WorldWideScience

Sample records for scapularis ticks infected

  1. Tissue-specific signatures in the transcriptional response to Anaplasma phagocytophilum infection of Ixodes scapularis and Ixodes ricinus tick cell lines

    Directory of Open Access Journals (Sweden)

    Pilar eAlberdi

    2016-02-01

    Full Text Available Anaplasma phagocytophilum are transmitted by Ixodes spp. ticks and have become one of the most common and relevant tick-borne pathogens due to their impact on human and animal health. Recent results have increased our understanding of the molecular interactions between Ixodes scapularis and A. phagocytophilum through the demonstration of tissue-specific molecular pathways that ensure pathogen infection, development and transmission by ticks. However, little is known about the Ixodes ricinus genes and proteins involved in the response to A. phagocytophilum infection. The tick species I. scapularis and I. ricinus are evolutionarily closely related and therefore similar responses are expected in A. phagocytophilum-infected cells. However, differences may exist between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cells associated with tissue-specific signatures of these cell lines. To address this hypothesis, the transcriptional response to A. phagocytophilum infection was characterized by RNA sequencing and compared between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cell lines. The transcriptional response to infection of I. scapularis ISE6 cells resembled that of tick hemocytes while the response in I. ricinus IRE/CTVM20 cells was more closely related to that reported previously in infected tick midguts. The inhibition of cell apoptosis by A. phagocytophilum appears to be a key adaptation mechanism to facilitate infection of both vertebrate and tick cells and was used to investigate further the tissue-specific response of tick cell lines to pathogen infection. The results supported a role for the intrinsic pathway in the inhibition of cell apoptosis by A. phagocytophilum infection of I. scapularis ISE6 cells. In contrast, the results in I. ricinus IRE/CTVM20 cells were similar to those obtained in tick midguts and suggested a role for the JAK/STAT pathway in the inhibition of apoptosis in tick cells infected with A. phagocytophilum

  2. Effects of tick control by acaricide self-treatement of white-tailed deer on host-seeking tick infection prevalence and entomologic risk for Ixodes scapularis-borne pathogens

    Science.gov (United States)

    We evaluated the effects of tick control by acaricide self-treatment of white-tailed deer on the infection prevalence and entomologic risk for three I. scapularis-borne bacteria in host-seeking ticks. Ticks were collected from vegetation in areas treated with the ‘4-Poster’ device and from control a...

  3. Remodeling of tick cytoskeleton in response to infection with Anaplasma phagocytophilum.

    Science.gov (United States)

    Cabezas-Cruz, Alejandro; Alberdi, Pilar; Valdes, James J; Villar, Margarita; de la Fuente, Jose

    2017-06-01

    The obligate intracellular pathogen Anaplasma phagocytophilum infects vertebrate and tick hosts. In this study, a genome-wide search for cytoskeleton components was performed in the tick vector, Ixodes scapularis . The available transcriptomics and proteomics data was then used to characterize the mRNA and protein levels of I. scapularis cytoskeleton components in response to A. phagocytophilum infection. The results showed that cytoskeleton components described in other model organisms were present in the I. scapularis genome. One type of intermediate filaments (lamin), a family of septins that was recently implicated in the cellular response to intracellular pathogens, and several members of motor proteins (kinesins and dyneins) that could be implicated in the cytoplasmic movements of A. phagocytophilum were found. The results showed that levels of tubulin, actin, septin, actin-related proteins and motor proteins were affected by A. phagocytophilum , probably to facilitate infection in I. scapularis . Functional studies demonstrated a role for selected cytoskeleton components in pathogen infection. These results provided a more comprehensive view of the cytoskeletal components involved in the response to A. phagocytophilum infection in ticks.

  4. Effects of tick control by acaricide self-treatment of white-tailed deer on host-seeking tick infection prevalence and entomologic risk for Ixodes scapularis-borne pathogens.

    Science.gov (United States)

    Hoen, Anne Gatewood; Rollend, Lindsay G; Papero, Michele A; Carroll, John F; Daniels, Thomas J; Mather, Thomas N; Schulze, Terry L; Stafford, Kirby C; Fish, Durland

    2009-08-01

    We evaluated the effects of tick control by acaricide self-treatment of white-tailed deer on the infection prevalence and entomologic risk for three Ixodes scapularis-borne bacteria in host-seeking ticks. Ticks were collected from vegetation in areas treated with the "4-Poster" device and from control areas over a 6-year period in five geographically diverse study locations in the Northeastern United States and tested for infection with two known agents of human disease, Borrelia burgdorferi and Anaplasma phagocytophilum, and for a novel relapsing fever-group spirochete related to Borrelia miyamotoi. Overall, 38.2% of adults and 12.5% of nymphs were infected with B. burgdorferi; 8.5% of adults and 4.2% of nymphs were infected with A. phagocytophilum; and 1.9% of adults and 0.8% of nymphs were infected with B. miyamotoi. In most cases, treatment with the 4-Poster device was not associated with changes in the prevalence of infection with any of these three microorganisms among nymphal or adult ticks. However, the density of nymphs infected with B. burgdorferi, and consequently the entomologic risk for Lyme disease, was reduced overall by 68% in treated areas compared to control areas among the five study sites at the end of the study. The frequency of bacterial coinfections in ticks was generally equal to the product of the proportion of ticks infected with a single bacterium, indicating that enzootic maintenance of these pathogens is independent. We conclude that controlling ticks on deer by self-application of acaricide results in an overall decrease in the human risk for exposure to these three bacterial agents, which is due solely to a reduction in tick density.

  5. Reciprocal Regulation of NF-kB (Relish) and Subolesin in the Tick Vector, Ixodes scapularis

    Science.gov (United States)

    Galindo, Ruth C.; Kocan, Katherine M.; Blouin, Edmour F.; Mitra, Ruchira; Alberdi, Pilar; Villar, Margarita; de la Fuente, José

    2013-01-01

    Background Tick Subolesin and its ortholog in insects and vertebrates, Akirin, have been suggested to play a role in the immune response through regulation of nuclear factor-kappa B (NF-kB)-dependent and independent gene expression via interaction with intermediate proteins that interact with NF-kB and other regulatory proteins, bind DNA or remodel chromatin to regulate gene expression. The objective of this study was to characterize the structure and regulation of subolesin in Ixodes scapularis. I. scapularis is a vector of emerging pathogens such as Borrelia burgdorferi, Anaplasma phagocytophilum and Babesia microti that cause in humans Lyme disease, anaplasmosis and babesiosis, respectively. The genome of I. scapularis was recently sequenced, and this tick serves as a model organism for the study of vector-host-pathogen interactions. However, basic biological questions such as gene organization and regulation are largely unknown in ticks and other arthropod vectors. Principal Findings The results presented here provide evidence that subolesin/akirin are evolutionarily conserved at several levels (primary sequence, gene organization and function), thus supporting their crucial biological function in metazoans. These results showed that NF-kB (Relish) is involved in the regulation of subolesin expression in ticks, suggesting that as in other organisms, different NF-kB integral subunits and/or unknown interacting proteins regulate the specificity of the NF-kB-mediated gene expression. These results suggested a regulatory network involving cross-regulation between NF-kB (Relish) and Subolesin and Subolesin auto-regulation with possible implications in tick immune response to bacterial infection. Significance These results advance our understanding of gene organization and regulation in I. scapularis and have important implications for arthropod vectors genetics and immunology highlighting the possible role of NF-kB and Subolesin/Akirin in vector

  6. Immunity against Ixodes scapularis salivary proteins expressed within 24 hours of attachment thwarts tick feeding and impairs Borrelia transmission.

    Directory of Open Access Journals (Sweden)

    Sukanya Narasimhan

    2007-05-01

    Full Text Available In North America, the black-legged tick, Ixodes scapularis, an obligate haematophagus arthropod, is a vector of several human pathogens including Borrelia burgdorferi, the Lyme disease agent. In this report, we show that the tick salivary gland transcriptome and proteome is dynamic and changes during the process of engorgement. We demonstrate, using a guinea pig model of I. scapularis feeding and B. burgdorferi transmission, that immunity directed against salivary proteins expressed in the first 24 h of tick attachment - and not later - is sufficient to evoke all the hallmarks of acquired tick-immunity, to thwart tick feeding and also to impair Borrelia transmission. Defining this subset of proteins will promote a mechanistic understanding of novel I. scapularis proteins critical for the initiation of tick feeding and for Borrelia transmission.

  7. Pathogenicity of entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) to Ixodes scapularis (Acari: Ixodidae)

    Science.gov (United States)

    Zhioua, E.; Browning, M.; Johnson, P.W.; Ginsberg, H.S.; LeBrun, R.A.

    1997-01-01

    The entomopathogenic fungus Metarhizium anisopliae is highly pathogenic to the black-legged tick, Ixodes scapularis. Spore concentrations of 108/ml for engorged larvae and 107/ml for engorged females resulted in 100% tick mortality, 2 wk post-infection. The LC50 value for engorged larvae (concentration to kill 50% of ticks) was 107 spores/ml. Metarhizium anisopliae shows considerable potential as a microbial control agent for the management of Ixodes scapularis.

  8. Genomic insights into the Ixodes scapularis tick vector of Lyme disease

    DEFF Research Database (Denmark)

    Gulia-Nuss, Monika; Nuss, Andrew B.; Meyer, Jason M.

    2016-01-01

    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects...... proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent....

  9. Ixodes scapularis tick serine proteinase inhibitor (serpin gene family; annotation and transcriptional analysis

    Directory of Open Access Journals (Sweden)

    Chalaire Katelyn C

    2009-05-01

    Full Text Available Abstract Background Serine proteinase inhibitors (Serpins are a large superfamily of structurally related, but functionally diverse proteins that control essential proteolytic pathways in most branches of life. Given their importance in the biology of many organisms, the concept that ticks might utilize serpins to evade host defenses and immunizing against or disrupting their functions as targets for tick control is an appealing option. Results A sequence homology search strategy has allowed us to identify at least 45 tick serpin genes in the Ixodes scapularis genome that are structurally segregated into 32 intronless and 13 intron-containing genes. Nine of the intron-containing serpins occur in a cluster of 11 genes that span 170 kb of DNA sequence. Based on consensus amino acid residues in the reactive center loop (RCL and signal peptide scanning, 93% are putatively inhibitory while 82% are putatively extracellular. Among the 11 different amino acid residues that are predicted at the P1 sites, 16 sequences possess basic amino acid (R/K residues. Temporal and spatial expression analyses revealed that 40 of the 45 serpins are differentially expressed in salivary glands (SG and/or midguts (MG of unfed and partially fed ticks. Ten of the 38 serpin genes were expressed from six to 24 hrs of feeding while six and fives genes each are predominantly or exclusively expressed in either MG and SG respectively. Conclusion Given the diversity among tick species, sizes of tick serpin families are likely to be variable. However this study provides insight on the potential sizes of serpin protein families in ticks. Ticks must overcome inflammation, complement activation and blood coagulation to complete feeding. Since these pathways are regulated by serpins that have basic residues at their P1 sites, we speculate that I. scapularis may utilize some of the serpins reported in this study to manipulate host defense. We have discussed our data in the context of

  10. Water absorption through salivary gland type I acini in the blacklegged tick, Ixodes scapularis

    Directory of Open Access Journals (Sweden)

    Donghun Kim

    2017-10-01

    Full Text Available Tick salivary glands play critical roles in maintaining water balance for survival, as they eliminate excess water and ions during blood feeding on hosts. In the long duration of fasting in the off-host period, ticks secrete hygroscopic saliva into the mouth cavity to uptake atmospheric water vapor. Type I acini of tick salivary glands are speculated to be involved in secretion of hygroscopic saliva based on ultrastructure studies. However, we recently proposed that type I acini play a role in resorption of water/ions from the primary saliva produced by other salivary acini (i.e., types II and III during the tick blood feeding phase. In this study, we tested the function of type I acini in unfed female Ixodes scapularis. The route of ingested water was tracked after forced feeding of water with fluorescent dye rhodamine123. We found that type-I acini of the salivary glands, but not type II and III, are responsible for water uptake. In addition, the ingestion of water through the midgut was also observed. Injection or feeding of ouabain, a Na/K-ATPase inhibitor, suppressed water absorption in type I acini. When I. scapularis was offered a droplet of water, ticks rarely imbibed water directly (5%, while some approached the water droplet to use the high humidity formed in the vicinity of the droplet (23%. We conclude that during both on- and off-host stages, type I acini in salivary glands of female Ixodes scapularis absorb water and ions.

  11. Identification and characterization of Ixodes scapularis antigens that elicit tick immunity using yeast surface display.

    Directory of Open Access Journals (Sweden)

    Tim J Schuijt

    2011-01-01

    Full Text Available Repeated exposure of rabbits and other animals to ticks results in acquired resistance or immunity to subsequent tick bites and is partially elicited by antibodies directed against tick antigens. In this study we demonstrate the utility of a yeast surface display approach to identify tick salivary antigens that react with tick-immune serum. We constructed an Ixodes scapularis nymphal salivary gland yeast surface display library and screened the library with nymph-immune rabbit sera and identified five salivary antigens. Four of these proteins, designated P8, P19, P23 and P32, had a predicted signal sequence. We generated recombinant (r P8, P19 and P23 in a Drosophila expression system for functional and immunization studies. rP8 showed anti-complement activity and rP23 demonstrated anti-coagulant activity. Ixodes scapularis feeding was significantly impaired when nymphs were fed on rabbits immunized with a cocktail of rP8, rP19 and rP23, a hall mark of tick-immunity. These studies also suggest that these antigens may serve as potential vaccine candidates to thwart tick feeding.

  12. Vaccinomics Approach to the Identification of Candidate Protective Antigens for the Control of Tick Vector Infestations and Anaplasma phagocytophilum Infection

    Directory of Open Access Journals (Sweden)

    Marinela Contreras

    2017-08-01

    Full Text Available Anaplasma phagocytophilum is an emerging tick-borne pathogen causing human granulocytic anaplasmosis (HGA, tick-borne fever (TBF in small ruminants, and other forms of anaplasmosis in different domestic and wild animals. The main vectors of this pathogen are Ixodes tick species, particularly I. scapularis in the United States and I. ricinus in Europe. One of the main limitations for the development of effective vaccines for the prevention and control of A. phagocytophilum infection and transmission is the identification of effective tick protective antigens. The objective of this study was to apply a vaccinomics approach to I. scapularis-A. phagocytophilum interactions for the identification and characterization of candidate tick protective antigens for the control of vector infestations and A. phagocytophilum infection. The vaccinomics pipeline included the use of quantitative transcriptomics and proteomics data from uninfected and A. phagocytophilum-infected I. scapularis ticks for the selection of candidate protective antigens based on the variation in tick mRNA and protein levels in response to infection, their putative biological function, and the effect of antibodies against these proteins on tick cell apoptosis and pathogen infection. The characterization of selected candidate tick protective antigens included the identification and characterization of I. ricinus homologs, functional characterization by different methodologies including RNA interference, immunofluorescence, gene expression profiling, and artificial tick feeding on rabbit antibodies against the recombinant antigens to select the candidates for vaccination trials. The vaccinomics pipeline developed in this study resulted in the identification of two candidate tick protective antigens that could be selected for future vaccination trials. The results showed that I. scapularis lipocalin (ISCW005600 and lectin pathway inhibitor (AAY66632 and I. ricinus homologs constitute

  13. Molecular characterization of novel sulfotransferases from the tick, Ixodes scapularis

    Directory of Open Access Journals (Sweden)

    King Roberta S

    2011-06-01

    Full Text Available Abstract Background Ixodes scapularis, commonly known as the blacklegged or deer tick, is the main vector of Lyme disease in the United States. Recent progress in transcriptome research has uncovered hundreds of different proteins expressed in the salivary glands of hard ticks, the majority of which have no known function, and include many novel protein families. We recently identified transcripts coding for two putative cytosolic sulfotransferases in these ticks which recognized phenolic monoamines as their substrates. In this current study, we characterize the genetic expression of these two cytosolic sulfotransferases throughout the tick life cycle as well as the enzymatic properties of the corresponding recombinant proteins. Interestingly, the resultant recombinant proteins showed sulfotransferase activity against both neurotransmitters dopamine and octopamine. Results The two sulfotransferase genes were coded as Ixosc SULT 1 & 2 and corresponding proteins were referred as Ixosc Sult 1 and 2. Using gene-specific primers, the sulfotransferase transcripts were detected throughout the blacklegged tick life cycle, including eggs, larvae, nymphs, adult salivary glands and adult midgut. Notably, the mRNA and protein levels were altered upon feeding during both the larval and nymphal life stages. Quantitative PCR results confirm that Ixosc SULT1 was statistically increased upon blood feeding while Ixosc SULT 2 was decreased. This altered expression led us to further characterize the function of these proteins in the Ixodid tick. The sulfotransferase genes were cloned and expressed in a bacterial expression system, and purified recombinant proteins Ixosc Sult 1(R and 2(R showed sulfotransferase activity against neurotransmitters dopamine and octopamine as well as the common sulfotransferase substrate p-nitrophenol. Thus, dopamine- or octopamine-sulfonation may be involved in altering the biological signal for salivary secretion in I. scapularis

  14. Tick-Host Range Adaptation: Changes in Protein Profiles in Unfed Adult Ixodes scapularis and Amblyomma americanum Saliva Stimulated to Feed on Different Hosts

    Directory of Open Access Journals (Sweden)

    Lucas Tirloni

    2017-12-01

    Full Text Available Understanding the molecular basis of how ticks adapt to feed on different animal hosts is central to understanding tick and tick-borne disease (TBD epidemiology. There is evidence that ticks differentially express specific sets of genes when stimulated to start feeding. This study was initiated to investigate if ticks such as Ixodes scapularis and Amblyomma americanum that are adapted to feed on multiple hosts utilized the same sets of proteins to prepare for feeding. We exposed I. scapularis and A. americanum to feeding stimuli of different hosts (rabbit, human, and dog by keeping unfed adult ticks enclosed in a perforated microfuge in close contact with host skin, but not allowing ticks to attach on host. Our data suggest that ticks of the same species differentially express tick saliva proteins (TSPs when stimulated to start feeding on different hosts. SDS-PAGE and silver staining analysis revealed unique electrophoretic profiles in saliva of I. scapularis and A. americanum that were stimulated to feed on different hosts: rabbit, human, and dog. LC-MS/MS sequencing and pairwise analysis demonstrated that I. scapularis and A. americanum ticks expressed unique protein profiles in their saliva when stimulated to start feeding on different hosts: rabbit, dog, or human. Specifically, our data revealed TSPs that were unique to each treatment and those that were shared between treatments. Overall, we identified a total of 276 and 340 non-redundant I. scapularis and A. americanum TSPs, which we have classified into 28 functional classes including: secreted conserved proteins (unknown functions, proteinase inhibitors, lipocalins, extracellular matrix/cell adhesion, heme/iron metabolism, signal transduction and immunity-related proteins being the most predominant in saliva of unfed ticks. With exception of research on vaccines against Rhipicephalus microplus, which its natural host, cattle, research on vaccine against other ticks relies feeding ticks

  15. Adverse moisture events predict seasonal abundance of Lyme disease vector ticks (Ixodes scapularis)

    Science.gov (United States)

    Berger, Kathryn A.; Ginsberg, Howard S.; Dugas, Katherine D.; Hamel, Lutz H.; Mather, Thomas N.

    2014-01-01

    Background: Lyme borreliosis (LB) is the most commonly reported vector-borne disease in north temperate regions worldwide, affecting an estimated 300,000 people annually in the United States alone. The incidence of LB is correlated with human exposure to its vector, the blacklegged tick (Ixodes scapularis). To date, attempts to model tick encounter risk based on environmental parameters have been equivocal. Previous studies have not considered (1) the differences between relative humidity (RH) in leaf litter and at weather stations, (2) the RH threshold that affects nymphal blacklegged tick survival, and (3) the time required below the threshold to induce mortality. We clarify the association between environmental moisture and tick survival by presenting a significant relationship between the total number of tick adverse moisture events (TAMEs - calculated as microclimatic periods below a RH threshold) and tick abundance each year.Methods: We used a 14-year continuous statewide tick surveillance database and corresponding weather data from Rhode Island (RI), USA, to assess the effects of TAMEs on nymphal populations of I. scapularis. These TAMEs were defined as extended periods of time (>8 h below 82% RH in leaf litter). We fit a sigmoid curve comparing weather station data to those collected by loggers placed in tick habitats to estimate RH experienced by nymphal ticks, and compiled the number of historical TAMEs during the 14-year record.Results: The total number of TAMEs in June of each year was negatively related to total seasonal nymphal tick densities, suggesting that sub-threshold humidity episodes >8 h in duration naturally lowered nymphal blacklegged tick abundance. Furthermore, TAMEs were positively related to the ratio of tick abundance early in the season when compared to late season, suggesting that lower than average tick abundance for a given year resulted from tick mortality and not from other factors.Conclusions: Our results clarify the mechanism

  16. No Observed Effect of Landscape Fragmentation on Pathogen Infection Prevalence in Blacklegged Ticks (Ixodes scapularis in the Northeastern United States.

    Directory of Open Access Journals (Sweden)

    Christine P Zolnik

    Full Text Available Pathogen prevalence within blacklegged ticks (Ixodes scapularis Say, 1821 tends to vary across sites and geographic regions, but the underlying causes of this variation are not well understood. Efforts to understand the ecology of Lyme disease have led to the proposition that sites with higher host diversity will result in lower disease risk due to an increase in the abundance of inefficient reservoir species relative to the abundance of species that are highly competent reservoirs. Although the Lyme disease transmission cycle is often cited as a model for this "dilution effect hypothesis", little empirical evidence exists to support that claim. Here we tested the dilution effect hypothesis for two pathogens transmitted by the blacklegged tick along an urban-to-rural gradient in the northeastern United States using landscape fragmentation as a proxy for host biodiversity. Percent impervious surface and habitat fragment size around each site were determined to assess the effect of landscape fragmentation on nymphal blacklegged tick infection with Borrelia burgdorferi and Anaplasma phagocytophilum. Our results do not support the dilution effect hypothesis for either pathogen and are in agreement with the few studies to date that have tested this idea using either a landscape proxy or direct measures of host biodiversity.

  17. Susceptibility of Four Tick Species Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis, and Rhipicephalus sanguineus (Acari: Ixodidae) to Nootkatone

    Science.gov (United States)

    The essential oil nootkatone has shown acaricidal activity on ticks. The toxicity of nootkatone was determined in laboratory assays using a vial coating technique against unfed nymphs of four Ixodid ticks: Amblyomma americanum L., Dermacentor variabilis (Say), Ixodes scapularis Say, and Rhipicepha...

  18. Tick histamine release factor is critical for Ixodes scapularis engorgement and transmission of the lyme disease agent.

    Directory of Open Access Journals (Sweden)

    Jianfeng Dai

    2010-11-01

    Full Text Available Ticks are distributed worldwide and affect human and animal health by transmitting diverse infectious agents. Effective vaccines against most tick-borne pathogens are not currently available. In this study, we characterized a tick histamine release factor (tHRF from Ixodes scapularis and addressed the vaccine potential of this antigen in the context of tick engorgement and B. burgdorferi transmission. Results from western blotting and quantitative Reverse Transcription-PCR showed that tHRF is secreted in tick saliva, and upregulated in Borrelia burgdorferi-infected ticks. Further, the expression of tHRF was coincident with the rapid feeding phase of the tick, suggesting a role for tHRF in tick engorgement and concomitantly, for efficient B. burgdorferi transmission. Silencing tHRF by RNA interference (RNAi significantly impaired tick feeding and decreased B. burgdorferi burden in mice. Interfering with tHRF by actively immunizing mice with recombinant tHRF, or passively transferring tHRF antiserum, also markedly reduced the efficiency of tick feeding and B. burgdorferi burden in mice. Recombinant tHRF was able to bind to host basophils and stimulate histamine release. Therefore, we speculate that tHRF might function in vivo to modulate vascular permeability and increase blood flow to the tick bite-site, facilitating tick engorgement. These findings suggest that blocking tHRF might offer a viable strategy to complement ongoing efforts to develop vaccines to block tick feeding and transmission of tick-borne pathogens.

  19. Genomic insights into the Ixodes scapularis tick vector of Lyme disease

    Science.gov (United States)

    Gulia-Nuss, Monika; Nuss, Andrew B.; Meyer, Jason M.; Sonenshine, Daniel E.; Roe, R. Michael; Waterhouse, Robert M.; Sattelle, David B.; de la Fuente, José; Ribeiro, Jose M.; Megy, Karine; Thimmapuram, Jyothi; Miller, Jason R.; Walenz, Brian P.; Koren, Sergey; Hostetler, Jessica B.; Thiagarajan, Mathangi; Joardar, Vinita S.; Hannick, Linda I.; Bidwell, Shelby; Hammond, Martin P.; Young, Sarah; Zeng, Qiandong; Abrudan, Jenica L.; Almeida, Francisca C.; Ayllón, Nieves; Bhide, Ketaki; Bissinger, Brooke W.; Bonzon-Kulichenko, Elena; Buckingham, Steven D.; Caffrey, Daniel R.; Caimano, Melissa J.; Croset, Vincent; Driscoll, Timothy; Gilbert, Don; Gillespie, Joseph J.; Giraldo-Calderón, Gloria I.; Grabowski, Jeffrey M.; Jiang, David; Khalil, Sayed M. S.; Kim, Donghun; Kocan, Katherine M.; Koči, Juraj; Kuhn, Richard J.; Kurtti, Timothy J.; Lees, Kristin; Lang, Emma G.; Kennedy, Ryan C.; Kwon, Hyeogsun; Perera, Rushika; Qi, Yumin; Radolf, Justin D.; Sakamoto, Joyce M.; Sánchez-Gracia, Alejandro; Severo, Maiara S.; Silverman, Neal; Šimo, Ladislav; Tojo, Marta; Tornador, Cristian; Van Zee, Janice P.; Vázquez, Jesús; Vieira, Filipe G.; Villar, Margarita; Wespiser, Adam R.; Yang, Yunlong; Zhu, Jiwei; Arensburger, Peter; Pietrantonio, Patricia V.; Barker, Stephen C.; Shao, Renfu; Zdobnov, Evgeny M.; Hauser, Frank; Grimmelikhuijzen, Cornelis J. P.; Park, Yoonseong; Rozas, Julio; Benton, Richard; Pedra, Joao H. F.; Nelson, David R.; Unger, Maria F.; Tubio, Jose M. C.; Tu, Zhijian; Robertson, Hugh M.; Shumway, Martin; Sutton, Granger; Wortman, Jennifer R.; Lawson, Daniel; Wikel, Stephen K.; Nene, Vishvanath M.; Fraser, Claire M.; Collins, Frank H.; Birren, Bruce; Nelson, Karen E.; Caler, Elisabet; Hill, Catherine A.

    2016-01-01

    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent. PMID:26856261

  20. Established Population of Blacklegged Ticks with High Infection Prevalence for the Lyme Disease Bacterium, Borrelia burgdorferi Sensu Lato, on Corkscrew Island, Kenora District, Ontario

    Science.gov (United States)

    Scott, John D.; Foley, Janet E.; Clark, Kerry L.; Anderson, John F.; Durden, Lance A.; Manord, Jodi M.; Smith, Morgan L.

    2016-01-01

    We document an established population of blacklegged ticks, Ixodes scapularis, on Corkscrew Island, Kenora District, Ontario, Canada. Primers of the outer surface protein A (OspA) gene, the flagellin (fla) gene, and the flagellin B (flaB) gene were used in the PCR assays to detect Borrelia burgdorferi sensu lato (s.l.), the Lyme disease bacterium. In all, 60 (73%) of 82 adult I. scapularis, were infected with B. burgdorferi s.l. As well, 6 (43%) of 14 unfed I. scapularis nymphs were positive for B. burgdorferi s.l. An I. scapularis larva was also collected from a deer mouse, and several unfed larvae were gathered by flagging leaf litter. Based on DNA sequencing of randomly selected Borrelia amplicons from six nymphal and adult I. scapularis ticks, primers for the flagellin (fla) and flagellin B (flaB) genes reveal the presence of B. burgdorferi sensu stricto (s.s.), a genospecies pathogenic to humans and certain domestic animals. We collected all 3 host-feeding life stages of I. scapularis in a single year, and report the northernmost established population of I. scapularis in Ontario. Corkscrew Island is hyperendemic for Lyme disease and has the highest prevalence of B. burgdorferi s.l. for any established population in Canada. Because of this very high infection prevalence, this population of I. scapularis has likely been established for decades. Of epidemiological significance, cottage owners, island visitors, outdoors enthusiasts, and medical professionals must be vigilant that B. burgdorferi s.l.-infected I. scapularis on Corkscrew Island pose a serious public health risk. PMID:27877080

  1. Identification of Novel Viruses in Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis Ticks

    Science.gov (United States)

    Sameroff, Stephen; Tagliafierro, Teresa; Jain, Komal; Williams, Simon H.; Cucura, D. Moses; Rochlin, Ilia; Monzon, Javier; Carpi, Giovanna; Tufts, Danielle; Diuk-Wasser, Maria; Brinkerhoff, Jory; Lipkin, W. Ian

    2018-01-01

    ABSTRACT Ticks carry a wide range of known human and animal pathogens and are postulated to carry others with the potential to cause disease. Here we report a discovery effort wherein unbiased high-throughput sequencing was used to characterize the virome of 2,021 ticks, including Ixodes scapularis (n = 1,138), Amblyomma americanum (n = 720), and Dermacentor variabilis (n = 163), collected in New York, Connecticut, and Virginia in 2015 and 2016. We identified 33 viruses, including 24 putative novel viral species. The most frequently detected viruses were phylogenetically related to members of the Bunyaviridae and Rhabdoviridae families, as well as the recently proposed Chuviridae. Our work expands our understanding of tick viromes and underscores the high viral diversity that is present in ticks. IMPORTANCE The incidence of tick-borne disease is increasing, driven by rapid geographical expansion of ticks and the discovery of new tick-associated pathogens. The examination of the tick microbiome is essential in order to understand the relationship between microbes and their tick hosts and to facilitate the identification of new tick-borne pathogens. Genomic analyses using unbiased high-throughput sequencing platforms have proven valuable for investigations of tick bacterial diversity, but the examination of tick viromes has historically not been well explored. By performing a comprehensive virome analysis of the three primary tick species associated with human disease in the United States, we gained substantial insight into tick virome diversity and can begin to assess a potential role of these viruses in the tick life cycle. PMID:29564401

  2. The role of Ixodes scapularis, Borrelia burgdorferi and wildlife hosts in Lyme disease prevalence: A quantitative review.

    Science.gov (United States)

    Halsey, Samniqueka J; Allan, Brian F; Miller, James R

    2018-04-16

    Due to the ongoing expansion of Ixodes scapularis (blacklegged tick) throughout the northeastern and midwestern United States, there is need to identify the role wildlife hosts play in the establishment and maintenance of tick populations. To quantify and synthesize the patterns of I. scapularis and Borrelia burgdorferi sensu stricto and sensu lato prevalence relative to wildlife hosts, we reviewed the findings of independent studies conducted throughout the United States. We performed a comprehensive literature search from 1970 to 2017 using the ISS Web of Science Core Collection and the keywords "Ixodes scapularis," "Ixodes dammini" and "Borrelia burgdorferi." We identified 116 studies for inclusion in our meta-analysis, with 187,414 individual wildlife hosts captured and examined for I. scapularis and either the host or ticks collected subsequently tested for B. burgdorferi. We found that only 13% of the wildlife mammals sampled comprised species other than Odocoileus virginianus (white-tailed deer) and Peromyscus leucopus (white-footed mouse). To examine whether there were regional differences between the Northeast, Midwest and the Southeast U.S. in I. scapularis infestation rates on wildlife hosts, we used general linear models (glm), with post hoc pairwise comparisons. In most cases, detection of I. scapularis and B. burgdorferi was significantly higher in the Northeast than the Midwest. Using data on host-specific I. scapularis infestation prevalence, B. burgdorferi prevalence in feeding larvae, and host permissiveness, we developed an epizootiological model to determine the relative contributions of individual hosts to B. burgdorferi-infected nymphs. Our model provides additional evidence that wildlife hosts other than P. leucopus may contribute more to Lyme disease risk than commonly thought. To aid in understanding the ecology of Lyme disease, we propose that additional studies sample non-Peromyscus spp. hosts to obtain more detailed tick and pathogen

  3. Susceptibility of four tick species, Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis, and Rhipicephalus sanguineus (Acari: Ixodidae), to nootkatone from essential oil of grapefruit.

    Science.gov (United States)

    Flor-Weiler, Lina B; Behle, Robert W; Stafford, Kirby C

    2011-03-01

    Toxicity of nootkatone was determined in laboratory assays against unfed nymphs of Amblyomma americanum L., Dermacentor variabilis (Say), Ixodes scapularis Say, and Rhipicephalus sanguineus Latreille. We determined the 50% lethal concentration (LC50) and 90% lethal concentration (LC90) of nootkatone by recording tick mortality 24 h after exposure in treated glass vials. Nymphs were susceptible to nootkatone with LC50 values of 0.352, 0.233, 0.169, and 0.197 microg/cm2, and LC90 values of 1.001, 0.644, 0.549, and 0.485 microg/cm2 for A. americanum, D. variabilis, I. scapularis, and R. sanguineus, respectively. The LC50 value for R. sanquineus was not significantly different from D. variabilis or I. scapularis. Other LC50 comparisons were significantly different. The LC90 for A. americanum was higher when compared with the three other tick species, which were not significantly different. Because nootkatone is volatile, we measured the amount of nootkatone recovered from duplicate-treated vials before tick exposure and from vials after tick exposure. Nootkatone recovered from vials before exposure ranged from 82 to 112% of the expected amounts. The nootkatone recovered after the 24-h exposure period ranged from 89% from vials coated with higher concentrations of nootkatone, down to 29% from vials coated with low nootkatone concentrations. Determination of the nootkatone residue after vial coating demonstrated loss of the active compound while verifying the levels of tick exposure. Toxicity of low concentrations of nootkatone to the active questing stage of ticks reported in this study provides a reference point for future formulation research to exploit nootkatone as a safe and environment-friendly tick control.

  4. Using Landscape Analysis to Test Hypotheses about Drivers of Tick Abundance and Infection Prevalence with Borrelia burgdorferi.

    Science.gov (United States)

    Ferrell, A Michelle; Brinkerhoff, R Jory

    2018-04-12

    Patterns of vector-borne disease risk are changing globally in space and time and elevated disease risk of vector-borne infection can be driven by anthropogenic modification of the environment. Incidence of Lyme disease, caused by the bacterium Borrelia burgdorferi sensu stricto, has risen in a number of locations in North America and this increase may be driven by spatially or numerically expanding populations of the primary tick vector, Ixodes scapularis . We used a model selection approach to identify habitat fragmentation and land-use/land cover variables to test the hypothesis that the amount and configuration of forest cover at spatial scales relevant to deer, the primary hosts of adult ticks, would be the predominant determinants of tick abundance. We expected that land cover heterogeneity and amount of forest edge, a habitat thought to facilitate deer foraging and survival, would be the strongest driver of tick density and that larger spatial scales (5-10 km) would be more important than smaller scales (1 km). We generated metrics of deciduous and mixed forest fragmentation using Fragstats 4.4 implemented in ArcMap 10.3 and found, after adjusting for multicollinearity, that total forest edge within a 5 km buffer had a significant negative effect on tick density and that the proportion of forested land cover within a 10 km buffer was positively associated with density of I. scapularis nymphs. None of the 1 km fragmentation metrics were found to significantly improve the fit of the model. Elevation, previously associated with increased density of I. scapularis nymphs in Virginia, while significantly predictive in univariate analysis, was not an important driver of nymph density relative to fragmentation metrics. Our results suggest that amount of forest cover (i.e., lack of fragmentation) is the most important driver of I. scapularis density in our study system.

  5. Combining public participatory surveillance and occupancy modelling to predict the distributional response of Ixodes scapularis to climate change.

    Science.gov (United States)

    Lieske, David J; Lloyd, Vett K

    2018-03-01

    Ixodes scapularis, a known vector of Borrelia burgdorferi sensu stricto (Bbss), is undergoing range expansion in many parts of Canada. The province of New Brunswick, which borders jurisdictions with established populations of I. scapularis, constitutes a range expansion zone for this species. To better understand the current and potential future distribution of this tick under climate change projections, this study applied occupancy modelling to distributional records of adult ticks that successfully overwintered, obtained through passive surveillance. This study indicates that I. scapularis occurs throughout the southern-most portion of the province, in close proximity to coastlines and major waterways. Milder winter conditions, as indicated by the number of degree days model with a predictive accuracy of 0.845 (range: 0.828-0.893). Both RCP 4.5 and RCP 8.5 climate projections predict that a significant proportion of the province (roughly a quarter to a third) will be highly suitable for I. scapularis by the 2080s. Comparison with cases of canine infection show good spatial agreement with baseline model predictions, but the presence of canine Borrelia infections beyond the climate envelope, defined by the highest probabilities of tick occurrence, suggest the presence of Bbss-carrying ticks distributed by long-range dispersal events. This research demonstrates that predictive statistical modelling of multi-year surveillance information is an efficient way to identify areas where I. scapularis is most likely to occur, and can be used to guide subsequent active sampling efforts in order to better understand fine scale species distributional patterns. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. A three-dimensional comparison of tick-borne flavivirus infection in mammalian and tick cell lines.

    Directory of Open Access Journals (Sweden)

    Danielle K Offerdahl

    Full Text Available Tick-borne flaviviruses (TBFV are sustained in nature through cycling between mammalian and tick hosts. In this study, we used African green monkey kidney cells (Vero and Ixodes scapularis tick cells (ISE6 to compare virus-induced changes in mammalian and arthropod cells. Using confocal microscopy, transmission electron microscopy (TEM, and electron tomography (ET, we examined viral protein distribution and the ultrastructural changes that occur during TBFV infection. Within host cells, flaviviruses cause complex rearrangement of cellular membranes for the purpose of virus replication. Virus infection was accompanied by a marked expansion in endoplasmic reticulum (ER staining and markers for TBFV replication were localized mainly to the ER in both cell lines. TEM of Vero cells showed membrane-bound vesicles enclosed in a network of dilated, anastomosing ER cisternae. Virions were seen within the ER and were sometimes in paracrystalline arrays. Tubular structures or elongated vesicles were occasionally noted. In acutely and persistently infected ISE6 cells, membrane proliferation and vesicles were also noted; however, the extent of membrane expansion and the abundance of vesicles were lower and no viral particles were observed. Tubular profiles were far more prevalent in persistently infected ISE6 cells than in acutely infected cells. By ET, tubular profiles, in persistently infected tick cells, had a cross-sectional diameter of 60-100 nm, reached up to 800 nm in length, were closed at the ends, and were often arranged in fascicle-like bundles, shrouded with ER membrane. Our experiments provide analysis of viral protein localization within the context of both mammalian and arthropod cell lines as well as both acute and persistent arthropod cell infection. Additionally, we show for the first time 3D flavivirus infection in a vector cell line and the first ET of persistent flavivirus infection.

  7. To beat or not to beat a tick: comparison of DNA extraction methods for ticks (Ixodes scapularis

    Directory of Open Access Journals (Sweden)

    Alyssa D. Ammazzalorso

    2015-08-01

    Full Text Available Background. Blacklegged ticks (Ixodes scapularis are important disease vectors in the United States, known to transmit a variety of pathogens to humans, including bacteria, protozoa, and viruses. Their importance as a disease vector necessitates reliable and comparable methods for extracting microbial DNA from ticks. Furthermore, to explore the population genetics or genomics of this tick, appropriate DNA extraction techniques are needed for both the vector and its microbes. Although a few studies have investigated different methods of DNA isolation from ticks, they are limited in the number and types of DNA extraction and lack species-specific quantification of DNA yield.Methods. Here we determined the most efficient and consistent method of DNA extraction from two different developmental stages of I. scapularis—nymph and adult—that are the most important for disease transmission. We used various methods of physical disruption of the hard, chitinous exoskeleton, as well as commercial and non-commercial DNA isolation kits. To gauge the effectiveness of these methods, we quantified the DNA yield and confirmed the DNA quality via PCR of both tick and microbial genetic material.Results. DNA extraction using the Thermo GeneJET Genomic DNA Purification Kit resulted in the highest DNA yields and the most consistent PCR amplification when combined with either cutting or bead beating with select matrices across life stages. DNA isolation methods using ammonium hydroxide as well as the MoBio PowerSoil kit also produced strong and successful PCR amplification, but only for females.Discussion. We contrasted a variety of readily available methods of DNA extraction from single individual blacklegged ticks and presented the results through a quantitative and qualitative assessment.

  8. Survey of ticks (Acari: Ixodidae) and tick-borne pathogens in North Dakota.

    Science.gov (United States)

    Russart, Nathan M; Dougherty, Michael W; Vaughan, Jefferson A

    2014-09-01

    Ticks were sampled at nine locations throughout North Dakota during early summer of 2010, using flagging techniques and small mammals trapping. In total, 1,762 ticks were collected from eight of the nine locations. The dominant species were Dermacentor variabilis (Say) (82%), found throughout the state, and Ixodes scapularis Say (17%), found in northeastern counties. A few nymphal and adult I. scapularis tested positive for Borrelia burgdorferi (3%) and Anaplasma phagocytophilum (8%). This is the first report of I. scapularis and associated pathogens occurring in North Dakota and provides evidence for continued westward expansion of this important vector tick species in the United States.

  9. Detection of human bacterial pathogens in ticks collected from Louisiana black bears (Ursus americanus luteolus).

    Science.gov (United States)

    Leydet, Brian F; Liang, Fang-Ting

    2013-04-01

    There are 4 major human-biting tick species in the northeastern United States, which include: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. The black bear is a large mammal that has been shown to be parasitized by all the aforementioned ticks. We investigated the bacterial infections in ticks collected from Louisiana black bears (Ursus americanus subspecies luteolus). Eighty-six ticks were collected from 17 black bears in Louisiana from June 2010 to March 2011. All 4 common human-biting tick species were represented. Each tick was subjected to polymerase chain reaction (PCR) targeting select bacterial pathogens and symbionts. Bacterial DNA was detected in 62% of ticks (n=53). Rickettsia parkeri, the causative agent of an emerging spotted fever group rickettsiosis, was identified in 66% of A. maculatum, 28% of D. variabilis, and 11% of I. scapularis. The Lyme disease bacterium, Borrelia burgdorferi, was detected in 2 I. scapularis, while one A. americanum was positive for Borrelia bissettii, a putative human pathogen. The rickettsial endosymbionts Candidatus Rickettsia andeanae, rickettsial endosymbiont of I. scapularis, and Rickettsia amblyommii were detected in their common tick hosts at 21%, 39%, and 60%, respectively. All ticks were PCR-negative for Anaplasma phagocytophilum, Ehrlichia spp., and Babesia microti. This is the first reported detection of R. parkeri in vector ticks in Louisiana; we also report the novel association of R. parkeri with I. scapularis. Detection of both R. parkeri and B. burgdorferi in their respective vectors in Louisiana demands further investigation to determine potential for human exposure to these pathogens. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Defensins from the tick Ixodes scapularis are effective against phytopathogenic fungi and the human bacterial pathogen Listeria grayi

    Czech Academy of Sciences Publication Activity Database

    Tonk, Miray; Cabezas-Cruz, A.; Valdés, James J.; Rego, Ryan O. M.; Chrudimská, Tereza; Strnad, Martin; Šíma, Radek; Bell-Sakyi, L.; Franta, Z.; Vilcinskas, A.; Grubhoffer, Libor; Rahnamaeian, M.

    2014-01-01

    Roč. 7, DEC 3 2015 (2014), s. 554 ISSN 1756-3305 R&D Projects: GA ČR(CZ) GAP302/11/1901; GA MŠk(CZ) EE2.3.30.0032; GA ČR GP13-12816P Institutional support: RVO:60077344 Keywords : Antimicrobial peptide * Defensin * Listeria grayi * Fusarium spp * Ixodes scapularis * Tick cell line Subject RIV: EE - Microbiology, Virology Impact factor: 3.430, year: 2014

  11. Efficacy and environmental persistence of nootkatone for the control of the blacklegged tick, Ixodes scapularis (Acari: Ixodidae) in the residential landscape

    Science.gov (United States)

    We evaluated the ability of the plant-derived compound nootkatone to control nymphs of the blacklegged tick, Ixodes scapularis Say, applied to the perimeter of lawns around homes in Lyme disease endemic areas of Connecticut. Three formulations of nootkatone ranging from 0.05 to 0.84% (0.06 to 1.03 g...

  12. Anaplasma phagocytophilum and Anaplasma marginale Elicit Different Gene Expression Responses in Cultured Tick Cells

    Directory of Open Access Journals (Sweden)

    Zorica Zivkovic

    2009-01-01

    Full Text Available The genus Anaplasma (Rickettsiales: Anaplasmataceae includes obligate tick-transmitted intracellular organisms, Anaplasma phagocytophilum and Anaplasma marginale that multiply in both vertebrate and tick host cells. Recently, we showed that A. marginale affects the expression of tick genes that are involved in tick survival and pathogen infection and multiplication. However, the gene expression profile in A. phagocytophilum-infected tick cells is currently poorly characterized. The objectives of this study were to characterize tick gene expression profile in Ixodes scapularis ticks and cultured ISE6 cells in response to infection with A. phagocypthilum and to compare tick gene expression responses in A. phagocytophilum- and A. marginale-infected tick cells by microarray and real-time RT-PCR analyses. The results of these studies demonstrated modulation of tick gene expression by A. phagocytophilum and provided evidence of different gene expression responses in tick cells infected with A. phagocytophilum and A. marginale. These differences in Anaplasma-tick interactions may reflect differences in pathogen life cycle in the tick cells.

  13. Ticks and tick-borne pathogens and putative symbionts of black bears (Ursus americanus floridanus) from Georgia and Florida.

    Science.gov (United States)

    Yabsley, Michael J; Nims, Todd N; Savage, Mason Y; Durden, Lance A

    2009-10-01

    Ticks were collected from 38 black bears (Ursus americanus floridanus) from northwestern Florida (n = 18) from 2003 to 2005 and southern Georgia (n = 20) in 2006. Five species (Amblyomma americanum, A. maculatum, Dermacentor variabilis, Ixodes scapularis, and I. affinis) were collected from Florida bears, and 4 species (A. americanum, A. maculatum, D. variabilis, I. scapularis) were collected from bears in Georgia. Ixodes scapularis was the most frequently collected tick, followed by D. variabilis, A. americanum, A. maculatum, and I. affinis. The collection of I. affinis from a Florida bear represents a new host record. A subset of ticks was screened for pathogens and putative symbionts by polymerase chain reaction (PCR). The zoonotic tick-borne pathogens Ehrlichia chaffeensis and Rickettsia parkeri were detected in 1 of 23 (4.3%) A. americanum and 1 of 12 (8.3%) A. maculatum, respectively. The putative zoonotic pathogen "Rickettsia amblyommii" was detected in 4 (17.4%) A. americanum and 1 (8.3%) A. maculatum. Other putative symbiotic rickettsiae detected included R. bellii and R. montanensis in D. variabilis, a Rickettsia cooleyi-like sp. and Rickettsia sp. Is-1 in I. scapularis, and Rickettsia TR39-like sp. in I. scapularis and A. americanum. All ticks were PCR-negative for Anaplasma phagocytophilum, Panola Mountain Ehrlichia sp., E. ewingii, Francisella tularensis, and Borrelia spp.

  14. Efficacy of sarolaner in the prevention of Borrelia burgdorferi and Anaplasma phagocytophilum transmission from infected Ixodes scapularis to dogs.

    Science.gov (United States)

    Honsberger, Nicole A; Six, Robert H; Heinz, Thomas J; Weber, Angela; Mahabir, Sean P; Berg, Thomas C

    2016-05-30

    The efficacy of sarolaner (Simparica™, Zoetis) to prevent transmission primarily of Borrelia burgdorferi and secondarily of Anaplasma phagocytophilum from infected wild-caught Ixodes scapularis to dogs was evaluated in a placebo-controlled laboratory study. Twenty-four purpose-bred laboratory Beagles seronegative for B. burgdorferi and A. phagocytophilum antibodies were allocated randomly to one of three treatment groups: placebo administered orally on Days 0 and 7, or sarolaner at 2mg/kg administered orally on Day 0 (28 days prior to tick infestation) or on Day 7 (21 days prior to tick infestation). On Day 28, each dog was infested with approximately 25 female and 25 male wild caught adult I. scapularis that were determined to have prevalence of 57% for B. burgdorferi and 6.7% for A. phagocytophilum by PCR. In situ tick counts were conducted on Days 29 and 30. On Day 33, all ticks were counted and removed. Acaricidal efficacy was calculated based on the reduction of geometric mean live tick counts in the sarolaner-treated groups compared to the placebo-treated group for each tick count. Blood samples collected from each dog on Days 27, 49, 63, 77, 91 and 104 were tested for the presence of B. burgdorferi and A. phagocytophilum antibodies using the SNAP(®) 4Dx(®) Plus Test, and quantitatively assayed for B. burgdorferi antibodies using an ELISA test. Skin biopsies collected on Day 104 were tested for the presence of B. burgdorferi by bacterial culture and PCR. Geometric mean live tick counts for placebo-treated dogs were 14.8, 12.8, and 19.1 on Days 29, 30, and 33, respectively. The percent reductions in mean live tick counts at 1, 2, and 5 days after infestation were 86.3%, 100%, and 100% for the group treated with sarolaner 21 days prior to infestation, and 90.9%, 97.1%, and 100% for the group treated with sarolaner 28 days prior to infestation. Geometric mean live tick counts for both sarolaner-treated groups were significantly lower than those for the

  15. Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis

    Czech Academy of Sciences Publication Activity Database

    Cabezas Cruz, Alejandro; Alberdi, P.; Valdés, James J.; Villar, M.; de la Fuente, J.

    2017-01-01

    Roč. 7, 7 February (2017), č. článku 23. ISSN 2235-2988 EU Projects: European Commission(XE) 278976 - ANTIGONE Institutional support: RVO:60077344 Keywords : proteomics * transcriptomics * glucose metabolism * Ixodes scapularis * Anaplasma phagocytophilum Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 4.300, year: 2016

  16. Managing Japanese barberry (Ranunculales: Berberidaceae) infestations reduces blacklegged tick (Acari: Ixodidae) abundance and infection prevalence with Borrelia burgdorferi (Spirochaetales: Spirochaetaceae).

    Science.gov (United States)

    Williams, Scott C; Ward, Jeffrey S; Worthley, Thomas E; Stafford, Kirby C

    2009-08-01

    In many Connecticut forests with an overabundance of white-tailed deer (Odocoileus virginianus Zimmermann), Japanese barberry (Berberis thunbergii DC) has become the dominant understory shrub, which may provide a habitat favorable to blacklegged tick (Ixodes scapularis Say) and white-footed mouse (Peromyscus leucopus Rafinesque) survival. To determine mouse and larval tick abundances at three replicate sites over 2 yr, mice were trapped in unmanipulated dense barberry infestations, areas where barberry was controlled, and areas where barberry was absent. The number of feeding larval ticks/mouse was recorded. Adult and nymphal ticks were sampled along 200-m draglines in each treatment, retained, and were tested for Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner) presence. Total first-captured mouse counts did not differ between treatments. Mean number of feeding larval ticks per mouse was highest on mice captured in dense barberry. Adult tick densities in dense barberry were higher than in both controlled barberry and no barberry areas. Ticks sampled from full barberry infestations and controlled barberry areas had similar infection prevalence with B. burgdorferi the first year. In areas where barberry was controlled, infection prevalence was reduced to equal that of no barberry areas the second year of the study. Results indicate that managing Japanese barberry will have a positive effect on public health by reducing the number of B. burgdorferi-infected blacklegged ticks that can develop into motile life stages that commonly feed on humans.

  17. Assessment of decorin-binding protein A to the infectivity of Borrelia burgdorferi in the murine models of needle and tick infection

    Directory of Open Access Journals (Sweden)

    Hagman Kayla E

    2008-05-01

    Full Text Available Abstract Background Decorin-binding proteins (Dbps A and B of Borrelia burgdorferi, the agent of Lyme disease, are surface-exposed lipoproteins that presumably bind to the extracellular matrix proteoglycan, decorin. B. burgdorferi infects various tissues including the bladder, heart, joints, skin and the central nervous system, and the ability of B. burgdorferi to bind decorin has been hypothesized to be important for this disseminatory pathogenic strategy. Results To determine the role of DbpBA in the infectious lifecycle of B. burgdorferi, we created a DbpBA-deficient mutant of B. burgdorferi strain 297 and compared the infectious phenotype of the mutant to the wild-type strain in the experimental murine model of Lyme borreliosis. The mutant strain exhibited a 4-log decrease in infectivity, relative to the wild-type strain, when needle inoculated into mice. Upon complementation of the DbpBA-mutant strain with DbpA, the wild-type level of infectivity was restored. In addition, we demonstrated that the DbpBA-deficient mutant was able to colonize Ixodes scapularis larval ticks after feeding on infected mice and persist within the ticks during the molt to the nymphal state. Moreover, surprisingly, the DbpBA-mutant strain was capable of being transmitted to naïve mice via tick bite, giving rise to infected mice. Conclusion These results suggest that DbpBA is not required for the natural tick-transmission process to mammals, despite inferences from needle-inoculation experiments implying a requirement for DbpBA during mammalian infection. The combined findings also send a cautionary note regarding how results from needle-inoculation experiments with mice should be interpreted.

  18. Modeling the geographic distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the contiguous United States

    Science.gov (United States)

    Hahn, Micah; Jarnevich, Catherine S.; Monaghan, Andrew J.; Eisen, Rebecca J.

    2016-01-01

    In addition to serving as vectors of several other human pathogens, the black-legged tick, Ixodes scapularis Say, and western black-legged tick, Ixodes pacificus Cooley and Kohls, are the primary vectors of the spirochete (Borrelia burgdorferi ) that causes Lyme disease, the most common vector-borne disease in the United States. Over the past two decades, the geographic range of I. pacificus has changed modestly while, in contrast, the I. scapularis range has expanded substantially, which likely contributes to the concurrent expansion in the distribution of human Lyme disease cases in the Northeastern, North-Central and Mid-Atlantic states. Identifying counties that contain suitable habitat for these ticks that have not yet reported established vector populations can aid in targeting limited vector surveillance resources to areas where tick invasion and potential human risk are likely to occur. We used county-level vector distribution information and ensemble modeling to map the potential distribution of I. scapularis and I. pacificus in the contiguous United States as a function of climate, elevation, and forest cover. Results show that I. pacificus is currently present within much of the range classified by our model as suitable for establishment. In contrast, environmental conditions are suitable for I. scapularis to continue expanding its range into northwestern Minnesota, central and northern Michigan, within the Ohio River Valley, and inland from the southeastern and Gulf coasts. Overall, our ensemble models show suitable habitat for I. scapularis in 441 eastern counties and for I. pacificus in 11 western counties where surveillance records have not yet supported classification of the counties as established.

  19. Variation in the Microbiota of Ixodes Ticks with Regard to Geography, Species, and Sex.

    Science.gov (United States)

    Van Treuren, Will; Ponnusamy, Loganathan; Brinkerhoff, R Jory; Gonzalez, Antonio; Parobek, Christian M; Juliano, Jonathan J; Andreadis, Theodore G; Falco, Richard C; Ziegler, Lorenza Beati; Hathaway, Nicholas; Keeler, Corinna; Emch, Michael; Bailey, Jeffrey A; Roe, R Michael; Apperson, Charles S; Knight, Rob; Meshnick, Steven R

    2015-09-01

    Ixodes scapularis is the principal vector of Lyme disease on the East Coast and in the upper Midwest regions of the United States, yet the tick is also present in the Southeast, where Lyme disease is absent or rare. A closely related species, I. affinis, also carries the pathogen in the South but does not seem to transmit it to humans. In order to better understand the geographic diversity of the tick, we analyzed the microbiota of 104 adult I. scapularis and 13 adult I. affinis ticks captured in 19 locations in South Carolina, North Carolina, Virginia, Connecticut, and New York. Initially, ticks from 4 sites were analyzed by 454 pyrosequencing. Subsequently, ticks from these sites plus 15 others were analyzed by sequencing with an Illumina MiSeq machine. By both analyses, the microbiomes of female ticks were significantly less diverse than those of male ticks. The dissimilarity between tick microbiomes increased with distance between sites, and the state in which a tick was collected could be inferred from its microbiota. The genus Rickettsia was prominent in all locations. Borrelia was also present in most locations and was present at especially high levels in one site in western Virginia. In contrast, members of the family Enterobacteriaceae were very common in North Carolina I. scapularis ticks but uncommon in I. scapularis ticks from other sites and in North Carolina I. affinis ticks. These data suggest substantial variations in the Ixodes microbiota in association with geography, species, and sex. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Variation in the Microbiota of Ixodes Ticks with Regard to Geography, Species, and Sex

    Science.gov (United States)

    Van Treuren, Will; Ponnusamy, Loganathan; Brinkerhoff, R. Jory; Gonzalez, Antonio; Parobek, Christian M.; Juliano, Jonathan J.; Andreadis, Theodore G.; Falco, Richard C.; Ziegler, Lorenza Beati; Hathaway, Nicholas; Keeler, Corinna; Emch, Michael; Bailey, Jeffrey A.; Roe, R. Michael; Apperson, Charles S.; Knight, Rob

    2015-01-01

    Ixodes scapularis is the principal vector of Lyme disease on the East Coast and in the upper Midwest regions of the United States, yet the tick is also present in the Southeast, where Lyme disease is absent or rare. A closely related species, I. affinis, also carries the pathogen in the South but does not seem to transmit it to humans. In order to better understand the geographic diversity of the tick, we analyzed the microbiota of 104 adult I. scapularis and 13 adult I. affinis ticks captured in 19 locations in South Carolina, North Carolina, Virginia, Connecticut, and New York. Initially, ticks from 4 sites were analyzed by 454 pyrosequencing. Subsequently, ticks from these sites plus 15 others were analyzed by sequencing with an Illumina MiSeq machine. By both analyses, the microbiomes of female ticks were significantly less diverse than those of male ticks. The dissimilarity between tick microbiomes increased with distance between sites, and the state in which a tick was collected could be inferred from its microbiota. The genus Rickettsia was prominent in all locations. Borrelia was also present in most locations and was present at especially high levels in one site in western Virginia. In contrast, members of the family Enterobacteriaceae were very common in North Carolina I. scapularis ticks but uncommon in I. scapularis ticks from other sites and in North Carolina I. affinis ticks. These data suggest substantial variations in the Ixodes microbiota in association with geography, species, and sex. PMID:26150449

  1. An Assessment for the Presence of Powassan Virus in Ixodes scapularis Nymphs from Locations in Virginia, Maryland, New Jersey, Pennsylvania, New York, and Connecticut

    Science.gov (United States)

    2013-03-21

    1214-7 46. Kislenko GS, Chunikhin SP, Rasnitsyn SP, Kurenkov VB, Izotov VK. 1982. [Reproduction of Powassan and West Nile viruses in Aedes aegypti ...Ixodes scapularis (Say 1821), an aggressive tick that readily bites humans. This study collected I. scapularis from sites along the U.S. East Coast...68 Appendix 3: Sampling times and collection rates (Ticks

  2. The phenology of ticks and the effects of long-term prescribed burning on tick population dynamics in southwestern Georgia and northwestern Florida.

    Science.gov (United States)

    Gleim, Elizabeth R; Conner, L Mike; Berghaus, Roy D; Levin, Michael L; Zemtsova, Galina E; Yabsley, Michael J

    2014-01-01

    Some tick populations have increased dramatically in the past several decades leading to an increase in the incidence and emergence of tick-borne diseases. Management strategies that can effectively reduce tick populations while better understanding regional tick phenology is needed. One promising management strategy is prescribed burning. However, the efficacy of prescribed burning as a mechanism for tick control is unclear because past studies have provided conflicting data, likely due to a failure of some studies to simulate operational management scenarios and/or account for other predictors of tick abundance. Therefore, our study was conducted to increase knowledge of tick population dynamics relative to long-term prescribed fire management. Furthermore, we targeted a region, southwestern Georgia and northwestern Florida (USA), in which little is known regarding tick dynamics so that basic phenology could be determined. Twenty-one plots with varying burn regimes (burned surrounded by burned [BB], burned surrounded by unburned [BUB], unburned surrounded by burned [UBB], and unburned surrounded by unburned [UBUB]) were sampled monthly for two years while simultaneously collecting data on variables that can affect tick abundance (e.g., host abundance, vegetation structure, and micro- and macro-climatic conditions). In total, 47,185 ticks were collected, of which, 99% were Amblyomma americanum, 0.7% were Ixodes scapularis, and fewer numbers of Amblyomma maculatum, Ixodes brunneus, and Dermacentor variabilis. Monthly seasonality trends were similar between 2010 and 2011. Long-term prescribed burning consistently and significantly reduced tick counts (overall and specifically for A. americanum and I. scapularis) regardless of the burn regimes and variables evaluated. Tick species composition varied according to burn regime with A. americanum dominating at UBUB, A. maculatum at BB, I. scapularis at UBB, and a more even composition at BUB. These data indicate that

  3. Molecular biology of tick Acetylcholinesterases – a minireview

    Science.gov (United States)

    Ticks are important hematophagous arthropod ectoparasites and like mosquitoes, are vectors for a wide variety of human and animal pathogens. Ticks have significant world-wide health and economic impacts. In the U.S., major impacts include the ability of the blacklegged tick, Ixodes scapularis, to tr...

  4. Preliminary survey for entomopathogenic fungi associated with Ixodes scapularis>/i> (Acari: Ixodidae) in southern New York and New England, USA

    Science.gov (United States)

    Zhioua, Elyes; Ginsberg, Howard S.; Humber, Richard A.; LeBrun, Roger A.

    1999-01-01

    Free-living larval, nymphal, and adult Ixodes scapularis Say were collected from scattered locales in southern New England and New York to determine infection rates with entomopathogenic fungi. Infection rates of larvae, nymphs, males, and females were 0% (571), 0% (272), 0% (57), and 4.3% (47), respectively. Two entomopathogenic fungi were isolated from field-collected I. scapularis females from Fire Island, NY. Isolates were identified as Verticillium lecanii (Zimmermann) Viegas and Verticillium sp. (a member of the Verticillium lecanii species complex).Ixodes scapularis Say is the principal vector of Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner (Burgdorfer et al. 1982, Johnson et al. 1984), the etiologic agent of Lyme disease in the northeastern and upper-midwestern United States. Control of I. scapularis is based on chemical treatment (Mather et al. 1987b; Schulze et al. 1987, 1991), environmental management (Wilson et al. 1988, Schulze et al. 1995), and habitat modification (Wilson 1986). These methods have shown variable success, and some potentially have negative environmental effects (Wilson and Deblinger 1993, Ginsberg 1994).Studies concerning natural predators, parasitoids, and pathogens of I. scapularis are rare. The use of ground-dwelling birds as tick predators has had only limited success (Duffy et al. 1992). Nymphal I. scapularis are often infected with the parasitic wasp Ixodiphagus hookeri (Howard) (Mather et al. 1987a, Hu et al. 1993, Stafford et al. 1996, Hu and Hyland 1997), but this wasp does not effectively control I. scapularis populations (Stafford et al. 1996). The entomopathogenic nematodes Steinernema carpocapsae (Weiser) and S. glaseri (Steiner) are pathogenic only to engorged female I. scapularis, and thus have limited applicability (Zhioua et al. 1995). In contrast, the entomogenous fungus Metarhizium anisopliae (Metschnikoff) Sorokin is highly pathogenic to all stages of I. scapularis, unfed as well as engorged

  5. Ixodes scapularis Tick Cells Control Anaplasma phagocytophilum Infection by Increasing the Synthesis of Phosphoenolpyruvate from Tyrosine

    Czech Academy of Sciences Publication Activity Database

    Cabezas Cruz, Alejandro; Espinosa, P. J.; Obregon, D. A.; Alberdi, P.; de la Fuente, J.

    2017-01-01

    Roč. 7, AUG 17 (2017), č. článku 375. ISSN 2235-2988 Institutional support: RVO:60077344 Keywords : proteomics * transcriptomics * phosphoenolpyruvate * glycerol-3-phosphate * Ixodes scapularis * Anaplasma phagocytophilum Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.300, year: 2016

  6. Characterization of Ixophilin, a thrombin inhibitor from the gut of Ixodes scapularis.

    Directory of Open Access Journals (Sweden)

    Sukanya Narasimhan

    Full Text Available Ixodes scapularis, the black-legged tick, vectors several human pathogens including Borrelia burgdorferi, the agent of Lyme disease in North America. Pathogen transmission to the vertebrate host occurs when infected ticks feed on the mammalian host to obtain a blood meal. Efforts to understand how the tick confronts host hemostatic mechanisms and imbibes a fluid blood meal have largely focused on the anticoagulation strategies of tick saliva. The blood meal that enters the tick gut remains in a fluid state for several days during the process of feeding, and the role of the tick gut in maintaining the blood-meal fluid is not understood. We now demonstrate that the tick gut produces a potent inhibitor of thrombin, a key enzyme in the mammalian coagulation cascade. Chromatographic fractionation of engorged tick gut proteins identified one predominant thrombin inhibitory activity associated with an approximately 18 kDa protein, henceforth referred to as Ixophilin. The ixophilin gene was preferentially transcribed in the guts of feeding nymphs. Expression began after 24 hours of feeding, coincident with the flow of host blood into the tick gut. Immunity against Ixophilin delayed tick feeding, and decreased feeding efficiency significantly. Surprisingly, immunity against Ixophilin resulted in increased Borrelia burgdorferi transmission to the host, possibly due to delayed feeding and increased transmission opportunity. These observations illuminate the potential drawbacks of targeting individual tick proteins in a functional suite. They also underscore the need to identify the "anticoagulome" of the tick gut, and to prioritize a critical subset of anticoagulants that could be targeted to efficiently thwart tick feeding, and block pathogen transmission to the vertebrate host.

  7. The phenology of ticks and the effects of long-term prescribed burning on tick population dynamics in southwestern Georgia and northwestern Florida.

    Directory of Open Access Journals (Sweden)

    Elizabeth R Gleim

    Full Text Available Some tick populations have increased dramatically in the past several decades leading to an increase in the incidence and emergence of tick-borne diseases. Management strategies that can effectively reduce tick populations while better understanding regional tick phenology is needed. One promising management strategy is prescribed burning. However, the efficacy of prescribed burning as a mechanism for tick control is unclear because past studies have provided conflicting data, likely due to a failure of some studies to simulate operational management scenarios and/or account for other predictors of tick abundance. Therefore, our study was conducted to increase knowledge of tick population dynamics relative to long-term prescribed fire management. Furthermore, we targeted a region, southwestern Georgia and northwestern Florida (USA, in which little is known regarding tick dynamics so that basic phenology could be determined. Twenty-one plots with varying burn regimes (burned surrounded by burned [BB], burned surrounded by unburned [BUB], unburned surrounded by burned [UBB], and unburned surrounded by unburned [UBUB] were sampled monthly for two years while simultaneously collecting data on variables that can affect tick abundance (e.g., host abundance, vegetation structure, and micro- and macro-climatic conditions. In total, 47,185 ticks were collected, of which, 99% were Amblyomma americanum, 0.7% were Ixodes scapularis, and fewer numbers of Amblyomma maculatum, Ixodes brunneus, and Dermacentor variabilis. Monthly seasonality trends were similar between 2010 and 2011. Long-term prescribed burning consistently and significantly reduced tick counts (overall and specifically for A. americanum and I. scapularis regardless of the burn regimes and variables evaluated. Tick species composition varied according to burn regime with A. americanum dominating at UBUB, A. maculatum at BB, I. scapularis at UBB, and a more even composition at BUB. These data

  8. Experimental use of two standard tick collection methods to evaluate the relative effectiveness of several plant-derived and synthetic repellents against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae).

    Science.gov (United States)

    Schulze, Terry L; Jordan, Robert A; Dolan, Marc C

    2011-12-01

    We used two standard tick collection methods to test the relative effectiveness of two natural product compounds (nootkatone and carvacrol, classified as an eremophilene sesquiterpene and a monoterpene, respectively, that are derived from botanical sources) with commercially-available plant-derived (EcoSMART Organic Insect Repellent, comprised of plant essential oils) and permethrin-based (Repel Permanone) repellents against Ixodes scapularis Say and Amblyomma americanum (L.). Cloth drags were equally effective in sampling both species of host-seeking nymphs, whereas CO, traps attracted primarily A. americanum. All four repellents performed well on drags, with nootkatone and Permanone Repel (100% repelled through 14 d) slightly more effective than carvacrol and EcoSMART (90.7% and 97.7% repelled at 14 d, respectively) at repelling I. scapularis nymphs. Although the same trend in percent repellency was noted in the CO2 trap trial against both A. americanum nymphs and adults, EcoSMART outperformed Permanone in repelling A. Americanum nymphs after 14 d in the drag trial. Generally, the effectiveness of all repellents tested declined over time. The use of tick drags and CO2 traps was rapid, inexpensive, and easy to use in determining the relative effectiveness of repellents in the field.

  9. Survey of Borreliae in ticks, canines, and white-tailed deer from Arkansas, U.S.A.

    Directory of Open Access Journals (Sweden)

    Fryxell Rebecca T

    2012-07-01

    Full Text Available Abstract Background In the Eastern and Upper Midwestern regions of North America, Ixodes scapularis (L. is the most abundant tick species encountered by humans and the primary vector of B. burgdorferi, whereas in the southeastern region Amblyomma americanum (Say is the most abundant tick species encountered by humans but cannot transmit B. burgdorferi. Surveys of Borreliae in ticks have been conducted in the southeastern United States and often these surveys identify B. lonestari as the primary Borrelia species, surveys have not included Arkansas ticks, canines, or white-tailed deer and B. lonestari is not considered pathogenic. The objective of this study was to identify Borrelia species within Arkansas by screening ticks (n = 2123, canines (n = 173, and white-tailed deer (n = 228 to determine the identity and locations of Borreliae endemic to Arkansas using PCR amplification of the flagellin (flaB gene. Methods Field collected ticks from canines and from hunter-killed white-tailed were identified to species and life stage. After which, ticks and their hosts were screened for the presence of Borrelia using PCR to amplify the flaB gene. A subset of the positive samples was confirmed with bidirectional sequencing. Results In total 53 (21.2% white-tailed deer, ten (6% canines, and 583 (27.5% Ixodid ticks (252 Ixodes scapularis, 161 A. americanum, 88 Rhipicephalus sanguineus, 50 Amblyomma maculatum, 19 Dermacentor variabilis, and 13 unidentified Amblyomma species produced a Borrelia flaB amplicon. Of the positive ticks, 324 (22.7% were collected from canines (151 A. americanum, 78 R. sanguineus, 43 I. scapularis, 26 A. maculatum, 18 D. variabilis, and 8 Amblyomma species and 259 (37.2% were collected from white-tailed deer (209 I. scapularis, 24 A. maculatum, 10 A. americanum, 10 R. sanguineus, 1 D. variabilis, and 5 Amblyomma species. None of the larvae were PCR positive. A majority of the flaB amplicons were homologous with B

  10. Ixodes scapularis saliva mitigates inflammatory cytokine secretion during Anaplasma phagocytophilum stimulation of immune cells

    Czech Academy of Sciences Publication Activity Database

    Chen, G.; Severo, M. S.; Sohail, M.; Sakhon, O. S.; Wikel, S. K.; Kotsyfakis, Michalis; Pedra, J. H. F.

    2012-01-01

    Roč. 5, č. 1 (2012), s. 229 ISSN 1756-3305 Institutional support: RVO:60077344 Keywords : Tick * Ixodes scapularis * Saliva * Anaplasma phagocytophilum * Rickettsial agent Subject RIV: EC - Immunology Impact factor: 3.246, year: 2012 http://www.parasitesandvectors.com/content/5/1/229

  11. Effects of Japanese barberry (Ranunculales: Berberidaceae) removal and resulting microclimatic changes on Ixodes scapularis (Acari: Ixodidae) abundances in Connecticut, USA.

    Science.gov (United States)

    Williams, Scott C; Ward, Jeffrey S

    2010-12-01

    Japanese barberry (Berberis thunbergii de Candolle) is a thorny, perennial, exotic, invasive shrub that is well established throughout much of the eastern United States. It can form dense thickets that limit native herbaceous and woody regeneration, alter soil structure and function, and harbor increased blacklegged tick (Ixodes scapularis Say) populations. This study examined a potential causal mechanism for the link between Japanese barberry and blacklegged ticks to determine if eliminating Japanese barberry could reduce tick abundance and associated prevalence of Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner). Japanese barberry was controlled at five study areas throughout Connecticut; adult ticks were sampled over three years. Each area had three habitat plots: areas where barberry was controlled, areas where barberry remained intact, and areas where barberry was minimal or absent. Sampled ticks were retained and tested for B. burgdorferi presence. At two study areas, temperature and relative humidity data loggers were deployed in each of the three habitat plots over two growing seasons. Intact barberry stands had 280 ± 51 B. burgdorferi-infected adult ticks/ha, which was significantly higher than for controlled (121 ± 17/ha) and no barberry (30 ± 10/ha) areas. Microclimatic conditions where Japanese barberry was controlled were similar to areas without barberry. Japanese barberry infestations are favorable habitat for ticks, as they provide a buffered microclimate that limits desiccation-induced tick mortality. Control of Japanese barberry reduced the number of ticks infected with B. burgdorferi by nearly 60% by reverting microclimatic conditions to those more typical of native northeastern forests. © 2010 Entomological Society of America

  12. Evaluation of the United States Department of Agriculture Northeast Area-Wide Tick Control Project by Meta-Analysis

    Science.gov (United States)

    Brei, Brandon; George, John E.; Pound, J. Mathews; Miller, J. Allen; Daniels, Thomas J.; Falco, Richard C.; Stafford, Kirby C.; Schulze, Terry L.; Mather, Thomas N.; Carroll, John F.; Fish, Durland

    2009-01-01

    Abstract As part of the Northeast Area-wide Tick Control Project (NEATCP), meta-analyses were performed using pooled data on the extent of tick-vector control achieved through seven concurrent studies, conducted within five states, using U.S. Department of Agriculture “4-Poster” devices to deliver targeted-acaricide to white-tailed deer. Although reductions in the abundance of all life-stages of Ixodes scapularis were the measured outcomes, this study focused on metrics associated with I. scapularis nymphal tick densities as this measure has consistently proven to directly correlate with human risk of acquiring Lyme disease. Since independent tick sampling schemes were undertaken at each of the five environmentally distinct study locations, a meta-analytic approach permitted estimation of a single true control-effect size for each treatment year of the NEATCP. The control-effect is expressed as the annual percent I. scapularis nymphal control most consistent with meta-analysis data for each treatment year. Our meta-analyses indicate that by the sixth treatment year, the NEATCP effectively reduced the relative density of I. scapularis nymphs by 71% on the 5.14 km2 treatment sites, corresponding to a 71% lower relative entomologic risk index for acquiring Lyme disease. PMID:19650737

  13. The crystal structures of two salivary cystatins from the tick Ixodes scapularis and the effect of these inhibitors on the establishment of Borrelia burgdorferi infection in a murine model

    Energy Technology Data Exchange (ETDEWEB)

    Kotsyfakis, Michalis; Horka, Helena; Salat, Jiri; Andersen, John F. (South Bohemia); (ASCR-ICP); (NIAID)

    2010-11-17

    We have previously demonstrated that two salivary cysteine protease inhibitors from the Borrelia burgdorferi (Lyme disease) vector Ixodes scapularis - namely sialostatins L and L2 - play an important role in tick biology, as demonstrated by the fact that silencing of both sialostatins in tandem results in severe feeding defects. Here we show that sialostatin L2 - but not sialostatin L - facilitates the growth of B. burgdorferi in murine skin. To examine the structural basis underlying these differential effects of the two sialostatins, we have determined the crystal structures of both sialostatin L and L2. This is the first structural analysis of cystatins from an invertebrate source. Sialostatin L2 crystallizes as a monomer with an 'unusual' conformation of the N-terminus, while sialostatin L crystallizes as a domain-swapped dimer with an N-terminal conformation similar to other cystatins. Deletion of the 'unusual' N-terminal five residues of sialostatin L2 results in marked changes in its selectivity, suggesting that this region is a particularly important determinant of the biochemical activity of sialostatin L2. Collectively, our results reveal the structure of two tick salivary components that facilitate vector blood feeding and that one of them also supports pathogen transmission to the vertebrate host.

