,1,1) and two other crystals both covering the energies above 40 keV: one with only vertical focusing and another one with horizontal and vertical focusing. The geometry of the last two monochromator crystals was optimized to use reflections (4,2,2) and (5,3,3) to cover the broad energy range from 40 to 95 keV.

  14. Universal fit to p-p elastic diffraction scattering from the Lorentz contracted geometrical model

    International Nuclear Information System (INIS)

    Hansen, P.H.; Krisch, A.D.

    1976-01-01

    The prediction of the Lorentz contracted geometical model for proton-proton elastic scattering at small angles is examined. The model assumes that when two high energy particles collide, each behaves as a geometrical object which has a Gaussian density and is spherically symmetric except for the Lorentz contraction in the incident direction. It is predicted that dsigma/dt should be independent of energy when plotted against the variable β 2 P 2 sub(perpendicular) sigmasub(TOT)(s)/38.3. Thus the energy dependence of the diffraction peak slope (b in an esup(-b mod(t))plot) is given by b(s)=A 2 β 2 sigmasub(TOT)(s)/38.3 where β is the proton's c.m. velocity and A is its radius. Recently measured values of sigmasub(TOT)(s) were used and an excellent fit obtained to the elastic slope in both t regions [-t 2 and 0.1 2 ] at all energies from s=6 to 4000(GeV/c) 2 . (Auth.)

  15. SEM and EBSD characterization of bi-layered functionally graded hard metal composites; REM- und EBSD-Charakterisierung von zweischichtigen, funktionell abgestuften Metallverbundwerkstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Prat, Orlando; Sanhueza, Felipe [Univ. de Concepcion (Chile). Dept. de Ingenieria de Materiales; Suarez, Sebastian [Saarland Univ., Saarbruecken (Germany). Chair of Functional Materials; Garcia, Jose [AB Sandvik Coromant R and D, Stockholm (Sweden)

    2016-11-15

    WC-Co bi-layer functionally graded composites were produced by powder metallurgy techniques. The influence of WC particle size and the grain growth inhibitor on the formation of the functionally graded composite was investigated. SEM images show that all sintered samples present a graded microstructure after sintering, with two side regions of extra-coarse and coarse WC-Co and a clear, dense interface without defects or other phases. EBSD results showed a change of WC particle size depending on the processing and the addition of Mo{sub 2}C. Cobalt binder distribution corresponds to WC particle size. Hardness values correlate to WC particle size and binder content. It is shown that tailored hardness/toughness can be produced by adjusting the WC particle size and binder content on both sides of the bi-layer composite.

  16. Soft color interactions and diffractive hard scattering at the Tevatron

    International Nuclear Information System (INIS)

    Enberg, R.; Timneanu, N.; Ingelman, G.; Uppsala Univ.

    2001-06-01

    An improved understanding of nonperturbative QCD can be obtained by the recently developed soft color interaction models. Their essence is the variation of color string-field topologies, giving a unified description of final states in high energy interactions, e.g., diffractive and nondiffractive events in ep and pp. Here we present a detailed study of such models (the soft color interaction model and the generalized area law model) applied to pp, considering also the general problem of the underlying event including beam particle remnants. With models turned to HERA ep data, we find a good description also of Tevatron data on production of W, bottom and jets in diffractive events defined either by leading antiprotons or by one or two rapidity gaps in the forward or backward regions. We also give predictions for diffractive J/ψ production where the soft exchange mechanism produces both a gap and a color singlet cc state in the same event. This soft color interaction approach is also compared with Pomeron-based models for diffraction, and some possibilities to experimentally discriminate between these different approaches are discussed. (orig.)

  17. Diffraction-based BioCD biosensor for point-of-care diagnostics

    Science.gov (United States)

    Choi, H.; Chang, C.; Savran, C.; Nolte, D.

    2018-02-01

    The BioCD platform technology uses spinning-disk interferometry to detect molecular binding to target molecular probes in biological samples. Interferometric configurations have included differential phase contrast and in-line quadrature detection. For the detection of extremely low analyte concentrations, nano- or microparticles can enhance the signal through background-free diffraction detection. Diffraction signal measurements on BioCD biosensors are achieved by forming gratings on a disc surface. The grating pattern was printed with biotinylated bovine serum albumin (BSA) and streptavidin coated beads were deployed. The diameter of the beads was 1 micron and strong protein bonding occurs between BSA and streptavidin-coated beads at the printed location. The wavelength for the protein binding detection was 635 nm. The periodic pattern on the disc amplified scattered light into the first-order diffraction position. The diffracted signal contains Mie scattering and a randomly-distributed-bead noise contributions. Variation of the grating pattern periodicity modulates the diffraction efficiency. To test multiple spatial frequencies within a single scan, we designed a fan-shaped grating to perform frequency filter multiplexing on a diffraction-based BioCD.

  18. Diffraction and diffusion in room acoustics

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Rasmussen, Birgit

    1996-01-01

    Diffraction and diffusion are two phenomena that are both related to the wave nature of sound. Diffraction due to the finite size of reflecting surfaces and the design of single reflectors and reflector arrays are discussed. Diffusion is the result of scattering of sound reflected from surfaces...... that are not plane but curved or irregular. The importance of diffusion has been demonstrated in concert halls. Methods for the design of diffusing surfaces and the development of new types of diffusers are reviewed. Finally, the importance of diffraction and diffusion in room acoustic computer models is discussed....

  19. Inclusive Measurement of Diffractive Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.

    2012-07-18

    The diffractive process ep \\rightarrow eXY, where Y denotes a proton or its low mass excitation with MY < 1.6 GeV, is studied with the H1 experiment at HERA. The analysis is restricted to the phase space region of the photon virtuality 3 \\leq Q2 \\leq 1600 GeV2, the square of the four-momentum transfer at the proton vertex |t| < 1.0 GeV2 and the longitudinal momentum fraction of the incident proton carried by the colourless exchange xIP < 0.05. Triple differential cross sections are measured as a function of xIP, Q2 and beta = x/xIP where x is the Bjorken scaling variable. These measurements are made after selecting diffractive events by demanding a large empty rapidity interval separating the final state hadronic systems X and Y . High statistics measurements covering the data taking periods 1999-2000 and 2004-2007 are combined with previously published results in order to provide a single set of diffractive cross sections from the H1 experiment using the large rapidity gap selection method. The comb...

  20. Diffraction enhanced imaging: a simple model

    International Nuclear Information System (INIS)

    Zhu Peiping; Yuan Qingxi; Huang Wanxia; Wang Junyue; Shu Hang; Chen Bo; Liu Yijin; Li Enrong; Wu Ziyu

    2006-01-01

    Based on pinhole imaging and conventional x-ray projection imaging, a more general DEI (diffraction enhanced imaging) equation is derived using simple concepts in this paper. Not only can the new DEI equation explain all the same problems as with the DEI equation proposed by Chapman, but also some problems that cannot be explained with the old DEI equation, such as the noise background caused by small angle scattering diffracted by the analyser

  1. Diffraction enhanced imaging: a simple model

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Peiping; Yuan Qingxi; Huang Wanxia; Wang Junyue; Shu Hang; Chen Bo; Liu Yijin; Li Enrong; Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2006-10-07

    Based on pinhole imaging and conventional x-ray projection imaging, a more general DEI (diffraction enhanced imaging) equation is derived using simple concepts in this paper. Not only can the new DEI equation explain all the same problems as with the DEI equation proposed by Chapman, but also some problems that cannot be explained with the old DEI equation, such as the noise background caused by small angle scattering diffracted by the analyser.

  2. 50 years with J. B. Keller's Geometrical Theory of Diffraction in Denmark - Revisiting the Theory

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Albertsen, N. Chr.; Breinbjerg, Olav

    2013-01-01

    In the introduction, Danish contributions to J. B. Keller's Geometrical Theory of Diffraction are surveyed. The edge diffraction coefficient in the case of scattering by a half-plane with an impedance surface is then analyzed. In short-wavelength scattering theory, the amplitudes of the incident...

  3. Diffraction. Single crystal, magnetic

    International Nuclear Information System (INIS)

    Heger, G.

    1999-01-01

    The analysis of crystal structure and magnetic ordering is usually based on diffraction phenomena caused by the interaction of matter with X-rays, neutrons, or electrons. Complementary information is achieved due to the different character of X-rays, neutrons and electrons, and hence their different interactions with matter and further practical aspects. X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (K.A.)

  4. Plasmonic nanoparticle scattering for color holograms.

    Science.gov (United States)

    Montelongo, Yunuen; Tenorio-Pearl, Jaime Oscar; Williams, Calum; Zhang, Shuang; Milne, William Ireland; Wilkinson, Timothy David

    2014-09-02

    This work presents an original approach to create holograms based on the optical scattering of plasmonic nanoparticles. By analogy to the diffraction produced by the scattering of atoms in X-ray crystallography, we show that plasmonic nanoparticles can produce a wave-front reconstruction when they are sampled on a diffractive plane. By applying this method, all of the scattering characteristics of the nanoparticles are transferred to the reconstructed field. Hence, we demonstrate that a narrow-band reconstruction can be achieved for direct white light illumination on an array of plasmonic nanoparticles. Furthermore, multicolor capabilities are shown with minimal cross-talk by multiplexing different plasmonic nanoparticles at subwavelength distances. The holograms were fabricated from a single subwavelength thin film of silver and demonstrate that the total amount of binary information stored in the plane can exceed the limits of diffraction and that this wavelength modulation can be detected optically in the far field.

  5. In-situ studies of the recrystallization process of CuInS2 thin films by energy dispersive X-ray diffraction

    International Nuclear Information System (INIS)

    Thomas, D.; Mainz, R.; Rodriguez-Alvarez, H.; Marsen, B.; Abou-Ras, D.; Klaus, M.; Genzel, Ch.; Schock, H.-W.

    2011-01-01

    Recrystallization processes during the sulfurization of CuInS 2 (CIS) thin films have been studied in-situ using energy dispersive X-ray diffraction (EDXRD) with synchrotron radiation. In order to observe the recrystallization isolated from other reactions occurring during film growth, Cu-poor, small grained CIS layers covered with CuS on top were heated in a vacuum chamber equipped with windows for synchrotron radiation in order to analyze the grain growth mechanism within the CIS layer. In-situ monitoring of the grain size based on diffraction line profile analysis of the CIS-112 reflection was utilized to interrupt the recrystallization process at different points. Ex-situ studies by electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX) performed on samples of intermediate recrystallization states reveal that during the heat treatment Cu and In interdiffuse inside the layer indicating the importance of the mobility of these two elements during CuInS 2 grain growth.

  6. Installation of remote-handling typed EBSD-OIM analyzer for heavy irradiated reactor materials

    International Nuclear Information System (INIS)

    Kato, Yoshiaki; Takada, Fumiki; Ohmi, Masao; Nakagawa, Tetsuya; Miwa, Yukio

    2008-06-01

    The remote-handling typed EBSD-OIM analyzer for heavy irradiated reactor materials was installed in the JMTR hot laboratory at the first time in the world. The analyzer is used to study on IASCC (irradiation assisted stress corrosion cracking) or IGSCC (inter granular stress corrosion cracking) in reactor materials. This report describes the measurement procedure, the measured results and the operating experiences on the analyzer in the JMTR hot laboratory. (author)

  7. Diffractive deep-inelastic scattering with a leading proton at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Coppens, Y. R.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, C. L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-12-01

    The cross section for the diffractive deep-inelastic scattering process ep→eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range xIP<0.1 in fractional proton longitudinal momentum loss, 0.08<|t|<0.5 GeV-2 in squared four-momentum transfer at the proton vertex, 2

  8. Quasi-Bragg diffraction of atoms

    NARCIS (Netherlands)

    Domen, K.F.E.M.; Jansen, M.A.H.M.; Leeuwen, van K.A.H.

    2006-01-01

    We report on a novel atomic beamsplitter. It combines the advantages of Bragg scattering (transfer possible into a single, very high diffraction order due to adiabatic conservation of ‘transverse kinetic energy’) with the convenience of tuning the splitting angle simply by adjusting a magnetic

  9. A CMOS active pixel sensor system for laboratory- based x-ray diffraction studies of biological tissue

    International Nuclear Information System (INIS)

    Bohndiek, Sarah E; Cook, Emily J; Arvanitis, Costas D; Olivo, Alessandro; Royle, Gary J; Clark, Andy T; Prydderch, Mark L; Turchetta, Renato; Speller, Robert D

    2008-01-01

    X-ray diffraction studies give material-specific information about biological tissue. Ideally, a large area, low noise, wide dynamic range digital x-ray detector is required for laboratory-based x-ray diffraction studies. The goal of this work is to introduce a novel imaging technology, the CMOS active pixel sensor (APS) that has the potential to fulfil all these requirements, and demonstrate its feasibility for coherent scatter imaging. A prototype CMOS APS has been included in an x-ray diffraction demonstration system. An industrial x-ray source with appropriate beam filtration is used to perform angle dispersive x-ray diffraction (ADXRD). Optimization of the experimental set-up is detailed including collimator options and detector operating parameters. Scatter signatures are measured for 11 different materials, covering three medical applications: breast cancer diagnosis, kidney stone identification and bone mineral density calculations. Scatter signatures are also recorded for three mixed samples of known composition. Results are verified using two independent models for predicting the APS scatter signature: (1) a linear systems model of the APS and (2) a linear superposition integral combining known monochromatic scatter signatures with the input polychromatic spectrum used in this case. Cross validation of experimental, modelled and literature results proves that APS are able to record biologically relevant scatter signatures. Coherent scatter signatures are sensitive to multiple materials present in a sample and provide a means to quantify composition. In the future, production of a bespoke APS imager for x-ray diffraction studies could enable simultaneous collection of the transmitted beam and scattered radiation in a laboratory-based coherent scatter system, making clinical transfer of the technique attainable

  10. Refractive and diffractive scattering in the interstellar medium

    International Nuclear Information System (INIS)

    Cordes, J.M.; Pidwerbetsky, A.; Lovelace, R.V.E.