  14. Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis

    Czech Academy of Sciences Publication Activity Database

    Weisheit, S.; Villar, M.; Tykalová, Hana; Popara, M.; Loecherbach, J.; Watson, M.; Růžek, Daniel; Grubhoffer, Libor; de la Fuente, J.; Fazakerley, J.K.; Bell-Sakyi, L.

    2015-01-01

    Roč. 8, NOV 18 2015 (2015), s. 599 ISSN 1756-3305 R&D Projects: GA ČR GA15-03044S; GA ČR GAP502/11/2116 EU Projects: European Commission(XE) 238511 Institutional support: RVO:60077344 Keywords : tisk * Ixodes * flavivirus * tick-borne encephalitis virus * tick cell line * innate immunity * antiviral response Subject RIV: EE - Microbiology, Virology Impact factor: 3.234, year: 2015

  15. Potential of Tenebrio molitor (Coleoptera: Tenebrionidae) as a bioassay probe for Metarhizium brunneum (Hypocreales: Clavicipitaceae) activity against Ixodes scapularis (Acari: Ixodidae).

    Science.gov (United States)

    Bharadwaj, Anuja; Stafford, Kirby C

    2011-12-01

    The yellow mealworm, Tenebrio molitor L., has been used to indicate qualitatively the presence of entomopathogenic fungi in the soil or as a model for evaluating stress and other factors on fungal activity. Although this beetle appears highly susceptible to many of these fungi, little quantitative information is available on the sensitivity of T. molitor to a specific fungus and, therefore, fungal presence or as an indicator for pathogenicity to other species. The purpose of this study was to establish the suitability of T. molitor larvae as a bioassay probe for Metarhizium brunneum for comparison against the blacklegged tick, Ixodes scapularis. Nine concentrations of M. brunneum strain F52 ranging from 1.0 x 10(1) to 8.4 x 10(8) conidial/ml were simultaneously tested against T. molitor larvae and I. scapularis adults. Larvae of yellow mealworm were less sensitive to M. brunneum than I. scapularis adults (LC50's 4.4 x 10(7) and 1.7 x 10(5) conidia/ml, respectively, 4-wk post-treatment). The greater sensitivity of I. scapularis to the fungus suggests that the detection of fungal mycosis in mealworms would indicate sufficient inoculum to be pathogenic to I. scapularis and make this insect a suitable probe for evaluation of the presence and activity of M. brunneum against the blacklegged tick in field applications.

  16. Field and laboratory responses of adult Ixodes scapularis (Acari: Ixodidae) to kairomones produced by white-tailed deer.

    Science.gov (United States)

    Carroll, J F; Mills, G D; Schmidtmann, E T

    1996-07-01

    In a field test, adult blacklegged ticks, Ixodes scapularis Say, of both sexes exhibited an arrestant response to substances associated with external glands on the legs of white-tailed deer, Odocoileus virginianus (Zimmermann), their principal host. Substances rubbed from the pelage covering tarsal and interdigital glands were applied to artificial vantage points simulating vegetation on which I. scapularis adults wait for host contact. A combination of tarsal substances (applied to the apex of the simulated vantage point) and interdigital gland substances (applied to the horizontal base) elicited a greater response than either treatment alone. A minimal response was observed on untreated vantage points. In laboratory bioassays using glass tubing as vantage points, substances associated with preorbital glands of deer elicited a strong arrestant response among I. scapularis females, whereas samples rubbed from the forehead, back, and a nonglandular area on deer tarsi evoked weak arrestant responses. These results support the hypothesis that the kairomonal properties of host-generated residues, either in conjunction with or in lieu of the effects of carbon dioxide, help account for the prevalence of host-seeking ticks along animal trails.

  17. PREVALENCE OF BABESIA SPP., EHRLICHIA SPP., AND TICK INFESTATIONS IN OKLAHOMA BLACK BEARS (URSUS AMERICANUS).

    Science.gov (United States)

    Skinner, Delaina; Mitcham, Jessica R; Starkey, Lindsay A; Noden, Bruce H; Fairbanks, W Sue; Little, Susan E

    2017-10-01

    American black bears (Ursus americanus) are commonly infested with ticks throughout their range, but there are few surveys for tick-borne disease agents in bears. To characterize tick infestations and determine the prevalence of current infection with Babesia spp. and past or current infection with Ehrlichia spp. in newly re-established populations of black bears in east central and southeastern Oklahoma, US, we identified adult (n=1,048) and immature (n=107) ticks recovered from bears (n=62). We evaluated serum and whole blood samples from a subset (n=49) for antibodies reactive to, and characteristic DNA fragments of, Ehrlichia spp., as well as characteristic DNA fragments of Babesia spp. Amblyomma americanum, the most common tick identified, was found on a majority (56/62; 90%) of bears and accounted for 697/1,048 (66.5%) of all ticks recovered. Other ticks included Dermacentor variabilis (338/1,048; 32.3%) from 36 bears, Amblyomma maculatum (9/1,048; 0.9%) from three bears, and Ixodes scapularis (4/1,048; 0.4%) from three bears. Antibodies reactive to Ehrlichia spp. were detected in every bear tested (49/49; 100%); maximum inverse titers to Ehrlichia chaffeensis ranged from 64-4,096 (geometric mean titer 1,525). However, PCR failed to identify active infection with E. chaffeensis, Ehrlichia ewingii, or an Ehrlichia ruminantium-like agent. Infection with Babesia spp. was detected by PCR in 3/49 (6%) bears. Together these data confirm that tick infestations and infection with tick-borne disease agents are common in bears in the southern US. The significance of these infestations and infections to the health of bears, if any, and the identity of the Ehrlichia spp. responsible for the antibody reactivity seen, warrant further evaluation.

  18. Soluble cysteine-rich tick saliva proteins Salp15 and Iric-1 from E. coli

    OpenAIRE

    Kolb, Philipp; Vorreiter, Jolanta; Habicht, J?ri; Bentrop, Detlef; Wallich, Reinhard; Nassal, Michael

    2014-01-01

    Ticks transmit numerous pathogens, including borreliae, which cause Lyme disease. Tick saliva contains a complex mix of anti-host defense factors, including the immunosuppressive cysteine-rich secretory glycoprotein Salp15 from Ixodes scapularis ticks and orthologs like Iric-1 from Ixodes ricinus. All tick-borne microbes benefit from the immunosuppression at the tick bite site; in addition, borreliae exploit the binding of Salp15 to their outer surface protein C (OspC) for enhanced transmissi...

  19. Suppression of host-seeking Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs after dual applications of plant-derived acaricides in New Jersey.

    Science.gov (United States)

    Jordan, Robert A; Dolan, Marc C; Piesman, Joseph; Schulze, Terry L

    2011-04-01

    We evaluated the ability of dual applications of natural, plant-derived acaricides to suppress nymphal Ixodes scapularis Say and Amblyomma americanum (L.) (Acari: Ixodidae) in a Lyme disease endemic area of New Jersey. An aqueous formulation of 2% nootkatone provided >90% control of I. scapularis through 7 d. Control declined to 80.9% at 14 d, and a second application was made that provided >95% control through the remaining 4 wk of the nymphal season. Nootkatone provided >90% control of A. americanum through 35 d postapplication. Applications of 2% carvacrol and EcoTrol T&O resulted in rapid knockdown of both tick species, but control declined significantly to 76.7 and 73.7%, respectively, after 14 d when a second application was made that extended control of both tick species to between 86.2 and 94.8% at 21 d. Subsequently, control declined steadily in all plots by 42 d postapplication except for I. scapularis in carvacrol-treated plots, where levels of control >90% were observed through 35 d. Of the three compounds tested, 2% nootkatone provided the most consistent results, with 96.5 and 91.9% control of I. scapularis and A. americanum through 42 and 35 d, respectively. The ability of plant-derived natural products to quickly suppress and maintain significant control of populations of these medically important ticks may represent a future alternative to the use of conventional synthetic acaricides. In addition, the demonstrated efficacy of properly-timed backpack sprayer application may enable homeowner access to these minimal-risk acaricides.

  20. Critical Evaluation of the Linkage Between Tick-Based Risk Measures and the Occurrence of Lyme Disease Cases

    Science.gov (United States)

    Eisen, Lars; Eisen, Rebecca J.

    2018-01-01

    The nymphal stage of the blacklegged tick, Ixodes scapularis Say, is considered the primary vector to humans in the eastern United States of the Lyme disease spirochete Borrelia burgdorferi sensu stricto. The abundance of infected host-seeking nymphs is commonly used to estimate the fundamental risk of human exposure to B. burgdorferi, for the purpose of environmental risk assessment and as an outcome measure when evaluating environmentally based tick or pathogen control methods. However, as this tick-based risk measure does not consider the likelihoods of either human encounters with infected ticks or tick bites resulting in pathogen transmission, its linkage to the occurrence of Lyme disease cases is worth evaluating. In this Forum article, we describe different tick-based risk measures, discuss their strengths and weaknesses, and review the evidence for their capacity to predict the occurrence of Lyme disease cases. We conclude that: 1) the linkage between abundance of host-seeking B. burgdorferi-infected nymphs and Lyme disease occurrence is strong at community or county scales but weak at the fine spatial scale of residential properties where most human exposures to infected nymphs occur in Northeast, 2) the combined use of risk measures based on infected nymphs collected from the environment and ticks collected from humans is preferable to either one of these risk measures used singly when assessing the efficacy of environmentally based tick or pathogen control methods aiming to reduce the risk of human exposure to B. burgdorferi, 3) there is a need for improved risk assessment methodology for residential properties that accounts for both the abundance of infected nymphs and the likelihood of human–tick contact, and 4) we need to better understand how specific human activities conducted in defined residential microhabitats relate to risk for nymphal exposures and bites. PMID:27330093

  1. Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks.

    Directory of Open Access Journals (Sweden)

    Girish Neelakanta

    2007-03-01

    Full Text Available Survival of Borrelia burgdorferi in ticks and mammals is facilitated, at least in part, by the selective expression of lipoproteins. Outer surface protein (Osp A participates in spirochete adherence to the tick gut. As ospB is expressed on a bicistronic operon with ospA, we have now investigated the role of OspB by generating an OspB-deficient B. burgdorferi and examining its phenotype throughout the spirochete life cycle. Similar to wild-type isolates, the OspB-deficient B. burgdorferi were able to readily infect and persist in mice. OspB-deficient B. burgdorferi were capable of migrating to the feeding ticks but had an impaired ability to adhere to the tick gut and survive within the vector. Furthermore, the OspB-deficient B. burgdorferi bound poorly to tick gut extracts. The complementation of the OspB-deficient spirochete in trans, with a wild-type copy of ospB gene, restored its ability to bind tick gut. Taken together, these data suggest that OspB has an important role within Ixodes scapularis and that B. burgdorferi relies upon multiple genes to efficiently persist in ticks.

  2. Tick control: trapping, biocontrol, host management and other alternative strategies

    Science.gov (United States)

    Ginsberg, Howard S.; Edited by Sonenshine, Daniel E.; Roe, R. Michael

    2014-01-01

    Biology of Ticks is the most comprehensive work on tick biology and tick-borne diseases. This second edition is a multi-authored work, featuring the research and analyses of renowned experts across the globe. Spanning two volumes, the book examines the systematics, biology, structure, ecological adaptations, evolution, genomics and the molecular processes that underpin the growth, development and survival of these important disease-transmitting parasites. Also discussed is the remarkable array of diseases transmitted (or caused) by ticks, as well as modern methods for their control. This book should serve as a modern reference for students, scientists, physicians, veterinarians and other specialists. Volume I covers the biology of the tick and features chapters on tick systematics, tick life cycles, external and internal anatomy, and others dedicated to specific organ systems, specifically, the tick integument, mouthparts and digestive system, salivary glands, waste removal, salivary glands, respiratory system, circulatory system and hemolymph, fat body, the nervous and sensory systems and reproductive systems. Volume II includes chapters on the ecology of non-nidicolous and nidicolous ticks, genetics and genomics (including the genome of the Lyme disease vector Ixodes scapularis) and immunity, including host immune responses to tick feeding and tick-host interactions, as well as the tick's innate immune system that prevents and/or controls microbial infections. Six chapters cover in depth the many diseases caused by the major tick-borne pathogens, including tick-borne protozoa, viruses, rickettsiae of all types, other types of bacteria (e.g., the Lyme disease agent) and diseases related to tick paralytic agents and toxins. The remaining chapters are devoted to tick control using vaccines, acaricides, repellents, biocontrol, and, finally, techniques for breeding ticks in order to develop tick colonies for scientific study.

  3. Hepatozoon canis infection in ticks during spring and summer in Italy.

    Science.gov (United States)

    Dantas-Torres, Filipe; Latrofa, Maria Stefania; Weigl, Stefania; Tarallo, Viviana Domenica; Lia, Riccardo Paolo; Otranto, Domenico

    2012-02-01

    Hepatozoon canis is a common protozoan of dogs, being among the most prevalent tick-borne pathogens infecting dogs around the world. It is primarily transmitted by Rhipicephalus sanguineus, the brown dog tick. In this study we tested ticks collected from dogs and from the environment in order to track the origin of an outbreak of H. canis infection detected in October 2009 in a private dog shelter in southern Italy. Ticks from dogs (n = 267) were collected during the spring of 2009, whereas ticks from environment (n = 300) were found on sticky traps placed in the same shelter during the summer of 2009. All ticks were tested by PCR for the detection of a H. canis 18S ribosomal RNA gene fragment. Four (1.5%, one female and three males) ticks collected from dogs were PCR positive. None of the larvae collected from the environment were positive, but a relatively high infection rate (8.0%) was detected in nymphs. These findings point out that dogs became infected during the summer, when ticks were abundant and highly infected by H. canis. Moreover, this study suggests that castor oil sticky traps might be useful to collect engorged immature ticks in highly infested environments (e.g., dog shelters). This might be particularly interesting to evaluate the level of infection by certain pathogens in free-ranging ticks R. sanguineus, as done in the present study.

  4. Homogeneity of Powassan virus populations in naturally infected Ixodes scapularis

    International Nuclear Information System (INIS)

    Brackney, Doug E.; Brown, Ivy K.; Nofchissey, Robert A.; Fitzpatrick, Kelly A.; Ebel, Gregory D.

    2010-01-01

    Powassan virus (POWV, Flaviviridae: Flavivirus) is the sole North American member of the tick-borne encephalitis complex and consists of two distinct lineages that are maintained in ecologically discrete enzootic transmission cycles. The underlying genetic mechanisms that lead to niche partitioning in arboviruses are poorly understood. Therefore, intra- and interhost genetic diversity was analyzed to determine if POWV exists as a quasispecies in nature and quantify selective pressures within and between hosts. In contrast to previous reports for West Nile virus (WNV), significant intrahost genetic diversity was not observed. However, pN (0.238) and d N /d S ratios (0.092) for interhost diversity were similar to those of WNV. Combined, these data suggest that purifying selection and/or population bottlenecks constrain quasispecies diversity within ticks. These same selective and stochastic mechanisms appear to drive minor sequence changes between ticks. Moreover, Powassan virus populations seem not to be structured as quasispecies in naturally infected adult deer ticks.

  5. Equine tick-borne infections in the Netherlands

    NARCIS (Netherlands)

    Butler, C.M.

    2012-01-01

    This thesis focuses on the emergence and establishment of equine tick-borne infections in the Netherlands, with particular attention to their diagnosis, clinical relevance and treatment. Four tick-borne agents (Borrelia burgdorferi, Theileria equi, Babesia caballi and Anaplasma phagocytophilum)

  6. Efficacy of Plant-Derived and Synthetic Compounds on Clothing as Repellents Against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae)

    Science.gov (United States)

    2012-01-01

    efÞcacy of the repellent deet against Aedes aegypti . J. Am. Mosq. Control Assoc. 14: 178Ð182. Robbins, P. J., and M. G. Cherniack. 1986. Review of...number of reported Lyme disease cases reached an all- time high of35,000 in 2008 (CDC 2010). The blacklegged tick, Ixodes scapularis Say, the principal...Paddock 2003, Mixson et al. 2006, Apperson et al. 2008). Repellents remain the primary method of personal protection against tick bites (Piesman and

  7. Co-infection of Ticks: The Rule Rather Than the Exception.

    Science.gov (United States)

    Moutailler, Sara; Valiente Moro, Claire; Vaumourin, Elise; Michelet, Lorraine; Tran, Florence Hélène; Devillers, Elodie; Cosson, Jean-François; Gasqui, Patrick; Van, Van Tran; Mavingui, Patrick; Vourc'h, Gwenaël; Vayssier-Taussat, Muriel

    2016-03-01

    Ticks are the most common arthropod vectors of both human and animal diseases in Europe, and the Ixodes ricinus tick species is able to transmit a large number of bacteria, viruses and parasites. Ticks may also be co-infected with several pathogens, with a subsequent high likelihood of co-transmission to humans or animals. However few data exist regarding co-infection prevalences, and these studies only focus on certain well-known pathogens. In addition to pathogens, ticks also carry symbionts that may play important roles in tick biology, and could interfere with pathogen maintenance and transmission. In this study we evaluated the prevalence of 38 pathogens and four symbionts and their co-infection levels as well as possible interactions between pathogens, or between pathogens and symbionts. A total of 267 Ixodes ricinus female specimens were collected in the French Ardennes and analyzed by high-throughput real-time PCR for the presence of 37 pathogens (bacteria and parasites), by rRT-PCR to detect the presence of Tick-Borne encephalitis virus (TBEV) and by nested PCR to detect four symbionts. Possible multipartite interactions between pathogens, or between pathogens and symbionts were statistically evaluated. Among the infected ticks, 45% were co-infected, and carried up to five different pathogens. When adding symbiont prevalences, all ticks were infected by at least one microorganism, and up to eight microorganisms were identified in the same tick. When considering possible interactions between pathogens, the results suggested a strong association between Borrelia garinii and B. afzelii, whereas there were no significant interactions between symbionts and pathogens. Our study reveals high pathogen co-infection rates in ticks, raising questions about possible co-transmission of these agents to humans or animals, and their consequences to human and animal health. We also demonstrated high prevalence rates of symbionts co-existing with pathogens, opening new

  8. Co-infection of Ticks: The Rule Rather Than the Exception.

    Directory of Open Access Journals (Sweden)

    Sara Moutailler

    2016-03-01

    Full Text Available Ticks are the most common arthropod vectors of both human and animal diseases in Europe, and the Ixodes ricinus tick species is able to transmit a large number of bacteria, viruses and parasites. Ticks may also be co-infected with several pathogens, with a subsequent high likelihood of co-transmission to humans or animals. However few data exist regarding co-infection prevalences, and these studies only focus on certain well-known pathogens. In addition to pathogens, ticks also carry symbionts that may play important roles in tick biology, and could interfere with pathogen maintenance and transmission. In this study we evaluated the prevalence of 38 pathogens and four symbionts and their co-infection levels as well as possible interactions between pathogens, or between pathogens and symbionts.A total of 267 Ixodes ricinus female specimens were collected in the French Ardennes and analyzed by high-throughput real-time PCR for the presence of 37 pathogens (bacteria and parasites, by rRT-PCR to detect the presence of Tick-Borne encephalitis virus (TBEV and by nested PCR to detect four symbionts. Possible multipartite interactions between pathogens, or between pathogens and symbionts were statistically evaluated. Among the infected ticks, 45% were co-infected, and carried up to five different pathogens. When adding symbiont prevalences, all ticks were infected by at least one microorganism, and up to eight microorganisms were identified in the same tick. When considering possible interactions between pathogens, the results suggested a strong association between Borrelia garinii and B. afzelii, whereas there were no significant interactions between symbionts and pathogens.Our study reveals high pathogen co-infection rates in ticks, raising questions about possible co-transmission of these agents to humans or animals, and their consequences to human and animal health. We also demonstrated high prevalence rates of symbionts co-existing with pathogens

  9. Widespread Rickettsia spp. Infections in Ticks (Acari: Ixodoidea) in Taiwan.

    Science.gov (United States)

    Kuo, Chi-Chien; Shu, Pei-Yun; Mu, Jung-Jung; Lee, Pei-Lung; Wu, Yin-Wen; Chung, Chien-Kung; Wang, Hsi-Chieh

    2015-09-01

    Ticks are second to mosquitoes as the most important disease vectors, and recent decades have witnessed the emergence of many novel tick-borne rickettsial diseases, but systematic surveys of ticks and tick-borne rickettsioses are generally lacking in Asia. We collected and identified ticks from small mammal hosts between 2006 and 2010 in different parts of Taiwan. Rickettsia spp. infections in ticks were identified by targeting ompB and gltA genes with nested polymerase chain reaction. In total, 2,732 ticks were collected from 1,356 small mammals. Rhipicephalus haemaphysaloides Supino (51.8% of total ticks), Haemaphysalis bandicota Hoogstraal & Kohls (28.0%), and Ixodes granulatus Supino (20.0%) were the most common tick species, and Rattus losea Swinhoe (44.7% of total ticks) and Bandicota indica Bechstein (39.9%) were the primary hosts. The average Rickettsia infective rate in 329 assayed ticks was 31.9% and eight Rickettsia spp. or closely related species were identified. This study shows that rickettsiae-infected ticks are widespread in Taiwan, with a high diversity of Rickettsia spp. circulating in the ticks. Because notifiable rickettsial diseases in Taiwan only include mite-borne scrub typhus and flea-borne murine typhus, more studies are warranted for a better understanding of the real extent of human risks to rickettsioses in Taiwan. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Ixodid Ticks (Acari, Ixodidae in Urban Landscapes. A review

    Directory of Open Access Journals (Sweden)

    Akimov I. А.

    2016-04-01

    Full Text Available This study presents the results of content analysis of published works on ixodid ticks in urban conditions in order to determine the species diversity, the vectors of research interests at various stages. Information about ticks in the cities up to the 1980s is incidental, to the point of exclusive, after this point there is targeted research in urban landscapes. There are 106 or 15 % of hard ticks of the world fauna registered in the urban territory, 26 species or 3.7 % being the most abundant. Of the urban hard tick species, 23 (88.5 % can attack humans, and 12 species are the most adapted to the urban landscape: Ixodes ricinus, I. persulcatus, Dermacentor reticulatus, D. marginatus, I. pavlovskyi, I. scapularis (dammini, Amblyomma cajennense, Haemaphysalis longicornis, I. hexagonus, Hyalomma marginatum, Am. americanum, and Rhipicephalus sanguineus. It was determined that the most likely causes of the growing number of publications on ixodids urban landscapes are: global accelerating urbanization, the development of recreational areas, the development of green tourism, the growth of the prestige of outdoor recreation, the creation of new, especially of the landscape parks and a tendency to preserve the native landscape in the cities, a significant increase in the density of populations of common species of hard ticks adapted to living in urban environment. The vectors of further work in urban landscapes will be directed to exact planning of monitoring studies of ixodids and associated tick-borne infections.

  11. A formulation to encapusulate nootkatone oil for tick control

    Science.gov (United States)

    Nootkatone is a component of grapefruit oil that is toxic to the disease vectoring tick, Ixodes scapularis Say, but unfortunately causes phytotoxicity to treated plants and has a short residual activity due to volatility. We prepared an encapsulated formulation of nootkatone using lignin to compare...

  12. Why are there so few Rickettsia conorii conorii-infected Rhipicephalus sanguineus ticks in the wild?

    Directory of Open Access Journals (Sweden)

    Cristina Socolovschi

    Full Text Available Rickettsia conorii conorii is the etiological agent of Mediterranean spotted fever, which is transmitted by the brown dog tick, Rhipicephalus sanguineus. The relationship between the Rickettsia and its tick vector are still poorly understood one century after the first description of this disease.An entomological survey was organized in Algeria to collect ticks from the houses of patients with spotted fever signs. Colonies of R. conorii conorii-infected and non-infected ticks were established under laboratory conditions. Gimenez staining and electron microscopy on the ovaries of infected ticks indicated heavy rickettsial infection. The transovarial transmission of R. conorii conorii in naturally infected Rh. sanguineus ticks was 100% at eleven generations, and the filial infection rate was up to 99% according to molecular analyses. No differences in life cycle duration were observed between infected and non-infected ticks held at 25°C, but the average weight of engorged females and eggs was significantly lower in infected ticks than in non-infected ticks. The eggs, larvae and unfed nymphs of infected and non-infected ticks could not tolerate low (4°C or high (37°C temperatures or long starvation periods. R. conorii conorii-infected engorged nymphs that were exposed to a low or high temperature for one month experienced higher mortality when they were transferred to 25°C than non-infected ticks after similar exposure. High mortality was observed in infected adults that were maintained for one month at a low or high temperature after tick-feeding on rabbits.These preliminary results suggest that infected quiescent ticks may not survive the winter and may help explain the low prevalence of infected Rh. sanguineus in nature. Further investigations on the influence of extrinsic factors on diapaused R. conorii-infected and non-infected ticks are required.

  13. Experimental infection of Rickettsia parkeri in the Rhipicephalus microplus tick.

    Science.gov (United States)

    Cordeiro, Matheus Dias; de Azevedo Baêta, Bruna; Cepeda, Patricia Barizon; Teixeira, Rafaella Câmara; Ribeiro, Carla Carolina Dias Uzedo; de Almeida Valim, Jaqueline Rodrigues; Pinter, Adriano; da Fonseca, Adivaldo Henrique

    2018-01-01

    This study aimed to evaluate, by means of artificial feeding, the interaction between a pathogenic rickettsia and the hard tick R. microplus. We used partially engorged females fed on calves free of Rickettsia spp. Group 1 (G1), containing 20 ticks, was fed bovine blood only. Group 2 (G2), containing 20 ticks, was fed blood containing uninfected VERO cells, and group 3 (G3), containing 40 ticks, was fed blood containing VERO cells infected with Rickettsia parkeri. Biological parameters of the non-parasitic phase and a possible bacterial transmission to the tick eggs and to guinea pigs were evaluated. At the end of oviposition, all G3 females were PCR-positive for genes specific for the genus Rickettsia. Although no guinea pigs were infected, the experimental infection of R. microplus by R. parkeri caused a deleterious effect on the oviposition and provided the first report of transovarian transmission of rickettsia in this tick. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Tick as a model for the study of a primitive complement system.

    Science.gov (United States)

    Kopacek, Petr; Hajdusek, Ondrej; Buresova, Veronika

    2012-01-01

    Ticks are blood feeding parasites transmitting a wide variety of pathogens to their vertebrate hosts. The transmitted pathogens apparently evolved efficient mechanisms enabling them to evade or withstand the cellular or humoral immune responses within the tick vector. Despite its importance, our knowledge of tick innate immunity still lags far beyond other well established invertebrate models, such as drosophila, horseshoe crab or mosquitoes. However, the recent release of the American deer tick, Ixodes scapularis, genome and feasibility of functional analysis based on RNA interference (RNAi) facilitate the development of this organism as a full-value model for deeper studies of vector-pathogen interactions.

  15. Relative humidity and activity patterns of Ixodes scapularis (Acari: Ixodidae)

    Science.gov (United States)

    Berger, K.A.; Ginsberg, Howard S.; Gonzalez, L.; Mather, T.N.

    2014-01-01

    Laboratory studies have shown clear relationships between relative humidity (RH) and the activity and survival of Ixodes scapularis Say (blacklegged tick). However, field studies have produced conflicting results. We examined this relationship using weekly tick count totals and hourly RH observations at three field sites, stratified by latitude, within the state of Rhode Island. Records of nymphal tick abundance were compared with several RH-related variables (e.g., RH at time of sampling and mean weekly daytime RH). In total, 825 nymphs were sampled in 2009, a year of greater precipitation, with a weighted average leaf litter RH recorded at time of sampling of 85.22%. Alternatively, 649 nymphs were collected in 2010, a year of relatively low precipitation, and a weighted average RH recorded at time of sampling was 75.51%. Negative binomial regression analysis of tick count totals identified cumulative hours <82% RH threshold as a significant factor observed in both years (2009: P = 0.0037; 2010: P < 0.0001). Mean weekly daytime RH did not significantly predict tick activity in either year. However, mean weekly daytime RH recorded with 1-wk lag before sample date was a significant variable (P = 0.0016) in 2010. These results suggest a lag effect between moisture availability and patterns of tick activity and abundance. Differences in the relative importance of each RH variable between years may have been due to abnormally wet summer conditions in 2009.

  16. A Roadmap for Tick-Borne Flavivirus Research in the “Omics” Era

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Grabowski

    2017-12-01

    Full Text Available Tick-borne flaviviruses (TBFs affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis, the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, “omic” studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the “omics era,” and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030.

  17. Anaplasma phagocytophilum Manipulates Host Cell Apoptosis by Different Mechanisms to Establish Infection

    Directory of Open Access Journals (Sweden)

    Pilar Alberdi

    2016-07-01

    Full Text Available Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human and animal granulocytic anaplasmosis and tick-borne fever of ruminants. This obligate intracellular bacterium evolved to use common strategies to establish infection in both vertebrate hosts and tick vectors. Herein, we discuss the different strategies used by the pathogen to modulate cell apoptosis and establish infection in host cells. In vertebrate neutrophils and human promyelocytic cells HL-60, both pro-apoptotic and anti-apoptotic factors have been reported. Tissue-specific differences in tick response to infection and differential regulation of apoptosis pathways have been observed in adult female midguts and salivary glands in response to infection with A. phagocytophilum. In tick midguts, pathogen inhibits apoptosis through the Janus kinase/signal transducers and activators of transcription (JAK/STAT pathway, while in salivary glands, the intrinsic apoptosis pathways is inhibited but tick cells respond with the activation of the extrinsic apoptosis pathway. In Ixodes scapularis ISE6 cells, bacterial infection down-regulates mitochondrial porin and manipulates protein processing in the endoplasmic reticulum and cell glucose metabolism to inhibit apoptosis and facilitate infection, whereas in IRE/CTVM20 tick cells, inhibition of apoptosis appears to be regulated by lower caspase levels. These results suggest that A. phagocytophilum uses different mechanisms to inhibit apoptosis for infection of both vertebrate and invertebrate hosts.

  18. Experimental infection of the tick Amblyomma cajennense, Cayenne tick, with Rickettsia rickettsii, the agent of Rocky Mountain spotted fever.

    Science.gov (United States)

    Soares, J F; Soares, H S; Barbieri, A M; Labruna, M B

    2012-06-01

    In the laboratory, Amblyomma cajennense (Acari: Ixodidae) (Fabricius) larvae, nymphs and adults were exposed to Rickettsia rickettsii by feeding on needle-inoculated animals, and thereafter reared on uninfected guinea pigs or rabbits. Regardless of the tick stage that acquired the infection, subsequent tick stages were shown to be infected (confirming transstadial and transovarial transmissions) and were able to transmit R. rickettsii to uninfected animals, as demonstrated by serological and molecular analyses. However, the larval, nymphal and adult stages of A. cajennense were shown to be partially refractory to R. rickettsii infection, as in all cases, only part of the ticks became infected by this agent, after being exposed to rickettsemic animals. In addition, less than 50% of the infected engorged females transmitted rickettsiae transovarially, and when they did so, only part of the offspring became infected, indicating that vertical transmission alone is not enough to maintain R. rickettsii in A. cajennense for multiple generations. Finally, the R. rickettsii-infected tick groups had lower reproductive performance than the uninfected control group. Our results indicate that A. cajennense have a low efficiency to maintain R. rickettsii for successive generations, as R. rickettsii-infection rates should decline drastically throughout the successive tick generations. © 2011 The Authors. Medical and Veterinary Entomology © 2011 The Royal Entomological Society.

  19. Bacteria of the genus Rickettsia in ticks (Acari: Ixodidae) collected from birds in Costa Rica.

    Science.gov (United States)

    Ogrzewalska, Maria; Literák, Ivan; Capek, Miroslav; Sychra, Oldřich; Calderón, Víctor Álvarez; Rodríguez, Bernardo Calvo; Prudencio, Carlos; Martins, Thiago F; Labruna, Marcelo B

    2015-06-01

    The aim of this study was to document the presence of Rickettsia spp. in ticks parasitizing wild birds in Costa Rica. Birds were trapped at seven locations in Costa Rica during 2004, 2009, and 2010; then visually examined for the presence of ticks. Ticks were identified, and part of them was tested individually for the presence of Rickettsia spp. by polymerase chain reaction (PCR) using primers targeting fragments of the rickettsial genes gltA and ompA. PCR products were DNA-sequenced and analyzed in BLAST to determine similarities with previously reported rickettsial agents. A total of 1878 birds were examined, from which 163 birds (9%) were infested with 388 ticks of the genera Amblyomma and Ixodes. The following Amblyomma (in decreasing order of abundance) were found in immature stages (larvae and nymphs): Amblyomma longirostre, Amblyomma calcaratum, Amblyomma coelebs, Amblyomma sabanerae, Amblyomma varium, Amblyomma maculatum, and Amblyomma ovale. Ixodes ticks were represented by Ixodes minor and two unclassified species, designated here as Ixodes sp. genotype I, and Ixodes sp. genotype II. Twelve of 24 tested A. longirostre ticks were found to be infected with 'Candidatus Rickettsia amblyommii', and 2 of 4 A. sabanerae were found to be infected with Rickettsia bellii. Eight of 10 larval Ixodes minor were infected with an endosymbiont (a novel Rickettsia sp. agent) genetically related to the Ixodes scapularis endosymbiont. No rickettsial DNA was found in A. calcaratum, A. coelebs, A. maculatum, A. ovale, A. varium, Ixodes sp. I, and Ixodes sp. II. We report the occurrence of I. minor in Costa Rica for the first time and a number of new bird host-tick associations. Moreover, 'Candidatus R. amblyommii' and R. bellii were found in A. longirostre and A. sabanerae, respectively, in Costa Rica for the first time. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Long-Term Effects of Berberis thunbergii (Ranunculales: Berberidaceae) Management on Ixodes scapularis (Acari: Ixodidae) Abundance and Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) Prevalence in Connecticut, USA.

    Science.gov (United States)

    Williams, Scott C; Linske, Megan A; Ward, Jeffrey S

    2017-12-08

    Japanese barberry (Berberis thunbergii de Candolle; Ranunculales: Berberidaceae) is an exotic invasive shrub that escaped cultivation in the United States and is now permanently established in many eastern and midwestern states. This study examined the long-term impacts of Japanese barberry management on blacklegged tick (Ixodes scapularis Say; Acari: Ixodidae) abundances and associated prevalence of Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner; Spirochaetales: Spirochaetaceae), the etiologic agent of Lyme disease. At six locations across Connecticut, adult I. scapularis were sampled for up to 10 yr. At each location, we sampled an area where barberry infestations were unmanipulated, adjacent areas where barberry was virtually nonexistent, and areas where barberry was managed utilizing a variety of techniques. Barberry management reduced B. burgdorferi-infected adult I. scapularis (BBIAIS) abundances (191/ha ± 64 SE) over 6 yr to statistically indifferent from that of no barberry areas (140/ha ± 47 SE; P = 0.080) and significantly less than intact barberry stands (458/ha ± 80 SE; P = 0.026). Over 9 yr, BBIAIS abundances in managed barberry remained lower than intact barberry stands (P = 0.037), but increased to be significantly greater than no barberry areas (P = 0.007) as cover increased over time. Longer-term data further document that Japanese barberry infestations are favorable habitat for I. scapularis. Control of Japanese barberry and other invasives should be at least on a 5-yr rotation to maintain low levels of invasive cover and eliminate humidity refugia to expose juvenile I. scapularis to more hostile environmental conditions in the interest of public health. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Rickettsial infections in ticks from reptiles, birds and humans in Honduras.

    Science.gov (United States)

    Novakova, Marketa; Literak, Ivan; Chevez, Luis; Martins, Thiago F; Ogrzewalska, Maria; Labruna, Marcelo B

    2015-09-01

    Ticks were collected from captive reptiles, wild birds, and incidentally from humans at two locations in Honduras and part of these were tested for the presence of Rickettsia using polymerase chain reaction. The following species of ticks were found: Amblyomma dissimile on Iguanidae reptiles, Amblyomma longirostre and Amblyomma nodosum on birds, and Amblyomma mixtum (Amblyomma cajennense complex) on humans. A. dissimile was infected with Rickettsia sp. strain Colombianensi. Both A. longirostre and A. mixtum were infected with Candidatus 'Rickettsia amblyommii'. This study provides the first report of rickettsial infections in ticks from reptiles, birds and humans in Honduras. New host - Amblyomma tick associations are documented. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. A Risk Model for the Lyme Disease Vector Ixodes scapularis (Acari: Ixodidae) in the Prairie Provinces of Canada.

    Science.gov (United States)

    Gabriele-Rivet, Vanessa; Koffi, Jules K; Pelcat, Yann; Arsenault, Julie; Cheng, Angela; Lindsay, L Robbin; Lysyk, Timothy J; Rochon, Kateryn; Ogden, Nicholas H

    2017-07-01

    Lyme disease is emerging in Canada due to geographic range expansion of the tick vector Ixodes scapularis Say. Recent areas of emergence include parts of the southeastern Canadian Prairie region. We developed a map of potential risk areas for future I. scapularis establishment in the Canadian Prairie Provinces. Six I. scapularis risk algorithms were developed using different formulations of three indices for environmental suitability: temperature using annual cumulative degree-days > 0 °C (DD > 0 °C; obtained from Moderate Resolution Imaging Spectroradiometer satellite data as an index of conditions that allow I. scapularis to complete its life cycle), habitat as a combined geolayer of forest cover and agricultural land use, and rainfall. The relative performance of these risk algorithms was assessed using receiver-operating characteristic (ROC) area under the curve (AUC) analysis with data on presence-absence of I. scapularis obtained from recent field surveillance in the Prairie Provinces accumulated from a number of sources. The ROC AUC values for the risk algorithms were significantly different (P  0 °C, habitat as a simple dichotomous variable of presence or absence of forest, and normalized rainfall had the highest AUC of 0.74, representing "fair to good" performance of the risk algorithm. This algorithm had good (>80%) sensitivity in predicting positive I. scapularis surveillance sites, but low (50%) specificity as expected in this region where not all environmentally suitable habitats are expected to be occupied. Further prospective studies are needed to validate and perhaps improve the risk algorithm. © Crown copyright 2017.

  3. American Black Bears as Hosts of Blacklegged Ticks (Acari: Ixodidae) in the Northeastern United States.

    Science.gov (United States)

    Zolnik, Christine P; Makkay, Amanda M; Falco, Richard C; Daniels, Thomas J

    2015-09-01

    Ticks and whole blood were collected from American black bears (Ursus americanus Pallas) between October 2011 and October 2012 across four counties in northwestern New Jersey, an area where blacklegged ticks (Ixodes scapularis Say) and their associated tick-borne pathogens are prevalent. Adult American dog ticks (Dermacentor variabilis Say) were the most frequently collected tick species in late spring, whereas adult and nymphal blacklegged ticks were found in both the late spring and fall months. Additionally, for blacklegged ticks, we determined the quality of bloodmeals that females acquired from black bears compared with bloodmeals from white-tailed deer (Odocoileus virginianus Zimmerman), the most important host for the adult stage of this tick species. Measures of fecundity after feeding on each host species were not significantly different, suggesting that the bloodmeal a female blacklegged tick acquires from a black bear is of similar quality to that obtained from a white-tailed deer. These results establish the American black bear as both a host and quality bloodmeal source to I. scapularis. Thus, black bears may help support blacklegged tick populations in areas where they are both present. In addition, samples of black bear blood were tested for DNA presence of three tick-borne pathogens. Anaplasma phagocytophilum Foggie and Babesia microti Franca were found in 9.2 and 32.3% of blood samples, respectively. All blood samples were quantitative polymerase chain reaction-negative for Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt, & Brenner. Although circulating pathogens were found in blood, the status of black bears as reservoirs for these pathogens remains unknown. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. The Tick Salivary Protein Salp15 Inhibits the Killing of Serum-Sensitive Borrelia burgdorferi Sensu Lato Isolates▿

    OpenAIRE

    Schuijt, Tim J.; Hovius, Joppe W. R.; van Burgel, Nathalie D.; Ramamoorthi, Nandhini; Fikrig, Erol; van Dam, Alje P.

    2008-01-01

    Borrelia burgdorferi, the agent of Lyme disease, is transmitted by ticks. During transmission from the tick to the host, spirochetes are delivered with tick saliva, which contains the salivary protein Salp15. Salp15 has been shown to protect spirochetes against B. burgdorferi-specific antibodies. We now show that Salp15 from both Ixodes ricinus and Ixodes scapularis protects serum-sensitive isolates of Borrelia burgdorferi sensu lato against complement-mediated killing. I. ricinus Salp15 show...

  5. Rickettsial and other tick-borne infections.

    Science.gov (United States)

    Flicek, Barbara Fouts

    2007-03-01

    prophylaxsis is beneficial to the tick-bitten patient to prevent disease. It must be kept in mind that the risk of transmission of disease increases with the duration of attachment and generally requires greater than 24 to 48 hours. The degree of tick engorgement or the time since tick exposure and discovery of the tick may be used to establish the likely duration of attachment and the risk of disease transmission. Reducing and controlling tick populations is difficult. Habitat modifications, including vegetation management by cutting, burning, and herbicide treatment, and drainage of wet areas are one strategy for tick control, but their effects are often short-lived, and they can cause severe ecologic damage. Chemicals used to control ticks may cause environmental contamination, and therefore, toxicity for humans and animals. Biologic control methods for ticks include the promotion of natural predators. Natural predators of ticks are beetles, spiders, and ants, and parasites such as insects, mites and nematodes. Tick control is best based on the concept of integrated pest management, in which different control methods are adapted to one area or against one tick species with due consideration to their environmental effects. Tick-borne diseases are increasing in prevalence. Perhaps it is because people are undertaking more outdoor activities, which result in contact with ticks and their pathogens. Clinicians should be aware of the clinical sign of tick-transmitted diseases, because morbidity and mortality as a result of these diseases increases substantially if there are delays in diagnosis and treatment. Tick-borne illness occur in distinctive geographic areas. The reporting of these illnesses and diseases to the health department enables the gathering of information and statistics. The public should be informed about the risks of disease in tick-infested areas and the means of preventing infections. The most common diseases are caused by Rickettsia, Borrelia, and Ehrichia

  6. A formulation to encapsulate nootkatone for tick control.

    Science.gov (United States)

    Behle, Robert W; Flor-Weiler, Lina B; Bharadwaj, Anuja; Stafford, Kirby C

    2011-11-01

    Nootkatone is a component of grapefruit oil that is toxic to the disease-vectoring tick, Ixodes scapularis Say, but unfortunately causes phytotoxicity to treated plants and has a short residual activity due to volatility. We prepared a lignin-encapsulated nootkatone formulation to compare with a previously used emulsifiable formulation for volatility, plant phytotoxicity, and toxicity to unfed nymphs of I. scapularis. Volatility of nootkatone was measured directly by trapping nootkatone vapor in a closed system and indirectly by measuring nootkatone residue on treated filter paper after exposure to simulated sunlight (Xenon). After 24 h in the closed system, traps collected only 15% of the nootkatone applied as the encapsulated formulation compared with 40% applied as the emulsifiable formulation. After a 1-h light exposure, the encapsulated formulation retained 92% of the nootkatone concentration compared with only 26% retained by the emulsifiable formulation. For plant phytotoxicity, cabbage, Brassica oleracea L., leaves treated with the encapsulated formulation expressed less necrosis, retaining greater leaf weight compared with leaves treated with the emusifiable formulation. The nootkatone in the emulsifiable formulation was absorbed by cabbage and oat, Avena sativa L., plants (41 and 60% recovered 2 h after application, respectively), as opposed to 100% recovery from the plants treated with encapsulated nootkatone. Using a treated vial technique, encapsulated nootkatone was significantly more toxic to I. scapularis nymphs (LC50 = 20 ng/cm2) compared with toxicity of the emulsifiable formulation (LC50 = 35 ng/cm2). Thus, the encapsulation of nootkatone improved toxicity for tick control, reduced nootkatone volatility, and reduced plant phytotoxicity.

  7. Detection of Lyme Disease Bacterium, Borrelia burgdorferi sensu lato, in Blacklegged Ticks Collected in the Grand River Valley, Ontario, Canada

    Science.gov (United States)

    Scott, John D.; Foley, Janet E.; Anderson, John F.; Clark, Kerry L.; Durden, Lance A.

    2017-01-01

    We document the presence of blacklegged ticks, Ixodes scapularis, in the Grand River valley, Centre Wellington, Ontario. Overall, 15 (36%) of 42 I. scapularis adults collected from 41 mammalian hosts (dogs, cats, humans) were positive for the Lyme disease bacterium, Borrelia burgdorferi sensu lato (s.l.). Using real-time PCR testing and DNA sequencing of the flagellin (fla) gene, we determined that Borrelia amplicons extracted from I. scapularis adults belonged to B. burgdorferi sensu stricto (s.s.), which is pathogenic to humans and certain domestic animals. Based on the distribution of I. scapularis adults within the river basin, it appears likely that migratory birds provide an annual influx of I. scapularis immatures during northward spring migration. Health-care providers need to be aware that local residents can present with Lyme disease symptoms anytime during the year. PMID:28260991

  8. Hepatozoon kisrae n. sp. infecting the lizard Agama stellio is transmitted by the tick Hyalomma cf. aegyptium

    Directory of Open Access Journals (Sweden)

    Paperna I.

    2002-03-01

    Full Text Available Hepatozoon kisrae n. sp. was found infecting a starred lizard at a site in southeastern Samaria, Palestine. These lizards were also hosts to the ixodid tick Hyolomma cf. aegyptium, which was demonstrated to be the vector of this hemogregarine. Hepatozoon and tick infections occurred in lizards within a very restricted locality; at a second site, nearby, ticks occurred without Hepatozoon infection. Micro- and macromeronts occurred mainly in the lungs, while cyst-like merogonic stages, mainly dizoic, occurred in the liver. Mature intraerythrocytic gametocytes were stout and encapsulated. Development from oocysts to sporocysts took place in the tick hemocoel, and was examined by transmission electron microscopy. Lizards were successfully infected when fed on sporocyst-infected ticks or viscera of infected lizards. Ticks become infected when fed on infected lizards; sporogony was complete when the ticks reached adult stage, over 40 days after initial attachment.

  9. Ixodid ticks and tick-borne infections in the republic of Cuba – literature review and rationale for risk assessment

    Directory of Open Access Journals (Sweden)

    Khasnatinov M.A.

    2018-04-01

    Full Text Available The Republic of Cuba is a popular destination for Russian tourists and about 30-50 thousands of Russian citizens visit Cuba annually. However, the recreational activity is often associated with the risk of Ixodid ticks bites and infection with tick-borne pathogens. According to published literature, the fauna of the hard tick in Cuba is represented by nine species including Ixodes capromydis, Amblyomma albopictum, A. cajennense, A. dissimile, A. quadricavum, A. torrei, Dermacentor nitens, Rhipicephalus sanguineus and R. (Boophilus microplus. Five of these species, i.e. A. cajennense, A. dissimile, D. nitens, R. sanguineus and R. (Boophilus microplus, were reported as human parasites. Ticks are spread over the most part of the island territory. Several tick-borne pathogens should be considered as a potential threat for the bitten humans in Cuba, including Borrelia burgdorferi sensu lato, Rickettsia sp., Anaplasma sp., Ehrlichia sp., Coxiella sp., thogotovirus and Crimean-Congo hemorrhagic fever virus. Implications for the epidemiology of tick-borne infections in the Russian Federation are discussed.

  10. Natural infection rates and transmission of Theileria annulata by Hyalomma anatolicum anatolicum ticks in the Sudan

    Directory of Open Access Journals (Sweden)

    D.A. Salih

    2005-09-01

    Full Text Available Hyalomma anatolicum anatolicum nymphs were collected from two localities in the Sudan: Eddamer in Northern Sudan and Wad-Medani in Central Sudan. They were allowed to moult to adult ticks, which were assessed for Theileria infection in their salivary glands using Feulgen stain. At Eddamer, 49.6 % of 123 ticks examined were infected with Theileria and the mean intensity of infection was 1.3 (i.e. the number of infected acini / number of infected ticks. At Wad-Medani, 8.6 % of 162 ticks were infected and the mean intensity of infection was 7.9. The prevalence of infection was higher in female than in male ticks at both localities. When adult H. a. anatolicum were applied onto two susceptible calves, both animals developed the severe form of theileriosis.

  11. Infections and Coinfections of Questing Ixodes ricinus Ticks by Emerging Zoonotic Pathogens in Western Switzerland

    Science.gov (United States)

    Lommano, Elena; Bertaiola, Luce; Dupasquier, Christèle

    2012-01-01

    In Europe, Ixodes ricinus is the vector of many pathogens of medical and veterinary relevance, among them Borrelia burgdorferi sensu lato and tick-borne encephalitis virus, which have been the subject of numerous investigations. Less is known about the occurrence of emerging tick-borne pathogens like Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and Anaplasma phagocytophilum in questing ticks. In this study, questing nymph and adult I. ricinus ticks were collected at 11 sites located in Western Switzerland. A total of 1,476 ticks were analyzed individually for the simultaneous presence of B. burgdorferi sensu lato, Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and A. phagocytophilum. B. burgdorferi sensu lato, Rickettsia spp., and “Candidatus Neoehrlichia mikurensis” were detected in ticks at all sites with global prevalences of 22.5%, 10.2%, and 6.4%, respectively. Babesia- and A. phagocytophilum-infected ticks showed a more restricted geographic distribution, and their prevalences were lower (1.9% and 1.5%, respectively). Species rarely reported in Switzerland, like Borrelia spielmanii, Borrelia lusitaniae, and Rickettsia monacensis, were identified. Infections with more than one pathogenic species, involving mostly Borrelia spp. and Rickettsia helvetica, were detected in 19.6% of infected ticks. Globally, 34.2% of ticks were infected with at least one pathogen. The diversity of tick-borne pathogens detected in I. ricinus in this study and the frequency of coinfections underline the need to take them seriously into consideration when evaluating the risks of infection following a tick bite. PMID:22522688

  12. [Changes in the expression of salivary gland genes in Ixodes persulcatus (Ixodidae) depending on the stage of tick feeding].

    Science.gov (United States)

    Shtannikov, A V; Perovskaia, O N; Reshetniak, T V; Repolovskaia, T V; Panfertsev, E A; Sergeeva, E E; Gutova, V P; Vasil'eva, I S; Ershova, A S; Prilipov, A G; Biketov, S F; Zeidner, N

    2009-01-01

    By using the guanidine-isothiocyanate test, the authors isolated a summary RNA preparation from Ixodes persulcatus salivary gland extracts. Activity products of the genes responsible for the expression of some salivary proteins were first identified using the RT-PCR. It has been shown that, firstly, I. persulcatus synthesizes at least 3 transcripts homologous to the respective salivary components of the related species I. scapularis, the translation product of which is likely to be immunodominant antigens; secondly, the number of each of these transcripts, as in I. scapularis, depends on the stage of tick feeding. The changes in the expression of each transcript are specific: monotonously increasing changes in Salp 17 and cyclic ones in Salp 16, and synthesis, only when the ticks are fully ingested, in Salp 25.

  13. Identification and Characterization of Ixodes scapularis Antigens That Elicit Tick Immunity Using Yeast Surface Display

    NARCIS (Netherlands)

    Schuijt, T.J.; Narasimhan, S.; Daffre, S.; Deponte, K.; Hovius, J.W.R.; van 't Veer, C.; van der Poll, T.; Bakhtiari, K.; Meijers, J.C.M.; Boder, E.T.; van Dam, A.P.; Fikrig, E.

    2011-01-01

    Repeated exposure of rabbits and other animals to ticks results in acquired resistance or immunity to subsequent tick bites and is partially elicited by antibodies directed against tick antigens. In this study we demonstrate the utility of a yeast surface display approach to identify tick salivary

  14. An Ixodes ricinus Tick Salivary Lectin Pathway Inhibitor Protects Borrelia burgdorferi sensu lato from Human Complement

    NARCIS (Netherlands)

    Wagemakers, Alex; Coumou, Jeroen; Schuijt, Tim J.; Oei, Anneke; Nijhof, Ard M.; van 't Veer, Cornelis; van der Poll, Tom; Bins, Adriaan D.; Hovius, Joppe W. R.

    2016-01-01

    We previously identified tick salivary lectin pathway inhibitor (TSLPI) in Ixodes scapularis, a vector for Borrelia burgdorferi sensu stricto (s.s.) in North America. TSLPI is a salivary protein facilitating B. burgdorferi s.s. transmission and acquisition by inhibiting the host lectin complement

  15. Prevalence of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) in Ixodes scapularis (Acari: Ixodidae) adults in New Jersey, 2000-2001.

    Science.gov (United States)

    Schulze, Terry L; Jordan, Robert A; Hung, Robert W; Puelle, Rose S; Markowski, Daniel; Chomsky, Martin S

    2003-07-01

    Using polymerase chain reaction, we analyzed 529 Ixodes scapularis Say adults collected from 16 of New Jersey's 21 counties for the presence of Borrelia burgdorferi, the etiological agent of Lyme disease. Overall, 261 (49.3%) were positive. B. burgdorferi was detected in ticks obtained from each county and from 53 of the 58 (93.1%) municipalities surveyed. The observed statewide prevalence in New Jersey is similar to those reported from other northeastern and mid-Atlantic states.

  16. An Ixodes ricinus Tick Salivary Lectin Pathway Inhibitor Protects Borrelia burgdorferi sensu lato from Human Complement.

    Science.gov (United States)

    Wagemakers, Alex; Coumou, Jeroen; Schuijt, Tim J; Oei, Anneke; Nijhof, Ard M; van 't Veer, Cornelis; van der Poll, Tom; Bins, Adriaan D; Hovius, Joppe W R

    2016-04-01

    We previously identified tick salivary lectin pathway inhibitor (TSLPI) in Ixodes scapularis, a vector for Borrelia burgdorferi sensu stricto (s.s.) in North America. TSLPI is a salivary protein facilitating B. burgdorferi s.s. transmission and acquisition by inhibiting the host lectin complement pathway through interference with mannose binding lectin (MBL) activity. Since Ixodes ricinus is the predominant vector for Lyme borreliosis in Europe and transmits several complement sensitive B. burgdorferi sensu lato (s.l.) strains, we aimed to identify, describe, and characterize the I. ricinus ortholog of TSLPI. We performed (q)PCRs on I. ricinus salivary gland cDNA to identify a TSLPI ortholog. Next, we generated recombinant (r)TSLPI in a Drosophila expression system and examined inhibition of the MBL complement pathway and complement-mediated killing of B. burgdorferi s.l. in vitro. We identified a TSLPI ortholog in I. ricinus salivary glands with 93% homology at the RNA and 89% at the protein level compared to I. scapularis TSLPI, which was upregulated during tick feeding. In silico analysis revealed that TSLPI appears to be part of a larger family of Ixodes salivary proteins among which I. persulcatus basic tail salivary proteins and I. scapularis TSLPI and Salp14. I. ricinus rTSLPI inhibited the MBL complement pathway and protected B. burgdorferi s.s. and Borrelia garinii from complement-mediated killing. We have identified a TSLPI ortholog, which protects B. burgdorferi s.l. from complement-mediated killing in I. ricinus, the major vector for tick-borne diseases in Europe.

  17. Stable Transmission of Borrelia burgdorferi Sensu Stricto on the Outer Banks of North Carolina.

    Science.gov (United States)

    Levine, J F; Apperson, C S; Levin, M; Kelly, T R; Kakumanu, M L; Ponnusamy, L; Sutton, H; Salger, S A; Caldwell, J M; Szempruch, A J

    2017-08-01

    The spirochaete (Borrelia burgdorferi) associated with Lyme disease was detected in questing ticks and rodents during a period of 18 years, 1991-2009, at five locations on the Outer Banks of North Carolina. The black-legged tick (Ixodes scapularis) was collected at varied intervals between 1991 and 2009 and examined for B. burgdorferi. The white-footed mouse (Peromyscus leucopus), house mouse (Mus musculus) marsh rice rat (Oryzomys palustris), marsh rabbit (Sylvilagus palustris), eastern cottontail (Sylvilagus floridanus) and six-lined racerunner (Cnemidophorus sexlineatus) were live-trapped, and their tissues cultured to isolate spirochaetes. Borrelia burgdorferi isolates were obtained from questing adult I. scapularis and engorged I. scapularis removed from P. leucopus, O. palustris and S. floridanus. The prevalence of B. burgdorferi infection was variable at different times and sites ranging from 7 to 14% of examined questing I. scapularis. Mitochondrial (16S) rRNA gene phylogenetic analysis from 65 adult I. scapularis identified 12 haplotypes in two major clades. Nine haplotypes were associated with northern/Midwestern I. scapularis populations and three with southern I. scapularis populations. Sixteen isolates obtained from tick hosts in 2005 were confirmed to be B. burgdorferi by amplifying and sequencing of 16S rRNA and 5S-23S intergenic spacer fragments. The sequences had 98-99% identity to B. burgdorferi sensu stricto strains B31, JD1 and M11p. Taken together, these studies indicate that B. burgdorferi sensu stricto is endemic in questing I. scapularis and mammalian tick hosts on the Outer Banks of North Carolina. © 2016 Blackwell Verlag GmbH.

  18. Incidence of Cercopithifilaria bainae in dogs and probability of co-infection with other tick-borne pathogens.

    Directory of Open Access Journals (Sweden)

    Rafael Antonio Nascimento Ramos

    Full Text Available BACKGROUND: Cercopithifilaria bainae is a filarioid parasite that infects dogs, being transmitted by Rhipicephalus sanguineus group ticks in many countries of the Mediterranean basin. This study assessed the incidence density rate (IDR of infection by C. bainae in dogs and the probability of co-infection with other tick-borne pathogens (i.e., Anaplasma platys, Babesia vogeli and Hepatozoon canis, in an area of high endemicity in southern Italy. METHODOLOGY/PRINCIPAL FINDINGS: From March 2011 to October 2012, a field study involving 58 young dogs naturally exposed to tick infestation was conducted. Skin and blood samples obtained from each dog six times during an 18-month period were tested for C. bainae by parasite detection within skin snip sediments, with subsequent confirmation through PCR and DNA sequencing. Dogs examined monthly for ticks and A. platys, B. vogeli and H. canis were microscopically and/or molecularly diagnosed and after the first and the second summer seasons, the IDR for positive animal-month at risk was 3.8% and 1.7% in November 2011 and October 2012, respectively. All 58 C. bainae-infected dogs were simultaneously infected with at least one other tick-borne pathogen. After the first summer season (assessment in November 2011, a C. bainae-infected dog had a 33% probability of being infected with H. canis or A. platys, whereas after the second tick season (assessment in October 2012 the probability of co-infection was 78%, 22% and 11% for H. canis, A. platys and B. vogeli, respectively. CONCLUSIONS: Our data indicate that tick-infested dogs are at risk of acquiring infection by C. bainae. In addition, the detection of C. bainae microfilariae indicates a prior tick exposure and, should stimulate testing for other tick-borne disease causing pathogens.

  19. Expansion of the Lyme Disease Vector Ixodes scapularis in Canada inferred from CMIP5 Climate Projections

    Science.gov (United States)

    McPherson, Michelle Yvonne; García-García, Almudena; José Cuesta-Valero, Francisco; Beltrami, Hugo; Hansen-Ketchum, Patti; MacDougall, Donna; Hume Ogden, Nicholas

    2017-04-01

    A number of studies have assessed possible climate change impacts on the Lyme disease vector, Ixodes scapularis. However, most have used surface air temperature from only one climate model simulation and/or one emission scenario, representing only one possible climate future. We quantified effects of different Representative Concentration Pathway (RCP) and climate model outputs on the projected future changes in the basic reproduction number (R0) of I. scapularis to explore uncertainties in future R0 estimates. We used surface air temperature generated by a complete set of General Circulation Models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to hindcast historical and forecast future effects of climate change on the R0 of I. scapularis. As in previous studies, R0 of I. scapularis increased with a warming climate under future projected climate. Increases in the multi-model mean R0 values showed significant changes over time under all RCP scenarios, however; only the estimated R0 mean values between RCP6.0 and RCP8.5 showed statistically significant differences. Our results highlight the potential for climate change to have an effect on future Lyme disease risk in Canada even if the Paris Agreement's goal to keep global warming below 2°C is achieved, although mitigation reducing emissions from RCP8.5 levels to those of RCP6.0 or less would be expected to slow tick invasion after the 2030s. On-going planning is needed to inform and guide adaptation in light of the projected range of possible futures.

  20. Evaluating the utility of companion animal tick surveillance practices for monitoring spread and occurrence of human Lyme disease in West Virginia, 2014-2016.

    Science.gov (United States)

    Hendricks, Brian; Mark-Carew, Miguella; Conley, Jamison

    2017-11-13

    Domestic dogs and cats are potentially effective sentinel populations for monitoring occurrence and spread of Lyme disease. Few studies have evaluated the public health utility of sentinel programmes using geo-analytic approaches. Confirmed Lyme disease cases diagnosed by physicians and ticks submitted by veterinarians to the West Virginia State Health Department were obtained for 2014-2016. Ticks were identified to species, and only Ixodes scapularis were incorporated in the analysis. Separate ordinary least squares (OLS) and spatial lag regression models were conducted to estimate the association between average numbers of Ix. scapularis collected on pets and human Lyme disease incidence. Regression residuals were visualised using Local Moran's I as a diagnostic tool to identify spatial dependence. Statistically significant associations were identified between average numbers of Ix. scapularis collected from dogs and human Lyme disease in the OLS (β=20.7, PLyme disease. Findings reinforce the utility of spatial analysis of surveillance data, and highlight West Virginia's unique position within the eastern United States in regards to Lyme disease occurrence.

  1. Efficacy and environmental persistence of nootkatone for the control of the blacklegged tick (Acari: Ixodidae) in residential landscapes.

    Science.gov (United States)

    Bharadwaj, Anuja; Stafford, Kirby C; Behle, Robert W

    2012-09-01

    The ability of the plant-derived compound nootkatone to control nymphs of the blacklegged tick, Ixodes scapularis Say, was evaluated at lawn perimeter plots at homes in Lyme disease endemic areas of Connecticut. Three formulations of nootkatone ranging from 0.05 to 0.84% (0.06 - 1.03 g AI/m2) were applied by a hydraulic sprayer from 2008 to 2010. In 2008, the 0.84% emulsifiable nootkatone formulation provided 100% control of I. scapularis through week 1, but declined to 49 and 0% by 2 and 3 wk posttreatment, respectively. A combination of 0.05% nootkatone and entomopathogenic fungus, Metarhizium brunneum Petch F52, resulted in 50% control for the first week posttreatment and no control in subsequent weeks. The 0.84% emulsifiable nootkatone formulation was phytotoxic, although no damage was observed with the 0.05% formulation with Metarhizium. Residual analysis of nootkatone collected on filter paper disks showed that > or = 95% of the emulsified nootkatone for both formulations was lost within 7 d after application. A lignin-encapsulated nootkatone formulation (0.56 and 0.46% in 2009 and 2010, respectively) provided 100% control of I. scapularis for 8 wk in 2009 and, in 2010, 67% control at approximately 1 wk posttreatment with respect to the pretreatment counts, although there was no difference in tick abundance posttreatment. A 0.60% Maillard-reaction encapsulated nootkatone formulation in 2010 provided a similar level of control (62%). Nootkatone in the lignin and Maillard formulations were more persistent than the emulsifiable formulation. Little or no phytotoxicity was observed with the encapsulated formulations. Encapsulating nootkatone reduced phytotoxicity and appeared to reduce environmental loss. While nootkatone can provide effective tick control, further work is needed to refine formulations to address phytotoxicity, yet provide sufficient material to control ticks.

  2. Natural Anaplasma phagocytophilum infection in ticks from a forest area of Selenge province, Mongolia

    Directory of Open Access Journals (Sweden)

    G Javkhlan

    2014-03-01

    Full Text Available Anaplasma phagocytophilum is a zoonotic agent of public health importance, infecting both humans and animals. An investigation of the presence of Anaplasma phagocytophilum as well as Anaplasma platys was conducted in a forest area of Selenge province, Mongolia, where ticks are widely distributed and tick-borne diseases are highly endemic. Ticks were collected and tested using polymerase chain reaction based on groEL methodology. Anaplasma phagocytophilum was detected in 14 (6% of Ixodes persulcatus ticks and four (1% Dermacentor nuttalli ticks; infection of Anaplasma platys was detected in 1% of Ixodes persulcatus ticks and 10% of Dermacentor nuttalli ticks. The phylogenetic tree showed that the Anaplasma phagocytophilum clustered with the Russian group, most likely due to similar geographical locations. This finding is significant for both veterinary and public health officials given that these agents can cause both animal and human illness.

  3. Reducing Tick-Borne Disease in Alabama: Linking Health Risk Perception with Spatial Analysis Using the NASA Earth Observing System

    Science.gov (United States)

    Hemmings, S.; Renneboog, N.; Firsing, S.; Capilouto, E.; Harden, J.; Hyden, R.; Tipre, M.; Zhang, Y.

    2010-01-01

    Lyme disease (LD) accounts for most vector-borne disease reports in the U.S., and although its existence in Alabama remains controversial, other tick-borne illnesses (TBI) such as Southern Tick-Associated Rash Illness (STARI) pose a health concern in the state. Phase One of the Marshall Space Flight Center-UAB DEVELOP study of TBI identified the presence of the chain of infection for LD (Ixodes scapularis ticks carrying Borrelia burgdorferi bacteria) and STARI (Amblyomma americanum ticks and an as-yet-unconfirmed agent) in Alabama. Both LD and STARI are associated with the development of erythema migrans rashes around an infected tick bite, and while treatable with oral antibiotics, a review of educational resources available to state residents revealed low levels of prevention information. To improve prevention, recognition, and treatment of TBI in Alabama, Phase Two builds a health communication campaign based on vector habitat mapping and risk perception assessment. NASA Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery identified likely tick habitats using remotely sensed measurements of vegetation vigor (Normalized Difference Vegetation Index) and soil moisture. Likely tick habitats, identified as those containing both high vegetation density and soil moisture, included Oak Mountain State Park, Bankhead National Forest, and Talladega National Forest. To target a high-risk group -- outdoor recreation program participants at Alabama universities -- the study developed a behavior survey instrument based on existing studies of LD risk factors and theoretical constructs from the Social Ecological Model and Health Belief Model. The survey instrument was amended to include geographic variables in the assessment of TBI knowledge, attitudes, and prevention behaviors, and the vector habitat model will be expanded to incorporate additional environmental variables and in situ data. Remotely sensed environmental data combined with

  4. Diversity of spotted fever group Rickettsia infection in hard ticks from Suifenhe, Chinese-Russian border.

    Science.gov (United States)

    Cheng, Cheng; Fu, Weiming; Ju, Wendong; Yang, Liwei; Xu, Ning; Wang, Yan-Mei; Li, Hui; Wang, Yan-Lu; Hu, Man-Xia; Wen, Jing; Jiao, Dan; Geng, Cong; Sun, Yi

    2016-07-01

    In order to investigate the diversity of spotted fever group (SFG) Rickettsia infection in hard ticks, ticks were harvested from the forest areas in Suifenhe city, along the Chinese-Russian border and conventional PCR was carried out using universal SFG Rickettsia primers targeting gltA and ompA genes to screen for their infection with SFG Rickettsia organisms. Results showed that of the 215 ticks belonging to Ixodes persulcatus, Haemaphysalis concinna and Haemaphysalis japonica Warburton, 1908 species, 138 (64.2%) were positive for SFG Rickettsia. Three species of SFG Rickettsia were detected, Rickettsia raoultii, Rickettsia heilongjiangensis and Candidatus Rickettsia tarasevichiae. No co-infection with different species of SFG Rickettsia was found in any individual tick among the three tick species. We detected more than one SFG Rickettsia species in ticks from each of the three tick species with an overlapping distribution and potentially similar transmission cycles of SFG Rickettsia in the areas surveyed. Consequently, different pathogenic rickettsial species may be involved in human cases of rickettsiosis after a bite of the three above-mentioned tick species in that area Rickettsia. Copyright © 2016. Published by Elsevier GmbH.

  5. Ability of two natural products, nootkatone and carvacrol, to suppress Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in a Lyme disease endemic area of New Jersey.

    Science.gov (United States)

    Dolan, Marc C; Jordan, Robert A; Schulze, Terry L; Schulze, Christopher J; Manning, Mark Cornell; Ruffolo, Daniel; Schmidt, Jason P; Piesman, Joseph; Karchesy, Joseph J

    2009-12-01

    We evaluated the ability of the natural, plant-derived acaricides nootkatone and carvacrol to suppress Ixodes scapularis Say and Amblyomma americanum (L.) (Acari: Ixodidae). Aqueous formulations of 1 and 5% nootkatone applied by backpack sprayer to the forest litter layer completely suppressed I. scapularis nymphs through 2 d. Thereafter, the level of reduction gradually declined to nootkatone was less effective, but at a 5% concentration, the level of control was similar or greater to that observed with I. scapularis through 21 d postapplication. Initial applications of 0.05% carvacrol were ineffective, but a 5% carvacrol formulation completely suppressed nymphs of both species through 2 d and resulted in significant reduction in I. scapularis and A. americanum nymphs through 28 and 14 d postapplication, respectively. Backpack sprayer applications of 5% nootkatone to the shrub and litter layers resulted in 100% control of I. scapularis adults through 6 d, but the level of reduction declined to 71.5% at 28 d postapplication. By contrast, high-pressure applications of 2% nootkatone to the litter layer resulted in 96.2-100% suppression of both I. scapularis and A. americanum nymphs through 42 d, whereas much lower control was obtained from the same formulation applied by backpack sprayer. Backpack sprayer application of a 3.1% nootkatone nanoemulsion resulted in 97.5-98.9 and 99.3-100% reduction in I. scapularis and A. americanum nymphs, respectively, at 1 d postapplication. Between 7 d and 35 d postapplication, the level of control varied between 57.1% and 92.5% for I. scapularis and between 78.5 and 97.1% for A. americanum nymphs. The ability of natural products to quickly suppress and maintain significant control of populations of these medically important ticks at relatively low concentrations may represent a future alternative to the use of conventional synthetic acaricides.

  6. Deorphanization and target validation of cross-tick species conserved novel Amblyomma americanum tick saliva protein.

    Science.gov (United States)

    Mulenga, Albert; Kim, Tae Kwon; Ibelli, Adriana Mércia Guaratini

    2013-05-01

    We previously identified a cross-tick species conserved tick feeding stimuli responsive Amblyomma americanum (Aam) AV422 gene. This study demonstrates that AamAV422 belongs to a novel group of arthropod proteins that is characterized by 14 cysteine amino acid residues: C(23)-X7/9-C(33)-X23/24-C(58)-X8-C(67)-X7-C(75)-X23-C(99)-X15-C(115)-X10-C(126)-X24/25/33-C(150)C(151)-X7-C(159)-X8-C(168)-X23/24-C(192)-X9/10-C(202) predicted to form seven disulfide bonds. We show that AamAV422 protein is a ubiquitously expressed protein that is injected into the host within the first 24h of the tick attaching onto the host as revealed by Western blotting analyses of recombinant (r)AamAV422, tick saliva and dissected tick organ protein extracts using antibodies to 24 and 48 h tick saliva proteins. Native AamAV422 is apparently involved with mediating tick anti-hemostasis and anti-complement functions in that rAamAV422 delayed plasma clotting time in a dose responsive manner by up to ≈ 160 s, prevented platelet aggregation by up to ≈ 16% and caused ≈ 24% reduction in production of terminal complement complexes. Target validation analysis revealed that rAamAV422 is a potential candidate for a cocktail or multivalent tick vaccine preparation in that RNA interference (RNAi)-mediated silencing of AamAV422 mRNA caused a statistically significant (≈ 44%) reduction in tick engorgement weights, which is proxy for amounts of ingested blood. We speculate that AamAV422 is a potential target antigen for development of the highly desired universal tick vaccine in that consistent with high conservation among ticks, antibodies to 24h Ixodes scapularis tick saliva proteins specifically bound rAamAV422. We discuss data in this study in the context of advancing the biology of tick feeding physiology and discovery of potential target antigens for tick vaccine development. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  7. Transport of Ixodid ticks and tick-borne pathogens by migratory birds.

    Directory of Open Access Journals (Sweden)

    Gunnar eHasle

    2013-09-01

    Full Text Available Birds, particularly passerines, can be parasitized by Ixodid ticks, which may be infected with tick-borne pathogens, like Borrelia spp., Babesia spp., Anaplasma, Rickettsia/Coxiella, and tick-borne encephalitis virus. The prevalence of ticks on birds varies over years, season, locality and different bird species. The prevalence of ticks on different species depends mainly on the degree of feeding on the ground. In Europe, the Turdus spp., especially the blackbird, Turdus merula, appears to be most important for harboring ticks. Birds can easily cross barriers, like fences, mountains, glaciers, desserts and oceans, which would stop mammals, and they can move much faster than the wingless hosts. Birds can potentially transport tick-borne pathogens by transporting infected ticks, by being infected with tick-borne pathogens and transmit the pathogens to the ticks, and possibly act as hosts for transfer of pathogens between ticks through co-feeding. Knowledge of the bird migration routes and of the spatial distribution of tick species and tick-borne pathogens is crucial for understanding the possible impact of birds as spreaders of ticks and tick-borne pathogens. Successful colonization of new tick species or introduction of new tick-borne pathogens will depend on suitable climate, vegetation and hosts. Although it has never been demonstrated that a new tick species, or a new tick pathogen, actually has been established in a new locality after being seeded there by birds, evidence strongly suggests that this could occur.