    1986-01-01

    Radio wave propagation through electron-density fluctuations in the ISM is studied. Observable propagation effects are explored using a one-dimensional thin-screen model for the turbulent medium. Diffraction caused by stochastic small-scale irregularities is combined with refraction from deterministic large-scale irregularities. Some of the effects are illustrated with numerical simulations of the wave propagation. Multiple imaging is considered, delineating the possible effects and discussing their extensions to two-dimensional screens and extended three-dimensional media. The case where refraction as well as diffraction is caused by a stochastic medium with a spectrum of a given form is considered. The magnitudes of observable effects is estimated for representative spectra that may be relevant to the ISM. The importance of the various effects for timing and scintillation observations of pulsars, VLBI observations of galactic and extragalactic radio sources, and for variability measurements of extragalactic sources is assessed. 47 references

  11. 2D Spin-Dependent Diffraction of Electrons From Periodical Chains of Nanomagnets

    Directory of Open Access Journals (Sweden)

    Teshome Senbeta

    2012-03-01

    Full Text Available The scattering of the unpolarized beams of electrons by nanomagnets in the vicinity of some scattering angles leads to complete spin polarized electrons. This result is obtained with the help of the perturbation theory. The dipole-dipole interaction between the magnetic moment of the nanomagnet and the magnetic moment of electron is treated as perturbation. This interaction is not spherically symmetric. Rather it depends on the electron spin variables. It in turn results in spinor character of the scattering amplitudes. Due to the smallness of the magnetic interactions, the scattering length of this process is very small to be proved experimentally. To enhance the relevant scattering lengths, we considered the diffraction of unpolarized beams of electrons by linear chains of nanomagnets. By tuning the distance between the scatterers it is possible to obtain the diffraction maximum of the scattered electrons at scattering angles which corresponds to complete spin polarization of electrons. It is shown that the total differential scattering length is proportional to N2 (N is a number of scatterers. Even small number of nanomagnets in the chain helps to obtain experimentally visible enhancement of spin polarization of the scattered electrons.

  12. Assessment of firing conditions in old fired-clay bricks. The contribution of X-ray powder diffraction with the Rietveld method and small angle neutron scattering

    Czech Academy of Sciences Publication Activity Database

    Viani, Alberto; Sotiriadis, Konstantinos; Len, A.; Šašek, Petr; Ševčík, Radek

    2016-01-01

    Roč. 116, June (2016), s. 33-43 ISSN 1044-5803 R&D Projects: GA MŠk(CZ) LO1219 Keywords : fired- clay brick * Rietveld method * small angle neutron scattering * X-ray diffraction * firing temperature Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.714, year: 2016 http://www.sciencedirect.com/science/article/pii/S1044580316300870

  13. Diffraction experiments of argon or helium on polluted surfaces

    International Nuclear Information System (INIS)

    Berthier, J.P.; Constans, A.; Daury, G.; Lostis, P.

    1975-01-01

    Scattering patterns of molecular beams of argon or helium from metal surfaces (bulk metal or thin films) are reported. The pressure in the scattering chamber is about 10 -6 torr. So, the surfaces are polluted. Diffraction peaks are observed which can be interpreted very well by assuming that nitrogen, oxygen or carbon atoms are adsorbed of the surface. On the other hand, diffraction peaks from a silicon crystal have been observed which can be reproduced very well by using silicon crystal lattice. These experiments are not interpreted accurately, but show that molecular reflection can be used for some surface studies [fr

  14. LEED (Low Energy Electron Diffraction)

    International Nuclear Information System (INIS)

    Aberdam, M.

    1973-01-01

    The various types of systems studied by LEED, and for which the geometry of diffraction patterns is exploited, are reviewed, intensity profiles being another source of information. Two representative approaches of the scattering phenomenon are examined; the band structure theory and the T matrix approach [fr

  15. Investigation of microstructure and mechanical properties of proton irradiated Zircaloy 2

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Apu, E-mail: asarkar@barc.gov.in [Mechanical Metallurgy Division, Bhabha Atomic Reserch Centre, Mumbai, 400 085 (India); Kumar, Ajay [Nuclear Physics Division, Bhabha Atomic Reserch Centre, Mumbai, 400 085 (India); Mukherjee, S.; Sharma, S.K.; Dutta, D.; Pujari, P.K. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Agarwal, A.; Gupta, S.K.; Singh, P. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Reserch Centre, Mumbai, 400 085 (India)

    2016-10-15

    Samples of Zircaloy 2 have been irradiated with 4 MeV protons to two different doses. Microstructures of the unirradiated and irradiated samples have been characterized by Electron Back Scatter Diffraction (EBSD), X-ray diffraction line profile analysis (XRDLPA), Positron Annihilation Lifetime Spectroscopy (PALS) and Coincident Doppler Broadening (CDB) Spectroscopy. Tensile tests and micro hardness measurements have been carried out at room temperature to assess the changes in mechanical properties of Zircaloy 2 due to proton irradiation. The correlation of dislocation density, grain size and yield stress of the irradiated samples indicated that an increase in dislocation density due to irradiation is responsible for the change in mechanical behavior of irradiated Zircaloy.

  16. Purification, crystallization, small-angle X-ray scattering and preliminary X-ray diffraction analysis of the SH2 domain of the Csk-homologous kinase

    International Nuclear Information System (INIS)

    Gunn, Natalie J.; Gorman, Michael A.; Dobson, Renwick C. J.; Parker, Michael W.; Mulhern, Terrence D.

    2011-01-01

    The Src-homology 2 (SH2) domain of Csk-family protein tyrosine kinases acts as a conformational switch to regulate their catalytic activity, which in turn promotes the inhibition of their proto-oncogenic targets, the Src-family kinases. Here, the expression, purification, small-angle X-ray scattering and preliminary diffraction analysis of the SH2 domain of the Csk-homologous kinase is reported. The C-terminal Src kinase (Csk) and Csk-homologous kinase (CHK) are endogenous inhibitors of the proto-oncogenic Src family of protein tyrosine kinases (SFKs). Phosphotyrosyl peptide binding to their Src-homology 2 (SH2) domains activates Csk and CHK, enhancing their ability to suppress SFK signalling; however, the detailed mechanistic basis of this activation event is unclear. The CHK SH2 was expressed in Escherichia coli and the purified protein was characterized as monomeric by synchrotron small-angle X-ray scattering in-line with size-exclusion chromatography. The CHK SH2 crystallized in 0.2 M sodium bromide, 0.1 M bis-Tris propane pH 6.5 and 20% polyethylene glycol 3350 and the best crystals diffracted to ∼1.6 Å resolution. The crystals belonged to space group P2, with unit-cell parameters a = 25.8, b = 34.6, c = 63.2 Å, β = 99.4°

  17. Degradation of periodic multilayers as seen by small-angle x-ray scattering and x-ray diffraction

    CERN Document Server

    Rafaja, D; Simek, D; Zdeborova, L; Valvoda, V

    2002-01-01

    The capabilities of small-angle x-ray scattering (SAXS) and wide-angle x-ray diffraction (XRD) to recognize structural changes in periodic multilayers were compared on Fe/Au multilayers with different degrees of structural degradation. Experimental results have shown that both methods are equally sensitive to the multilayer degradation, i.e., to the occurrence of non-continuous interfaces, to short-circuits in the multilayer structure and to the multilayer precipitation. XRD yielded additional information on the multilayer crystallinity, whilst SAXS could better recognize fragments of a long-range periodicity (remnants of the original multilayer structure). Changes in the multilayer structure were initiated by successive annealing at 200 and 300 deg. C. Experimental data were complemented by numerical simulations performed using a combination of optical theory and the distorted wave Born approximation for SAXS or the kinematical Born approximation for XRD.

  18. Surface modification of hydroturbine steel using friction stir processing

    Science.gov (United States)

    Grewal, H. S.; Arora, H. S.; Singh, H.; Agrawal, A.

    2013-03-01

    Friction stir processing (FSP) has proved to be a viable tool for enhancing the mechanical properties of materials, however, the major focus has been upon improving the bulk properties of light metals and their alloys. Hydroturbines are susceptible to damage owing to slurry and cavitation erosion. In this study, FSP of a commonly employed hydroturbine steel, 13Cr4Ni was undertaken. Microstructural characterization of the processed steel was conducted using optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) techniques. Mechanical characterization of the steel was undertaken in terms of microhardness and resistance to cavitation erosion (CE). FSP resulted in the refinement of the microstructure with reduction in grain size by a factor of 10. EBSD results confirmed the existence of submicron and ultrafine grained microstructure. The microhardness of the steel was found to enhance by 2.6 times after processing. The processed steel also showed 2.4 times higher resistance against cavitation erosion in comparison to unprocessed steel. The primary erosion mechanism for both the steels was identical in nature, with plastic deformation responsible for the loss of material.

  19. A 2D MWPC area detector for use with synchrotron X-radiation at the Daresbury Laboratory for small angle diffraction and scattering

    International Nuclear Information System (INIS)

    Helliwell, J.R.; Hughes, G.; Przybylski, M.M.; Ridley, P.A.; Sumner, I.; Bateman, J.E.; Connolly, J.F.; Stephenson, R.

    1982-01-01

    A 2D multiwire proportional chamber area detector is being developed to provide a real time data acquisition system for small angle scattering and diffraction experiments with synchrotron X-radiation at the Daresbury synchrotron radiation source (SRS). The chamber has a circular aperture, 200 mm diameter with an anode and cathode wire pitch of 1 mm; a front cathode-anode spacing of 6 mm and a 6 mm spacing between anode and rear cathode. A 1 mm thick front beryllium window and a rear aluminium cover plate with indium seals provide a gas-tight system. Previous experiments with a similar chamber design allowed continual use of the chamber for up to 2 years without refill. A digitising time of 2 μs is expected based on a 260 mm delay line and Lecroy TDC linked to a mass semiconductor memory of 512 x 256 elements. The experiment will be controlled by a PDP 11/04 computer with 28 K memory interfaced to a CAMAC create with 64 K fast access CAMAC memory. The system should be relatively easy to use with good order to order resolution and reasonable rate for small angle diffraction and scattering experiments on biological systems. Evaluation of the set-up for protein crystallography is planned though a TV based image intensifier (Enraf-Nonius) is preferred for this application at the SRS. (orig.)

  20. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  1. Diffractive Dijet Production with a Leading Proton in ep Collisions at HERA

    CERN Document Server

    Andreev, V.; Begzsuren, K.; Belousov, A.; Belov, P.; Boudry, V.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Contreras, J.G.; Cvach, J.; Dainton, J.B.; Daum, K.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Haidt, D.; Henderson, R.C.W.; Herbst, M.; Hladky, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jung, H.; Kapichine, M.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kretzschmar, J.; Krüger, K.; Landon, M.P.J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Malinovski, E.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Morozov, A.; Müller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nowak, G.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rusakov, S.; Šálek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Straumann, U.; Sykora, T.; Thompson, P.D.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wünsch, E.; Žáček, J.; Zhang, Z.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.

    2015-05-11

    The cross section of the diffractive process e^+p -> e^+Xp is measured at a centre-of-mass energy of 318 GeV, where the system X contains at least two jets and the leading final state proton p is detected in the H1 Very Forward Proton Spectrometer. The measurement is performed in photoproduction with photon virtualities Q^2 <2 GeV^2 and in deep-inelastic scattering with 4 GeV^2diffractive parton distribution functions as extracted from measurements of inclusive cross sections in diffractive deep-inelastic scattering.

  2. Diffractive dijet production with a leading proton in ep collisions at HERA

    International Nuclear Information System (INIS)

    Andreev, V.; Baghdasaryan, A.; Begzsuren, K.

    2014-12-01

    The cross section of the diffractive process e + p→e + Xp is measured at a centre-of-mass energy of 318 GeV, where the system X contains at least two jets and the leading final state proton p is detected in the H1 Very Forward Proton Spectrometer. The measurement is performed in photoproduction with photon virtualities Q 2 <2 GeV 2 and in deep-inelastic scattering with 4 GeV 2 diffractive parton distribution functions as extracted from measurements of inclusive cross sections in diffractive deep-inelastic scattering.

  3. Diffuse scattering of neutrons

    International Nuclear Information System (INIS)

    Novion, C.H. de.

    1981-02-01

    The use of neutron scattering to study atomic disorder in metals and alloys is described. The diffuse elastic scattering of neutrons by a perfect crystal lattice leads to a diffraction spectrum with only Bragg spreads. the existence of disorder in the crystal results in intensity and position modifications to these spreads, and above all, to the appearance of a low intensity scatter between Bragg peaks. The elastic scattering of neutrons is treated in this text, i.e. by measuring the number of scattered neutrons having the same energy as the incident neutrons. Such measurements yield information on the static disorder in the crystal and time average fluctuations in composition and atomic displacements [fr

  4. Scattering of x rays from low-Z materials

    International Nuclear Information System (INIS)

    Gaines, J.L.; Kissel, L.D.; Catron, H.C.; Hansen, R.A.

    1980-01-01

    X rays incident on thin beryllium, boron, carbon, and other low-Z materials undergo both elastic and inelastic scattering as well as diffraction from the crystalline or crystalline-like structure of the material. Unpolarized monoenergetic x rays in the 1.5 to 8.0-keV energy range were used to determine the absolute scattering efficiency of thin beryllium, carbon, and boron foils. These measurements are compared to calculated scattering efficiencies predicted by single-atom theories. In addition, the relative scattering efficiency versus x-ray energy was measured for other low-Z foils using unpolarized bremsstrahlung x rays. In all the low-Z foils examined, we observed Bragg-like x-ray diffraction due to the ordered structure of the materials

  5. Gravitational wave detector on the basis of light diffraction

    International Nuclear Information System (INIS)

    Segizboev, T.I.; Uzhinskij, V.V.

    1985-01-01

    A method for detection of gravitational waves by means of light diffraction at the first maximum on oscillations in optically transparent matter under effect of gravitational waves is considered. Intensity of light flux scattering on oscillations of elastic rod is calculated. A possibility of using the diffraction method for detection of gravitational waves is disclosed

  6. New imaging technique based on diffraction of a focused x-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Kazimirov, A [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Kohn, V G [Russian Research Center ' Kurchatov Institute, 123182 Moscow (Russian Federation); Cai, Z-H [Advanced Photon Source, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)], E-mail: ayk7@cornell.edu

    2009-01-07

    We present first experimental results from a new diffraction depth-sensitive imaging technique. It is based on the diffraction of a focused x-ray beam from a crystalline sample and recording the intensity pattern on a high-resolution CCD detector positioned at a focal plane. Structural non-uniformity inside the sample results in a region of enhanced intensity in the diffraction pattern. The technique was applied to study silicon-on-insulator thin layers of various thicknesses which revealed a complex strain profile within the layers. A circular Fresnel zone plate was used as a focusing optic. Incoherent diffuse scattering spreads out of the diffraction plane and results in intensity recorded outside of the focal spot providing a new approach to separately register x-rays scattered coherently and incoherently from the sample. (fast track communication)

  7. Growth of ω inclusions in Ti alloys: An X-ray diffraction study

    International Nuclear Information System (INIS)

    Šmilauerová, J.; Harcuba, P.; Pospíšil, J.; Matěj, Z.; Holý, V.

    2013-01-01

    We investigated the size and crystal structure of nanometer-sized ω inclusions in single crystals of β-Ti alloys by X-ray diffraction pole-figure measurements and reciprocal space mapping. We studied the topotactical relation of the β and ω crystal lattices, and from the positions and shapes of the diffraction maxima of the ω lattice determined the mean size of the ω inclusions and the misfit of the inclusion lattice with respect to the host lattice, as well as their changes during ageing. The lattice of the ω inclusions exhibits a large positive misfit already before ageing and the misfit is subsequently reduced during the ageing process. Using the theories of elasticity and X-ray scattering we simulated diffuse X-ray scattering around the β diffraction maxima and demonstrated that the diffuse scattering is caused mainly by local elastic strains in the β host phase around the ω inclusions

  8. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal–organic framework material HKUST-1

    Energy Technology Data Exchange (ETDEWEB)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I.F. [ISIS Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX (United Kingdom); Millange, Franck [Institut Lavoisier Versailles (CNRS UMR 8180), Université de Versailles, 78035 Versailles (France); Walton, Richard I., E-mail: r.i.walton@warwick.ac.uk [Department of Chemistry, University of Warwick, CV4 7AL, Coventry (United Kingdom)

    2013-12-12

    Highlights: • Binding sites for dihydrogen in a metal–organic framework have been identified. • The combination of diffraction and spectroscopy shows competitive filling of various adsorption sites. • Inelastic neutron scattering over wide-momentum transfer reveals new models for hydrogen-framework interactions. - Abstract: We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal–organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal–organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.

  9. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal–organic framework material HKUST-1

    International Nuclear Information System (INIS)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I.F.; Millange, Franck; Walton, Richard I.

    2013-01-01

    Highlights: • Binding sites for dihydrogen in a metal–organic framework have been identified. • The combination of diffraction and spectroscopy shows competitive filling of various adsorption sites. • Inelastic neutron scattering over wide-momentum transfer reveals new models for hydrogen-framework interactions. - Abstract: We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal–organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal–organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host

  10. Dendritic coarsening of γ' phase in a directionally solidified superalloy during 24,000 h of exposure at 1173 K

    International Nuclear Information System (INIS)

    Li, H.; Wang, L.; Lou, L.H.

    2010-01-01

    Dendritic coarsening of γ' was investigated in a directionally solidified Ni-base superalloy during exposure at 1173 K for 24,000 h. Chemical homogeneity along different directions and residual internal strain in the experimental superalloy were measured by electronic probe microanalysis (EPMA) and electron back-scattered diffraction (EBSD) technique. It was indicated that the gradient of element distribution was anisotropic and the inner strain between dendrite core and interdendritic regions was different even after 24,000 h of exposure at 1173 K, which influenced the kinetics for the dendrite coarsening of γ' phase.

  11. Characterization of the active deformation mechanisms in Zirconium alpha alloys, and use of micro-macro transfer models

    International Nuclear Information System (INIS)

    Francillette, H.; Bacroix, B.; Gasperini, M.; Lebensohn, R.A.

    1996-01-01

    The aim of this study is to model the evolution of the crystallographic textures of rolled zirconium sheet metals, based on the active deformation mechanisms. Plane compression tests have been carried out on Zr 702 polycrystalline samples, at ambient temperature. Active mechanisms were identified and characterized by the means of local orientation measurements (EBSD: electron BackScattering Diffraction), completed with global texture measurements. Measured orientations are then introduced in Taylor, Sachs and self-coherent type micro-macro models in order to validate these models with respect to mechanism activation and texture evolution. (A.B.)

  12. Improved twin detection via tracking of individual Kikuchi band intensity of EBSD patterns.

    Science.gov (United States)

    Rampton, Travis M; Wright, Stuart I; Miles, Michael P; Homer, Eric R; Wagoner, Robert H; Fullwood, David T

    2018-02-01

    Twin detection via EBSD can be particularly challenging due to the fine scale of certain twin types - for example, compression and double twins in Mg. Even when a grid of sufficient resolution is chosen to ensure scan points within the twins, the interaction volume of the electron beam often encapsulates a region that contains both the parent grain and the twin, confusing the twin identification process. The degradation of the EBSD pattern results in a lower image quality metric, which has long been used to imply potential twins. However, not all bands within the pattern are degraded equally. This paper exploits the fact that parent and twin lattices share common planes that lead to the quality of the associated bands not degrading; i.e. common planes that exist in both grains lead to bands of consistent intensity for scan points adjacent to twin boundaries. Hence, twin boundaries in a microstructure can be recognized, even when they are associated with thin twins. Proof of concept was performed on known twins in Inconel 600, Tantalum, and Magnesium AZ31. This method was then used to search for undetected twins in a Mg AZ31 structure, revealing nearly double the number of twins compared with those initially detected by standard procedures. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Proceedings of the workshop on neutron scattering instrumentation for SNQ

    International Nuclear Information System (INIS)

    Scherm, R.; Stiller, H.

    1984-10-01

    These proceedings contain the articles presented at the named workshop. These concern instrumentation for neutron diffraction with special regards to small angle scattering, diffuse scattering, inelastic scattering, high resolution spectroscopy, and special techniques. (HSI)

  14. Quantitative phase analysis by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Song, Su Ho; Lee, Jin Ho; Shim, Hae Seop [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-06-01

    This study is to apply quantitative phase analysis (QPA) by neutron diffraction to the round robin samples provided by the International Union of Crystallography(IUCr). We measured neutron diffraction patterns for mixed samples which have several different weight percentages and their unique characteristic features. Neutron diffraction method has been known to be superior to its complementary methods such as X-ray or Synchrotron, but it is still accepted as highly reliable under limited conditions or samples. Neutron diffraction has strong capability especially on oxides due to its scattering cross-section of the oxygen and it can become a more strong tool for analysis on the industrial materials with this quantitative phase analysis techniques. By doing this study, we hope not only to do one of instrument performance tests on our HRPD but also to improve our ability on the analysis of neutron diffraction data by comparing our QPA results with others from any advanced reactor facilities. 14 refs., 4 figs., 6 tabs. (Author)

  15. [Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses: quasielastic scattering studies on glycerol; gamma-ray scattering from alkali halides; lattice dynamics in metals; Moessbauer neutron scattering, x-ray diffraction, and macroscopic studies of high T c superconductors containing tungsten; NiAl scattering studies; and atomic interference factors and nuclear Casimir effect

  16. Low-energy electron diffraction and induced damage in hydrated DNA

    International Nuclear Information System (INIS)

    Orlando, Thomas M.; Oh, Doogie; Chen Yanfeng; Aleksandrov, Alexandr B.

    2008-01-01

    Elastic scattering of 5-30 eV electrons within the B-DNA 5 ' -CCGGCGCCGG-3 ' and A-DNA 5 ' -CGCGAATTCGCG-3 ' DNA sequences is calculated using the separable representation of a free-space electron propagator and a curved wave multiple scattering formalism. The disorder brought about by the surrounding water and helical base stacking leads to a featureless amplitude buildup of elastically scattered electrons on the sugar and phosphate groups for all energies between 5 and 30 eV. However, some constructive interference features arising from diffraction are revealed when examining the structural waters within the major groove. These appear at 5-10, 12-18, and 22-28 eV for the B-DNA target and at 7-11, 12-18, and 18-25 eV for the A-DNA target. Although the diffraction depends on the base-pair sequence, the energy dependent elastic scattering features are primarily associated with the structural water molecules localized within 8-10 A spheres surrounding the bases and/or the sugar-phosphate backbone. The electron density buildup occurs in energy regimes associated with dissociative electron attachment resonances, direct electronic excitation, and dissociative ionization. Since diffraction intensity can be localized on structural water, compound H 2 O:DNA states may contribute to energy dependent low-energy electron induced single and double strand breaks

  17. Structural dynamics of surfaces by ultrafast electron crystallography: experimental and multiple scattering theory.

    Science.gov (United States)

    Schäfer, Sascha; Liang, Wenxi; Zewail, Ahmed H

    2011-12-07

    Recent studies in ultrafast electron crystallography (UEC) using a reflection diffraction geometry have enabled the investigation of a wide range of phenomena on the femtosecond and picosecond time scales. In all these studies, the analysis of the diffraction patterns and their temporal change after excitation was performed within the kinematical scattering theory. In this contribution, we address the question, to what extent dynamical scattering effects have to be included in order to obtain quantitative information about structural dynamics. We discuss different scattering regimes and provide diffraction maps that describe all essential features of scatterings and observables. The effects are quantified by dynamical scattering simulations and examined by direct comparison to the results of ultrafast electron diffraction experiments on an in situ prepared Ni(100) surface, for which structural dynamics can be well described by a two-temperature model. We also report calculations for graphite surfaces. The theoretical framework provided here allows for further UEC studies of surfaces especially at larger penetration depths and for those of heavy-atom materials. © 2011 American Institute of Physics

  18. Elastic diffraction interactions of hadrons at high energies

    International Nuclear Information System (INIS)

    Ismatov, E.I.; Ubaev, J.K.; Tshay, K.V.; Zholdasova, S.M.; Juraev, Sh.Kh.; Essaniazov, Sh.P.

    2006-01-01

    Full text: 1. The diffraction theory of elastic and inelastic scattering of hadron-hadron and hadron-nucleus processes is developed. The description of experimental data on differential cross section of elastic scattering p p, p-bar p in wide range of transferred momentum is made in the frames of the developed inelastic overlap function model. The investigation of nuclei elastic scattering at the low, middle and high energies is carried out, that allowed to execute quantitative control of efficiency or quantum-field and phenomenological theories and make critical analysis of their utility. The principle of construction of realistic amplitudes of the elastic scattering is confirmed on the basic of the s- and t-channel approaches both conditions stationary of amplitudes. For a wide range of models the comparative analysis of amplitude of inelastic scattering in representation of impact parameter is executed. The expression for effective radius of interaction, effective trajectory Regge and slope of inelastic function of overlapping are analysed. In diffraction approximation the satisfactory description of the data on hadrons interaction at the energy of tens GeV with proton and deuterons is received. The features of spectra of fast particles are analysed. The theory of collective variables S, T, P which characterize a deviation degree of angular distribution of particles from spherical symmetry, the general formula for dispersion of any density of obtained, the particles decays are investigated [1-2]. 2. The solution of Lippmann-Schwinger equation investigated within the frameworks of frameworks of high -energy approximation satisfies the generalized Huygens principle used in the diffraction theory nuclear processes. The diffraction emission is considered at the interaction of charged hadrons one with another and the nuclei [3]. 3. Study of elastic interactions of hadrons at high energies is of great interest due to the fact that the amplitude of this process is the

  19. Diffractive Jet Production in Deep-Inelastic $e^{+}p$ Collisions at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Berndt, T.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Chabert, E.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Mehta, A.; Meier, K.; Merkel, P.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.I.; Sheviakov, I.; Shtarkov, L.N.; Sievers, P.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Chernyshov, V.; Chetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassiliev, S.; Vazdik, Y.; Vichnevski, A.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2001-01-01

    A measurement is presented of dijet and 3-jet cross sections in low-|t| diffractive deep-inelastic scattering interactions of the type ep -> eXY, where the system X is separated by a large rapidity gap from a low-mass baryonic system Y. Data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 18.0 pb^(-1), are used to measure hadron level single and double differential cross sections for 44 GeV. The energy flow not attributed to jets is also investigated. The measurements are consistent with a factorising diffractive exchange with trajectory intercept close to 1.2 and tightly constrain the dominating diffractive gluon distribution. Viewed in terms of the diffractive scattering of partonic fluctuations of the photon, the data require the dominance of qqbarg over qqbar states. Soft colour neutralisation models in their present form cannot simultaneously reproduce the shapes and the normalisations of the differential cross sections. Models based on 2-gluon exchange are able to reprod...

  20. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  1. Theory of magnetic neutron small-angle scattering using the dynamical theory of diffraction instead of the Born approximation. I

    International Nuclear Information System (INIS)

    Schaerpf, O.

    1978-01-01

    Two ways are given for solving the problem of the dependence of the refraction on the direction of magnetization on both sides of the refractive boundary, one applying the Halpern magnetic scattering vector, the other applying the dynamical theory of diffraction. They lead to different results. Experimental investigation of refraction by magnetic boundaries shows no dependence of the angle of deflection on the relative angles of magnetization in adjacent domains. This behaviour is only described correctly by the dynamical theory, which far from Laue reflections leads to a treatment by the Schoedinger equation with a spin-dependent potential dependent on the average continuous homogenous magnetic induction, both for the law of refraction and for the precession of the spin. The results of this treatment are discussed as a consequence of the behaviour of the spin of the neutrons. This gives some insight about how and why, with refraction, the intensities of the direct and deflected beams depend on the magnetization directions in adjacent domains. The dynamical theory also shows that the Halpern magnetic scattering vector applies only with Laue or Bragg reflections and not with transmission far from those reflections. (Auth.)

  2. Deuteron-deuteron elastic scattering at high energies

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Ali, S.

    1991-01-01

    The eikonal picture which has theoretical foundations in some areas of physics has been successful in explaining various aspects of elastic scattering at high energies. Chou and Yang first proposed a preliminary version of the eikonal model for hadron-hadron elastic scattering. The model is based on geometrical considerations in which hadrons are treated as extended objects. Elastic scattering then results from the propagation of attenuated wave function. By assuming that at high energies the scattering amplitude is purely imaginary and that the hadronic matter distribution is proportional to the charge distribution on protons, Durand and Lipes studied high energy pp scattering on the basis of this prestine model. Later on, the model was extended to other elastic reactions. However, a survey of literature shows that it has been successful only in the diffraction peak region. It has been shown that the pristine Chou-Yange model can explain the differential cross section for deuteron-deuteron elastic scattering at √s = 53 GeV in the diffraction peak region. In order to fit the large momentum transfer data, the generalized Chou-Yang model is used

  3. Multiple x-ray diffraction applied to the study of crystal impurities

    International Nuclear Information System (INIS)

    Cardoso, L.P.

    1983-06-01

    The x-ray multiple diffraction technique is used in the study of impurities concentration and localization in the crystal lattice, implemented with the fundamental observation that the impurities cannot be distributed with the same spatial group symmetry of the crystal. This fact could introduce scattered intensity in the crystal reciprocal lattice forbidden nodes. This effect was effectively observed in multiple diffraction diagrams, where a reinforcement of the scattered intensity in the pure crystal is produced, when choosing conveniently the involved reflections. The reflectivity theory was developed in the kinematic case, which take into account the scattering by the impurities atoms, and the analysis showed that, in the first approximation, the impurities can influence both in the allowed and forbidden positions for the pure crystal. (L.C.J.A.)