  8. Tick-borne infections in human and animal population worldwide

    Directory of Open Access Journals (Sweden)

    José Brites-Neto

    2015-03-01

    Full Text Available The abundance and activity of ectoparasites and its hosts are affected by various abiotic factors, such as climate and other organisms (predators, pathogens and competitors presenting thus multiples forms of association (obligate to facultative, permanent to intermittent and superficial to subcutaneous developed during long co-evolving processes. Ticks are ectoparasites widespread globally and its eco epidemiology are closely related to the environmental conditions. They are obligatory hematophagous ectoparasites and responsible as vectors or reservoirs at the transmission of pathogenic fungi, protozoa, viruses, rickettsia and others bacteria during their feeding process on the hosts. Ticks constitute the second vector group that transmit the major number of pathogens to humans and play a role primary for animals in the process of diseases transmission. Many studies on bioecology of ticks, considering the information related to their population dynamics, to the host and the environment, comes possible the application and efficiency of tick control measures in the prevention programs of vector-borne diseases. In this review were considered some taxonomic, morphological, epidemiological and clinical fundamental aspects related to the tick-borne infections that affect human and animal populations.

  9. Tick Paralysis

    Science.gov (United States)

    ... Control How to Remove a Tick Deer Tick Ecology Tick-Borne Diseases Anaplasmosis Babesiosis Borrelia miyamotoi infections ... repellents containing the active ingredient DEET can be applied to the skin (be sure to strictly follow ...

  10. Experimental infection of the bat tick Carios fonsecai (Acari: Ixodidae with the rabies virus

    Directory of Open Access Journals (Sweden)

    Silvana Regina Favoretto

    2013-12-01

    Full Text Available Introduction This study assessed the viability of the rabies virus in the argasid tick Carios fonsecai following experimental infection. Methods The mouse inoculation test (MIT, fluorescent antibody test (FAT and polymerase chain reaction (PCR were used. The rabies virus was administered to ticks via the intra-coelomic route, and the ticks were sacrificed at different time points. Results The inoculated ticks were negative for rabies according to the MIT. Ticks macerated with rabies virus were positive according to the MIT and FAT. All of the tick lots tested by PCR were positive. Conclusions The rabies virus became unviable shortly after its inoculation into tick bodies. Ticks are not likely to play an important role in the epidemiology of rabies.

  11. Development and Validation of a Serologic Test Panel for Detection of Powassan Virus Infection in U.S. Patients Residing in Regions Where Lyme Disease Is Endemic.

    Science.gov (United States)

    Thomm, Angela M; Schotthoefer, Anna M; Dupuis, Alan P; Kramer, Laura D; Frost, Holly M; Fritsche, Thomas R; Harrington, Yvette A; Knox, Konstance K; Kehl, Sue C

    2018-01-01

    Powassan virus (POWV) is an emerging tick-borne arbovirus presenting a public health threat in North America. POWV lineage II, also known as deer tick virus, is the strain of the virus most frequently found in Ixodes scapularis ticks and is implicated in most cases of POWV encephalitis in the United States. Currently, no commercial tests are available to detect POWV exposure in tick-borne disease (TBD) patients. We describe here the development and analytical validation of a serologic test panel to detect POWV infections. The panel uses an indirect enzyme immunoassay (EIA) to screen. EIA-positive samples reflex to a laboratory-developed, POWV-specific immunofluorescence assay (IFA). The analytical sensitivity of the test panel was 89%, and the limit of detection was a plaque reduction neutralization test (PRNT) titer of 1:20. The analytical specificity was 100% for the IgM assay and 65% for the IgG assay when heterologous-flavivirus-positive samples were tested. On samples collected from regions where Lyme disease is endemic, seroprevalence for POWV in TBD samples was 9.4% (10 of 106) versus 2% when tested with non-TBD samples (2 of 100, P = 0.034). No evidence of POWV infection was seen in samples collected from a region where Lyme disease was not endemic (0 of 22). This test panel provides a sensitive and specific platform for detecting a serologic response to POWV early in the course of infection when neutralizing antibodies may not be detectable. Combined with clinical history, the panel is an effective tool for identifying acute POWV infection. IMPORTANCE Approximately 100 cases of POWV disease were reported in the United States over the past 10 years. Most cases have occurred in the Northeast (52) and Great Lakes (45) regions (https://www.cdc.gov/powassan/statistics.html). The prevalence of POWV in ticks and mammals is increasing, and POWV poses an increasing threat in a greater geographical range. In areas of the Northeast and Midwest where Lyme disease is

  12. The Microbiome of Ehrlichia-Infected and Uninfected Lone Star Ticks (Amblyomma americanum.

    Directory of Open Access Journals (Sweden)

    R T Trout Fryxell

    Full Text Available The Lone Star tick, Amblyomma americanum, transmits several bacterial pathogens including species of Anaplasma and Ehrlichia. Amblyomma americanum also hosts a number of non-pathogenic bacterial endosymbionts. Recent studies of other arthropod and insect vectors have documented that commensal microflora can influence transmission of vector-borne pathogens; however, little is known about tick microbiomes and their possible influence on tick-borne diseases. Our objective was to compare bacterial communities associated with A. americanum, comparing Anaplasma/Ehrlichia -infected and uninfected ticks. Field-collected questing specimens (n = 50 were used in the analyses, of which 17 were identified as Anaplasma/Ehrlichia infected based on PCR amplification and sequencing of groEL genes. Bacterial communities from each specimen were characterized using Illumina sequencing of 16S rRNA gene amplicon libraries. There was a broad range in diversity between samples, with inverse Simpson's Diversity indices ranging from 1.28-89.5. There were no statistical differences in the overall microbial community structure between PCR diagnosed Anaplasma/Ehrlichia-positive and negative ticks, but there were differences based on collection method (P < 0.05, collection site (P < 0.05, and sex (P < 0.1 suggesting that environmental factors may structure A. americanum microbiomes. Interestingly, there was not always agreement between Illumina sequencing and PCR diagnostics: Ehrlichia was identified in 16S rRNA gene libraries from three PCR-negative specimens; conversely, Ehrlichia was not found in libraries of six PCR-positive ticks. Illumina sequencing also helped identify co-infections, for example, one specimen had both Ehrlichia and Anaplasma. Other taxa of interest in these specimens included Coxiella, Borrelia, and Rickettsia. Identification of bacterial community differences between specimens of a single tick species from a single geographical site indicates that

  13. Functional analysis of the Borrelia burgdorferi bba64 gene product in murine infection via tick infestation.

    Directory of Open Access Journals (Sweden)

    Toni G Patton

    Full Text Available Borrelia burgdorferi, the causative agent of Lyme borreliosis, is transmitted to humans from the bite of Ixodes spp. ticks. During the borrelial tick-to-mammal life cycle, B. burgdorferi must adapt to many environmental changes by regulating several genes, including bba64. Our laboratory recently demonstrated that the bba64 gene product is necessary for mouse infectivity when B. burgdorferi is transmitted by an infected tick bite, but not via needle inoculation. In this study we investigated the phenotypic properties of a bba64 mutant strain, including 1 replication during tick engorgement, 2 migration into the nymphal salivary glands, 3 host transmission, and 4 susceptibility to the MyD88-dependent innate immune response. Results revealed that the bba64 mutant's attenuated infectivity by tick bite was not due to a growth defect inside an actively feeding nymphal tick, or failure to invade the salivary glands. These findings suggested there was either a lack of spirochete transmission to the host dermis or increased susceptibility to the host's innate immune response. Further experiments showed the bba64 mutant was not culturable from mouse skin taken at the nymphal bite site and was unable to establish infection in MyD88-deficient mice via tick infestation. Collectively, the results of this study indicate that BBA64 functions at the salivary gland-to-host delivery interface of vector transmission and is not involved in resistance to MyD88-mediated innate immunity.

  14. Closely-related Borrelia burgdorferi (sensu stricto) strains exhibit similar fitness in single infections and asymmetric competition in multiple infections.

    Science.gov (United States)

    Rynkiewicz, Evelyn C; Brown, Julia; Tufts, Danielle M; Huang, Ching-I; Kampen, Helge; Bent, Stephen J; Fish, Durland; Diuk-Wasser, Maria A

    2017-02-06

    Wild hosts are commonly co-infected with complex, genetically diverse, pathogen communities. Competition is expected between genetically or ecologically similar pathogen strains which may influence patterns of coexistence. However, there is little data on how specific strains of these diverse pathogen species interact within the host and how this impacts pathogen persistence in nature. Ticks are the most common disease vector in temperate regions with Borrelia burgdorferi, the causative agent of Lyme disease, being the most common vector-borne pathogen in North America. Borrelia burgdorferi is a pathogen of high public health concern and there is significant variation in infection phenotype between strains, which influences predictions of pathogen dynamics and spread. In a laboratory experiment, we investigated whether two closely-related strains of B. burgdorferi (sensu stricto) showed similar transmission phenotypes, how the transmission of these strains changed when a host was infected with one strain, re-infected with the same strain, or co-infected with two strains. Ixodes scapularis, the black-legged tick, nymphs were used to sequentially infect laboratory-bred Peromyscus leucopus, white-footed mice, with one strain only, homologous infection with the same stain, or heterologous infection with both strains. We used the results of this laboratory experiment to simulate long-term persistence and maintenance of each strain in a simple simulation model. Strain LG734 was more competitive than BL206, showing no difference in transmission between the heterologous infection groups and single-infection controls, while strain BL206 transmission was significantly reduced when strain LG734 infected first. The results of the model show that this asymmetry in competition could lead to extinction of strain BL206 unless there was a tick-to-host transmission advantage to this less competitive strain. This asymmetric competitive interaction suggests that strain identity and

  15. Experimental Infection of Ornithodoros erraticus sensu stricto with Two Portuguese African Swine Fever Virus Strains. Study of Factors Involved in the Dynamics of Infection in Ticks.

    Directory of Open Access Journals (Sweden)

    Rita Ribeiro

    Full Text Available African swine fever (ASF is a frequently devastating hemorrhagic disease of domestic pigs and wild boar and Ornithodoros erraticus sensu stricto argasid ticks are the only biological vectors of African swine fever virus (ASFV known to occur in Europe. Recently this disease emerged in Eastern Europe and Russian Federation, showing a huge potential for a rapid spread between countries. There is some risk of re-emergence of ASF in the countries where these ticks exist, that can contribute for the persistence of infection and compromise control measures. In this study we aimed to identify factors that determine the probability of infection and its dynamics in the tick vector Ornithodoros erraticus sensu stricto, with two Portuguese strains of ASFV. Our results suggest that these ticks have a high likelihood of excreting the two haemadsorbing ASF viruses of different host origins and that, in field surveys, the analysis of adults and 5th nymphal stage can provide the best chance of detecting virus infection. The results also indicate that infection of pigs with highly virulent ASF viruses will promote higher rates of infection and a higher likelihood for virus excretion by ticks. Nevertheless, there is also a risk, although lower, that ticks can become infected on pigs that have overcome the acute phase of infection, which was simulated in our study by membrane feeding ticks with low titres of virus. We believe these results can be valuable in designing and interpreting the results of ASF control programmes, and future work can also be undertaken as our dataset is released under open access, to perform studies in risk assessment for ASFV persistence in a region where O. erraticus sensu stricto ticks are present.

  16. The ovarian transcriptome of the cattle tick, Rhipicephalus (Boophilus) microplus, feeding upon a bovine host infected with Babesia bovis.

    Science.gov (United States)

    Heekin, Andrew M; Guerrero, Felix D; Bendele, Kylie G; Saldivar, Leo; Scoles, Glen A; Dowd, Scot E; Gondro, Cedric; Nene, Vishvanath; Djikeng, Appolinaire; Brayton, Kelly A

    2013-09-23

    Cattle babesiosis is a tick-borne disease of cattle with the most severe form of the disease caused by the apicomplexan, Babesia bovis. Babesiosis is transmitted to cattle through the bite of infected cattle ticks of the genus Rhipicephalus. The most prevalent species is Rhipicephalus (Boophilus) microplus, which is distributed throughout the tropical and subtropical countries of the world. The transmission of B. bovis is transovarian and a previous study of the R. microplus ovarian proteome identified several R. microplus proteins that were differentially expressed in response to infection. Through various approaches, we studied the reaction of the R. microplus ovarian transcriptome in response to infection by B. bovis. A group of ticks were allowed to feed on a B. bovis-infected splenectomized calf while a second group fed on an uninfected splenectomized control calf. RNA was purified from dissected adult female ovaries of both infected and uninfected ticks and a subtracted B. bovis-infected cDNA library was synthesized, subtracting with the uninfected ovarian RNA. Four thousand ESTs were sequenced from the ovary subtracted library and annotated. The subtracted library dataset assembled into 727 unique contigs and 2,161 singletons for a total of 2,888 unigenes, Microarray experiments designed to detect B. bovis-induced gene expression changes indicated at least 15 transcripts were expressed at a higher level in ovaries from ticks feeding upon the B. bovis-infected calf as compared with ovaries from ticks feeding on an uninfected calf. We did not detect any transcripts from these microarray experiments that were expressed at a lower level in the infected ovaries compared with the uninfected ovaries. Using the technique called serial analysis of gene expression, 41 ovarian transcripts from infected ticks were differentially expressed when compared with transcripts of controls. Collectively, our experimental approaches provide the first comprehensive profile of the

  17. Novel foci of Dermacentor reticulatus ticks infected with Babesia canis and Babesia caballi in the Netherlands and in Belgium.

    Science.gov (United States)

    Jongejan, Frans; Ringenier, Moniek; Putting, Michael; Berger, Laura; Burgers, Stefan; Kortekaas, Reinier; Lenssen, Jesse; van Roessel, Marleen; Wijnveld, Michiel; Madder, Maxime

    2015-04-17

    Autochthonous populations of Dermacentor reticulatus ticks in the Netherlands were discovered after fatal cases of babesiosis occurred in resident dogs in 2004. The presence of D. reticulatus in the Netherlands has also linked with the emergence of piroplasmosis in the resident horse population. The aim of this study was to put together results of continued surveillance of field sites and hosts for this tick in the Netherlands and also in Belgium and determine their infection status for Babesia and Theileria species. Ticks were collected from the vegetation at 11 locations between 2011 and 2013. D. reticulatus ticks were also collected from different hosts between 2007 and 2013. Ticks were screened by PCR and reverse line blot (RLB). A total of 1368 D. reticulatus ticks were collected from 4 previously known field locations and from 5 new locations in the Netherlands and from 2 sites in Belgium (one old and one new location). A total of 855 ticks collected from 8 locations in the Netherlands and 2 locations in Belgium were tested. Fourteen ticks (1,64%) collected at 4 field locations (Dintelse Gorzen, Rozenburg, Slikken van de Heen and St. Philipsland) were positive for Babesia canis, whereas two ticks were positive for Babesia caballi, one tick in the Dintelse Gorzen in the Netherlands and one tick was found positive in De Panne in Belgium. A further 1092 D. reticulatus ticks were collected between 2007 and 2013 from 40 dogs (132 ticks), two ticks from two humans, 51 ticks from 15 horses, two ticks from two cats, one tick from a roe deer, whereas most ticks (904) were collected from cattle (n = 25). Ticks were found throughout the year on dogs in nearly all provinces of the Netherlands. None of the ticks collected from these hosts were infected. D. reticulatus is continuing its spread into novel areas. The finding that some autochthonous ticks are infected with B. canis and B. caballi poses a threat to the resident dog and horse population and justifies year

  18. The Western progression of lyme disease: infectious and Nonclonal Borrelia burgdorferi Sensu Lato populations in Grand Forks County, North Dakota.

    Science.gov (United States)

    Stone, Brandee L; Russart, Nathan M; Gaultney, Robert A; Floden, Angela M; Vaughan, Jefferson A; Brissette, Catherine A

    2015-01-01

    Scant attention has been paid to Lyme disease, Borrelia burgdorferi, Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports of B. burgdorferi and I. scapularis in North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified as B. burgdorferi sensu lato through sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileT intergenic spacer region, flaB, ospA, ospC, and p66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected with B. burgdorferi isolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, and B. burgdorferi M3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larval I. scapularis ticks were able to acquire B. burgdorferi M3 from infected mice; M3 was maintained in I. scapularis during the molt from larva to nymph; and further, M3 was transmitted from infected I. scapularis nymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectious B. burgdorferi populations in eastern North Dakota. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Ticks

    Science.gov (United States)

    Ginsberg, H.S.; Faulde, M.K.

    2008-01-01

    The most common vector-borne diseases in both Europe and North America are transmitted by ticks. Lyme borreliosis (LB), a tick-borne bacterial zoonosis, is the most highly prevalent. Other important tick-borne diseases include TBE (tick-borne encephalitis) and Crimean-Congo haemorrhagic fever in Europe, Rocky Mountain spotted fever (RMSF) in North America, and numerous less common tick-borne bacterial, viral, and protozoan diseases on both continents. The major etiological agent of LB is Borrelia burgdorferi in North America, while in Europe several related species of Borrelia can also cause human illness. These Borrelia genospecies differ in clinical manifestations, ecology (for example, some have primarily avian and others primarily mammalian reservoirs), and transmission cycles, so the epizootiology of LB is more complex in Europe than in North America. Ticks dwell predominantly in woodlands and meadows, and in association with animal hosts, with only limited colonization of human dwellings by a few species. Therefore, suburbanization has contributed substantially to the increase in tick-borne disease transmission in North America by fostering increased exposure of humans to tick habitat. The current trend toward suburbanization in Europe could potentially result in similar increases in transmission of tick-borne diseases. Incidence of tick-borne diseases can be lowered by active public education campaigns, targeted at the times and places of greatest potential for encounter between humans and infected ticks. Similarly, vaccines (e.g., against TBE) are most effective when made available to people at greatest risk, and for high-prevalence diseases such as LB. Consultation with vector-borne disease experts during the planning stages of new human developments can minimize the potential for residents to encounter infected ticks (e.g., by appropriate dwelling and landscape design). Furthermore, research on tick vectors, pathogens, transmission ecology, and on

  20. The ecology of ticks and epidemiology of tick-borne viral diseases.

    Science.gov (United States)

    Estrada-Peña, Agustín; de la Fuente, José

    2014-08-01

    A number of tick-borne diseases of humans have increased in incidence and geographic range over the past few decades, and there is concern that they will pose an even greater threat to public health in future. Although global warming is often cited as the underlying mechanism favoring the spread of tick-borne diseases, climate is just one of many factors that determine which tick species are found in a given geographic region, their population density, the likelihood that they will be infected with microbes pathogenic for humans and the frequency of tick-human contact. This article provides basic information needed for microbiologists to understand the many factors that affect the geographic range and population density of ticks and the risk of human exposure to infected ticks. It first briefly summarizes the life cycle and basic ecology of ticks and how ticks and vertebrate hosts interact, then reviews current understanding of the role of climate, sociodemographic factors, agricultural development and changes in human behavior that affect the incidence of tick-borne diseases. These concepts are then illustrated in specific discussions of tick-borne encephalitis and Crimean-Congo hemorrhagic fever. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Competitive advantage of Borrelia burgdorferi with outer surface protein BBA03 during tick-mediated infection of the mammalian host.

    Science.gov (United States)

    Bestor, Aaron; Rego, Ryan O M; Tilly, Kit; Rosa, Patricia A

    2012-10-01

    Linear plasmid lp54 is one of the most highly conserved and differentially expressed elements of the segmented genome of the Lyme disease spirochete Borrelia burgdorferi. We previously reported that deletion of a 4.1-kb region of lp54 (bba01 to bba07 [bba01-bba07]) led to a slight attenuation of tick-transmitted infection in mice following challenge with a large number of infected ticks. In the current study, we reduced the number of ticks in the challenge to more closely mimic the natural dose and found a profound defect in tick-transmitted infection of the bba01-bba07 mutant relative to wild-type B. burgdorferi. We next focused on deletion of bba03 as the most likely cause of this mutant phenotype, as previous studies have shown that expression of bba03 is increased by culture conditions that simulate tick feeding. Consistent with this hypothesis, we demonstrated increased expression of bba03 by spirochetes in fed relative to unfed ticks. We also observed that a bba03 deletion mutant, although fully competent by itself, did not efficiently infect mice when transmitted by ticks that were simultaneously coinfected with wild-type B. burgdorferi. These results suggest that BBA03 provides a competitive advantage to spirochetes carrying this protein during tick transmission to a mammalian host in the natural infectious cycle.

  2. Genetic characterization and molecular survey of Babesia sp. Xinjiang infection in small ruminants and ixodid ticks in China.

    Science.gov (United States)

    Niu, Qingli; Liu, Zhijie; Yang, Jifei; Gao, Shandian; Pan, Yuping; Guan, Guiquan; Luo, Jianxun; Yin, Hong

    2017-04-01

    Babesia sp. Xinjiang is a large ovine Babesia species that was recently isolated in China. Compared with other ovine Babesia species, it has different morphological features, pathogenicity and vector tick species. The known transmitting vector is Hyalomma anatolicum. In this study, the distribution and the presence of Babesia sp. Xinjiang in small ruminants and ixodid ticks in China were assessed by specific nested-PCR assay based on the rap-1a gene. A total of 978 blood samples from sheep or goats from 15 provinces and 797 tick specimens from vegetation from 10 provinces were collected and analysed for the presence of the Babesia sp. Xinjiang. Full-length and partial rap-1a of Babesia sp. Xinjiang were amplified from field samples. The PCR results were further confirmed by DNA sequencing. Overall, 38 (3.89%) blood samples and 51 (6.4%) tick samples were positive for Babesia sp. Xinjiang infection. The highest presence (26.92%) was found in blood samples from Yunnan province, while H. qinghaiensis ticks with the highest presence of infection (21.3%) were from Gansu province. This study identified for the first time Babesia sp. Xinjiang infection in H. longicornis tick species. The rap-1a sequences of Babesia sp. Xinjiang from field blood and tick samples indicated 100% identity. The presence of Babesia sp. Xinjiang infection may increase in China. Novel potential transmitting vectors might be more extensive than previously thought. Copyright © 2017. Published by Elsevier B.V.

  3. Molecular cloning, sequencing and recombinant expression of a ...

    African Journals Online (AJOL)

    The 4D8 gene was recently discovered in Ixodes scapularis and identified as a tick protective antigen. Vaccination using recombinant 4D8 from I. scapularis showed a significant reduction against I. scapularis tick infestation in a sheep model. This protein is expressed in both salivary gland and gut tissues, and is thought to ...

  4. Ehrlichia chaffeensis infection in the reservoir host (white-tailed deer and in an incidental host (dog is impacted by its prior growth in macrophage and tick cell environments.

    Directory of Open Access Journals (Sweden)

    Arathy D S Nair

    Full Text Available Ehrlichia chaffeensis, transmitted from Amblyomma americanum ticks, causes human monocytic ehrlichiosis. It also infects white-tailed deer, dogs and several other vertebrates. Deer are its reservoir hosts, while humans and dogs are incidental hosts. E. chaffeensis protein expression is influenced by its growth in macrophages and tick cells. We report here infection progression in deer or dogs infected intravenously with macrophage- or tick cell-grown E. chaffeensis or by tick transmission in deer. Deer and dogs developed mild fever and persistent rickettsemia; the infection was detected more frequently in the blood of infected animals with macrophage inoculum compared to tick cell inoculum or tick transmission. Tick cell inoculum and tick transmission caused a drop in tick infection acquisition rates compared to infection rates in ticks fed on deer receiving macrophage inoculum. Independent of deer or dogs, IgG antibody response was higher in animals receiving macrophage inoculum against macrophage-derived Ehrlichia antigens, while it was significantly lower in the same animals against tick cell-derived Ehrlichia antigens. Deer infected with tick cell inoculum and tick transmission caused a higher antibody response to tick cell cultured bacterial antigens compared to the antibody response for macrophage cultured antigens for the same animals. The data demonstrate that the host cell-specific E. chaffeensis protein expression influences rickettsemia in a host and its acquisition by ticks. The data also reveal that tick cell-derived inoculum is similar to tick transmission with reduced rickettsemia, IgG response and tick acquisition of E. chaffeensis.

  5. Clinical presentation, convalescence, and relapse of rocky mountain spotted fever in dogs experimentally infected via tick bite.

    Directory of Open Access Journals (Sweden)

    Michael L Levin

    Full Text Available Rocky Mountain spotted fever (RMSF is a tick-borne disease caused by R. rickettsii in North and South America. Domestic dogs are susceptible to infection and canine RMSF can be fatal without appropriate treatment. Although clinical signs of R. rickettsii infection in dogs have been described, published reports usually include descriptions of either advanced clinical cases or experimental infections caused by needle-inoculation of cultured pathogen rather than by tick bite. The natural progression of a tick-borne R. rickettsii infection has not been studied in sufficient detail. Here, we provide a detailed description of clinical, hematological, molecular, and serological dynamics of RMSF in domestic dogs from the day of experimental exposure to infected ticks through recovery. Presented data indicate that neither the height/duration of fever nor detection of rickettsial DNA in dogs' blood by PCR are good indicators for clinical prognosis. Only the apex and subsequent subsidence of neutrophilia seem to mark the beginning of recovery and allow predicting a favorable outcome in Rickettsia-infected dogs, even despite the continuing persistence of mucosal petechiae and skin rash. On the other hand the appropriate (doxycycline antibiotic therapy of sufficient duration is crucial in prevention of RMSF relapses in dogs.

  6. Clinical presentation, convalescence, and relapse of rocky mountain spotted fever in dogs experimentally infected via tick bite.

    Science.gov (United States)

    Levin, Michael L; Killmaster, Lindsay F; Zemtsova, Galina E; Ritter, Jana M; Langham, Gregory

    2014-01-01

    Rocky Mountain spotted fever (RMSF) is a tick-borne disease caused by R. rickettsii in North and South America. Domestic dogs are susceptible to infection and canine RMSF can be fatal without appropriate treatment. Although clinical signs of R. rickettsii infection in dogs have been described, published reports usually include descriptions of either advanced clinical cases or experimental infections caused by needle-inoculation of cultured pathogen rather than by tick bite. The natural progression of a tick-borne R. rickettsii infection has not been studied in sufficient detail. Here, we provide a detailed description of clinical, hematological, molecular, and serological dynamics of RMSF in domestic dogs from the day of experimental exposure to infected ticks through recovery. Presented data indicate that neither the height/duration of fever nor detection of rickettsial DNA in dogs' blood by PCR are good indicators for clinical prognosis. Only the apex and subsequent subsidence of neutrophilia seem to mark the beginning of recovery and allow predicting a favorable outcome in Rickettsia-infected dogs, even despite the continuing persistence of mucosal petechiae and skin rash. On the other hand the appropriate (doxycycline) antibiotic therapy of sufficient duration is crucial in prevention of RMSF relapses in dogs.

  7. Infection history of the blood-meal host dictates pathogenic potential of the Lyme disease spirochete within the feeding tick vector.

    Directory of Open Access Journals (Sweden)

    Bharti Bhatia

    2018-04-01

    Full Text Available Lyme disease in humans is caused by several genospecies of the Borrelia burgdorferi sensu lato (s.l. complex of spirochetal bacteria, including B. burgdorferi, B. afzelii and B. garinii. These bacteria exist in nature as obligate parasites in an enzootic cycle between small vertebrate hosts and Ixodid tick vectors, with humans representing incidental hosts. During the natural enzootic cycle, infected ticks in endemic areas feed not only upon naïve hosts, but also upon seropositive infected hosts. In the current study, we considered this environmental parameter and assessed the impact of the immune status of the blood-meal host on the phenotype of the Lyme disease spirochete within the tick vector. We found that blood from a seropositive host profoundly attenuates the infectivity (>104 fold of homologous spirochetes within the tick vector without killing them. This dramatic neutralization of vector-borne spirochetes was not observed, however, when ticks and blood-meal hosts carried heterologous B. burgdorferi s.l. strains, or when mice lacking humoral immunity replaced wild-type mice as blood-meal hosts in similar experiments. Mechanistically, serum-mediated neutralization does not block induction of host-adapted OspC+ spirochetes during tick feeding, nor require tick midgut components. Significantly, this study demonstrates that strain-specific antibodies elicited by B. burgdorferi s.l. infection neutralize homologous bacteria within feeding ticks, before the Lyme disease spirochetes enter a host. The blood meal ingested from an infected host thereby prevents super-infection by homologous spirochetes, while facilitating transmission of heterologous B. burgdorferi s.l. strains. This finding suggests that Lyme disease spirochete diversity is stably maintained within endemic populations in local geographic regions through frequency-dependent selection of rare alleles of dominant polymorphic surface antigens.

  8. Ixodes ticks belonging to the Ixodes ricinus complex encode a family of anticomplement proteins.

    Science.gov (United States)

    Daix, V; Schroeder, H; Praet, N; Georgin, J-P; Chiappino, I; Gillet, L; de Fays, K; Decrem, Y; Leboulle, G; Godfroid, E; Bollen, A; Pastoret, P-P; Gern, L; Sharp, P M; Vanderplasschen, A

    2007-04-01

    The alternative pathway of complement is an important innate defence against pathogens including ticks. This component of the immune system has selected for pathogens that have evolved countermeasures. Recently, a salivary protein able to inhibit the alternative pathway was cloned from the American tick Ixodes scapularis (Valenzuela et al., 2000; J. Biol. Chem. 275, 18717-18723). Here, we isolated two different sequences, similar to Isac, from the transcriptome of I. ricinus salivary glands. Expression of these sequences revealed that they both encode secreted proteins able to inhibit the complement alternative pathway. These proteins, called I. ricinus anticomplement (IRAC) protein I and II, are coexpressed constitutively in I. ricinus salivary glands and are upregulated during blood feeding. Also, we demonstrated that they are the products of different genes and not of alleles of the same locus. Finally, phylogenetic analyses demonstrate that ticks belonging to the Ixodes ricinus complex encode a family of relatively small anticomplement molecules undergoing diversification by positive Darwinian selection.

  9. Effect of Temperature on Feeding Period of Larval Blacklegged Ticks (Acari: Ixodidae) on Eastern Fence Lizards.

    Science.gov (United States)

    Rulison, Eric L; Lebrun, Roger A; Ginsberg, Howard S

    2014-11-01

    Ambient temperature can influence tick development time, and can potentially affect tick interactions with pathogens and with vertebrate hosts. We studied the effect of ambient temperature on duration of attachment of larval blacklegged ticks, Ixodes scapularis Say, to eastern fence lizards, Sceloporus undulatus (Bosc & Daudin). Feeding periods of larvae that attached to lizards under preferred temperature conditions for the lizards (WARM treatment: temperatures averaged 36.6°C at the top of the cage and 25.8°C at the bottom, allowing behavioral thermoregulation) were shorter than for larvae on lizards held under cool conditions (COOL treatment temperatures averaged 28.4°C at top of cage and 24.9°C at the bottom). The lizards were infested with larvae four times at roughly monthly intervals. Larval numbers successfully engorging and dropping declined and feeding period was longer after the first infestation. © 2014 Entomological Society of America.

  10. Analysis of Babesia bovis infection-induced gene expression changes in larvae from the cattle tick, Rhipicephalus (Boophilus microplus

    Directory of Open Access Journals (Sweden)

    Heekin Andrew M

    2012-08-01

    Full Text Available Abstract Background Cattle babesiosis is a tick-borne disease of cattle that has severe economic impact on cattle producers throughout the world’s tropical and subtropical countries. The most severe form of the disease is caused by the apicomplexan, Babesia bovis, and transmitted to cattle through the bite of infected cattle ticks of the genus Rhipicephalus, with the most prevalent species being Rhipicephalus (Boophilus microplus. We studied the reaction of the R. microplus larval transcriptome in response to infection by B. bovis. Methods Total RNA was isolated for both uninfected and Babesia bovis-infected larval samples. Subtracted libraries were prepared by subtracting the B. bovis-infected material with the uninfected material, thus enriching for expressed genes in the B. bovis-infected sample. Expressed sequence tags from the subtracted library were generated, assembled, and sequenced. To complement the subtracted library method, differential transcript expression between samples was also measured using custom high-density microarrays. The microarray probes were fabricated using oligonucleotides derived from the Bmi Gene Index database (Version 2. Array results were verified for three target genes by real-time PCR. Results Ticks were allowed to feed on a B. bovis-infected splenectomized calf and on an uninfected control calf. RNA was purified in duplicate from whole larvae and subtracted cDNA libraries were synthesized from Babesia-infected larval RNA, subtracting with the corresponding uninfected larval RNA. One thousand ESTs were sequenced from the larval library and the transcripts were annotated. We used a R. microplus microarray designed from a R. microplus gene index, BmiGI Version 2, to look for changes in gene expression that were associated with infection of R. microplus larvae. We found 24 transcripts were expressed at a statistically significant higher level in ticks feeding upon a B. bovis-infected calf contrasted to ticks

  11. The ticks (Acari: Ixodida: Argasidae, Ixodidae) of Bolivia.

    Science.gov (United States)

    Mastropaolo, Mariano; Beltrán-Saavedra, L Fabián; Guglielmone, Alberto A

    2014-03-01

    The tick species reported in Bolivia are reviewed here as (1) endemic or established: Ornithodoros echimys, O. guaporensis, O. hasei, O. kohlsi, O. mimon, O. peropteryx, O. rostratus, Otobius megnini, Amblyomma auricularium, A. cajennense, A. calcaratum, A. coelebs, A. dubitatum, A. humerale, A. incisum, A. longirostre, A. naponense, A. nodosum, A. oblongoguttatum, A. ovale, A. parvitarsum, A. parvum, A. pecarium, A. pseudoconcolor, A. rotundatum, A. scalpturatum, A. tigrinum, A. triste, Dermacentor nitens, Haemaphysalis juxtakochi, H. leporispalustris, I. boliviensis, I. cooleyi, I. luciae, Rhipicephalus microplus, R. sanguineus, and (2) erroneously reported: Ornithodoros puertoricensis, O. talaje, O. turicata, Amblyomma americanum, A. maculatum, A. multipunctum, Ixodes ricinus, I. scapularis, Rhipicephalus annulatus. Many of these records are lacking locality and/or host, and some of them need new findings for confirmation. Some of the species recorded may represent a threat for human and animal health, therefore would be of great value to make a countrywide survey of ticks in order to update the information presented in this work. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Distribution of Soft Ticks and Their Natural Infection with Borrelia in a Focus of Relapsing Fever in Iran

    Directory of Open Access Journals (Sweden)

    Z Aghighi

    2007-11-01

    Full Text Available Tick-borne diseases such as relapsing fever and Crimean-Congo Hemorrhagic Fever (CCHF are of public health impor¬tance in Iran. There are 471 reported cases of relapsing fever in 2003, according to the Ministry of Health of Iran.The num¬ber of cases has been increased in recent years. Its distribution is more or less prevalent in different parts of Iran. The aim of this study was to find out the fauna and natural infection of soft ticks with Borrelia in Qazvin Province, during their sea¬sonal activity. The province covers 15821 km² between 48-45 to 50-50 east of Greenwich Meridian of longitude and 35-37 to 36-45 north latitude of the equator. For this purpose a field study was carried out in the region. A total of 54 villages from 19 districts were selected ran¬domly and ticks were collected from their habitats according to the standard method. A total of 3197 Argasidae ticks were collected from human dwellings, poultry and animal shelters. They belonged to Argas and Or¬nithodoros genera which 36.8% were Argas persicus, 4% A. reflexus, 6.4% O. canestrini, 45.5% O. lahorensis and 7.3% O. tholozani. It should be noted that 12 ticks of O. erraticus were collected from 12 rodents borrows. We found that 8.82 % of O. tholozani ticks were infected with Borrelia persica and half of the O. erraticus were infected with Borrelia microti. All the people who are in¬volved with veterinary activities should be aware of disease transmission by the ticks. In the endemic area of the disease tick control is recommended.

  13. Detection of naturally infected vector ticks (acari: ixodidae by different species of babesia and theileria agents from three different enzootic parts of iran.

    Directory of Open Access Journals (Sweden)

    Mohammad Abdigoudarzi

    2013-12-01

    Full Text Available Diagnostic study of vector ticks for different pathogens transmitted specifically have been done by Iranian old scientists working on the basis of biological transmission of pathogens. In this study we decided to confirm natural infection of different collected ticks from three different provinces of Iran.Ticks were collected from livestock (sheep, goats and cattle during favorable seasons (April to September 2007 and 2008. Slide preparations were stained by Giemsa and Feulgen and were studied searching for any trace of infection. Positive DNA from infected blood or tissue samples was provided and was used as positive control. First, PCR optimization for positive DNA was done, and then tick samples were subjected to specific PCR.Eleven pairs of primers were designed for detection of Theileria, Babesia and Anaplasma spp. Totally 21 tick samples were detected to be infected with protozoa. Hyalomma anatolicum anatolicum and Rhipicephalus turanicus from Fars Province were infected with T. lestoquardi at two different places. Hyalomma detritum was infected with T. lestoquardi in Lorestan Province and Rh. turanicus was infected to Ba. ovis from Fars Province.Totally 21 tick samples were detected to be infected with protozoa. Every sample is regarded with host-environment related factors. Since there are complex relations of vectors and their relevant protozoa, different procedures are presented for future studies.

  14. Silencing of a putative immunophilin gene in the cattle tick Rhipicephalus (Boophilus microplus increases the infection rate of Babesia bovis in larval progeny

    Directory of Open Access Journals (Sweden)

    Knowles Donald P

    2009-11-01

    Full Text Available Abstract Background The cattle tick Rhipicephalus (Boophilus microplus is involved in the transmission of the protozoan Babesia bovis, the etiological agent of bovine babesiosis. Interactions between ticks and protozoa are poorly understood and the investigation of tick genes that affect tick fitness and protozoan infection can set the stage for dissecting the molecular interactions between the two species. Results In this study, RNA interference was used to silence R. microplus genes that had been previously shown to be up-regulated in response to B. bovis infection. The silencing of a putative immunophilin gene (Imnp in female ticks fed on a calf acutely infected with B. bovis decreased the hatching rate and survival of larval progeny. Interestingly, Imnp was up-regulated significantly in ovaries of R. microplus in response to B. bovis infection and its silencing in female ticks significantly increased the infection rate of the protozoan in larval progeny. The results also showed that the silencing of a putative Kunitz-type serine protease inhibitor (Spi gene and a putative lipocalin (Lpc gene decreased the fitness of R. microplus females, but had no significant effect on the infection rate of B. bovis in larval progeny. Conclusion The silencing of the Imnp, Spi or Lpc genes decreased the fitness of R. microplus females fed on a calf during acute B. bovis infection. The Imnp gene data suggest that this putative immunophilin gene is involved in the defense system of R. microplus against B. bovis and may play a role in controlling the protozoan infection in tick ovaries and larval progeny.

  15. The infection of questing Dermacentor reticulatus ticks with Babesia canis and Anaplasma phagocytophilum in the Chernobyl exclusion zone.

    Science.gov (United States)

    Karbowiak, Grzegorz; Vichová, Bronislavá; Slivinska, Kateryna; Werszko, Joanna; Didyk, Julia; Peťko, Branislav; Stanko, Michal; Akimov, Igor

    2014-08-29

    Tick occurrence was studied in the Chernobyl exclusion zone (CEZ) during the August-October 2009-2012. Dermacentor reticulatus ticks were collected using the flagging method and then screened for infection with Anaplasma phagocytophilum and Babesia canis by a PCR method incorporating specific primers and sequence analysis. The prevalence of infection with B. canis canis and A. phagocytophilum was found to be 3.41% and 25.36%, respectively. The results present the first evidence of B. canis canis and A. phagocytophilum in questing D. reticulatus ticks from the Chernobyl exclusion zone. They also reveal the presence of tick-borne disease foci in areas with no human activity, and confirm that they can be maintained in areas after a nuclear disaster with radioactive contamination. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Natural blood feeding and temperature shift modulate the global transcriptional profile of Rickettsia rickettsii infecting its tick vector.

    Directory of Open Access Journals (Sweden)

    Maria Fernanda B M Galletti

    Full Text Available Rickettsia rickettsii is an obligate intracellular tick-borne bacterium that causes Rocky Mountain Spotted Fever (RMSF, the most lethal spotted fever rickettsiosis. When an infected starving tick begins blood feeding from a vertebrate host, R. rickettsii is exposed to a temperature elevation and to components in the blood meal. These two environmental stimuli have been previously associated with the reactivation of rickettsial virulence in ticks, but the factors responsible for this phenotype conversion have not been completely elucidated. Using customized oligonucleotide microarrays and high-throughput microfluidic qRT-PCR, we analyzed the effects of a 10°C temperature elevation and of a blood meal on the transcriptional profile of R. rickettsii infecting the tick Amblyomma aureolatum. This is the first study of the transcriptome of a bacterium in the genus Rickettsia infecting a natural tick vector. Although both stimuli significantly increased bacterial load, blood feeding had a greater effect, modulating five-fold more genes than the temperature upshift. Certain components of the Type IV Secretion System (T4SS were up-regulated by blood feeding. This suggests that this important bacterial transport system may be utilized to secrete effectors during the tick vector's blood meal. Blood feeding also up-regulated the expression of antioxidant enzymes, which might correspond to an attempt by R. rickettsii to protect itself against the deleterious effects of free radicals produced by fed ticks. The modulated genes identified in this study, including those encoding hypothetical proteins, require further functional analysis and may have potential as future targets for vaccine development.

  17. Targeting ticks for control of selected hemoparasitic diseases of cattle.

    Science.gov (United States)

    Kocan, K M

    1995-03-01

    Development in and transmission of hemoparasites by tick vectors are phenomena closely synchronized with the tick feeding cycle. In all known life cycles, initial infection of tick tissues occurs in midgut epithelial cells and transmission is effected as ticks feed after parasites have developed and multiplied in salivary glands. Many factors reviewed affect development and transmission of hemoparasites by ticks including age of ticks, artificial temperature, climate and/or season, tick stage or sex, hemoparasite variation, concurrent infection of ticks with other pathogens, host cell susceptibility, transovarial transmission, effect of hemoparasites on tick biology, and the effect of infecting parasitemia level in cattle on infection rates in ticks. Four hemoparasites of cattle, Anaplasma marginale, Cowdria ruminantium, Theileria parva, and Babesia spp., are all dependent on ticks for biological transmission. Babesia is transmitted transovarially whereas the other three are transmitted transstadially. Mechanical transfer of infective blood via fomites and mouthparts of biting arthropods is also a major means of transmission for Anaplasma marginale but not of the others. Potential control methods for hemoparasites that target parasites as they are developing in their respective tick hosts include tick control, vaccines (against ticks and parasites), and drugs (against ticks and parasites). Successful application of control strategies will be dependent upon thorough understanding of parasite developmental cycles, biology of the tick vectors and the immune response of cattle to ticks and to hemoparasites. The most effective control measures will be those that are targeted against both ticks and the hemoparasites they vector.

  18. Tick-Borne Transmission of Murine Gammaherpesvirus 68

    Directory of Open Access Journals (Sweden)

    Valeria Hajnická

    2017-10-01

    Full Text Available Herpesviruses are a large group of DNA viruses infecting mainly vertebrates. Murine gammaherpesvirus 68 (MHV68 is often used as a model in studies of the pathogenesis of clinically important human gammaherpesviruses such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. This rodent virus appears to be geographically widespread; however, its natural transmission cycle is unknown. Following detection of MHV68 in field-collected ticks, including isolation of the virus from tick salivary glands and ovaries, we investigated whether MHV68 is a tick-borne virus. Uninfected Ixodes ricinus ticks were shown to acquire the virus by feeding on experimentally infected laboratory mice. The virus survived tick molting, and the molted ticks transmitted the virus to uninfected laboratory mice on which they subsequently fed. MHV68 was isolated from the tick salivary glands, consistent with transmission via tick saliva. The virus survived in ticks without loss of infectivity for at least 120 days, and subsequently was transmitted vertically from one tick generation to the next, surviving more than 500 days. Furthermore, the F1 generation (derived from F0 infected females transmitted MHV68 to uninfected mice on which they fed, with MHV68 M3 gene transcripts detected in blood, lung, and spleen tissue of mice on which F1 nymphs and F1 adults engorged. These experimental data fulfill the transmission criteria that define an arthropod-borne virus (arbovirus, the largest biological group of viruses. Currently, African swine fever virus (ASFV is the only DNA virus recognized as an arbovirus. Like ASFV, MHV68 showed evidence of pathogenesis in ticks. Previous studies have reported MHV68 in free-living ticks and in mammals commonly infested with I. ricinus, and neutralizing antibodies to MHV68 have been detected in large mammals (e.g., deer including humans. Further studies are needed to determine if these reports are the result of tick-borne transmission

  19. Evaluating the utility of companion animal tick surveillance practices for monitoring spread and occurrence of human Lyme disease in West Virginia, 2014-2016

    Directory of Open Access Journals (Sweden)

    Brian Hendricks

    2017-11-01

    Full Text Available Domestic dogs and cats are potentially effective sentinel populations for monitoring occurrence and spread of Lyme disease. Few studies have evaluated the public health utility of sentinel programmes using geo-analytic approaches. Confirmed Lyme disease cases diagnosed by physicians and ticks submitted by veterinarians to the West Virginia State Health Department were obtained for 2014-2016. Ticks were identified to species, and only Ixodes scapularis were incorporated in the analysis. Separate ordinary least squares (OLS and spatial lag regression models were conducted to estimate the association between average numbers of Ix. scapularis collected on pets and human Lyme disease incidence. Regression residuals were visualised using Local Moran’s I as a diagnostic tool to identify spatial dependence. Statistically significant associations were identified between average numbers of Ix. scapularis collected from dogs and human Lyme disease in the OLS (β=20.7, P<0.001 and spatial lag (β=12.0, P=0.002 regression. No significant associations were identified for cats in either regression model. Statistically significant (P≤0.05 spatial dependence was identified in all regression models. Local Moran’s I maps produced for spatial lag regression residuals indicated a decrease in model over- and under-estimation, but identified a higher number of statistically significant outliers than OLS regression. Results support previous conclusions that dogs are effective sentinel populations for monitoring risk of human exposure to Lyme disease. Findings reinforce the utility of spatial analysis of surveillance data, and highlight West Virginia’s unique position within the eastern United States in regards to Lyme disease occurrence.

  20. [The study of adaptation syndrome in mixed-infection of tick-borne encephalitis and borreliosis in children].

    Science.gov (United States)

    Subbotin, A V; Poponnikova, T V; Zinchuk, S F

    2003-01-01

    Twenty two children with mixed-infection of tick-borne encephalitis (TBE) and ixodic tick borreliosis (ITB) were studied. Blood hydrocortisone level was changed in 94.5% of the cases. The most significant activation of hydrocortisone secretion in combination with the most pronounced and prolonged general brain manifestations, was detected in infants. Blood hydrocortisone level correlated with clinical symptoms of combined TBE and ITB infections. Along with higher hydrocortisone level, down-regulation of production of antibodies both to B. burgdorferi and to TBE virus was specific for all children studied.

  1. The Distinct Transcriptional Response of the Midgut of Amblyomma sculptum and Amblyomma aureolatum Ticks to Rickettsia rickettsii Correlates to Their Differences in Susceptibility to Infection

    Directory of Open Access Journals (Sweden)

    Andréa C. Fogaça

    2017-04-01

    Full Text Available Rickettsia rickettsii is a tick-borne obligate intracellular bacterium that causes Rocky Mountain Spotted Fever (RMSF. In Brazil, two species of ticks in the genus Amblyomma, A. sculptum and A. aureolatum, are incriminated as vectors of this bacterium. Importantly, these two species present remarkable differences in susceptibility to R. rickettsii infection, where A. aureolatum is more susceptible than A. sculptum. In the current study, A. aureolatum and A. sculptum ticks were fed on suitable hosts previously inoculated with R. rickettsii, mimicking a natural infection. As control, ticks were fed on non-infected animals. Both midgut and salivary glands of all positively infected ticks were colonized by R. rickettsii. We did not observe ticks with infection restricted to midgut, suggesting that important factors for controlling rickettsial colonization were produced in this organ. In order to identify such factors, the total RNA extracted from the midgut (MG was submitted to next generation RNA sequencing (RNA-seq. The majority of the coding sequences (CDSs of A. sculptum differentially expressed by infection were upregulated, whereas most of modulated CDSs of A. aureolatum were downregulated. The functional categories that comprise upregulated CDSs of A. sculptum, for instance, metabolism, signal transduction, protein modification, extracellular matrix, and immunity also include CDSs of A. aureolatum that were downregulated by infection. This is the first study that reports the effects of an experimental infection with the highly virulent R. rickettsii on the gene expression of two natural tick vectors. The distinct transcriptional profiles of MG of A. sculptum and A. aureolatum upon infection stimulus strongly suggest that molecular factors in this organ are responsible for delineating the susceptibility to R. rickettsii. Functional studies to determine the role played by proteins encoded by differentially expressed CDSs in the acquisition of R

  2. Stability of a Tick-Borne Flavivirus in Milk

    OpenAIRE

    Offerdahl, Danielle K.; Clancy, Niall G.; Bloom, Marshall E.

    2016-01-01

    The tick-borne flaviviruses (TBFV) occur worldwide and the tick-borne encephalitis virus (TBEV) members of the group often cause severe, debilitating neurological disease in humans. Although the primary route of infection is through the bite of an infected tick, alimentary infection through the consumption of TBEV-contaminated dairy products is also well-documented and is responsible for some disease in endemic areas. Experimental infection of goats, cattle, and sheep with TBEV shows that the...

  3. A Borrelia afzelii Infection Increases Larval Tick Burden on Myodes glareolus (Rodentia

    NARCIS (Netherlands)

    Duijvendijk, van Gilian; Andel, van Wouter; Fonville, Manoj; Gort, Gerrit; Hovius, Joppe W.; Sprong, Hein; Takken, Willem

    2017-01-01

    Several microorganisms have been shown to manipulate their host or vector to enhance their own transmission. Here we examined whether an infection with Borrelia afzelii affects its transmission between its bank vole (Myodes glareolus, Schreber, 1780) host and tick vector. Captive-bred bank voles

  4. Repellent activity of fractioned compounds from Chamaecyparis nootkatensis essential oil against nymphal Ixodes scapularis (Acari: Ixodidae).

    Science.gov (United States)

    Dietrich, Gabrielle; Dolan, Marc C; Peralta-Cruz, Javier; Schmidt, Jason; Piesman, Joseph; Eisen, Rebecca J; Karchesy, Joseph J

    2006-09-01

    Preliminary repellent activity of 14 natural products isolated from essential oil components extracted from the heartwood of Alaska yellow cedar, Chamaecyparis nootkatensis (D. Don) Spach., were evaluated against nymphal Ixodes scapularis Say in a laboratory bioassay and compared with technical grade N,N-diethyl-3-methylbenzamide (deet). Four hours after treatment, nootkatone and valencene-13-ol had repellent concentration (RC)50 values of 0.0458 and 0.0712% (wt:vol), respectively; two additional Alaska yellow cedar compounds, nootkatone 1 --> 10 epoxide and carvacrol had reported RC50 values of 0.0858 and 0.112%, respectively. The observed RC50 value for deet was 0.0728% (wt:vol). Although not statistically significantly more active than deet, the ability of these natural products to repel ticks at relatively low concentrations may represent a potential alternative to synthetic commercial repellents.

  5. Detection of Rickettsia spp in Ticks by MALDI-TOF MS

    Science.gov (United States)

    Yssouf, Amina; Almeras, Lionel; Terras, Jérôme; Socolovschi, Cristina; Raoult, Didier; Parola, Philippe

    2015-01-01

    Background Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown to be an effective tool for the rapid identification of arthropods, including tick vectors of human diseases. Methodology/Principal Findings The objective of the present study was to evaluate the use of MALDI-TOF MS to identify tick species, and to determine the presence of rickettsia pathogens in the infected Ticks. Rhipicephalus sanguineus and Dermacentor marginatus Ticks infected or not by R. conorii conorii or R. slovaca, respectively, were used as experimental models. The MS profiles generated from protein extracts prepared from tick legs exhibited mass peaks that distinguished the infected and uninfected Ticks, and successfully discriminated the Rickettsia spp. A blind test was performed using Ticks that were laboratory-reared, collected in the field or removed from patients and infected or not by Rickettsia spp. A query against our in-lab arthropod MS reference database revealed that the species and infection status of all Ticks were correctly identified at the species and infection status levels. Conclusions/Significance Taken together, the present work demonstrates the utility of MALDI-TOF MS for a dual identification of tick species and intracellular bacteria. Therefore, MALDI-TOF MS is a relevant tool for the accurate detection of Rickettsia spp in Ticks for both field monitoring and entomological diagnosis. The present work offers new perspectives for the monitoring of other vector borne diseases that present public health concerns. PMID:25659152

  6. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis

    Czech Academy of Sciences Publication Activity Database

    Cabezas-Cruz, A.; Alberdi, P.; Ayllón, N.; Valdés, James J.; Pierce, R.; Villar, M.; de la Fuente, J.

    2016-01-01

    Roč. 11, č. 4 (2016), s. 303-319 ISSN 1559-2294 EU Projects: European Commission(XE) 278976 - ANTIGONE; European Commission(XE) 316304 - MODBIOLIN Institutional support: RVO:60077344 Keywords : Anaplasma * epigenetic s * histone modifying enzyme * histone * pathogen * tick Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 4.394, year: 2016

  7. The Rhipicephalus (Boophilus microplus Bm86 gene plays a critical role in the fitness of ticks fed on cattle during acute Babesia bovis infection

    Directory of Open Access Journals (Sweden)

    Knowles Donald P

    2010-11-01

    Full Text Available Abstract Background Rhipicephalus (Boophilus microplus is an economically important tick of cattle involved in the transmission of Babesia bovis, the etiological agent of bovine babesiosis. Commercial anti-tick vaccines based on the R. microplus Bm86 glycoprotein have shown some effect in controlling tick infestation; however their efficacy as a stand-alone solution for tick control has been questioned. Understanding the role of the Bm86 gene product in tick biology is critical to identifying additional methods to utilize Bm86 to reduce R. microplus infestation and babesia transmission. Additionally, the role played by Bm86 in R. microplus fitness during B. bovis infection is unknown. Results Here we describe in two independent experiments that RNA interference-mediated silencing of Bm86 decreased the fitness of R. microplus females fed on cattle during acute B. bovis infection. Notably, Bm86 silencing decreased the number and survival of engorged females, and decreased the weight of egg masses. However, gene silencing had no significant effect on the efficiency of transovarial transmission of B. bovis from surviving female ticks to their larval offspring. The results also show that Bm86 is expressed, in addition to gut cells, in larvae, nymphs, adult males and ovaries of partially engorged adult R. microplus females, and its expression was significantly down-regulated in ovaries of ticks fed on B. bovis-infected cattle. Conclusion The R. microplus Bm86 gene plays a critical role during tick feeding and after repletion during blood digestion in ticks fed on cattle during acute B. bovis infection. Therefore, the data indirectly support the rationale for using Bm86-based vaccines, perhaps in combination with acaricides, to control tick infestation particularly in B. bovis endemic areas.

  8. Evaluation of haemato-biochemical and oxidative indices in naturally infected concomitant tick borne intracellular diseases in dogs

    Directory of Open Access Journals (Sweden)

    Kalyan Sarma

    2015-01-01

    Full Text Available Objective: To explore haemato-biochemical and oxidative stress indices due to concomitant tick borne intracellular diseases in dogs presented at Referral Veterinary Polyclinic, Indian Veterinary Research Institute, Bareilly during May 2010 to May 2012. Methods: Microscopy of Giemsa blood smear and ELISA test (SNAP 4D伊 were carried out in suspected cases to confirm haemo-parasitic infection. Blood and serum samples were analyzed for oxidative stress indices and haemato-biochemical changes. All the ailing conditions were recorded to investigate the clinical pattern of concomitant tick borne diseases. Ultrasonographic study was carried out to obtain the hepatic involvement. Results: Examination of 3 650 dogs revealed that 2.77% dog were positive for various tick borne diseases, out of which 21.78% were with concomitant infection. Clinical symptoms were noted with overall mean clinical score of 9.95依0.30. Ultrasonographic examination revealed hepatomegaly, distension of gall bladder, and ascites. Haemato-biochemical evaluation confirmed anaemia, leucopenia, thrombocytopenia, hypoproteinemia, hypoalbuminemia, hyperglobulinemia and hyperbilirubinemia with increased serum alanine amino transferase, alkaline phosphatase and gamma-glutamyl transpeptidase in concomitant infected dogs. The lipid peroxidation level of concomitant infection was significantly higher (P<0.05 than healthy group whereas superoxide dismutase, glutathione-reduced and catalase activity in concomitant infected group were decreased. Conclusions: The severity of infection was more pronounced in dogs harboring Ehrlichia, Babesia and Hepatozoon and the oxidative stress may have a pathophysiological role in concomitant infection in dogs.

  9. Spatial and Temporal Distribution of Lyme Disease Infected Ticks in the Texas-Mexico Border Region

    Science.gov (United States)

    Lyme disease (LD) is the most prevalent arthropod-borne infection in the United States, with 33,097 cases of LD reported to the Centers for Disease Control and Prevention (CDC) in 2011. The disease is transmitted to a mammalian host by Ixodes ticks infected with Borrelia burgdorferi. Efforts to unde...

  10. Molecular Detection and Characterization of Tick-borne Pathogens in Dogs and Ticks from Nigeria

    Science.gov (United States)

    Kamani, Joshua; Baneth, Gad; Mumcuoglu, Kosta Y.; Waziri, Ndadilnasiya E.; Eyal, Osnat; Guthmann, Yifat; Harrus, Shimon

    2013-01-01

    Background Only limited information is currently available on the prevalence of vector borne and zoonotic pathogens in dogs and ticks in Nigeria. The aim of this study was to use molecular techniques to detect and characterize vector borne pathogens in dogs and ticks from Nigeria. Methodology/Principal Findings Blood samples and ticks (Rhipicephalus sanguineus, Rhipicephalus turanicus and Heamaphysalis leachi) collected from 181 dogs from Nigeria were molecularly screened for human and animal vector-borne pathogens by PCR and sequencing. DNA of Hepatozoon canis (41.4%), Ehrlichia canis (12.7%), Rickettsia spp. (8.8%), Babesia rossi (6.6%), Anaplasma platys (6.6%), Babesia vogeli (0.6%) and Theileria sp. (0.6%) was detected in the blood samples. DNA of E. canis (23.7%), H. canis (21.1%), Rickettsia spp. (10.5%), Candidatus Neoehrlichia mikurensis (5.3%) and A. platys (1.9%) was detected in 258 ticks collected from 42 of the 181 dogs. Co- infections with two pathogens were present in 37% of the dogs examined and one dog was co-infected with 3 pathogens. DNA of Rickettsia conorii israelensis was detected in one dog and Rhipicephalus sanguineus tick. DNA of another human pathogen, Candidatus N. mikurensis was detected in Rhipicephalus sanguineus and Heamaphysalis leachi ticks, and is the first description of Candidatus N. mikurensis in Africa. The Theileria sp. DNA detected in a local dog in this study had 98% sequence identity to Theileria ovis from sheep. Conclusions/Significance The results of this study indicate that human and animal pathogens are abundant in dogs and their ticks in Nigeria and portray the potential high risk of human exposure to infection with these agents. PMID:23505591

  11. Molecular detection and characterization of tick-borne pathogens in dogs and ticks from Nigeria.

    Directory of Open Access Journals (Sweden)

    Joshua Kamani

    Full Text Available BACKGROUND: Only limited information is currently available on the prevalence of vector borne and zoonotic pathogens in dogs and ticks in Nigeria. The aim of this study was to use molecular techniques to detect and characterize vector borne pathogens in dogs and ticks from Nigeria. METHODOLOGY/PRINCIPAL FINDINGS: Blood samples and ticks (Rhipicephalus sanguineus, Rhipicephalus turanicus and Heamaphysalis leachi collected from 181 dogs from Nigeria were molecularly screened for human and animal vector-borne pathogens by PCR and sequencing. DNA of Hepatozoon canis (41.4%, Ehrlichia canis (12.7%, Rickettsia spp. (8.8%, Babesia rossi (6.6%, Anaplasma platys (6.6%, Babesia vogeli (0.6% and Theileria sp. (0.6% was detected in the blood samples. DNA of E. canis (23.7%, H. canis (21.1%, Rickettsia spp. (10.5%, Candidatus Neoehrlichia mikurensis (5.3% and A. platys (1.9% was detected in 258 ticks collected from 42 of the 181 dogs. Co- infections with two pathogens were present in 37% of the dogs examined and one dog was co-infected with 3 pathogens. DNA of Rickettsia conorii israelensis was detected in one dog and Rhipicephalus sanguineus tick. DNA of another human pathogen, Candidatus N. mikurensis was detected in Rhipicephalus sanguineus and Heamaphysalis leachi ticks, and is the first description of Candidatus N. mikurensis in Africa. The Theileria sp. DNA detected in a local dog in this study had 98% sequence identity to Theileria ovis from sheep. CONCLUSIONS/SIGNIFICANCE: The results of this study indicate that human and animal pathogens are abundant in dogs and their ticks in Nigeria and portray the potential high risk of human exposure to infection with these agents.

  12. High infection of Anaplasma and Ehrlichia spp. among tick species collected from different geographical locations of Iran

    Directory of Open Access Journals (Sweden)

    Leila Tajedin

    2016-10-01

    Full Text Available Objective: To ascertain the prevalence of the Anaplasma/Ehrlichia infections in tick population within four provinces of Iran. Methods: A total of 384 tick specimens were collected from domestic animals inhabiting in four provinces (East Azerbaijan, Gilan, South Khorasan and Yazd. Specimens were identified based on morphological analysis. The detection of Anaplasma spp./Ehrlichia spp. within tick samples was carried out by nested PCR amplification of the 16S ribosomal RNA gene accompanied by DNA sequencing and analysis for verification. Results: A total of 10 tick species were identified as follows: Ornithodoros lahorensis (O. lahorensis (44.8%, Hyalomma dromedarii (15.6%, Dermacentor marginatus (13.5%, Hyalomma anatolicum (11.2%, Hyalomma asiaticum (5.7%, Hyalomma marginatum (4.9%, Rhipicephalus sanguineus (2.3%, Hyalomma detritum (1.0%, Dermacentor niveus (0.5% and Argas persicus (0.3%. The percentage distribution of Anaplasma/Ehrlichia was 55.5% (213 across 384 studied ticks. Conclusions: To the best of our knowledge, this is the first report of Anaplasma ovis infection in O. lahorensis in Iran. We also conjecture the prevalence of Ehrlichia spp. in Yazd Province based on sequencing results; also, it is suggested that O. lahorensis is a potential vector in the studied area. This survey highlights the importance of Argasidae family to verify and correlate their threat in causing anaplasmosis and other diseases in animals.

  13. The Rare ospC Allele L of Borrelia burgdorferi Sensu Stricto, Commonly Found among Samples Collected in a Coastal Plain Area of the Southeastern United States, Is Associated with Ixodes affinis Ticks and Local Rodent Hosts Peromyscus gossypinus and Sigmodon hispidus

    Czech Academy of Sciences Publication Activity Database

    Rudenko, Natalia; Golovchenko, Maryna; Grubhoffer, Libor; Oliver, J. H., Jr.

    2013-01-01

    Roč. 79, č. 4 (2013), s. 1403-1406 ISSN 0099-2240 Grant - others:NIH(US) R37AI-24899 Institutional support: RVO:60077344 Keywords : lyme disease * genetic diversity * scapularis tick * Acari * North Carolina * heterogenity * polymorphism * cultivation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.952, year: 2013

  14. Hemolivia mauritanica (Haemogregarinidae: Apicomplexa infection in the tortoise Testudo graeca in the Near East with data on sporogonous development in the tick vector Hyalomna aegyptium

    Directory of Open Access Journals (Sweden)

    Paperna I.

    2006-12-01

    Full Text Available Testudo graeca tortoises were collected in the northern and southern Golan Heights (Israeli occupied territory of south Syria, and various locations in Israel and Palestine. Hyalomma aegyptium ticks were found only on Golan Height tortoises, and only the tortoises and ticks from the northern Golan Heights were infected with Hemolivia mauritanica. Tortoises became infected after ingesting infected ticks. Male ticks carrying sporocysts, which remain attached to tortoises for extended durations, apparently served as the source for dissemination of new infections among tortoises. Sporogenesis followed the pattern observed in the two other known species of Hemolivia, though there was some evident variation in fine-structural detail. The sutural slit detected in the H. mauritanica mature sporocyst wall was reminiscent of the suture characteristic of Coccidia of heterothermic vertebrate hosts; it could be a common ancestral character for both hemogregarines and Coccidia.

  15. Tick (Amblyomma chabaudi) infestation of endemic tortoises in southwest Madagascar and investigation of tick-borne pathogens.

    Science.gov (United States)

    Ehlers, Julian; Ganzhorn, Jörg U; Silaghi, Cornelia; Krüger, Andreas; Pothmann, Daniela; Ratovonamana, R Yedidya; Veit, Alexandra; Keller, Christian; Poppert, Sven

    2016-03-01

    Little is known about the role of endemic ticks as vectors for bacterial and protozoan pathogens for animals and humans in Madagascar and their interaction in anthropogenic habitats where humans, their livestock and native Malagasy species (vectors and hosts) come into more frequent contact than in natural forest ecosystems. The aims of the study were (1) to test whether habitat degradation is associated with increased infestation of tortoises by ticks and (2) to investigate whether ticks carried Babesia, Borrelia or Rickettsia species that might be pathogenic for humans and livestock. We studied hard ticks of two endemic Malagasy tortoises, Astrochelys radiata and Pyxis arachnoides in March and April 2013 in southwest Madagascar. Two tortoise habitats were compared, the National Park of Tsimanampetsotsa and the adjacent degraded pasture and agricultural land at the end of the wet season. Ticks were screened for protozoan and bacterial pathogens via PCR on DNA isolated from ticks using genus-specific primers. Only one out of 42 A. radiata collected from both habitats had ticks. The low prevalence did not allow further analyses of the effect of habitat degradation. Forty-two P. arachnoides were found in the anthropogenic habitat and 36 individuals in the national park. Tick infestation rates of P. arachnoides differed significantly between the two study sites. Tortoises inside the park had lower tick prevalence than outside (8 of 36 (22%) versus 32 of 42 individuals (76%)) and infected animals tended to have fewer ticks inside than outside the park. All ticks collected in both habitats were adults of the ixodid tick Amblyomma chabaudi, which is supposed to be a host-specific tick of P. arachnoides. Screening for Borrelia sp. and Babesia sp. was negative in all ticks. But all A. chabaudi ticks were infected with Rickettsia africae, known to cause spotted fever in humans. Thus, habitat degradation seems to be linked to higher infestation of tortoises with ticks with

  16. The Tick Salivary Protein Sialostatin L Inhibits the Th9-Derived Production of the Asthma-Promoting Cytokine IL-9 and Is Effective in the Prevention of Experimental Asthma

    Czech Academy of Sciences Publication Activity Database

    Horká, Helena; Staudt, V.; Klein, M.; Taube, Ch.; Reuter, S.; Dehzad, N.; Andersen, J. F.; Kopecký, Jan; Schild, H.; Kotsyfakis, Michalis; Hoffmann, M.; Gerlitzki, B.; Stassen, M.; Bopp, T.; Schmitt, E.

    2012-01-01

    Roč. 188, č. 6 (2012), s. 2669-2676 ISSN 0022-1767 R&D Projects: GA ČR GCP302/11/J029; GA MŠk(CZ) LC06009 Institutional support: RVO:60077344 Keywords : experimental asthma * airway hyperresponsiveness * eosinophilia * interleukin-9 * Th9 cells * Sialostatin L * therapeutic * Ixodes scapularis * cysteine protease inhibitor * tick saliva Subject RIV: EC - Immunology Impact factor: 5.520, year: 2012

  17. Soluble cysteine-rich tick saliva proteins Salp15 and Iric-1 from E. coli.

    Science.gov (United States)

    Kolb, Philipp; Vorreiter, Jolanta; Habicht, Jüri; Bentrop, Detlef; Wallich, Reinhard; Nassal, Michael

    2015-01-01

    Ticks transmit numerous pathogens, including borreliae, which cause Lyme disease. Tick saliva contains a complex mix of anti-host defense factors, including the immunosuppressive cysteine-rich secretory glycoprotein Salp15 from Ixodes scapularis ticks and orthologs like Iric-1 from Ixodes ricinus. All tick-borne microbes benefit from the immunosuppression at the tick bite site; in addition, borreliae exploit the binding of Salp15 to their outer surface protein C (OspC) for enhanced transmission. Hence, Salp15 proteins are attractive targets for anti-tick vaccines that also target borreliae. However, recombinant Salp proteins are not accessible in sufficient quantity for either vaccine manufacturing or for structural characterization. As an alternative to low-yield eukaryotic systems, we investigated cytoplasmic expression in Escherichia coli, even though this would not result in glycosylation. His-tagged Salp15 was efficiently expressed but insoluble. Among the various solubility-enhancing protein tags tested, DsbA was superior, yielding milligram amounts of soluble, monomeric Salp15 and Iric-1 fusions. Easily accessible mutants enabled epitope mapping of two monoclonal antibodies that, importantly, cross-react with glycosylated Salp15, and revealed interaction sites with OspC. Free Salp15 and Iric-1 from protease-cleavable fusions, despite limited solubility, allowed the recording of (1)H-(15)N 2D NMR spectra, suggesting partial folding of the wild-type proteins but not of Cys-free variants. Fusion to the NMR-compatible GB1 domain sufficiently enhanced solubility to reveal first secondary structure elements in (13)C/(15)N double-labeled Iric-1. Together, E. coli expression of appropriately fused Salp15 proteins may be highly valuable for the molecular characterization of the function and eventually the 3D structure of these medically relevant tick proteins.

  18. Molecular Detection of Rickettsia Species Within Ticks (Acari: Ixodidae) Collected from Arkansas United States.

    Science.gov (United States)

    Trout Fryxell, R T; Steelman, C D; Szalanski, A L; Billingsley, P M; Williamson, P C

    2015-05-01

    Rocky Mountain spotted fever (RMSF), caused by the etiological agent Rickettsia rickettsii, is the most severe and frequently reported rickettsial illness in the United States, and is commonly diagnosed throughout the southeast. With the discoveries of Rickettsia parkeri and other spotted fever group rickettsiae (SFGR) in ticks, it remains inconclusive if the cases reported as RMSF are truly caused by R. rickettsii or other SFGR. Arkansas reports one of the highest incidence rates of RMSF in the country; consequently, to identify the rickettsiae in Arkansas, 1,731 ticks, 250 white-tailed deer, and 189 canines were screened by polymerase chain reaction (PCR) for the rickettsial genes gltA, rompB, and ompA. None of the white-tailed deer were positive, while two of the canines (1.1%) and 502 (29.0%) of the ticks were PCR positive. Five different tick species were PCR positive: 244 (37%) Amblyomma americanum L., 130 (38%) Ixodes scapularis Say, 65 (39%) Amblyomma maculatum (Koch), 30 (9%) Rhipicephalus sanguineus Latreille, 7 (4%) Dermacentor variabilis Say, and 26 (44%) unidentified Amblyomma ticks. None of the sequenced products were homologous to R. rickettsii. The most common Rickettsia via rompB amplification was Rickettsia montanensis and nonpathogenic Candidatus Rickettsia amblyommii, whereas with ompA amplification the most common Rickettsia was Ca. R. amblyommii. Many tick specimens collected in northwest Arkansas were PCR positive and these were commonly A. americanum harboring Ca. R. amblyommii, a currently nonpathogenic Rickettsia. Data reported here indicate that pathogenic R. rickettsii was absent from these ticks and suggest by extension that other SFGR are likely the causative agents for Arkansas diagnosed RMSF cases. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Identification of Salp15 homologues in Ixodes ricinus ticks

    NARCIS (Netherlands)

    Hovius, J. W. R.; Ramamoorthi, N.; van't Veer, C.; de Groot, K. A.; Nijhof, A. M.; Jongejan, F.; van Dam, A. P.; Fikrig, E.

    2007-01-01

    The 15-kDa Ixodes scapularis salivary gland protein Salp15 protects Borrelia burgdorferi sensu stricto from antibody-mediated killing and facilitates infection of the mammalian host. In addition, Salp 15 has been shown to inhibit T-cell activation. We determined whether Ixodes ricinus, the major

  20. Ixodes ricinus tick saliva modulates tick-borne encephalitis virus infection of dendritic cells

    Czech Academy of Sciences Publication Activity Database

    Fialová, Anna; Cimburek, Zdeněk; Iezzi, G.; Kopecký, Jan

    2010-01-01

    Roč. 12, č. 7 (2010), s. 580-585 ISSN 1286-4579 R&D Projects: GA AV ČR IAA600960811 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50200510 Keywords : Tick-borne encephalitis virus * Dendritic cell * Tick saliva * Ixodes ricinus Subject RIV: EC - Immunology Impact factor: 2.726, year: 2010

  1. Entomologic index for human risk of Lyme disease.

    Science.gov (United States)

    Mather, T N; Nicholson, M C; Donnelly, E F; Matyas, B T

    1996-12-01

    An entomologic index based on density estimates of Lyme disease spirochete-infected nymphal deer ticks (lxodes scapularis) was developed to assess human risk of Lyme disease. The authors used a standardized protocol to determine tick density and infection in numerous forested sites in six Rhode Island towns. An entomologic risk index calculated for each town was compared with the number of human Lyme disease cases reported to the Rhode Island State Health Department for the same year. A strong positive relation between entomologic risk index and the Lyme disease case rate for each town suggested that the entomologic index was predictive of Lyme disease risk.

  2. Comportamento de Aedes albopictus e de Ae. scapularis adultos (Diptera: Culicidae no Sudeste do Brasil Adults Aedes albopictus and Ae. scapularis behavior (Diptera: Culidae in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Oswaldo Paulo Forattini

    2000-10-01

    Full Text Available OBJETIVO: Observar e comparar o comportamento das espécies de Aedes albopictus e de Ae. scapularis, na localidade de Pedrinhas, litoral sul do Estado de São Paulo, Brasil. MÉTODOS: As observações foram feitas de outubro de 1996 a janeiro de 2000. Foram realizadas coletas sistemáticas de formas adultas mediante a utilização de isca humana, aspirações ambientais e armadilha tipo Shannon. A domiciliação foi estimada pelo índice de Nuorteva e pela razão de sinantropia. RESULTADOS: Foram feitas 87 coletas diurnas, com a obtenção de 872 adultos fêmeas. As médias de Williams', multiplicadas por 100, foram de 118 e 21 para Ae. albopictus nos horários de 7h às 18h e de 18h às 20h, respectivamente. Quanto a Ae. scapularis, foram de 100 e 106 nos mesmos períodos. Esse último revelou pico de atividade crepuscular vespertina. Na aspiração de abrigos, obteve-se o total de 1.124 espécimens, dos quais 226 Ae. albopictus e 898 Ae. scapularis. O período de janeiro a maio correspondeu ao de maior rendimento para ambos os mosquitos. Quanto à armadilha de Shannon, as coletas realizadas na mata revelaram a ausência de Ae. albopictus. No que concerne à domiciliação, esse último mostrou os maiores valores de índices, enquanto Ae. scapularis revelou comportamento de tipo ubiquista. CONCLUSÕES: Os resultados confirmam outras observações, permitindo levantar hipóteses. Em relação a Ae. scapularis, sugere-se que possa existir fenômeno de diapausa das fêmeas no período verão-outono, a qual cessaria no inverno-primavera quando então a atividade seria retomada. Quanto a Ae. albopictus, os dados sugerem que se trata de população em processo adaptativo ao novo ambiente.OBJECTIVE: Aedes albopictus and Ae. scapularis were found living together in the Pedrinhas Village, Southeastern of São Paulo State, Brazil. This finding was a good opportunity to make observations about the mosquitoes' behavior. METHODS: From October 1996 to

  3. Anaplasma phagocytophilum in ticks in Slovenia

    Directory of Open Access Journals (Sweden)

    Knap Nataša

    2010-11-01

    Full Text Available Abstract Ticks act as vectors of many pathogens of domestic animals and humans. Anaplasma phagocytophilum in Europe is transmitted by the ixodid tick vector Ixodes ricinus. A. phagocytophilum causes a disease with diverse clinical signs in various hosts. A great genetic diversity of the groESL operon of A. phagocytophilum has been found in ticks elsewhere. In Slovenia, the variety of the groESL operon was conducted only on deer samples. In this study, the prevalence of infected ticks was estimated and the diversity of A. phagocytophilum was evaluated. On 8 locations in Slovenia, 1924 and 5049 (6973 I. ricinus ticks were collected from vegetation in the years 2005 and 2006, respectively. All three feeding stages of the tick's life cycle were examined. The prevalence of ticks infected with A. phagocytophilum in the year 2005 and in the year 2006 was 0.31% and 0.63%, respectively, and it did not differ considerably between locations. The similarity among the sequences of groESL ranged from 95.6% to 99.8%. They clustered in two genetic lineages along with A. phagocytophilum from Slovenian deer. One sequence formed a separate cluster. According to our study, the prevalence of A. phagocytophilum in ticks is comparable to the findings in other studies in Europe, and it does not vary considerably between locations and tick stages. According to groESL operon analysis, two genetic lineages have been confirmed and one proposed. Further studies on other genes would be useful to obtain more information on genetic diversity of A. phagocytophilum in ticks in Slovenia.