  4. Scattering of light and other electromagnetic radiation

    CERN Document Server

    Kerker, Milton

    1969-01-01

    The Scattering of Light and Other Electromagnetic Radiation discusses the theory of electromagnetic scattering and describes some practical applications. The book reviews electromagnetic waves, optics, the interrelationships of main physical quantities and the physical concepts of optics, including Maxwell's equations, polarization, geometrical optics, interference, and diffraction. The text explains the Rayleigh2 theory of scattering by small dielectric spheres, the Bessel functions, and the Legendre functions. The author also explains how the scattering functions for a homogenous sphere chan

  5. Analysis of the effective thermoelastic properties and stress fields in silicon nitride based on EBSD data

    Czech Academy of Sciences Publication Activity Database

    Othmani, Y.; Böhlke, T.; Lube, T.; Fellmeth, A.; Chlup, Zdeněk; Colonna, F.; Hashibon, A.

    2016-01-01

    Roč. 36, č. 5 (2016), s. 1109-1125 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 EU Projects: European Commission(XE) 263476 Institutional support: RVO:68081723 Keywords : Silicon nitride * EBSD data * Hashin-Shtrikman bounds * Finite element analysis Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass Impact factor: 3.411, year: 2016

  6. Diffractive dijet production with a leading proton in ep collisions at HERA

    International Nuclear Information System (INIS)

    Zlebcik, Radek

    2016-03-01

    The cross section of the diffractive process e + p → e + Xp is measured at a centre-of mass energies of 319 GeV, where the system X contains at least two jets and the leading final state proton p is detected in the H1 Very Forward Proton Spectrometer. The measurement is performed in photoproduction defined by photon virtualities Q 2 < 2 GeV 2 and in deep-inelastic scattering with 4 GeV 2 < Q 2 < 80 GeV 2 . The results are compared to next-to-leading order QCD calculations based on diffractive parton distribution functions as extracted from measurements of inclusive cross sections in diffractive deep-inelastic scattering. A collinear QCD factorization theorem is tested against the measured cross sections and their ratios.

  7. A comparison of the effect of multiple scattering on first and second order X-ray diffraction from textured polycrystals, for the investigation of secondary extinction

    Energy Technology Data Exchange (ETDEWEB)

    Palacios G, J., E-mail: jpalacios@ipn.mx [IPN, Escuela Superior de Fisica y Matematicas, San Pedro Zacatenco 07738, Ciudad de Mexico (Mexico)

    2016-11-01

    The integrated intensity of Debye-Scherrer (D-S) rings, arising from an eventual second diffraction process of a diffracted X-ray beam, was calculated. This represents the amount of intensity not arriving at the detector as oriented to register the first diffraction process, and as result, a measure of secondary extinction. Thus the objective is to investigate in this way if secondary extinction affects measurements of X-ray diffraction from textured polycrystals. This has been suggested by differences of pole density maxima observed between measured first and second order pole figures in strongly textured materials. Calculations are performed for a detector scan (varying only 2θ), and the integrated intensity is determined for first and second order diffraction conditions of a general plane (hkl). Normalization through corresponding powder is performed. It is found that this special case of multiple scattering effect, indeed affects both orders essentially in the same way. If corresponding detector scan measurements verify this, then the observed differences between pole density maxima of pole figures of different order cannot be attributed to secondary extinction. Instead, they can be attributed to heterogeneous texture or error propagation. On the other hand, if the detector scans do exhibit a difference as that of pole density maxima, these differences can possibly be attributed to primary extinction. (Author)

  8. Residual-stress-induced grain growth of twinned grains and its effect on formability of magnesium alloy sheet at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se-Jong [Korea Institute of Material Science, 66 Sangnam-dong, C-si, Gyeongnam 641-831 (Korea, Republic of); Kim, Daeyong, E-mail: daeyong@kims.re.kr [Korea Institute of Material Science, 66 Sangnam-dong, C-si, Gyeongnam 641-831 (Korea, Republic of); Lee, Keunho; Cho, Hoon-Hwe; Han, Heung Nam [Department of Materials Science and Engineering and RIAM, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2015-11-15

    A magnesium alloy sheet was subjected to in-plane compression along with a vertical load to avoid buckling during compression. Pre-compressed specimens machined from the sheet were annealed at different temperatures and the changes in microstructure and texture were observed using electron back scattered diffraction (EBSD). Twinned grains preferentially grew during annealing at 300 °C, so that a strong texture with the < 0001 > direction parallel to the transverse direction developed. EBSD analysis confirmed that the friction caused by the vertical load induced inhomogeneous distribution of residual stress, which acted as an additional driving force for preferential grain growth of twinned grain during annealing. The annealed specimen showed excellent formability. - Highlights: • A magnesium alloy sheet subjected to in-plane compression under a vertical load • The vertical load induced inhomogeneous distribution of the residual stress. • The residual stress acted as an additional driving force for grain growth. • The annealed specimen with strong non-basal texture showed excellent formability.

  9. Effect of rhenium irradiations on the mechanical properties of tungsten for nuclear fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Aneeqa, E-mail: aneeqa.khan-3@postgrad.manchester.ac.uk [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL (United Kingdom); Elliman, Robert; Corr, Cormac [Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601 (Australia); Lim, Joven J.H.; Forrest, Andrew [School of Materials, The University of Manchester, M13 9PL (United Kingdom); Mummery, Paul [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL (United Kingdom); Evans, Llion M. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

    2016-08-15

    As-received and annealed tungsten samples were irradiated at a temperature of 400 °C with Re and W ions to peak concentrations of 1600 appm (atomic parts per million) and damage levels of 40 dpa (displacements per atom). Mechanical properties were investigated using nanoindentation, and the orientation and depth dependence of irradiation damage was investigated using Electron Back Scatter Diffraction (EBSD). Following irradiation there was a 13% increase in hardness in the as received sheet and a 23% increase in the annealed material for both tungsten and rhenium irradiation. The difference between the tungsten and rhenium irradiated samples was negligible, suggesting that for the concentrations and damage levels employed, the presence of rhenium does not have a significant effect on the hardening mechanism. Energy dependent EBSD of annealed samples provided information about the depth distribution of the radiation damage in individual tungsten grains and confirmed that the radiation damage is orientation dependant.

  10. Neutron diffraction on polymorphic phases of phospholipids

    International Nuclear Information System (INIS)

    Adachi, Tomohiro; Furusaka, Michihiro; Otomo, Toshiya; Hatta, Ichiro

    2001-01-01

    Small angle neutron diffraction experiments were performed in DPPC and DPPC/cholesterol systems. We investigated the DPPC-d62 bilayers without cholesterol and the DPPC-d75 bilayers with 5 and 15 mol% cholesterol. For DPPC-d62 systems, in the gel and fluid phase, the reflections up to third order from lamellar structure were observed. Scattering length density profiles of these systems were generated. They show that the packing density of hydrocarbon chain in gel phase is higher than in fluid phase. We show that the neutron diffraction experiment is effective on observing the packing and the scattering length density of the hydrocarbon chain. On the other hand, for DPPC-d75/cholesterol systems, only the reflection from the ripple structure was observed. It shows that cholesterol is periodically localized in accordance with ripple structure forming a periodic bandlike structure parallel to a ridge of the ripple structure. (author)

  11. Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Lacroute, Y.; Markey, L.; Salazar, M.; Vignal, V. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)

    2011-05-15

    Research highlights: > Surface strains measured using nanogauge were compared to the texture obtained by EBSD. > Statistics of the principal strain discern the grains according to the Schmid factor. > Strain hotspots were localized near a triple junction of alloy 600 under tensile loading. > Asymetrical profile of the GB strains is a criterion for surface cracking initiation. - Abstract: A key element for analyzing the crack initiation in strained polycrystalline alloys is the local quantification of the surface strain distribution according to the grain texture. Using electron backscattered diffraction, the local microstructure was determined to both localize a triple junction and deduce the local Schmid factors. Kernel average misorientation (KAM) was also used to map the areas of defect concentration. The maximum principal strain and the in-plane shear strain were quantified using the biaxial nanogauge. Distortions of the array of nanodots used as spot markers were analyzed near the triple junction. The crystallographic orientation and the surface strain were then investigated both statistically for each grain and locally at the grain boundaries. The superimposition of microstructure and strain maps allows the high strain gradient (reaching 3-fold the applied strain) to be localized at preferential grain boundaries near the triple junction. The Schmid factors and the KAM were compared to the maximum principal strain and the in-plane shear strain respectively. The polycrystalline deformation was attributable first to the rotation of some grains, followed by the elongation of all grains along their preferential activated slip systems.

  12. Diffraction and Unitarity

    Science.gov (United States)

    Dremin, I. M.

    I begin with a tribute to V.N. Gribov and then come to a particular problem which would be of interest for him. His first paper on reggeology was devoted to elastic scatterings of hadrons. Here, using the unitarity relation in combination with experimental data about the elastic scattering in the diffraction cone, I show how the shape and the darkness of the interaction region of colliding protons change with the increase of their energies. In particular, the collisions become fully absorptive at small impact parameters at LHC energies that results in some special features of inelastic processes as well. The possible evolution with increasing energy of the shape from the dark core at the LHC to the fully transparent one at higher energies is discussed. It implies that the terminology of the black disk would be replaced by the black torus.

  13. Set of thermal neutron-scattering experiments for the Weapons Neutron Research Facility

    International Nuclear Information System (INIS)

    Brugger, R.M.

    1975-12-01

    Six classes of experiments form the base of a program of thermal neutron scattering at the Weapons Neutron Research (WNR) Facility. Three classes are to determine the average microscopic positions of atoms in materials and three are to determine the microscopic vibrations of these atoms. The first three classes concern (a) powder sample neutron diffraction, (b) small angle scattering, and (c) single crystal Laue diffraction. The second three concern (d) small kappa inelastic scattering, (e) scattering surface phonon measurements, and (f) line widths. An instrument to couple with the WNR pulsed source is briefly outlined for each experiment

  14. Characterization of explosives by x-ray diffraction and neutron scattering techniques: phase transformation study by synchrotron radiation XRD of forensically sourced ammonium nitrate pills

    International Nuclear Information System (INIS)

    Connor, B.O.; Blagojevic, N.

    2009-01-01

    Under direction of the Australian Department of Prime Minister and Cabinet ANSTO has commenced a three-year project with the title Characterisation of Explosives by XRD and Neutron Scattering Techniques. The initial focus is on Ammonium Nitrate (AN) based explosives with the intention to investigate all important energetic materials currently used in improvised explosives devices (IED) by various combative groups. The principal objective of the project is to use laboratory x-ray, synchrotron radiation (SR) and neutron scattering fingerprinting to establish associations between the diffraction pattern information and the manufacturing sources of AN and other energetic materials. Laboratory and SR experiments, at room temperature, of commercial AN show that the phase structure is principally AN-IV. Our earlier work observed other phases such as previously unreported transformation of AN-IV to AN-II, again at room temperature. Our interest is to also characterise added phase stabiliser material, solid-solution altered AN as well as desiccant and moisture barrier coatings. This prospect points strongly to the possibility of fingerprinting the materials for inferring source-association relations. The enhanced pattern definition achievable using powder SR diffraction is expected to improve the crystal structure characterisation of the materials. Other properties such as temperature dependent phase transformation and strain anisotropy as well as trace elemental impurities will provide information to further define association linkages. (Author)

  15. Applications of the fresnel diffraction of neutrons

    International Nuclear Information System (INIS)

    Klein, A.G.; Opat, G.I.

    1978-01-01

    The place of Fresnel diffraction in the overall scheme of neutron interference experiments is outlined and possible applications are discussed in the areas of: magnetic domain visualisation; measurement of nuclear scattering lengths with very small specimens; focussing of long wavelength neutron beams using zone plates

  16. Applications of the Fresnel diffraction of neutrons

    International Nuclear Information System (INIS)

    Klein, A.G.; Opat, G.I.

    1978-01-01

    The place of Fresnel diffraction in the overall scheme of neutron interference experiments is outlined and possible applications are discussed in the areas of: magnetic domain visualisation; measurement of nuclear scattering lengths with very small specimens; focussing of long wavelength neutron beams using zone plates

  17. Nuclear dynamical diffraction using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Dennis Eugene [Stanford Univ., CA (United States)

    1993-05-01

    The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of 57Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2±0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 11/2 natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei.

  18. Nuclear dynamical diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Brown, D.E.

    1993-05-01

    The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of 57 Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2±0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 1 1/2 natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei

  19. Hard diffraction and small-x

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In the United States, phrases such as ''small-x evolution'', ''the BFKL Pomeron'', ''deep-inelastic rapiditygap events'' and ''hard-diffraction'' do not generate the same intensity of discussion amongst high-energy physicists that they do in Europe. However, for three days in the fall such discussion filled the air at Fermilab. The ''2nd Workshop on Small-x and Diffractive Physics at the Tevatron'' was a review of the rapid theoretical and experimental progress taking place in this field. Although Quantum Chromo-dynamics (QCD) has been established as the theory of strong interactions for twenty years, as yet neither perturbative high-energy calculations nor low-energy non-perturbative techniques have been successfully extended to the mixture of high energy and low transverse momenta which characterize traditional ''soft'' diffractive processes. The simplest soft diffractive process is elastic scattering. In this case it is easiest to accept that there is an exchanged ''pomeron'', which can be pictured as a virtual entity with no electric charge or strong charge (colour), perhaps like an excitation of the vacuum. The same pomeron is expected to appear in all diffractive processes. Understanding the pomeron in QCD is a fundamental theoretical and experimental challenge. In the last two or three years the ''frontier'' in this challenging area of QCD has been pushed back significantly in both theory and experiment. Progress has been achieved by studying the evolution of hard collisions to relatively smaller constituent momenta (small x) and by studying ''hard'' diffractive collisions containing simultaneous signatures of diffraction and hard perturbative processes. The hard processes have included high transverse momentum jet production, deep inelastic lepton scattering, and (most recently) W

  20. Beamstop-based low-background ptychography to image weakly scattering objects

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Juliane, E-mail: juliane.reinhardt@desy.de [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Hoppe, Robert [Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden (Germany); Hofmann, Georg [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Damsgaard, Christian D. [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark); Patommel, Jens; Baumbach, Christoph [Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden (Germany); Baier, Sina; Rochet, Amélie; Grunwaldt, Jan-Dierk [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Falkenberg, Gerald [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Schroer, Christian G. [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Department Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2017-02-15

    In recent years, X-ray ptychography has been established as a valuable tool for high-resolution imaging. Nevertheless, the spatial resolution and sensitivity in coherent diffraction imaging are limited by the signal that is detected over noise and over background scattering. Especially, coherent imaging of weakly scattering specimens suffers from incoherent background that is generated by the interaction of the central beam with matter along its propagation path in particular close to and inside of the detector. Common countermeasures entail evacuated flight tubes or detector-side beamstops, which improve the experimental setup in terms of background reduction or better coverage of high dynamic range in the diffraction patterns. Here, we discuss an alternative approach: we combine two ptychographic scans with and without beamstop and reconstruct them simultaneously taking advantage of the complementary information contained in the two scans. We experimentally demonstrate the potential of this scheme for hard X-ray ptychography by imaging a weakly scattering object composed of catalytic nanoparticles and provide the analysis of the signal-to-background ratio in the diffraction patterns. - Highlights: • An opaque beamstop far-upstream of the detector reduces background scattering. • Increased signal-to-background ratio in the diffraction patterns. • Simultaneous ptychographic reconstruction of two data sets with and without beamstop. • Result shows high spatial resolution of 13 nm of a weakly scattering catalyst sample. • High sensitivity to less than 10{sup 5} atoms.

  1. From HERA to the Tevatron: A scaling law in hard diffraction

    International Nuclear Information System (INIS)

    Goulianos, K.

    1997-01-01

    Results on hard diffraction from CDF are reviewed and compared with predictions based on the diffractive structure function of the proton measured in deep inelastic scattering at HERA. The predictions are generally larger than the measured rates by a factor of ∼ 6, suggesting a breakdown of conventional factorization. Correct predictions are obtained by scaling the rapidity gap probability distribution of the diffractive structure function to the total integrated gap probability. The scaling of the gap probability is traced back to the pomeron flux renormalization hypothesis, which was introduced to unitarize the soft diffraction amplitude

  2. Introduction to the theory of low-energy electron diffraction

    International Nuclear Information System (INIS)

    Fingerland, A.; Tomasek, M.

    1975-01-01

    An elementary introduction to the basic principles of the theory of low-energy electron diffraction is presented. General scattering theory is used to classify the hitherto known approaches to the problem (optical potential and one-electron approximation; formal scattering theory: Born expansion and multiple scattering; translational symmetry: Ewald construction; classification of LEED theories by means of the T matrix; pseudokinematical theory for crystal with clean surface and with an adsorbed monomolecular layer; dynamical theory; inclusion of inelastic collisions; discussion of a simple example by means of the band-structure approach)

  3. Elastic scattering of protons at the nucleus 6He in the Glauber multiple scattering theory

    International Nuclear Information System (INIS)

    Prmantayeva, B.A.; Temerbayev, A.A.; Tleulessova, I.K.; Ibrayeva, E.T.

    2011-01-01

    Calculation is submitted for the differential cross sections of elastic p 6 He-scattering at energies of 70 and 700 MeV/nucleon within the framework of the Glauber theory of multiple diffraction scattering. We used the three-particle wave functions: α-n-n with realistic intercluster potentials. The sensitivity of elastic scattering to the proton-nuclear interaction and the structure of nuclei had been investigated. It is shown that the contribution of small components of the wave function as well as the multiplicity of the scattering operator Ω should be considered to describe a cross-section in broad angular range . A comparison with available experimental data was made. (author)

  4. Hard synchrotron radiation scattering from a nonideal surface grating from multilayer X-ray mirrors

    International Nuclear Information System (INIS)

    Punegov, V.I.; Nesterets, Ya.I.; Mytnichenko, S.V.; Kovalenko, N.V.; Chernov, V.A.

    2003-01-01

    The hard synchrotron radiation scattering from a multilayer surface grating is theoretically and experimentally investigated. The numerical calculations of angular distribution of scattering intensity from X-ray mirror Ni/C are executed with use of recurrence formulae and statistical dynamical theory of diffraction. It is shown, that the essential role in formation of a diffraction pattern plays a diffuse scattering caused by structure imperfection of a multilayer grating [ru

  5. Experimental technique of stress analyses by neutron diffraction

    International Nuclear Information System (INIS)

    Sun, Guangai; Chen, Bo; Huang, Chaoqiang

    2009-09-01

    The structures and main components of neutron diffraction stress analyses spectrometer, SALSA, as well as functions and parameters of each components are presented. The technical characteristic and structure parameters of SALSA are described. Based on these aspects, the choice of gauge volume, method of positioning sample, determination of diffraction plane and measurement of zero stress do are discussed. Combined with the practical experiments, the basic experimental measurement and the related settings are introduced, including the adjustments of components, pattern scattering, data recording and checking etc. The above can be an instruction for stress analyses experiments by neutron diffraction and neutron stress spectrometer construction. (authors)

  6. Excitation function of elastic $pp$ scattering from a unitarily extended Bialas-Bzdak model

    CERN Document Server

    Nemes, F.; Csanád, M.

    2015-01-01

    The Bialas-Bzdak model of elastic proton-proton scattering assumes a purely imaginary forward scattering amplitude, which consequently vanishes at the diffractive minima. We extended the model to arbitrarily large real parts in a way that constraints from unitarity are satisfied. The resulting model is able to describe elastic $pp$ scattering not only at the lower ISR energies but also at $\\sqrt{s}=$7~TeV in a statistically acceptable manner, both in the diffractive cone and in the region of the first diffractive minimum. The total cross-section as well as the differential cross-section of elastic proton-proton scattering is predicted for the future LHC energies of $\\sqrt{s}=$13, 14, 15~TeV and also to 28~TeV. A non-trivial, significantly non-exponential feature of the differential cross-section of elastic proton-proton scattering is analyzed and the excitation function of the non-exponential behavior is predicted. The excitation function of the shadow profiles is discussed and related to saturation at small ...

  7. X-ray Diffraction from Isolated and Strongly Aligned Gas-Phase Molecules with a Free-Electron Laser

    DEFF Research Database (Denmark)

    Küpper, Jochen; Stern, Stephan; Holmegaard, Lotte

    2014-01-01

    We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive...... imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredients of single molecule diffraction experiments: the abilities to detect and count individual scattered x-ray photons in single shot diffraction data, to deliver state-selected, e. g., structural......-isomer-selected, ensembles of molecules to the x-ray interaction volume, and to strongly align the scattering molecules. Our approach, using ultrashort x-ray pulses, is suitable to study ultrafast dynamics of isolated molecules....

  8. Experimental coherent X-ray diffractive imaging: capabilities and limitations of the technique

    International Nuclear Information System (INIS)

    Schropp, Andreas

    2008-08-01

    The investigations pursued during this work were focused on the testing of the applicability of the coherent X-ray diffractive imaging(CXDI)-method in the hard X-ray regime and different measurements were carried out at photon energies between 7 keV and 10 keV. The samples investigated were lithographically prepared two-dimensional gold structures with a size ranging from 3 μm to 10 μm as well as a cluster of gold spheres with a lateral extension of about 3.5 μm. Continuous diffraction patterns were recorded in small angle scattering geometry. In some of the measurements a scattering signal up to the edge of the detector could be measured which corresponds to a lateral resolution of about 30 nm. For certain samples it was possible to reconstruct the object from the measured diffraction data. Since the scattered intensity of non-periodic objects is weak at large scattering angles, the available photon flux is finally the main limitation of the method with regard to the achievable resolution. The experimental data were used to get an estimate of photon flux required for sub-nanometer resolution. The ptychographic iterative phase retrieval algorithm proposed by J. M. Rodenburg et al. (2004) was implemented and tested on simulated diffraction data. Additionally, a genetic algorithm has been developed and implemented for phase retrieval. This algorithm is very different from state-of-the-art algorithms and allows to introduce further experimentally important parameters such as a certain illumination function and partial coherence of the X-ray light. (orig.)

  9. Inverse scattering problems with multi-frequencies

    International Nuclear Information System (INIS)

    Bao, Gang; Li, Peijun; Lin, Junshan; Triki, Faouzi

    2015-01-01

    This paper is concerned with computational approaches and mathematical analysis for solving inverse scattering problems in the frequency domain. The problems arise in a diverse set of scientific areas with significant industrial, medical, and military applications. In addition to nonlinearity, there are two common difficulties associated with the inverse problems: ill-posedness and limited resolution (diffraction limit). Due to the diffraction limit, for a given frequency, only a low spatial frequency part of the desired parameter can be observed from measurements in the far field. The main idea developed here is that if the reconstruction is restricted to only the observable part, then the inversion will become stable. The challenging task is how to design stable numerical methods for solving these inverse scattering problems inspired by the diffraction limit. Recently, novel recursive linearization based algorithms have been presented in an attempt to answer the above question. These methods require multi-frequency scattering data and proceed via a continuation procedure with respect to the frequency from low to high. The objective of this paper is to give a brief review of these methods, their error estimates, and the related mathematical analysis. More attention is paid to the inverse medium and inverse source problems. Numerical experiments are included to illustrate the effectiveness of these methods. (topical review)

  10. Microstructure quantification of ultrafine grained pure copper fabricated by simple shear extrusion (SSE) technique

    International Nuclear Information System (INIS)

    Bagherpour, E.; Qods, F.; Ebrahimi, R.; Miyamoto, H.

    2016-01-01

    In the present paper commercially pure copper was processed by simple shear extrusion (SSE) technique up to 12 passes using the so-called route C. For SSE processing an appropriate die with a linear die profile was designed and constructed. Effect of SSE passes on isotropy and uniformity of microstructures are focused. Electron back-scattering diffraction (EBSD) was used to evaluate the microstructure of the deformed samples in three orthogonal planes. To investigate the microstructural uniformity EBSD maps were taken from center to periphery of the extrusion direction plane (ED-plane) samples. Significant evolution in grain refinement was achieved down to sub-micron grain size in all planes. Hardness measurements show a considerable increase in hardness of the material after the processing, which confirms the microstructural evolutions. EBSD scans revealed a homogeneous ultrafine grained microstructure after 12 passes. Micro-shear bands were found as potential sites for accelerating the formation of new grains by fragmentation of the initial grains. The total frequency of coincidence site lattice (CSL) boundaries including Σ3 boundaries increased by the increasing of SSE passes. The higher fraction of low to high angle grain boundaries of SSE compared to equal channel angular pressing is an evidence for the cyclic behavior of SSE technique.

  11. Microstructure quantification of ultrafine grained pure copper fabricated by simple shear extrusion (SSE) technique

    Energy Technology Data Exchange (ETDEWEB)

    Bagherpour, E., E-mail: e.bagherpour@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Qods, F., E-mail: qods@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Ebrahimi, R., E-mail: ebrahimy@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Miyamoto, H., E-mail: hmiyamot@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan)

    2016-09-30

    In the present paper commercially pure copper was processed by simple shear extrusion (SSE) technique up to 12 passes using the so-called route C. For SSE processing an appropriate die with a linear die profile was designed and constructed. Effect of SSE passes on isotropy and uniformity of microstructures are focused. Electron back-scattering diffraction (EBSD) was used to evaluate the microstructure of the deformed samples in three orthogonal planes. To investigate the microstructural uniformity EBSD maps were taken from center to periphery of the extrusion direction plane (ED-plane) samples. Significant evolution in grain refinement was achieved down to sub-micron grain size in all planes. Hardness measurements show a considerable increase in hardness of the material after the processing, which confirms the microstructural evolutions. EBSD scans revealed a homogeneous ultrafine grained microstructure after 12 passes. Micro-shear bands were found as potential sites for accelerating the formation of new grains by fragmentation of the initial grains. The total frequency of coincidence site lattice (CSL) boundaries including Σ3 boundaries increased by the increasing of SSE passes. The higher fraction of low to high angle grain boundaries of SSE compared to equal channel angular pressing is an evidence for the cyclic behavior of SSE technique.

  12. Possibility of gravitational wave detector production on the base of light diffraction

    International Nuclear Information System (INIS)

    Segizboev, T.I.

    1989-01-01

    Gravitational wave detector based on the light diffraction is proposed. Under the gravitation wave incidence on an elastic rod standing acoustic oscillations are excited in it, which are then used as a diffraction grating for the light scattering. A detailed mathematical analysis of this detector is given. 1 ref

  13. Time-of-flight diffraction at pulsed neutron sources: An introduction to the symposium

    International Nuclear Information System (INIS)

    Jorgensen, J.D.

    1994-01-01

    In the 25 years since the first low-power demonstration experiments, pulsed neutron sources have become as productive as reactor sources for many types of diffraction experiments. The pulsed neutron sources presently operating in the United States, England, and Japan offer state of the art instruments for powder and single crystal diffraction, small angle scattering, and such specialized techniques as grazing-incidence neutron reflection, as well as quasielastic and inelastic scattering. In this symposium, speakers review the latest advances in diffraction instrumentation for pulsed neutron sources and give examples of some of the important science presently being done. In this introduction to the symposium, I briefly define the basic principles of pulsed neutron sources, review their development, comment in general terms on the development of time-of-flight diffraction instrumentation for these sources, and project how this field will develop in the next ten years

  14. Microstructural evolution in copper processed by severe plastic deformation

    International Nuclear Information System (INIS)

    Mishra, A.; Richard, V.; Gregori, F.; Asaro, R.J.; Meyers, M.A.

    2005-01-01

    The mechanisms of microstructural evolution in copper subjected to equal channel angular pressing (ECAP) have been investigated after successive passes. The first few passes are the most efficient in grain refinement while the microstructure becomes gradually more equiaxed as the number of passes increases. The texture evolution is discussed based on electron back scattered diffraction (EBSD) results. These experimental results are interpreted in terms of a preliminary model with four successive stages: homogeneous dislocation distribution; elongated sub-cell formation; elongated subgrain formation; break-up of subgrains into equiaxed units; sharpening of grain boundaries and final equiaxed ultrafine structure

  15. Transport cross section for small-angle scattering

    International Nuclear Information System (INIS)

    D'yakonov, M.I.; Khaetskii, A.V.

    1991-01-01

    Classical mechanics is valid for describing potential scattering under the conditions (1) λ much-lt α and (2) U much-gt ℎυ/α, where λ is the de Broglie wavelength, α is the characteristic size of the scatterer, U is the characteristic value of the potential energy, and υ is the velocity of the scattered particle. The second of these conditions means that the typical value of the classical scattering angle is far larger than the diffraction angle λ/α. In this paper the authors show that this second condition need not hold in a derivation of the transport cross section. In other words, provided that the condition λ much-lt α holds, it is always possible to calculate the transport cross section from the expressions of classical mechanics, even in the region U approx-lt ℎυ/α, where the scattering is diffractive,and the differential cross section is greatly different from the classical cross section. The transport cross section is found from the classical expression even in the anticlassical case U much-lt ℎυ/α, where the Born approximation can be used

  16. Deep inelastic inclusive and diffractive scattering at Q{sup 2} values from 25 to 320 GeV{sup 2} with the ZEUS forward plug calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2008-01-15

    Deep inelastic scattering and its diffractive component, ep{yields}e'{gamma}{sup *}p{yields}e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb{sup -1}. The M{sub X} method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy W (37-245 GeV), photon virtuality Q{sup 2} (20-450 GeV{sup 2}) and mass M{sub X} (0.28-35 GeV) is covered. The diffractive cross section for 2diffractive structure function, F{sup D(3)}{sub 2}, of the proton. For fixed Q{sup 2} and fixed M{sub X}, x{sub P}F{sup D(3)}{sub 2} shows a strong rise as x{sub P}{yields}0, where x{sub P} is the fraction of the proton momentum carried by the Pomeron. For Bjorken-x<1 x 10{sup -3}, x{sub P}F{sup D(3)}{sub 2} shows positive log Q{sup 2} scaling violations, while for x{>=}5 x 10{sup -3} negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken. (orig.)