  4. Remodeling of tick cytoskeleton in response to infection with Anaplasma phagocytophilum

    Czech Academy of Sciences Publication Activity Database

    Cabezas Cruz, Alejandro; Alberdi, P.; Valdés, James J.; Villar, M.; de la Fuente, J.

    2017-01-01

    Roč. 22, Jun 1 (2017), s. 1830-1844 ISSN 1093-4715 EU Projects: European Commission(XE) 278976 - ANTIGONE Institutional support: RVO:60077344 Keywords : cytoskeleton * proteomics * transcriptomics * Ixodes scapularis * Anaplasma phagocytophilum Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology

  5. Candidatus Rickettsia andeanae, a spotted fever group agent infecting Amblyomma parvum ticks in two Brazilian biomes

    Directory of Open Access Journals (Sweden)

    Fernanda Aparecida Nieri-Bastos

    2014-04-01

    Full Text Available Adult ticks of the species Amblyomma parvum were collected from the vegetation in the Pantanal biome (state of Mato Grosso do Sul and from horses in the Cerrado biome (state of Piauí in Brazil. The ticks were individually tested for rickettsial infection via polymerase chain reaction (PCR targeting three rickettsial genes, gltA, ompA and ompB. Overall, 63.5% (40/63 and 66.7% (2/3 of A. parvum ticks from Pantanal and Cerrado, respectively, contained rickettsial DNA, which were all confirmed by DNA sequencing to be 100% identical to the corresponding fragments of the gltA, ompA and ompB genes of Candidatus Rickettsia andeanae. This report is the first to describe Ca. R. andeanae in Brazil.

  6. Tick-borne disease.

    Science.gov (United States)

    Bratton, Robert L; Corey, Ralph

    2005-06-15

    Tick-borne diseases in the United States include Rocky Mountain spotted fever, Lyme disease, ehrlichiosis, tularemia, babesiosis, Colorado tick fever, and relapsing fever. It is important for family physicians to consider these illnesses when patients present with influenza-like symptoms. A petechial rash initially affecting the palms and soles of the feet is associated with Rocky Mountain spotted fever, whereas erythema migrans (annular macule with central clearing) is associated with Lyme disease. Various other rashes or skin lesions accompanied by fever and influenza-like illness also may signal the presence of a tick-borne disease. Early, accurate diagnosis allows treatment that may help prevent significant morbidity and possible mortality. Because 24 to 48 hours of attachment to the host are required for infection to occur, early removal can help prevent disease. Treatment with doxycycline or tetracycline is indicated for Rocky Mountain spotted fever, Lyme disease, ehrlichiosis, and relapsing fever. In patients with clinical findings suggestive of tick-borne disease, treatment should not be delayed for laboratory confirmation. If no symptoms follow exposure to tick bites, empiric treatment is not indicated. The same tick may harbor different infectious pathogens and transmit several with one bite. Advising patients about prevention of tick bites, especially in the summer months, may help prevent exposure to dangerous vector-borne diseases.

  7. Different populations of blacklegged tick nymphs exhibit differences in questing behavior that have implications for human lyme disease risk

    Science.gov (United States)

    Arsnoe, Isis M.; Hickling, Graham J.; Ginsberg, Howard S.; McElreath, Richard; Tsao, Jean I.

    2015-01-01

    Animal behavior can have profound effects on pathogen transmission and disease incidence. We studied the questing (= host-seeking) behavior of blacklegged tick (Ixodes scapularis) nymphs, which are the primary vectors of Lyme disease in the eastern United States. Lyme disease is common in northern but not in southern regions, and prior ecological studies have found that standard methods used to collect host-seeking nymphs in northern regions are unsuccessful in the south. This led us to hypothesize that there are behavior differences between northern and southern nymphs that alter how readily they are collected, and how likely they are to transmit the etiological agent of Lyme disease to humans. To examine this question, we compared the questing behavior of I. scapularis nymphs originating from one northern (Lyme disease endemic) and two southern (non-endemic) US regions at field sites in Wisconsin, Rhode Island, Tennessee, and Florida. Laboratory-raised uninfected nymphs were monitored in circular 0.2 m2 arenas containing wooden dowels (mimicking stems of understory vegetation) for 10 (2011) and 19 (2012) weeks. The probability of observing nymphs questing on these stems (2011), and on stems, on top of leaf litter, and on arena walls (2012) was much greater for northern than for southern origin ticks in both years and at all field sites (19.5 times greater in 2011; 3.6-11.6 times greater in 2012). Our findings suggest that southern origin I. scapularis nymphs rarely emerge from the leaf litter, and consequently are unlikely to contact passing humans. We propose that this difference in questing behavior accounts for observed geographic differences in the efficacy of the standard sampling techniques used to collect questing nymphs. These findings also support our hypothesis that very low Lyme disease incidence in southern states is, in part, a consequence of the type of host-seeking behavior exhibited by southern populations of the key Lyme disease vector.

  8. Investigation of tick vectors of Hepatozoon canis in Brazil.

    Science.gov (United States)

    Demoner, Larissa de Castro; Rubini, Adriano Stefani; Paduan, Karina dos Santos; Metzger, Betina; de Paula Antunes, João Marcelo Azevedo; Martins, Thiago Fenandes; Mathias, Maria Izabel Camargo; O'Dwyer, Lucia Helena

    2013-12-01

    Hepatozoon canis is a common apicomplexan parasite of dogs. In Brazil, in addition to Rhipicephalus sanguineus, Amblyomma ovale, Amblyomma cajennense, and Rhipicephalus (Boophilus) microplus have been suggested to act as vectors. The present study aimed to evaluate, under controlled conditions, the acquisition of H. canis by A. ovale, R. sanguineus, and A. cajennense after feeding on naturally infected dogs. Cytological and histophatological examinations were performed to recover oocysts and other sporogonic stages of the protozoan from the experimentally infected nymphs and adults. None of the R. sanguineus (n=30) or A. cajennense nymphs (n=15) that were dissected after feeding on H. canis naturally infected dogs became infected by the hemoparasite. Likewise, none of the R. sanguineus (n=165) and A. cajennense (n=114) adult ticks that were fed as nymphs on dogs demonstrated infection. Additionally, A. cajennense adult ticks were incapable of acquiring the infection, since no parasite was found in 62 adults that fed on H. canis-infected dogs. With regard to A. ovale ticks, 2 different infestations were carried out. Firstly, a dog with naturally occurring hepatozoonosis was infested with A. ovale adults originating from Rondônia, Brazil. Ticks fed to full engorgement. A total of 31 adults was collected from the dog and dissected on the third day after natural detachment. Oocysts were detected in 13 (42%) of the ticks. The second experimental infestation was carried out using adult ticks originating from São Paulo, Brazil. Surprisingly, of the 103 dissected ticks, only one (1%) contained oocysts in the hemocoel. No other sporogonic stage was found. Results indicate that different strains of A. ovale ticks may exist in Brazil with different susceptibilities to pathogens. Furthermore, it is possible that R. sanguineus and A. cajennense have little or no importance in the transmission of H. canis in rural areas of Brazil. Copyright © 2013 Elsevier GmbH. All rights

  9. A Review of Methods for Detecting Tick-Borne Encephalitis Virus Infection in Tick, Animal, and Human Specimens

    Czech Academy of Sciences Publication Activity Database

    Ergunay, K.; Tkachev, S.; Kozlova, I.; Růžek, Daniel

    2016-01-01

    Roč. 16, č. 1 (2016), s. 4-12 ISSN 1530-3667 R&D Projects: GA ČR GAP502/11/2116 Institutional support: RVO:60077344 Keywords : tick-borne encephalitis * serology * PCR * tick(s) * rodents Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.045, year: 2016

  10. The natural infection of birds and ticks feeding on birds with Rickettsia spp. and Coxiella burnetii in Slovakia.

    Science.gov (United States)

    Berthová, Lenka; Slobodník, Vladimír; Slobodník, Roman; Olekšák, Milan; Sekeyová, Zuzana; Svitálková, Zuzana; Kazimírová, Mária; Špitalská, Eva

    2016-03-01

    Ixodid ticks (Acari: Ixodidae) are known as primary vectors of many pathogens causing diseases in humans and animals. Ixodes ricinus is a common ectoparasite in Europe and birds are often hosts of subadult stages of the tick. From 2012 to 2013, 347 birds belonging to 43 species were caught and examined for ticks in three sites of Slovakia. Ticks and blood samples from birds were analysed individually for the presence of Rickettsia spp. and Coxiella burnetii by PCR-based methods. Only I. ricinus was found to infest birds. In total 594 specimens of bird-attached ticks were collected (451 larvae, 142 nymphs, 1 female). Altogether 37.2% (16/43) of bird species were infested by ticks and some birds carried more than one tick. The great tit, Parus major (83.8%, 31/37) was the most infested species. In total, 6.6 and 2.7% of bird-attached ticks were infected with Rickettsia spp. and C. burnetii, respectively. Rickettsia helvetica predominated (5.9%), whereas R. monacensis (0.5%) was only sporadically detected. Coxiella burnetii was detected in 0.9%, Rickettsia spp. in 8.9% and R. helvetica in 4.2% of bird blood samples. The great tit was the bird species most infested with I. ricinus, carried R. helvetica and C. burnetti positive tick larvae and nymphs and was found to be rickettsaemic in its blood. Further studies are necessary to define the role of birds in the circulation of rickettsiae and C. burnetii in natural foci.

  11. Rickettsia vini n. sp. (Rickettsiaceae) infecting the tick Ixodes arboricola (Acari: Ixodidae).

    Science.gov (United States)

    Novakova, Marketa; Costa, Francisco B; Krause, Frantisek; Literak, Ivan; Labruna, Marcelo B

    2016-08-26

    Recently, a new rickettsia named 'Candidatus Rickettsia vini' belonging to the spotted fever group has been molecularly detected in Ixodes arboricola ticks in Spain, the Czech Republic, Slovakia and Turkey, with prevalence reaching up to 100 %. The aim of this study was to isolate this rickettsia in pure culture, and to describe it as a new Rickettsia species. A total of 148 ornitophilic nidicolous ticks Ixodes arboricola were collected in a forest near Breclav (Czech Republic) and examined for rickettsiae. Shell vial technique was applied to isolate rickettsiae in Vero cells. Rickettsial isolation was confirmed by optical microscopy and sequencing of partial sequences of the rickettsial genes gltA, ompA, ompB, and htrA. Laboratory guinea pigs and chickens were used for experimental infestations and infections. Animal blood sera were tested by immunofluorescence assay employing crude antigens of various rickettsiae. Rickettsia vini n. sp. was successfully isolated from three males of I. arboricola. Phylogenetic analysis of fragments of 1092, 590, 800, and 497 nucleotides of the gltA, ompA, ompB, and htrA genes, respectively, showed closest proximity of R. vini n. sp. to Rickettsia japonica and Rickettsia heilongjiangensis belonging to the spotted fever group. Experimental infection of guinea pigs and chickens with R. vini led to various levels of cross-reactions of R. vini-homologous antibodies with Rickettsia rickettsii, Rickettsia parkeri, 'Candidatus Rickettsia amblyommii', Rickettsia rhipicephali, Rickettsia bellii, and Rickettsia felis. Laboratory infestations by R. vini-infected I. arboricola larvae on chickens led to no seroconversion to R. vini n. sp., nor cross-reactions with R. rickettsii, R. parkeri, 'Ca. R. amblyommii', R. rhipicephali, R. bellii or R. felis. Our results suggest that R. vini n. sp. is possibly a tick endosymbiont, not pathogenic for guinea pigs and chickens. Regarding specific phenotypic characters and significant differences of DNA

  12. Identification and characterization of histidine-rich peptides from hard ticks Ixodes ricinus and Ixodes scapularis.

    OpenAIRE

    DORŇÁKOVÁ, Veronika

    2011-01-01

    Antimicrobial (cationic) proteins play an important role in innate imunity. Such proteins can possess antibacterial, antiendotoxic or fungicidal abilities. The rising resistence of microbes to common antibiotics evokes acute need of studying more endogenous proteins to reveal new potential antibiotics. Ticks, the blood-feeding ectoparasites with effectual defense system, present an endless source of newly described and unknown antimicrobial peptides/proteins with significant theurapeutic pote...

  13. Partial Characterization of Tick-Borne Encephalitis Virus Isolates from Ticks of Southern Ukraine.

    Science.gov (United States)

    Yurchenko, Oksana O; Dubina, Dmytro O; Vynograd, Nataliya O; Gonzalez, Jean-Paul

    2017-08-01

    Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia; thousands of human cases are annually reported from several European countries. Several tick species are vectors of the tick-borne encephalitis virus (TBEV), while TBE appears to be spreading from the Eurasian continent westward to Europe. Fifteen study sites were chosen from five territories of southern Ukraine, including Odessa, Mykolaiv, Kherson Oblast, the Autonomous Republic of Crimea, and Sevastopol. Tick collection was performed in spring season of three consecutive years (1988-1990) using either flagging technique or direct collection of specimens feeding on cattle. A total of 15,243 tick imagoes and nymphs were collected from nine species, including Dermacentor marginatus, D. reticulatus, Haemaphysalis parva, H. punctata, Hyalomma marginatum, Ixodes ricinus, Rhipicephalus bursa, R. rossicus, and R. sanguineus, pooled in 282 monospecific samples. Supernatant of grinded pool was used for inoculation to suckling mice for virus isolation. Eight TBEV isolates were identified from ticks among six study sites. Ticks showed a minimum infection rate from 0.11% to 0.81%. Phylogenetic analysis of the envelope (E) protein gene of seven isolates, assigned all to the European subtype (TBEV-Eu) showing a maximum identity of 97.17% to the "Pan" TBEV-Eu reference strain. Compared to 104 TBEV-Eu isolates they clustered within the same clade as the Pan reference strain and distinguished from other TBEV-Eu isolates. Amino acid sequence analysis of the South Ukrainian TBEV-Eu isolates revealed the presence of four amino acid substitutions 67 (N), 266 (R), 306 (V), and 407 (R), in the ectodomains II and III and in the stem-anchor region of the E protein gene. This study confirmed TBEV-Eu subtype distribution in the southern region of Ukraine, which eventually overlaps with TBEV-FE (Far Eastern subtype) and TBEV-Sib (Siberian subtype) domains, showing the heterogeneity of TBEV circulating in

  14. Identification of tick-borne pathogens in ticks feeding on humans in Turkey.

    Directory of Open Access Journals (Sweden)

    Ömer Orkun

    2014-08-01

    Full Text Available The importance of tick-borne diseases is increasing all over the world, including Turkey. The tick-borne disease outbreaks reported in recent years and the abundance of tick species and the existence of suitable habitats increase the importance of studies related to the epidemiology of ticks and tick-borne pathogens in Turkey. The aim of this study was to investigate the presence of and to determine the infection rates of some tick-borne pathogens, including Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae in the ticks removed from humans in different parts of Ankara.A total of 169 ticks belonging to the genus Haemaphysalis, Hyalomma, Ixodes and Rhipicephalus were collected by removing from humans in different parts of Ankara. Ticks were molecularly screened for Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae by PCR and sequencing analysis. We detected 4 Babesia spp.; B. crassa, B. major, B. occultans and B. rossi, one Borrelia spp.; B. burgdorferi sensu stricto and 3 spotted fever group rickettsiae; R. aeschlimannii, R. slovaca and R. hoogstraalii in the tick specimens analyzed. This is the report showing the presence of B. rossi in a region that is out of Africa and in the host species Ha. parva. In addition, B. crassa, for which limited information is available on its distribution and vector species, and B. occultans, for which no conclusive information is available on its presence in Turkey, were identified in Ha. parva and H. marginatum, respectively. Two human pathogenic rickettsia species (R. aeschlimannii and R. slovaca were detected with a high prevalence in ticks. Additionally, B. burgdorferi sensu stricto was detected in unusual tick species (H. marginatum, H. excavatum, Hyalomma spp. (nymph and Ha. parva.This study investigates both the distribution of several tick-borne pathogens affecting humans and animals, and the presence of new tick-borne pathogens in Turkey

  15. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential

    Science.gov (United States)

    Kolb, Philipp; Wallich, Reinhard; Nassal, Michael

    2015-01-01

    Ticks are vectors for various, including pathogenic, microbes. Tick saliva contains multiple anti-host defense factors that enable ticks their bloodmeals yet also facilitate microbe transmission. Lyme disease-causing borreliae profit specifically from the broadly conserved tick histamine release factor (tHRF), and from cysteine-rich glycoproteins represented by Salp15 from Ixodes scapularis and Iric-1 from Ixodes ricinus ticks which they recruit to their outer surface protein C (OspC). Hence these tick proteins are attractive targets for anti-tick vaccines that simultaneously impair borrelia transmission. Main obstacles are the tick proteins´ immunosuppressive activities, and for Salp15 orthologs, the lack of efficient recombinant expression systems. Here, we exploited the immune-enhancing properties of hepatitis B virus core protein (HBc) derived capsid-like particles (CLPs) to generate, in E. coli, nanoparticulate vaccines presenting tHRF and, as surrogates for the barely soluble wild-type proteins, cysteine-free Salp15 and Iric-1 variants. The latter CLPs were exclusively accessible in the less sterically constrained SplitCore system. Mice immunized with tHRF CLPs mounted a strong anti-tHRF antibody response. CLPs presenting cysteine-free Salp15 and Iric-1 induced antibodies to wild-type, including glycosylated, Salp15 and Iric-1. The broadly distributed epitopes included the OspC interaction sites. In vitro, the anti-Salp15 antibodies interfered with OspC binding and enhanced human complement-mediated killing of Salp15 decorated borreliae. A mixture of all three CLPs induced high titered antibodies against all three targets, suggesting the feasibility of combination vaccines. These data warrant in vivo validation of the new candidate vaccines´ protective potential against tick infestation and Borrelia transmission. PMID:26352137

  16. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential.

    Directory of Open Access Journals (Sweden)

    Philipp Kolb

    Full Text Available Ticks are vectors for various, including pathogenic, microbes. Tick saliva contains multiple anti-host defense factors that enable ticks their bloodmeals yet also facilitate microbe transmission. Lyme disease-causing borreliae profit specifically from the broadly conserved tick histamine release factor (tHRF, and from cysteine-rich glycoproteins represented by Salp15 from Ixodes scapularis and Iric-1 from Ixodes ricinus ticks which they recruit to their outer surface protein C (OspC. Hence these tick proteins are attractive targets for anti-tick vaccines that simultaneously impair borrelia transmission. Main obstacles are the tick proteins´ immunosuppressive activities, and for Salp15 orthologs, the lack of efficient recombinant expression systems. Here, we exploited the immune-enhancing properties of hepatitis B virus core protein (HBc derived capsid-like particles (CLPs to generate, in E. coli, nanoparticulate vaccines presenting tHRF and, as surrogates for the barely soluble wild-type proteins, cysteine-free Salp15 and Iric-1 variants. The latter CLPs were exclusively accessible in the less sterically constrained SplitCore system. Mice immunized with tHRF CLPs mounted a strong anti-tHRF antibody response. CLPs presenting cysteine-free Salp15 and Iric-1 induced antibodies to wild-type, including glycosylated, Salp15 and Iric-1. The broadly distributed epitopes included the OspC interaction sites. In vitro, the anti-Salp15 antibodies interfered with OspC binding and enhanced human complement-mediated killing of Salp15 decorated borreliae. A mixture of all three CLPs induced high titered antibodies against all three targets, suggesting the feasibility of combination vaccines. These data warrant in vivo validation of the new candidate vaccines´ protective potential against tick infestation and Borrelia transmission.

  17. Tick-borne encephalitis: a disease neglected by travel medicine.

    Science.gov (United States)

    Haditsch, Martin; Kunze, Ursula

    2013-01-01

    Tick-borne encephalitis (TBE) is a vector-borne disease that is primarily transmitted to humans by infected ticks and causes infection of the central nervous system. Clinical presentations range from meningitis to encephalitis with or without myelitis, and infection may result in death or long-term neurological sequelae. TBE is endemic in regions of at least 27 European as well as in some Asian countries. Infection and disease, however, can be averted successfully by tick-bite prevention and active vaccination. The risk of infection has shifted from daily life and occupational exposure to leisure-time activities, including travelling. Outdoor activities during the tick season with contact with nature increase the risk of tick bites. Although the number of travel-associated cases is unknown, it is certainly under-estimated because there is hardly any awareness of TBE in non-endemic countries. Therefore, the majority of cases remain undiagnosed, also because of the lack of diagnostic serology, as there is no routine screening for TBE in non-endemic regions. Because of the increasing number of travellers from TBE non-endemic to endemic regions, and in view of the fact that TBE was included in the list of notifiable diseases in the European Union in September 2012, this disease needs to become an important issue in travel medicine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Detection of Leishmania infantum DNA in hamsters infested with ticks collected from naturally infected dogs

    Directory of Open Access Journals (Sweden)

    Valter dos Anjos Almeida

    2016-12-01

    Full Text Available ABSTRACT. Almeida V. dos A., da Hora T.N., Leça Júnior N.F., Carvalho F.S., da Silva A.L., Wenceslau A.A., Albuquerque G.R. & Silva F.L. Detection of Leishmania infantum DNA in hamsters infested with ticks collected from naturally infected dogs. [Detecção do DNA de Leishmania infantum em hamsters infestados com carrapatos coletados de cães naturalmente infectados.] Revista Brasileira de Medicina Veterinária, 38(4:329-333, 2016. Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Hospital Veterinário, Km 16, Rodovia Jorge Amado, Ilhéus, BA 45662-900, Brasil. E-mail: fabiana.lessa@gmail.com The aim of this study was to investigate the role of Rhipicephalus sanguineus, the brown dog tick, in the transmission of Leishmania infantum. To accomplish this, we used 24 adult golden hamsters of both genders, and divided them into two groups: a control group (n = 4 and an experimental group (n = 20. The animals from the experimental group were infested with ticks obtained from dogs naturally infected with L. infantum. Hamsters of the control group were not infested and were maintained at the same conditions, as the infested animals. After three months of observation, animals were euthanized and they were posted to obtain samples of their blood, spleen, liver, lymph nodes, and skin. These samples were then processed by histopathology, immunohistochemistry, and polymerase chain reaction (PCR. Fourteen hamsters (70% of the experimental group tested PCR-positive for L. infantum DNA in samples of buffy coat. The results of this study indicated that R. sanguineus ticks can transmit some forms or parts of L. infantum to parasitized hamsters.

  19. Acquisition and transmission of Hepatozoon canis (Apicomplexa: Hepatozoidae) by the tick Amblyomma ovale (Acari: Ixodidae).

    Science.gov (United States)

    Rubini, A S; Paduan, K S; Martins, T F; Labruna, M B; O'Dwyer, L H

    2009-10-14

    The present study aimed to evaluate under controlled conditions the acquisition of Hepatozoon canis by Amblyomma ovale after feeding on infected dogs, and the subsequent induction of infection in uninfected dogs that ingested the experimentally infected ticks. Two H. canis naturally infected dogs were infested with A. ovale adult ticks derived from an uninfected laboratory tick colony. After feeding, two A. ovale females presented H. canis oocysts in the hemolymph at the first and fourth days after removal of ticks from dogs. The oocysts had an average size of 244.34 microm x 255.46 microm. Three uninfected dogs were fed with ticks previously fed on the infected dogs. Only one dog became infected 32 days after oral inoculation, presenting circulating gametocytes, parasitemia less than 1%, and positive PCR confirmed to be H. canis by DNA sequencing. The results obtained indicated A. ovale ticks as potential vector of H. canis in rural areas of Brazil.

  20. Efficacy of a novel oral formulation of sarolaner (Simparica™) against five common tick species infesting dogs in the United States.

    Science.gov (United States)

    Six, Robert H; Everett, William R; Young, David R; Carter, Lori; Mahabir, Sean P; Honsberger, Nicole A; Myers, Melanie R; Holzmer, Susan; Chapin, Sara; Rugg, Jady J

    2016-05-30

    The efficacy of a single oral treatment with sarolaner (Simparica™, Zoetis), a novel isoxazoline compound, was evaluated against five tick species known to infest dogs in the United States. A total of 10 laboratory studies, two against each species, were conducted using adult purpose-bred mongrels or Beagle dogs. In each study, 16 dogs were randomly allocated to one of two treatment groups based on pre-treatment host-suitability tick counts. Dogs were infested with approximately 50 unfed adult Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, Ixodes scapularis or Rhipicephalus sanguineus ticks on Days -2, 5, 12, 19, 26 and 33. On Day 0, dogs were treated with a placebo or a sarolaner tablet providing a minimum dose of 2 mg/kg. Tick counts were conducted 48h after treatment and after each subsequent weekly re-infestation. There were no treatment-related adverse reactions during any of the studies. Dogs in the placebo-treated group maintained tick infestations throughout the studies. Geometric mean live tick counts were significantly lower (P≤0.0001) in the sarolaner-treated group compared to the tick counts in the placebo group at all timepoints. Treatment with sarolaner resulted in ≥99.6% efficacy against existing infestations of all five tick species within 48h. The efficacy against weekly post-treatment re-infestations of all tick species was ≥96.9% for at least 35 days after treatment. Thus, a single dose of sarolaner administered orally at the minimum dosage of 2mg/kg, resulted in excellent efficacy within 48h against existing tick infestations, and against weekly re-infestations for 35 days after treatment. These studies confirmed that administration of the minimum dose of sarolaner will provide rapid treatment of existing infestations and give at least one month of control against re-infestation by the common tick species affecting dogs in the US. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Molecular epidemiological survey of bacterial and parasitic pathogens in hard ticks from eastern China.

    Science.gov (United States)

    Liu, Xiang-Ye; Gong, Xiang-Yao; Zheng, Chen; Song, Qi-Yuan; Chen, Ting; Wang, Jing; Zheng, Jie; Deng, Hong-Kuan; Zheng, Kui-Yang

    2017-03-01

    Ticks are able to transmit various pathogens-viruses, bacteria, and parasites-to their host during feeding. Several molecular epidemiological surveys have been performed to evaluate the risk of tick-borne pathogens in China, but little is known about pathogens circulating in ticks from eastern China. Therefore, this study aimed to investigate the presence of bacteria and parasites in ticks collected from Xuzhou, a 11258km 2 region in eastern China. In the present study, ticks were collected from domestic goats and grasses in urban districts of Xuzhou region from June 2015 to July 2016. After tick species identification, the presence of tick-borne bacterial and parasitic pathogens, including Anaplasma phagocytophilum, Borrelia burgdorferi, Rickettsia sp., Bartonella sp., Babesia sp., and Theileria sp., was established via conventional or nested polymerase chain reaction assays (PCR) and sequence analysis. Finally, a total of 500 questing adult ticks, identified as Haemaphysalis longicornis, were investigated. Among them, 28/500 tick samples (5.6%) were infected with A. phagocytophilum, and 23/500 (4.6%) with Theileria luwenshuni, whereas co-infection with these pathogens was detected in only 1/51 (2%) of all infected ticks. In conclusion, H. longicornis is the dominant tick species in the Xuzhou region and plays an important role in zoonotic pathogen transmission. Both local residents and animals are at a significant risk of exposure to anaplasmosis and theileriosis, due to the high rates of A. phagocytophilum and T. luwenshuni tick infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Comparative evaluation of Amblyomma ovale ticks infected and noninfected by Rickettsia sp. strain Atlantic rainforest, the agent of an emerging rickettsiosis in Brazil.

    Science.gov (United States)

    Krawczak, Felipe S; Agostinho, Washington C; Polo, Gina; Moraes-Filho, Jonas; Labruna, Marcelo B

    2016-04-01

    In 2010, a novel spotted fever group rickettsiosis was reported in the Atlantic rainforest coast of Brazil. The etiological agent was identified as Rickettsia sp. strain Atlantic rainforest, and the tick Amblyomma ovale was incriminated as the presumed vector. The present study evaluated under laboratory conditions four colonies of A. ovale: two started from engorged females that were naturally infected by Rickettsia sp. strain Atlantic rainforest (designated as infected groups); the two others started from noninfected females (designated as control groups). All colonies were reared in parallel from F0 engorged female to F2 unfed nymphs. Tick-naïve vesper mice (Calomys callosus) or domestic rabbits were used for feeding of each tick stage. Rickettsia sp. strain Atlantic rainforest was preserved by transstadial maintenance and transovarial transmission in A. ovale ticks for at least 2 generations (from F0 females to F2 nymphs), because nearly 100% of the tested larvae, nymphs, and adults from the infected groups were shown by PCR to contain rickettsial DNA. All vesper mice and rabbits infested by larvae and nymphs, and 50% of the rabbits infested by adults from the infected groups seroconverted, indicating that these tick stages were vector competent for Rickettsia sp. strain Atlantic rainforest. Expressive differences in mortality rates and reproductive performance were observed between engorged females from the infected and control groups, as indicated by 75.0% and 97.1% oviposition success, respectively, and significantly lower egg mass weight, conversion efficiency index, and percentage of egg hatching for the infected groups. Our results indicate that A. ovale can act as a natural reservoir for Rickettsia sp. strain Atlantic rainforest. However, due to deleterious effect caused by this rickettsial agent on engorged females, amplifier vertebrate hosts might be necessary for persistent perpetuation of Rickettsia sp. strain Atlantic rainforest in A. ovale under

  3. Molecular characterization of Hepatozoon felis in Rhipicephalus sanguineus ticks infested on captive lions (Panthera leo).

    Science.gov (United States)

    Bhusri, Benjaporn; Sariya, Ladawan; Mongkolphan, Chalisa; Suksai, Parut; Kaewchot, Supakarn; Changbunjong, Tanasak

    2017-09-01

    Hepatozoon spp. are protozoan parasites that infect a wide range of domestic and wild animals. The infection occurs by ingestion of an infected tick. This study was carried out to detect and characterize Hepatozoon spp. in ticks collected from captive lions ( Panthera leo ) in Thailand based on the partial 18S rRNA gene sequence. A total of 30 ticks were collected and identified as Rhipicephalus sanguineus . The collected ticks were separated into 10 tick pools by sex and life stages. Of the 10 tick pools examined, only one (10%) was found to be infected with the Hepatozoon species. Sequencing and phylogenetic analysis showed a clustering of the partial 18S rRNA gene sequence like that of H. felis from the GenBank database. This is the first report of H. felis in R. sanguineus ticks collected from captive lions in Thailand. Our results indicated that R. sanguineus may be a possible vector of feline Hepatozoon in Thailand.

  4. Migrating birds and carnivores introduce ticks and tick borne pathogens to Denmark – but are they also a public health risk?

    DEFF Research Database (Denmark)

    Bødker, Rene; Vrbová, Erika; Højgaard, Jesper

    Since the end of the ice age, spring migrating birds from Africa and Europe and autumn migrating birds from Northern Scandinavia have entered Denmark, and recently a small wave of long migrating carnivores have started arriving in Denmark from Central Europe. Theoretically, migrating birds could...... introduce new tick species as well as tick-associated pathogens to Denmark. These migrating animals may also carry ticks and pathogens which already exist in native tick populations in Denmark. The potential supplement of native ticks and existing pathogens to the established high density tick populations...... in Danish forest and nature areas can be expected to be of little practical importance. However, some of the infected ticks, introduced by migrating birds, may be deposited in private gardens and public parks that are otherwise not able to sustain a viable tick population. Migrating birds may therefore...

  5. Rickettsia amblyommatis infecting ticks and exposure of domestic dogs to Rickettsia spp. in an Amazon-Cerrado transition region of northeastern Brazil.

    Science.gov (United States)

    Costa, Francisco B; da Costa, Andréa P; Moraes-Filho, Jonas; Martins, Thiago F; Soares, Herbert S; Ramirez, Diego G; Dias, Ricardo A; Labruna, Marcelo B

    2017-01-01

    This study was performed in Maranhão state, a transition area two Brazilian biomes, Amazon and Cerrado. During 2011-2013, 1,560 domestic dogs were sampled for collection of serum blood samples and ticks in eight counties (3 within the Amazon and 5 within the Cerrado). A total of 959 ticks were collected on 150 dogs (9.6%). Rhipicephalus sanguineus sensu lato (s.l.) was the most abundant tick (68% of all collected specimens), followed by Amblyomma cajennense sensu lato (s.l.) (12.9%), Amblyomma parvum (9.2%), and Amblyomma ovale (5.2%). Other less abundant species (Rickettsia species: Rickettsia amblyommatis in 1% (1/100) A. cajennense s.l., 'Candidatus Rickettsia andeanae' in 20.7% (12/58) A. parvum, Rickettsia bellii in 6.8% (3/44) A. ovale and 100% (1/1) A. rotundatum ticks. An additional collection of A. sculptum from horses in a Cerrado area, and A. cajennense s.s. from pigs in an Amazon area revealed R. amblyommatis infecting only the A. cajennense s.s. ticks. Serological analysis of the 1,560 canine blood samples revealed 12.6% canine seroreactivity to Rickettsia spp., with the highest specific seroreactivity rate (10.2%) for R. amblyommatis. Endpoint titers to R. amblyommatis were significantly higher than those for the other Rickettsia antigens, suggesting that most of the seroreactive dogs were exposed to R. amblyommatis-infected ticks. Highest canine seroreactivity rates per locality (13.1-30.8%) were found in Amazon biome, where A. cajennense s.s. predominated. Lowest seroreactivity rates (1.9-6.5%) were found in Cerrado localities that were further from the Amazon, where A. sculptum predominated. Multivariate analyses revealed that canine seroreactivity to Rickettsia spp. or R. amblyommatis was statistically associated with rural dogs, exposed to Amblyomma ticks.

  6. Direct evidence of Rickettsia typhi infection in Rhipicephalus sanguineus ticks and their canine hosts

    Directory of Open Access Journals (Sweden)

    Karla Dzul-Rosado

    2017-06-01

    Full Text Available Murine typhus is a rickettsiosis caused by Rickettsia typhi, whose transmission is carried out by rat fleas in urban settlements as classically known, but it also has been related to cat fleas in a sub-urban alternative cycle that has been suggested by recent reports. These studies remarks that in addition to rats, other animals like cats, opossums and dogs could be implied in the transmission of Rickettsia typhi as infected fleas obtained from serologically positive animals have been detected in samples from endemic areas. In Mexico, the higher number of murine typhus cases have been detected in the Yucatan peninsula, which includes a great southeastern region of Mexico that shows ecologic characteristics similar to the sub-urban alternative cycle recently described in Texas and California at the United States. To find out which are the particular ecologic characteristics of murine typhus transmission in this region, we analyzed blood and Rhipicephalus sanguineus ticks obtained from domestic dogs by molecular approaches, demonstrating that both samples were infected by Rickettsia typhi. Following this, we obtained isolates that were analyzed by genetic sequencing to corroborate this infection in 100% of the analyzed samples. This evidence suggests for the first time that ticks and dogs could be actively participating in the transmission of murine typhus, in a role that requires further studies for its precise description.

  7. First molecular evidence of Coxiella burnetii infecting ticks in Cuba.

    Science.gov (United States)

    Noda, Angel A; Rodríguez, Islay; Miranda, Jorge; Contreras, Verónica; Mattar, Salim

    2016-02-01

    Coxiella burnetii is the causative agent of Q fever. In order to explore the occurrence of C. burnetii in ticks, samples were collected from horses, dogs and humans living in a Cuban occidental community. The species most commonly recovered were Amblyomma mixtum (67%), Rhipicephalus sanguineus s.l. (27%) and Dermacentor nitens (6%). Specific IS1111 PCR and amplicon sequencing allowed the identification of C. burnetii DNA in A. mixtum collected from a domestic horse. These findings, for first time in Cuba, indicate the need for an in-depth assessment of the C. burnetii occurrence in hosts and humans at risk of infection. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Babesia canis vogeli infection in dogs and ticks in the semiarid region of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Andreina C. Araujo

    2015-05-01

    Full Text Available Abstract:This study aimed to report the prevalence of Babesia canis vogeli in dogs and ticks in the urban and rural areas of Petrolina, Pernambuco. Serum and peripheral blood samples of 404 dogs were tested by indirect immunofluorescence assay (IFA and by blood smears, respectively. The presence of tick infestation was evaluated, and some specimens were submitted to DNA amplification by polymerase chain reaction (PCR. The presence of antibodies anti-B. canis vogeli was determinate in 57.9% (234/404 of dogs. The direct detection of Babesia spp was obtained in 0.5% (2/404 dogs by visualization of intraerythrocytic forms. Infestation by Rhipicephalus sanguineus sensu lato was observed in 54.5% (220/404 of dogs in both urban and rural areas. DNA of Babesia canis vogeli were obtained by PCR in 6% individual (3/50 and 8.7% of pool of ticks (7/80. The risk factors for the presence of anti-B. canis vogeli antibodies, as determined through the application of logistic regression models (P<0.05, were the following: medium breed size variables (P<0.001; contact with areas of forest (P=0.021; and access on the street (P=0.046. This study describes, for the first time, the confirmation of infection of B. canis vogeli in dogs and ticks in the semiarid region of Pernambuco, Brazil.

  9. Tick borne illness-Lyme disease.

    Science.gov (United States)

    Bush, Larry M; Vazquez-Pertejo, Maria T

    2018-05-01

    Lyme disease is the most commonly reported tick-borneillness in the United States. Thecausative spirochete, Borrelia burgdorferi is transmitted by 4 species of Ixodes tick species. Over 90% of US cases occur in northeasternstates from Maine to Virginia, and in Wisconsin, Minnesota, and Michigan. Infection also takes place in northern California and Oregon. Lyme borreliosis is also diagnosed in parts of Europe, China, and Japan. The white-footed mouse is the primary animal reservoir for B. burgdorferi in the U.S. and the preferred host for nymphal and larval forms of the deer tick. Deer are hosts for the adult ticks but do not carry the spirochete. Signs and symptomsof infection occur in 3 stages; early localized, typified by erythema migrans; early disseminated with a flu-like syndrome, neurologic, and cardiac manifestations; and late, characteristically with arthritis. Although, the term 'Chronic Lyme Disease' has been assigned to many patients with a variety of unexplained symptoms, experts in the field question the validity of this diagnosis and warn against prolonged unproven antimicrobial therapies. Diagnosis relies upon clinical evaluation and is supported by serologic testing using a 2-step process which requires careful interpretation. Treatmentvaries with stage of disease, but normally includes doxycycline, amoxicillin,and ceftriaxone. Currently, no preventative vaccine is available. In some geographic areas, patients may be confected with Babesia, Ehrlichia, and Anaplasma since the same Ixodes ticks transmit these pathogens. Copyright © 2018 Mosby, Inc. All rights reserved.

  10. Infestation of Royal Python (Python regius) with ticks Amblyomma ...

    African Journals Online (AJOL)

    The Python/Boa Family is found in most part of tropics. It is a highly domesticated pet and can easily be handled (Cansdale 1962). Snakes are commonly infected by ticks more importantly the hand bodied ticks (Fowler, 1986).However, under captive condition, ticks usually exert a lot of burden on their hosts being carriers of ...

  11. Prevalence of infection with Rickettsia helvetica in Ixodes ricinus ticks feeding on non-rickettsiemic rodent hosts in sylvatic habitats of west-central Poland.

    Science.gov (United States)

    Biernat, Beata; Stańczak, Joanna; Michalik, Jerzy; Sikora, Bożena; Wierzbicka, Anna

    2016-02-01

    Ixodes ricinus is the most prevalent and widely distributed tick species in European countries and plays a principal role in transmission of a wide range of microbial pathogens. It is also a main vector and reservoir of Rickettsia spp. of the spotted fever group with the infection level ranging in Poland from 1.3% to 11.4%. Nevertheless, little research has been conducted so far to identify reservoir hosts for these pathogens. A survey was undertaken to investigate the presence of Rickettsia spp. in wild small rodents and detached I. ricinus. Rodents, Apodemus flavicollis mice and Myodes glareolus voles were captured in typically sylvatic habitats of west-central Poland. Blood samples and collected ticks were analyzed by conventional, semi-nested and nested PCRs. Rickettsial species were determined by sequence analysis of obtained fragments of gltA and 16S rRNA genes. A total of 2339 immature I. ricinus (mostly larvae) were collected from 158 animals. Proportion of hosts carrying ticks was 84%, being higher for A. flavicollis than for M. glareolus. Rickettsia helvetica, the only species identified, was detected in 8% of 12 nymphs and in at least 10.7% (MIR) of 804 larvae investigated. Prevalence of infected ticks on both rodent species was comparable (10.8 vs. 9%). None of blood samples tested was positive for Rickettsia spp. The results showed that in sylvatic habitats the level of infestation with larval I. ricinus was higher in A. flavicollis mice in comparison with M. glareolus voles. They show that R. helvetica frequently occurred in ticks feeding on rodents. Positive immature ticks were collected from non-rickettsiemic hosts what might suggest a vertical route of their infection (transovarial and/or transstadial) or a very short-lasting rickettsiemia in rodents. A natural vertebrate reservoir host for R. helvetica remains to be determined. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. The prevalence of Anaplasma phagocytophilum in questing Ixodes ricinus ticks in SW Poland.

    Science.gov (United States)

    Kiewra, Dorota; Zaleśny, Grzegorz; Czułowska, Aleksandra

    2014-01-01

    Ticks constitute important vectors of human and animal pathogens. Besides the Lyme borreliosis and tick-borne encephalitis, other pathogens such as Babesia spp., Rickettsia spp., and Anaplasma phagocytophilum, are of increasing public health interest. In Poland, as in other European countries, Ixodes ricinus, the most prevalent tick species responsible for the majority of tick bites in humans, is the main vector of A. phagocytophilum. The aim of the study was to estimate the infection level of I. ricinus with A. phagocytophilum in selected districts, not previously surveyed for the presence of this agent. Sampling of questing ticks was performed in 12 forested sites, located in four districts (Legnica, Milicz, Lubań, and Oława) in SW Poland. Altogether, 792 ticks (151 females, 101 males, and 540 nymphs) representing I. ricinus were checked for the presence of A. phagocytophilum. The average infection level was 4.3%, with higher rate reported for adult ticks. The highest percentage of infected adults was observed in Milicz (17.4%) and the lowest in Oława (6.8%). The abundance of questing I. ricinus in all examined sites as well as the infection with A. phagocytophilum indicate for the first time the risk for HGA transmission in SW Poland.

  13. Infection of the Gulf Coast Tick, Amblyomma Maculatum (Acari: Ixodidae), with Rickettsia Parkeri: First Report from the State of Delaware

    Science.gov (United States)

    2013-03-31

    0279276E-D761-4A27-BFF7-7329E05E0F66 Infection of the Gulf Coast tick, Amblyomma maculatum (Acari: Ixodidae), with Rickettsia parkeri: first report from...Spring, MD 20910-1230, U.S.A. Abstract The molecular detection of Rickettsia parkeri in a Gulf Coast tick, Amblyomma maculatum, collected in Delaware...near Smyrna, Delaware. All specimens were tested for the presence of Rickettsia with a genus-specific quantitative real-time polymerase chain

  14. Ehrlichiosis

    Science.gov (United States)

    ... Ehrlichia bacteria can be carried by the: American dog tick Deer tick ( Ixodes scapularis ), which can also ... your vital signs, including: Blood pressure Heart rate Temperature Other tests include: Complete blood count ( CBC ) Granulocyte ...

  15. Rocky Mountain spotted fever from an unexpected tick vector in Arizona.

    Science.gov (United States)

    Demma, Linda J; Traeger, Marc S; Nicholson, William L; Paddock, Christopher D; Blau, Dianna M; Eremeeva, Marina E; Dasch, Gregory A; Levin, Michael L; Singleton, Joseph; Zaki, Sherif R; Cheek, James E; Swerdlow, David L; McQuiston, Jennifer H

    2005-08-11

    Rocky Mountain spotted fever is a life-threatening, tick-borne disease caused by Rickettsia rickettsii. This disease is rarely reported in Arizona, and the principal vectors, Dermacentor species ticks, are uncommon in the state. From 2002 through 2004, a focus of Rocky Mountain spotted fever was investigated in rural eastern Arizona. We obtained blood and tissue specimens from patients with suspected Rocky Mountain spotted fever and ticks from patients' homesites. Serologic, molecular, immunohistochemical, and culture assays were performed to identify the causative agent. On the basis of specific laboratory criteria, patients were classified as having confirmed or probable Rocky Mountain spotted fever infection. A total of 16 patients with Rocky Mountain spotted fever infection (11 with confirmed and 5 with probable infection) were identified. Of these patients, 13 (81 percent) were children 12 years of age or younger, 15 (94 percent) were hospitalized, and 2 (12 percent) died. Dense populations of Rhipicephalus sanguineus ticks were found on dogs and in the yards of patients' homesites. All patients with confirmed Rocky Mountain spotted fever had contact with tick-infested dogs, and four had a reported history of tick bite preceding the illness. R. rickettsii DNA was detected in nonengorged R. sanguineus ticks collected at one home, and R. rickettsii isolates were cultured from these ticks. This investigation documents the presence of Rocky Mountain spotted fever in eastern Arizona, with common brown dog ticks (R. sanguineus) implicated as a vector of R. rickettsii. The broad distribution of this common tick raises concern about its potential to transmit R. rickettsii in other settings. Copyright 2005 Massachusetts Medical Society.

  16. Tick-borne encephalitis.

    Science.gov (United States)

    Dumpis, U; Crook, D; Oksi, J

    1999-04-01

    Tick-borne encephalitis (TBE) is a zoonotic arbovirus infection endemic to Russia and Eastern and Central Europe. Despite being a common and serious life-threatening disease for which a mass vaccination program was implemented in Austria, there is only limited reference to this disease in the English-language literature. TBE is transmitted to humans usually by the bite of a tick (either Ixodes persulcatus or Ixodes ricinus); occasionally, cases occur following consumption of infected unpasteurized milk. Transmission is seasonal and occurs in spring and summer, particularly in rural areas favored by the vector. TBE is a serious cause of acute central nervous system disease, which may result in death or long-term neurological sequelae. Effective vaccines are available in a few countries. The risk for travelers of acquiring TBE is increasing with the recent rise in tourism to areas of endemicity during spring and summer.

  17. A survey of canine tick-borne diseases in India

    Directory of Open Access Journals (Sweden)

    Coleman Glen T

    2011-07-01

    Full Text Available Abstract Background There are few published reports on canine Babesia, Ehrlichia, Anaplasma, Hepatozoon and haemotropic Mycoplasma infections in India and most describe clinical disease in individual dogs, diagnosed by morphological observation of the microorganisms in stained blood smears. This study investigated the occurrence and distribution of canine tick-borne disease (TBD pathogens using a combination of conventional and molecular diagnostic techniques in four cities in India. Results On microscopy examination, only Hepatozoon gamonts were observed in twelve out of 525 (2.3%; 95% CI: 1.2, 4 blood smears. Using polymerase chain reaction (PCR, a total of 261 from 525 dogs (49.7%; 95% CI: 45.4, 54.1 in this study were infected with one or more canine tick-borne pathogen. Hepatozoon canis (30%; 95% CI: 26.0, 34.0 was the most common TBD pathogen found infecting dogs in India followed by Ehrlichia canis (20.6%; 95% CI: 17.2, 24.3, Mycoplasma haemocanis (12.2%; 95% CI: 9.5, 15.3, Anaplasma platys (6.5%; 95% CI: 4.5, 8.9, Babesia vogeli (5.5%, 95% CI: 3.7, 7.8 and Babesia gibsoni (0.2%, 95% CI: 0.01, 1.06. Concurrent infection with more than one TBD pathogen occurred in 39% of cases. Potential tick vectors, Rhipicephalus (most commonly and/or Haemaphysalis ticks were found on 278 (53% of dogs examined. Conclusions At least 6 species of canine tick-borne pathogens are present in India. Hepatozoon canis was the most common pathogen and ticks belonging to the genus Rhipicephalus were encountered most frequently. Polymerase chain reaction was more sensitive in detecting circulating pathogens compared with peripheral blood smear examination. As co-infections with canine TBD pathogens were common, Indian veterinary practitioners should be cognisant that the discovery of one such pathogen raises the potential for multiple infections which may warrant different clinical management strategies.

  18. Efficacy of plant-derived and synthetic compounds on clothing as repellents against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae).

    Science.gov (United States)

    Jordan, Robert A; Schulze, Terry L; Dolan, Marc C

    2012-01-01

    We conducted field trials to compare the relative repellent activity of two natural product compounds (nootkatone and carvacrol) with commercially available plant-derived (EcoSMART organic insect repellent) and permethrin-based (Repel Permanone) repellents against adult Ixodes scapularis Say and Amblyomma americanum (L.) (Acari: Ixodidae) by using treated coveralls. One day after treatment, nootkatone and carvacrol provided 100% repellency of I. scapularis adults, with nootkatone maintaining complete protection through 3 d, whereas carvacrol showed steadily declining repellency against I. scapularis during the 7-d course of the trials. Nootkatone was at least as effective against host-seeking A. americanum as against I. scapularis through 3 d. Carvacrol provided little protection against A. americanum adults. Both natural compounds performed well initially in comparison with the commercial products. After 7 d, nootkatone was the most effective against both species followed in order of activity by Permanone, EcoSMART, and carvacrol. Nootkatone seems to have offer considerable potential as a clothing repellent against both I. scapularis and A. americanum.

  19. Pathogenicity of Metarhizium anisopliae (Deuteromycetes) and permethrin to Ixodes scapularis (Acari: Ixodidae) nymphs

    Science.gov (United States)

    Hornbostel, V.L.; Zhioua, Elyes; Benjamin, Michael A.; Ginsberg, Howard S.; Ostfeld, Richard S.

    2005-01-01

    Effectiveness of the entomopathogenic fungus Metarhizium anisopliae, for controlling nymphal Ixodes scapularis, was tested in laboratory and field trials. In the laboratory, M. anisopliae (Metschnikoff) Sorokin strain ESC1 was moderately pathogenic, with an LC50 of 107 spores/ml and induced 70% mortality at 109 spores/ml. In a field study, however, 109 spores/ml M. anisopliae did not effectively control questing I. scapularis nymphs, and significant differences were not detected in pre- and post-treatment densities. For nymphs collected and returned to the laboratory for observation, mortality was low in treatment groups, ranging from 20 to 36%. To assess whether a chemical acaricide would synergistically enhance pathogenicity of the fungus, we challenged unfed nymphal I. scapularis with combinations of M. anisopliae and permethrin, a relatively safe pyrethroid acaricide, in two separate bioassays. Significant interactions between M. anisopliae and permethrin were not observed, supporting neither synergism nor antagonism.

  20. Exploring of primate models of tick-borne flaviviruses infection for evaluation of vaccines and drugs efficacy.

    Directory of Open Access Journals (Sweden)

    Natalia S Pripuzova

    Full Text Available Tick-borne encephalitis virus (TBEV is one of the most prevalent and medically important tick-borne arboviruses in Eurasia. There are overlapping foci of two flaviviruses: TBEV and Omsk hemorrhagic fever virus (OHFV in Russia. Inactivated vaccines exist only against TBE. There are no antiviral drugs for treatment of both diseases. Optimal animal models are necessary to study efficacy of novel vaccines and treatment preparations against TBE and relative flaviviruses. The models for TBE and OHF using subcutaneous inoculation were tested in Cercopithecus aethiops and Macaca fascicularis monkeys with or without prior immunization with inactivated TBE vaccine. No visible clinical signs or severe pathomorphological lesions were observed in any monkey infected with TBEV or OHFV. C. aethiops challenged with OHFV showed massive hemolytic syndrome and thrombocytopenia. Infectious virus or viral RNA was revealed in visceral organs and CNS of C. aethiops infected with both viruses; however, viremia was low. Inactivated TBE vaccines induced high antibody titers against both viruses and expressed booster after challenge. The protective efficacy against TBE was shown by the absence of virus in spleen, lymph nodes and CNS of immunized animals after challenge. Despite the absence of expressed hemolytic syndrome in immunized C. aethiops TBE vaccine did not prevent the reproduction of OHFV in CNS and visceral organs. Subcutaneous inoculation of M. fascicularis with two TBEV strains led to a febrile disease with well expressed viremia, fever, and virus reproduction in spleen, lymph nodes and CNS. The optimal terms for estimation of the viral titers in CNS were defined as 8-16 days post infection. We characterized two animal models similar to humans in their susceptibility to tick-borne flaviviruses and found the most optimal scheme for evaluation of efficacy of preventive and therapeutic preparations. We also identified M. fascicularis to be more susceptible to

  1. Ticks

    Science.gov (United States)

    ... Tweet Share Compartir PREVENT BITES Avoid ticks on people, on pets and in the yard. More REMOVE TICKS Find ... Follow the Steps Ticks Home Avoiding ticks On people On pets In the yard Removing a tick Symptoms of ...

  2. Endosymbiont interference and microbial diversity of the Pacific coast tick, Dermacentor occidentalis, in San Diego County, California

    Directory of Open Access Journals (Sweden)

    Nikos Gurfield

    2017-04-01

    Full Text Available The Pacific coast tick, Dermacentor occidentalis Marx, is found throughout California and can harbor agents that cause human diseases such as anaplasmosis, ehrlichiosis, tularemia, Rocky Mountain spotted fever and rickettsiosis 364D. Previous studies have demonstrated that nonpathogenic endosymbiotic bacteria can interfere with Rickettsia co-infections in other tick species. We hypothesized that within D. occidentalis ticks, interference may exist between different nonpathogenic endosymbiotic or nonendosymbiotic bacteria and Spotted Fever group Rickettsia (SFGR. Using PCR amplification and sequencing of the rompA gene and intergenic region we identified a cohort of SFGR-infected and non-infected D. occidentalis ticks collected from San Diego County. We then amplified a partial segment of the 16S rRNA gene and used next-generation sequencing to elucidate the microbiomes and levels of co-infection in the ticks. The SFGR R. philipii str. 364D and R. rhipicephali were detected in 2.3% and 8.2% of the ticks, respectively, via rompA sequencing. Interestingly, next generation sequencing revealed an inverse relationship between the number of Francisella-like endosymbiont (FLE 16S rRNA sequences and Rickettsia 16S rRNA sequences within individual ticks that is consistent with partial interference between FLE and SFGR infecting ticks. After excluding the Rickettsia and FLE endosymbionts from the analysis, there was a small but significant difference in microbial community diversity and a pattern of geographic isolation by distance between collection locales. In addition, male ticks had a greater diversity of bacteria than female ticks and ticks that weren’t infected with SFGR had similar microbiomes to canine skin microbiomes. Although experimental studies are required for confirmation, our findings are consistent with the hypothesis that FLEs and, to a lesser extent, other bacteria, interfere with the ability of D. occidentalis to be infected with

  3. Implications of climate change on the distribution of the tick vector Ixodes scapularis and risk for Lyme disease in the Texas-Mexico transboundary region

    Science.gov (United States)

    Disease risk maps are important tools that help ascertain the likelihood of exposure to specific infectious agents. Understanding how climate change may affect the suitability of habitats for ticks will improve the accuracy of risk maps of tick-borne pathogen transmission in humans and domestic anim...

  4. OUTCOMES OF TICK-BORNE ENCEPHALITIS IN THE TOMSK REGION

    Directory of Open Access Journals (Sweden)

    T. S. Pinegina

    2013-01-01

    Full Text Available The results of the study outcomes of tick-borne encephalitis in adults in the Tomsk Region. Patients conducted a comprehensive clinical and laboratory examination. Revealed the prevalence of autonomic disorders in individuals who have had at different periods of tick-borne encephalitis, which is regarded as the effects of tick-borne infection. Residual effects of tick-borne encephalitis occurs mainly in the form of light paresis after suffering a focal forms. Among the chronic (progredient forms of tick-borne encephalitis often formed hyperkinetic options. Most of the study revealed the presence of precipitating factors that could have an influence on the outcome. Fundamental diffe rences in all-clinical and immunological analyses at patients with various outcomes of tick-borne encephalitis it wasn't noted. KEY WORDS: tick-borne encephalitis, Tomsk Region, the outcomes.

  5. Vaccination against ticks and the control of ticks and tick-borne disease

    International Nuclear Information System (INIS)

    Willadsen, P.

    2005-01-01

    Economic losses due to ticks and tick-borne disease of livestock fall disproportionately on developing countries. Currently, tick control relies mostly on pesticides and parasite-resistant cattle. Release of a commercial recombinant vaccine against Boophilus microplus in Australia in 1994 showed that anti-tick vaccines are a feasible alternative. For vaccines, it is important to understand the efficacy needed for a beneficial outcome. In this, it is relevant that some tick antigens affect multiple tick species; that existing vaccines could be improved by the inclusion of additional tick antigens; and that vaccination against ticks can have an impact on tick-borne disease. Practically, although recombinant vaccine manufacture involves relatively few steps, issues of intellectual property rights (IPR) and requirements for registration of a product may affect economic viability of manufacture. Hence practical vaccines for the developing world will require both successful science and a creative 'business solution' for delivery in a cost-effective way. (author)

  6. Detection of Theileria and Babesia species in ticks collected from cattle.

    Science.gov (United States)

    Ica, A; Vatansever, Z; Yildirim, A; Duzlu, O; Inci, A

    2007-09-01

    The present study was carried out to detect tick species that infest cattle, and Theileria and Babesia species transmitted by these ticks in Kayseri province (Turkey). A total of 300 cattle were examined for tick infestations. Of the 300 cattle, 117 (39%) were infested with ticks. A total of 1160 ticks belonging to 11 Ixodid genera were collected from the infested animals and their shelters. The most prevalent tick species was Boophilus annulatus 26.37% (306/1160) followed by Hyalomma marginatum marginatum 21.12% (245/1160) and Rhipicephalus turanicus 18.7% (217/1160). The collected ticks were separated into 43 tick pools, according to their species. These pools were examined for bovine Theileria and Babesia species (Theileria sp., Babesia sp., Theileria annulata, T. buffeli/orientalis, Babesia bigemina, B. bovis and B. divergens) by using the reverse line blotting method (RLB). Of the 43 tick pools examined, 6 (14%) were infected with B. bigemina, 4 (9.3%) with T. annulata, and 1 (2.3%) with Babesia sp., whereas 1 (2.3%) displayed mixed infection with T. annulata + B. bigemina. The sequence and phylogenetic analyses of Babesia sp., which could not be identified to the species level by RLB, were performed. In the phylogenetic tree, Babesia sp. (Kayseri 1) grouped with Babesia sp. (Kashi 2), Babesia sp. (Kashi 1), Babesia sp. (Xinjiang) and B. orientalis with 96.8-100% identity.

  7. Prevalence of Borrelia burgdorferi in ticks removed from skin of people and circumstances of being bitten - research from the area of Poland, 2012-2014.

    Science.gov (United States)

    Gałęziowska, Edyta; Rzymowska, Jolanta; Najda, Nella; Kołodziej, Przemysław; Domżał-Drzewicka, Renata; Rząca, Marcin; Muraczyńska, Bożena; Charzyńska-Gula, Marianna; Szadowska-Szlachetka, Zdzisława; Ślusarska, Barbara; Guty, Edyta

    2018-03-14

    During feeding, the tick sucks blood from the host along with the pathogens that are in the blood, simultaneously exchanging its own pathogens with the host. Humans can also be a host. It is important to understand the most typical circumstances in which people might become infected with Borrelia burgdorferi. This knowledge will help to prepare health education programmes aimed at the prevention of Lyme disease and other tick-borne diseases. The aim of the study was to determine the percentage of ticks infected with Borrelia burgdorferi sensu lato, depending on the circumstances of getting bitten. The research material consisted of ticks acquired from people who had been bitten, and questionnaires completed by these people. 510 ticks were acquired from 257 females and 253 males. Following delivery of a tick for testing, the stage of its development was determined and a molecular assay of Borrelia burgdorferi DNA performed. A positive result of the nested-PCR test was obtained in 78 ticks, which represents 15.30% of all ticks. The infected ticks were collected from male (41 ticks - 52.56%) and female subjects (37 ticks - 47.44%). The biggest number of infected ticks were collected in autumn (54 ticks - 69.23%) and from people who had been into forests (44 ticks - 56.41%). Among the people from whom the infected ticks were acquired, the dominating group included persons over 16 years of age (53 persons - 67.95%) and children aged 0-5 years (16 persons - 20.51%). One in four infected ticks were acquired from the southwestern (20 ticks - 25.64%) and eastern regions of Poland (21 ticks - 26.92%). Infestation of ticks infected with Lyme disease spirochete in this study proved to be variable and depend on the season, the area of tick attack and the region in Poland. The results of the study clearly show that ticks infected with Borrelia burgdorferi inhabit all regions of Poland. The results are consistent with National Institute of Hygiene data which indicates that Lyme

  8. Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks.

    Science.gov (United States)

    Strnad, Martin; Hönig, Václav; Růžek, Daniel; Grubhoffer, Libor; Rego, Ryan O M

    2017-08-01

    Lyme borreliosis is the most common zoonotic disease transmitted by ticks in Europe and North America. Despite having multiple tick vectors, the causative agent, Borrelia burgdorferi sensu lato , is vectored mainly by Ixodes ricinus in Europe. In the present study, we aimed to review and summarize the existing data published from 2010 to 2016 concerning the prevalence of B. burgdorferi sensu lato spirochetes in questing I. ricinus ticks. The primary focus was to evaluate the infection rate of these bacteria in ticks, accounting for tick stage, adult tick gender, region, and detection method, as well as to investigate any changes in prevalence over time. The data obtained were compared to the findings of a previous metastudy. The literature search identified data from 23 countries, with 115,028 ticks, in total, inspected for infection with B. burgdorferi sensu lato We showed that the infection rate was significantly higher in adults than in nymphs and in females than in males. We found significant differences between European regions, with the highest infection rates in Central Europe. The most common genospecies were B. afzelii and B. garinii , despite a negative correlation of their prevalence rates. No statistically significant differences were found among the prevalence rates determined by conventional PCR, nested PCR, and real-time PCR. IMPORTANCE Borrelia burgdorferi sensu lato is a pathogenic bacterium whose clinical manifestations are associated with Lyme borreliosis. This vector-borne disease is a major public health concern in Europe and North America and may lead to severe arthritic, cardiovascular, and neurological complications if left untreated. Although pathogen prevalence is considered an important predictor of infection risk, solitary isolated data have only limited value. Here we provide summarized information about the prevalence of B. burgdorferi sensu lato spirochetes among host-seeking Ixodes ricinus ticks, the principal tick vector of

  9. Spotted fever Rickettsia species in Hyalomma and Ixodes ticks infesting migratory birds in the European Mediterranean area

    Science.gov (United States)

    2014-01-01

    Background A few billion birds migrate annually between their breeding grounds in Europe and their wintering grounds in Africa. Many bird species are tick-infested, and as a result of their innate migratory behavior, they contribute significantly to the geographic distribution of pathogens, including spotted fever rickettsiae. The aim of the present study was to characterize, in samples from two consecutive years, the potential role of migrant birds captured in Europe as disseminators of Rickettsia-infected ticks. Methods Ticks were collected from a total of 14,789 birds during their seasonal migration northwards in spring 2009 and 2010 at bird observatories on two Mediterranean islands: Capri and Antikythira. All ticks were subjected to RNA extraction followed by cDNA synthesis and individually assayed with a real-time PCR targeting the citrate synthase (gltA) gene. For species identification of Rickettsia, multiple genes were sequenced. Results Three hundred and ninety-eight (2.7%) of all captured birds were tick-infested; some birds carried more than one tick. A total number of 734 ticks were analysed of which 353 ± 1 (48%) were Rickettsia-positive; 96% were infected with Rickettsia aeschlimannii and 4% with Rickettsia africae or unidentified Rickettsia species. The predominant tick taxon, Hyalomma marginatum sensu lato constituted 90% (n = 658) of the ticks collected. The remaining ticks were Ixodes frontalis, Amblyomma sp., Haemaphysalis sp., Rhipicephalus sp. and unidentified ixodids. Most ticks were nymphs (66%) followed by larvae (27%) and adult female ticks (0.5%). The majority (65%) of ticks was engorged and nearly all ticks contained visible blood. Conclusions Migratory birds appear to have a great impact on the dissemination of Rickettsia-infected ticks, some of which may originate from distant locations. The potential ecological, medical and veterinary implications of such Rickettsia infections need further examination. PMID:25011617

  10. Anaplasma phagocytophilum in questing Ixodes ricinus ticks from Romania.

    Science.gov (United States)

    Matei, Ioana Adriana; Kalmár, Zsuzsa; Magdaş, Cristian; Magdaş, Virginia; Toriay, Hortenzia; Dumitrache, Mirabela Oana; Ionică, Angela Monica; D'Amico, Gianluca; Sándor, Attila D; Mărcuţan, Daniel Ioan; Domşa, Cristian; Gherman, Călin Mircea; Mihalca, Andrei Daniel

    2015-04-01

    Granulocytic anaplasmosis is a common vector-borne disease of humans and animals with natural transmission cycle that involves tick vectors, among which Ixodes ricinus is the most important. The present paper reports the prevalence and geographical distribution of A. phagocytophilum in 10,438 questing Ixodes ricinus ticks collected at 113 locations from 40 counties of Romania. The unfed ticks were examined for the presence of A. phagocytophilum by PCR targeting a portion of ankA gene. The overall prevalence of infection was 3.42%, with local prevalences ranging between 0.29% and 22.45%, with an average prevalence of 5.39% in the infected localities. The infection with A. phagocytophilum was detected in 72 out of 113 localities and in 34 out of 40 counties. The highest prevalence was recorded in females followed by males and nymphs. The results and the distribution model have shown a large distribution of A. phagocytophilum, covering Romania's entire territory. This study is the first large scale survey of the presence of A. phagocytophilum in questing I. ricinus ticks from Romania. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Molecular detection of Rickettsia, Anaplasma, Coxiella and Francisella bacteria in ticks collected from Artiodactyla in Thailand.

    Science.gov (United States)

    Sumrandee, Chalao; Baimai, Visut; Trinachartvanit, Wachareeporn; Ahantarig, Arunee

    2016-07-01

    A total of 79 ticks collected from Sambar deer (Cervus unicolor), Barking deer (Muntiacus muntjak) and Wild boar (Sus scrofa) were examined by PCR for the presence of Rickettsia, Anaplasma, Coxiella, and Francisella bacteria. Of the 79 ticks, 13% tested positive for Rickettsia, 15% tested positive for Anaplasma, 4% tested positive for Coxiella, and 3% tested positive for Francisella. Interestingly, triple infection with Anaplasma, Rickettsia and Francisella was determined in a Dermacentor auratus tick. Moreover, another triple infection with Rickettsia, Anaplasma, and Coxiella was found in a Haemaphysalis lagrangei tick. Double infection of Rickettsia with Coxiella was also detected in another H. lagrangei tick. From the phylogenetic analyses, we found a Rickettsia sp. with a close evolutionary relationship to Rickettsia bellii in the H. lagrangei tick. We also found the first evidence of a Rickettsia sp. that is closely related to Rickettsia tamurae in Rhipicephalus (Boophilus) microplus ticks from Thailand. H. lagrangei and Haemaphysalis obesa ticks collected from Sambar deer tested positive for Anaplasma species form the same clade with Anaplasma bovis. In contrast, other H. lagrangei ticks collected from Sambar deer and D. auratus ticks collected from Wild boar were also reported for the first time to be infected with an Anaplasma species that is closely related to Anaplasma platys. The phylogenetic analysis of the 16S rRNA gene of Coxiella bacteria revealed that Coxiella symbionts from H. lagrangei formed a distinctly different lineage from Coxiella burnetii (a human pathogen). Additionally, Francisella bacteria identified in D. auratus ticks were found to be distantly related to a group of pathogenic Francisella species. The identification of these bacteria in several feeding ticks suggests the risk of various emerging tick-borne diseases and endosymbionts in humans, wildlife, and domestic animals in Thailand. Copyright © 2016 Elsevier GmbH. All rights

  12. Tick-borne relapsing fever in a new highland endemic focus of western Iran.

    Science.gov (United States)

    Moemenbellah-Fard, M D; Benafshi, O; Rafinejad, J; Ashraf, H

    2009-09-01

    Tick-borne relapsing fever (TBRF) is a neglected zoonotic disease caused by infection with spirochaetes of the genus Borrelia. Humans usually contract it from the bite of infected soft ticks of the genus Ornithodoros. In Iran, where the disease is endemic in the mountainous north-western provinces, reports of over 200 cases annually probably under-estimate the true incidence. The species, distribution and infection of ticks that are potential vectors of Borrelia and the clinical and epidemiological characteristics of the local TBRF cases were recently investigated in the villages in and around the county town of Bijar, in north-western Iran. A blood sample from each suspected case of TBRF was checked for B. persica by dark-field microscopy, data were collected on the demographics and clinical manifestations of each confirmed case, and the prevalence of tick infection with borreliae and the monthly incidence of TBRF were evaluated. Between 2000 and 2007, 148 cases of TBRF (each with fever, chills and headache) were passively detected in the town. Most (115) of these were confirmed by microscopy, with the other subjects categorized as probable (21) or suspected cases (12) of TBRF. Most (91%) of the 148 subjects were young people, and most came from rural areas and lived in large households in the old mud-and-thatch houses of Bijar. Most (82%) of the cases occurred during the summer or early autumn. Overall, 8543 soft ticks (Ornithodoros tholozani, O. lahorensis, Argas persicus and A. reflexus) were collected by clustered random sampling. When a random sample of the O. tholozani ticks (96 of the 577 collected) was checked for B. persica infection, by being crushed and then inoculated intraperitoneally into a mouse or suckling Syrian hamster, 19 were found infected. Peaks in the monthly incidence of TBRF occurred as the numbers of O. tholozani in the tick collections peaked, and it seems likely that most of the cases were caused by B. persica transmitted by O

  13. Ticks and rickettsiae from wildlife in Belize, Central America.

    Science.gov (United States)

    Lopes, Marcos G; May Junior, Joares; Foster, Rebecca J; Harmsen, Bart J; Sanchez, Emma; Martins, Thiago F; Quigley, Howard; Marcili, Arlei; Labruna, Marcelo B

    2016-02-02

    The agents of spotted fevers in Latin America are Rickettsia rickettsii, R. parkeri, Rickettsia sp. strain Atlantic rainforest, and R. massiliae. In Continental Central America, R. rickettsii remains the only known pathogenic tick-borne rickettsia. In the present study, ticks were collected from wild mammals in natural areas of Belize. Besides providing new data of ticks from Belize, we investigated rickettsial infection in some of these ticks. Our results provide ticks harboring rickettsial agents for the first time in Central America. Between 2010 and 2015, wild mammals were lived-trapped in the tropical broadleaf moist forests of central and southern Belize. Ticks were collected from the animals and identified to species by morphological and molecular analysis (DNA sequence of the tick mitochondrial 16S RNA gene). Some of the ticks were tested for rickettsial infection by molecular methods (DNA sequences of the rickettsial gltA and ompA genes). A total of 84 ticks were collected from 8 individual hosts, as follows: Amblyomma pacae from 3 Cuniculus paca; Amblyomma ovale and Amblyomma coelebs from a Nasua narica; A. ovale from an Eira Barbara; A. ovale, Amblyomma cf. oblongoguttatum, and Ixodes affinis from a Puma concolor; and A. ovale, A. coelebs, A. cf. oblongoguttatum, and I. affinis from two Panthera onca. Three rickettsial agents were detected: Rickettsia amblyommii in A. pacae, Rickettsia sp. strain Atlantic rainforest in A. ovale, and Rickettsia sp. endosymbiont in Ixodes affinis. The present study provides unprecedented records of ticks harboring rickettsial agents in the New World. An emerging rickettsial pathogen of South America, Rickettsia sp. strain Atlantic rainforest, is reported for the first time in Central America. Besides expanding the distribution of 3 rickettsial agents in Central America, our results highlight the possible occurrence of Rickettsia sp. strain Atlantic rainforest-caused spotted fever human cases in Belize, since its possible

  14. Stability of a tick-borne flavivirus in milk

    Directory of Open Access Journals (Sweden)

    Danielle K Offerdahl

    2016-05-01

    Full Text Available The tick-borne flaviviruses (TBFV occur worldwide and the tick-borne encephalitis virus members of the group (TBEV often cause severe, debilitating neurological disease in humans. Although the primary route of infection is through the bite of an infected tick, alimentary infection through the consumption of TBEV-contaminated dairy products is also well-documented and is responsible for some disease in endemic areas. Experimental infection of goats, cattle, and sheep with TBEV shows that virus can be excreted in the milk of infected animals. Additionally, the virus remains infectious after exposure to low pH levels, similar to those found in the stomach. To evaluate survival of virus in milk, we studied the stability of the BSL-2 TBFV, Langat virus, in unpasteurized goat milk over time and after different thermal treatments. Virus was stable in milk maintained under refrigeration conditions; however, there was a marked reduction in virus titer after incubation at room temperature. High temperature, short time pasteurization protocols completely inactivated the virus. Interestingly, simulation of a typical thermal regime utilized for cheese did not completely inactivate the virus in milk. These findings stress the importance of proper milk handling and pasteurization processes in areas endemic for TBEV.

  15. Stability of a Tick-Borne Flavivirus in Milk.

    Science.gov (United States)

    Offerdahl, Danielle K; Clancy, Niall G; Bloom, Marshall E

    2016-01-01

    The tick-borne flaviviruses (TBFV) occur worldwide and the tick-borne encephalitis virus (TBEV) members of the group often cause severe, debilitating neurological disease in humans. Although the primary route of infection is through the bite of an infected tick, alimentary infection through the consumption of TBEV-contaminated dairy products is also well-documented and is responsible for some disease in endemic areas. Experimental infection of goats, cattle, and sheep with TBEV shows that the virus can be excreted in the milk of infected animals. Additionally, the virus remains infectious after exposure to low pH levels, similar to those found in the stomach. To evaluate the survival of virus in milk, we studied the stability of the BSL-2 TBFV, Langat virus, in unpasteurized goat milk over time and after different thermal treatments. Virus was stable in milk maintained under refrigeration conditions; however, there was a marked reduction in virus titer after incubation at room temperature. High temperature, short time pasteurization protocols completely inactivated the virus. Interestingly, simulation of a typical thermal regime utilized for cheese did not completely inactivate the virus in milk. These findings stress the importance of proper milk handling and pasteurization processes in areas endemic for TBEV.

  16. Prevalence of tick-borne pathogens in questing Ixodes ricinus ticks in urban and suburban areas of Switzerland

    Directory of Open Access Journals (Sweden)

    Corinne P. Oechslin

    2017-11-01

    Full Text Available Abstract Background Throughout Europe, Ixodes ricinus transmits numerous pathogens. Its widespread distribution is not limited to rural but also includes urbanized areas. To date, comprehensive data on pathogen carrier rates of I. ricinus ticks in urban areas of Switzerland is lacking. Results Ixodes ricinus ticks sampled at 18 (sub- urban collection sites throughout Switzerland showed carrier rates of 0% for tick-borne encephalitis virus, 18.0% for Borrelia burgdorferi (sensu lato, 2.5% for Borrelia miyamotoi, 13.5% for Rickettsia spp., 1.4% for Anaplasma phagocytophilum, 6.2% for "Candidatus Neoehrlichia mikurensis", and 0.8% for Babesia venatorum (Babesia sp., EU1. Site-specific prevalence at collection sites with n > 45 ticks (n = 9 significantly differed for B. burgdorferi (s.l., Rickettsia spp., and "Ca. N. mikurensis", but were not related to the habitat type. Three hundred fifty eight out of 1078 I. ricinus ticks (33.2% tested positive for at least one pathogen. Thereof, about 20% (71/358 were carrying two or three different potentially disease-causing agents. Using next generation sequencing, we could detect true pathogens, tick symbionts and organisms of environmental or human origin in ten selected samples. Conclusions Our data document the presence of pathogens in the (sub- urban I. ricinus tick population in Switzerland, with carrier rates as high as those in rural regions. Carriage of multiple pathogens was repeatedly observed, demonstrating the risk of acquiring multiple infections as a consequence of a tick bite.

  17. The Tick Salivary Protein Sialostatin L2 Inhibits Caspase-1-Mediated Inflammation during Anaplasma phagocytophilum Infection

    Czech Academy of Sciences Publication Activity Database

    Chen, G.; Wang, X.; Sakhon, O. S.; Sohail, M.; Brown, L.J.; Sircar, M.; Snyder, G.A.; Sundberg, E.J.; Ulland, T.K.; Olivier, A.K.; Andersen, J. F.; Zhou, Y.; Shi, G.-P.; Sutterwala, F.S.; Kotsyfakis, Michalis; Pedra, J. H. F.

    2014-01-01

    Roč. 82, č. 6 (2014), s. 2553-2564 ISSN 0019-9567 Institutional support: RVO:60077344 Keywords : granulocytic ehrlichiosis agent * Ixodes scapularis * tumor necrosis factor Subject RIV: EC - Immunology Impact factor: 3.731, year: 2014

  18. Nonrandom distribution of vector ticks (Dermacentor variabilis infected by Francisella tularensis.

    Directory of Open Access Journals (Sweden)

    Heidi K Goethert

    2009-02-01

    Full Text Available The island of Martha's Vineyard, Massachusetts, is the site of a sustained outbreak of tularemia due to Francisella tularensis tularensis. Dog ticks, Dermacentor variabilis, appear to be critical in the perpetuation of the agent there. Tularemia has long been characterized as an agent of natural focality, stably persisting in characteristic sites of transmission, but this suggestion has never been rigorously tested. Accordingly, we sought to identify a natural focus of transmission of the agent of tularemia by mapping the distribution of PCR-positive ticks. From 2004 to 2007, questing D. variabilis were collected from 85 individual waypoints along a 1.5 km transect in a field site on Martha's Vineyard. The positions of PCR-positive ticks were then mapped using ArcGIS. Cluster analysis identified an area approximately 290 meters in diameter, 9 waypoints, that was significantly more likely to yield PCR-positive ticks (relative risk 3.3, P = 0.001 than the rest of the field site. Genotyping of F. tularensis using variable number tandem repeat (VNTR analysis on PCR-positive ticks yielded 13 different haplotypes, the vast majority of which was one dominant haplotype. Positive ticks collected in the cluster were 3.4 times (relative risk = 3.4, P<0.0001 more likely to have an uncommon haplotype than those collected elsewhere from the transect. We conclude that we have identified a microfocus where the agent of tularemia stably perpetuates and that this area is where genetic diversity is generated.

  19. The Detection of Spotted Fever Group Rickettsia DNA in Tick Samples From Pastoral Communities in Kenya.

    Science.gov (United States)

    Koka, Hellen; Sang, Rosemary; Kutima, Helen Lydia; Musila, Lillian

    2017-05-01

    In this study, ticks from pastoral communities in Kenya were tested for Rickettsia spp. infections in geographical regions where the presence of tick-borne arboviruses had previously been reported. Rickettsial and arbovirus infections have similar clinical features which makes differential diagnosis challenging when both diseases occur. The tick samples were tested for Rickettsia spp. by conventional PCR using three primer sets targeting the gltA, ompA, and ompB genes followed by amplicon sequencing. Of the tick pools screened, 25% (95/380) were positive for Rickettsia spp. DNA using the gltA primer set. Of the tick-positive pools, 60% were ticks collected from camels. Rickettsia aeschlimannii and R. africae were the main Rickettsia spp. detected in the tick pools sequenced. The findings of this study indicate that multiple Rickettsia species are circulating in ticks from pastoral communities in Kenya and could contribute to the etiology of febrile illness in these areas. Diagnosis and treatment of rickettsial infections should be a public health priority in these regions. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Novel Rickettsia raoultii strain isolated and propagated from Austrian Dermacentor reticulatus ticks

    Directory of Open Access Journals (Sweden)

    Michiel Wijnveld

    2016-11-01

    Full Text Available Abstract Background Continuous culture of tick cell lines has proven a valuable asset in isolating and propagating several different vector-borne pathogens, making it possible to study these microorganisms under laboratory conditions and develop serological tests to benefit public health. We describe a method for effective, cost- and labor-efficient isolation and propagation of Rickettsia raoultii using generally available laboratory equipment and Rhipicephalus microplus cells, further demonstrating the usefulness of continuous tick cell lines. R. raoultii is one of the causative agents of tick-borne lymphadenopathy (TIBOLA and is, together with its vector Dermacentor reticulatus, emerging in novel regions of Europe, giving rise to an increased threat to general public health. Methods Dermacentor reticulatus ticks were collected in the Donau-Auen (Lobau national park in Vienna, Austria. The hemolymph of ten collected ticks was screened by PCR-reverse line blot for the presence of rickettsial DNA. A single tick tested positive for R. raoultii DNA and was used to infect Rhipicephalus microplus BME/CTVM2 cells. Results Sixty-five days after infection of the tick-cell line with an extract from a R. raoultii-infected tick, we observed intracellular bacteria in the cultured cells. On the basis of microscopy we suspected that the intracellular bacteria were a species of Rickettsia; this was confirmed by several PCRs targeting different genes. Subsequent sequencing showed 99–100 % identity with R. raoultii. Cryopreservation and resuscitation of R. raoultii was successful. After 28 days identical intracellular bacteria were microscopically observed. Conclusions R. raoultii was successfully isolated and propagated from D. reticulatus ticks using R. microplus BME/CTVM2 cells. The isolated strain shows significant molecular variation compared to currently known sequences. Furthermore we show for the first time the successful cryopreservation and

  1. Novel Rickettsia raoultii strain isolated and propagated from Austrian Dermacentor reticulatus ticks.

    Science.gov (United States)

    Wijnveld, Michiel; Schötta, Anna-Margarita; Pintér, Adriano; Stockinger, Hannes; Stanek, Gerold

    2016-11-03

    Continuous culture of tick cell lines has proven a valuable asset in isolating and propagating several different vector-borne pathogens, making it possible to study these microorganisms under laboratory conditions and develop serological tests to benefit public health. We describe a method for effective, cost- and labor-efficient isolation and propagation of Rickettsia raoultii using generally available laboratory equipment and Rhipicephalus microplus cells, further demonstrating the usefulness of continuous tick cell lines. R. raoultii is one of the causative agents of tick-borne lymphadenopathy (TIBOLA) and is, together with its vector Dermacentor reticulatus, emerging in novel regions of Europe, giving rise to an increased threat to general public health. Dermacentor reticulatus ticks were collected in the Donau-Auen (Lobau) national park in Vienna, Austria. The hemolymph of ten collected ticks was screened by PCR-reverse line blot for the presence of rickettsial DNA. A single tick tested positive for R. raoultii DNA and was used to infect Rhipicephalus microplus BME/CTVM2 cells. Sixty-five days after infection of the tick-cell line with an extract from a R. raoultii-infected tick, we observed intracellular bacteria in the cultured cells. On the basis of microscopy we suspected that the intracellular bacteria were a species of Rickettsia; this was confirmed by several PCRs targeting different genes. Subsequent sequencing showed 99-100 % identity with R. raoultii. Cryopreservation and resuscitation of R. raoultii was successful. After 28 days identical intracellular bacteria were microscopically observed. R. raoultii was successfully isolated and propagated from D. reticulatus ticks using R. microplus BME/CTVM2 cells. The isolated strain shows significant molecular variation compared to currently known sequences. Furthermore we show for the first time the successful cryopreservation and resuscitation of R. raoultii.

  2. Assessing peridomestic entomological factors as predictors for Lyme disease

    Science.gov (United States)

    Connally, N.P.; Ginsberg, H.S.; Mather, T.N.

    2006-01-01

    The roles of entomologic risk factors, including density of nymphal blacklegged ticks (Ixodes scapularis), prevalence of nymphal infection with the etiologic agent (Borrelia burgdorferi), and density of infected nymphs, in determining the risk of human Lyme disease were assessed at residences in the endemic community of South Kingstown, RI. Nymphs were sampled between May and July from the wooded edge around 51 and 47 residential properties in 2002 and 2003, respectively. Nymphs were collected from all residences sampled. Tick densities, infection rates, and densities of infected nymphs were all significantly higher around homes reporting Lyme disease histories in 2003, while only infection rates were significantly higher in 2002. However, densities of infected nymphs did not significantly predict the probability of Lyme disease at a residence (by logistic regression) in either year. There were no significant differences in entomologic risk factors between homes with state-confirmed Lyme disease histories and homes with self-reported cases (not reported to the state health department). Therefore, although entomologic risk factors tended to be higher at residences with cases of Lyme disease, entomological indices, in the absence of human behavior measures, were not useful predictors of Lyme disease at the scale of individual residences in a tick-endemic community.

  3. Investigations on Rickettsia in Ticks at the Sino-Russian and Sino-Mongolian Borders, China.

    Science.gov (United States)

    Liu, Lijuan; Chen, Qian; Yang, Yu; Wang, Jiancheng; Cao, Xiaomei; Zhang, Sheng; Li, Hong; Hou, Yong; Wang, Fuxiang; Xu, Baoliang

    2015-12-01

    To describe the prevalence of Rickettsia in ticks at the Sino-Russian and Sino-Mongolian borders, a total of 292 ticks were collected and tested by conventional PCR assays. The prevalence of Rickettsia was 53.4%, and phylogenetic analysis showed that they belonged to R. raoultii species after alignment for the ompA, ompB, and gltA genes, respectively. Coxiella burnetii DNA was detected for 14%, and no Ehrlichia, Borrelia burgdorferi, and Babesia species were found. Co-infection of two pathogens was 9.9%, and no co-infection with three or more pathogens was found. This study suggested Rickettsia was the most common pathogen in the ticks and co-infection was found. The findings might be helpful to provide advice on the prevention and control of tick-borne disease potential for tourists and residents.

  4. THE ANALYSIS OF IXODES TICKS INFESTATION WITH TBEV IN KIROV REGION

    Directory of Open Access Journals (Sweden)

    E. A. Bessolitsyna

    2014-01-01

    Full Text Available The objects of this study are Ixodes ticks which were collected in different areas of Kirov province. The aim of the study is to determine the proportion of TBEV infected ticks using the reverse transcription and PCR, dependingon time, place, and methods of collection in the Kirov province as well as of ticks specific and sexual identity. The study found that from the two tick species that were tested only taiga tick (Ixodes persulcatus but not the meadow thick (Dermacentor reticulatus was the TBEV vector. Study also has shown that both males and females ticks can be the TBEV vectors. Moreover, it was proved the importance of ticks testing which were gathered not only from human but also from animals, primary from dogs, and from the plants.

  5. Rickettsia species in human-parasitizing ticks in Greece.

    Science.gov (United States)

    Papa, Anna; Xanthopoulou, Kyriaki; Kotriotsiou, Tzimoula; Papaioakim, Miltiadis; Sotiraki, Smaragda; Chaligiannis, Ilias; Maltezos, Efstratios

    2016-05-01

    Ticks serve as vectors and reservoirs for a variety of bacterial, viral and protozoan pathogens affecting humans and animals. Unusual increased tick aggressiveness was observed in 2008-2009 in northeastern Greece. The aim of the study was to check ticks removed from persons during 2009 for infection with Rickettsia species. A total of 159 ticks were removed from 147 persons who sought medical advice in a hospital. Tick identification was performed morphologically using taxonomic keys. DNA was extracted from each individual tick and a PCR assay targeting the rickettsial outer membrane protein A gene of Rickettsia spp. was applied. Most of the adult ticks (132/153, 86.3%) were Rhipicephalus sanguineus. Rickettsiae were detected in 23 of the 153 (15.0%) adult ticks. Five Rickettsiae species were identified: R. aeschlimannii, R. africae (n=6), R. massilae (4), R. monacensis (1), and Candidatus R. barbariae (1). To our knowledge, this is the first report of R. africae, R. monacensis, and Candidatus R. barbariae in Greece. Several Rickettsia species were identified in ticks removed from humans in Greece, including those that are prevalent in northern and southern latitudes. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Detection and identification of Anaplasma phagocytophilum, Borrelia burgdorferi, and Rickettsia helvetica in Danish Ixodes ricinus ticks

    DEFF Research Database (Denmark)

    Skarphédinsson, Sigurdur; Lyholm, Birgitte Fjendbo; Ljungberg, Marianne

    2007-01-01

    % of adult ticks. The difference in prevalence between Anaplasma and Borrelia in adult ticks supports the idea that their maintenance cycles in nature may be different. Ticks were also infected with Rickettsia helvetica. Our study indicates that A. phagocytophilum prevalence in ticks in Denmark is as high...

  7. Babesia spp. in ticks and wildlife in different habitat types of Slovakia.

    Science.gov (United States)

    Hamšíková, Zuzana; Kazimírová, Mária; Haruštiaková, Danka; Mahríková, Lenka; Slovák, Mirko; Berthová, Lenka; Kocianová, Elena; Schnittger, Leonhard

    2016-05-20

    Babesiosis is an emerging and potentially zoonotic disease caused by tick-borne piroplasmids of the Babesia genus. New genetic variants of piroplasmids with unknown associations to vectors and hosts are recognized. Data on the occurrence of Babesia spp. in ticks and wildlife widen the knowledge on the geographical distribution and circulation of piroplasmids in natural foci. Questing and rodent-attached ticks, rodents, and birds were screened for the presence of Babesia-specific DNA using molecular methods. Spatial and temporal differences of Babesia spp. prevalence in ticks and rodents from two contrasting habitats of Slovakia with sympatric occurrence of Ixodes ricinus and Haemaphysalis concinna ticks and co-infections of Candidatus N. mikurensis and Anaplasma phagocytophilum were investigated. Babesia spp. were detected in 1.5 % and 6.6 % of questing I. ricinus and H. concinna, respectively. Prevalence of Babesia-infected I. ricinus was higher in a natural than an urban/suburban habitat. Phylogenetic analysis showed that Babesia spp. from I. ricinus clustered with Babesia microti, Babesia venatorum, Babesia canis, Babesia capreoli/Babesia divergens, and Babesia odocoilei. Babesia spp. amplified from H. concinna segregated into two monophyletic clades, designated Babesia sp. 1 (Eurasia) and Babesia sp. 2 (Eurasia), each of which represents a yet undescribed novel species. The prevalence of infection in rodents (with Apodemus flavicollis and Myodes glareolus prevailing) with B. microti was 1.3 % in an urban/suburban and 4.2 % in a natural habitat. The majority of infected rodents (81.3 %) were positive for spleen and blood and the remaining for lungs and/or skin. Rodent-attached I. ricinus (accounting for 96.3 %) and H. concinna were infected with B. microti, B. venatorum, B. capreoli/B. divergens, Babesia sp. 1 (Eurasia), and Babesia sp. 2 (Eurasia). All B. microti and B. venatorum isolates were identical to known zoonotic strains from Europe. Less than 1

  8. Borrelia burgdorferi in ticks and dogs in the province of Vojvodina, Serbia*

    Directory of Open Access Journals (Sweden)

    Savić S.

    2010-12-01

    Full Text Available Lyme disease is a tick borne zoonotic infection, caused by Borrelia burgdorferi s.l. bacteria. For the transmission of the disease, the presence of ticks is a prerequisite. Lyme borreliosis mostly occurs in people and dogs, but it may occur in other animals. Ticks which carry B. burgdorferi s.l. in Serbia are of the Ixodes ricinus specis. In Serbia, Lyme disease was detected for the first time in the late ‘80-es. In dogs, clinical symptoms may occur even months after a tick bite, and include weakness, lymphadenopathy, fever, lameness, arthritis, etc. In our survey, we have observed tick and dog populations in the province of Vojvodina (northern part of Serbia. I. ricinus ticks were collected and examined for the presence of B. burgdorferi s.l. in several chosen locations. In addition, blood samples were collected from house dogs and pets from the same locations, and analyzed for the presence of antibodies specific for B. burgdorferi s.l. The results showed a mean infection of ticks of 22.12 %, and a mean seroprevalence of Lyme disease in dogs of 25.81 %. We conclude that in Vojvodina there is an actual risk of Lyme borreliosis for other animals and humans, because of the persistence of B. burgdorferi s.l. in both tick and dog populations.

  9. Vector competence of the tick Ixodes ricinus for transmission of Bartonella birtlesii.

    Directory of Open Access Journals (Sweden)

    Caroline Reis

    Full Text Available Bartonella spp. are facultative intracellular vector-borne bacteria associated with several emerging diseases in humans and animals all over the world. The potential for involvement of ticks in transmission of Bartonella spp. has been heartily debated for many years. However, most of the data supporting bartonellae transmission by ticks come from molecular and serological epidemiological surveys in humans and animals providing only indirect evidences without a direct proof of tick vector competence for transmission of bartonellae. We used a murine model to assess the vector competence of Ixodes ricinus for Bartonella birtlesii. Larval and nymphal I. ricinus were fed on a B. birtlesii-infected mouse. The nymphs successfully transmitted B. birtlesii to naïve mice as bacteria were recovered from both the mouse blood and liver at seven and 16 days after tick bites. The female adults successfully emitted the bacteria into uninfected blood after three or more days of tick attachment, when fed via membrane feeding system. Histochemical staining showed the presence of bacteria in salivary glands and muscle tissues of partially engorged adult ticks, which had molted from the infected nymphs. These results confirm the vector competence of I. ricinus for B. birtlesii and represent the first in vivo demonstration of a Bartonella sp. transmission by ticks. Consequently, bartonelloses should be now included in the differential diagnosis for patients exposed to tick bites.

  10. Phylogeographic Characterization of Tick-Borne Encephalitis Virus from Patients, Rodents and Ticks in Slovenia

    Science.gov (United States)

    Fajs, Luka; Durmiši, Emina; Knap, Nataša; Strle, Franc; Avšič-Županc, Tatjana

    2012-01-01

    Tick-borne encephalitis virus (TBEV) is the most important arboviral agent causing infections of the central nervous system in central Europe. Previous studies have shown that TBEV exhibits pronounced genetic variability, which is often correlated to the geographical origin of TBEV. Genetic variability of TBEV has previously been studied predominantly in rodents and ticks, while information about the variability in patients is scarce. In order to understand the molecular relationships of TBEV between natural hosts, vectors and humans, as well as correlation between phylogenetic and geographical clustering, sequences of TBEV E and NS5 protein genes, were obtained by direct sequencing of RT-PCR products from TBE-confirmed patients as well as from rodents and ticks collected from TBE-endemic regions in Slovenia. A total of 27 partial E protein gene sequences representing 15 human, 4 rodent and 8 tick samples and 30 partial NS5 protein gene sequences representing 17 human, 5 rodent and 8 tick samples were obtained. The complete genome sequence of TBEV strain Ljubljana I was simultaneously obtained. Phylogenetic analysis of the E and NS5 protein gene sequences revealed a high degree of TBEV variability in patients, ticks and rodents. Furthermore, an evident correlation between geographical and phylogenetic clustering was shown that was independent of the TBEV host. Moreover, we show the presence of a possible recombination event in the TBEV genome obtained from a patient sample, which was supported with multiple recombination event detection methods. This is the first study that simultaneously analyzed the genetic relationships of directly sequenced TBEV samples from patients, ticks and rodents and provides the largest set of patient-derived TBEV sequences up to date. In addition, we have confirmed the geographical clustering of TBEV sequences in Slovenia and have provided evidence of a possible recombination event in the TBEV genome, obtained from a patient. PMID

  11. A Novel Scoring System Approach to Assess Patients with Lyme Disease (Nutech Functional Score)

    OpenAIRE

    Geeta Shroff; Petra Hopf-Seidel

    2018-01-01

    Introduction: A bacterial infection by Borrelia burgdorferi referred to as Lyme disease (LD) or borreliosis is transmitted mostly by a bite of the tick Ixodes scapularis in the USA and Ixodes ricinus in Europe. Various tests are used for the diagnosis of LD, but their results are often unreliable. We compiled a list of clinically visible and patient-reported symptoms that are associated with LD. Based on this list, we developed a novel scoring system. Methodology: Nutech functional Score (NF...

  12. Strategic control of ticks with synthetic pyrethroids in Theileria parva ...

    African Journals Online (AJOL)

    The effect of tick control by strategic dipping in synthetic pyrethroids on growth and survival rates of calves in Eastern Tanzania where Theileria parva and other tick borne infections (babesiosis, anaplasmosis and ehrlichiosis) are endemic was measured. One day to five months old Tanganyika short horn zebu (Bos indicus) ...

  13. Prevalence of infection in feral cats in Massachusetts

    Directory of Open Access Journals (Sweden)

    Erin R Galemore

    2018-01-01

    Full Text Available Objectives The primary objective of this study was to determine the prevalence of Anaplasma phagocytophilum infection and exposure in adult feral cats in Massachusetts, an endemic area for A phagocytophilum and its tick vector Ixodes scapularis . The secondary objective was to determine if there were correlations between A phagocytophilum infection and the presence of anemia and thrombocytopenia. Methods Blood samples were collected between June and December 2015 from 175 apparently healthy adult feral cats that were presented to trap and release spay/neuter centers in Massachusetts. Complete blood count, blood smear evaluation, SNAP 4Dx Plus test (IDEXX and A phagocytophilum PCR were performed on all samples to document acute infection (PCR-positive and/or inclusions observed on blood smear and exposure to A phagocytophilum (SNAP 4Dx Plus-positive for A phagocytophilum antibodies. Results The prevalence of exposure to A phagocytophilum in feral cats in Massachusetts was 9.7%, whereas the prevalence of acute infection was 6.9%. All blood smears were negative for Anaplasma species inclusions; therefore, acute infection was defined as testing positive on PCR analysis. No statistically significant correlations were identified for cats that were positive for A phagocytophilum on PCR analysis or SNAP 4Dx Plus test and the presence of anemia or thrombocytopenia. Conclusions and relevance The prevalence of A phagocytophilum exposure in feral cats approaches 10% and is higher than the previously reported national average prevalence of 4.3% in the USA. A phagocytophilum infection may be an emerging infectious disease in cats. Further research is needed to determine the prevalence of clinical illness associated with A phagocytophilum infection in cats living in endemic areas.

  14. Infectiousness of Ixodes Persulcatus Ticks with Pathogens of Various Diseases in Endemic Regions of European Russia

    Directory of Open Access Journals (Sweden)

    O.N. Lyubeznova

    2014-04-01

    Conclusion. Kirov region is an active natural focus of transmissible infections. Quite often tick contains two or three pathogens. It is necessary to continue the monitoring of the natural foci to develop more adequate preventive measures against tick-borne infections.

  15. Do Tick Attachment Times Vary between Different Tick-Pathogen Systems?

    Directory of Open Access Journals (Sweden)

    Stephanie L. Richards

    2017-05-01

    Full Text Available Improvements to risk assessments are needed to enhance our understanding of tick-borne disease epidemiology. We review tick vectors and duration of tick attachment required for pathogen transmission for the following pathogens/toxins and diseases: (1 Anaplasma phagocytophilum (anaplasmosis; (2 Babesia microti (babesiosis; (3 Borrelia burgdorferi (Lyme disease; (4 Southern tick-associated rash illness; (5 Borrelia hermsii (tick-borne relapsing fever; (6 Borrelia parkeri (tick-borne relapsing fever; (7 Borrelia turicatae (tick-borne relapsing fever; (8 Borrelia mayonii; (9 Borrelia miyamotoi; (10 Coxiella burnetii (Query fever; (11 Ehrlichia chaffeensis (ehrlichiosis; (12 Ehrlichia ewingii (ehrlichiosis; (13 Ehrlichia muris; (14 Francisella tularensis (tularemia; (15 Rickettsia 364D; (16 Rickettsia montanensis; (17 Rickettsia parkeri (American boutonneuse fever, American tick bite fever; (18 Rickettsia ricketsii (Rocky Mountain spotted fever; (19 Colorado tick fever virus (Colorado tick fever; (20 Heartland virus; (21 Powassan virus (Powassan disease; (22 tick paralysis neurotoxin; and (23 Galactose-α-1,3-galactose (Mammalian Meat Allergy-alpha-gal syndrome. Published studies for 12 of the 23 pathogens/diseases showed tick attachment times. Reported tick attachment times varied (<1 h to seven days between pathogen/toxin type and tick vector. Not all studies were designed to detect the duration of attachment required for transmission. Knowledge of this important aspect of vector competence is lacking and impairs risk assessment for some tick-borne pathogens.

  16. Prevalence of Anaplasma marginale in different tick species from Ngorongoro Crater, Tanzania.

    Science.gov (United States)

    Fyumagwa, Robert D; Simmler, Pascale; Meli, Marina L; Hoare, Richard; Hofmann-Lehmann, Regina; Lutz, Hans

    2009-04-06

    In 2001, Ngorongoro Crater was infested with high density of ticks on grassland, livestock and wildlife which was also associated with high mortality. Adult ticks were collected, identified, processed for nucleic acids extraction and a molecular analysis was performed to determine the range of tick species harboring Anaplasma marginale. The real-time PCR was used in the amplification of rickettsia DNA in tick pools (n=527) from 11 identified tick species. Six tick species were detected with A. marginale DNA including Amblyomma gemma, Rhipicephalus appendiculatus, R. compositus, R.decoloratus, R. praetextatus and R. pulchellus. The detection rate in each tick species was 3%, 0.7%, 2%, 13%, 1.8%, and 6.2%, respectively. Five of the positive tick species excluding R.decoloratus have previously not been described to transmit A. marginale. High diversity of tick species detected with A. marginale in Ngorongoro Crater is likely to increase a risk to susceptible animals of contracting the infection.

  17. Infection and injury of human astrocytes by tick-borne encephalitis virus

    Czech Academy of Sciences Publication Activity Database

    Palus, Martin; Bílý, Tomáš; Elsterová, Jana; Langhansová, Helena; Salát, J.; Vancová, Marie; Růžek, Daniel

    2014-01-01

    Roč. 95, Pt 11 (2014), s. 2411-2426 ISSN 0022-1317 R&D Projects: GA ČR GAP502/11/2116; GA ČR GAP302/12/2490; GA TA ČR TE01020118 Institutional support: RVO:60077344 Keywords : Tick-borne encephalitis * Tick-borne encephalitis virus * human Subject RIV: EE - Microbiology, Virology Impact factor: 3.183, year: 2014

  18. Detection of Coxiella burnetii in ticks by PCR and by PCR - Restriction Fragment Length Polymorphism (RFLP)

    International Nuclear Information System (INIS)

    2010-01-01

    Coxiella burnetii, as an obligata intracellular bacterium, is the etiologic agent of Q-fever. It is widely distributed in nature and is responsible for infection in various animals (cattle, sheep, goat) and humans. C. burnetii has been isolated from milk, ticks and human patients with acute and chronic Q fever. Ticks are the principal vectors and reservoirs of C. burnetii. Since over 40 species of ticks have been found to be infected with C. burnetii, ticks can serve as indicators of infection in nature. In this study, total of 2472 ticks (1446 female, 1021 male and 5 nymphs) were collected from 38 provinces of Turkey. The ticks were gathered into groups of 1 to 7 ticks as to the provinces, species and gender for DNA extraction. Following DNA extraction, the groups were examined for the presence of C. burtii by using the CB1and CB2. The ticks collected from the province of Denizli (56 in total) were gathered into 13 groups according to the species and gender. From these groups, 6 were positive for C. burnetii. The ticks collected from Ankara province, total of 160 ticks, were grouped into 53 as to their species and gender, only one group was found to be positive for C. burnetii. The specificities of PCR products were evaluated by restriction analysis. The positive PCR products were digested with the enzyme Taq1 and for bands in order of 118, 57, 43 and 39 bp's were appeared such as seen in the positive control DNA (C. burnetii Nine Mile RSA493)

  19. The tick biocontrol agent Metarhizium brunneum (= M. anisopliae) (strain F52) does not reduce non-target arthropods.

    Science.gov (United States)

    Fischhoff, Ilya R; Keesing, Felicia; Ostfeld, Richard S

    2017-01-01

    Previous studies have found that Met52®, which contains the entomopathogenic fungus Metarhizium brunneum, is effective in reducing the abundance of Ixodes scapularis, the tick vector for the bacterium causing Lyme disease and for other tick-borne pathogens. Given widespread interest in effective, safe methods for controlling ticks, Met52 has the potential to be used at increasing scales. The non-target impacts of Met52, as applied for tick control, have not yet been assessed. A Before-After-Control-Impact experiment was conducted to assess the effects of Met52 on non-target arthropods in lawn and forest habitats typical of residential yards. Ground-dwelling arthropods were collected using bulk sampling of soil and litter, and pitfall sampling. Arthropods were sampled once before and twice after treatment of plots with either Met52 or water (control). Multivariate general linear models were used to jointly model the abundance of arthropod orders. For each sampling method and post-spray sampling occasion, Akaike Information Criterion values were used to compare the fits of two alternative models: one that included effects of period (before vs. after spray), habitat (lawn vs. forest), and treatment (Met52 vs. control), versus a nested null model that included effects of period, and habitat, but no treatment effect. The null model was consistently better supported by the data. Significant effects were found of period and habitat but not treatment. Retrospective power analysis indicated the study had 80% power to detect a 50% reduction in arthropod abundance, as measured by bulk samples taken before versus one week after treatment. The deployment of Met52 in suburban settings is unlikely to cause meaningful reductions in the abundance of non-target arthropods.

  20. The tick biocontrol agent Metarhizium brunneum (= M. anisopliae (strain F52 does not reduce non-target arthropods.

    Directory of Open Access Journals (Sweden)

    Ilya R Fischhoff

    Full Text Available Previous studies have found that Met52®, which contains the entomopathogenic fungus Metarhizium brunneum, is effective in reducing the abundance of Ixodes scapularis, the tick vector for the bacterium causing Lyme disease and for other tick-borne pathogens. Given widespread interest in effective, safe methods for controlling ticks, Met52 has the potential to be used at increasing scales. The non-target impacts of Met52, as applied for tick control, have not yet been assessed. A Before-After-Control-Impact experiment was conducted to assess the effects of Met52 on non-target arthropods in lawn and forest habitats typical of residential yards. Ground-dwelling arthropods were collected using bulk sampling of soil and litter, and pitfall sampling. Arthropods were sampled once before and twice after treatment of plots with either Met52 or water (control. Multivariate general linear models were used to jointly model the abundance of arthropod orders. For each sampling method and post-spray sampling occasion, Akaike Information Criterion values were used to compare the fits of two alternative models: one that included effects of period (before vs. after spray, habitat (lawn vs. forest, and treatment (Met52 vs. control, versus a nested null model that included effects of period, and habitat, but no treatment effect. The null model was consistently better supported by the data. Significant effects were found of period and habitat but not treatment. Retrospective power analysis indicated the study had 80% power to detect a 50% reduction in arthropod abundance, as measured by bulk samples taken before versus one week after treatment. The deployment of Met52 in suburban settings is unlikely to cause meaningful reductions in the abundance of non-target arthropods.

  1. Tick-borne pathogens in ticks collected from birds in Taiwan

    Directory of Open Access Journals (Sweden)

    Chi-Chien Kuo

    2017-11-01

    Full Text Available Abstract Background A variety of human diseases transmitted by arthropod vectors, including ticks, are emerging around the globe. Birds are known to be hosts of ticks and can disperse exotic ticks and tick-borne pathogens. In Taiwan, previous studies have focused predominantly on mammals, leaving the role of birds in the maintenance of ticks and dissemination of tick-borne pathogens undetermined. Methods Ticks were collected opportunistically when birds were studied from 1995 to 2013. Furthermore, to improve knowledge on the prevalence and mean load of tick infestation on birds in Taiwan, ticks were thoroughly searched for when birds were mist-netted at seven sites between September 2014 and April 2016 in eastern Taiwan. Ticks were identified based on both morphological and molecular information and were screened for potential tick-borne pathogens, including the genera Anaplasma, Babesia, Borrelia, Ehrlichia and Rickettsia. Finally, a list of hard tick species collected from birds in Taiwan was compiled based on past work and the current study. Results Nineteen ticks (all larvae were recovered from four of the 3096 unique mist-netted bird individuals, yielding a mean load of 0.006 ticks/individual and an overall prevalence of 0.13%. A total of 139 ticks from birds, comprising 48 larvae, 35 nymphs, 55 adults and one individual of unknown life stage, were collected from 1995 to 2016, and 11 species of four genera were identified, including three newly recorded species (Haemaphysalis wellingtoni, Ixodes columnae and Ixodes turdus. A total of eight tick-borne pathogens were detected, with five species (Borrelia turdi, Anaplasma sp. clone BJ01, Ehrlichia sp. BL157-9, Rickettsia helvetica and Rickettsia monacensis not previously isolated in Taiwan. Overall, 16 tick species of five genera have been recorded feeding on birds, including nine species first discovered in this study. Conclusion Our study demonstrates the paucity of information on ticks of

  2. Detection of Severe Fever with Thrombocytopenia Syndrome Virus from Wild Animals and Ixodidae Ticks in the Republic of Korea.

    Science.gov (United States)

    Oh, Sung-Suck; Chae, Jeong-Byoung; Kang, Jun-Gu; Kim, Heung-Chul; Chong, Sung-Tae; Shin, Jeong-Hwa; Hur, Moon-Suk; Suh, Jae-Hwa; Oh, Myoung-Don; Jeong, Soo-Myoung; Shin, Nam-Shik; Choi, Kyoung-Seong; Chae, Joon-Seok

    2016-06-01

    Severe fever with thrombocytopenia syndrome (SFTS) is caused by SFTS virus (SFTSV), a novel bunyavirus reported to be endemic to central-northeastern China, southern Japan, and the Republic of Korea (ROK). To investigate SFTSV infections, we collected serum samples and ticks from wild animals. Using serum samples and ticks, SFTSV-specific genes were amplified by one-step RT-PCR and nested PCR and sequenced. Indirect immunofluorescence assay (IFA) was performed to analyze virus-specific antibody levels in wild animals. Serum samples were collected from a total of 91 animals: 21 Korean water deer (KWD), 3 Siberian roe deer, 5 gorals, 7 raccoon dogs, 54 wild boars (WBs), and 1 carrion crow. The SFTSV infection rate in wild animals was 3.30% (3 of 91 animals: 1 KWD and 2 WBs). The seropositive rate was 6.59% (6 of 91 animals: 5 KWD and 1 WB). A total of 891 ticks (3 species) were collected from 65 wild animals (9 species). Of the attached tick species, Haemaphysalis longicornis (74.86%) was the most abundant, followed by Haemaphysalis flava (20.20%) and Ixodes nipponensis (4.94%). The average minimum infection rate (MIR) of SFTSV in ticks was 4.98%. The MIRs of H. longicornis, H. flava, and I. nipponensis were 4.51%, 2.22%, and 22.73%, respectively. The MIRs of larvae, nymphs, and adult ticks were 0.68%, 6.88%, and 5.53%, respectively. In addition, the MIRs of fed and unfed ticks were 4.67% and 4.96%, respectively. We detected a low SFTSV infection rate in wild animals, no differences in SFTSV infection rate with respect to bloodsucking in ticks, and SFTSV infection for all developmental stages of ticks. This is the first report describing the detection of SFTSV in wild animals in the ROK.

  3. Ticks infesting wild and domestic animals and humans of Sri Lanka with new host records.

    Science.gov (United States)

    Liyanaarachchi, D R; Rajakaruna, R S; Dikkumbura, A W; Rajapakse, R P V J

    2015-02-01

    An island-wide collection of tick species infesting humans, domesticated and wild animals and questing ticks in domestic and peridomestic environments was carried out during 2009-2011. A total of 30,461 ticks were collected from 30 different hosts and free living stages from the ground. The collection consisted of 22 tick species from 30 different hosts recording 12 tick species from humans, 19 from domesticated animals and 21 from wild animals, with a total of 97 new host records. The most common tick species on humans were Dermacentor auratus and Amblyomma testudinairum, while Haemaphysalis intermedia, Rhipicephalus microplus and Rhipicephalus sanguineus were common in domesticated and wild animals sharing 20 host species. Among the questing ticks, immature D. auratus was the most abundant. Humans and domesticated animals were mostly infested by the nymphal stages while adult ticks were found on wild animals. High number of new host records could be due to domestic animals picking tick species from wildlife and vise versa at the human/animal interface. Habitat destruction due to forest fragmentation has lead to wild animals roaming in urban and semi-urban neighbourhoods increasing the interactions of wild animals with domesticated animals. Wild animals play a significant role as a reservoir of many tick borne infections which can easily be spread to domesticated animals and then to humans via tick infestations. Data in this paper are useful for those interested in tick infesting wild and domestic animals and humans in describing the zoonotic potential of tick borne infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents--analyzing the host-pathogen-vector interface in a metropolitan area.

    Science.gov (United States)

    Silaghi, Cornelia; Woll, Dietlinde; Hamel, Dietmar; Pfister, Kurt; Mahling, Monia; Pfeffer, Martin

    2012-09-05

    The aims of this study were to evaluate the host-tick-pathogen interface of Babesia spp. and Anaplasma phagocytophilum in restored areas in both questing and host-attached Ixodes ricinus and Dermacentor reticulatus and their small mammalian hosts. Questing ticks were collected from 5 sites within the city of Leipzig, Germany, in 2009. Small mammals were trapped at 3 of the 5 sites during 2010 and 2011. DNA extracts of questing and host-attached I. ricinus and D. reticulatus and of several tissue types of small mammals (the majority bank voles and yellow-necked mice), were investigated by PCR followed by sequencing for the occurrence of DNA of Babesia spp. and by real-time PCR for A. phagocytophilum. A selected number of samples positive for A. phagocytophilum were further investigated for variants of the partial 16S rRNA gene. Co-infection with Rickettsia spp. in the questing ticks was additionally investigated. 4.1% of questing I. ricinus ticks, but no D. reticulatus, were positive for Babesia sp. and 8.7% of I. ricinus for A. phagocytophilum. Sequencing revealed B. microti, B. capreoli and Babesia spp. EU1 in Leipzig and sequence analysis of the partial 16S RNA gene of A. phagocytophilum revealed variants either rarely reported in human cases or associated with cervid hosts. The statistical analysis revealed significantly less ticks infected with A. phagocytophilum in a city park in Leipzig as compared to the other sampling sites. A. phagocytophilum-DNA was detected in 2 bank voles, DNA of B. microti in 1 striped field-mouse and of Babesia sp. EU1 in the skin tissue of a mole. Co-infections were detected. Our results show the involvement of small mammals in the natural endemic cycles of tick-borne pathogens. A more thorough understanding of the interactions of ticks, pathogens and hosts is the essential basis for effective preventive control measures.

  5. Crimean Congo Hemorrhagic Fever Virus and Alkhurma (Alkhumra) Virus in Ticks in Djibouti.

    Science.gov (United States)

    Horton, Katherine C; Fahmy, Nermeen T; Watany, Noha; Zayed, Alia; Mohamed, Abro; Ahmed, Ammar Abdo; Rollin, Pierre E; Dueger, Erica L

    2016-10-01

    Crimean Congo hemorrhagic fever virus and Alkhumra virus, not previously reported in Djibouti, were detected among 141 (infection rate = 15.7 per 100, 95% CI: 13.4-18.1) tick pools from 81 (37%) cattle and 2 (infection rate = 0.2 per 100, 95% CI: 0.0-0.7) tick pools from 2 (1%) cattle, respectively, collected at an abattoir in 2010 and 2011.

  6. Infections and mixed infections with the selected species of Borrelia burgdorferi sensu lato complex in Ixodes ricinus ticks collected in eastern Poland: a significant increase in the course of 5 years.

    Science.gov (United States)

    Wójcik-Fatla, Angelina; Zając, Violetta; Sawczyn, Anna; Sroka, Jacek; Cisak, Ewa; Dutkiewicz, Jacek

    2016-02-01

    In the years 2008-2009 and 2013-2014, 1620 and 1500 questing Ixodes ricinus ticks, respectively, were examined on the territory of the Lublin province (eastern Poland). The presence of three pathogenic species causing Lyme disease was investigated: Borrelia burgdorferi sensu stricto, B. afzelii and B. garinii. The proportion of I. ricinus ticks infected with B. burgdorferi sensu lato showed a highly significant increase between 2008-2009 and 2013-2014, from 6.0 to 15.3%. A significant increase was noted with regard to all types of infections with individual species: single (4.7-7.8%), dual (1.2-6.6%), and triple (0.1-0.9%). When expressed as the percent of all infections, the frequency of mixed infections increased from 21.4 to 49.2%. Statistical analysis performed with two methods (by calculating of odds ratios and by Fisher's exact test) showed that the frequencies of mixed infections in most cases proved to be significantly greater than expected. The strongest associations were found between B. burgdorferi s. s. and B. afzelii, and between B. burgdorferi s. s. and B. garinii. They appeared to be highly significant (P eastern Poland, and dramatic enhancement of mixed infections with individual species, which may result in mixed infections of humans and exacerbation of the clinical course of Lyme disease cases on the studied area.

  7. Novel Chlamydiales genotypes identified in ticks from Australian wildlife.

    Science.gov (United States)

    Burnard, Delaney; Weaver, Haylee; Gillett, Amber; Loader, Joanne; Flanagan, Cheyne; Polkinghorne, Adam

    2017-01-26

    Members of the order Chlamydiales are known for their potential as human and veterinary bacterial pathogens. Despite this recognition, epidemiological factors such as routes of transmission are yet to be fully defined. Ticks are well known vectors for many other infections with several reports recently describing the presence of bacteria in the order Chlamydiales in these arthropods. Australian wildlife are hosts to an extensive range of tick species. Evidence is also growing that the marsupial hosts these ticks parasitise can also be infected by a number of bacteria in the order Chlamydiales, with at least one species, Chlamydia pecorum, posing a significant conservation threat. In the current study, we investigated the presence and identity of Chlamydiales in 438 ixodid ticks parasitizing wildlife in Australia by screening with a pan-Chlamydiales specific targeting the 16S rRNA gene. Pan-Chlamydiales specific PCR assays confirmed the common presence of Chlamydiales in Australian ticks parasitising a range of native wildlife. Interestingly, we did not detect any Chlamydiaceae, including C. pecorum, the ubiquitous pathogen of the koala. Instead, the Chlamydiales diversity that could be resolved indicated that Australian ticks carry at least six novel Chlamydiales genotypes. Phylogenetic analysis of the 16S rRNA sequences (663 bp) of these novel Chlamydiales suggests that three of these genotypes are associated with the Simkaniaceae and putatively belong to three distinct novel strains of Fritschea spp. and three genotypes are related to the "Ca. Rhabdochlamydiaceae" and putatively belong to a novel genus, Rhabdochlamydia species and strain, respectively. Sequence results suggest Australian wildlife ticks harbour a range of unique Chlamydiales bacteria that belong to families previously identified in a range of arthropod species. The results of this work also suggest that it is unlikely that arthropods act as vectors of pathogenic members of the family

  8. Hard ticks (Ixodidae and Crimean-Congo hemorrhagic fever virus in south west of Iran.

    Directory of Open Access Journals (Sweden)

    Narges Sharifinia

    2015-03-01

    Full Text Available Ticks are vectors of some important arthropod-borne diseases in both fields of veterinary and medicine, such as Lyme, tularemia, Rocky Mountain spotted fever, and some types of encephalitis as well as Crimean Congo hemorrhagic fever (CCHF. Iran is known as one of the main foci of CCHF in west of Asia. This study was conducted in DarrehShahr County because of the development of animal husbandry in this area to detect the fauna and viral infection of the hard ticks of livestock. A cross-sectional survey was conducted during 2011-2012 with random sampling in four villages. A sample of ticks was subjected to RT-PCR method for detection of viral infection. During the study period, 592 Ixodidae ticks were collected and identified as seven species of Hyalomma asiaticum, Hy. marginatum, Hy. anatolicum, Hy. dromedarii, Hy. detritum, Rhipicephalus bursa and Rh. sanguineus. More than 20% of these ticks were examined to detect the genome of CCHF virus while 6.6% were positive. All species of Hyalomma were found to be positive. A high rate of livestock was found to be infected with hard ticks, which can act as the vectors of the CCHF disease. Regarding infection of all five Hyalomma species captured in this area, this genus should be considered as the main vector of CCHF. Planning control program can be performed based on the obtained data on seasonal activity of Ixodidae to prevent animal infestation as well as to reduce the risk of CCHF transmission.

  9. Epidemiology of Lyme borreliosis and other tick-borne diseases in the Netherlands

    NARCIS (Netherlands)

    Hofhuis, Agnetha

    2017-01-01

    Lyme borreliosis is caused by Borrelia burgdorferi sensu lato bacteria, and transmitted through tick bites. The disease most commonly manifests as erythema migrans, a slowly expanding skin lesion at the site of the tick bite. Disseminated Lyme borreliosis can develop when the infection spreads to

  10. The prevalence of serum antibodies to tick-borne infections in Mbale District, Uganda: The effect of agro-ecological zone, grazing management and age of cattle

    Directory of Open Access Journals (Sweden)

    C. Rubaire-Akiiki

    2004-03-01

    Full Text Available Between August and October 2000, a cross-sectional study was conducted in smallholder dairy farms in Mbale District, Uganda to assess the prevalence of ticks and tick-borne diseases under different grazing systems and agro-ecological zones and understand the circumstances under which farmers operated. A questionnaire was administered to obtain information on dairy farm circumstances and practices. A total of 102 farms were visited and sera and ticks were collected from 478 animals. Sero-prevalence of tick-borne diseases was determined using an enzyme-linked immunoassay. Acaricides were used indiscriminately but the intensity of their use varied with the grazing system and zone. Cattle from different farms mixed for various reasons. During the dry seasons farmers have to get additional fodder from outside their farms that can result in importation of ticks. The prevalence of ticks and serum antibodies to tick-borne infections differed across the grazing systems and zones. The highest serum antibody prevalence (>60% was recorded in the lowland zone under the free range and tethering grazing systems. The lowest tick challenge and serum antibody levels (<50% were recorded in the midland and upland zones under a zero-grazing system. These findings suggest that endemic stability to East Coast Fever, babesiosis and anaplasmosis is most likely to have existed in the lowland zone, particularly, under the tethering and free-range grazing systems. Also, endemic stability for babesiosis existed in the upland zones. Endemic instability for East Coast Fever existed in the midland and upland zones. These structured observational studies are instrumental in planning of control strategies for ticks and tick borne diseases since production systems and the cattle population at high risk of the diseases in the district have been identified.

  11. Molecular Assay on Crimean Congo Hemorrhagic Fever Virus in Ticks (Ixodidae) Collected from Kermanshah Province, Western Iran

    Science.gov (United States)

    Mohammadian, Maria; Chinikar, Sadegh; Telmadarraiy, Zakkyeh; Vatandoost, Hassan; Oshaghi, Mohammad Ali; Hanafi-Bojd, Ahmad Ali; Sedaghat, Mohammad Mehdi; Noroozi, Mehdi; Faghihi, Faezeh; Jalali, Tahmineh; Khakifirouz, Sahar; Shahhosseini, Nariman; Farhadpour, Firoozeh

    2016-01-01

    Background: Crimean-Congo Hemorrhagic Fever (CCHF) is a feverous and hemorrhagic disease endemic in some parts of Iran and caused by an arbovirus related to Bunyaviridae family and Nairovirusgenus. The main virus reservoir in the nature is ticks, however small vertebrates and a wide range of domestic and wild animals are regarded as reservoir hosts. This study was conducted to determine the infection rate of CCHF virus in hard ticks of Sarpole-Zahab County, Kermanshah province, west of Iran. Methods: From total number of 851 collected ticks from 8 villages, 131 ticks were selected randomlyand investigated for detection of CCHF virus using RT-PCR. Results: The virus was found in 3.8% of the tested ticks. Hyalommaanatolicum, H. asiaticum and Rhipicephalus sanguineus species were found to have viral infection, with the highest infection rate (11.11%) in Rh. sanguineus. Conclusion: These findings provide epidemiological evidence for planning control strategies of the disease in the study area. PMID:27308296

  12. Molecular Assay on Crimean Congo Hemorrhagic Fever Virus in Ticks (Ixodidae Collected from Kermanshah Province, Western Iran

    Directory of Open Access Journals (Sweden)

    Maria Mohammadian

    2016-01-01

    Full Text Available Background: Crimean-Congo Hemorrhagic Fever (CCHF is a feverous and hemorrhagic disease endemic in some parts of Iran and caused by an arbovirus related to Bunyaviridae family and Nairovirusgenus. The main virus reser­voir in the nature is ticks, however small vertebrates and a wide range of domestic and wild animals are regarded as reservoir hosts. This study was conducted to determine the infection rate of CCHF virus in hard ticks of Sarpole-Zahab County, Kermanshah province, west of Iran.Methods: From total number of 851 collected ticks from 8 villages, 131 ticks were selected randomlyand investi­gated for detection of CCHF virus using RT-PCR.Results: The virus was found in 3.8% of the tested ticks. Hyalommaanatolicum, H.asiaticum and Rhipicephalus sanguineus species were found to have viral infection, with the highest infection rate (11.11% in Rh. sanguineus.Conclusion: These findings provide epidemiological evidence for planning control strategies of the disease in the study area.

  13. Comparison between conventional and molecular methods for diagnosis of bovine babesiosis (Babesia bovis infection) in tick infested cattle in upper Egypt.

    Science.gov (United States)

    Al-Hosary, Amira A T

    2017-03-01

    Ticks and tick-borne diseases are the main problems affecting the livestock production in Egypt. Bovine babesiosis has adverse effects on the animal health and production. A comparison of Giemsa stained blood smears, polymerase chain reaction (PCR) and nested PCR (nPCR) assays for detection of Babesia bovis infection in Egyptian Baladi cattle ( Bos taurus ) in reference to reverse line blot was carried out. The sensitivity of PCR and nested PCR (nPCR) assays were 65 and 100 % respectively. Giemsa stained blood smears showed the lowest sensitivity (30 %). According to these results using of PCR and nPCR target for B. bovis , [BBOV-IV005650 (BV5650)] gene are suitable for diagnosis of B. bovis infection. The 18Ss rRNA partial sequence confirmed that all the positive samples were Babesia bovis and all of them were deposited in the GenBank databases (Accession No: KM455548, KM455549 and KM455550).

  14. Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents – Analyzing the host-pathogen-vector interface in a metropolitan area

    Directory of Open Access Journals (Sweden)

    Silaghi Cornelia

    2012-09-01

    Full Text Available Abstract Background The aims of this study were to evaluate the host-tick-pathogen interface of Babesia spp. and Anaplasma phagocytophilum in restored areas in both questing and host-attached Ixodes ricinus and Dermacentor reticulatus and their small mammalian hosts. Methods Questing ticks were collected from 5 sites within the city of Leipzig, Germany, in 2009. Small mammals were trapped at 3 of the 5 sites during 2010 and 2011. DNA extracts of questing and host-attached I. ricinus and D. reticulatus and of several tissue types of small mammals (the majority bank voles and yellow-necked mice, were investigated by PCR followed by sequencing for the occurrence of DNA of Babesia spp. and by real-time PCR for A. phagocytophilum. A selected number of samples positive for A. phagocytophilum were further investigated for variants of the partial 16S rRNA gene. Co-infection with Rickettsia spp. in the questing ticks was additionally investigated. Results 4.1% of questing I. ricinus ticks, but no D. reticulatus, were positive for Babesia sp. and 8.7% of I. ricinus for A. phagocytophilum. Sequencing revealed B. microti, B. capreoli and Babesia spp. EU1 in Leipzig and sequence analysis of the partial 16S RNA gene of A. phagocytophilum revealed variants either rarely reported in human cases or associated with cervid hosts. The statistical analysis revealed significantly less ticks infected with A. phagocytophilum in a city park in Leipzig as compared to the other sampling sites. A. phagocytophilum-DNA was detected in 2 bank voles, DNA of B. microti in 1 striped field-mouse and of Babesia sp. EU1 in the skin tissue of a mole. Co-infections were detected. Conclusion Our results show the involvement of small mammals in the natural endemic cycles of tick-borne pathogens. A more thorough understanding of the interactions of ticks, pathogens and hosts is the essential basis for effective preventive control measures.

  15. Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents – Analyzing the host-pathogen-vector interface in a metropolitan area

    Science.gov (United States)

    2012-01-01

    Background The aims of this study were to evaluate the host-tick-pathogen interface of Babesia spp. and Anaplasma phagocytophilum in restored areas in both questing and host-attached Ixodes ricinus and Dermacentor reticulatus and their small mammalian hosts. Methods Questing ticks were collected from 5 sites within the city of Leipzig, Germany, in 2009. Small mammals were trapped at 3 of the 5 sites during 2010 and 2011. DNA extracts of questing and host-attached I. ricinus and D. reticulatus and of several tissue types of small mammals (the majority bank voles and yellow-necked mice), were investigated by PCR followed by sequencing for the occurrence of DNA of Babesia spp. and by real-time PCR for A. phagocytophilum. A selected number of samples positive for A. phagocytophilum were further investigated for variants of the partial 16S rRNA gene. Co-infection with Rickettsia spp. in the questing ticks was additionally investigated. Results 4.1% of questing I. ricinus ticks, but no D. reticulatus, were positive for Babesia sp. and 8.7% of I. ricinus for A. phagocytophilum. Sequencing revealed B. microti, B. capreoli and Babesia spp. EU1 in Leipzig and sequence analysis of the partial 16S RNA gene of A. phagocytophilum revealed variants either rarely reported in human cases or associated with cervid hosts. The statistical analysis revealed significantly less ticks infected with A. phagocytophilum in a city park in Leipzig as compared to the other sampling sites. A. phagocytophilum-DNA was detected in 2 bank voles, DNA of B. microti in 1 striped field-mouse and of Babesia sp. EU1 in the skin tissue of a mole. Co-infections were detected. Conclusion Our results show the involvement of small mammals in the natural endemic cycles of tick-borne pathogens. A more thorough understanding of the interactions of ticks, pathogens and hosts is the essential basis for effective preventive control measures. PMID:22950642

  16. Tick Talk: Tick-borne Diseases of South Dakota.

    Science.gov (United States)

    Huntington, Mark K; Allison, Jay

    2017-09-01

    In addition to being a nuisance, ticks can carry disease. This article presents a brief review of ticks and associated tick-borne disease relevant to South Dakota and surrounding regions. Tick-borne diseases of special relevance in South Dakota include tularemia, Rocky Mountain spotted fever, and Lyme disease. A number of others may also be encountered in the state as well. Prompt treatment of suspected cases is important to ensure a successful recovery, and tick-avoidance measures can reduce the risks of acquiring them. Most of these conditions are nationally reportable infectious diseases. Copyright© South Dakota State Medical Association.

  17. Biting activity of Aedes scapularis (Rondani and Haemagogus mosquitoes in Southern Brazil (Diptera: Culicidae Atividade hematófaga de mosquitos Aedes scapularis (Rondani e Haemagogus no sul do Brasil (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Oswaldo Paulo Forattini

    1988-04-01

    Full Text Available The biting activity of a population of Aedes scapularis (Rondani, Haemagogus capricornii Lutz and Hg. leucocelaenus (Dyar and Shannon in Southern Brazil was studied between March 1980 and April 1983. Data were obtained with 25-hour human bait catches in three areas with patchy residual forests, named "Jacaré-Pepira", "Lupo" Farm, and "Sta. Helena" Farm, in the highland region of S. Paulo State (Brazil. Data obtained on Ae. scapularis were compared with those formerly gathered in the "Ribeira'' Valley lowlands, and were similar, except in the "Lupo" Farm study area, where a precrepuscular peak was observed, not recorded at the "Jacaré-Pepira" site or in the "Ribeira" Valley. In all the areas this mosquito showed diurnal and nocturnal activity, but was most active during the evening crepuscular period. These observations support the hypothesis about the successful adaptation of Ae. scapularis to man-made environments and have epidemiological implications that arise from it. As for Haemagogus, results obtained on the "Lupo" and "Sta. Helena" regions agree with previous data obtained in several other regions and show its diurnal activity. The proximity of "Lupo" Farm, where Hg. capricornii and Hg. leucocelaenus showed considerable activity, to "Araraquara" city where Aedes aegypti was recently found, raises some epidemiological considerations about the possibility of urban yellow fever resurgence.No período de março de 1980 a abril de 1983 foi estudada a atividade hematófaga de uma população de Aedes scapularis (Rondani, Haemagogus capricornii Lutz, Hg. leucocelaenus (Dyar e Shannon, na região sul do Brasil. Os dados foram obtidos com o emprego de isca humana, mediante captura de 25 horas de duração e correspondente a três áreas, contendo manchas de floresta residual, denominadas Jacaré-Pepira, Fazenda Lupo e Fazenda Santa Helena. Os resultados relativos a Ae. scapularis foram comparados com as coletas anteriormente feitas em áreas de

  18. Prevalence of Anaplasma phagocytophilum infection in feral cats in Massachusetts.

    Science.gov (United States)

    Galemore, Erin R; Labato, Mary A; O'Neil, Elizabeth

    2018-01-01

    The primary objective of this study was to determine the prevalence of Anaplasma phagocytophilum infection and exposure in adult feral cats in Massachusetts, an endemic area for A phagocytophilum and its tick vector Ixodes scapularis . The secondary objective was to determine if there were correlations between A phagocytophilum infection and the presence of anemia and thrombocytopenia. Blood samples were collected between June and December 2015 from 175 apparently healthy adult feral cats that were presented to trap and release spay/neuter centers in Massachusetts. Complete blood count, blood smear evaluation, SNAP 4Dx Plus test (IDEXX) and A phagocytophilum PCR were performed on all samples to document acute infection (PCR-positive and/or inclusions observed on blood smear) and exposure to A phagocytophilum (SNAP 4Dx Plus-positive for A phagocytophilum antibodies). The prevalence of exposure to A phagocytophilum in feral cats in Massachusetts was 9.7%, whereas the prevalence of acute infection was 6.9%. All blood smears were negative for Anaplasma species inclusions; therefore, acute infection was defined as testing positive on PCR analysis. No statistically significant correlations were identified for cats that were positive for A phagocytophilum on PCR analysis or SNAP 4Dx Plus test and the presence of anemia or thrombocytopenia. The prevalence of A phagocytophilum exposure in feral cats approaches 10% and is higher than the previously reported national average prevalence of 4.3% in the USA. A phagocytophilum infection may be an emerging infectious disease in cats. Further research is needed to determine the prevalence of clinical illness associated with A phagocytophilum infection in cats living in endemic areas.

  19. Immunization with a recombinant subunit OspA vaccine markedly impacts the rate of newly acquired Borrelia burgdorferi infections in client-owned dogs living in a coastal community in Maine, USA.

    Science.gov (United States)

    Eschner, Andrew K; Mugnai, Kristen

    2015-02-10

    In North America, Borrelia burgdorferi is the causative bacterial agent of canine Lyme borreliosis and is transmitted following prolonged attachment and feeding of vector ticks, Ixodes scapularis or Ixodes pacificus. Its prevention is predicated upon tick-avoidance, effective on-animal tick control and effective immunization strategies. The purpose of this study is to characterize dogs that are newly seropositive for Borrelia burgdorferi infection in relation to compliant use of a recombinant OspA canine Lyme borreliosis vaccine. Specifically, Preventive Fractions (PF) and Risk Ratios (RR) associated with the degree of vaccine compliancy (complete versus incomplete) are determined. 6,202 dogs were tested over a five year period in a single veterinary hospital utilizing a non-adjuvanted, recombinant OspA vaccine according to a 0, 1, 6 month (then yearly) protocol. Rates of newly acquired "Lyme-positive" antibody test results were compared between protocol compliant and poorly compliant (incompletely and/or non-vaccinated) dogs. Over the five-year span, one percent (range 0.39 - 1.3) of protocol compliant vaccinated, previously antibody negative dogs became seropositive for infection. Approximately twenty-one percent (range 16.8 - 33.3) of incompletely vaccinated dogs became positive for infection-specific antibodies. The Preventative Fraction for testing positive for antibodies specific for infection with Borrelia burgdorferi in any given year based on optimal vaccine compliance was, on average, 95.3% (range 93.29 - 98.08). The Risk Ratio for becoming infected with Borrelia burgdorferi antibodies in any given year if vaccine non-compliant was 21.41 (range 14.9 - 52.1). There was a high statistically significant relationship (p = <0.0001) in the observed data in terms of vaccination protocol compliance and the probability of Borrelia burgdorferi infection in each of the five years under study. The recombinant outer surface protein A (rOspA) vaccine for dogs is highly

  20. Rickettsia parkeri in Gulf Coast Ticks, Southeastern Virginia, USA

    Science.gov (United States)

    2011-05-01

    Rickettsia parkeri in Gulf Coast Ticks, Southeastern Virginia, USA Chelsea L. Wright, Robyn M. Nadolny, Ju Jiang, Allen L. Richards, Daniel E...Virginia. We found that 43.1% of the adult Gulf Coast ticks collected in the summer of 2010 carried Rickettsia parkeri, suggesting that persons living in...or visiting southeastern Virginia are at risk for infection with this pathogen. Rickettsia parkeri is an obligate intracellular bacterium belonging

  1. Ticks circulate Anaplasma, Ehrlichia, Babesia and Theileria parasites in North of Iran.

    Science.gov (United States)

    Bekloo, Ahmad Jafar; Bakhshi, Hasan; Soufizadeh, Ayoub; Sedaghat, Mohammad Mehdi; Bekloo, Romina Jafar; Ramzgouyan, Maryam Roya; Chegeni, Asadollah Hosseini; Faghihi, Faezeh; Telmadarraiy, Zakkyeh

    2017-12-15

    Ticks serve as important vectors of some pathogens of medical importance all over the world and identification of their rate of infection plays an important role for further control of diseases. In the current study, we investigated on ticks collected from north of Iran where raising and caring livestock are the main task of the people in order to find evidences of infection of Babesia, Theileria, Anaplasma and Ehrlichia microbial agents. Totally, 609 hard tick species from two genera Hyalomma and Rhipicephalus including; Hy. scupense, Hy. dromedarii, Hy. rufipes, Hy. marginatum, Hy. asiaticum, Hy. anatolicum, R. bursa, R. sanguineus and R. turanicus were identified. Molecular analysis revealed the presence of Anaplasma, Ehrlichia, Babesia and Theileria microorganism agents in all collected tick species except Hy. asiaticum and R. turanicus. To the best of our knowledge, this is the first report on identification of B. occultans in Hyalomma anatolicum and B. ovis in Hyalomma sp in Iran. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Molecular detection of Crimean-Congo hemorrhagic fever virus in ticks, Greece, 2012-2014.

    Science.gov (United States)

    Papa, Anna; Kontana, Anastasia; Tsioka, Katerina; Chaligiannis, Ilias; Sotiraki, Smaragda

    2017-11-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is transmitted to humans mainly through the bite of infected ticks. In Greece, only one clinical case has been observed, in 2008, but the seroprevalence in humans is relatively high (4.2%). To have a first insight into the circulation of CCHFV in Greece, 2000 ticks collected from livestock during 2012-2014 were tested. CCHFV was detected in 36 of the 1290 (2.8%) tick pools (1-5 ticks per pool). Two genetic lineages were identified: Europe 1 and Europe 2. Most Europe 1 sequences were obtained from Rhipicephalus sanguineus sensu lato ticks, while most Europe 2 sequences were recovered from Rhipicephalus bursa ticks. The number of collected Hyalomma marginatum ticks (the principal vector of CCHFV) was low (0.5% of ticks) and all were CCHFV negative. Since it is not known how efficient ticks of the Rhipicephalus genus are as vectors of the virus, laboratory studies will be required to explore the role of Rhipicephalus spp. ticks in CCHFV maintenance and transmission.

  3. Increased Relative Risk of Tick-Borne Encephalitis in Warmer Weather

    Directory of Open Access Journals (Sweden)

    Milan Daniel

    2018-03-01

    Full Text Available Tick-borne encephalitis (TBE is a serious acute neuroinfection of humans caused by a tick-borne flavivirus. The disease is typically seasonal, linked to the host-seeking activity of Ixodes ricinus (predominantly nymphs, the principal European tick vector species. To address the need for accurate risk predictions of contracting TBE, data on 4,044 TBE cases reported in the Czech Republic during 2001–2006 were compared with questing activity of I. ricinus nymphs monitored weekly at a defined location for the same 6-year period. A time shift of 21 days between infected tick bite and recorded disease onset provided the optimal model for comparing the number of cases of TBE with numbers of questing nymphs. Mean annual distribution of TBE cases and tick counts showed a similar bimodal distribution. Significantly, the ratio of TBE cases to questing nymphs was highest in the summer-autumn period even though the number of questing nymphs peaked in the spring-summer period. However, this pattern changed during a period of extreme meteorological events of flooding and abnormally high temperatures, indicating that changes in climate affect the incidence of TBE. Previous studies failed to link human behavior with changes in incidence of TBE but showed extrinsic temperature impacts arbovirus replication. Hence, we hypothesize the apparent discrepancy between peak nymphal tick activity and greatest risk of contracting TBE is due to the effect of temperature on virus replication in the tick vector. Relative proportions of questing nymphs and the numbers of weeks in which they were found were greater in summer-autumn compared with spring-summer at near-ground temperatures >5°C and at standard day and weekly average temperatures of >15°C. Thus, during the summer-autumn period, the virus dose in infected tick bites is likely greater owing to increased virus replication at higher microclimatic temperatures, consequently increasing the relative risk of

  4. Tick Talk: Block Tick Bites and Lyme Disease

    Science.gov (United States)

    ... this issue Tick Talk Block Tick Bites and Lyme Disease En español Send us your comments When warm ... mainly in the mid-Atlantic and southern states. Lyme disease is the most common tick-borne illness. It’s ...

  5. Antivirulence Properties of an Antifreeze Protein

    Directory of Open Access Journals (Sweden)

    Martin Heisig

    2014-10-01

    Full Text Available As microbial drug-resistance increases, there is a critical need for new classes of compounds to combat infectious diseases. The Ixodes scapularis tick antifreeze glycoprotein, IAFGP, functions as an antivirulence agent against diverse bacteria, including methicillin-resistant Staphylococcus aureus. Recombinant IAFGP and a peptide, P1, derived from this protein bind to microbes and alter biofilm formation. Transgenic iafgp-expressing flies and mice challenged with bacteria, as well as wild-type animals administered P1, were resistant to infection, septic shock, or biofilm development on implanted catheter tubing. These data show that an antifreeze protein facilitates host control of bacterial infections and suggest therapeutic strategies for countering pathogens.

  6. Wild cervids are host for tick vectors of babesia species with zoonotic capability in Belgium.

    Science.gov (United States)

    Lempereur, Laetitia; Wirtgen, Marc; Nahayo, Adrien; Caron, Yannick; Shiels, Brian; Saegerman, Claude; Losson, Bertrand; Linden, Annick

    2012-04-01

    Babesiosis is a tick-borne disease caused by different species of intraerythrocytic protozoan parasites within the genus Babesia. Different species of Babesia are described as potentially zoonotic and cause a malaria-like disease mainly in immunocompromised humans. Interest in the zoonotic potential of Babesia is growing and babesiosis has been described by some authors as an emergent zoonotic disease. The role of cervids to maintain tick populations and act as a reservoir host for some Babesia spp. with zoonotic capability is suspected. To investigate the range and infection rate of Babesia species, ticks were collected from wild cervids in southern Belgium during 2008. DNA extraction was performed for individual ticks, and each sample was evaluated for the absence of PCR inhibition using a PCR test. A Babesia spp. genus-specific PCR based on the 18S rRNA gene was applied to validated tick DNA extracts. A total of 1044 Ixodes ricinus ticks were collected and 1023 validated samples were subsequently screened for the presence of Babesia spp. DNA. Twenty-eight tick samples were found to be positive and identified after sequencing as containing DNA representing: Babesia divergens (3), B. divergens-like (5), Babesia sp. EU1 (11), Babesia sp. EU1-like (3), B. capreoli (2), or unknown Babesia sp. (4). This study confirms the presence of potentially zoonotic species and Babesia capreoli in Belgium, with a tick infection rate of 2.7% (95% CI 1.8,3.9%). Knowledge of the most common reservoir source for transmission of zoonotic Babesia spp. will be useful for models assessing the risk potential of this infection to humans.

  7. Infection of Anaplasma phagocytophilum and Ehrlichia spp. in Opossums and Dogs in Campeche, Mexico: The Role of Tick Infestation

    Directory of Open Access Journals (Sweden)

    Edgar Rojero-Vázquez

    2017-12-01

    Full Text Available In recent years, some tick-borne diseases such as anaplasmosis and ehrlichiosis became widespread worldwide, threatening the health of humans, domestic animals and wildlife. The aims of this study were to determine the presence of Anaplasma phagocytophilum, Ehrlichia canis, and Ehrlichia chaffeensis in 102 opossums (Didelphis spp. and 44 owned free-ranging dogs in southeastern Mexico using a specific polymerase chain reaction (PCR. A. phagocytophilum was detected in opossums and dogs with a prevalence of 3 and 27%, respectively. E. canis was only present in 7% of dogs, while we didn't detect E. chaffeensis in any host. We report the first evidence of infections of A. phagocytophilum in Didelphis virginiana and D. marsupialis in Mexico. The infection rates and patterns we found of A. phagocytophilum suggest that dogs are more directly involved in the ecology of this pathogen than opossums. Despite the small prevalence found, our results are of public health concern because of the zoonotic capabilities of A. phagocytophilum, the high tick infestation rates found and because both opossums and free-ranging dogs can achieve high population densities in the region.

  8. Molecular investigation of tick-borne pathogens in dogs from Luanda, Angola.

    Science.gov (United States)

    Cardoso, Luís; Oliveira, Ana Cristina; Granada, Sara; Nachum-Biala, Yaarit; Gilad, Matan; Lopes, Ana Patrícia; Sousa, Sérgio Ramalho; Vilhena, Hugo; Baneth, Gad

    2016-05-10

    No molecular data have been available on tick-borne pathogens that infect dogs from Angola. The occurrence of agents from the genera Anaplasma, Babesia, Ehrlichia and Hepatozoon was assessed in 103 domestic dogs from Luanda, by means of the polymerase chain reaction (PCR) and DNA sequence analysis. Forty-six dogs (44.7 %) were positive for at least one pathogen. Twenty-one animals (20.4 %) were found infected with Anaplasma platys, 18 (17.5 %) with Hepatozoon canis, six (5.8 %) with Ehrlichia canis, six (5.8 %) with Babesia vogeli, one (1.0 %) with Babesia gibsoni and one (1.0 %) with an unnamed Babesia sp. The molecular frequency of single infections taken together was 37.9 % and that of co-infections with several combinations of two pathogens accounted for 6.8 % of the animals. This is the first report of A. platys, B. vogeli, B. gibsoni, E. canis and H. canis infections diagnosed by PCR in domestic dogs from Angola. The present study provides evidence that dogs in Luanda are widely exposed to, and at risk of becoming infected with, tick-borne pathogens. Further investigation is needed, including a larger number of animals, canine populations from other cities and provinces of the country, as well as potential vector ticks, aiming at better characterizing and controlling canine vector-borne diseases in Angola.

  9. Tick fauna of Malaysian red jungle fowl (Gallus gallus) in Bangi, Malaysia

    OpenAIRE

    Konto, M.; Fufa, G. I.; Zakaria, A.; Tukur, S. M.; Watanabe, M.; Ola-Fadunsin, S. D.; Khan, M. S.; Shettima, Y. M.; Babjee, S. M. A.

    2015-01-01

    Aim: The red jungle fowl is generally considered as one of the endangered Asian wild Galleopheasants due to man-made encroachment of their habitats, coupled with the effect of disease and disease causing organisms like ticks and tick-borne infections. This study aimed to determine the tick fauna of the red jungle fowl and their predilection sites based on developmental stages. Materials and Methods: A total of 33 jungle fowls were sampled for this study from Bangi area of Selangor State, Peni...

  10. Beware of Ticks (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2015-05-14

    Lyme disease is an infection caused by a bacteria that is transmitted by the bites of infected blacklegged ticks. In this podcast, Dr. Christina Nelson discusses ways to help prevent Lyme disease.  Created: 5/14/2015 by MMWR.   Date Released: 5/14/2015.

  11. Tick Removal

    Science.gov (United States)

    ... ticks that bite humans How ticks spread disease Diseases transmitted by ticks Trends in tickborne diseases Tickborne diseases ... Emerging and Zoonotic Infectious Diseases (NCEZID) Division of Vector-Borne Diseases (DVBD) Email Recommend Tweet YouTube Instagram Listen Watch ...

  12. Avoiding Ticks

    Science.gov (United States)

    ... ticks that bite humans How ticks spread disease Diseases transmitted by ticks Trends in tickborne diseases Tickborne diseases ... Emerging and Zoonotic Infectious Diseases (NCEZID) Division of Vector-Borne Diseases (DVBD) Email Recommend Tweet YouTube Instagram Listen Watch ...