  17. X-ray diffraction

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of literature on X-ray diffraction begins with a list of conference proceedings on the subject, organised by the Philips' organisation at regular intervals in various European countries. This is followed by a list of bulletins. The bibliography is divided according to the equipment (cameras, diffractometers, monochromators) and its applications. The applications are subdivided into sections for high/low temperature and pressure, effects due to the equipment, small angle scattering and a part for stress, texture and phase analyses of metals and quantitative analysis of minerals

  18. Experimental confirmation of neoclassical Compton scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Aristov, V. V., E-mail: aristov@iptm.ru [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation); Yakunin, S. N. [National Research Centre “Kurchatov Institute” (Russian Federation); Despotuli, A. A. [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation)

    2013-12-15

    Incoherent X-ray scattering spectra of diamond and silicon crystals recorded on the BESSY-2 electron storage ring have been analyzed. All spectral features are described well in terms of the neoclassical scattering theory without consideration for the hypotheses accepted in quantum electrodynamics. It is noted that the accepted tabular data on the intensity ratio between the Compton and Rayleigh spectral components may significantly differ from the experimental values. It is concluded that the development of the general theory (considering coherent scattering, incoherent scattering, and Bragg diffraction) must be continued.

  19. Microestructura y comportamiento plástico de perovsquitas conductoras protónicas de alta temperatura

    Directory of Open Access Journals (Sweden)

    López-Robledo, M. J.

    2005-10-01

    Full Text Available The creep behaviour of high temperature proton conducting perovskites SrCe0.9Y0.1O3-δ and Sr3Ca1.18Nb1.82O9-δ fabricated by laser fusion has been studied. Their microstructure has been studied both in the as-received and crept samples by means of Scanning Electron Microscopy (SEM and Electron BackScattering Diffraction (EBSD, to correlate plastic behaviour with the evolution of the microstructure. The materials show a cellular structure consisting of elongated grains embedded in an amorphous phase and a strong bi-axial crystallographic texture. Deformation tests at constant stress (creep tests have been performed both in Ar atmosphere and in air. Rigid grain rotation has been observed in the crept samples by EBSD. The amorphous phase flows outside the sample during creep. Plastic behaviour of these materials is independent of the environmental atmosphere and is consistent with a mechanism of viscous flow of the amorphous phase controlled by diffusion.

    Se ha estudiado el comportamiento en fluencia de perovsquitas conductoras protónicas de alta temperatura fabricadas por fusión láser, en particular los sistemas SrCe0.9Y0.1O3-δ y Sr3Ca1.18Nb1.82O9-δ. Se ha estudiado la microestructura antes y después de los ensayos mecánicos mediante Microscopía Electrónica de Barrido (MEB y Difracción de Electrones Retrodispersados (Electron BackScattering Diffraction, EBSD, con el objetivo de correlacionar el comportamiento plástico de estos materiales con su evolución microestructural. Los materiales analizados tienen una estructura celular de granos alargados, separados por una fase amorfa, y presentan una fuerte textura cristalográfica bi-axial. Se han realizado ensayos de deformación a carga constante (fluencia a diversas tensiones y temperaturas, en atmósfera inerte de Ar y en aire. Tras los ensayos, la fase intercelular fluye hacia el exterior de la muestra y se ha comprobado mediante EBSD que los granos rotan de forma rígida. El

  20. Glancing angle synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cernik, R J [Daresbury Lab., Warrington, WA (United States)

    1996-09-01

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school.

  1. Glancing angle synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    Cernik, R.J.

    1996-01-01

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school

  2. Polarisation resonance in X-ray diffraction

    International Nuclear Information System (INIS)

    Goodman, P.; Paterson, D.; Matheson, S.

    1994-01-01

    The study of crystal structures by means of dynamic X-ray diffraction has placed a challenge to theoreticians to revise the X-ray diffraction theory based on Maxwell's equation. In this paper the feasibility of using 'polarisation resonance' as a tool in the determination of absolute configuration for asymmetric structures is investigated. Two (left- and right-handed), σ + and σ- , circular polarization states for 3-beam conditions are considered. Moreover, extending interaction into the 3 rd. dimension (normal to the beam) opens the possibility of absolute configuration determination of asymmetric structures in 3 dimensions. The computational scheme used is shown in terms of scattering diagrams. 7 refs., 1 tab., 6 figs

  3. Discontinuous precipitation in a nickel-free high nitrogen austenitic stainless steel on solution nitriding

    DEFF Research Database (Denmark)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming Bjerg

    2017-01-01

    Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe–22.7Cr–2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition......, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride...... precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic...

  4. Nuclear Compton scattering

    International Nuclear Information System (INIS)

    Christillin, P.

    1986-01-01

    The theory of nuclear Compton scattering is reformulated with explicit consideration of both virtual and real pionic degrees of freedom. The effects due to low-lying nuclear states, to seagull terms, to pion condensation and to the Δ dynamics in the nucleus and their interplay in the different energy regions are examined. It is shown that all corrections to the one-body terms, of diffractive behaviour determined by the nuclear form factor, have an effective two-body character. The possibility of using Compton scattering as a complementary source of information about nuclear dynamics is restressed. (author)

  5. Bragg diffraction of fermions at optical potentials

    International Nuclear Information System (INIS)

    Deh, Benjamin

    2008-01-01

    This thesis describes the Bragg diffraction of ultracold fermions at an optical potential. A moving optical lattice was created, by overlaying two slightly detuned lasers. Atoms can be diffracted at this lattice if the detuning fulfills the Bragg condition for resting atoms. This Bragg diffraction is analyzed systematically in this thesis. To this end Rabi oscillations between the diffraction states were driven, as well in the weakly interacting Bragg regime, as in the strongly interacting Kapitza-Dirac regime. Simulations, based on a driven two-, respectively multilevel-system describe the observed effects rather well. Furthermore, the temporal evolution of the diffracted states in the magnetic trapping potential was studied. The anharmonicity of the trap in use and the scattering cross section for p-wave collisions in a 6 Li system was determined from the movement of these states. Moreover the momentum distribution of the fermions was measured with Bragg spectroscopy and first signs of Fermi degeneracy were found. Finally an interferometer with fermions was build, exhibiting a coherence time of more than 100 μs. With this, the possibility for measurement and manipulation of ultracold fermions with Bragg diffraction could bee shown. (orig.)

  6. Crystallography of refractory metal nuggets in carbonaceous chondrites: A transmission Kikuchi diffraction approach

    Science.gov (United States)

    Daly, Luke; Bland, Phil A.; Dyl, Kathryn A.; Forman, Lucy V.; Saxey, David W.; Reddy, Steven M.; Fougerouse, Denis; Rickard, William D. A.; Trimby, Patrick W.; Moody, Steve; Yang, Limei; Liu, Hongwei; Ringer, Simon P.; Saunders, Martin; Piazolo, Sandra

    2017-11-01

    Transmission Kikuchi diffraction (TKD) is a relatively new technique that is currently being developed for geological sample analysis. This technique utilises the transmission capabilities of a scanning electron microscope (SEM) to rapidly and accurately map the crystallographic and geochemical features of an electron transparent sample. TKD uses a similar methodology to traditional electron backscatter diffraction (EBSD), but is capable of achieving a much higher spatial resolution (5-10 nm) (Trimby, 2012; Trimby et al., 2014). Here we apply TKD to refractory metal nuggets (RMNs) which are micrometre to sub-micrometre metal alloys composed of highly siderophile elements (HSEs) found in primitive carbonaceous chondrite meteorites. TKD allows us to analyse RMNs in situ, enabling the characterisation of nanometre-scale variations in chemistry and crystallography, whilst preserving their spatial and crystallographic context. This provides a complete representation of each RMN, permitting detailed interpretation of their formation history. We present TKD analysis of five transmission electron microscopy (TEM) lamellae containing RMNs coupled with EBSD and TEM analyses. These analyses revealed textures and relationships not previously observed in RMNs. These textures indicate some RMNs experienced annealing, forming twins. Some RMNs also acted as nucleation centres, and formed immiscible metal-silicate fluids. In fact, each RMN analysed in this study had different crystallographic textures. These RMNs also had heterogeneous compositions, even between RMNs contained within the same inclusion, host phase and even separated by only a few nanometres. Some RMNs are also affected by secondary processes at low temperature causing exsolution of molybdenite. However, most RMNs had crystallographic textures indicating that the RMN formed prior to their host inclusion. TKD analyses reveal most RMNs have been affected by processing in the protoplanetary disk. Despite this

  7. Industrial applications of neutron diffraction

    International Nuclear Information System (INIS)

    Felcher, G.P.

    1989-01-01

    Neutron diffraction (or, to be more general, neutron scattering) is a most versatile and universal tool, which has been widely employed to probe the structure, the dynamics and the magnetism of condensed matter. Traditionally used for fundamental research in solid state physics, this technique more recently has been applied to problems of immediate industrial interest, as illustrated in examples covering the main fields of endeavour. 14 refs., 14 figs

  8. Hard Diffraction - from Blois 1985 to 2005

    Energy Technology Data Exchange (ETDEWEB)

    Gunnar, Ingelman [Uppsala Univ., High Energy Physics (Sweden)

    2005-07-01

    The idea of diffractive processes with a hard scale involved, to resolve the underlying parton dynamics, was presented at the first Blois conference in 1985 and experimentally verified a few years later. Today hard diffraction is an attractive research field with high-quality data and new theoretical models. The trend from Regge-based pomeron models to QCD-based parton level models has given insights on QCD dynamics involving perturbative gluon exchange mechanisms. In the new QCD-based models, the pomeron is not part of the proton wave function, but diffraction is an effect of the scattering process. Models based on interactions with a colour background field provide an interesting approach which avoids conceptual problems of pomeron-based models, such as the pomeron flux, and provide a basis for common theoretical framework for all final states, diffractive gap events as well as non-diffractive events. Finally, the new process of gaps between jets provides strong evidence for the BFKL dynamics as predicted since long by QCD, but so far hard to establish experimentally.

  9. High-energy X-ray diffraction studies of disordered materials

    International Nuclear Information System (INIS)

    Kohara, Shinji; Suzuya, Kentaro

    2003-01-01

    With the arrival of the latest generation of synchrotron sources and the introduction of advanced insertion devices (wigglers and undulators), the high-energy (E≥50 keV) X-ray diffraction technique has become feasible, leading to new approaches in the quantitative study of the structure of disordered materials. High-energy X-ray diffraction has several advantages: higher resolution in real space due to a wide range of scattering vector Q, smaller correction terms (especially the absorption correction), reduction of truncation errors, the feasibility of running under extreme environments, including high-temperatures and high-pressures, and the ability to make direct comparisons between X-ray and neutron diffraction data. Recently, high-energy X-ray diffraction data have been combined with neutron diffraction data from a pulsed source to provide more detailed and reliable structural information than that hitherto available

  10. Roles of scattered radiation in SRIXE

    International Nuclear Information System (INIS)

    Hanson, A.L.

    1988-01-01

    The scattering of x-rays is the major source of background and hence is a limiting factor in the minimum detectable limits available with SRIXE measurements. The scattering can be utilized for normalizing the net peak areas to fluctuations in sample thickness or mass on a relative basis or on a comparative basis. Even then measurement of the scattered x-rays should be made at backward angles. Measurement at forward angles should be avoided because of diffraction problems. The uncertainties in the measurement of an absolute intensity of the x-rays can be extremely large

  11. Combined inclusive diffractive cross sections measured with forward proton spectrometers at HERA

    International Nuclear Information System (INIS)

    Ruspa, Marta

    2013-01-01

    A combination is presented of the inclusive diffractive cross section measurements made by the H1 and ZEUS Collaborations at HERA. The analysis uses samples of diffractive deep inelastic scattering data where leading protons are detected by dedicated spectrometers. Correlations of systematic uncertainties are taken into account by the combination method, resulting in improved precision.

  12. Combined inclusive diffractive cross sections measured with forward proton spectrometers at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Ruspa, Marta [Univ. Piemonte Orientale, via Solaroli 17, 28100 Novara (Italy); Collaboration: H1 Collaboration; ZEUS Collaboration

    2013-04-15

    A combination is presented of the inclusive diffractive cross section measurements made by the H1 and ZEUS Collaborations at HERA. The analysis uses samples of diffractive deep inelastic scattering data where leading protons are detected by dedicated spectrometers. Correlations of systematic uncertainties are taken into account by the combination method, resulting in improved precision.

  13. Neutron diffraction study and theoretical analysis of the antiferromagnetic order and the diffuse scattering in the layered kagome system CaBaCo2Fe2O7

    Science.gov (United States)

    Reim, J. D.; Rosén, E.; Zaharko, O.; Mostovoy, M.; Robert, J.; Valldor, M.; Schweika, W.

    2018-04-01

    The hexagonal swedenborgite, CaBaCo2Fe2O7 , is a chiral frustrated antiferromagnet, in which magnetic ions form alternating kagome and triangular layers. We observe a long-range √{3 }×√{3 } antiferromagnetic order setting in below TN=160 K by neutron diffraction on single crystals of CaBaCo2Fe2O7 . Both magnetization and polarized neutron single crystal diffraction measurements show that close to TN spins lie predominantly in the a b plane, while upon cooling the spin structure becomes increasingly canted due to Dzyaloshinskii-Moriya interactions. The ordered structure can be described and refined within the magnetic space group P 31 m' . Diffuse scattering between the magnetic peaks reveals that the spin order is partial. Monte Carlo simulations based on a Heisenberg model with two nearest-neighbor exchange interactions show a similar diffuse scattering and coexistence of the √{3 }×√{3 } order with disorder. The coexistence can be explained by the freedom to vary spins without affecting the long-range order, which gives rise to ground-state degeneracy. Polarization analysis of the magnetic peaks indicates the presence of long-period cycloidal spin correlations resulting from the broken inversion symmetry of the lattice, in agreement with our symmetry analysis.

  14. Simulation electromagnetic scattering on bodies through integral equation and neural networks methods

    Science.gov (United States)

    Lvovich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2018-05-01

    The paper deals with the issue of electromagnetic scattering on a perfectly conducting diffractive body of a complex shape. Performance calculation of the body scattering is carried out through the integral equation method. Fredholm equation of the second time was used for calculating electric current density. While solving the integral equation through the moments method, the authors have properly described the core singularity. The authors determined piecewise constant functions as basic functions. The chosen equation was solved through the moments method. Within the Kirchhoff integral approach it is possible to define the scattered electromagnetic field, in some way related to obtained electrical currents. The observation angles sector belongs to the area of the front hemisphere of the diffractive body. To improve characteristics of the diffractive body, the authors used a neural network. All the neurons contained a logsigmoid activation function and weighted sums as discriminant functions. The paper presents the matrix of weighting factors of the connectionist model, as well as the results of the optimized dimensions of the diffractive body. The paper also presents some basic steps in calculation technique of the diffractive bodies, based on the combination of integral equation and neural networks methods.

  15. Optical diffraction tomography in an inhomogeneous background medium

    International Nuclear Information System (INIS)

    Devaney, A; Cheng, J

    2008-01-01

    The filtered back-propagation algorithm (FBP algorithm) is a computationally fast and efficient inversion algorithm for reconstructing the 3D index of refraction distribution of weak scattering samples in free space from scattered field data collected in a set of coherent optical scattering experiments. This algorithm is readily derived using classical Fourier analysis applied to the Born or Rytov weak scattering models appropriate to scatterers embedded in a non-attenuating uniform background. In this paper, the inverse scattering problem for optical diffraction tomography (ODT) is formulated using the so-called distorted wave Born and Rytov approximations and a generalized version of the FBP algorithm is derived that applies to weakly scattering samples that are embedded in realistic, multiple scattering ODT experimental configurations. The new algorithms are based on the generalized linear inverse of the linear transformation relating the scattered field data to the complex index of refraction distribution of the scattering samples and are in the form of a superposition of filtered data, computationally back propagated into the ODT experimental configuration. The paper includes a computer simulation comparing the generalized Born and Rytov based FBP inversion algorithms as well as reconstructions generated using the generalized Born based FBP algorithm of a step index optical fiber from experimental ODT data

  16. The Harwell back-scattering spectrometer

    International Nuclear Information System (INIS)

    Windsor, C.G.; Bunce, L.J.; Borcherds, P.H.; Cole, I.; Fitzmaurice, M.; Johnson, D.A.G.; Sinclair, R.N.

    1976-01-01

    Neutron diffraction spectra in which both high resolution (Δ Q/Q approximately equal to 0.003) and high intensity are maintained up to scattering vectors as high as 30A -1 (sin theta/lambda = 2.5) have been obtained with the back-scattering spectrometer (BSS) recently installed on the Harwell electron linac. The theory behind the spectrometer design is described, and it is shown how the above resolution requirement leads to its basic features of a 12m incident flight path, a 2m scattering flight path and a scattering angle (2theta) acceptance from 165 0 to 175 0 . Examples of the resolution, intensity and background are given. It is shown that the problem of frame overlap may be overcome by using an absorbing filter. (author)

  17. Diffractive jet production in deep-inelastic e+p collisions at HERA

    International Nuclear Information System (INIS)

    Adloff, C.; Andreev, V.; Andrieu, B.

    2001-01-01

    A measurement is presented of dijet and 3-jet cross sections in low- vertical stroke t vertical stroke diffractive deep-inelastic scattering interactions of the type ep →eXY, where the system X is separated by a large rapidity gap from a low-mass baryonic system Y. Data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 18.0 pb -1 , are used to measure hadron level single and double differential cross sections for 4 2 2 , x P T,jet >4 GeV. The energy flow not attributed to jets is also investigated. The measurements are consistent with a factorising diffractive exchange with trajectory intercept close to 1.2 and tightly constrain the dominating diffractive gluon distribution. Viewed in terms of the diffractive scattering of partonic fluctuations of the photon, the data require the dominance of qqg over qq states. Soft colour neutralisation models in their present form cannot simultaneously reproduce the shapes and the normalisations of the differential cross sections. Models based on 2-gluon exchange are able to reproduce the shapes of the cross sections at low x P values. (orig.)

  18. Nanoporous active carbons at ambient conditions: a comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption

    Science.gov (United States)

    Shiryaev, A. A.; Voloshchuk, A. M.; Volkov, V. V.; Averin, A. A.; Artamonova, S. D.

    2017-05-01

    Furfural-derived sorbents and activated carbonaceous fibers were studied using Small- and Wide-angle X-ray scattering (SWAXS), X-ray diffraction and multiwavelength Raman spectroscopy after storage at ambient conditions. Correlations between structural features with degree of activation and with sorption parameters are observed for samples obtained from a common precursor and differing in duration of activation. However, the correlations are not necessarily applicable to the carbons obtained from different precursors. Using two independent approaches we show that treatment of SWAXS results should be performed with careful analysis of applicability of the Porod law to the sample under study. In general case of a pore with rough/corrugated surface deviations from the Porod law may became significant and reflect structure of the pore-carbon interface. Ignorance of these features may invalidate extraction of closed porosity values. In most cases the pore-matrix interface in the studied samples is not atomically sharp, but is characterized by 1D or 2D fluctuations of electronic density responsible for deviations from the Porod law. Intensity of the pores-related small-angle scattering correlates positively with SBET values obtained from N2 adsorption.

  19. Nanoporous active carbons at ambient conditions: a comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption

    International Nuclear Information System (INIS)

    Shiryaev, A A; Voloshchuk, A M; Averin, A A; Artamonova, S D.; Volkov, V V

    2017-01-01

    Furfural-derived sorbents and activated carbonaceous fibers were studied using Small- and Wide-angle X-ray scattering (SWAXS), X-ray diffraction and multiwavelength Raman spectroscopy after storage at ambient conditions. Correlations between structural features with degree of activation and with sorption parameters are observed for samples obtained from a common precursor and differing in duration of activation. However, the correlations are not necessarily applicable to the carbons obtained from different precursors. Using two independent approaches we show that treatment of SWAXS results should be performed with careful analysis of applicability of the Porod law to the sample under study. In general case of a pore with rough/corrugated surface deviations from the Porod law may became significant and reflect structure of the pore-carbon interface. Ignorance of these features may invalidate extraction of closed porosity values. In most cases the pore-matrix interface in the studied samples is not atomically sharp, but is characterized by 1D or 2D fluctuations of electronic density responsible for deviations from the Porod law. Intensity of the pores-related small-angle scattering correlates positively with S BET values obtained from N 2 adsorption. (paper)

  20. Peculiarities of light ion-nucleus scattering in medium-energy region

    International Nuclear Information System (INIS)

    Berezhnoj, Yu.A.; Pilipenko, V.V.

    1982-01-01

    Differential cross-sections of 3 He and 4 He nuclei elastic scattering at E > or approximately 10 MeV/nucleon are analyzed in the quasi-classical approximation. At energies E > or approximately 25 MeV/nucleon in differential cross sections of 3 He and 4 He nuclei elastic scattering by atomic nuclei in the field of scattering angles THETA > or approximately 35 deg diffraction minima start to appear. ScuiSuch effect of Fraunhofer cross section oscillations is eluciiated on the basis of diffraction theory by means of modelfree determination of nuclear scattering phase and quantum deviation function. It is shown that the elastic scattering cross section in the field of energies under consideration represents a typical quasiclassical picture of ''iridescent'' scattering at strong absorption. The theoretical analysis performed permits to correctly describe the experimentally measured differential cross sections of 3 He nuclei elastic scattering at 109.2 MeV by 40 Ca, 58 Ni nuclei and at 118.5 NeV by 58 Ni nuclei as well as 4 He at 166 MeV by 24 Mg, 32 S and at 141.7 MeV by 40 Ca nuclei

  1. Diffraction of a Gaussian laser beam by a straight edge leading to the formation of optical vortices and elliptical diffraction fringes

    Science.gov (United States)

    Zeylikovich, Iosif; Nikitin, Aleksandr

    2018-04-01

    The diffraction of a Gaussian laser beam by a straight edge has been studied theoretically and experimentally for many years. In this paper, we have experimentally observed for the first time the formation of the cusped caustic (for the Fresnel number F ≈ 100) in the shadow region of the straight edge, with the cusp placed near the center of the circular laser beam(λ = 0 . 65 μm) overlapped with the elliptical diffraction fringes. These fringes are originated at the region near the cusp of the caustic where light intensity is zero and the wave phase is singular (the optical vortex). We interpret observed diffraction fringes as a result of interference between the helical wave created by the optical vortex and cylindrical wave diffracted at the straight edge. We have theoretically revealed that the number of high contrast diffraction fringes observable in a shadow region is determined by the square of the diffracted angles in the range of spatial frequencies of the scattered light field in excellent agreement with experiments. The extra phase singularities with opposite charges are also observed along the shadow boundary as the fork-like diffraction fringes.

  2. Relation between the diffraction pattern visibility and dispersion of particle sizes in an ektacytometer

    International Nuclear Information System (INIS)

    Nikitin, Sergei Yu; Lugovtsov, Andrei E; Priezzhev, A V; Ustinov, V D

    2011-01-01

    We have calculated the angular distribution of the light intensity in the diffraction pattern arising upon scattering of a laser beam on a suspension of red blood cells in an ektacytometer. We have estimated the diffraction pattern visibility in the region of the first diffraction minimum and the first diffraction maximum as a function of particle size variation. It is shown that in this fragment of the diffraction pattern its visibility decreases already twofold in the case of a standard deviation of the particle size from the average value, equal to 8%.

  3. Processing-structure-mechanical property relationship in Ti-Nb microalloyed steel: Continuous cooling versus interrupted cooling

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, V.V. [Laboratory for Excellence in Advanced Steel Research, Materials Science and Engineering Program, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Liu, S. [Laboratory for Excellence in Advanced Steel Research, Materials Science and Engineering Program, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); School of Materials Science and Engineering, University of Science and Technology, Beijing (China); Challa, V.S.A. [Laboratory for Excellence in Advanced Steel Research, Materials Science and Engineering Program, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Misra, R.D.K., E-mail: dmisra2@utep.edu [Laboratory for Excellence in Advanced Steel Research, Materials Science and Engineering Program, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Sidorenko, D.M.; Mulholland, M.D.; Manohar, M.; Hartmann, J.E. [ArcelorMittal Global R& D Center, 3001 East Columbus Drive, East Chicago, IN 46312 (United States)

    2016-08-01

    The process parameters associated with thermo-mechanical controlled processing (TMCP) of steels play an important role in influencing the ultimate mechanical properties. The study of TMCP parameters have not received the required attention. In this regard, we elucidate here the impact of finish cooling temperature on interrupted cooling and compare with continuous cooling on microstructural evolution and precipitation behavior and associated mechanical properties in Ti-Nb microalloyed steels. The microstructural evolution was studied via transmission electron microscopy and electron back scattered diffraction (EBSD). The microstructure of continuously cooled and interrupted cooled steels with different finish exit temperatures consisted of polygonal ferrite, bainite and martensite/austenite constituent. However, the fraction of different microstructural constituents was different in each of the experimental steels. Similarly, there were differences in the distribution and average size of (Nb, Ti)C precipitates. The aforementioned differences in the microstructure and precipitation introduced differences in tensile properties. Furthermore, electron back scattered diffraction studies indicated distinct variation in average grain area and high angle boundaries between continuously cooled and interrupted cooled steels.

  4. Diffraction by an immersed elastic wedge

    CERN Document Server

    Croisille, Jean-Pierre

    1999-01-01

    This monograph presents the mathematical description and numerical computation of the high-frequency diffracted wave by an immersed elastic wave with normal incidence. The mathematical analysis is based on the explicit description of the principal symbol of the pseudo-differential operator connected with the coupled linear problem elasticity/fluid by the wedge interface. This description is subsequently used to derive an accurate numerical computation of diffraction diagrams for different incoming waves in the fluid, and for different wedge angles. The method can be applied to any problem of coupled waves by a wedge interface. This work is of interest for any researcher concerned with high frequency wave scattering, especially mathematicians, acousticians, engineers.

  5. The problem of scattering in fibre-fed VPH spectrographs and possible solutions

    Science.gov (United States)

    Ellis, S. C.; Saunders, Will; Betters, Chris; Croom, Scott

    2014-07-01

    All spectrographs unavoidably scatter light. Scattering in the spectral direction is problematic for sky subtraction, since atmospheric spectral lines are blurred. Scattering in the spatial direction is problematic for fibre fed spectrographs, since it limits how closely fibres can be packed together. We investigate the nature of this scattering and show that the scattering wings have both a Lorentzian component, and a shallower (1/r) component. We investigate the causes of this from a theoretical perspective, and argue that for the spectral PSF the Lorentzian wings are in part due to the profile of the illumination of the pupil of the spectrograph onto the diffraction grating, whereas the shallower component is from bulk scattering. We then investigate ways to mitigate the diffractive scattering by apodising the pupil. In the ideal case of a Gaussian apodised pupil, the scattering can be significantly improved. Finally we look at realistic models of the spectrograph pupils of fibre fed spectrographs with a centrally obstructed telescope, and show that it is possible to apodise the pupil through non-telecentric injection into the fibre.

  6. Anelasticity of olivine single crystals investigated by stress-reduction tests and high-angular resolution electron backscatter diffraction

    Science.gov (United States)

    Wallis, D.; Hansen, L. N.; Kempton, I.; Wilkinson, A. J.