  13. Zahedan rhabdovirus, a novel virus detected in ticks from Iran.

    Science.gov (United States)

    Dilcher, Meik; Faye, Oumar; Faye, Ousmane; Weber, Franziska; Koch, Andrea; Sadegh, Chinikar; Weidmann, Manfred; Sall, Amadou Alpha

    2015-11-05

    Rhabdoviridae infect a wide range of vertebrates, invertebrates and plants. Their transmission can occur via various arthropod vectors. In recent years, a number of novel rhabdoviruses have been identified from various animal species, but so far only few tick-transmitted rhabdoviruses have been described. We isolated a novel rhabdovirus, provisionally named Zahedan rhabdovirus (ZARV), from Hyalomma anatolicum anatolicum ticks collected in Iran. The full-length genome was determined using 454 next-generation sequencing and the phylogenetic relationship to other rhabdoviruses was analyzed. Inoculation experiments in mammalian Vero cells and mice were conducted and a specific PCR assay was developed. The complete genome of ZARV has a size of 11,230 nucleotides (nt) with the typical genomic organization of Rhabdoviridae. Phylogenetic analysis confirms that ZARV is closely related to Moussa virus (MOUV) from West Africa and Long Island tick rhabdovirus (LITRV) from the U.S., all forming a new monophyletic clade, provisionally designated Zamolirhabdovirus, within the Dimarhabdovirus supergroup. The glycoprotein (G) contains 12 conserved cysteins which are specific for animal rhabdoviruses infecting fish and mammals. In addition, ZARV is able to infect mammalian Vero cells and is lethal for mice when inoculated intracerebrally or subcutaneously. The developed PCR assay can be used to specifically detect ZARV. The novel tick-transmitted rhabdovirus ZARV is closely related to MOUV and LITRV. All three viruses seem to form a new monophyletic clade. ZARV might be pathogenic for mammals, since it can infect Vero cells, is lethal for mice and its glycoprotein contains 12 conserved cysteins only found in animal rhabdoviruses. The mammalian host of ZARV remains to be identified.

  14. Molecular Detection and Identification of Spotted Fever Group Rickettsiae in Ticks Collected from the West Bank, Palestinian Territories.

    Directory of Open Access Journals (Sweden)

    Suheir Ereqat

    2016-01-01

    Full Text Available Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group (SFG rickettsiae. Although Spotted Fever is prevalent in the Middle East, no reports for the presence of tick-borne pathogens are available or any studies on the epidemiology of this disease in the West Bank. We aimed to identify the circulating hard tick vectors and genetically characterize SFG Rickettsia species in ixodid ticks from the West Bank-Palestinian territories.A total of 1,123 ixodid ticks belonging to eight species (Haemaphysalis parva, Haemaphysalis adleri, Rhipicephalus turanicus, Rhipicephalus sanguineus, Rhipicephalus bursa, Hyalomma dromedarii, Hyalomma aegyptium and Hyalomma impeltatum were collected from goats, sheep, camels, dogs, a wolf, a horse and a tortoise in different localities throughout the West Bank during the period of January-April, 2014. A total of 867 ticks were screened for the presence of rickettsiae by PCR targeting a partial sequence of the ompA gene followed by sequence analysis. Two additional genes, 17 kDa and 16SrRNA were also targeted for further characterization of the detected Rickettsia species. Rickettsial DNA was detected in 148 out of the 867 (17% tested ticks. The infection rates in Rh. turanicus, Rh. sanguineus, H. adleri, H. parva, H. dromedarii, and H. impeltatum ticks were 41.7, 11.6, 16.7, 16.2, 11.8 and 20%, respectively. None of the ticks, belonging to the species Rh. bursa and H. aegyptium, were infected. Four SFG rickettsiae were identified: Rickettsia massiliae, Rickettsia africae, Candidatus Rickettsia barbariae and Candidatus Rickettsia goldwasserii.The results of this study demonstrate the geographic distribution of SFG rickettsiae and clearly indicate the presence of at least four of them in collected ticks. Palestinian clinicians should be aware of emerging tick-borne diseases in the West Bank, particularly infections due to R. massiliae and R. africae.

  15. The risk of exposure to Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Babesia sp. and co-infections in Ixodes ricinus ticks on the territory of Niepołomice forest (southern Poland).

    Science.gov (United States)

    Asman, Marek; Nowak, Magdalena; Cuber, Piotr; Strzelczyk, Joanna; Szilman, Ewa; Szilman, Piotr; Trapp, Gizela; Siuda, Krzysztof; Solarz, Krzysztof; Wiczkowski, Andrzej

    2013-01-01

    Niepołomice Forest is located about 20 kilometers east of Cracow (Malopolska province, southern Poland). Its natural and touristic values, as well as wide range of hosts occurring within indicate this to be an area of high risk of exposure to Ixodes ricinus and tick-borne diseases it transfers. I. ricinus is a common species in Poland and Europe. Its seasonal activity begins in Poland in the early spring, and ends with late autumn. A total number of 129 specimens of I. ricinus was collected by flagging in Niepołomice Forest. DNA was isolated by ammonia method from 30 randomly-selected individuals. PCR was used to detect tick-borne pathogens with primers specific for Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato and Babesia sp. Molecular studies confirmed the presence of all three pathogens in I. ricinus. A. phagocytophilum was found in 76.7%, Babesia sp., 60%, B. burgdorferi s. l., in 3.3% of studied ticks. A. phagocytophilum co-infection with Babesia sp., was found in 46.7% of the specimens. A co-infection of all three tested pathogens was recorded in one case (3.3%). In Poland the problem of tick-borne diseases is a growing issue, therefore people residing in southern Polish touristic areas should be informed about the prevention and protection against ticks.

  16. An O-Methyltransferase Is Required for Infection of Tick Cells by Anaplasma phagocytophilum.

    Science.gov (United States)

    Oliva Chávez, Adela S; Fairman, James W; Felsheim, Roderick F; Nelson, Curtis M; Herron, Michael J; Higgins, LeeAnn; Burkhardt, Nicole Y; Oliver, Jonathan D; Markowski, Todd W; Kurtti, Timothy J; Edwards, Thomas E; Munderloh, Ulrike G

    2015-01-01

    Anaplasma phagocytophilum, the causative agent of Human Granulocytic Anaplasmosis (HGA), is an obligately intracellular α-proteobacterium that is transmitted by Ixodes spp ticks. However, the pathogen is not transovarially transmitted between tick generations and therefore needs to survive in both a mammalian host and the arthropod vector to complete its life cycle. To adapt to different environments, pathogens rely on differential gene expression as well as the modification of proteins and other molecules. Random transposon mutagenesis of A. phagocytophilum resulted in an insertion within the coding region of an o-methyltransferase (omt) family 3 gene. In wild-type bacteria, expression of omt was up-regulated during binding to tick cells (ISE6) at 2 hr post-inoculation, but nearly absent by 4 hr p.i. Gene disruption reduced bacterial binding to ISE6 cells, and the mutant bacteria that were able to enter the cells were arrested in their replication and development. Analyses of the proteomes of wild-type versus mutant bacteria during binding to ISE6 cells identified Major Surface Protein 4 (Msp4), but also hypothetical protein APH_0406, as the most differentially methylated. Importantly, two glutamic acid residues (the targets of the OMT) were methyl-modified in wild-type Msp4, whereas a single asparagine (not a target of the OMT) was methylated in APH_0406. In vitro methylation assays demonstrated that recombinant OMT specifically methylated Msp4. Towards a greater understanding of the overall structure and catalytic activity of the OMT, we solved the apo (PDB_ID:4OA8), the S-adenosine homocystein-bound (PDB_ID:4OA5), the SAH-Mn2+ bound (PDB_ID:4PCA), and SAM- Mn2+ bound (PDB_ID:4PCL) X-ray crystal structures of the enzyme. Here, we characterized a mutation in A. phagocytophilum that affected the ability of the bacteria to productively infect cells from its natural vector. Nevertheless, due to the lack of complementation, we cannot rule out secondary mutations.

  17. An O-Methyltransferase Is Required for Infection of Tick Cells by Anaplasma phagocytophilum.

    Directory of Open Access Journals (Sweden)

    Adela S Oliva Chávez

    Full Text Available Anaplasma phagocytophilum, the causative agent of Human Granulocytic Anaplasmosis (HGA, is an obligately intracellular α-proteobacterium that is transmitted by Ixodes spp ticks. However, the pathogen is not transovarially transmitted between tick generations and therefore needs to survive in both a mammalian host and the arthropod vector to complete its life cycle. To adapt to different environments, pathogens rely on differential gene expression as well as the modification of proteins and other molecules. Random transposon mutagenesis of A. phagocytophilum resulted in an insertion within the coding region of an o-methyltransferase (omt family 3 gene. In wild-type bacteria, expression of omt was up-regulated during binding to tick cells (ISE6 at 2 hr post-inoculation, but nearly absent by 4 hr p.i. Gene disruption reduced bacterial binding to ISE6 cells, and the mutant bacteria that were able to enter the cells were arrested in their replication and development. Analyses of the proteomes of wild-type versus mutant bacteria during binding to ISE6 cells identified Major Surface Protein 4 (Msp4, but also hypothetical protein APH_0406, as the most differentially methylated. Importantly, two glutamic acid residues (the targets of the OMT were methyl-modified in wild-type Msp4, whereas a single asparagine (not a target of the OMT was methylated in APH_0406. In vitro methylation assays demonstrated that recombinant OMT specifically methylated Msp4. Towards a greater understanding of the overall structure and catalytic activity of the OMT, we solved the apo (PDB_ID:4OA8, the S-adenosine homocystein-bound (PDB_ID:4OA5, the SAH-Mn2+ bound (PDB_ID:4PCA, and SAM- Mn2+ bound (PDB_ID:4PCL X-ray crystal structures of the enzyme. Here, we characterized a mutation in A. phagocytophilum that affected the ability of the bacteria to productively infect cells from its natural vector. Nevertheless, due to the lack of complementation, we cannot rule out secondary

  18. Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent

    OpenAIRE

    Dai, Jianfeng; Wang, Penghua; Adusumilli, Sarojini; Booth, Carmen J.; Narasimhan, Sukanya; Anguita, Juan; Fikrig, Erol

    2009-01-01

    Traditionally, vaccines directly target a pathogen or microbial toxin. Lyme disease, caused by Borrelia burgdorferi, is a tick-borne illness for which a human vaccine is not currently available. B. burgdorferi binds a tick salivary protein, Salp15, during transmission from the vector, and this interaction facilitates infection of mice. We now show that Salp15-antiserum significantly protected mice from B. burgdorferi infection. Salp15-antiserum also markedly enhanced the protective capacity o...

  19. Prevalence of Rickettsia species in Dermacentor variabilis ticks from Ontario, Canada.

    Science.gov (United States)

    Wood, Heidi; Dillon, Liz; Patel, Samir N; Ralevski, Filip

    2016-07-01

    Relatively little is known about the prevalence of rickettsial species in Dermacentor ticks in eastern Canada. In this study, Dermacentor ticks from the province of Ontario, Canada, were tested for the presence of spotted fever group rickettsial (SFGR) species, Coxiella burnetii and Francisella tularensis. Rickettsia rickettsii was not detected in any ticks tested, but R. montanensis was detected at a prevalence of 2.2% in D. variabilis (17/778). Two other SFGR species, R. parkeri and Candidatus R. andeanae, were detected individually in 2 Amblyomma maculatum ticks. Rickettsia peacockii, a non-pathogenic endosymbiont, was detected in two D. andersonii ticks. Given the highly abundant nature of D. variabilis, surveillance for human pathogens in this species of tick has important public health implications, but the lack of detection of known human pathogens indicates a low risk of infection via this tick species in Ontario. However, the detection of R. parkeri in an adventive A. maculatum tick indicates that health care providers should be aware of the possibility of spotted fever rickettsioses in individuals with a history of travel outside of Ontario and symptoms compatible with a spotted fever rickettsiosis. Coxiella burnetii and Francisella tularensis, human pathogens also potentially transmitted by D. variabilis, were not detected in a subset of the ticks. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Generation of a Lineage II Powassan Virus (Deer Tick Virus) cDNA Clone: Assessment of Flaviviral Genetic Determinants of Tick and Mosquito Vector Competence.

    Science.gov (United States)

    Kenney, Joan L; Anishchenko, Michael; Hermance, Meghan; Romo, Hannah; Chen, Ching-I; Thangamani, Saravanan; Brault, Aaron C

    2018-05-21

    The Flavivirus genus comprises a diverse group of viruses that utilize a wide range of vertebrate hosts and arthropod vectors. The genus includes viruses that are transmitted solely by mosquitoes or vertebrate hosts as well as viruses that alternate transmission between mosquitoes or ticks and vertebrates. Nevertheless, the viral genetic determinants that dictate these unique flaviviral host and vector specificities have been poorly characterized. In this report, a cDNA clone of a flavivirus that is transmitted between ticks and vertebrates (Powassan lineage II, deer tick virus [DTV]) was generated and chimeric viruses between the mosquito/vertebrate flavivirus, West Nile virus (WNV), were constructed. These chimeric viruses expressed the prM and E genes of either WNV or DTV in the heterologous nonstructural (NS) backbone. Recombinant chimeric viruses rescued from cDNAs were characterized for their capacity to grow in vertebrate and arthropod (mosquito and tick) cells as well as for in vivo vector competence in mosquitoes and ticks. Results demonstrated that the NS elements were insufficient to impart the complete mosquito or tick growth phenotypes of parental viruses; however, these NS genetic elements did contribute to a 100- and 100,000-fold increase in viral growth in vitro in tick and mosquito cells, respectively. Mosquito competence was observed only with parental WNV, while infection and transmission potential by ticks were observed with both DTV and WNV-prME/DTV chimeric viruses. These data indicate that NS genetic elements play a significant, but not exclusive, role for vector usage of mosquito- and tick-borne flaviviruses.

  1. [Strategy for choosing antibiotics for treating bacterial infections associated with chronic tick-borne encephalitis].

    Science.gov (United States)

    Malenko, G V; Pogodina, V V; Frolova, M P; Ivannikova, T A

    1996-01-01

    The capacity of wide-spectrum antibiotics kefzol and ristomycin to activate the persisting tick-borne encephalitis (TBE) virus and cause an exacerbation of chronic process was investigated in Syrian hamsters in whom a prolonged (77 to 270 days) persistent TBE infection was induced by three TBE strains: Vasilchenko, V-383, and 205. The degree of antibiotic-induced activation was assessed using the criteria characterizing the reproduction and peculiarities of persisting TBE virus, immunodepression, and morphologic changes in the central nervous system. Effects of kefzol and ristomycin were compared with those of 8 antibiotics studied previously. Ristomycin, levomycetin (chloramphycin), penicillin, ampicillin (ampital), and levoridan were referred to drugs devoid of evident provoking effect. Kefzol (cefamezin), florimycin (viomycin), and kanamycin (kanamytrex) were characterized as weak activators and streptomycin and tetracycline as potent activators of the persisting TBE virus. These data may be used when selecting alternative agents for therapy of secondary bacterial infections concomitant with TBE.

  2. Identification of parasitic communities within European ticks using next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Sarah Bonnet

    2014-03-01

    Full Text Available Risk assessment of tick-borne and zoonotic disease emergence necessitates sound knowledge of the particular microorganisms circulating within the communities of these major vectors. Assessment of pathogens carried by wild ticks must be performed without a priori, to allow for the detection of new or unexpected agents.We evaluated the potential of Next-Generation Sequencing techniques (NGS to produce an inventory of parasites carried by questing ticks. Sequences corresponding to parasites from two distinct genera were recovered in Ixodes ricinus ticks collected in Eastern France: Babesia spp. and Theileria spp. Four Babesia species were identified, three of which were zoonotic: B. divergens, Babesia sp. EU1 and B. microti; and one which infects cattle, B. major. This is the first time that these last two species have been identified in France. This approach also identified new sequences corresponding to as-yet unknown organisms similar to tropical Theileria species.Our findings demonstrate the capability of NGS to produce an inventory of live tick-borne parasites, which could potentially be transmitted by the ticks, and uncovers unexpected parasites in Western Europe.

  3. Borrelia miyamotoi, Other Vector-Borne Agents in Cat Blood and Ticks in Eastern Maryland.

    Science.gov (United States)

    Shannon, Avery B; Rucinsky, Renee; Gaff, Holly D; Brinkerhoff, R Jory

    2017-12-01

    We collected blood and tick samples in eastern Maryland to quantify vector-borne pathogen exposure and infection in healthy cats and to assess occupational disease risk to veterinary professionals and others who regularly interact with household pets. Thirty-six percent of healthy cats parasitized by ticks at time of examination (9/25) were exposed to, and 14% of bloods (7/49) tested PCR-positive for, at least one vector-borne pathogen including several bloods and ticks with Borrelia miyamotoi, a recently recognized tick-borne zoonotic bacterium. There was no indication that high tick burdens were associated with exposure to vector-borne pathogens. Our results underscore the potential importance of cats to human vector-borne disease risk.

  4. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment

    Directory of Open Access Journals (Sweden)

    Stephen eWikel

    2013-11-01

    Full Text Available Ticks are unique among hematophagous arthropods by continuous attachment to host skin and blood feeding for days; complexity and diversity of biologically active molecules differentially expressed in saliva of tick species; their ability to modulate the host defenses of pain and itch, hemostasis, inflammation, innate and adaptive immunity, and wound healing; and, the diverse array of infectious agents they transmit. All of these interactions occur at the cutaneous interface in a complex sequence of carefully choreographed host defense responses and tick countermeasures resulting in an environment that facilitates successful blood feeding and establishment of tick-borne infectious agents within the host. Here, we examine diverse patterns of tick attachment to host skin, blood feeding mechanisms, salivary gland transcriptomes, bioactive molecules in tick saliva, timing of pathogen transmission, and host responses to tick bite. Ticks engage and modulate cutaneous and systemic immune defenses involving keratinocytes, natural killer cells, dendritic cells, T cell subpopulations (Th1, Th2, Th17, Treg , B cells, neutrophils, mast cells, basophils, endothelial cells, cytokines, chemokines, complement, and extracellular matrix. A framework is proposed that integrates tick induced changes of skin immune effectors with their ability to respond to tick-borne pathogens. Implications of these changes are addressed. What are the consequences of tick modulation of host cutaneous defenses? Does diversity of salivary gland transcriptomes determine differential modulation of host inflammation and immune defenses and therefore, in part, the clades of pathogens effectively transmitted by different tick species? Do ticks create an immunologically modified cutaneous environment that enhances specific pathogen establishment? Can tick saliva molecules be used to develop vaccines that block pathogen transmission?

  5. Life cycle of Hepatozoon canis (Apicomplexa: Adeleorina: Hepatozoidae) in the tick Rhipicephalus sanguineus and domestic dog (Canis familiaris).

    Science.gov (United States)

    Baneth, Gad; Samish, Michael; Shkap, Varda

    2007-04-01

    The life cycle of the apicomplexan protozoon Hepatozoon canis in its natural hosts Rhipicephalus sanguineus (tick) and Canis familiaris (domestic dog) was studied in an experimental infection. Tick nymphs were fed on a naturally infected dog, or they were infected by percutaneous injection of blood. Dogs were inoculated by ingestion of adult ticks containing mature oocysts. Gamonts were in syzygy 24 hr after percutaneous injection of ticks. Early oocysts were detected 96 hr after nymph repletion, and mature oocysts in adult ticks were infective to dogs 40 days postmolt. Merogony was detected in dog bone marrow from 13 days postinoculation (PI) and included meronts containing 20-30 micromerozoites, and a second type with 2-4 macromerozoites. Monozoic cysts were observed in the spleen in conjunction with merogony. Gamontogony with infection of leukocytes by micromerozoites occurred from 26 days PI, and gamont parasitemia, which completed the life cycle, was detected 28 days PI. The length of the life cycle from nymphal attachment to parasitemia in dogs was 81 days. Increased body temperatures were evident from 16 to 27 days PI and paralleled the time of intensive bone marrow merogony. Skeletal pain and recumbency were manifested in 2 dogs. This study further elucidates the life cycle of H. canis and provides a sequential morphologic description of H. canis merogony, gamontogony, and sporogony.

  6. A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent.

    Science.gov (United States)

    Schuijt, Tim J; Coumou, Jeroen; Narasimhan, Sukanya; Dai, Jianfeng; Deponte, Kathleen; Wouters, Diana; Brouwer, Mieke; Oei, Anneke; Roelofs, Joris J T H; van Dam, Alje P; van der Poll, Tom; Van't Veer, Cornelis; Hovius, Joppe W; Fikrig, Erol

    2011-08-18

    The Lyme disease agent Borrelia burgdorferi is primarily transmitted to vertebrates by Ixodes ticks. The classical and alternative complement pathways are important in Borrelia eradication by the vertebrate host. We recently identified a tick salivary protein, designated P8, which reduced complement-mediated killing of Borrelia. We now discover that P8 interferes with the human lectin complement cascade, resulting in impaired neutrophil phagocytosis and chemotaxis and diminished Borrelia lysis. Therefore, P8 was renamed the tick salivary lectin pathway inhibitor (TSLPI). TSLPI-silenced ticks, or ticks exposed to TSLPI-immune mice, were hampered in Borrelia transmission. Moreover, Borrelia acquisition and persistence in tick midguts was impaired in ticks feeding on TSLPI-immunized, B. burgdorferi-infected mice. Together, our findings suggest an essential role for the lectin complement cascade in Borrelia eradication and demonstrate how a vector-borne pathogen co-opts a vector protein to facilitate early mammalian infection and vector colonization. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Association of Borrelia and Rickettsia spp. and bacterial loads in Ixodes ricinus ticks.

    Science.gov (United States)

    Raulf, Marie-Kristin; Jordan, Daniela; Fingerle, Volker; Strube, Christina

    2018-01-01

    In recent years, awareness of coinfections has increased as synergistic or antagonistic effects on interacting bacteria have been observed. To date, several reports on coinfections of ticks with Rickettsia and Borrelia spp. are available. However, associations are rarely described and studies are based on rather low sample sizes. In the present study, coinfections of Ixodes ricinus with these pathogens were investigated by determining their association in a meta-analysis. A total of 5079 tick samples examined for Rickettsia and Borrelia spp. via probe-based quantitative real-time PCR in previous prevalence studies or as submitted diagnostic material were included. In Borrelia-positive ticks, genospecies were determined by Reverse Line Blot. Determination of bacterial loads resulted in an increase between developmental tick stages with highest mean bacterial loads in female ticks (7.96×10 4 in Borrelia single-infected, 4.87×10 5 in Rickettsia single-infected and 3.22×10 5 in Borrelia-Rickettsia coinfected females). The determined Borrelia-Rickettsia tick coinfection rate was 12.3% (626/5079) with a significant difference to the expected coinfection rate of 9.0% (457/5079). A significant slight association as well as correlation between Borrelia and Rickettsia were determined. In addition, a significant interrelation of the bacterial load in coinfected ticks was shown. At the level of Borrelia genospecies, significant weak associations with Rickettsia spp. were detected for B. afzelii, B. garinii/bavariensis, B. valaisiana and B. lusitaniae. The positive association provides evidence for interactions between Borrelia and Rickettsia spp. in the tick vector, presumably resulting in higher bacterial replication rates in the tick vector and possibly the reservoir host. However, coinfection may impact the vector negatively as indicated by an absent increase in coinfection rates from nymphs to adults. Future studies are needed to investigate the underlying mechanisms of

  8. Reverse transcription PCR-based detection of Crimean-Congo hemorrhagic fever virus isolated from ticks of domestic ruminants in Kurdistan province of Iran.

    Science.gov (United States)

    Fakoorziba, Mohammad Reza; Golmohammadi, Parvaneh; Moradzadeh, Rahmatollah; Moemenbellah-Fard, Mohammad Djaefar; Azizi, Kourosh; Davari, Behrooz; Alipour, Hamzeh; Ahmadnia, Sara; Chinikar, Sadegh

    2012-09-01

    Crimean-Congo hemorrhagic fever (CCHF) is a potentially fatal viral vector-borne zoonosis which has a mortality rate of up to 30% without treatment in humans. CCHF virus is transmitted to humans by ticks, predominantly from the Hyalomma genus. Following the report of two confirmed and one suspected death due to CCHF virus in Kurdistan province of Iran in 2007, this study was undertaken to determine the fauna of hard ticks on domestic ruminants (cattle, sheep, and goats) and their possible infection with CCHF virus using reverse transcription PCR technique. This is the first detection of CCHF virus in ticks from the Kurdistan province of Iran. Overall, 414 ixodid ticks were collected from two districts in this province. They represented four genera from which 10 separate species were identified. The Hyalomma genus was the most abundant tick genus (70%). It was the only genus shown to be infected with the CCHF virus using RT-PCR technique. The number of ticks positive for CCHF virus was 5 out of 90 (5.6%) adult ticks. The three remaining genera (Haemaphysalis, Rhipicephalus, and Dermacentor) were all negative following molecular survey. Four of the five virally-infected ticks were from cattle mainly in the Sanandaj district. We concluded that CCHF virus is present in the Hyalomma ticks on domestic ruminants (cattle) in Kurdistan province of Iran.

  9. Investigating the Adult Ixodid Tick Populations and Their Associated Anaplasma, Ehrlichia, and Rickettsia Bacteria at a Rocky Mountain Spotted Fever Hotspot in Western Tennessee.

    Science.gov (United States)

    Trout Fryxell, Rebecca T; Hendricks, Brain M; Pompo, Kimberly; Mays, Sarah E; Paulsen, Dave J; Operario, Darwin J; Houston, Allan E

    2017-08-01

    Ehrlichiosis and rickettsiosis are two common bacterial tick-borne diseases in the southeastern United States. Ehrlichiosis is caused by ehrlichiae transmitted by Amblyomma americanum and rickettsiosis is caused by rickettsiae transmitted by Amblyomma maculatum and Dermacentor variabilis. These ticks are common and have overlapping distributions in the region. The objective of this study was to identify Anaplasma, Ehrlichia, and Rickettsia species associated with questing ticks in a Rocky Mountain spotted fever (RMSF) hotspot, and identify habitats, time periods, and collection methods for collecting questing-infected ticks. Using vegetation drags and CO 2 -baited traps, ticks were collected six times (May-September 2012) from 100 sites (upland deciduous, bottomland deciduous, grassland, and coniferous habitats) in western Tennessee. Adult collections were screened for Anaplasma and Ehrlichia (simultaneous polymerase chain reaction [PCR]) and Rickettsia using genus-specific PCRs, and resulting positive amplicons were sequenced. Anaplasma and Ehrlichia were only identified within A. americanum (Ehrlichia ewingii, Ehrlichia chaffeensis, Panola Mountain Ehrlichia, and Anaplasma odocoilei sp. nov.); more Ehrlichia-infected A. americanum were collected at the end of June regardless of habitat and collection method. Rickettsia was identified in three tick species; "Candidatus Rickettsia amblyommii" from A. americanum, R. parkeri and R. andeanae from A. maculatum, and R. montanensis ( = montana) from D. variabilis. Overall, significantly more Rickettsia-infected ticks were identified as A. americanum and A. maculatum compared to D. variabilis; more infected-ticks were collected from sites May-July and with dragging. In this study, we report in the Tennessee RMSF hotspot the following: (1) Anaplasma and Ehrlichia are only found in A. americanum, (2) each tick species has its own Rickettsia species, (3) a majority of questing-infected ticks are collected May-July, (4) A

  10. Risk of acquiring tick-borne infections in forestry workers from Lazio, Italy

    OpenAIRE

    2010-01-01

    Abstract The seroprevalence of antibodies to Borrelia burgdorferi and tick-borne encephalitis (TBE) virus was evaluated in a group of forestry rangers in the Lazio region of Italy. One hundred and forty-five forestry rangers and 282 blood donors were examined by two-tiered serological tests for B. burgdorferi and TBE virus. Information on occupation, residence, tick bites, outdoor leisure activities and other risk factors was obtained. The prevalence of IgG/IgM antibodies to B. bur...

  11. Prevalence of ticks and tick-borne pathogens: Babesia and Borrelia species in ticks infesting cats of Great Britain.

    Science.gov (United States)

    Davies, Saran; Abdullah, Swaid; Helps, Chris; Tasker, Séverine; Newbury, Hannah; Wall, Richard

    2017-09-15

    In a study of tick and tick-borne pathogen prevalence, between May and October 2016, 278 veterinary practices in Great Britain examined 1855 cats. Six-hundred and one cats were found to have attached ticks. The most frequently recorded tick species was Ixodes ricinus (57.1%), followed by Ixodes hexagonus (41.4%) and Ixodes trianguliceps (1.5%). Male cats, 4-6 years of age living in rural areas were most likely to be carrying a tick; hair length and tick treatment history had no significant association with attachment. For cats that were parasitized by ticks in large urban areas, I. hexagonus was the most frequent species recorded. Molecular analysis was possible for 541 individual tick samples, others were too damaged for analysis; Babesia spp., and Borrelia burgdorferi sensu lato were identified in 1.1% (n=6) and 1.8% (n=10) of these, respectively. Babesia spp. included Babesia vulpes sp. nov./Babesia microti-like (n=4) in I. hexagonus and Babesia venatorum (n=2) in I. ricinus. Borrelia burgdorferi s.l. species included Borrelia garinii (n=6) and Borrelia afzelii (n=4). The majority of B. burgorferi s.l. cases were found in I. ricinus, with B. afzelii in one I. hexagonus nymph. No Borrelia or Babesia spp. were present in I. trianguliceps. To determine a true prevalence for ticks on cats, practices that only submitted questionnaires from cats with ticks and practices that submitted fewer than 5 returns per week were removed; amongst those considered to have adhered strictly to the collection protocol, feline tick prevalence amongst cats that had access to the outdoors was 6.6%. These results show that ticks can be found on cats throughout Great Britain, which harbour a range of species of Babesia and B. burgdorferi s.l. and that cats, particularly in green spaces within urban areas, may form an important host for I. hexagonus, a known vector of pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Biological control of ticks

    Science.gov (United States)

    Samish, M.; Ginsberg, H.; Glazer, I.; Bowman, A.S.; Nuttall, P.

    2004-01-01

    Ticks have numerous natural enemies, but only a few species have been evaluated as tick biocontrol agents (BCAs). Some laboratory results suggest that several bacteria are pathogenic to ticks, but their mode of action and their potential value as biocontrol agents remain to be determined. The most promising entomopathogenic fungi appear to be Metarhizium anisopliae and Beauveria bassiana, strains of which are already commercially available for the control of some pests. Development of effective formulations is critical for tick management. Entomopathogenic nematodes that are pathogenic to ticks can potentially control ticks, but improved formulations and selection of novel nematode strains are needed. Parasitoid wasps of the genus Ixodiphagus do not typically control ticks under natural conditions, but inundative releases show potential value. Most predators of ticks are generalists, with a limited potential for tick management (one possible exception is oxpeckers in Africa). Biological control is likely to play a substantial role in future IPM programmes for ticks because of the diversity of taxa that show high potential as tick BCAs. Considerable research is required to select appropriate strains, develop them as BCAs, establish their effectiveness, and devise production strategies to bring them to practical use.

  13. Hepatozoon and Theileria species detected in ticks collected from mammals and snakes in Thailand.

    Science.gov (United States)

    Sumrandee, Chalao; Baimai, Visut; Trinachartvanit, Wachareeporn; Ahantarig, Arunee

    2015-04-01

    We report the detection of Hepatozoon and Theileria in 103 ticks from mammals and snakes in Thailand. By using a genus-specific 18S rRNA PCR, Hepatozoon and Theileria spp. were detected in 8% and 18%, respectively, of ticks (n=79) removed from mammals. Of the ticks removed from snakes (n=24), 96% were infected with Hepatozoon spp., but none were infected with Theileria. Phylogenetic analysis revealed that Hepatozoon spp. detected from Dermacentor astrosignatus and Dermacentor auratus ticks from Wild boar (Sus scrofa) formed a phylogenetic group with many isolates of Hepatozoon felis that were distantly related to a species group containing Hepatozoon canis and Hepatozoon americanum. In contrast, a phylogenetic analysis of the Hepatozoon sequences of snake ticks revealed that Hepatozoon spp. from Amblyomma varanense from King cobra (Ophiophagus hannah) and Amblyomma helvolum ticks from Indochinese rat snake (Ptyas korros), and Asiatic water snake (Xenochrophis piscator) are grouped with Hepatozoon spp. recently isolated from Monocellate cobras, Reticulated pythons and Burmese pythons, all of Thai origin, and with Hepatozoon sp. 774c that has been detected from a tick species obtained from Argus monitors in Australia. A phylogenetic analysis demonstrated that Theileria spp. from Rhipicephalus (Boophilus) microplus, Haemaphysalis obesa, and Haemaphysalis lagrangei ticks from Sambar deer (Cervus unicolor) cluster with the Theileria cervi isolates WU11 and 239, and Theileria sp. Iwate 141. We report for the first time a Hepatozoon species that shares genetic similarity with Hepatozoon felis found in Dermacentor astrosignatus and Dermacentor auratus ticks collected from Wild boars in Thailand. In addition, we found the presence of a Theileria cervi-like sp. which suggests the potential role of Haemaphysalis lagrangei as a Theileria vector in Thailand. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Molecular (ticks) and serological (humans) study of Crimean-Congo hemorrhagic fever virus in the Iberian Peninsula, 2013-2015.

    Science.gov (United States)

    Palomar, Ana M; Portillo, Aránzazu; Santibáñez, Sonia; García-Álvarez, Lara; Muñoz-Sanz, Agustín; Márquez, Francisco J; Romero, Lourdes; Eiros, José M; Oteo, José A

    Crimean-Congo hemorrhagic fever (CCHF) is a viral disease, mainly transmitted through tick bite, of great importance in Public Health. In Spain, Crimean-Congo hemorrhagic fever virus (CCHFV) was detected for the first time in 2010 in Hyalomma lusitanicum ticks collected from deer in Cáceres. The aim of this study was to investigate the presence of CCHFV in ticks from Cáceres, and from other Spanish areas, and to evaluate the presence of antibodies against the virus in individuals exposed to tick bites. A total of 2053 ticks (1333 Hyalomma marginatum, 680 H. lusitanicum and 40 Rhipicephalus bursa) were analyzed using molecular biology techniques (PCR) for CCHFV detection. The determination of specific IgG antibodies against CCHFV in 228 serum samples from humans with regular contact with ticks (at risk of acquiring the infection) was performed by indirect immunofluorescence assay. The CCHFV was not amplified in ticks, nor were antibodies against the virus found in the serum samples analyzed. The absence of the CCHFV in the ticks studied and the lack of antibodies against the virus in individuals exposed to tick bites would seem to suggest a low risk of acquisition of human infection by CCHFV in Spain. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  15. Human babesiosis – a little-known tick-borne disease

    Directory of Open Access Journals (Sweden)

    Patrycja Gajda

    2015-03-01

    Full Text Available Babesiosis is an infectious, tick-borne disease caused by the parasitic species of Babesia. Transmission via blood transfusion or transplacental infections are much rarer. Most cases of human babesiosis occur in the United States, whereas only single cases have been reported in Europe, including Poland. Anaemia due to erythrocyte haemolysis, which in more severe cases may result in multiple organ dysfunction syndrome and death, particularly in immunocompromised patients, is a typical sign of babesiosis. Immunocompetent patients are asymptomatic or develop mild infection accompanied by fever, osteoarticular pain and erythrocyturia. The diagnostics of babesiosis should be considered in patients with flu-like symptoms who live or are temporarily residing in endemic areas as well as in patients diagnosed with other tick-borne diseases. Final diagnosis should be based on microscopic examination of thin blood smears (Wright or Giemsa staining followed by examination under oil immersion or PCR-based amplification of the babesial genetic material. Treatment with atovaquone and azithromycin or clindamycin and quinine usually allows for a complete recovery and prevents complications. Severe cases of babesiosis require exchange transfusion. The infection is frequently combated by the immune system without the use of antibiotics in patients with mild or asymptomatic babesiosis. The prevention of babesiosis primarily involves protective measures that minimize the exposure to ticks, which are the only source of infection.

  16. [Ticks and transmission of some important diseases by ticks].

    Science.gov (United States)

    Gazyağci, Aycan Nuriye; Aydenızöz, Meral

    2010-01-01

    Ticks which are commonly found all around the world are ectoparasites which are obliged to suck blood from vertebrates such as mammals and birds during all of their periods of develeopment. They may cause toxicities and paralyses in the course of blood sucking through saliva injection and the attachment sites may become ports of entry for secondary agents. Healthy animals that are severely infested by ticks can show a decreased yield and anemia. Young and sick animals can even die. Besides this, ticks are both biological and mechanical vectors for viruses, bacteria, rickettsias, spirochaetas, protozoons and helminths. Ten percent of the ticks identified in the world are associated with 200 diseases. In this review the taxonomy and morphology of ticks, some of the important diseases they carry and the diagnosis and treatment of these diseases are mentioned.

  17. Bacteria of the genera Ehrlichia and Rickettsia in ticks of the family Ixodidae with medical importance in Argentina.

    Science.gov (United States)

    Sebastian, Patrick S; Tarragona, Evelina L; Bottero, María N Saracho; Mangold, Atilio J; Mackenstedt, Ute; Nava, Santiago

    2017-01-01

    The aim of this study was to get an overview about the occurrence of bacteria from the genus Ehrlichia and Rickettsia in ixodid ticks with medical importance in Argentina. Therefore, in 2013 and 2014, free-living ticks were collected in different provinces of northern Argentina. These ticks were determined as Amblyomma sculptum, Amblyomma neumanni, Amblyomma parvum, Amblyomma triste, Amblyomma ovale, Amblyomma tonelliae and Haemaphysalis juxtakochi. All samples were tested to determine the infection with Ehrlichia spp. and Rickettsia spp. by PCR assays. Rickettsial DNA was detected in all tested tick species, with the exception of A. tonelliae. 'Candidatus Rickettsia amblyommii', 'Candidatus Rickettsia andeanae', and Rickettsia parkeri were found in A. neumanni, A. parvum, and A. triste, respectively. Another rickettsial species, Rickettsia bellii, was found in A. sculptum, A. ovale and H. juxtakochi. None of the tested ticks showed infection with Ehrlichia. The results of the study demonstrate that Rickettsia species belonging to the spotted fever group are associated with various species of Amblyomma throughout a wide area of northern Argentina, where cases of Amblyomma ticks biting humans are common.

  18. Low prevalence of Borrelia bavariensis in Ixodes ricinus ticks in southeastern Austria.

    Science.gov (United States)

    Glatz, Martin; Muellegger, Robert R; Hizo-Teufel, Cecilia; Fingerle, Volker

    2014-10-01

    Borrelia bavariensis was recently described as a distinct genospecies among the B. burgdorferi sensu lato complex. The prevalence of B. bavariensis in Austria, a highly endemic area for tick-transmitted pathogens, is scarcely characterized. To investigate the prevalence of B. bavariensis in Ixodes ricinus ticks we reevaluated the results of a study conducted in 518 ticks from southeastern Austria collected in 2002 and 2003. The presence of B. burgdorferi s.l.-specific DNA in ticks was analyzed by a PCR for the outer surface protein A (ospA) gene. Borrelia species were differentiated by restriction fragment length polymorphism (RFLP) analysis, and samples positive for B. bavariensis were further analyzed by multilocus sequence analysis. Two of 133 (1.5%) B. burgdorferi s.l.-positive I. ricinus ticks were infected with B. bavariensis. Both specimens were coinfected with the OspA serotype 5 of B. garinii. Borrelia bavariensis is present; however, seem to be rare in I. ricinus ticks in southeastern Austria. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Host preferences support the prominent role of Hyalomma ticks in the ecology of Crimean-Congo hemorrhagic fever.

    Directory of Open Access Journals (Sweden)

    Jessica R Spengler

    2018-02-01

    Full Text Available Crimean-Congo hemorrhagic fever virus (CCHFV is a tick-borne zoonotic agent that is maintained in nature in an enzootic vertebrate-tick-vertebrate cycle. Hyalomma genus ticks have been implicated as the main CCHFV vector and are key in maintaining silent endemic foci. However, what contributes to their central role in CCHFV ecology is unclear. To assess the significance of host preferences of ticks in CCHFV ecology, we performed comparative analyses of hosts exploited by 133 species of ticks; these species represent 5 genera with reported geographical distribution over the range of CCHFV. We found that the composition of vertebrate hosts on which Hyalomma spp. feed is different than for other tick genera. Immatures of the genus Hyalomma feed preferentially on species of the orders Rodentia, Lagomorpha, and the class Aves, while adults concentrate mainly on the family Bovidae. With the exception of Aves, these hosts include the majority of the vertebrates consistently reported to be viremic upon CCHFV infection. While other tick genera also feed on these hosts, Hyalomma spp. almost completely concentrate their populations on them. Hyalomma spp. feed on less phylogenetically diverse hosts than any other tick genus, implying that this network of hosts has a low resilience. Indeed, removing the most prominent hosts quickly collapsed the network of parasitic interactions. These results support the intermittent activity of CCHFV foci: likely, populations of infected Hyalomma spp. ticks exceed the threshold of contact with humans only when these critical hosts reach adequate population density, accounting for the sporadic occurence of clinical tick-transmitted cases. Our data describe the association of vertebrate host preferences with the role of Hyalomma spp. ticks in maintaining endemic CCHFV foci, and highlight the importance of host-tick dynamics in pathogen ecology.

  20. Winter temperature affects the prevalence of ticks in an Arctic seabird.

    Directory of Open Access Journals (Sweden)

    Sébastien Descamps

    Full Text Available The Arctic is rapidly warming and host-parasite relationships may be modified by such environmental changes. Here, I showed that the average winter temperature in Svalbard, Arctic Norway, explained almost 90% of the average prevalence of ticks in an Arctic seabird, the Brünnich's guillemot Uria lomvia. An increase of 1°C in the average winter temperature at the nesting colony site was associated with a 5% increase in the number of birds infected by these ectoparasites in the subsequent breeding season. Guillemots were generally infested by only a few ticks (≤5 and I found no direct effect of tick presence on their body condition and breeding success. However, the strong effect of average winter temperature described here clearly indicates that tick-seabird relationships in the Arctic may be strongly affected by ongoing climate warming.

  1. Ticks: Geographic Distribution

    Science.gov (United States)

    ... ticks that bite humans How ticks spread disease Diseases transmitted by ticks Trends in tickborne diseases Tickborne diseases ... Emerging and Zoonotic Infectious Diseases (NCEZID) Division of Vector-Borne Diseases (DVBD) Email Recommend Tweet YouTube Instagram Listen Watch ...

  2. [Tick-borne diseases].

    Science.gov (United States)

    Tissot Dupont, H; Raoult, D

    1993-05-01

    Due to their worldwide distribution, from hottest to coldest climates, and due to their behaviour, ticks are capable of transmitting numerous human and animal bacterial viral or parasitous diseases. Depending on the disease, they play the role of biological vector or intermediate host. In France, six tick borne diseases are of epidemiologic importance. Q fever (not often tick-borne), Mediterranean Spotted Fever, Lyme disease, Turalemia (human and animal), Babesiosis and Tick-borne Viral Encephalitis.

  3. Host specialization in ticks and transmission of tick-borne diseases: a review.

    Science.gov (United States)

    McCoy, Karen D; Léger, Elsa; Dietrich, Muriel

    2013-01-01

    Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock.

  4. Borrelia burgdorferi genospecies detection by RLB hybridization in Ixodes ricinus ticks from different sites of North-Eastern Poland.

    Science.gov (United States)

    Dunaj, Justyna; Zajkowska, Joanna Maria; Kondrusik, Maciej; Gern, Lise; Rais, Oliver; Moniuszko, Anna; Pancewicz, Sławomir; Świerzbińska, Renata

    2014-01-01

    RLB (Reverse Line Blot Hybridization) is a molecular biology technique that might be used for Borrelia burgdorferi sensu lato (sl) DNA detection with genospecies specification. Among B. burgdorferi sl genospecies at least 7 are regarded as pathogenic in Europe. The aim of the study was to evaluate the frequency of different Borrelia genospecies DNA detection in Ixodes ricinus ticks in the endemic area of North-Eastern Poland by using RLB. Ixodes ricinus ticks were collected in May - June, from 6 different sites in North-Eastern Poland (Jakubin, Kolno, Grajewo, Suwałki, Siemiatycze, Białowieża) by flagging. Extracted DNA was amplified by polymerase chain reaction (PCR) targeting the intergenic spacer 5S 23S of B. burgdorferi sl. PCR products were hybridised to 15 different oligonucleotide probes for 9 different Borrelia genospecies (B. burgdorferi sl, B. burgdorferi ss, B. garinii, B. afzelii, B. valaisiana, B. lusitaniae, B. spielmanii, B. bissettii and B. relapsing fever-like spirochetes (B. myamotoi)) by RLB. Borrelia genospecies DNA was detected in 205 Ixodes ricinus ticks. Among 14 infected with Borrelia ticks, 4 were identified as B. garinii and 10 as B. afzelii. Higher numbers of infected ticks were noticed in the eastern part of the research area, where large forest complexes dominate. Nymphs appeared to be the most frequently infected tick stage, which has an epidemiological meaning in the incidence of Lyme borreliosis. The study demonstrated that RLB might be easily used in Borrelia DNA detection with genospecies-identification, and indicated the domination of B. afzelii and B. garinii in ticks from North-Eastern Poland.

  5. Bmcystatin, a cysteine proteinase inhibitor characterized from the tick Boophilus microplus

    International Nuclear Information System (INIS)

    Lima, Cassia A.; Sasaki, Sergio D.; Tanaka, Aparecida S.

    2006-01-01

    The bovine tick Rhipicephalus (Boophilus) microplus is a blood-sucking animal, which is responsible for Babesia spp and Anaplasma marginale transmission for cattle. From a B. microplus fat body cDNA library, 465 selected clones were sequenced randomly and resulted in 60 Contigs. An open reading frame (ORF) contains 98 amino acids named Bmcystatin, due to 70% amino acid identity to a classical type 1 cystatin from Ixodes scapularis tick (GenBank Accession No. DQ066227). The Bmcystatin amino acid sequence analysis showed two cysteine residues, theoretical pI of 5.92 and M r of 11kDa. Bmcystatin gene was cloned in pET 26b vector and the protein expressed using bacteria Escherichia coli BL21 SI. Recombinant Bmcystatin (rBmcystatin) purified by affinity chromatography on Ni-NTA-agarose column and ionic exchange chromatography on HiTrap Q column presented molecular mass of 11kDa, by SDS-PAGE and the N-terminal amino acid sequenced revealed unprocessed N-terminal containing part of pelB signal sequence. Purified rBmcystatin showed to be a C1 cysteine peptidase inhibitor with K i value of 0.1 and 0.6nM for human cathepsin L and VTDCE (vitellin degrading cysteine endopeptidase), respectively. The rBmcystatin expression analyzed by semi-quantitative RT-PCR confirmed the amplification of a specific DNA sequence (294bp) in the fat body and ovary cDNA preparation. On the other hand, a protein band was detected in the fat body, ovary, and the salivary gland extracts using anti-Bmcystatin antibody by Western blot. The present results suggest a possible role of Bmcystatin in the ovary, even though the gene was cloned from the fat body, which could be another site of this protein synthesis

  6. Tick fauna of Malaysian red jungle fowl (Gallus gallus) in Bangi, Malaysia.

    Science.gov (United States)

    Konto, M; Fufa, G I; Zakaria, A; Tukur, S M; Watanabe, M; Ola-Fadunsin, S D; Khan, M S; Shettima, Y M; Babjee, S M A

    2015-10-01

    The red jungle fowl is generally considered as one of the endangered Asian wild Galleopheasants due to man-made encroachment of their habitats, coupled with the effect of disease and disease causing organisms like ticks and tick-borne infections. This study aimed to determine the tick fauna of the red jungle fowl and their predilection sites based on developmental stages. A total of 33 jungle fowls were sampled for this study from Bangi area of Selangor State, Peninsular Malaysian. The birds were captured using a locally made trap made-up of loops and bites. Ticks present on their bodies were detached using fine forceps and identified morphologically under a dissecting microscope. 91% of the jungle fowls were infested with ticks, all of which belongs to the species Haemaphysalis wellingtoni. The ear region appeared to be the most common predilection site (63%) for all the developmental stages in which the larval stages are solely restricted to that region. Nymphal and adult stages were distributed on the comb, wattle, and facial region in addition to the ear region. This study was the first in its kind and showed a high prevalence of tick infestation among jungle fowls. H. wellingtoni was known to be a vector in transmission of many tick-borne pathogens. Therefore, there is the need for further investigation to identify the various pathogens associated with this tick.

  7. A tiny tick can cause a big health problem

    Directory of Open Access Journals (Sweden)

    Manuel John

    2017-01-01

    Full Text Available Ticks are tiny crawling bugs in the spider family that feed by sucking blood from animals. They are second only to mosquitoes as vectors of human disease, both infectious and toxic. Infected ticks spread over a hundred diseases, some of which are fatal if undetected. They spread the spirochete (which multiplies in the insect's gut with a subsequent bite to the next host. We describe the only reported cases of peri ocular tick bite from India that presented to us within a span of 3 days and its management. Due suspicion and magnification of the lesions revealed the ticks which otherwise masqueraded as small skin tags/moles on gross examination. The ticks were firmly latched on to the skin and careful removal prevented incarceration of the mouth parts. Rickettsial diseases that were believed to have disappeared from India are reemerging and their presence has recently been documented in at least 11 states in the country. Among vector borne diseases, the most common, Lyme disease, also known as the great mimicker, can present with rheumatoid arthritis, fibromyalgia, depression, attention deficit hyperactivity disorder, multiple sclerosis, chronic fatigue syndrome, cardiac manifestations, encephalitis, and mental illness, to name some of the many associations. Common ocular symptoms and signs include conjunctivitis, keratitis, uveitis, and retinitis. Early detection and treatment of tick borne diseases is important to prevent multi system complications that can develop later in life.

  8. Francisella tularensis: No Evidence for Transovarial Transmission in the Tularemia Tick Vectors Dermacentor reticulatus and Ixodes ricinus

    Science.gov (United States)

    Genchi, Marco; Prati, Paola; Vicari, Nadia; Manfredini, Andrea; Sacchi, Luciano; Clementi, Emanuela; Bandi, Claudio; Epis, Sara; Fabbi, Massimo

    2015-01-01

    Background Tularemia is a zoonosis caused by the Francisella tularensis, a highly infectious Gram-negative coccobacillus. Due to easy dissemination, multiple routes of infection, high environmental contamination and morbidity and mortality rates, Francisella is considered a potential bioterrorism threat and classified as a category A select agent by the CDC. Tick bites are among the most prevalent modes of transmission, and ticks have been indicated as a possible reservoir, although their reservoir competence has yet to be defined. Tick-borne transmission of F. tularensis was recognized in 1923, and transstadial transmission has been demonstrated in several tick species. Studies on transovarial transmission, however, have reported conflicting results. Objective The aim of this study was to evaluate the role of ticks as reservoirs for Francisella, assessing the transovarial transmission of F. tularensis subsp. holarctica in ticks, using experimentally-infected females of Dermacentor reticulatus and Ixodes ricinus. Results Transmission electron microscopy and fluorescence in situ hybridization showed F. tularensis within oocytes. However, cultures and bioassays of eggs and larvae were negative; in addition, microscopy techniques revealed bacterial degeneration/death in the oocytes. Conclusions These results suggest that bacterial death might occur in oocytes, preventing the transovarial transmission of Francisella. We can speculate that Francisella does not have a defined reservoir, but that rather various biological niches (e.g. ticks, rodents), that allow the bacterium to persist in the environment. Our results, suggesting that ticks are not competent for the bacterium vertical transmission, are congruent with this view. PMID:26244842

  9. Francisella tularensis: No Evidence for Transovarial Transmission in the Tularemia Tick Vectors Dermacentor reticulatus and Ixodes ricinus.

    Directory of Open Access Journals (Sweden)

    Marco Genchi

    Full Text Available Tularemia is a zoonosis caused by the Francisella tularensis, a highly infectious Gram-negative coccobacillus. Due to easy dissemination, multiple routes of infection, high environmental contamination and morbidity and mortality rates, Francisella is considered a potential bioterrorism threat and classified as a category A select agent by the CDC. Tick bites are among the most prevalent modes of transmission, and ticks have been indicated as a possible reservoir, although their reservoir competence has yet to be defined. Tick-borne transmission of F. tularensis was recognized in 1923, and transstadial transmission has been demonstrated in several tick species. Studies on transovarial transmission, however, have reported conflicting results.The aim of this study was to evaluate the role of ticks as reservoirs for Francisella, assessing the transovarial transmission of F. tularensis subsp. holarctica in ticks, using experimentally-infected females of Dermacentor reticulatus and Ixodes ricinus.Transmission electron microscopy and fluorescence in situ hybridization showed F. tularensis within oocytes. However, cultures and bioassays of eggs and larvae were negative; in addition, microscopy techniques revealed bacterial degeneration/death in the oocytes.These results suggest that bacterial death might occur in oocytes, preventing the transovarial transmission of Francisella. We can speculate that Francisella does not have a defined reservoir, but that rather various biological niches (e.g. ticks, rodents, that allow the bacterium to persist in the environment. Our results, suggesting that ticks are not competent for the bacterium vertical transmission, are congruent with this view.

  10. Molecular epidemiology of Crimean- Congo hemorrhagic fever virus genome isolated from ticks of Hamadan province of Iran

    DEFF Research Database (Denmark)

    Tahmasebi, F; Ghiasi, Seyed Mojtaba; Mostafavi, E

    2010-01-01

    BACKGROUND & OBJECTIVES: Crimean-Congo hemorrhagic fever (CCHF) virus is a tick-borne member of the genus Nairovirus, family Bunyaviridae. CCHFV has been isolated from at least 31 different tick species. The virus is transmitted through the bite of an infected tick, or by direct contact with CCHFV...... to each other. Even though they clustered in the same group with the strain circulating in Iran, they had a closer relationship to the Matin strain. INTERPRETATION & CONCLUSION: Vector control programs should be applied for reducing population density of potential tick vectors in this province. Further...

  11. Tick-borne encephalitis virus infection of cultured mouse macrophages

    Czech Academy of Sciences Publication Activity Database

    Ahantarig, A.; Růžek, Daniel; Vancová, Marie; Janowitz, A.; Šťastná, Hana; Tesařová, Martina; Grubhoffer, Libor

    2009-01-01

    Roč. 52, č. 5 (2009), s. 283-290 ISSN 0300-5526 R&D Projects: GA ČR GA524/06/1479; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518 Keywords : tick-borne encephalitis * macrophage s * electron microscopy Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.106, year: 2009

  12. Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis.

    Science.gov (United States)

    Liu, Quan; He, Biao; Huang, Si-Yang; Wei, Feng; Zhu, Xing-Quan

    2014-08-01

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging haemorrhagic fever that was first described in rural areas of China. The causative agent, SFTS virus (SFTSV), is a novel phlebovirus in the Bunyaviridae family. Since the first report in 2010, SFTS has been found in 11 provinces of China, with about 2500 reported cases, and an average case-fatality rate of 7·3%. The disease was also reported in Japan and Korea in 2012; Heartland virus, another phlebovirus genetically closely related to SFTSV, was isolated from two patients in the USA. The disease has become a substantial risk to public health, not only in China, but also in other parts of the world. The virus could undergo rapid evolution by gene mutation, reassortment, and homologous recombination in tick vectors and vertebrate reservoir hosts. No specific treatment of SFTS is available, and avoiding tick bites is an important measure to prevent the infection and transmission of SFTSV. This Review provides information on the molecular characteristics and ecology of this emerging tick-borne virus and describes the epidemiology, clinical signs, pathogenesis, diagnosis, treatment, and prevention of human infection with SFTSV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Tick-Borne Encephalitis Virus Structural Proteins Are the Primary Viral Determinants of Non-Viraemic Transmission between Ticks whereas Non-Structural Proteins Affect Cytotoxicity.

    Science.gov (United States)

    Khasnatinov, Maxim A; Tuplin, Andrew; Gritsun, Dmitri J; Slovak, Mirko; Kazimirova, Maria; Lickova, Martina; Havlikova, Sabina; Klempa, Boris; Labuda, Milan; Gould, Ernest A; Gritsun, Tamara S

    2016-01-01

    Over 50 million humans live in areas of potential exposure to tick-borne encephalitis virus (TBEV). The disease exhibits an estimated 16,000 cases recorded annually over 30 European and Asian countries. Conventionally, TBEV transmission to Ixodes spp. ticks occurs whilst feeding on viraemic animals. However, an alternative mechanism of non-viraemic transmission (NVT) between infected and uninfected ticks co-feeding on the same transmission-competent host, has also been demonstrated. Here, using laboratory-bred I. ricinus ticks, we demonstrate low and high efficiency NVT for TBEV strains Vasilchenko (Vs) and Hypr, respectively. These virus strains share high sequence similarity but are classified as two TBEV subtypes. The Vs strain is a Siberian subtype, naturally associated with I. persulcatus ticks whilst the Hypr strain is a European subtype, transmitted by I. ricinus ticks. In mammalian cell culture (porcine kidney cell line PS), Vs and Hypr induce low and high cytopathic effects (cpe), respectively. Using reverse genetics, we engineered a range of viable Vs/Hypr chimaeric strains, with substituted genes. No significant differences in replication rate were detected between wild-type and chimaeric viruses in cell culture. However, the chimaeric strain Vs[Hypr str] (Hypr structural and Vs non-structural genomic regions) demonstrated high efficiency NVT in I. ricinus whereas the counterpart Hypr[Vs str] was not transmitted by NVT, indicating that the virion structural proteins largely determine TBEV NVT transmission efficiency between ticks. In contrast, in cell culture, the extent of cpe was largely determined by the non-structural region of the TBEV genome. Chimaeras with Hypr non-structural genes were more cytotoxic for PS cells when compared with Vs genome-based chimaeras.

  14. Tick-Borne Encephalitis Virus Structural Proteins Are the Primary Viral Determinants of Non-Viraemic Transmission between Ticks whereas Non-Structural Proteins Affect Cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Maxim A Khasnatinov

    Full Text Available Over 50 million humans live in areas of potential exposure to tick-borne encephalitis virus (TBEV. The disease exhibits an estimated 16,000 cases recorded annually over 30 European and Asian countries. Conventionally, TBEV transmission to Ixodes spp. ticks occurs whilst feeding on viraemic animals. However, an alternative mechanism of non-viraemic transmission (NVT between infected and uninfected ticks co-feeding on the same transmission-competent host, has also been demonstrated. Here, using laboratory-bred I. ricinus ticks, we demonstrate low and high efficiency NVT for TBEV strains Vasilchenko (Vs and Hypr, respectively. These virus strains share high sequence similarity but are classified as two TBEV subtypes. The Vs strain is a Siberian subtype, naturally associated with I. persulcatus ticks whilst the Hypr strain is a European subtype, transmitted by I. ricinus ticks. In mammalian cell culture (porcine kidney cell line PS, Vs and Hypr induce low and high cytopathic effects (cpe, respectively. Using reverse genetics, we engineered a range of viable Vs/Hypr chimaeric strains, with substituted genes. No significant differences in replication rate were detected between wild-type and chimaeric viruses in cell culture. However, the chimaeric strain Vs[Hypr str] (Hypr structural and Vs non-structural genomic regions demonstrated high efficiency NVT in I. ricinus whereas the counterpart Hypr[Vs str] was not transmitted by NVT, indicating that the virion structural proteins largely determine TBEV NVT transmission efficiency between ticks. In contrast, in cell culture, the extent of cpe was largely determined by the non-structural region of the TBEV genome. Chimaeras with Hypr non-structural genes were more cytotoxic for PS cells when compared with Vs genome-based chimaeras.

  15. Detection of Rickettsia helvetica and Candidatus R. tarasevichiae DNA in Ixodes persulcatus ticks collected in Northeastern European Russia (Komi Republic).

    Science.gov (United States)

    Kartashov, Mikhail Yu; Glushkova, Ludmila I; Mikryukova, Tamara P; Korabelnikov, Igor V; Egorova, Yulia I; Tupota, Natalia L; Protopopova, Elena V; Konovalova, Svetlana N; Ternovoi, Vladimir A; Loktev, Valery B

    2017-06-01

    The number of tick-borne infections in the northern European regions of Russia has increased considerably in the last years. In the present study, 676 unfed adult Ixodes persulcatus ticks were collected in the Komi Republic from 2011 to 2013 to study tick-borne rickettsioses. Rickettsia spp. DNA was detected by PCR in 51 (7.6%) ticks. The nucleotide sequence analysis of gltA fragments (765bp) from 51 ticks indicated that 60.8% and 39.2% of the ticks were infected with Rickettsia helvetica and Candidatus R. tarasevichiae, respectively. The gltA fragments showed 100% identity with those of Candidatus R. tarasevichiae previously discovered in Siberia and China, whereas R. helvetica showed 99.9% sequence identity with European isolates. The ompB had 8 nucleotide substitutions, 6 of which resulted in amino acid substitutions. In the sca9 gene, 3 nucleotide substitutions were detected, and only one resulted in amino acid substitution. The smpA, ompW, and β-lactamase genes of R. helvetica also showed a high level of sequence identity. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Optimal control on hybrid ode systems with application to a tick disease model.

    Science.gov (United States)

    Ding, Wandi

    2007-10-01

    We are considering an optimal control problem for a type of hybrid system involving ordinary differential equations and a discrete time feature. One state variable has dynamics in only one season of the year and has a jump condition to obtain the initial condition for that corresponding season in the next year. The other state variable has continuous dynamics. Given a general objective functional, existence, necessary conditions and uniqueness for an optimal control are established. We apply our approach to a tick-transmitted disease model with age structure in which the tick dynamics changes seasonally while hosts have continuous dynamics. The goal is to maximize disease-free ticks and minimize infected ticks through an optimal control strategy of treatment with acaricide. Numerical examples are given to illustrate the results.

  17. Assessing bovine babesiosis in Rhipicephalus (Boophilus microplus ticks and 3 to 9-month-old cattle in the middle Magdalena region, Colombia

    Directory of Open Access Journals (Sweden)

    Sandra Ríos-Tobón

    Full Text Available Babesia sp. is a protozoan hemoparasite that affects livestock worldwide. The Colombian Middle Magdalena is an enzootic region for babesiosis, but there is no previous research providing detail on its transmission cycle. This study aims to assess some Babesia sp. infection indicators in cattle and ticks from the area, by using direct microscopic and molecular techniques to detect the infection. In the cattle, 59.9% and 3.4 % positivity values for B. bigemina and mixed infection (B. bovis + B. bigemina were found respectively. In ticks, the positivity of B. bigemina reached 79.2% and 9.4% for the mixed infection. The degree of infestation in the region was 3.2 ticks per bovine. There was positive correlation between tick control acaricide frequencies and infestation in bovines. This leads us to infer that control periodicity greater than 90 days, in stable zones, is an abiotic factor that benefits the acquisition of protective immunity in calves, the natural control of the infection and eventual disease absence. It is necessary to monitor the disease by applying new entomological and parasitological indicators showing the complexity of this phenomenon.

  18. A survey of Crimean-Congo haemorrhagic fever in livestock and ticks in Ardabil Province, Iran during 2004-2005

    DEFF Research Database (Denmark)

    Telmadarraiy, Z; Ghiasi, Seyed Mojtaba; Moradi, Maryam

    2010-01-01

    for the presence of CCHF virus genome using gel-based and real-time reverse transcriptase polymerase chain reactions (RT-PCR). The results showed CCHF infection in almost 28% of ticks collectively. Also, of 56 livestock sera, around 39% were IgG-positive. The presence of anti-CCHF virus IgG antibodies and the CCHF...... in the adjacent districts. A comprehensive study was carried out to assess the epidemiological aspects of the disease in this province. In the study area, 130 ticks were collected from randomly selected villages and classified into 9 species of hard tick and 2 species of soft tick. All ticks were analyzed...

  19. Survey on tick-borne pathogens in thoroughbred horses in the Hidaka district, Hokkaido, Japan.

    Science.gov (United States)

    Ybañez, Adrian Patalinghug; Sato, Fumio; Nambo, Yasuo; Fukui, Takashi; Masuzawa, Toshiyuki; Ohashi, Norio; Matsumoto, Kotaro; Kishimoto, Toshio; Inokuma, Hisashi

    2013-01-31

    A total of 87 Thoroughbred horses and 10 ixodid ticks from a ranch in Hidaka district, Hokkaido were tested for tick-borne diseases. Using the indirect fluorescent antibody (IFA) method, 3.4, 92.0 and 97.7% of the horses showed antibody titers of ≥ 80 against Anaplasma phagocytophilum, Rickettsia helvetica, and Borrelia garinii, respectively. This is the first report of infection with the 3 pathogens in horses in Japan. Using PCR, DNAs from the peripheral blood of all horses were found negative with any Anaplasma, Rickettsia and Borrelia spp., while those from Haemaphysalis megaspinosa ticks were found positive for Anaplasma sp. closely related to A. phagocytophilum in Japan, and A. bovis. B. japonica was also detected in an H. flava tick for the first time.

  20. Crimean-Congo Hemorrhagic Fever: Tick-Host-Virus Interactions

    Directory of Open Access Journals (Sweden)

    Anna Papa

    2017-05-01

    Full Text Available Crimean-Congo hemorrhagic fever virus (CCHFV is transmitted to humans by bite of infected ticks or by direct contact with blood or tissues of viremic patients or animals. It causes to humans a severe disease with fatality up to 30%. The current knowledge about the vector-host-CCHFV interactions is very limited due to the high-level containment required for CCHFV studies. Among ticks, Hyalomma spp. are considered the most competent virus vectors. CCHFV evades the tick immune response, and following its replication in the lining of the tick's midgut, it is disseminated by the hemolymph in the salivary glands and reproductive organs. The introduction of salivary gland secretions into the host cells is the major route via which CCHFV enters the host. Following an initial amplification at the site of inoculation, the virus is spread to the target organs. Apoptosis is induced via both intrinsic and extrinsic pathways. Genetic factors and immune status of the host may affect the release of cytokines which play a major role in disease progression and outcome. It is expected that the use of new technology of metabolomics, transcriptomics and proteomics will lead to improved understanding of CCHFV-host interactions and identify potential targets for blocking the CCHFV transmission.

  1. Babesial vector tick defensin against Babesia sp. parasites.

    Science.gov (United States)

    Tsuji, Naotoshi; Battsetseg, Badgar; Boldbaatar, Damdinsuren; Miyoshi, Takeharu; Xuan, Xuenan; Oliver, James H; Fujisaki, Kozo

    2007-07-01

    Antimicrobial peptides are major components of host innate immunity, a well-conserved, evolutionarily ancient defensive mechanism. Infectious disease-bearing vector ticks are thought to possess specific defense molecules against the transmitted pathogens that have been acquired during their evolution. We found in the tick Haemaphysalis longicornis a novel parasiticidal peptide named longicin that may have evolved from a common ancestral peptide resembling spider and scorpion toxins. H. longicornis is the primary vector for Babesia sp. parasites in Japan. Longicin also displayed bactericidal and fungicidal properties that resemble those of defensin homologues from invertebrates and vertebrates. Longicin showed a remarkable ability to inhibit the proliferation of merozoites, an erythrocyte blood stage of equine Babesia equi, by killing the parasites. Longicin was localized at the surface of the Babesia sp. parasites, as demonstrated by confocal microscopic analysis. In an in vivo experiment, longicin induced significant reduction of parasitemia in animals infected with the zoonotic and murine B. microti. Moreover, RNA interference data demonstrated that endogenous longicin is able to directly kill the canine B. gibsoni, thus indicating that it may play a role in regulating the vectorial capacity in the vector tick H. longicornis. Theoretically, longicin may serve as a model for the development of chemotherapeutic compounds against tick-borne disease organisms.

  2. Crimean–Congo Hemorrhagic Fever Virus and Borrelia burgdorferi sensu lato in Ticks from Kosovo and Albania

    OpenAIRE

    Kurtesh Sherifi; Agim Rexhepi; Kristaq Berxholi; Blerta Mehmedi; Rreze M. Gecaj; Zamira Hoxha; Anja Joachim; Georg G. Duscher

    2018-01-01

    Tick-borne diseases pose a serious threat to human health in South-Eastern Europe, including Kosovo. While Crimean–Congo hemorrhagic fever (CCHF) is a well-known emerging infection in this area, there are no accurate data on Lyme borreliosis and tick-borne encephalitis (TBE). Therefore, we sampled and tested 795 ticks. Ixodes ricinus (n = 218), Dermacentor marginatus (n = 98), and Haemaphysalis spp. (n = 24) were collected from the environment by flagging (all from Kosovo), while Hyalomma mar...

  3. Co-feeding transmission facilitates strain coexistence in Borrelia burgdorferi, the Lyme disease agent

    Directory of Open Access Journals (Sweden)

    S.L. States

    2017-06-01

    Full Text Available Coexistence of multiple tick-borne pathogens or strains is common in natural hosts and can be facilitated by resource partitioning of the host species, within-host localization, or by different transmission pathways. Most vector-borne pathogens are transmitted horizontally via systemic host infection, but transmission may occur in the absence of systemic infection between two vectors feeding in close proximity, enabling pathogens to minimize competition and escape the host immune response. In a laboratory study, we demonstrated that co-feeding transmission can occur for a rapidly-cleared strain of Borrelia burgdorferi, the Lyme disease agent, between two stages of the tick vector Ixodes scapularis while feeding on their dominant host, Peromyscus leucopus. In contrast, infections rapidly became systemic for the persistently infecting strain. In a field study, we assessed opportunities for co-feeding transmission by measuring co-occurrence of two tick stages on ears of small mammals over two years at multiple sites. Finally, in a modeling study, we assessed the importance of co-feeding on R0, the basic reproductive number. The model indicated that co-feeding increases the fitness of rapidly-cleared strains in regions with synchronous immature tick feeding. Our results are consistent with increased diversity of B. burgdorferi in areas of higher synchrony in immature feeding – such as the midwestern United States. A higher relative proportion of rapidly-cleared strains, which are less human pathogenic, would also explain lower Lyme disease incidence in this region. Finally, if co-feeding transmission also occurs on refractory hosts, it may facilitate the emergence and persistence of new pathogens with a more limited host range.

  4. Scalp eschar and neck lymphadenopathy after tick bite: an emerging syndrome with multiple causes.

    Science.gov (United States)

    Dubourg, G; Socolovschi, C; Del Giudice, P; Fournier, P E; Raoult, D

    2014-08-01

    The clinical and epidemiological features of 56 patients with scalp eschar associated with neck lymphadenopathy after a tick bite (SENLAT) syndrome were evaluated at the National French Rickettsial Center. Eschar swabs, crusts, and biopsies as well as ticks and blood samples were acquired for molecular and serological assays. SENLAT predominantly affects children (p < 0.05), followed by 40- to 70-year-olds, and it is found mostly in women (p < 0.05). The seasonal distribution has two peaks: one in the spring (55%) and one in the autumn (30%). The etiological agent was identified in 18 cases, which include Rickettsia slovaca in 13 cases with incidences of two co-infections with Rickettsia raoultii and one case caused by Rickettsia sibirica mongolitimonae. Other possible agents that were found in attached ticks were Candidatus R. rioja, Coxiella burnetii, and Borrelia burgdorferi. The tick vector was Dermacentor marginatus in almost all cases, with the exception of one case, in which Ixodes ricinus was identified as the vector. Our findings show that SENLAT is a clinical entity characterized as a local infection controlled by the immune system and is neither pathogen- nor vector-specific.

  5. First evidence of Babesia venatorum and Babesia capreoli in questing Ixodes ricinus ticks in the Czech Republic.

    Science.gov (United States)

    Venclikova, Kristyna; Mendel, Jan; Betasova, Lenka; Hubalek, Zdenek; Rudolf, Ivo

    2015-01-01

    Ixodes ricinus is the most common tick species occurring in Central Europe and it serves as a principal vector of emerging human pathogens. The aim of this study was to determine the prevalence of Babesia spp. in host-seeking I. ricinus in urban and natural habitats. PCR was applied on samples to assess prevalence of Babesia spp. in questing ixodid ticks. Sequencing was used for Babesia species determination. 1,473 I. ricinus ticks (1,294 nymphs, 99 males and 80 females) were examined for the presence of Babesia spp. at the two study sites. Minimum infection rate for Babesia spp. was found to be 0.5% (infected I. ricinus nymphs were only detected in the natural ecosystem). Two Babesia species were identified by sequencing: B. venatorum (formerly called Babesia sp. EU1) and B. capreoli. The results obtained represent the first evidence of the occurrence of B. venatorum and B. capreoli in host-seeking I. ricinus ticks in the Czech Republic.

  6. Gene-enriched draft genome of the cattle tick Rhipicephalus microplus: assembly by the hybrid Pacific Biosciences/Illumina approach enabled analysis of the highly repetitive genome.

    Science.gov (United States)

    Barrero, Roberto A; Guerrero, Felix D; Black, Michael; McCooke, John; Chapman, Brett; Schilkey, Faye; Pérez de León, Adalberto A; Miller, Robert J; Bruns, Sara; Dobry, Jason; Mikhaylenko, Galina; Stormo, Keith; Bell, Callum; Tao, Quanzhou; Bogden, Robert; Moolhuijzen, Paula M; Hunter, Adam; Bellgard, Matthew I

    2017-08-01

    The genome of the cattle tick Rhipicephalus microplus, an ectoparasite with global distribution, is estimated to be 7.1Gbp in length and consists of approximately 70% repetitive DNA. We report the draft assembly of a tick genome that utilized a hybrid sequencing and assembly approach to capture the repetitive fractions of the genome. Our hybrid approach produced an assembly consisting of 2.0Gbp represented in 195,170 scaffolds with a N50 of 60,284bp. The Rmi v2.0 assembly is 51.46% repetitive with a large fraction of unclassified repeats, short interspersed elements, long interspersed elements and long terminal repeats. We identified 38,827 putative R. microplus gene loci, of which 24,758 were protein coding genes (≥100 amino acids). OrthoMCL comparative analysis against 11 selected species including insects and vertebrates identified 10,835 and 3,423 protein coding gene loci that are unique to R. microplus or common to both R. microplus and Ixodes scapularis ticks, respectively. We identified 191 microRNA loci, of which 168 have similarity to known miRNAs and 23 represent novel miRNA families. We identified the genomic loci of several highly divergent R. microplus esterases with sequence similarity to acetylcholinesterase. Additionally we report the finding of a novel cytochrome P450 CYP41 homolog that shows similar protein folding structures to known CYP41 proteins known to be involved in acaricide resistance. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  7. Tick parasites of rodents in Romania: host preferences, community structure and geographical distribution.

    Science.gov (United States)

    Mihalca, Andrei D; Dumitrache, Mirabela O; Sándor, Attila D; Magdaş, Cristian; Oltean, Miruna; Györke, Adriana; Matei, Ioana A; Ionică, Angela; D'Amico, Gianluca; Cozma, Vasile; Gherman, Călin M

    2012-11-21

    most important within this view being Apodemus flavicollis and Microtus arvalis. The same applies for the overall prevalence of tick parasitism, with some species more commonly infected (M. arvalis, A. uralensis, A. flavicollis and M. glareolus) than others. Two rodent species (Mus musculus, Rattus norvegicus) did not harbour ticks at all. Based on our results we may assert that rodents generally can act as good indicators for assessing the distribution of certain tick species.

  8. Crimean–Congo Hemorrhagic Fever Virus and Borrelia burgdorferi sensu lato in Ticks from Kosovo and Albania

    Science.gov (United States)

    Sherifi, Kurtesh; Rexhepi, Agim; Berxholi, Kristaq; Mehmedi, Blerta; Gecaj, Rreze M.; Hoxha, Zamira; Joachim, Anja; Duscher, Georg G.

    2018-01-01

    Tick-borne diseases pose a serious threat to human health in South-Eastern Europe, including Kosovo. While Crimean–Congo hemorrhagic fever (CCHF) is a well-known emerging infection in this area, there are no accurate data on Lyme borreliosis and tick-borne encephalitis (TBE). Therefore, we sampled and tested 795 ticks. Ixodes ricinus (n = 218), Dermacentor marginatus (n = 98), and Haemaphysalis spp. (n = 24) were collected from the environment by flagging (all from Kosovo), while Hyalomma marginatum (n = 199 from Kosovo, all from Kosovo) and Rhipicephalus bursa (n = 130, 126 from Albania) could be collected only by removal from animal pasture and domestic ruminants. Ticks were collected in the years 2014/2015 and tested for viral RNA of CCHF and TBE viruses, as well as for DNA of Borrelia burgdorferi sensu lato by real-time PCR. In Kosovo, nine ticks were positive for RNA of Crimean–Congo hemorrhagic fever virus and seven for DNA of B. burgdorferi s. l. None of the ticks tested positive for TBEV. CCHF virus was detected in one H. marginatum male specimen collected while feeding on grazing cattle from the Prizren region and in eight R. bursa specimens (five females and three males collected while feeding on grazing sheep and cattle) from the Prishtina region (Kosovo). B. burgdorferi s. l. was detected in seven questing ticks (four male and one female D. marginatus, two I. ricinus one female and one male) from the Mitrovica region (Kosovo). Our study confirmed that CCHF virus is circulating in Kosovo mainly in H. marginatum and R. bursa in the central areas of the country. B. burgdorferi s. l. was found in its major European host tick, I. ricinus, but also in D. marginatus, in the north of the Kosovo. In order to prevent the spread of these diseases and better control of the tick-borne infections, an improved vector surveillance and testing of ticks for the presence of pathogens needs to be established. PMID:29560357

  9. Crimean–Congo Hemorrhagic Fever Virus and Borrelia burgdorferi sensu lato in Ticks from Kosovo and Albania

    Directory of Open Access Journals (Sweden)

    Kurtesh Sherifi

    2018-03-01

    Full Text Available Tick-borne diseases pose a serious threat to human health in South-Eastern Europe, including Kosovo. While Crimean–Congo hemorrhagic fever (CCHF is a well-known emerging infection in this area, there are no accurate data on Lyme borreliosis and tick-borne encephalitis (TBE. Therefore, we sampled and tested 795 ticks. Ixodes ricinus (n = 218, Dermacentor marginatus (n = 98, and Haemaphysalis spp. (n = 24 were collected from the environment by flagging (all from Kosovo, while Hyalomma marginatum (n = 199 from Kosovo, all from Kosovo and Rhipicephalus bursa (n = 130, 126 from Albania could be collected only by removal from animal pasture and domestic ruminants. Ticks were collected in the years 2014/2015 and tested for viral RNA of CCHF and TBE viruses, as well as for DNA of Borrelia burgdorferi sensu lato by real-time PCR. In Kosovo, nine ticks were positive for RNA of Crimean–Congo hemorrhagic fever virus and seven for DNA of B. burgdorferi s. l. None of the ticks tested positive for TBEV. CCHF virus was detected in one H. marginatum male specimen collected while feeding on grazing cattle from the Prizren region and in eight R. bursa specimens (five females and three males collected while feeding on grazing sheep and cattle from the Prishtina region (Kosovo. B. burgdorferi s. l. was detected in seven questing ticks (four male and one female D. marginatus, two I. ricinus one female and one male from the Mitrovica region (Kosovo. Our study confirmed that CCHF virus is circulating in Kosovo mainly in H. marginatum and R. bursa in the central areas of the country. B. burgdorferi s. l. was found in its major European host tick, I. ricinus, but also in D. marginatus, in the north of the Kosovo. In order to prevent the spread of these diseases and better control of the tick-borne infections, an improved vector surveillance and testing of ticks for the presence of pathogens needs to be established.

  10. Crimean-Congo Hemorrhagic Fever Virus and Borrelia burgdorferi sensu lato in Ticks from Kosovo and Albania.

    Science.gov (United States)

    Sherifi, Kurtesh; Rexhepi, Agim; Berxholi, Kristaq; Mehmedi, Blerta; Gecaj, Rreze M; Hoxha, Zamira; Joachim, Anja; Duscher, Georg G

    2018-01-01

    Tick-borne diseases pose a serious threat to human health in South-Eastern Europe, including Kosovo. While Crimean-Congo hemorrhagic fever (CCHF) is a well-known emerging infection in this area, there are no accurate data on Lyme borreliosis and tick-borne encephalitis (TBE). Therefore, we sampled and tested 795 ticks. Ixodes ricinus ( n  = 218), Dermacentor marginatus ( n  = 98), and Haemaphysalis spp. ( n  = 24) were collected from the environment by flagging (all from Kosovo), while Hyalomma marginatum ( n  = 199 from Kosovo, all from Kosovo) and Rhipicephalus bursa ( n  = 130, 126 from Albania) could be collected only by removal from animal pasture and domestic ruminants. Ticks were collected in the years 2014/2015 and tested for viral RNA of CCHF and TBE viruses, as well as for DNA of Borrelia burgdorferi sensu lato by real-time PCR. In Kosovo, nine ticks were positive for RNA of Crimean-Congo hemorrhagic fever virus and seven for DNA of B. burgdorferi s. l. None of the ticks tested positive for TBEV. CCHF virus was detected in one H. marginatum male specimen collected while feeding on grazing cattle from the Prizren region and in eight R. bursa specimens (five females and three males collected while feeding on grazing sheep and cattle) from the Prishtina region (Kosovo). B. burgdorferi s. l. was detected in seven questing ticks (four male and one female D. marginatus , two I. ricinus one female and one male) from the Mitrovica region (Kosovo). Our study confirmed that CCHF virus is circulating in Kosovo mainly in H. marginatum and R. bursa in the central areas of the country. B. burgdorferi s. l. was found in its major European host tick, I. ricinus , but also in D. marginatus , in the north of the Kosovo. In order to prevent the spread of these diseases and better control of the tick-borne infections, an improved vector surveillance and testing of ticks for the presence of pathogens needs to be established.

  11. Efficacy of granular deltamethrin against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidade) nymphs.

    Science.gov (United States)

    Schulze, T L; Jordan, R A; Hung, R W; Taylor, R C; Markowski, D; Chomsky, M S

    2001-03-01

    A single barrier application of granular deltamethrin to the woodland edges of a forested residential community in late spring significantly reduced the abundance of Ixodes scapularis Say nymphs. The application also suppressed the population of Amblyomma americanum (L.) nymphs, which recently became established in the study area. The efficacy of deltamethrin is compared with other commonly used acaricides.

  12. Study on coinfecting vector-borne pathogens in dogs and ticks in Rio Grande do Norte, Brazil

    Directory of Open Access Journals (Sweden)

    Luiz Ricardo Gonçalves

    Full Text Available Since dogs presenting several vector borne diseases can show none or nonspecific clinical signs depending on the phase of infection, the assessment of the particular agents involved is mandatory. The present study aimed to investigate the presence of Babesia spp., Ehrlichia spp., Anaplasma spp., Hepatozoon spp. and Leishmania spp. in blood samples and ticks, collected from two dogs from Rio Grande do Norte showing suggestive tick-borne disease by using molecular techniques. DNA of E. canis, H. canis and L. infantum were detected in blood samples and R. sanguineus ticks collected from dogs. Among all samples analyzed, two showed the presence of multiple infections with E. canis, H. canis and L. infantum chagasi. Here we highlighted the need for molecular differential diagnosis in dogs showing nonspecific clinical signs.

  13. Prevalence of Borrelia burgdorferi in ticks removed from skin of people and circumstances of being bitten – research from the area of Poland, 2012–2014

    Directory of Open Access Journals (Sweden)

    Edyta Gałęziowska

    2018-03-01

    Infestation of ticks infected with Lyme disease spirochete in this study proved to be variable and depend on the season, the area of tick attack and the region in Poland. The results of the study clearly show that ticks infected with Borrelia burgdorferi inhabit all regions of Poland. The results are consistent with National Institute of Hygiene data which indicates that Lyme disease cases are recorded in all regions of Poland.

  14. Detection of a novel Rickettsia sp. in soft ticks (Acari: Argasidae) in Algeria.

    Science.gov (United States)

    Lafri, Ismail; Leulmi, Hamza; Baziz-Neffah, Fadhila; Lalout, Reda; Mohamed, Chergui; Mohamed, Karakallah; Parola, Philippe; Bitam, Idir

    2015-01-01

    Argasid ticks are vectors of viral and bacterial agents that can infect humans and animals. In Africa, relapsing fever borreliae are neglected arthropod-borne pathogens that cause mild to deadly septicemia and miscarriage. It would be incredibly beneficial to be able to simultaneous detect and identify other pathogens transmitted by Argasid ticks. From 2012 to 2014, we conducted field surveys in 4 distinct areas of Algeria. We investigated the occurrence of soft ticks in rodent burrows and yellow-legged gull (Larus michahellis) nests in 10 study sites and collected 154 soft ticks. Molecular identification revealed the occurrence of two different soft tick genera and five species, including Carios capensis in yellow-legged gull nests and Ornithodoros occidentalis, Ornithodoros rupestris, Ornithodoros sonrai, Ornithodoros erraticus in rodent burrows. Rickettsial DNA was detected in 41/154, corresponding to a global detection rate of 26.6%. Sequences of the citrate synthase (gltA) gene suggest that this agent is a novel spotted fever group Rickettsia. For the first time in Algeria, we characterize a novel Rickettsia species by molecular means in soft ticks. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. An Emerging Tick-Borne Disease of Humans Is Caused by a Subset of Strains with Conserved Genome Structure

    Science.gov (United States)

    Barbet, Anthony F.; Al-Khedery, Basima; Stuen, Snorre; Granquist, Erik G.; Felsheim, Roderick F.; Munderloh, Ulrike G.

    2013-01-01

    The prevalence of tick-borne diseases is increasing worldwide. One such emerging disease is human anaplasmosis. The causative organism, Anaplasma phagocytophilum, is known to infect multiple animal species and cause human fatalities in the U.S., Europe and Asia. Although long known to infect ruminants, it is unclear why there are increasing numbers of human infections. We analyzed the genome sequences of strains infecting humans, animals and ticks from diverse geographic locations. Despite extensive variability amongst these strains, those infecting humans had conserved genome structure including the pfam01617 superfamily that encodes the major, neutralization-sensitive, surface antigen. These data provide potential targets to identify human-infective strains and have significance for understanding the selective pressures that lead to emergence of disease in new species. PMID:25437207

  16. DAMAGE OF NERVOUS SYSTEM IN TICK-BITE BORRELIOSIS (LYME DISEASE IN СHILDREN IN THE KIROV REGION

    Directory of Open Access Journals (Sweden)

    T. V. Egorova

    2017-01-01

    Full Text Available During 1993—2016 there were treated 1255 children 9 months — 14 ages old with tick-bite infections in Kirov Infectious Clinical Hospital and 1214 children from them with the verified diagnosis of Lyme disease. Damage of nervous system was detected in 98 (8.1% patients in the forms of serous meningitis, meningoencephalitis, polyneuropathies, neuropathies, disseminated encephalomyelitis, diencephalic syndrome with impaired thermal regulation. 45.9 % of cases were mixed-infection (tick-bite encephalitis and Lyme disease. 

  17. Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species

    Directory of Open Access Journals (Sweden)

    Gaasenbeek Cor

    2009-09-01

    Full Text Available Abstract Background Hard ticks have been identified as important vectors of rickettsiae causing the spotted fever syndrome. Tick-borne rickettsiae are considered to be emerging, but only limited data are available about their presence in Western Europe, their natural life cycle and their reservoir hosts. Ixodes ricinus, the most prevalent tick species, were collected and tested from different vegetation types and from potential reservoir hosts. In one biotope area, the annual and seasonal variability of rickettsiae infections of the different tick stages were determined for 9 years. Results The DNA of the human pathogen R. conorii as well as R. helvetica, R. sp. IRS and R. bellii-like were found. Unexpectedly, the DNA of the highly pathogenic R. typhi and R. prowazekii and 4 other uncharacterized Rickettsia spp. related to the typhus group were also detected in I. ricinus. The presence of R. helvetica in fleas isolated from small rodents supported our hypothesis that cross-infection can occur under natural conditions, since R. typhi/prowazekii and R. helvetica as well as their vectors share rodents as reservoir hosts. In one biotope, the infection rate with R. helvetica was ~66% for 9 years, and was comparable between larvae, nymphs, and adults. Larvae caught by flagging generally have not yet taken a blood meal from a vertebrate host. The simplest explanation for the comparable prevalence of R. helvetica between the defined tick stages is, that R. helvetica is vertically transmitted through the next generation with high efficiency. The DNA of R. helvetica was also present in whole blood from mice, deer and wild boar. Conclusion Besides R. helvetica, unexpected rickettsiae are found in I. ricinus ticks. We propose that I. ricinus is a major reservoir host for R. helvetica, and that vertebrate hosts play important roles in the further geographical dispersion of rickettsiae.

  18. Warmer weather linked to tick attack and emergence of severe rickettsioses.

    Directory of Open Access Journals (Sweden)

    Philippe Parola

    Full Text Available The impact of climate on the vector behaviour of the worldwide dog tick Rhipicephalus sanguineus is a cause of concern. This tick is a vector for life-threatening organisms including Rickettsia rickettsii, the agent of Rocky Mountain spotted fever, R. conorii, the agent of Mediterranean spotted fever, and the ubiquitous emerging pathogen R. massiliae. A focus of spotted fever was investigated in France in May 2007. Blood and tissue samples from two patients were tested. An entomological survey was organised with the study of climatic conditions. An experimental model was designed to test the affinity of Rh. sanguineus for biting humans in variable temperature conditions. Serological and/or molecular tools confirmed that one patient was infected by R. conorii, whereas the other was infected by R. massiliae. Dense populations of Rh. sanguineus were found. They were infected with new genotypes of clonal populations of either R. conorii (24/133; 18% or R. massiliae (13/133; 10%. April 2007 was the warmest since 1950, with summer-like temperatures. We show herein that the human affinity of Rh. sanguineus was increased in warmer temperatures. In addition to the originality of theses cases (ophthalmic involvements, the second reported case of R. massiliae infection, we provide evidence that this cluster of cases was related to a warming-mediated increase in the aggressiveness of Rh. sanguineus, leading to increased human attacks. From a global perspective, we predict that as a result of globalisation and warming, more pathogens transmitted by the brown dog tick may emerge in the future.

  19. Spotted fever group rickettsiae in ticks of migratory birds in Romania.

    Science.gov (United States)

    Mărcuţan, Ioan-Daniel; Kalmár, Zsuzsa; Ionică, Angela Monica; D'Amico, Gianluca; Mihalca, Andrei Daniel; Vasile, Cozma; Sándor, Attila D

    2016-05-20

    Birds are important hosts and dispersers of parasitic arthropods and vector-borne zoonotic pathogens. Particularly migratory species may carry these parasites over long distances in short time periods. Migratory hotspots present ideal conditions to get a snapshot of parasite and pathogen diversity of birds migrating between continents. The aim of this study was to investigate the presence and diversity of Rickettsia spp. in ticks collected from birds at a migratory hot-spot in the Danube Delta, Romania, eastern Europe. DNA was extracted from ticks that were collected from migratory birds in the Danube Delta during migratory seasons in 2011-2012. Two 360 bp  fragments of the 16S ribosomal RNA gene and a 381 bp  fragment Gene gltA were PCR amplified and analyzed by sequence analysis (performed at Macrogen Europe, Amsterdam, The Netherlands). Nucleotide sequences were compared to reference sequences available in the GenBank database, using Basic Local Alignment Search Tool. Four hundred ticks of four different species were found on 11 bird species. The prevalence of Rickettsia spp. infection was 14 % (56/400, CI: 11.7-29.1), with significantly more nymphs hosting rickettsial infection compared to larvae (48 vs 7; P birds migrating through eastern Europe may carry ticks infected with a high diversity of rickettsial pathogens, with four Rickettsia spp. recorded. Migratory direction was important for pathogen burden, with seasonal differences in the occurrence of individual Rickettsia species. Here we report the first individual records of different Rickettsia spp. in H. concinna (R. monacensis), I. arboricola (R. helvetica, R. massiliae) and I. redikorzevi (R. helvetica) and also the first geographical record of occurrence of R. massiliae in Romania, representing the easternmost observation on the continent.

  20. Nucleoside Inhibitors of Tick-Borne Encephalitis Virus

    Czech Academy of Sciences Publication Activity Database

    Eyer, L.; Valdés, James J.; Gil, V.A.; Nencka, Radim; Hřebabecký, Hubert; Šála, Michal; Salát, J.; Černý, Jiří; Palus, Martin; De Clercq, E.; Růžek, Daniel

    2015-01-01

    Roč. 59, č. 9 (2015), s. 5483-5493 ISSN 0066-4804 R&D Projects: GA ČR GAP502/11/2116; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 ; RVO:61388963 Keywords : tick-borne encephalitis virus * infection * molecular analyses Subject RIV: EE - Microbiology, Virology; CC - Organic Chemistry (UOCHB-X) Impact factor: 4.415, year: 2015

  1. Abundance of questing ticks and molecular evidence for pathogens in ticks in three parks of Emilia-Romagna region of Northern Italy

    Directory of Open Access Journals (Sweden)

    Sara Aureli

    2015-09-01

    Full Text Available Introduction and objective. Infectious and parasitic diseases transmitted by ticks, such as Lyme diseases, granulocytic anaplasmosis and piroplasmosis, have been frequently reported in Europe, with increasing attention to them as an emerging zoonotic problem. The presented study was performed to assess the distribution and the density of questing ticks in three regional parks of Emilia-Romagna region of Northern Italy, and to seek molecular evidence of potential human pathogens in tick populations. Materials and Methods. In the period April-October 2010, 8,139 questing ticks were collected: 6,734 larvae, 1,344 nymphs and only a few adults – 28 females and 33 males. The abundance of[i] Ixodes ricinus[/i] questing ticks was compared among different sampling sites and related to microclimate parameters. 1,544 out of 8,139 ticks were examined for the presence of pathogens: PCR was used to detect piroplasms DNA and Real time Taqman PCR for [i]Anaplasma phagocytophilum[/i] and [i]Borrelia burgdorferi[/i] s.l. Results. The predominant species was [i]I. ricinus[/i] (overall abundance 1,075.9/100 m[sup]2[/sup] ; more rarely, [i]Dermacentor marginatus[/i] (n = 37 – 0.45%, [i]Scaphixodes frontalis[/i] (n = 13 – 0.16%, [i]Hyalomma[/i] spp. (n = 6 – 0.07% and [i]Ixodes acuminatus[/i] (n = 3 – 0.04% were also found. 28 out of 324 (8.6% samples of ticks were PCR-positive for piroplasm DNA. 11 amplicons of 18S rRNA gene were identical to each other and had 100% identity with[i] Babesia[/i] EU1 ([i]Babesia venatorum[/i] using BLAST analysis. Real time Taqman PCR gave positive results for [i]A. phagocytophilum[/i] in 23 out of 292 samples (7.9%, and for [i]B. burgdorferi[/i] s.l. in 78 out of 292 samples (26.7%. [i]I. ricinu[/i]s was the only species found positive for pathogens by molecular analysis; 16 tick samples were co-infected with at least 2 pathogens. Discussion. The peak of nymph presence was in May, and the higher prevalence of pathogens

  2. Diversity of Babesia in Ixodes ricinus ticks in Poland.

    Science.gov (United States)

    Welc-Falęciak, R; Bajer, A; Paziewska-Harris, A; Baumann-Popczyk, A; Siński, E

    2012-01-01

    The aims of this study were: (1) to estimate Babesia prevalence in the most common species of tick in Poland, Ixodes ricinus, in two recreational areas (Urwitałt in the Mazury Lake District and Bielański Forest in Warsaw), and (2) to evaluate the molecular diversity of Babesia isolates in questing I. ricinus in Poland. Questing ticks were collected from vegetation in forest areas in Urwitałt near Mikołajki and in Bielański Forest (Warsaw). Purified genomic DNA was used with specific primers to amplify a fragment of the Babesia spp. 18S rRNA gene. Tick-drag indices for I. ricinus were high in both study areas, reaching somewhat higher values in Urwitałt than in Bielański Forest. The overall prevalence of Babesia spp. in examined ticks was 1.6%. In Urwitałt, two strains of B. microti were identified using rRNA sequences: the enzootic Munich strain and an isolate close to the zoonotic Jena strain. The proportion of infections due to these two strains in questing ticks reversed over a six-year period. During 3 years of study in Bielański Forest, all Babesia isolates obtained from I. ricinus were identical to Babesia sp. EU1 (B. venatorum), previously recognized as an agent of human babesiosis. This study has confirmed the presence of enzoonotic and zoonotic Babesia species/strains in the abundant human-biting tick I. ricinus in recreational areas in Poland. It has also shown that the distribution of different genotypes has changed over time, however the reasons for these fluctuations still remain to be investigated.

  3. Tick fauna of Malaysian red jungle fowl (Gallus gallus in Bangi, Malaysia

    Directory of Open Access Journals (Sweden)

    M. Konto

    2015-10-01

    Full Text Available Aim: The red jungle fowl is generally considered as one of the endangered Asian wild Galleopheasants due to manmade encroachment of their habitats, coupled with the effect of disease and disease causing organisms like ticks and tickborne infections. This study aimed to determine the tick fauna of the red jungle fowl and their predilection sites based on developmental stages. Materials and Methods: A total of 33 jungle fowls were sampled for this study from Bangi area of Selangor State, Peninsular Malaysian. The birds were captured using a locally made trap made-up of loops and bites. Ticks present on their bodies were detached using fine forceps and identified morphologically under a dissecting microscope. Results: 91% of the jungle fowls were infested with ticks, all of which belongs to the species Haemaphysalis wellingtoni. The ear region appeared to be the most common predilection site (63% for all the developmental stages in which the larval stages are solely restricted to that region. Nymphal and adult stages were distributed on the comb, wattle, and facial region in addition to the ear region. Conclusion: This study was the first in its kind and showed a high prevalence of tick infestation among jungle fowls. H. wellingtoni was known to be a vector in transmission of many tick-borne pathogens. Therefore, there is the need for further investigation to identify the various pathogens associated with this tick.

  4. Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks and assessment of entomological risk index at localities in Belgrade

    Directory of Open Access Journals (Sweden)

    Krstić Milena

    2016-01-01

    Full Text Available Background/Aim. The first case of human Lyme borreliosis (LB in Serbia was recorded in 1987. The number of reported LB cases has increased in the past decade. The aim of this study was to estimate the density of Ixodes ricinus (I. ricinus ticks, the prevalence of Borrelia burgdorferi sensu lato (B. burgdorferi in them, and entomological risk index (ERI at 19 Belgrade localities which were grouped into three categories (forests, parkforests, parks. The values of ERI were compared with the number of tick bites in humans. Methods. Ticks were collected monthly by using the flag hours method and the infection rate was determined by using dark field microscopy. The ERI value was calculated for each locality where the ticks were collected. The related data about tick bites was obtained from the patient protocol of the Institute of Epidemiology, Military Medical Academy, Belgrade. Results. The total number of collected ticks, the number of nymphs and the infection rates of the nymphs were significantly higher in forests (p < 0.05 than park-forests and parks. Statistically, the ERI value was significantly higher in forests than parks of Belgrade (χ2 = 7.78, p < 0.01. In March and July, the ERI value was also significantly higher in forests, than park-forests (p < 0.01 and parks (p < 0.01. May was the month with the highest ERI value in each ecological category (forests p < 0.05; park-forests p < 0.01; parks p < 0.001. However, the number of tick bites in humans did not correlate with ERI values. Conclusion. The obtained results indicate that the risk of tick bite and human exposure to B. burgdorferi sensu lato is present at all selected localities in Belgrade. For a more comprehensive Lyme disease risk assessment the method of entomological risk index assessment should be combined with other methods, taking into consideration all tick stages and the behaviour and habits of people who may get infected B. burgdorferi sensu lato.

  5. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission

    Directory of Open Access Journals (Sweden)

    Sarah I. Bonnet

    2017-06-01

    Full Text Available Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP, with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella, and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most Coxiella, Francisella, and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies.

  6. Genome characterization of Long Island tick rhabdovirus, a new virus identified in Amblyomma americanum ticks.

    Science.gov (United States)

    Tokarz, Rafal; Sameroff, Stephen; Leon, Maria Sanchez; Jain, Komal; Lipkin, W Ian

    2014-02-11

    Ticks are implicated as hosts to a wide range of animal and human pathogens. The full range of microbes harbored by ticks has not yet been fully explored. As part of a viral surveillance and discovery project in arthropods, we used unbiased high-throughput sequencing to examine viromes of ticks collected on Long Island, New York in 2013. We detected and sequenced the complete genome of a novel rhabdovirus originating from a pool of Amblyomma americanum ticks. This virus, which we provisionally name Long Island tick rhabdovirus, is distantly related to Moussa virus from Africa. The Long Island tick rhabdovirus may represent a novel species within family Rhabdoviridae.

  7. An attempt of rationalization of tick-borne disease prevention using a multifunctional container for Tick Twister ®

    Directory of Open Access Journals (Sweden)

    Barbara Oczko-Grzesik

    2013-12-01

    Full Text Available Ticks are reservoir and transmission vectors of many bacteria, viruses and parasites, which are pathogenic for humans. Early and correct tick removal is crucial as prevention of tick-borne diseases. The aim of the study is an attempt at rationalization of tick-borne disease prevention using a multifunctional container for Tick Twister®. In practice, it should enable people to use Tick Twister® in all circumstances contributing to the improvement of efficiency in tick-borne diseases prevention, and as a result, to a decrease in their frequency and after effects.

  8. A prevalent alpha-proteobacterium Paracoccus sp. in a population of the Cayenne ticks (Amblyomma cajennense from Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Erik Machado-Ferreira

    2012-01-01

    Full Text Available As Rocky Mountain Spotted Fever is the most common tick-borne disease in South America, the presence of Rickettsia sp. in Amblyomma ticks is a possible indication of its endemicity in certain geographic regions. In the present work, bacterial DNA sequences related to Rickettsia amblyommii genes in A. dubitatum ticks, collected in the Brazilian state of Mato Grosso, were discovered. Simultaneously, Paracoccus sp. was detected in aproximately 77% of A. cajennense specimens collected in Rio de Janeiro, Brazil. This is the first report of Paracoccus sp. infection in a specific tick population, and raises the possibility of these bacteria being maintained and/or transmitted by ticks. Whether Paracoccus sp. represents another group of pathogenic Rhodobacteraceae or simply plays a role in A. cajennense physiology, is unknown. The data also demonstrate that the rickettsial 16S rRNA specific primers used forRickettsia spp. screening can also detect Paracoccus alpha-proteobacteria infection in biological samples. Hence, a PCRRFLP strategy is presented to distinguish between these two groups of bacteria.

  9. A prevalent alpha-proteobacterium Paracoccus sp. in a population of the Cayenne ticks (Amblyomma cajennense) from Rio de Janeiro, Brazil

    Science.gov (United States)

    Machado-Ferreira, Erik; Piesman, Joseph; Zeidner, Nordin S.; Soares, Carlos A.G.

    2012-01-01

    As Rocky Mountain Spotted Fever is the most common tick-borne disease in South America, the presence of Rickettsia sp. in Amblyomma ticks is a possible indication of its endemicity in certain geographic regions. In the present work, bacterial DNA sequences related to Rickettsia amblyommii genes in A. dubitatum ticks, collected in the Brazilian state of Mato Grosso, were discovered. Simultaneously, Paracoccus sp. was detected in aproximately 77% of A. cajennense specimens collected in Rio de Janeiro, Brazil. This is the first report of Paracoccus sp. infection in a specific tick population, and raises the possibility of these bacteria being maintained and/or transmitted by ticks. Whether Paracoccus sp. represents another group of pathogenic Rhodobacteraceae or simply plays a role in A. cajennense physiology, is unknown. The data also demonstrate that the rickettsial 16S rRNA specific primers used forRickettsia spp. screening can also detect Paracoccus alpha-proteobacteria infection in biological samples. Hence, a PCR-RFLP strategy is presented to distinguish between these two groups of bacteria. PMID:23271948

  10. Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis

    Directory of Open Access Journals (Sweden)

    Chavez Adela

    2008-07-01

    Full Text Available Abstract Background Anaplasma phagocytophilum (Ap is an obligate intracellular bacterium and the agent of human granulocytic anaplasmosis, an emerging tick-borne disease. Ap alternately infects ticks and mammals and a variety of cell types within each. Understanding the biology behind such versatile cellular parasitism may be derived through the use of tiling microarrays to establish high resolution, genome-wide transcription profiles of the organism as it infects cell lines representative of its life cycle (tick; ISE6 and pathogenesis (human; HL-60 and HMEC-1. Results Detailed, host cell specific transcriptional behavior was revealed. There was extensive differential Ap gene transcription between the tick (ISE6 and the human (HL-60 and HMEC-1 cell lines, with far fewer differentially transcribed genes between the human cell lines, and all disproportionately represented by membrane or surface proteins. There were Ap genes exclusively transcribed in each cell line, apparent human- and tick-specific operons and paralogs, and anti-sense transcripts that suggest novel expression regulation processes. Seven virB2 paralogs (of the bacterial type IV secretion system showed human or tick cell dependent transcription. Previously unrecognized genes and coding sequences were identified, as were the expressed p44/msp2 (major surface proteins paralogs (of 114 total, through elevated signal produced to the unique hypervariable region of each – 2/114 in HL-60, 3/114 in HMEC-1, and none in ISE6. Conclusion Using these methods, whole genome transcription profiles can likely be generated for Ap, as well as other obligate intracellular organisms, in any host cells and for all stages of the cell infection process. Visual representation of comprehensive transcription data alongside an annotated map of the genome renders complex transcription into discernable patterns.

  11. Seasonal Activity of Ticks and their Importance in Tick-Borne Infectious Diseases in West Azerbaijan, Iran

    Directory of Open Access Journals (Sweden)

    Sh Salari Lak

    2008-12-01

    Full Text Available Background: West Azerbaijan is considered as a main region for domestic animal breeding. Due to importance of herd as a main host and ticks as a vector of relapsing fever and CCHF, a comprehensive study was undertaken in the region.Methods: Outdoor, indoor collection as well as ticks stick to the animals' body were collected and identified. The study was conducted during the whole seasons in 2004-2005.Results: During four seasons a total of 2728 ticks of two families (Ixodidae and Argasidae were collected compris­ing 7 genera of 5 hard ticks and two genera of soft ticks including Haemaphysalis, Hyalomma, Rhipicepha­lus, Boophilus and Dermacentor. The soft ticks were Ornithodoros and Argas. These 7 genera included 18 species. The main species were Haemaphysalis inermis, H. punctata, H. sulcata, H. numidiana, H. concinna, Hyalomma mar­gi­natum, Hy. anatolicum, Hy. detritum, Hy. dromedarii, Hy. asiaticum, Hy. schulzei, H. aegyptium, Rhipicephalus bursa, R. sangiuneus, Dermacentor marginatus, Boophilus annulatus, Ornithodoros lahorensis, and Argas persicus. Fre­quency of ticks during different seasons was different. A pyrethroid insecticide, cypermethrin, which is widely used for tick control was tested against soft ticks. The test method was based on WHO recommendation. At the LD50 level A. persicus needs more concentration than O. lahorensis.Conclusion: Ornithodoros and Argas are the more prevalent soft ticks in the region. Distribution and prevalence of hard ticks was varied in different seasons. Results of this study will provide a clue for vectors of tick-borne diseases in the region for local authorities for implementation of tick control.

  12. Genome characterization of Long Island tick rhabdovirus, a new virus identified in Amblyomma americanum ticks

    Science.gov (United States)

    2014-01-01

    Background Ticks are implicated as hosts to a wide range of animal and human pathogens. The full range of microbes harbored by ticks has not yet been fully explored. Methods As part of a viral surveillance and discovery project in arthropods, we used unbiased high-throughput sequencing to examine viromes of ticks collected on Long Island, New York in 2013. Results We detected and sequenced the complete genome of a novel rhabdovirus originating from a pool of Amblyomma americanum ticks. This virus, which we provisionally name Long Island tick rhabdovirus, is distantly related to Moussa virus from Africa. Conclusions The Long Island tick rhabdovirus may represent a novel species within family Rhabdoviridae. PMID:24517260

  13. Immunity against Ticks-A Review

    Directory of Open Access Journals (Sweden)

    Masood Akhtar*, Faqir Muhammad, Laeeq Akbar Lodhi, Iftikhar Hussain and M. Irfan Anwar1

    2011-01-01

    Full Text Available Tick and tick borne diseases cause many problems to man and domestic animals world wide. These problems are most closely associated with domestic animals in tropical and subtropical areas around the globe. Currently tick control depends largely on the use of different chemicals. But the development of resistance against commonly available acaricides has created problem in this regard and animal population is becoming susceptible to both the ticks and diseases they transmit, with disastrous outcomes. The ability of manipulating organisms on molecular level and recent advancement in immunological procedures has provided alternatives for tick control. The objective of this review is to update/summarize the recent advances in the development of immunity against tick infestation in animals.

  14. Hematological Changes Associated with Theileria orientalis Infection in Korean Indigenous Cattle.

    Science.gov (United States)

    Kim, Suhee; Yu, Do-Hyeon; Kang, Sung-Woo; Chae, Jeong-Byoung; Choi, Kyoung-Seong; Kim, Hyeon-Cheol; Park, Bae-Keun; Chae, Joon-Seok; Park, Jinho

    2017-10-01

    Tick-borne pathogens can cause serious problems in grazing cattle. However, little information is available on tick-mediated diseases in cattle grazing on mountains. Thus, this study aimed to understand the potential problems related to tick-borne diseases in grazing cattle through the investigation of prevalent tick-transmitted infections, and their associated hematological changes, in terms of season and grazing type in Korean indigenous cattle (=Hanwoo). Hanwoo cattle from 3 regions of the Republic of Korea (=Korea) were either maintained indoors or placed on grassy mountains from spring to fall of 2014 and 2015. Cattle that grazed in mountainous areas showed a greater prevalence of tick-borne infections with an increased Theileria orientalis infection rate (54.7%) compared to that in non-grazing cattle (16.3%) (Pcattle were significantly lower than those of non-grazing cattle throughout the season (Pcattle in mountainous areas is closely associated with an increase in T. orientalis infection (RR=3.4, Pcattle in mountainous areas of Korea are at a high risk of infection by T. orientalis, which can lead to hematological alterations. This study highlights the necessity of preventive strategies that target T. orientalis infection.

  15. Genetic diversity and molecular characterization of Babesia motasi-like in small ruminants and ixodid ticks from China.

    Science.gov (United States)

    Niu, Qingli; Liu, Zhijie; Yang, Jifei; Yu, Peifa; Pan, Yuping; Zhai, Bintao; Luo, Jianxun; Yin, Hong

    2016-07-01

    Ovine babesioses, an important tick-borne disease of sheep and goats in China, is caused by the reproduction of intraerythrocytic protozoa of the Babesia genus. Babesia motasi-like is a Babesia parasite that infects small ruminant in China, and two sub-groups of B. motasi-like can be subdivided based on differences in the rhoptry-associated-protein-1 gene. This study aimed to characterize the distribution, epidemiology and genetics of B. motasi-like in animals and ticks. A molecular investigation was carried out from 2009 to 2015 in 16 provinces in China. In total, 1081 blood samples were collected from sheep and goats originating from 27 different regions, and 778 ixodid tick samples were collected from 8 regions; the samples were tested for the presence of B. motasi-like using a specific nested PCR assay based on the rap-1b gene. The results indicated that 139 (12.9%), 91 (8.4%), 48 (4.4%) and 6 (0.7%) of the blood samples were positive for general B. motasi-like, Babesia sp. BQ1 (Lintan and Ningxian), Babesia sp. Tianzhu and Babesia sp. Hebei sub-groups, mixed infections, respectively. Among the collected 778 ixodid ticks (including Haemaphysalis longicornis, Haemaphysalis qinghaiensis, Dermacentor silvarum, Ixodes persulcatus, Rhipicephalus sanguineus and Rhipicephalus (Boophilus) microplus), the most frequently infected with Babesia were D. silvarum and I. persulcatus (35.7%), followed by H. longicornis (26.8%), H. qinghaiensis (24.8%) and R. sanguineus (9.3%). The PCR results were confirmed by DNA sequencing. The positive rates of B. motasi-like infection in ticks were found to be higher in China, compared with previous studies in other countries. B. motasi-like infections have not previously been reported in D. silvarum, I. persulcatus or R. sanguineus. The findings obtained in this study could be used for planning effective control strategies against babesiosis in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Molecular survey on zoonotic tick-borne bacteria and chlamydiae in feral pigeons (Columba livia domestica).

    Science.gov (United States)

    Ebani, Valentina Virginia; Bertelloni, Fabrizio; Mani, Paolo

    2016-04-01

    To determine the presence of zoonotic tick-borne bacteria in feral pigeons (Columba livia domestica) from urban areas. Spleen samples from 84 feral pigeons, found dead with traumatic injuries in urban areas, were examined by PCR to detect DNA of Anaplasma phagocytophilum, Bartonella spp., Borrelia burgdorferi sensu lato, Coxiella burnetii, Rickettsia spp., and Chlamydophila spp. Twenty (23.8%) pigeons were infected by tick-borne agents, in particular 2 (2.38%) animals resulted positive for Bartonella spp., 5 (5.95%) for C. burnetii, 5 (5.95%) for Rickettsia spp., 13 (15.47%) for B. burgdorferi sensu lato. All birds scored negative for A. phagocytophilum. Moreover, 17 (20.23%) pigeons were positive for Chlamydophila spp. and among them 10 (11.9%) for Chlamydophila psittaci. Mixed infections by two or three agents were detected in 8 (9.52%) animals. Feral pigeons living in urban and periurban areas are a hazard for the human health as source of several pathogens. The obtained results confirm pigeons as reservoirs of chlamydial agents and suggest that they may be involved in the epidemiology of zoonotic tick-borne infections too. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  17. Small risk of developing symptomatic tick-borne diseases following a tick bite in the Netherlands

    Directory of Open Access Journals (Sweden)

    Hofhuis Agnetha

    2011-02-01

    Full Text Available Abstract Background In The Netherlands, the incidence of Lyme borreliosis is on the rise. Besides its causative agent, Borrelia burgdorferi s.l., other potential pathogens like Rickettsia, Babesia and Ehrlichia species are present in Ixodes ricinus ticks. The risk of disease associated with these microorganisms after tick-bites remains, however, largely unclear. A prospective study was performed to investigate how many persons with tick-bites develop localized or systemic symptoms and whether these are associated with tick-borne microorganisms. Results In total, 297 Ixodes ricinus ticks were collected from 246 study participants who consulted a general practitioner on the island of Ameland for tick bites. Ticks were subjected to PCR to detect DNA of Borrelia burgdorferi s.l., Rickettsia spp., Babesia spp. or Ehrlichia/Anaplasma spp.. Sixteen percent of the collected ticks were positive for Borrelia burgdorferi s.l., 19% for Rickettsia spp., 12% for Ehrlichia/Anaplasma spp. and 10% for Babesia spp.. At least six months after the tick bite, study participants were interviewed on symptoms by means of a standard questionnaire. 14 out of 193 participants (8.3% reported reddening at the bite site and 6 participants (4.1% reported systemic symptoms. No association between symptoms and tick-borne microorganisms was found. Attachment duration ≥24 h was positively associated with reddening at the bite site and systemic symptoms. Using logistic regression techniques, reddening was positively correlated with presence of Borrelia afzelii, and having 'any symptoms' was positively associated with attachment duration. Conclusion The risk of contracting acute Lyme borreliosis, rickettsiosis, babesiosis or ehrlichiosis from a single tick bite was

  18. [Tick borne diseases].

    Science.gov (United States)

    Holzer, B R

    2005-11-01

    It is known for many years that tick-borne diseases have worldwide a high economical impact on farming industry and veterinary medicine. But only in the last twenty years the importance of such diseases were notified in human medicine by the medical community and the public with emerging of the tick borne encephalitis virus and the description of Borrelia burgdorferi. It is often forgotten that many other infectious agents as bacteria, virus, Rickettsia or protozoa can be transmitted by ticks. Such diseases are rarely diagnosed in Europe either they are overlooked and misdiagnosed or they are connected with special professional activities. The development of new regions for tourism with different out door activities (adventure trips, trekking, hunting) leads to an exposure to different tick borne diseases, which are often misdiagnosed.

  19. Molecular evidence of Rickettsia spp. in ixodid ticks and rodents in suburban, natural and rural habitats in Slovakia.

    Science.gov (United States)

    Minichová, Lenka; Hamšíková, Zuzana; Mahríková, Lenka; Slovák, Mirko; Kocianová, Elena; Kazimírová, Mária; Škultéty, Ľudovít; Štefanidesová, Katarína; Špitalská, Eva

    2017-03-24

    Natural foci of tick-borne spotted fever group (SFG) rickettsiae of public health concern have been found in Slovakia, but the role of rodents in their circulation is unclear. Ticks (Ixodes ricinus, Ixodes trianguliceps, Dermacentor marginatus, Dermacentor reticulatus, Haemaphysalis concinna and Haemaphysalis inermis) and tissues of rodents (Apodemus flavicollis, Apodemus sylvaticus, Myodes glareolus, Microtus arvalis, Microtus subterraneus and Micromys minutus) were examined for the presence of SFG rickettsiae and Coxiella burnetii by molecular methods. Suburban, natural and rural habitats were monitored to acquire information on the role of ticks and rodents in the agents' maintenance in various habitat types of Slovakia. The overall prevalence of rickettsial infection in questing I. ricinus and D. marginatus was 6.6% and 21.4%, respectively. Rickettsia helvetica, R. monacensis and non-identified rickettsial species were detected in I. ricinus, whereas R. slovaca and R. raoultii were identified in D. marginatus. Rickettsia spp.-infected I. ricinus occurred during the whole tick questing period. Rickettsia helvetica dominated (80.5%) followed by R. monacensis (6.5%). The species were present in all studied habitats. Rickettsia slovaca (66.7%) and R. raoultii (33.3%) were identified in D. marginatus from the rural habitat. Apodemus flavicollis was the most infested rodent species with I. ricinus, but My. glareolus carried the highest proportion of Rickettsia-positive I. ricinus larvae. Only 0.5% of rodents (A. flavicollis) and 5.2% of engorged I. ricinus removed from My. glareolus, A. flavicollis and M. arvalis were R. helvetica- and R. monacensis-positive. Coxiella burnetii was not detected in any of the tested samples. We hypothesize that rodents could play a role as carriers of infected ticks and contribute to the maintenance of rickettsial pathogens in natural foci. Long-term presence of SFG Rickettsia spp. was confirmed in questing ticks from different habitat

  20. HAEMATOLOGICAL IMPACT OF NATURALLY OCCURING TICK BORNE HAEMOPARASITIC INFECTIONS IN CATTLE OF WEST BENGAL, INDIA

    Directory of Open Access Journals (Sweden)

    Apurba Debbarma

    2017-12-01

    Full Text Available Haemoparasites reduces productivity and may lead to high mortality among animals. The present study was carried out to evaluate the heamotological change in cattle of different districts in West Bengal, India affected with naturally occurring tick- borne haemoparasitic diseases (TBHD. A total of 310 cattle blood samples were screened for the presence of haemoparasites from July, 2015 to June, 2016. The blood samples were examined for haemoparasites by making thin blood smear and staining with Giemsa’s stain. The result showed that108 (34.84% cattle were found positive with TBHD, out of which 22.9% were Theileria sp, 5.8% were Babesia sp., 11.93% Anaplasma sp., and 5.8% were having mixed infection, respectively. The positive samples were subjected to estimations of haematological parameters i. e. Haemoglobin concentration (Hb, packed cell volume (PCV, total erythrocyte count (TEC and Total leucocytes count (TLC using standard protocol. The haematological analysis showed statistically a significant (p<0.01 decreased levels of Hb, PCV, TEC and TLC in infected groups of cattle compared to infection free group cattle. This is probably the first systematic report in West Bengal, India. The result showed the haemoparasites have a negative impact on haematological parameters. This study may be useful in disease epidemiological map preparation, parasitic control policy preparation of the study areas.

  1. Characterization of Ixodes ricinus Fibrinogen-Related Proteins (Ixoderins Discloses Their Function in the Tick Innate Immunity

    Directory of Open Access Journals (Sweden)

    Helena Honig Mondekova

    2017-12-01

    Full Text Available Ticks are important vectors of serious human and animal disease-causing organisms, but their innate immunity can fight invading pathogens and may have the ability to reduce or block transmission to mammalian hosts. Lectins, sugar-binding proteins, can distinguish between self and non-self-oligosaccharide motifs on pathogen surfaces. Although tick hemolymph possesses strong lectin activity, and several lectins have already been isolated and characterized, little is known about the implementation of these molecules in tick immunity. Here, we have described and functionally characterized fibrinogen-related protein (FReP lectins in Ixodes ticks. We have shown that the FReP family contains at least 27 genes (ixoderins, ixo that could, based on phylogenetic and expression analyses, be divided into three groups with differing degrees of expansion. By using RNA interference-mediated gene silencing (RNAi we demonstrated that IXO-A was the main lectin in tick hemolymph. Further, we found that ixoderins were important for phagocytosis of Gram-negative bacteria and yeasts by tick hemocytes and that their expression was upregulated upon injection of microbes, wounding, or after blood feeding. However, although the tick hemocytes could swiftly phagocytose Borrelia afzelii spirochetes, their transmission and burst of infection in mice was not altered. Our results demonstrate that tick ixoderins are crucial immune proteins that work as opsonins in the tick hemolymph, targeting microbes for phagocytosis or lysis.

  2. Molecular Detection and Characterization of Zoonotic and Veterinary Pathogens in Ticks from Northeastern China

    Science.gov (United States)

    Wei, Feng; Song, Mingxin; Liu, Huanhuan; Wang, Bo; Wang, Shuchao; Wang, Zedong; Ma, Hongyu; Li, Zhongyu; Zeng, Zheng; Qian, Jun; Liu, Quan

    2016-01-01

    Tick-borne diseases are considered as emerging infectious diseases in humans and animals in China. In this study, Ixodes persulcatus (n = 1699), Haemaphysalis concinna (n = 412), Haemaphysalis longicornis (n = 390), Dermacentor nuttalli (n = 253), and Dermacentor silvarum (n = 204) ticks were collected by flagging from northeastern China, and detected for infection with Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. by using nested polymerase chain reaction assays and sequencing analysis. Anaplasma phagocytophilum was detected in all tick species, i.e., I. persulcatus (9.4%), H. longicornis (1.9%), H. concinna (6.5%), D. nuttalli (1.7%), and D. silvarum (2.3%); Anaplasma bovis was detected in H. longicornis (0.3%) and H. concinna (0.2%); Ehrlichia muris was detected in I. persulcatus (2.5%) and H. concinna (0.2%); Candidatus Neoehrlichia mikurensis was only detected in I. persulcatus (0.4%). The Ehrlichia variant (GenBank access number KU921424), closely related to Ehrlichia ewingii, was found in H. longicornis (0.8%) and H. concinna (0.2%). I. persulcatus was infected with Babesia venatorum (1.2%), Babesia microti (0.6%), and Babesia divergens (0.6%). Additionally, four Babesia sequence variants (GenBank access numbers 862303–862306) were detected in I. persulcatus, H. longicornis, and H. concinna, which belonged to the clusters formed by the parasites of dogs, sheep, and cattle (B. gibsoni, B. motasi, and B. crassa). Two Hepatozoon spp. (GenBank access numbers KX016028 and KX016029) associated with hepatozoonosis in Japanese martens were found in the collected ticks (0.1–3.1%). These findings showed the genetic variability of Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. circulating in ticks in northeastern China, highlighting the necessity for further research of these tick-associated pathogens and their role in human and animal diseases. PMID:27965644

  3. Molecular detection and characterization of zoonotic and veterinary pathogens in ticks from northeastern China

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2016-11-01

    Full Text Available Tick-borne diseases are considered as emerging infectious diseases in humans and animals in China. In this study, Ixodes persulcatus (n=1699, Haemaphysalis concinna (n=412, Haemaphysalis longicornis (n=390, Dermacentor nuttalli (n=253, and Dermacentor silvarum (n=204 ticks were collected by flagging from northeastern China, and detected for infection with Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. by using nested polymerase chain reaction assays and sequencing analysis. A. phagocytophilum was detected in all tick species, i.e., I. persulcatus (9.4%, H. longicornis (1.9%, H. concinna (6.5%, D. nuttalli (1.7%, and D. silvarum (2.3%; A. bovis was detected in H. longicornis (0.3% and H. concinna (0.2%; E. muris was detected in I. persulcatus (2.5% and H. concinna (0.2%; Candidatus Neoehrlichia mikurensis was only detected in I. persulcatus (0.4%. The Ehrlichia variant (GenBank access number KU921424, closely related to E. ewingii, was found in H. longicornis (0.8% and H. concinna (0.2%. I. persulcatus was infected with B. venatorum (1.2%, B. microti (0.6%, and B. divergens (0.6%. Additionally, four Babesia sequence variants (GenBank access numbers 862303–862306 were detected in I. persulcatus, H. longicornis, and H. concinna, which belonged to the clusters formed by the parasites of dogs, sheep and cattle (B. gibsoni, B. motasi, and B. crassa. Two Hepatozoon spp. (GenBank access numbers KX016028 and KX016029 associated with hepatozoonosis in Japanese martens were found in the collected ticks (0.1–3.1%. These findings showed the genetic variability of Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. circulating in ticks in northeastern China, highlighting the necessity for further research of these tick-associated pathogens and their role in human and animal diseases.

  4. Borrelia burgdorferi genospecies detection by RLB hybridization in Ixodes cinus ticks from different sites of North-Eastern Poland

    Directory of Open Access Journals (Sweden)

    Justyna Dunaj

    2014-06-01

    Full Text Available Introduction. RLB (Reverse Line Blot Hybridization is a molecular biology technique that might be used for [i]Borrelia burgdorferi [/i]sensu lato (sl DNA detection with genospecies specification. Among[i] B. burgdorferi[/i] sl genospecies at least 7 are regarded as pathogenic in Europe. objective. The aim of the study was to evaluate the frequency of different [i]Borrelia[/i] genospecies DNA detection in Ixodes ricinus ticks in the endemic area of North-Eastern Poland by using RLB. materials and method. Ixodes ricinus ticks were collected in May – June, from 6 different sites in North-Eastern Poland (Jakubin, Kolno, Grajewo, Suwałki, Siemiatycze, Białowieża by flagging. Extracted DNA was amplified by polymerase chain reaction (PCR targeting the intergenic spacer 5S 23S of [i]B. burgdorferi sl.[/i] PCR products were hybridised to 15 different oligonucleotide probes for 9 different [i]Borrelia [/i]genospecies ([i]B. burgdorferi sl, B. burgdorferi ss, B. garinii, B. afzelii, B. valaisiana, B. lusitaniae, B. spielmanii, B. bissettii and B. relapsing[/i] fever-like spirochetes (B. myamotoi by RLB. results. [i]Borrelia [/i]genospecies DNA was detected in 205 Ixodes ricinus ticks. Among 14 infected with [i]Borrelia[/i] ticks, 4 were identified as B. garinii and 10 as B. afzelii. Higher numbers of infected ticks were noticed in the eastern part of the research area, where large forest complexes dominate. Nymphs appeared to be the most frequently infected tick stage, which has an epidemiological meaning in the incidence of Lyme borreliosis. conclusions. The study demonstrated that RLB might be easily used in [i]Borrelia[/i] DNA detection with genospecies-identification, and indicated the domination of [i]B. afzelii and B. garinii [/i]in ticks from North-Eastern Poland.

  5. Seroprevalence of Babesia microti in Individuals with Lyme Disease.

    Science.gov (United States)

    Curcio, Sabino R; Tria, Laurel P; Gucwa, Azad L

    2016-12-01

    Babesiosis is an emerging tick-borne disease (TBD) caused by Babesia microti, an intracellular parasite of red blood cells. Currently, it is the highest ranked pathogen transmitted by blood transfusion. Most healthy individuals infected with B. microti are asymptomatic, but may be at risk for chronic infection. Similar to Lyme disease transmitted by Borrelia burgdorferi, B. microti is spread by Ixodes scapularis ticks. The rate of coinfection with these TBDs in humans is unclear as most studies have focused their prevalence in ticks or rodent reservoirs. In this study, we aimed to determine the seroprevalence of B. microti infection in individuals who tested positive for Lyme disease. Serum samples obtained from 130 subjects in New York were tested by immunofluorescence assay (IFA) for the presence of IgM and IgG antibodies against B. microti. Overall, 26.9% of the serum samples tested were positive for IgM and IgG antibodies against B. microti, suggesting exposure to TBD. Individuals who tested positive for Lyme disease as determined by two-tiered serological testing and the presence of both IgM and IgG antibodies directed against B. burgdorferi, were significantly increased for antibodies directed against B. microti (28.6%; p Lyme disease-negative control group had only 6.7% of samples seropositive for B. microti. These findings suggest the need for more extensive studies investigating infection rates with multiple TBDs in areas where they are endemic and further support for the need to implement an FDA-approved screening test for blood products to help prevent transfusion-transmitted babesiosis.

  6. Indian tick typhus presenting with gangrene: a case report from an urban slum of Delhi.

    Science.gov (United States)

    Kumar, Manish; Singh, Raghvendra; Yadav, Mukesh

    2014-01-01

    Indian Tick Typhus has been rarely reported in children from Delhi. A 10-y-old male child from Delhi presented with fever, non specific gastrointestinal symptoms, petechial rash and gangrene of all the toes. Possibility of rickettsial infection was entertained after the child failed to improve with best of the antibiotics. Sample for serology for rickettsial infection was sent and Doxycycline was started empirically. He became afebrile within 72 h of starting Doxycycline. Later, diagnosis of Indian Tick Typhus was confirmed on the basis of IgM positivity against Rickettsia conori. Possibility of rickettsial infection should be entertained in children with history of fever and skin rash, especially if the child fails to improve with a course of antibiotics and common infectious etiologies have been ruled out.

  7. Experimental infection of goats with tick-borne encephalitis virus and the possibilities to prevent virus transmission by raw goat milk.

    Science.gov (United States)

    Balogh, Zsuzsanna; Egyed, László; Ferenczi, Emőke; Bán, Enikő; Szomor, Katalin N; Takács, Mária; Berencsi, György

    2012-01-01

    The aim of this work was to study the tick-borne encephalitis virus (TBEV) infection of goats and the possibilities to prevent human milk-borne infections either by immunizing animals or the heat treatment of milk. An experiment was conducted with 20 milking goats. Ten goats (half of them immunized) were challenged with live TBEV and 10 were left uninfected. Clinical signs and body temperatures of the animals were recorded and milk samples were collected daily. The presence of viral RNA and infectious virions in milk were detected by RT-PCR and intracerebral inoculation of suckling mice, respectively. Milk samples containing infectious virions were subjected to various heat treatment conditions and retested afterwards to assess the effect on infectivity. The infected goats did not show any clinical signs or fever compared to uninfected ones. Infectious virions were detected for 8-19 days from the milk samples (genome for 3-18 days by PCR) of infected goats. Immunized goats did not shed the virus. After heat treatment of the milk, the inoculated mice survived. Goats shed the virus with their milk without showing any symptoms. Human milk-borne infections can be avoided both by immunizing goats and boiling/pasteurizing infected milk. Copyright © 2011 S. Karger AG, Basel.

  8. Molecular detection of Theileria spp. and Babesia spp. in sheep and ixodid ticks from the northeast of Iran.

    Science.gov (United States)

    Razmi, Gholamreza; Pourhosseini, Moslem; Yaghfouri, Saeed; Rashidi, Ahmad; Seidabadi, Mohsen

    2013-02-01

    Theilerioses and babesioses are important diseases in Iranian sheep. The present study was undertaken to identify and classify/specify Theileria spp. and Babesia spp. in sheep and vector ticks. Investigation was carried out from 2009 to 2011 in the Khorasan Razavi Province, Iran. In total, 302 sheep originating from 60 different flocks were clinically examined and their blood collected. In addition, from the same flocks, ixodid ticks were sampled. Stained blood smears were microscopically examined for the presence of Theileria and Babesia organisms, and a semi-nested PCR was used for subsequent molecular specification. From the ticks, salivary glands and uterus were isolated and subsequently analyzed by semi-nested PCR. Piroplasm organisms were observed in 29% of the blood smears with low parasitemia, whereas 65% of the blood samples yielded positive PCR findings. The presence of Theileria ovis (55.6%), Theileria lestoquardi, and mixed infection with Theileria spp. and Babesia ovis were detected by semi-nested PCR in 0.3%, 5.6%, and 0.99%, respectively. In total, 429 ixodid ticks were collected from different areas of the province. The most prevalent ticks were Rhipicephalus turanicus (n = 376; 87.6% of the total), followed by Hyalomma marginatum turanicum (n = 30; 7.0%), Dermacentor raskemensis (n = 12; 2.8%), Hyalomma anatolicum anatolicum (n = 7; 1.6%), Dermacentor marginatus (n = 2; 0.5%), Rhipicephalus bursa (n = 1; 0.2%), and Haemaphysalis sp. (n = 1; 0.2%). Of the positive R. turanicus samples, 5 (5.7%) were infected with T. ovis and 2 (2.9%) with T. lestoquardi. Neither Babesia ovis nor Babesia motasi infection was detected in salivary glands or uterine samples of the ticks. The results also suggest that R. turanicus could be the vector responsible for transmission of the 2 Theileria species.

  9. Detection and identification of Rickettsia species in Ixodes tick populations from Estonia.

    Science.gov (United States)

    Katargina, Olga; Geller, Julia; Ivanova, Anna; Värv, Kairi; Tefanova, Valentina; Vene, Sirkka; Lundkvist, Åke; Golovljova, Irina

    2015-09-01

    A total of 1640 ticks collected in different geographical parts of Estonia were screened for the presence of Rickettsia species DNA by real-time PCR. DNA of Rickettsia was detected in 83 out of 1640 questing ticks with an overall prevalence of 5.1%. The majority of the ticks infected by rickettsiae were Ixodes ricinus (74 of 83), while 9 of the 83 positive ticks were Ixodes persulcatus. For rickettsial species identification, a part of the citrate synthase gltA gene was sequenced. The majority of the positive samples were identified as Rickettsia helvetica (81 out of 83) and two of the samples were identified as Rickettsia monacensis and Candidatus R. tarasevichiae, respectively. Genetic characterization based on the partial gltA gene showed that the Estonian sequences within the R. helvetica, R. monacensis and Candidatus R. tarasevichiae species demonstrated 100% similarity with sequences deposited in GenBank, originating from Rickettsia species distributed over large territories from Europe to Asia. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Preventing Ticks on Your Pets

    Science.gov (United States)

    ... ticks that bite humans How ticks spread disease Diseases transmitted by ticks Trends in tickborne diseases Tickborne diseases ... Emerging and Zoonotic Infectious Diseases (NCEZID) Division of Vector-Borne Diseases (DVBD) Email Recommend Tweet YouTube Instagram Listen Watch ...

  11. Climate change, biodiversity, ticks and tick-borne diseases: The butterfly effect

    Directory of Open Access Journals (Sweden)

    Filipe Dantas-Torres

    2015-12-01

    Full Text Available We have killed wild animals for obtaining food and decimated forests for many reasons. Nowadays, we are burning fossil fuels as never before and even exploring petroleum in deep waters. The impact of these activities on our planet is now visible to the naked eye and the debate on climate change is warming up in scientific meetings and becoming a priority on the agenda of both scientists and policy decision makers. On the occasion of the Impact of Environmental Changes on Infectious Diseases (IECID meeting, held in the 2015 in Sitges, Spain, I was invited to give a keynote talk on climate change, biodiversity, ticks and tick-borne diseases. The aim of the present article is to logically extend my rationale presented on the occasion of the IECID meeting. This article is not intended to be an exhaustive review, but an essay on climate change, biodiversity, ticks and tick-borne diseases. It may be anticipated that warmer winters and extended autumn and spring seasons will continue to drive the expansion of the distribution of some tick species (e.g., Ixodes ricinus to northern latitudes and to higher altitudes. Nonetheless, further studies are advocated to improve our understanding of the complex interactions between landscape, climate, host communities (biodiversity, tick demography, pathogen diversity, human demography, human behaviour, economics, and politics, also considering all ecological processes (e.g., trophic cascades and other possible interacting effects (e.g., mutual effects of increased greenhouse gas emissions and increased deforestation rates. The multitude of variables and interacting factors involved, and their complexity and dynamism, make tick-borne transmission systems beyond (current human comprehension. That is, perhaps, the main reason for our inability to precisely predict new epidemics of vector-borne diseases in general.

  12. Preferential protection of Borrelia burgdorferi sensu stricto by a Salp15 homologue in Ixodes ricinus saliva

    NARCIS (Netherlands)

    Hovius, J. W.; Schuijt, T. J.; de Groot, K. A.; Roelofs, J. J. T. H.; Oei, G. A.; Marquart, J. A.; de Beer, R.; van 't Veer, C.; van der Poll, T.; Ramamoorthi, N.; Fikrig, E.; van Dam, A. P.

    2008-01-01

    BACKGROUND: Ixodes ticks are the main vectors for Borrelia burgdorferi sensu lato. In the United States, B. burgdorferi is the sole causative agent of Lyme borreliosis and is transmitted by Ixodes scapularis. In Europe, 3 Borrelia species-B. burgdorferi, B. garinii, and B. afzelii-are prevalent,

  13. Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus

    Directory of Open Access Journals (Sweden)

    Sojka Daniel

    2010-12-01

    Full Text Available Abstract Background Ticks are vectors of a wide variety of pathogens causing severe diseases in humans and domestic animals. Intestinal digestion of the host blood is an essential process of tick physiology and also a limiting factor for pathogen transmission since the tick gut represents the primary site for pathogen infection and proliferation. Using the model tick Ixodes ricinus, the European Lyme disease vector, we have previously demonstrated by genetic and biochemical analyses that host blood is degraded in the tick gut by a network of acidic peptidases of the aspartic and cysteine classes. Results This study reveals the digestive machinery of the I. ricinus during the course of blood-feeding on the host. The dynamic profiling of concentrations, activities and mRNA expressions of the major digestive enzymes demonstrates that the de novo synthesis of peptidases triggers the dramatic increase of the hemoglobinolytic activity along the feeding period. Overall hemoglobinolysis, as well as the activity of digestive peptidases are negligible at the early stage of feeding, but increase dramatically towards the end of the slow feeding period, reaching maxima in fully fed ticks. This finding contradicts the established opinion that blood digestion is reduced at the end of engorgement. Furthermore, we show that the digestive proteolysis is localized intracellularly throughout the whole duration of feeding. Conclusions Results suggest that the egressing proteolytic system in the early stage of feeding and digestion is a potential target for efficient impairment, most likely by blocking its components via antibodies present in the host blood. Therefore, digestive enzymes are promising candidates for development of novel 'anti-tick' vaccines capable of tick control and even transmission of tick-borne pathogens.

  14. First Report of Rickettsia Identical to R. slovaca in Colony-Originated D. variabilis in the United States: Detection, Laboratory Animal Model, and Vector Competence of Ticks.

    Science.gov (United States)

    Zemtsova, Galina E; Killmaster, Lindsay F; Montgomery, Merrill; Schumacher, Lauren; Burrows, Matt; Levin, Michael L

    2016-02-01

    Ticks of the genus Dermacentor are known vectors of rickettsial pathogens in both the Old World and New World. In North America, Dermacentor variabilis and D. andersoni are vectors of Rickettsia rickettsii, while in Europe, D. marginatus and D. reticulatus transmit R. slovaca and R. raoultii, respectively. Neither the presence of R. slovaca in the Americas nor the ability of American tick species to maintain this pathogen have been reported. Here we describe detection of Rickettsia genetically identical to R. slovaca in D. variabilis, its molecular characterization, assessment of pathogenicity to guinea pigs, and vector competence of D. variabilis ticks. Ticks from a laboratory colony of D. variabilis, established from wild ticks and maintained on naïve NZW rabbits, tested positive for spotted fever group (SFG) Rickettsia by PCR. Analysis of 17 kDa gltA, rpoB, ompA, ompB, and sca4 genes revealed 100% identity to R. slovaca sequences available in the GenBank. New Zealand white rabbits fed upon by infected ticks seroconverted to SFG Rickettsia. Guinea pigs inoculated with the Rickettsia culture or infested by the infected ticks developed antibodies to SFG Rickettsia. The intensity of clinical signs and immune response were dependent on dose and route of infection. The identified Rickettsia was detected in all life stages of D. variabilis ticks, confirming transstadial and transovarial transmission. Thirty-six percent of uninfected larvae co-fed with infected nymphs on guinea pigs were PCR-positive and able to pass rickettsia to at least 11.7% of molted nymphs. To our knowledge, this is a first report of identification of a European pathogen R. slovaca or a highly similar agent in the American dog tick, D. variabilis. Considering pathogenicity of R. slovaca in humans, further laboratory and field studies are warranted to assess the relevance of the above findings to the public health and epidemiology of SFG rickettsioses in the United States.

  15. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions.

    Science.gov (United States)

    Samish, M; Rot, A; Ment, D; Barel, S; Glazer, I; Gindin, G

    2014-12-15

    High infectivity of entomopathogenic fungi to ticks under laboratory conditions has been demonstrated in many studies. However, the few reports on their use under field conditions demonstrate large variations in their success, often with no clear explanation. The present study evaluated the factors affecting the efficacy of the fungus Metarhizium brunneum against the tick Rhipicephalus (Boophilus) annulatus. It demonstrates how environmental conditions and ground cover affect the efficiency of the fungus under field conditions. During the summer, 93% of tick females exposed to fungus-contaminated ground died within 1 week, whereas during the winter, only 62.2% died within 6 weeks. Nevertheless, the hatchability of their eggs was only 6.1% during the summer and 0.0% during winter. Covering the ground with grass, leaves or gravel improved fungal performance. Aside from killing female ticks, the fungus had a substantial effect on tick fecundity. Fungal infection reduced the proportion of female ticks laying full-size egg masses by up to 91%, and reduced egg hatchability by up to 100%. To reduce the negative effect of outdoor factors on fungal activity, its conidia were mixed with different oils (olive, canola, mineral or paraffin at 10% v/v) and evaluated in both laboratory and field tests for efficacy. All tested oils without conidia sprayed on the sand did not influence tick survival or weight of the laid eggs but significantly reduced egghatchability. Conidia in water with canola or mineral oil spread on agarose and incubated for 18 h showed 57% and 0% germination, respectively. Comparing, under laboratory conditions, the effects of adding each of the four oils to conidia in water on ticks demonstrated no effect on female mortality or weight of the laid egg mass, but the percentage of hatched eggs was reduced. In outdoor trials, female ticks placed on the ground sprayed with conidia in water yielded an average of 175 larvae per female and there was no hatching of

  16. Tick-borne diseases in North Carolina: is "Rickettsia amblyommii" a possible cause of rickettsiosis reported as Rocky Mountain spotted fever?

    Science.gov (United States)

    Apperson, Charles S; Engber, Barry; Nicholson, William L; Mead, Daniel G; Engel, Jeffrey; Yabsley, Michael J; Dail, Kathy; Johnson, Joey; Watson, D Wesley

    2008-10-01

    Cases of Rocky Mountain spotted fever (RMSF) in North Carolina have escalated markedly since 2000. In 2005, we identified a county in the Piedmont region with high case numbers of RMSF. We collected ticks and examined them for bacterial pathogens using molecular methods to determine if a novel tick vector or spotted fever group rickettsiae (SFGR) might be emerging. Amblyomma americanum, the lone star tick, comprised 99.6% of 6,502 specimens collected in suburban landscapes. In contrast, Dermacentor variabilis, the American dog tick, a principal vector of Rickettsia rickettsii, comprised < 1% of the ticks collected. Eleven of 25 lone star tick pools tested were infected with "Rickettsia amblyommii," an informally named SFGR. Sera from patients from the same county who were presumptively diagnosed by local physicians with a tick-borne illness were tested by an indirect immunofluorescence antibody (IFA) assay to confirm clinical diagnoses. Three of six patients classified as probable RMSF cases demonstrated a fourfold or greater rise in IgG class antibody titers between paired acute and convalescent sera to "R. amblyommii" antigens, but not to R. rickettsii antigens. White-tailed deer, Odocoileus virginianus, are preferred hosts of lone star ticks. Blood samples collected from hunter-killed deer from the same county were tested by IFA test for antibodies to Ehrlichia chaffeensis and "R. amblyommii." Twenty-eight (87%) of 32 deer were positive for antibodies to E. chaffeensis, but only 1 (3%) of the deer exhibited antibodies to "R. amblyommii," suggesting that deer are not the source of "R. amblyommii" infection for lone star ticks. We propose that some cases of rickettsiosis reported as RMSF may have been caused by "R. amblyommii" transmitted through the bite of A. americanum.

  17. Identification and molecular characterization of spotted fever group rickettsiae in ticks collected from farm ruminants in Lebanon.

    Science.gov (United States)

    Fernández de Mera, Isabel G; Blanda, Valeria; Torina, Alessandra; Dabaja, Mayssaa Fawaz; El Romeh, Ali; Cabezas-Cruz, Alejandro; de la Fuente, José

    2018-01-01

    Tick-borne diseases have become a world health concern, emerging with increasing incidence in recent decades. Spotted fever group (SFG) rickettsiae are tick-borne pathogens recognized as important agents of human tick-borne diseases worldwide. In this study, 88 adult ticks from the species Hyalomma anatolicum, Rhipicephalus annulatus, Rh. bursa, Rh. sanguineus sensu lato, and Rh. turanicus, were collected from farm ruminants in Lebanon, and SFG rickettsiae were molecularly identified and characterized in these ticks. The screening showed a prevalence of 68% for Rickettsia spp., including the species R. aeschlimannii, R. africae, R. massiliae and Candidatus R. barbariae, the latter considered an emerging member of the SFG rickettsiae. These findings contribute to a better knowledge of the distribution of these pathogens and demonstrate that SFG rickettsiae with public health relevance are found in ticks collected in Lebanon, where the widespread distribution of tick vectors and possible livestock animal hosts in contact with humans may favor transmission to humans. Few reports exist for some of the tick species identified here as being infected with SFG Rickettsia. Some of these tick species are proven vectors of the hosted rickettsiae, although this information is unknown for other of these species. Therefore, these results suggested further investigation on the vector competence of the tick species with unknown role in transmission of some of the pathogens identified in this study. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Tick-Borne Diseases in Turkey: A Review Based on One Health Perspective.

    Directory of Open Access Journals (Sweden)

    Abdullah Inci

    2016-12-01

    Full Text Available The importance of tick-borne diseases is increasing all over the world, including Turkey. Global warming, environmental and ecological changes and the existence of suitable habitats increase the impact of ticks and result in frequent emergence or re-emergence of tick-borne diseases (TBDs with zoonotic characteristics. In Turkey, almost 19 TBDs have been reported in animals and men, involving four protozoa (babesiosis, theileriosis, cytauxzoonosis, hepatozoonosis, one filarial nematode (acanthocheilonemasis, ten bacterial agents (anaplasmosis, ehrlichiosis, aegyptianellosis, tick-borne typhus, Candidatus Rickettsia vini, Lyme borreliosis, tick-borne relapsing fever [TBRF], tularaemia, bartonellosis, and hemoplasmosis, and four viral infections (tick-borne encephalitis [TBE], Crimean-Congo Haemorrhagic Fever [CCHF], louping-ill [LI], and lumpy skin disease [LSD]. The growing number of TBD cases, in particular the fatal viral epidemics in humans, have led to increased public awareness and concern against TBDs in recent years. The World Health Organization (WHO has developed a new political concept, called the "One Health" initiative, which is especially relevant for developing strategies against tick infestations and TBD control in humans and animals. It would be beneficial for Turkey to adopt this new strategy and establish specific research and control programs in coordination with international organizations like WHO, the World Organization for Animal Health (OIE, the Food and Agriculture Organization (FAO, the Centers for Disease Control and Prevention (CDC, and the European Center for Disease Prevention and Control (ECDC to combat TBDs based on the "One Health Initiative" concept. In this article, we review the occurrence of primary TBDs in man and animals in Turkey in light of the "One Health" perspective.

  19. Molecular Characterization and Phylogenetic Analysis of Anaplasma spp. and Ehrlichia spp. Isolated from Various Ticks in Southeastern and Northwestern Regions of Iran.

    Science.gov (United States)

    Jafar Bekloo, Ahmad; Ramzgouyan, Maryam Roya; Shirian, Sadegh; Faghihi, Faezeh; Bakhshi, Hassan; Naseri, Fatemeh; Sedaghat, Mehdi; Telmadarraiy, Zakkyeh

    2018-05-01

    Anaplasma/Ehrlichia species are tick-transmitted pathogens that cause infections in humans and numerous domestic and wild animal species. There is no information available on the molecular characteristics and phylogenetic position of Anaplasma/Ehrlichia spp. isolated from tick species from different geographic locations in Iran. The aim of this study was to determine the prevalence, molecular characteristics, and phylogenetic relationship of both Anaplasma spp. and Ehrlichia spp. in tick species isolated from different domestic animals from two different geographical locations of Iran. A total of 930 ticks were collected from 93 cattle, 250 sheep, and 587 goats inhabiting the study areas. The collected ticks were then investigated for the presence of Anaplasma/Ehrlichia spp. using nested PCR based on the 16S rRNA gene, followed by sequencing. Sequence analysis was done based on the data published in the GenBank on Anaplasma/Ehrlichia spp. isolates using bioinformatic tools such as the standard nucleotide BLAST. Genome of Anaplasma or Ehrlichia spp. was detected in 14 ticks collected in Heris, including 5 Dermacentor marginatus, 1 Haemaphysalis erinacei, 3 Hyalomma anatolicum, and 4 Rhipicephalus sanguineus, also in 29 ticks collected in Chabahar, including 14 R. sanguineus, 8 D. marginatus, 3 Hyalomma Anatolicum, and 4 Hyalomma dromedarii. Partial analysis of the 16S rRNA gene sequence of positive samples collected from goats and sheep showed that they were infected with Anaplasma/Ehrlichia spp. that were 94-98% identical to ovine Anaplasma and 91-96% identical to Neoehrlichia and Ehrlichia spp. The various ticks identified in this study suggest the possible emergence of tick-borne diseases in animals and humans in these regions. R. sanguineus and D. marginatus seem to be predominant vectors responsible for anaplasmosis in these regions. Partial sequence analysis of the 16S rRNA gene showed that A. ovis is genetically polymorphic in these regions. Furthermore, an

  20. Tick-borne encephalitis virus infects human brain microvascular endothelial cells without compromising blood-brain barrier integrity

    Czech Academy of Sciences Publication Activity Database

    Palus, Martin; Vancová, Marie; Širmarová, J.; Elsterová, Jana; Perner, Jan; Růžek, Daniel

    2017-01-01

    Roč. 507, JUL (2017), s. 110-122 ISSN 0042-6822 R&D Projects: GA MZd(CZ) NV16-34238A; GA MŠk(CZ) LM2015062; GA TA ČR(CZ) TE01020118 Institutional support: RVO:60077344 Keywords : tick-borne encephalitis * tick-borne encephalitis virus * blood- brain barrier * neuroinfection Subject RIV: EE - Microbiology, Virology OBOR OECD: Virology Impact factor: 3.353, year: 2016

  1. Travel and disease vector ticks.

    Science.gov (United States)

    McGarry, John W

    2011-03-01

    There are approximately twenty species of hard (ixodid) ticks worldwide that frequently affect human populations, many of which are associated with serious, sometimes fatal disease(s). When a tick travel souvenir is presented in the clinic, the risk must be immediately assessed by identifying the tick in question, ascertaining its disease vector status and determining if there has been the opportunity for the transfer of potential pathogens. This short review on identification of disease vector ticks and aspects of blood feeding and disease transmission includes the results of an examination of 59 specimens removed from UK domestic travellers and international travellers between 2002 and 2010. Sixteen tick species belonging to six genera were recorded and almost all showed evidence of blood feeding, which appears to contradict the view that because of their size, adult ticks are found early and therefore present an insignificant risk. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Francisella-Like Endosymbionts and Rickettsia Species in Local and Imported Hyalomma Ticks.