    2017-12-01

    Geodynamic phenomena, including glacial isostatic adjustment and postseismic deformation, can involve transient deformation in response to changes in differential stress acting on mantle rocks. As such, rheological models of transient deformation are incorporated in predictions of associated processes, including sea-level rise and stress redistribution after earthquakes. However, experimental constraints on rheological models for transient deformation of mantle materials are sparse. In particular, experiments involving stress reductions have been lacking. Moreover, a material's response to a reduction in stress can provide clues to the microphysical processes controlling deformation. To constrain models of transient deformation of mantle rocks we performed stress-reduction tests on single crystals of olivine at 1250-1300°C. Mechanical and piezoelectric actuators controlled constant initial stress during creep. At various strain intervals stress was reduced near-instantaneously using the piezoelectric actuator, inducing both elastic and anelastic (time-dependent) lengthening of the samples. A range of magnitudes of stress reduction were applied, typically unloading 10-90% of the initial stress. High-angular resolution electron backscatter diffraction (HR-EBSD), based on cross-correlation of diffraction patterns, was used to map dislocation density and elastic strain distributions in the recovered samples. Magnitudes of anelastic back-strain increase with increasing magnitudes of stress reduction and show a marked increase when stress reductions exceed 50% of the initial stress, consistent with previous observations in metals and alloys. This observation is inconsistent with the Burgers rheological model commonly used to describe transient behaviour and suggests that the style of rheological behaviour depends on the magnitude of stress change. HR-EBSD maps reveal that the crystal lattices are smoothly curved and generally lack subgrain boundaries and elastic strain

  7. Brillouin scattering, DSC, dielectric and X-ray diffraction studies of phase transitions in antiferroelectric PbHfO{sub 3}:Sn

    Energy Technology Data Exchange (ETDEWEB)

    Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Kim, Tae Hyun [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Gągor, Anna [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Jankowska-Sumara, Irena [Institute of Physics, Pedagogical University, ul. Podchorążych 2, 30-084 Kraków (Poland); Majchrowski, Andrzej [Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Kojima, Seiji [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2015-02-15

    Highlights: • Phase transition mechanisms were studied in antiferroelectric PbHf{sub 0.975}Sn{sub 0.025}O{sub 3.} • Acoustic phonons showed anomalies at 472 and 426 K due to phase transitions. • Brillouin data showed evidence for presence of polar clusters in paraelectric phase. • An order-disorder mechanism of the PE to AFE2 transition was proved. - Abstract: Specific heat, dielectric, powder X-ray diffraction and Brillouin scattering studies of phase transitions in antiferroelectric PbHf{sub 0.975}Sn{sub 0.025}O{sub 3} crystal were performed. The specific heat data revealed clear anomalies at T{sub 1} = 473.5 and T{sub 2} = 426.3 K on cooling, which could be attributed to onset of first order phase transitions from the paraelectric (PE) phase to an intermediate antiferroelectric phase (AFE2) and the AFE2 phase to another antiferroelectric phase (AFE1), respectively. The estimated entropy changes at T{sub 1} and T{sub 2} pointed to mainly an order-disorder and displacive character of these transitions, respectively. X-ray diffraction data showed a complex superstructure of the intermediate phase with a = 11.895(6) Å, b = 11.936(4) Å, c = 8.223(3) Å at 453 K. Brillouin studies revealed pronounced softening of longitudinal acoustic (LA) mode in the PE phase associated with its broadening. The broadening and softening exhibited maximum values at T{sub 1}. Additional acoustic anomalies, that is, abrupt frequency shifts for LA and transverse acoustic (TA) modes were also observed at T{sub 2}. Brillouin scattering data also showed presence of a broad central peak (CP) that exhibited highest intensity at T{sub 1}. The observed temperature dependences of acoustic modes and CP indicate order-disorder character of the FE to AFE2 phase transition and importance of polar precursor clusters in the PE phase. The obtained data also suggest that the intermediate antiferroelectric phases in Sn{sup 4+} doped PbHfO{sub 3} and PbZrO{sub 3} may have very similar structures

  8. Inelastic diffractive scattering at the CERN ISR

    CERN Document Server

    Albrow, M G; Barber, D P; Benz, P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Chang, C Y; Clegg, A B; Erné, F C; Gee, C N P; Kooijman, P; Locke, D H; Loebinger, F K; McCubbin, N A; Murphy, P G; Radojicic, D; Rudge, A; Sens, Johannes C; Sessoms, A L; Singh, J; Stork, D; Timmer, J

    1976-01-01

    The properties of the diffractive peak observed in the mass spectra of systems recoiling against observed high-momentum protons emerging from pp collisions at the CERN ISR have been investigated. The cross sections in this peak have been found to have a steep t dependence which flattens out as mod t mod increases. The high mass side of the peak varies approximately as 1/M/sup 2/ (where M is the missing mass of the recoiling system) and scales well in terms of the variable M /sup 2//s. The position of the maximum has been observed to move to lower values of M/sup 2//s as the kinematic boundary of this variable decreases with increasing s. The measured cross sections, integrated up to M/sup 2//s=0.05, rise by (15+or-5)% over the s range 549 to 1464 GeV/sup 2/. (24 refs).

  9. Dynamic grazing incidence fast atom diffraction during molecular beam epitaxial growth of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, P., E-mail: atkinson@insp.jussieu.fr; Eddrief, M. [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7588, INSP, F-75005 Paris (France); CNRS, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, F-75005 Paris (France); Etgens, V. H. [CNRS, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, F-75005 Paris (France); VeDeCom-Université Versailles Saint-Quentin en Yvelines, Versailles (France); Khemliche, H., E-mail: hocine.khemliche@u-psud.fr; Debiossac, M.; Mulier, M.; Lalmi, B.; Roncin, P. [ISMO UMR8214 CNRS-Université Paris-Sud, Orsay F-91400 (France); Momeni, A. [ISMO UMR8214 CNRS-Université Paris-Sud, Orsay F-91400 (France); Univ. Cergy Pontoise, F-95031 Cergy (France)

    2014-07-14

    A Grazing Incidence Fast Atom Diffraction (GIFAD) system has been mounted on a commercial molecular beam epitaxy chamber and used to monitor GaAs growth in real-time. In contrast to the conventionally used Reflection High Energy Electron Diffraction, all the GIFAD diffraction orders oscillate in phase, with the change in intensity related to diffuse scattering at step edges. We show that the scattered intensity integrated over the Laue circle is a robust method to monitor the periodic change in surface roughness during layer-by-layer growth, with oscillation phase and amplitude independent of incidence angle and crystal orientation. When there is a change in surface reconstruction at the start of growth, GIFAD intensity oscillations show that there is a corresponding delay in the onset of layer-by-layer growth. In addition, changes in the relative intensity of different diffraction orders have been observed during growth showing that GIFAD has the potential to provide insight into the preferential adatom attachment sites on the surface reconstruction during growth.

  10. On the determination of double diffraction dissociation cross section at HERA

    International Nuclear Information System (INIS)

    Holtmann, H.; Nikolaev, N.N.; Speth, J.; Zakharov, B.G.

    1996-01-01

    The excitation of the proton into undetected multiparticle states (double diffraction dissociation) is an important background to single diffractive deep-inelastic processes ep→e'p'ρ 0 , e'p'J/Ψ, e'p'X at HERA. We present estimates of the admixture of the double diffraction dissociation events in all diffractive events. We find that in the J/Ψ photoproduction, electroproduction of the ρ 0 at large Q 2 and diffraction dissociation of real and virtual photons into high mass states X the contamination of the double diffraction dissociation can be as large as ∼30%, thus affecting substantially the experimental tests of the pomeron exchange in deep inelastic scattering at HERA. We discuss a possibility of tagging the double diffraction dissociation by neutrons observed in the forward neutron calorimeter. We present evaluations of the spectra of neutrons and efficiency of neutron tagging based on the experimental data for diffractive processes in the proton-proton collisions. (orig.)

  11. Current stage of understanding and description of hadronic elastic diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Godizov, A. A. [Institute for High Energy Physics, 142281 Protvino (Russian Federation)

    2013-04-15

    Current situation with phenomenological description of high-energy nucleon-nucleon diffractive elastic scattering is reviewed. Comparison of various model predictions with the recent D0 and TOTEM data on the nucleon-nucleon differential cross-sections is presented.

  12. Running coupling and pomeron loop effects on inclusive and diffractive DIS cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Ducati, M.B. Gay [Universidade Federal do Rio Grande do Sul, Instituto de Fisica, Porto Alegre (Brazil); CERN, PH-TH, Geneva (Switzerland); Oliveira, E.G. de [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Santana Amaral, J.T. de [Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Pelotas (Brazil)

    2012-11-15

    Within the framework of a (1+1)-dimensional model which mimics high-energy QCD, we study the behavior of the cross sections for inclusive and diffractive deep inelastic {gamma} {sup *} h scattering cross sections. We analyze the cases of both fixed and running coupling within the mean-field approximation, in which the evolution of the scattering amplitude is described by the Balitsky-Kovchegov equation, and also through the pomeron loop equations, which include in the evolution the gluon number fluctuations. In the diffractive case, similarly to the inclusive one, suppression of the diffusive scaling, as a consequence of the inclusion of the running of the coupling, is observed. (orig.)

  13. Running coupling and pomeron loop effects on inclusive and diffractive DIS cross sections

    International Nuclear Information System (INIS)

    Ducati, M.B. Gay; Oliveira, E.G. de; Santana Amaral, J.T. de

    2012-01-01

    Within the framework of a (1+1)-dimensional model which mimics high-energy QCD, we study the behavior of the cross sections for inclusive and diffractive deep inelastic γ * h scattering cross sections. We analyze the cases of both fixed and running coupling within the mean-field approximation, in which the evolution of the scattering amplitude is described by the Balitsky-Kovchegov equation, and also through the pomeron loop equations, which include in the evolution the gluon number fluctuations. In the diffractive case, similarly to the inclusive one, suppression of the diffusive scaling, as a consequence of the inclusion of the running of the coupling, is observed. (orig.)

  14. Running coupling and pomeron loop effects on inclusive and diffractive DIS cross sections

    CERN Document Server

    Gay Ducati, M.B.; de Santana Amaral, J.T.

    2012-01-01

    Within the framework of a (1+1)--dimensional model which mimics high energy QCD, we study the behavior of the cross sections for inclusive and diffractive deep inelastic $\\gamma^*h$ scattering cross sections. We analyze the cases of both fixed and running coupling within the mean field approximation, in which the evolution of the scattering amplitude is described by the Balitsky-Kovchegov equation, and also through the pomeron loop equations, which include in the evolution the gluon number fluctuations. In the diffractive case, similarly to the inclusive one, the suppression of the diffusive scaling, as a consequence of the inclusion of the running of the coupling, is observed.

  15. To the theory of X-ray and electron dynamic scattering in defect-containing crystals

    International Nuclear Information System (INIS)

    Chukhovskij, F.N.

    1982-01-01

    The novel approach to the X-ray and electron dynamic scattering theory based on the dynamic equations ''in the dispersion surface representation'' is formulated. The formally exact solution of two-wave diffraction scattering problem is obtained using the scattering matrix, the obvious expression for which is found. The general formulae describing the plane wave diffraction scattering in absorbing crystals in the weak distortion range has been obtained. The formulae allows one to determine the total change sign of the displacement function Δα(x,y)=2πg vectorx(R vector (r vector) 1 -R vector(r vector) 2 ) on the base of the known sign of the mean deflection magnitude in a crystal as a whole from the exact Bragg position (g vector - the inverse lattice vector, R vector - the displacement field vector, t - the crystal thickness, R vector(r vector) 1 =R vector (r) ar z=t, R vector(r vector) 2 =R(r) at z=0). In the quasiclassical approximation the formation of the diffraction image of a dislocation positioned in such a way that the dislocation axis is parallel to the diffraction reflection vector is considered for the incident plane and spherical waves

  16. Practical methods to define scattering coefficients in a room acoustics computer model

    DEFF Research Database (Denmark)

    Zeng, Xiangyang; Christensen, Claus Lynge; Rindel, Jens Holger

    2006-01-01

    of obtaining the data becomes quite time consuming thus increasing the cost of design. In this paper, practical methods to define scattering coefficients, which is based on an approach of modeling surface scattering and scattering caused by limited size of surface as well as edge diffraction are presented...

  17. Impact factor for high-energy two and three jets diffractive production

    Energy Technology Data Exchange (ETDEWEB)

    Boussarie, R. [LPT, Université Paris-Sud, CNRS, 91405, Orsay (France); Grabovsky, A.V. [Budker Institute of Nuclear Physics and Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Szymanowski, L. [National Centre for Nuclear Research (NCBJ), Warsaw (Poland); Wallon, S. [UPMC Univ. Paris 06, Faculté de Physique, 4 place Jussieu, 75252 Paris Cedex 05 (France); LPT, Université Paris-Sud, CNRS, 91405, Orsay (France)

    2015-04-10

    We present the calculation of the impact factor for the photon to quark, antiquark and gluon transition within Balitsky’s shock-wave formalism. We also rederive the impact factor for photon to quark and antiquark transition. These results provide the necessary building blocks for further phenomenological studies of inclusive diffractive deep inelastic scattering as well as for two and three jets diffractive production which go beyond approximations discussed in the literature.

  18. Impact factor for high-energy two and three jets diffractive production

    International Nuclear Information System (INIS)

    Boussarie, R.; Grabovsky, A.V.; Szymanowski, L.; Wallon, S.

    2015-01-01

    We present the calculation of the impact factor for the photon to quark, antiquark and gluon transition within Balitsky’s shock-wave formalism. We also rederive the impact factor for photon to quark and antiquark transition. These results provide the necessary building blocks for further phenomenological studies of inclusive diffractive deep inelastic scattering as well as for two and three jets diffractive production which go beyond approximations discussed in the literature

  19. DMSO-induced dehydration of DPPC membranes studied by x-ray diffraction, small angle neutron scattering and calorimetry

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Kiselev, A.M.; Lesieur, P.; Grabielle-Madelmond, C.; Ollivon, M.

    1998-01-01

    The properties of dimethyl sulfoxide (DMSO), a cryoprotector well known for its biological and therapeutic applications, were investigated on lipid membranes by x-ray diffraction, differential scanning calorimetry (DSC) and small angle neutron scattering (SANS). The DSC study of water freezing and melting of ice was performed in the ternary system which consists of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC)/DMSO/water system. The influence of DMSO on the DPPC membrane structure was established in the excess of solvent in the region of DMSO mole fraction from 0.0 to 1.0. The methods applied demonstrated the differences in the membrane structure in three sub-regions of DMSO mole fraction (X DMSO ) from 0.0 to 0.3 for the first, from 0.3 to 0.9 for the second, and from 0.9 to 1.0 for the third sub-region. The results for 0.0 ≤ X DMSO ≤ 0.3 can be explained in the framework of DMSO-induced dehydration of intermembrane space

  20. Theory of near-critical-angle scattering from a curved interface

    International Nuclear Information System (INIS)

    Fiedler-Ferrari, N.; Nussenzveig, H.M.; Wiscombe, W.J.

    1990-01-01

    A new type of diffraction effect, different from the standard semiclassical ones (rainbow, glory, forward peak, orbiting), takes place near the critical angle for total reflection at a curved interface between two homogeneous media. A theoretical treatment of this new effects is given for Mie scattering, e.g., light scattering by an air bubble in water; it can readily be extended to more general curved interface problems in a variety of different fields (quantum mechanics, acoustics, seismic waves). The relatively slowly-varying Mie diffraction pattern associated with near-critical scattering is obscured by rapid fine-structure oscillations due to interference with unrelated farside contributions. These contributions are evaluated and subtracted from the Mie amplitudes to yield the relevant nearside effects. A zero-order transitional CAM (complex angular momentum) approximation to the nearside amplitude is developed. The most important contributions arise from partial and total reflection, represented by two new diffraction integrals, designated Fresnel-Fock and Pearcey-Fock respectively. Also discussed are the WKB approximation, a known physical optics approximation and a new modified version of this approximation: they are compared with the exact nearside Mie amplitude obtained by numerical partial-wave summation, at scatterer size parameters (circumference/wavelength) ranging from 1,000 to 10,000. (author)