    Science.gov (United States)

    Azagi, Tal; Klement, Eyal; Perlman, Gidon; Lustig, Yaniv; Mumcuoglu, Kosta Y; Apanaskevich, Dmitry A; Gottlieb, Yuval

    2017-09-15

    Hyalomma ticks (Acari: Ixodidae) are hosts for Francisella -like endosymbionts (FLE) and may serve as vectors of zoonotic disease agents. This study aimed to provide an initial characterization of the interaction between Hyalomma and FLE and to determine the prevalence of pathogenic Rickettsia in these ticks. Hyalomma marginatum , Hyalomma rufipes , Hyalomma dromedarii , Hyalomma aegyptium , and Hyalomma excavatum ticks, identified morphologically and molecularly, were collected from different hosts and locations representing the distribution of the genus Hyalomma in Israel, as well as from migratory birds. A high prevalence of FLE was found in all Hyalomma species (90.6%), as well as efficient maternal transmission of FLE (91.8%), and the localization of FLE in Malpighian tubules, ovaries, and salivary glands in H. marginatum Furthermore, we demonstrated strong cophylogeny between FLE and their host species. Contrary to FLE, the prevalence of Rickettsia ranged from 2.4% to 81.3% and was significantly different between Hyalomma species, with a higher prevalence in ticks collected from migratory birds. Using ompA gene sequences, most of the Rickettsia spp. were similar to Rickettsia aeschlimannii , while a few were similar to Rickettsia africae of the spotted fever group (SFG). Given their zoonotic importance, 249 ticks were tested for Crimean Congo hemorrhagic fever virus infection, and all were negative. The results imply that Hyalomma and FLE have obligatory symbiotic interactions, indicating a potential SFG Rickettsia zoonosis risk. A further understanding of the possible influence of FLE on Hyalomma development, as well as on its infection with Rickettsia pathogens, may lead to novel ways to control tick-borne zoonoses. IMPORTANCE This study shows that Francisella -like endosymbionts were ubiquitous in Hyalomma , were maternally transmitted, and cospeciated with their hosts. These findings imply that the interaction between FLE and Hyalomma is of an obligatory

  3. First phylogenetic analysis of Ehrlichia canis in dogs and ticks from Mexico. Preliminary study

    Directory of Open Access Journals (Sweden)

    Carolina G. Sosa-Gutiérrez

    2016-09-01

    Full Text Available Objective. Phylogenetic characterization of Ehrlichia canis in dogs naturally infected and ticks, diagnosed by PCR and sequencing of 16SrRNA gene; compare different isolates found in American countries. Materials and methods. Were collected Blood samples from 139 dogs with suggestive clinical manifestations of this disease and they were infested with ticks; part of 16SrRNA gene was sequenced and aligned, with 17 sequences reported in American countries. Two phylogenetic trees were constructed using the Maximum likelihood method, and Maximum parsimony. Results. They were positive to E. canis 25/139 (18.0% dogs and 29/139 (20.9% ticks. The clinical manifestations presented were fever, fatigue, depression and vomiting. Rhipicephalus sanguineus Dermacentor variabilis and Haemaphysalis leporis-palustris ticks were positive for E. canis. Phylogenetic analysis showed that the sequences of dogs and ticks in Mexico form a third group diverging of sequences from South America and USA. Conclusions. This is the first phylogenetic analysis of E. canis in Mexico. There are differences in the sequences of Mexico with those reported in South America and USA. This research lays the foundation for further study of genetic variability.

  4. Tick saliva suppresses IFN signalling in dendritic cells upon Borrelia afzelii infection

    Czech Academy of Sciences Publication Activity Database

    Lieskovská, Jaroslava; Kopecký, Jan

    2012-01-01

    Roč. 34, č. 1 (2012), s. 32-39 ISSN 0141-9838 R&D Projects: GA MŠk(CZ) LC06009 Institutional support: RVO:60077344 Keywords : Borrelia * dendritic cells * interferon signalling * tick saliva Subject RIV: EC - Immunology Impact factor: 2.208, year: 2012

  5. Tick infestation: a 200-patients' series | Guven | African Journal of ...

    African Journals Online (AJOL)

    Conclusions: Although non-of the patients of our study has been diagnosed with Crimean-Congo hemorrhagic fever we informed all of them for the incubation period and call for observation during the time. Tick borne infections may present with vary of symptoms, the most sever of which is hemorrhagic diathesis and ...

  6. Absence of zoonotic Bartonella species in questing ticks: First detection of Bartonella clarridgeiae and Rickettsia felis in cat fleas in the Netherlands

    NARCIS (Netherlands)

    Tijsse-Klasen, E.; Fonville, M.; Gassner, F.; Nijhof, A.M.; Hovius, E.K.E.; Jongejan, F.; Takken, W.; Reimerink, J.R.; Overgaauw, P.A.M.; Sprong, H.

    2011-01-01

    Background: Awareness for flea-and tick-borne infections has grown in recent years and the range of microorganisms associated with these ectoparasites is rising. Bartonella henselae, the causative agent of Cat Scratch Disease, and other Bartonella species have been reported in fleas and ticks. The

  7. Absence of zoonotic Bartonella species in questing ticks: First detection of Bartonella clarridgeiae and Rickettsia felis in cat fleas in the Netherlands

    NARCIS (Netherlands)

    Tijsse-Klasen, E.; Fonville, M.; Gassner, F.; Nijhof, A.M.; Hovius, E.K.; Jongejan, F.; Takken, F.; Reimerink, J.R.; Overgaauw, P.A.M.; Sprong, H.

    2011-01-01

    BACKGROUND: Awareness for flea- and tick-borne infections has grown in recent years and the range of microorganisms associated with these ectoparasites is rising. Bartonella henselae, the causative agent of Cat Scratch Disease, and other Bartonella species have been reported in fleas and ticks. The

  8. Nonspecific Bacterial Flora Isolated from the Body Surface and Inside Ixodes ricinus Ticks.

    Science.gov (United States)

    Okła, Hubert; Sosnowska, Malwina; Jasik, Krzysztof P; Słodki, Jan; Wojtyczka, Robert D

    2012-09-28

    Ixodes ricinus and other representatives of the order Ixodida are vectors of typical pathogens: Borrelia burgdorferi sensu lato, Anaplasma phagocytophilium, Babesia spp., a tick-borne encephalitis virus, and other microorganisms which are important from a medical and veterinary point of view. The presented study focuses on the verification of nonspecific bacterial flora of I. ricinus. We analyzed ticks collected in a forest region in Silesia, an industrial district in Poland. Methods of classical microbiology and biochemical assays (API 20 NE test, API Staph test and MICRONAUT System) were used for isolation and identification of microorganisms living on the body surface of I. ricinus and inside ticks. The results show the presence of various bacteria on the surface and inside ticks' bodies. During the study, we isolated Acinetobacter lwoffi, Pseudomonas fluorescens, Aeromonas hydrophila, Achromobacter denitrificans, Alcaligenes faecalis, Stenotrophomonas maltophilia, Pseudomonas oryzihabitans, Micrococcus spp., Kocuria varians, Staphylococcus lentus, Kocuria kristinae, Streptococcus pneumoniae, Rhizobium radiobacter, Staphylococcus xylosus. Majority of the isolated species are non-pathogenic environmental microorganisms, but some of the isolated bacterial strains could cause severe infections.

  9. PCR diagnosis of tick-borne pathogens in Maharashtra state, India indicates fitness cost associated with carrier infections is greater for crossbreed than native cattle breeds.

    Directory of Open Access Journals (Sweden)

    Sunil W Kolte

    Full Text Available Tick-borne pathogens (TBP are responsible for significant economic losses to cattle production, globally. This is particularly true in countries like India where TBP constrain rearing of high yielding Bos taurus, as they show susceptibility to acute tick borne disease (TBD, most notably tropical theileriosis caused by Theileria annulata. This has led to a programme of cross breeding Bos taurus (Holstein-Friesian or Jersey with native Bos indicus (numerous breeds to generate cattle that are more resistant to disease. However, the cost to fitness of subclinical carrier infection in crossbreeds relative to native breeds is unknown, but could represent a significant hidden economic cost. In this study, a total of 1052 bovine blood samples, together with associated data on host type, sex and body score, were collected from apparently healthy animals in four different agro-climatic zones of Maharashtra state. Samples were screened by PCR for detection of five major TBPs: T. annulata, T. orientalis, B. bigemina, B. bovis and Anaplasma spp.. The results demonstrated that single and co-infection with TBP are common, and although differences in pathogen spp. prevalence across the climatic zones were detected, simplistic regression models predicted that host type, sex and location are all likely to impact on prevalence of TBP. In order to remove issues with autocorrelation between variables, a subset of the dataset was modelled to assess any impact of TBP infection on body score of crossbreed versus native breed cattle (breed type. The model showed significant association between infection with TBP (particularly apicomplexan parasites and poorer body condition for crossbreed animals. These findings indicate potential cost of TBP carrier infection on crossbreed productivity. Thus, there is a case for development of strategies for targeted breeding to combine productivity traits with disease resistance, or to prevent transmission of TBP in India for economic

  10. PCR diagnosis of tick-borne pathogens in Maharashtra state, India indicates fitness cost associated with carrier infections is greater for crossbreed than native cattle breeds.

    Science.gov (United States)

    Kolte, Sunil W; Larcombe, Stephen D; Jadhao, Suresh G; Magar, Swapnil P; Warthi, Ganesh; Kurkure, Nitin V; Glass, Elizabeth J; Shiels, Brian R

    2017-01-01

    Tick-borne pathogens (TBP) are responsible for significant economic losses to cattle production, globally. This is particularly true in countries like India where TBP constrain rearing of high yielding Bos taurus, as they show susceptibility to acute tick borne disease (TBD), most notably tropical theileriosis caused by Theileria annulata. This has led to a programme of cross breeding Bos taurus (Holstein-Friesian or Jersey) with native Bos indicus (numerous) breeds to generate cattle that are more resistant to disease. However, the cost to fitness of subclinical carrier infection in crossbreeds relative to native breeds is unknown, but could represent a significant hidden economic cost. In this study, a total of 1052 bovine blood samples, together with associated data on host type, sex and body score, were collected from apparently healthy animals in four different agro-climatic zones of Maharashtra state. Samples were screened by PCR for detection of five major TBPs: T. annulata, T. orientalis, B. bigemina, B. bovis and Anaplasma spp.. The results demonstrated that single and co-infection with TBP are common, and although differences in pathogen spp. prevalence across the climatic zones were detected, simplistic regression models predicted that host type, sex and location are all likely to impact on prevalence of TBP. In order to remove issues with autocorrelation between variables, a subset of the dataset was modelled to assess any impact of TBP infection on body score of crossbreed versus native breed cattle (breed type). The model showed significant association between infection with TBP (particularly apicomplexan parasites) and poorer body condition for crossbreed animals. These findings indicate potential cost of TBP carrier infection on crossbreed productivity. Thus, there is a case for development of strategies for targeted breeding to combine productivity traits with disease resistance, or to prevent transmission of TBP in India for economic benefit.

  11. First molecular evidence of potentially zoonotic Babesia microti and Babesia sp. EU1 in Ixodes ricinus ticks in Belgium

    OpenAIRE

    Lempereur, L.; De Cat, A.; Caron, Y.; Madder, M.; Claerebout, E.; Saegerman, C.; Losson, B.

    2011-01-01

    We report the first molecular evidence of the presence of Babesia sp. EU1 and Babesia microti in Ixodes ricinus ticks in Belgium. A 1-year national survey collected 1005 ticks from cats and dogs. A polymerase chain reaction technique amplifying a part of the 18S rRNA gene detected Babesia spp. in 11 out of 841 selected and validated tick extracts. Subsequent sequencing identified Ba. microti (n = 3) and Babesia sp. EU1 (n = 6). This study has demonstrated a low infection rate (1.31% with 95% ...

  12. [Tick borne encephalitis and enviromental changes].

    Science.gov (United States)

    Zajkowska, Joanna; Malzahn, Elzbieta; Kondrusik, Maciej; Grygorczuk, Sambor; Pancewicz, Sławomir S; Kuśmierczyk, Justyna; Czupryna, Piotr; Hermanowska-Szpakowicz, Teresa

    2006-01-01

    Currently observed markedly increased incidence of various tick borne diseases in many parts of Europe is due to documented climatic changes as well anthropogenic influence on habitat structure. One of the analyzed factors is tendency to increase of the spring temperatures, especially in the third decade of the April. Such conditions (spring temperatures above 7-10 degrees C) let the nymphs and larvae of Ixodes ricinus to feed simultaneously on rodents. This increases the risk of infection of Ixodes ricinus with TBE virus, so dangerous for humans.

  13. Molecular Ecological Insights into Neotropical Bird-Tick Interactions.

    Directory of Open Access Journals (Sweden)

    Matthew J Miller

    Full Text Available In the tropics, ticks parasitize many classes of vertebrate hosts. However, because many tropical tick species are only identifiable in the adult stage, and these adults usually parasitize mammals, most attention on the ecology of tick-host interactions has focused on mammalian hosts. In contrast, immature Neotropical ticks are often found on wild birds, yet difficulties in identifying immatures hinder studies of birds' role in tropical tick ecology and tick-borne disease transmission. In Panama, we found immature ticks on 227 out of 3,498 individually-sampled birds representing 93 host species (24% of the bird species sampled, and 13% of the Panamanian land bird fauna. Tick parasitism rates did not vary with rainfall or temperature, but did vary significantly with several host ecological traits. Likewise, Neotropical-Nearctic migratory birds were significantly less likely to be infested than resident species. Using a molecular library developed from morphologically-identified adult ticks specifically for this study, we identified eleven tick species parasitizing birds, indicating that a substantial portion of the Panamanian avian species pool is parasitized by a diversity of tick species. Tick species that most commonly parasitized birds had the widest diversity of avian hosts, suggesting that immature tick species are opportunistic bird parasites. Although certain avian ecological traits are positively associated with parasitism, we found no evidence that individual tick species show specificity to particular avian host ecological traits. Finally, our data suggest that the four principal vectors of Rocky Mountain Spotted Fever in the Neotropics rarely, if ever, parasitize Panamanian birds. However, other tick species that harbor newly-discovered rickettsial parasites of unknown pathogenicity are frequently found on these birds. Given our discovery of broad interaction between Panamanian tick and avian biodiversity, future work on tick ecology

  14. Molecular Ecological Insights into Neotropical Bird-Tick Interactions.

    Science.gov (United States)

    Miller, Matthew J; Esser, Helen J; Loaiza, Jose R; Herre, Edward Allen; Aguilar, Celestino; Quintero, Diomedes; Alvarez, Eric; Bermingham, Eldredge

    2016-01-01

    In the tropics, ticks parasitize many classes of vertebrate hosts. However, because many tropical tick species are only identifiable in the adult stage, and these adults usually parasitize mammals, most attention on the ecology of tick-host interactions has focused on mammalian hosts. In contrast, immature Neotropical ticks are often found on wild birds, yet difficulties in identifying immatures hinder studies of birds' role in tropical tick ecology and tick-borne disease transmission. In Panama, we found immature ticks on 227 out of 3,498 individually-sampled birds representing 93 host species (24% of the bird species sampled, and 13% of the Panamanian land bird fauna). Tick parasitism rates did not vary with rainfall or temperature, but did vary significantly with several host ecological traits. Likewise, Neotropical-Nearctic migratory birds were significantly less likely to be infested than resident species. Using a molecular library developed from morphologically-identified adult ticks specifically for this study, we identified eleven tick species parasitizing birds, indicating that a substantial portion of the Panamanian avian species pool is parasitized by a diversity of tick species. Tick species that most commonly parasitized birds had the widest diversity of avian hosts, suggesting that immature tick species are opportunistic bird parasites. Although certain avian ecological traits are positively associated with parasitism, we found no evidence that individual tick species show specificity to particular avian host ecological traits. Finally, our data suggest that the four principal vectors of Rocky Mountain Spotted Fever in the Neotropics rarely, if ever, parasitize Panamanian birds. However, other tick species that harbor newly-discovered rickettsial parasites of unknown pathogenicity are frequently found on these birds. Given our discovery of broad interaction between Panamanian tick and avian biodiversity, future work on tick ecology and the dynamics of

  15. Detection of Ehrlichia chaffeensis in adult and nymphal stage lone star ticks (Amblyomma americanum) from Long Island, New York

    Science.gov (United States)

    Mixson, T.R.; Ginsberg, H.S.; Campbell, S.R.; Sumner, J.W.; Paddock, C.D.

    2004-01-01

    The lone star tick, Amblyomma americanum (L.), has increased in abundance in several regions of the northeastern United States, including areas of Long Island, NY. Adult and nymphal stage A. americanum collected from several sites on Long Island were evaluated for infection with Ehrlichia chaffeensis, the causative agent of human monocytic ehrlichiosis (HME), by using a nested polymerase chain reaction assay. Fifty-nine (12.5%) of ,17.3 adults and eight of 11.3 pools of five nymphs each (estimated minimum prevalence of infection 1.4%) contained DNA of E. chaffeensis. These data, coupled with the documented expansion of lone star tick populations in the northeastern United States, confirm that E. chaffeensis is endemic to many areas of Long Island and that HME should be considered among the differential diagnoses of the many distinct tick-borne diseases that occur in this region.

  16. Tick-Borne Encephalitis (TBE)

    Science.gov (United States)

    ... virus, Siberian tick-borne encephalitis virus, and Far eastern Tick-borne encephalitis virus (formerly known as Russian ... viruses are closely related to TBEV and Far-eastern TBE, and include Omsk hemorrhagic fever virus in ...

  17. Non-hemagglutinating flaviviruses: molecular mechanisms for the emergence of new strains via adaptation to European ticks.

    Directory of Open Access Journals (Sweden)

    Maxim A Khasnatinov

    2009-10-01

    Full Text Available Tick-borne encephalitis virus (TBEV causes human epidemics across Eurasia. Clinical manifestations range from inapparent infections and fevers to fatal encephalitis but the factors that determine disease severity are currently undefined. TBEV is characteristically a hemagglutinating (HA virus; the ability to agglutinate erythrocytes tentatively reflects virion receptor/fusion activity. However, for the past few years many atypical HA-deficient strains have been isolated from patients and also from the natural European host tick, Ixodes persulcatus. By analysing the sequences of HA-deficient strains we have identified 3 unique amino acid substitutions (D67G, E122G or D277A in the envelope protein, each of which increases the net charge and hydrophobicity of the virion surface. Therefore, we genetically engineered virus mutants each containing one of these 3 substitutions; they all exhibited HA-deficiency. Unexpectedly, each genetically modified non-HA virus demonstrated increased TBEV reproduction in feeding Ixodes ricinus, not the recognised tick host for these strains. Moreover, virus transmission efficiency between infected and uninfected ticks co-feeding on mice was also intensified by each substitution. Retrospectively, the mutation D67G was identified in viruses isolated from patients with encephalitis. We propose that the emergence of atypical Siberian HA-deficient TBEV strains in Europe is linked to their molecular adaptation to local ticks. This process appears to be driven by the selection of single mutations that change the virion surface thus enhancing receptor/fusion function essential for TBEV entry into the unfamiliar tick species. As the consequence of this adaptive mutagenesis, some of these mutations also appear to enhance the ability of TBEV to cross the human blood-brain barrier, a likely explanation for fatal encephalitis. Future research will reveal if these emerging Siberian TBEV strains continue to disperse westwards

  18. Seasonal correlation of sporadic schizophrenia to Ixodes ticks and Lyme borreliosis

    Directory of Open Access Journals (Sweden)

    Fritzsche Markus

    2002-11-01

    Full Text Available Abstract Background Being born in winter and spring is considered one of the most robust epidemiological risk factors for schizophrenia. The aetiology and exact timing of this birth excess, however, has remained elusive so far. Since during phylogeny, Borrelia DNA has led to multiple germ-line mutations within the CB1 candidate gene for schizophrenia, a meta analysis has been performed of all papers on schizophrenic birth excesses with no less than 3000 cases each. All published numerical data were then plotted against the seasonal distributions of Ixodes ticks worldwide. Results In the United States, Europe and Japan the birth excesses of those individuals who later in life develop schizophrenia mirror the seasonal distribution of Ixodes ticks nine months earlier at the time of conception. South of the Wallace Line, which limits the spread of Ixodes ticks and Borrelia burgdorferi into Australia, seasonal trends are less significant, and in Singapore, being non-endemic for Ixodes ticks and Lyme disease, schizophrenic birth excesses are absent. Conclusion At present, it cannot be excluded that prenatal infection by B. burgdorferi is harmful to the implanting human blastocyst. The epidemiological clustering of sporadic schizophrenia by season and locality rather emphasises the risk to the unborn of developing a congenital, yet preventable brain disorder later in life.

  19. Prevalence of Anaplasma phagocytophilum infection and effect on lamb growth

    Directory of Open Access Journals (Sweden)

    Steinshamn Håvard

    2011-05-01

    Full Text Available Abstract Background A major challenge in sheep farming during the grazing season along the coast of south-western Norway is tick-borne fever (TBF caused by the bacteria Anaplasma phagocytophilum that is transmitted by the tick Ixodes ricinus. Methods A study was carried out in 2007 and 2008 to examine the prevalence of A. phagocytophilum infection and effect on weaning weight in lambs. The study included 1208 lambs from farms in Sunndal Ram Circle in Møre and Romsdal County in Mid-Norway, where ticks are frequently observed. All lambs were blood sampled and serum was analyzed by an indirect fluorescent antibody assay (IFA to determine an antibody status (positive or negative to A. phagocytophilum infection. Weight and weight gain and possible effect of infection were analyzed using ANOVA and the MIXED procedure in SAS. Results The overall prevalence of infection with A. phagocytophilum was 55%. A lower weaning weight of 3% (1.34 kg, p A. phagocytophilum infection compared to seronegative lambs at an average age of 137 days. Conclusions The results show that A. phagocytophilum infection has an effect on lamb weight gain. The study also support previous findings that A. phagocytophilum infection is widespread in areas where ticks are prevalent, even in flocks treated prophylactic with acaricides.

  20. Molecular analyses reveal an abundant diversity of ticks and rickettsial agents associated with wild birds in two regions of primary Brazilian Atlantic Rainforest.

    Science.gov (United States)

    Luz, Hermes Ribeiro; Faccini, João Luiz Horacio; McIntosh, Douglas

    2017-06-01

    Brazilian wild birds are recognized as frequent and important hosts for immature stages of more than half of the 32 recognized species of Amblyomma ticks recorded in that country. Several species of Amblyomma harbor rickettsial agents, including members of the spotted fever group (SFG). Most studies on this topic relied primarily on morphological characterization and reported large portions of the collected ticks at the genus rather than species level. Clearly, this factor may have contributed to an underestimation of tick diversity and distribution and makes comparisons between studies difficult. The current investigation combined morphological and molecular analyses to assess the diversity of ticks and rickettsial agents associated with wild birds, captured in two regions of native Atlantic rainforest, in the state of Rio de Janeiro, Brazil. A total of 910 birds were captured, representing two orders, 34 families and 106 species, among which 93 specimens (10.2%), were parasitized by 138 immature ticks (60 larvae and 78 nymphs), representing 10 recognized species of the genus Amblyomma; together with two reasonably well classified haplotypes (Amblyomma sp. haplotype Nazaré and Amblyomma sp. strain USNTC 6792). Amplification by PCR and sequencing of rickettsial genes (htrA, gltA, ompA and ompB), demonstrated the presence of Rickettsia DNA in 48 (34%) of the ticks. Specifically, Rickettsia bellii was detected in a single larva and a single nymph of A. aureolatum; R. amblyomatis was found in 16 of 37 A. longirostre and was recorded for the first time in three nymphs of A. calcaratum; R. rhipicephali was detected in 9 (47%) of 19 Amblyomma sp. haplotype Nazaré ticks. The remaining ticks were infected with genetic variants of R. parkeri, namely strain ApPR in 12 A. parkeri and seven Amblyomma sp. haplotype Nazaré ticks, with the strain NOD found in two specimens of A. nodosum. Interestingly, a single larvae of A. ovale was shown to be infected with the emerging

  1. Pet-Related Infections.

    Science.gov (United States)

    Day, Michael J

    2016-11-15

    Physicians and veterinarians have many opportunities to partner in promoting the well-being of people and their pets, especially by addressing zoonotic diseases that may be transmitted between a pet and a human family member. Common cutaneous pet-acquired zoonoses are dermatophytosis (ringworm) and sarcoptic mange (scabies), which are both readily treated. Toxoplasmosis can be acquired from exposure to cat feces, but appropriate hygienic measures can minimize the risk to pregnant women. Persons who work with animals are at increased risk of acquiring bartonellosis (e.g., cat-scratch disease); control of cat fleas is essential to minimize the risk of these infections. People and their pets share a range of tick-borne diseases, and exposure risk can be minimized with use of tick repellent, prompt tick removal, and appropriate tick control measures for pets. Pets such as reptiles, amphibians, and backyard poultry pose a risk of transmitting Salmonella species and are becoming more popular. Personal hygiene after interacting with these pets is crucial to prevent Salmonella infections. Leptospirosis is more often acquired from wildlife than infected dogs, but at-risk dogs can be protected with vaccination. The clinical history in the primary care office should routinely include questions about pets and occupational or other exposure to pet animals. Control and prevention of zoonoses are best achieved by enhancing communication between physicians and veterinarians to ensure patients know the risks of and how to prevent zoonoses in themselves, their pets, and other people.

  2. Bacterial and protozoal pathogens found in ticks collected from humans in Corum province of Turkey.

    Directory of Open Access Journals (Sweden)

    Djursun Karasartova

    2018-04-01

    Full Text Available Tick-borne diseases are increasing all over the word, including Turkey. The aim of this study was to determine the bacterial and protozoan vector-borne pathogens in ticks infesting humans in the Corum province of Turkey.From March to November 2014 a total of 322 ticks were collected from patients who attended the local hospitals with tick bites. Ticks were screened by real time-PCR and PCR, and obtained amplicons were sequenced. The dedected tick was belonging to the genus Hyalomma, Haemaphysalis, Rhipicephalus, Dermacentor and Ixodes. A total of 17 microorganism species were identified in ticks. The most prevalent Rickettsia spp. were: R. aeschlimannii (19.5%, R. slovaca (4.5%, R. raoultii (2.2%, R. hoogstraalii (1.9%, R. sibirica subsp. mongolitimonae (1.2%, R. monacensis (0.31%, and Rickettsia spp. (1.2%. In addition, the following pathogens were identified: Borrelia afzelii (0.31%, Anaplasma spp. (0.31%, Ehrlichia spp. (0.93%, Babesia microti (0.93%, Babesia ovis (0.31%, Babesia occultans (3.4%, Theileria spp. (1.6%, Hepatozoon felis (0.31%, Hepatozoon canis (0.31%, and Hemolivia mauritanica (2.1%. All samples were negative for Francisella tularensis, Coxiella burnetii, Bartonella spp., Toxoplasma gondii and Leishmania spp.Ticks in Corum carry a large variety of human and zoonotic pathogens that were detected not only in known vectors, but showed a wider vector diversity. There is an increase in the prevalence of ticks infected with the spotted fever group and lymphangitis-associated rickettsiosis, while Ehrlichia spp. and Anaplasma spp. were reported for the first time from this region. B. microti was detected for the first time in Hyalomma marginatum infesting humans. The detection of B. occultans, B. ovis, Hepatozoon spp., Theileria spp. and Hemolivia mauritanica indicate the importance of these ticks as vectors of pathogens of veterinary importance, therefore patients with a tick infestation should be followed for a variety of pathogens

  3. Prevalence of Babesia canis, Borrelia burgdorferi sensu lato, and Anaplasma phagocytophilum in hard ticks collected from meadows of Lubelskie Voivodship (eastern Poland

    Directory of Open Access Journals (Sweden)

    Dzięgiel Beata

    2014-03-01

    Full Text Available The aim of the study was to assess the distribution of Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, and Babesia canis in adult females and males of Ixodes ricinus and Dermacentor reticulatus ticks, inhabiting meadows near large forest complexes throughout the Lubelskie Voivodship (eastern region of Poland. Ticks were collected using the flagging method. Among 720 ticks collected, 506 were identified as D. reticulatus, and 214 as I. ricinus. DNA of B. canis and B. burgdorferi s.l. was detected in 21.3% and 0.6% of D. reticulatus ticks, respectively. In I. ricinus ticks, DNA specific to B. burgdorferi s.l. and A. phagocytophilum was detected in 5.6% and 10.3%, respectively. Co-infections of B. burgdorferi s.l. and A. phagocytophilum were found in two I. ricinus ticks. These results indicate that the Lublin region is an area at risk of tick-borne diseases of humans and animals, which must be considered in clinical practice.

  4. THE CYTOKINES SYNTHESIS IN VITRO IN THE TICK-BORNE ENCEPHALITIS VIRUS INFECTED CELLS AND IN THE PRESENCE OF INACTIVATED VACCINE

    Directory of Open Access Journals (Sweden)

    M. V. Mesentseva

    2014-01-01

    Full Text Available Abstract. Tick-borne encephalitis (TBE is severe neuroinfectious disease with involvement of immune mechanisms in pathogenesis. Comparative analysis of synthesis of key cytokines had been performed for the TBE virus (TBEV infected cells and in the presence of inactivated vaccine against TBE in vitro. Persistent TBEV infection of immortal tissue culture of human larynx cancer cells caused transcription activation of interferons IFNα, IFNγ, IFNλ1, interleukins IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12, tumour necrosis factor TNFα as well as one of apoptosis factors Fas. Comparison of transcription and production of cytokines revealed that the TBEV infection resulted in posttranscription Th1 shift of cytokine response. In the presence of inactivated vaccine against TBE based on the same strain Sofjin of the TBEV activation of transcription of cytokines IFNα, IFNλ1, IL-4, IL-10 was also observed as after the TBEV infection that together with an additional stimulation of GM-CSF production might serve as an evidence of Th2 response. Involvement of IFNIII type (IFNλ1 both during persistent infection and after addition of inactivated vaccines was found in the first time. Differences in dynamics of cytokines IL-2, IL-8, IL-10, IL-12, TNFα response during the TBEV infection and in the presence of inactivated vaccine are described.

  5. First molecular evidence of potentially zoonotic Babesia microti and Babesia sp. EU1 in Ixodes ricinus ticks in Belgium.

    Science.gov (United States)

    Lempereur, Laetitia; De Cat, Ann; Caron, Yannick; Madder, Maxime; Claerebout, Edwin; Saegerman, Claude; Losson, Bertrand

    2011-02-01

    We report the first molecular evidence of the presence of Babesia sp. EU1 and Babesia microti in Ixodes ricinus ticks in Belgium. A 1-year national survey collected 1005 ticks from cats and dogs. A polymerase chain reaction technique amplifying a part of the 18S rRNA gene detected Babesia spp. in 11 out of 841 selected and validated tick extracts. Subsequent sequencing identified Ba. microti (n=3) and Babesia sp. EU1 (n=6). This study has demonstrated a low infection rate (1.31% with 95% CI: 0.65-2.33) of Babesia spp. carriage in I. ricinus ticks in Belgium but, for the first time, reports two potentially zoonotic species belonging to this genus. Coinfection with Ba. microti and Borrelia burgdorferi sensu stricto also was demonstrated. In addition, this study clearly demonstrates that inhibitors of polymerase chain reaction amplification are present in engorged ticks.

  6. Microbial Invasion vs. Tick Immune Regulation.

    Science.gov (United States)

    Sonenshine, Daniel E; Macaluso, Kevin R

    2017-01-01

    Ticks transmit a greater variety of pathogenic agents that cause disease in humans and animals than any other haematophagous arthropod, including Lyme disease, Rocky Mountain spotted fever, human granulocytic anaplasmosis, babesiosis, tick-borne encephalitis, Crimean Congo haemorhagic fever, and many others (Gulia-Nuss et al., 2016). Although diverse explanations have been proposed to explain their remarkable vectorial capacity, among the most important are their blood feeding habit, their long term off-host survival, the diverse array of bioactive molecules that disrupt the host's natural hemostatic mechanisms, facilitate blood flow, pain inhibitors, and minimize inflammation to prevent immune rejection (Hajdušek et al., 2013). Moreover, the tick's unique intracellular digestive processes allow the midgut to provide a relatively permissive microenvironment for survival of invading microbes. Although tick-host-pathogen interactions have evolved over more than 300 million years (Barker and Murrell, 2008), few microbes have been able to overcome the tick's innate immune system, comprising both humoral and cellular processes that reject them. Similar to most eukaryotes, the signaling pathways that regulate the innate immune response, i.e., the Toll, IMD (Immunodeficiency) and JAK-STAT (Janus Kinase/ Signal Transducers and Activators of Transcription) also occur in ticks (Gulia-Nuss et al., 2016). Recognition of pathogen-associated molecular patterns (PAMPs) on the microbial surface triggers one or the other of these pathways. Consequently, ticks are able to mount an impressive array of humoral and cellular responses to microbial challenge, including anti-microbial peptides (AMPs), e.g., defensins, lysozymes, microplusins, etc., that directly kill, entrap or inhibit the invaders. Equally important are cellular processes, primarily phagocytosis, that capture, ingest, or encapsulate invading microbes, regulated by a primordial system of thioester-containing proteins

  7. Microbial Invasion vs. Tick Immune Regulation

    Directory of Open Access Journals (Sweden)

    Daniel E. Sonenshine

    2017-09-01

    Full Text Available Ticks transmit a greater variety of pathogenic agents that cause disease in humans and animals than any other haematophagous arthropod, including Lyme disease, Rocky Mountain spotted fever, human granulocytic anaplasmosis, babesiosis, tick-borne encephalitis, Crimean Congo haemorhagic fever, and many others (Gulia-Nuss et al., 2016. Although diverse explanations have been proposed to explain their remarkable vectorial capacity, among the most important are their blood feeding habit, their long term off-host survival, the diverse array of bioactive molecules that disrupt the host's natural hemostatic mechanisms, facilitate blood flow, pain inhibitors, and minimize inflammation to prevent immune rejection (Hajdušek et al., 2013. Moreover, the tick's unique intracellular digestive processes allow the midgut to provide a relatively permissive microenvironment for survival of invading microbes. Although tick-host-pathogen interactions have evolved over more than 300 million years (Barker and Murrell, 2008, few microbes have been able to overcome the tick's innate immune system, comprising both humoral and cellular processes that reject them. Similar to most eukaryotes, the signaling pathways that regulate the innate immune response, i.e., the Toll, IMD (Immunodeficiency and JAK-STAT (Janus Kinase/ Signal Transducers and Activators of Transcription also occur in ticks (Gulia-Nuss et al., 2016. Recognition of pathogen-associated molecular patterns (PAMPs on the microbial surface triggers one or the other of these pathways. Consequently, ticks are able to mount an impressive array of humoral and cellular responses to microbial challenge, including anti-microbial peptides (AMPs, e.g., defensins, lysozymes, microplusins, etc., that directly kill, entrap or inhibit the invaders. Equally important are cellular processes, primarily phagocytosis, that capture, ingest, or encapsulate invading microbes, regulated by a primordial system of thioester

  8. Distribution pattern and number of ticks on lizards.

    Science.gov (United States)

    Dudek, Krzysztof; Skórka, Piotr; Sajkowska, Zofia Anna; Ekner-Grzyb, Anna; Dudek, Monika; Tryjanowski, Piotr

    2016-02-01

    The success of ectoparasites depends primarily on the site of attachment and body condition of their hosts. Ticks usually tend to aggregate on vertebrate hosts in specific areas, but the distribution pattern may depend on host body size and condition, sex, life stage or skin morphology. Here, we studied the distribution of ticks on lizards and tested the following hypothesis: occurrence or high abundance of ticks is confined with body parts with smaller scales and larger interscalar length because such sites should provide ticks with superior attachment conditions. This study was performed in field conditions in central Poland in 2008-2011. In total, 500 lizards (Lacerta agilis) were caught and 839 ticks (Ixodes ricinus, larvae and nymphs) were collected from them. Using generalised linear mixed models, we found that the ticks were most abundant on forelimbs and their axillae, with 90% of ticks attached there. This part of the lizard body and the region behind the hindlimb were covered by the smallest scales with relatively wide gaps between them. This does not fully support our hypothesis that ticks prefer locations with easy access to skin between scales, because it does not explain why so few ticks were in the hindlimb area. We found that the abundance of ticks was positively correlated with lizard body size index (snout-vent length). Tick abundance was also higher in male and mature lizards than in female and young individuals. Autotomy had no effect on tick abundance. We found no correlation between tick size and lizard morphology, sex, autotomy and body size index. The probability of occurrence of dead ticks was positively linked with the total number of ticks on the lizard but there was no relationship between dead tick presence and lizard size, sex or age. Thus lizard body size and sex are the major factors affecting the abundance of ticks, and these parasites are distributed nearly exclusively on the host's forelimbs and their axillae. Copyright © 2015

  9. Increased genetic diversity and prevalence of co-infection with Trypanosoma spp. in koalas (Phascolarctos cinereus and their ticks identified using next-generation sequencing (NGS.

    Directory of Open Access Journals (Sweden)

    Amanda D Barbosa

    Full Text Available Infections with Trypanosoma spp. have been associated with poor health and decreased survival of koalas (Phascolarctos cinereus, particularly in the presence of concurrent pathogens such as Chlamydia and koala retrovirus. The present study describes the application of a next-generation sequencing (NGS-based assay to characterise the prevalence and genetic diversity of trypanosome communities in koalas and two native species of ticks (Ixodes holocyclus and I. tasmani removed from koala hosts. Among 168 koalas tested, 32.2% (95% CI: 25.2-39.8% were positive for at least one Trypanosoma sp. Previously described Trypanosoma spp. from koalas were identified, including T. irwini (32.1%, 95% CI: 25.2-39.8%, T. gilletti (25%, 95% CI: 18.7-32.3%, T. copemani (27.4%, 95% CI: 20.8-34.8% and T. vegrandis (10.1%, 95% CI: 6.0-15.7%. Trypanosoma noyesi was detected for the first time in koalas, although at a low prevalence (0.6% 95% CI: 0-3.3%, and a novel species (Trypanosoma sp. AB-2017 was identified at a prevalence of 4.8% (95% CI: 2.1-9.2%. Mixed infections with up to five species were present in 27.4% (95% CI: 21-35% of the koalas, which was significantly higher than the prevalence of single infections 4.8% (95% CI: 2-9%. Overall, a considerably higher proportion (79.7% of the Trypanosoma sequences isolated from koala blood samples were identified as T. irwini, suggesting this is the dominant species. Co-infections involving T. gilletti, T. irwini, T. copemani, T. vegrandis and Trypanosoma sp. AB-2017 were also detected in ticks, with T. gilletti and T. copemani being the dominant species within the invertebrate hosts. Direct Sanger sequencing of Trypanosoma 18S rRNA gene amplicons was also performed and results revealed that this method was only able to identify the genotypes with greater amount of reads (according to NGS within koala samples, which highlights the advantages of NGS in detecting mixed infections. The present study provides new insights

  10. Increased genetic diversity and prevalence of co-infection with Trypanosoma spp. in koalas (Phascolarctos cinereus) and their ticks identified using next-generation sequencing (NGS).

    Science.gov (United States)

    Barbosa, Amanda D; Gofton, Alexander W; Paparini, Andrea; Codello, Annachiara; Greay, Telleasha; Gillett, Amber; Warren, Kristin; Irwin, Peter; Ryan, Una

    2017-01-01

    Infections with Trypanosoma spp. have been associated with poor health and decreased survival of koalas (Phascolarctos cinereus), particularly in the presence of concurrent pathogens such as Chlamydia and koala retrovirus. The present study describes the application of a next-generation sequencing (NGS)-based assay to characterise the prevalence and genetic diversity of trypanosome communities in koalas and two native species of ticks (Ixodes holocyclus and I. tasmani) removed from koala hosts. Among 168 koalas tested, 32.2% (95% CI: 25.2-39.8%) were positive for at least one Trypanosoma sp. Previously described Trypanosoma spp. from koalas were identified, including T. irwini (32.1%, 95% CI: 25.2-39.8%), T. gilletti (25%, 95% CI: 18.7-32.3%), T. copemani (27.4%, 95% CI: 20.8-34.8%) and T. vegrandis (10.1%, 95% CI: 6.0-15.7%). Trypanosoma noyesi was detected for the first time in koalas, although at a low prevalence (0.6% 95% CI: 0-3.3%), and a novel species (Trypanosoma sp. AB-2017) was identified at a prevalence of 4.8% (95% CI: 2.1-9.2%). Mixed infections with up to five species were present in 27.4% (95% CI: 21-35%) of the koalas, which was significantly higher than the prevalence of single infections 4.8% (95% CI: 2-9%). Overall, a considerably higher proportion (79.7%) of the Trypanosoma sequences isolated from koala blood samples were identified as T. irwini, suggesting this is the dominant species. Co-infections involving T. gilletti, T. irwini, T. copemani, T. vegrandis and Trypanosoma sp. AB-2017 were also detected in ticks, with T. gilletti and T. copemani being the dominant species within the invertebrate hosts. Direct Sanger sequencing of Trypanosoma 18S rRNA gene amplicons was also performed and results revealed that this method was only able to identify the genotypes with greater amount of reads (according to NGS) within koala samples, which highlights the advantages of NGS in detecting mixed infections. The present study provides new insights on the

  11. Molecular detection and characterization of Anaplasma platys in dogs and ticks in Cuba.

    Science.gov (United States)

    Silva, Claudia Bezerra da; Santos, Huarrisson Azevedo; Navarrete, Maylín González; Ribeiro, Carla Carolina Dias Uzedo; Gonzalez, Belkis Corona; Zaldivar, Maykelin Fuentes; Pires, Marcus Sandes; Peckle, Maristela; Costa, Renata Lins da; Vitari, Gabriela Lopes Vivas; Massard, Carlos Luiz

    2016-07-01

    Canine cyclic thrombocytopenia, an infectious disease caused by Anaplasma platys is a worldwide dog health problem. This study aimed to detect and characterize A. platys deoxyribonucleic acid (DNA) in dogs and ticks from Cuba using molecular methods. The study was conducted in four cities of Cuba (Habana del Este, Boyeros, Cotorro and San José de las Lajas). Blood samples were collected from 100 dogs in these cities. The animals were inspected for the detection of tick infestation and specimens were collected. Genomic DNA was extracted from dog blood and ticks using a commercial kit. Genomic DNA samples from blood and ticks were tested by a nested polymerase chain reaction (nPCR) to amplify 678 base pairs (bp) from the 16S ribosomal DNA (rDNA) of A. platys. Positive samples in nPCR were also subjected to PCR to amplify a fragment of 580bp from the citrate synthase (gltA) gene and the products were sequenced. Only Rhipicephalus sanguineus sensu lato (s.l.) was found on dogs, and 10.20% (n=5/49) of these ticks plus sixteen percent (16.0%, n=16/100) of dogs were considered positive for A. platys by nPCR targeting the 16S rDNA gene. All analyzed gltA and 16S rDNA sequences showed a 99-100% identity with sequences of A. platys reported in around the world. Phylogenetic analysis showed two defined clusters for the 16S rDNA gene and three defined clusters for the gltA gene. Based on the gltA gene, the deduced amino acid sequence showed two mutations at positions 88 and 168 compared with the sequence DQ525687 (GenBank ID from Italian sample), used as a reference in the alignment. A preliminary study on the epidemiological aspects associated with infection by A. platys showed no statistical association with the variables studied (p>0.05). This is the first evidence of the presence of A. platys in dogs and ticks in Cuba. Further studies are needed to evaluate the epidemiological aspects of A. platys infection in Cuban dogs. Copyright © 2016 Elsevier GmbH. All rights

  12. Dihydronepetalactones deter feeding activity by mosquitoes, stable flies, and deer ticks.

    Science.gov (United States)

    Feaster, John E; Scialdone, Mark A; Todd, Robin G; Gonzalez, Yamaira I; Foster, Joseph P; Hallahan, David L

    2009-07-01

    The essential oil of catmint, Nepeta cataria L., contains nepetalactones, that, on hydrogenation, yield the corresponding dihydronepetalactone (DHN) diastereomers. The DHN diastereomer (4R,4aR,7S,7aS)-4,7-dimethylhexahydrocyclopenta[c]pyran-1(3H)-one, DHN 1) was evaluated as mosquito repellent, as was the mixture of diastereomers {mostly (4S,4aR,7S,7aR)-4,7-dimethylhexahydrocyclopenta[c]pyran-1(3H)-one, DHN 2} present after hydrogenation of catmint oil itself. The repellency of these materials to Aedes aegypti L. and Anopheles albimanus Wiedemann mosquitoes was tested in vitro and found to be comparable to that obtained with the well-known insect repellent active ingredient N,N-diethyl-3-methylbenzamide (DEET). DHN 1 and DHN 2 also repelled the stable fly, Stomoxys calcitrans L., in this study. DHN 1, DHN 2, and p-menthane-3,8-diol (PMD), another natural monoterpenoid repellent, gave comparable levels of repellency against An. albimanus and S. calcitrans. Laboratory testing of DHN 1 and DHN 2 using human subjects with An. albimanus mosquitoes was carried out. Both DHN 1 and DHN 2 at 10% (wt:vol) conferred complete protection from bites for significant periods of time (3.5 and 5 h, respectively), with DHN2 conferring protection statistically equivalent to DEET. The DHN 1 and DHN 2 diastereomers were also efficaceous against black-legged tick (Ixodes scapularis Say) nymphs.

  13. Presence of Borrelia spp. DNA in ticks, but absence of Borrelia spp. and of Leptospira spp. DNA in blood of fever patients in Madagascar.

    Science.gov (United States)

    Hagen, Ralf Matthias; Frickmann, Hagen; Ehlers, Julian; Krüger, Andreas; Margos, Gabriele; Hizo-Teufel, Cecilia; Fingerle, Volker; Rakotozandrindrainy, Raphael; Kalckreuth, Vera von; Im, Justin; Pak, Gi Deok; Jeon, Hyon Jin; Rakotondrainiarivelo, Jean Philibert; Heriniaina, Jean Noël; Razafindrabe, Tsiry; Konings, Frank; May, Jürgen; Hogan, Benedikt; Ganzhorn, Jörg; Panzner, Ursula; Schwarz, Norbert Georg; Dekker, Denise; Marks, Florian; Poppert, Sven

    2018-01-01

    The occurrence of tick-borne relapsing fever and leptospirosis in humans in Madagascar remains unclear despite the presence of their potential vectors and reservoir hosts. We screened 255 Amblyomma variegatum ticks and 148 Rhipicephalus microplus ticks from Zebu cattle in Madagascar for Borrelia-specific DNA. Borrelia spp. DNA was detected in 21 Amblyomma variegatum ticks and 2 Rhipicephalus microplus ticks. One Borrelia found in one Rhipicephalus microplus showed close relationship to Borrelia theileri based on genetic distance and phylogenetic analyses on 16S rRNA and flaB sequences. The borreliae from Amblyomma variegatum could not be identified due to very low quantities of present DNA reflected by high cycle threshold values in real-time-PCR. It is uncertain whether these low numbers of Borrelia spp. are sufficient for transmission of infection from ticks to humans. In order to determine whether spirochaete infections are relevant in humans, blood samples of 1009 patients from the highlands of Madagascar with fever of unknown origin were screened for Borrelia spp. - and in addition for Leptospira spp. - by real-time PCR. No target DNA was detected, indicating a limited relevance of these pathogens for humans in the highlands of Madagascar. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Prevalence of severe fever with thrombocytopenia syndrome virus in Haemaphysalis longicornis ticks in South Korea.

    Science.gov (United States)

    Park, Sun-Whan; Song, Bong Gu; Shin, E-Hyun; Yun, Seok-Min; Han, Myung-Guk; Park, Mi Yeoun; Park, Chan; Ryou, Jungsang

    2014-10-01

    Haemaphysalis longicornis a vector that harbors severe fever with thrombocytopenia syndrome virus (SFTSV) is a major species of tick in South Korea. To investigate the existence and prevalence of SFTSV in Korea, we collected ticks from nine provinces in South Korea for detecting SFTSV. In all, we collected 13,053 ticks, and H. longicornis (90.8%, 11,856/13,053) was the most abundant among them. The minimum infection rate (MIR) of SFTSV in H. longicornis was 0.46% (55 pools). SFTSV was detected in ticks during all the developmental stages, showing MIR in larvae (2/350, 0.57%), nymphs (38/10,436, 0.36%), males (2/221, 0.90%), and females (13/849, 1.53%), respectively. Viruses were detected in ticks collected between April and September. A higher MIR was detected in ticks from the southern part of the country. We amplified the M and S segment partial genes from a sample and analyzed the nucleotide sequence. The results showed a 93-98% homology to Chinese and Japanese strains registered in Genbank. In this study, we confirmed the existence of SFTSV for the first time in South Korea. The SFTSV prevalence data from the studies are essential for raising the awareness of SFTS in South Korea. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. PARTICIPATION OF TICKS IN THE INFECTIOUS CYCLE OF CANINE VISCERAL LEISHMANIASIS, IN TERESINA, PIAUÍ, BRAZIL

    Directory of Open Access Journals (Sweden)

    José Henrique Furtado Campos

    2014-07-01

    Full Text Available In this study, we detected Leishmania spp. infection in R. sanguineus collected from dogs that were naturally infected with L. (L. infantum. We examined 35 dogs of both sexes and unknown ages. The infected dogs were serologically positive by the immunofluorescence antibody test (IFAT, enzyme-linked immunosorbent assay (ELISA, and Quick Test-DPP (Dual Path Platform, as well as parasitological examination of a positive skin biopsy or sternal bone marrow aspiration. Ten negative dogs were included as controls. The ticks that infested these dogs were collected in pools of 10 adult females per animal. The PCR was performed with specific primers for Leishmania spp., which amplified a 720-bp fragment. Of the 35 analyzed samples, a product was observed in eight samples (8/35; 22.9%. We conclude that the presence of parasite DNA suggests that ticks participate in the zoonotic cycle of canine visceral leishmaniasis, in the city of Teresina, Piauí.

  16. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe

    Directory of Open Access Journals (Sweden)

    Medlock Jolyon M

    2013-01-01

    Full Text Available Abstract Many factors are involved in determining the latitudinal and altitudinal spread of the important tick vector Ixodes ricinus (Acari: Ixodidae in Europe, as well as in changes in the distribution within its prior endemic zones. This paper builds on published literature and unpublished expert opinion from the VBORNET network with the aim of reviewing the evidence for these changes in Europe and discusses the many climatic, ecological, landscape and anthropogenic drivers. These can be divided into those directly related to climatic change, contributing to an expansion in the tick’s geographic range at extremes of altitude in central Europe, and at extremes of latitude in Scandinavia; those related to changes in the distribution of tick hosts, particularly roe deer and other cervids; other ecological changes such as habitat connectivity and changes in land management; and finally, anthropogenically induced changes. These factors are strongly interlinked and often not well quantified. Although a change in climate plays an important role in certain geographic regions, for much of Europe it is non-climatic factors that are becoming increasingly important. How we manage habitats on a landscape scale, and the changes in the distribution and abundance of tick hosts are important considerations during our assessment and management of the public health risks associated with ticks and tick-borne disease issues in 21st century Europe. Better understanding and mapping of the spread of I. ricinus (and changes in its abundance is, however, essential to assess the risk of the spread of infections transmitted by this vector species. Enhanced tick surveillance with harmonized approaches for comparison of data enabling the follow-up of trends at EU level will improve the messages on risk related to tick-borne diseases to policy makers, other stake holders and to the general public.

  17. Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum: prevalences and investigations on a new transmission path in small mammals and ixodid ticks.

    Science.gov (United States)

    Obiegala, Anna; Pfeffer, Martin; Pfister, Kurt; Tiedemann, Tim; Thiel, Claudia; Balling, Anneliese; Karnath, Carolin; Woll, Dietlinde; Silaghi, Cornelia

    2014-12-04

    Small mammals are crucial for the life history of ixodid ticks, but their role and importance in the transmission cycle of tick-borne pathogens is mostly unknown. Candidatus Neoehrlichia mikurensis (CNM) and Anaplasma phagocytophilum are both tick-borne pathogens, and rodents are discussed to serve as main reservoir hosts for CNM but not for the latter especially in Germany. Analysing the prevalence of both pathogens in small mammals and their ticks in endemic regions may help to elucidate possible transmission paths in small mammal populations and between small mammals and ticks. In 2012 and 2013, small mammals were trapped at three different sites in Germany. DNA was extracted from different small mammal tissues, from rodent neonates, foetuses and from questing and attached ticks. DNA samples were tested for CNM and A. phagocytophilum by real-time PCR. Samples positive for A. phagocytophilum were further characterized at the 16S rRNA gene locus. CNM was detected in 28.6% of small mammals and in 2.2% of questing and 3.8% of attached ticks. Altogether 33 positive ticks were attached to 17 different hosts, while positive ticks per host ranged between one and seven. The prevalences for this pathogen differed significantly within small mammal populations comparing sites (χ(2): 13.3987; p: 0.0004) and between sexes. Male rodents had an approximately two times higher chance of infection than females (OR: 1.9652; 95% CI: 1.32-2.92). The prevalence for CNM was 31.8% (95% CI: 22-44) in rodent foetuses and neonates (23 of 67) from positive dams, and 60% (95% CI: 35.7-80.25) of positive gravid or recently parturient rodents (9 out of 15) had at least one positive foetus or neonate. Anaplasma phagocytophilum was detected at a low percentage in rodents (0-5.6%) and host-attached ticks (0.5-2.9%) with no significant differences between rodent species. However, attached nymphs were significantly more often infected than attached larvae (χ(2): 25.091; p: <0.0001). This study

  18. Hap2, a novel gene in Babesia bigemina is expressed in tick stages, and specific antibodies block zygote formation

    Directory of Open Access Journals (Sweden)

    Minerva Camacho-Nuez

    2017-11-01

    Full Text Available Abstract Background Bovine babesiosis is a tick-borne disease caused by the protozoan parasites of the genus Babesia. In their host vector, Babesia spp. undergo sexual reproduction. Therefore, the development of sexual stages and the subsequent formation of the zygote are essential for the parasite to invade the intestinal cells of the vector tick and continue its life-cycle. HAP2/GCS1 is a protein identified in plants, protozoan parasites and other organisms that has an important role during membrane fusion in fertilization processes. The identification and characterization of HAP-2 protein in Babesia would be very significant to understand the biology of the parasite and to develop a transmission-blocking vaccine in the future. Results To isolate and sequence the hap2 gene DNA from an infected bovine with Babesia bigemina was purified. The hap2 gene was amplified, cloned and sequenced. The sequences of hap2 from four geographically different strains showed high conservation at the amino acid level, including the typical structure with a signal peptide and the HAP2/GSC domain. Antisera anti-HAP2 against the conserved extracellular region of the HAP2 amino acid sequence were obtained from rabbits. The expression of hap2 in the host and vector tissues was analyzed by using semi-quantitative RT-PCR, and the protein was examined by western blot and immunofluorescence. Based on the RT-PCR and WB results, HAP2 is expressed in both, sexual stages induced in vitro, and in infected ticks as well. We did not detect any expression in asexual erythrocytic stages of B. bigemina, relevantly anti-HAP2 specific antibodies were able to block zygotes formation in vitro. Conclusion Babesia bigemina HAP2 is expressed only in tick-infecting stages, and specific antibodies block zygote formation. Further studies regarding the function of HAP2 during tick infection may provide new insights into the molecular mechanisms of sexual reproduction of the parasite.

  19. Biocontrol of ticks by entomopathogenic nematodes. Research update.

    Science.gov (United States)

    Samish, M; Alekseev, E; Glazer, I

    2000-01-01

    Entomopathogenic nematodes (EPNs) are lethal to ticks even though they do not use their normal propagation cycle within tick cadavers. The tick Boophilus annulatus was found to be far more susceptible to EPNs than Hyalomma excavatum, Rhipicephalus bursa, or Rhipicephalus sanguineus. Ticks seem to be less susceptible to nematodes when feeding on a host. Preimaginal tick stages were less susceptible to nematodes than adult ticks. The mortality rate of unfed females was highest, followed by unfed males, and engorged females. The virulence of nematodes to ticks varied greatly among different nematode strains. In most cases, the Heterorhabditis sp. strains were the most virulent strains tested in petri dishes. In buckets containing sandy soil sprayed with 50 nematodes/cm2 and engorged B. annulatus females, the LT50 of the ticks was less than five days. The addition of manure to soil or a manure extract to petri dishes reduced nematode virulence. Since ticks spend most of their life cycle in the upper humid layer of the ground, and many nematode strains share this same ecological niche, the use of EPNs for biocontrol of ticks appears promising.

  20. Neoehrlichiosis: an emerging tick-borne zoonosis caused by Candidatus Neoehrlichia mikurensis.

    Science.gov (United States)

    Silaghi, Cornelia; Beck, Relja; Oteo, José A; Pfeffer, Martin; Sprong, Hein

    2016-03-01

    Candidatus Neoehrlichia mikurensis is an emerging tick-borne pathogen causing a systemic inflammatory syndrome mostly in persons with underlying hematologic or autoimmune diseases. As it is neither well-known nor well-recognized, it might be misdiagnosed as recurrence of the underlying disease or as an unrelated arteriosclerotic vascular event. The pathogen is transmitted by hard ticks of the genus Ixodes and is closely associated with rodents in which transplacental transmission occurs. Transovarial transmission in ticks has not yet been shown. Infection rates vary greatly in ticks and rodents, but the causes for its spatiotemporal variations are largely unknown. This review summarizes the current state of knowledge on the geographical distribution and clinical importance of Ca. N. mikurensis. By elucidating the life history traits of this pathogen and determining more accurately its incidence in the human population, a better assessment of its public health relevance can be made. Most urgent research needs are the in vitro-cultivation of the pathogen, the development of specific serological tests, the determination of the full genomic sequence, the routine implementation of molecular diagnosis in diseased patients with a particular panel of underlying diseases, and promoting the knowledge about neoehrlichiosis among general practitioners, hospital physicians and the risk groups such as forest workers or immune-compromised people to raise awareness about this disease that can easily be treated when correctly diagnosed.

  1. Ticks (Acari: Ixodidae) infesting some small mammals from Northern Turkey with new tick-host associations and locality records.

    Science.gov (United States)

    Keskin, Adem; Selçuk, Ahmet Yesari; Kefelioğlu, Haluk

    2017-12-01

    Ticks are obligate ectoparasites of a vast range of terrestrial vertebrates which may play an important role in the transmission of many zoonotic pathogens to humans and animals. In the current study, we performed an investigation on ticks infesting some small mammals captured from Samsun and Tokat provinces, Northern Turkey. One hundred forty-five mammalian samples belonging to four species, namely Cricetulus migratorius (n = 1), Apodemus flavicollis (n = 17), Crocidura suaveolens (n = 102) and Sorex volnuchini (n = 25), were examined for the presence of tick infestations. A total of 273 (74 larvae, 194 nymphs, 5 females) hard ticks were collected from 88 mammalian samples. Ticks were identified as Ixodes laguri (1 nymph), I. redikorzevi (22 larvae, 186 nymphs, 5 females), I. ricinus (52 larvae, 4 nymphs) and Rhipicephalus turanicus (3 nymphs). Here, we also provided new tick mammalian host associations for Turkey. In addition, I. laguri and I. redikorzevi ticks were recorded for the first time in Samsun province of Turkey.

  2. Risk of Lyme disease development after a tick bite

    Directory of Open Access Journals (Sweden)

    Mladenović Jovan

    2010-01-01

    Full Text Available Background/Aim. Despite numerous research of Lyme disease (LD, there are still many concerns about environmental of infectious agent of LD, as well as its prophylaxis, diagnosis and treatment. The aim of this work was to determine the risk of LD in relation to the way of removing ticks and duration of tick attachment. Methods. In the period from 2000 to 2007 a prospective study was conducted including persons with tick bite referred to the Institute of Epidemiology, Military Medical Academy, and followed for the occurrence of early Lyme disease up to six months after a tick bite. Epidemiological questionnaire was used to collect relevant information about the place and time of tick bites, the way of a removing tick, duration of tick attachment, remnants of a tick left in the skin (parts of the mouth device and the signs of clinical manifestations of LD. Duration of tick attachment was determined on the basis of size of engorged tick and epidemiological data. Removed ticks were determined by the key of Pomerancev. Professional removing of attached tick was considered to be removing of tick with mechanical means by healthcare personnel. Fisher's exact test, Chi squares test and calculation of the relative risk (RR were used for data analysis. Results. Of 3 126 patients with tick bite, clinical manifestations of LD were demonstrated in 19 (0.61%. In the group of subjects (n = 829 in which a tick was not removed professionally there were 17 (2.05% cases with LD, while in the group of respondents (n=2 297 in who a tick was removed professionally there were 2 (0.09% cases with LD after tick bite (RR, 23.55; p < 0.0001. The disease was most frequent in the group of respondents with incompletely and unprofessionally removed ticks (2.46%. In the groups of patients with unprofessionally but completely removed ticks LD occurred in 0.89%, while in the group of subjects with a tick removed by an expert, but incompletely in 0.78% cases. The disease occurred

  3. Bald Eagle nestling mortality associated with Argas radiatus and Argas ricei tick infestation and successful management with nest removal in Arizona, USA

    Science.gov (United States)

    Justice-Allen, Anne; Orr, Kathy; Schuler, Krysten L.; McCarty, Kyle; Jacobson, Kenneth; Meteyer, Carol U.

    2016-01-01

    Eight Bald Eagle (Haliaeetus leucocephalus) nestlings heavily infested with larval ticks were found in or under a nest near the confluence of the Verde and Salt rivers in Arizona in 2009-11. The 8-12-wk-old nestlings were slow to respond to stimuli and exhibited generalized muscle weakness or paresis of the pelvic limbs. Numerous cutaneous and subcutaneous hemorrhages were associated with sites of tick attachment. Ticks were identified as Argas radiatus and Argas ricei. Treatment with acaricides and infection with West Nile virus (WNV) may have confounded the clinical presentation in 2009 and 2010. However, WNV-negative birds exhibited similar signs in 2011. One nestling recovered from paresis within 36 h after the removal of all adult and larval ticks (>350) and was released within 3 wk. The signs present in the heavily infested Bald Eagle nestlings resembled signs associated with tick paralysis, a neurotoxin-mediated paralytic syndrome described in mammals, reptiles, and wild birds (though not eagles). Removal of the infested nest and construction of a nest platform in a different tree was necessary to break the cycle of infection. The original nesting pair constructed a new nest on the man-made platform and successfully fledged two Bald Eagles in 2012.

  4. Infection of Ixodes ricinus by Borrelia burgdorferi sensu lato in peri-urban forests of France.

    Directory of Open Access Journals (Sweden)

    Axelle Marchant

    Full Text Available Lyme borreliosis is the most common tick-borne disease in the northern hemisphere. In Europe, it is transmitted by Ixodes ticks that carry bacteria belonging to the Borrelia burgdorferi sensu lato complex. The objective of this work was to explore eco-epidemiological factors of Lyme borreliosis in peri-urban forests of France (Sénart, Notre-Dame and Rambouillet. We investigated whether the introduction of Tamias sibiricus in Sénart could alter the density of infected ticks. Moreover, the density and tick infection were investigated according to the tree species found in various patches of Sénart forest. For this purpose, ticks were sampled during 3 years. In the Sénart forest, the density of nymph and adult ticks showed no significant difference between 2008, 2009 and 2011. The nymph density varied significantly as a function of the month of collection. Regarding the nymphs, a higher rate of infection and infected density were found in 2009. Plots with chipmunks (C presented a lower density of both nymphs and adult ticks than plots without chipmunks (NC did. A higher rate of infection of nymphs with Borrelia was seen in C plots. The prevalence of the various species of Borrelia was also found to vary between C and NC plots with the year of the collect. The presence of chestnut trees positively influenced the density of both nymphs and adults. The infected nymph density showed a significant difference depending on the peri-urban forest studied, Sénart being higher than Rambouillet. The prevalence of Borrelia species also differed between the various forests studied. Concerning the putative role that Tamias sibiricus may play in the transmission of Borrelia, our results suggest that its presence is correlated with a higher rate of infection of questing ticks by Borrelia genospecies and if its population increases, it could play a significant role in the risk of transmission of Lyme borreliosis.

  5. Impact of climate trends on tick-borne pathogen transmission

    Directory of Open Access Journals (Sweden)

    Agustin eEstrada-Pena

    2012-03-01

    Full Text Available Recent advances in climate research together with a better understanding of tick-pathogen interactions, the distribution of ticks and the diagnosis of tick-borne pathogens raise questions about the impact of environmental factors on tick abundance and spread and the prevalence and transmission of tick-borne pathogens. While undoubtedly climate plays a role in the changes in distribution and seasonal abundance of ticks, it is always difficult to disentangle factors impacting on the abundance of tick hosts from those exerted by human habits. All together, climate, host abundance and social factors may explain the upsurge of epidemics transmitted by ticks to humans. Herein we focused on tick-borne pathogens that affect humans with pandemic potential. Borrelia burgdorferi s.l. (Lyme disease, Anaplasma phagocytophilum (human granulocytic anaplasmosis and tick-borne encephalitis virus (tick-borne encephalitis are transmitted by Ixodes spp. Crimean-Congo hemorrhagic fever virus (Crimean-Congo hemorrhagic fever is transmitted by Hyalomma spp. In this review, we discussed how vector tick species occupy the habitat as a function of different climatic factors, and how these factors impact on tick survival and seasonality. How molecular events at the tick-pathogen interface impact on pathogen transmission is also discussed. Results from statistically and biologically derived models are compared to show that while statistical models are able to outline basic information about tick distributions, biologically derived models are necessary to evaluate pathogen transmission rates and understand the effect of climatic variables and host abundance patterns on pathogen transmission. The results of these studies could be used to build early alert systems able to identify the main factors driving the subtle changes in tick distribution and seasonality and the prevalence of tick-borne pathogens.

  6. Molecular Detection and Identification of Rickettsia Species in Ticks (Acari: Ixodidae) Collected From Belize, Central America.

    Science.gov (United States)

    Polsomboon, Suppaluck; Hoel, David F; Murphy, Jittawadee R; Linton, Yvonne-Marie; Motoki, Maysa; Robbins, Richard G; Bautista, Kim; Bricen O, Ireneo; Achee, Nicole L; Grieco, John P; Ching, Wei-Mei; Chao, Chien-Chung

    2017-11-07

    Little is known about tick-borne rickettsial pathogens in Belize, Central America. We tested ixodid ticks for the presence of Rickettsia species in three of the six northern and western Belizean districts. Ticks were collected from domestic animals and tick drags over vegetation in 23 different villages in November 2014, February 2015, and May 2015. A total of 2,506 collected ticks were identified to the following species: Dermacentor nitens Neumann (46.69%), Rhipicephalus sanguineus (Latreille) (19.55%), Rhipicephalus microplus (Canestrini) (19.47%), Amblyomma cajennense complex (9.74%), Amblyomma maculatum Koch (3.47%), Amblyomma ovale Koch (0.68%), Ixodes nr affinis (0.16%), Amblyomma nr maculatum (0.12%), and Amblyomma nr oblongoguttatum (0.12%). Ticks were pooled according to species, life stage (larva, nymph, or adult), and location (n = 509) for DNA extraction and screened for genus Rickettsia by quantitative real-time polymerase chain reaction (qPCR). All 42 positive pools were found to be positive for spotted fever group (SFG) Rickettsia in pools of A. cajennense complex (n = 33), A. maculatum (n = 4), A. nr maculatum (n = 1), A. ovale (n = 1), R. sanguineus (n = 1), and I. nr affinis (n = 2). Rickettsia amblyommatis was identified from A. cajennense complex and A. nr maculatum. Rickettsia parkeri was found in A. maculatum, and Rickettsia sp. endosymbiont was detected in I. nr affinis. The presence of infected ticks suggests a risk of tick-borne rickettsioses to humans and animals in Belize. This knowledge can contribute to an effective tick management and disease control program benefiting residents and travelers. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  7. Detection of Rickettsia in Rhipicephalus sanguineus Ticks and Ctenocephalides felis Fleas from Southeastern Tunisia by Reverse Line Blot Assay

    Science.gov (United States)

    Khrouf, Fatma; M'Ghirbi, Youmna; Znazen, Abir; Ben Jemaa, Mounir; Hammami, Adnene

    2014-01-01

    Ticks (n = 663) and fleas (n = 470) collected from domestic animals from southeastern Tunisia were screened for Rickettsia infection using reverse line blot assay. Evidence of spotted fever group Rickettsia was obtained. We detected Rickettsia felis in fleas, Rickettsia massiliae Bar 29 and the Rickettsia conorii Israeli spotted fever strain in ticks, and Rickettsia conorii subsp. conorii and Rickettsia spp. in both arthropods. The sensitivity of the adopted technique allowed the identification of a new association between fleas and R. conorii subsp. conorii species. The presence of these vector-borne Rickettsia infections should be considered when diagnosing this disease in humans in Tunisia. PMID:24226919

  8. Coendangered hard-ticks: threatened or threatening?

    Directory of Open Access Journals (Sweden)

    Cozma Vasile

    2011-05-01

    Full Text Available Abstract The overwhelming majority of animal conservation projects are focused on vertebrates, despite most of the species on Earth being invertebrates. Estimates state that about half of all named species of invertebrates are parasitic in at least one stage of their development. The dilemma of viewing parasites as biodiversity or pest has been discussed by several authors. However, ticks were omitted. The latest taxonomic synopses of non-fossil Ixodidae consider valid 700 species. Though, how many of them are still extant is almost impossible to tell, as many of them are known only from type specimens in museums and were never collected since their original description. Moreover, many hosts are endangered and as part of conservation efforts of threatened vertebrates, a common practice is the removal of, and treatment for external parasites, with devastating impact on tick populations. There are several known cases when the host became extinct with subsequent coextinction of their ectoparasites. For our synoptic approach we have used the IUCN status of the host in order to evaluate the status of specifically associated hard-ticks. As a result, we propose a number of 63 coendangered and one extinct hard-tick species. On the other side of the coin, the most important issue regarding tick-host associations is vectorial transmission of microbial pathogens (i.e. viruses, bacteria, protozoans. Tick-borne diseases of threatened vertebrates are sometimes fatal to their hosts. Mortality associated with pathogens acquired from ticks has been documented in several cases, mostly after translocations. Are ticks a real threat to their coendangered host and should they be eliminated? Up to date, there are no reliable proofs that ticks listed by us as coendangered are competent vectors for pathogens of endangered animals.

  9. Borrelia burgdorferi outer surface protein C (OspC) binds complement component C4b and confers bloodstream survival.

    Science.gov (United States)

    Caine, Jennifer A; Lin, Yi-Pin; Kessler, Julie R; Sato, Hiromi; Leong, John M; Coburn, Jenifer

    2017-12-01

    Borrelia burgdorferi (Bb) is the causative agent of Lyme disease in the United States, a disease that can result in carditis, and chronic and debilitating arthritis and/or neurologic symptoms if left untreated. Bb survives in the midgut of the Ixodes scapularis tick, or within tissues of immunocompetent hosts. In the early stages of infection, the bacteria are present in the bloodstream where they must resist clearance by the innate immune system of the host. We have found a novel role for outer surface protein C (OspC) from B. burgdorferi and B. garinii in interactions with the complement component C4b and bloodstream survival in vivo. Our data show that OspC inhibits the classical and lectin complement pathways and competes with complement protein C2 for C4b binding. Resistance to complement is important for maintenance of the lifecycle of Bb, enabling survival of the pathogen within the host as well as in the midgut of a feeding tick when ospC expression is induced. © 2017 John Wiley & Sons Ltd.

  10. Geographical and seasonal correlation of multiple sclerosis to sporadic schizophrenia

    Directory of Open Access Journals (Sweden)

    Fritzsche Markus

    2002-12-01

    Full Text Available Abstract Background Clusters by season and locality reveal a striking epidemiological overlap between sporadic schizophrenia and multiple sclerosis (MS. As the birth excesses of those individuals who later in life develop schizophrenia mirror the seasonal distribution of Ixodid ticks, a meta analysis has been performed between all neuropsychiatric birth excesses including MS and the epidemiology of spirochaetal infectious diseases. Results The prevalence of MS and schizophrenic birth excesses entirely spares the tropical belt where human treponematoses are endemic, whereas in more temperate climates infection rates of Borrelia garinii in ticks collected from seabirds match the global geographic distribution of MS. If the seasonal fluctuations of Lyme borreliosis in Europe are taken into account, the birth excesses of MS and those of schizophrenia are nine months apart, reflecting the activity of Ixodes ricinus at the time of embryonic implantation and birth. In America, this nine months' shift between MS and schizophrenic births is also reflected by the periodicity of Borrelia burgdorferi transmitting Ixodes pacificus ticks along the West Coast and the periodicity of Ixodes scapularis along the East Coast. With respect to Ixodid tick activity, amongst the neuropsychiatric birth excesses only amyotrophic lateral sclerosis (ALS shows a similar seasonal trend. Conclusion It cannot be excluded at present that maternal infection by Borrelia burgdorferi poses a risk to the unborn. The seasonal and geographical overlap between schizophrenia, MS and neuroborreliosis rather emphasises a causal relation that derives from exposure to a flagellar virulence factor at conception and delivery. It is hoped that the pathogenic correlation of spirochaetal virulence to temperature and heat shock proteins (HSP might encourage a new direction of research in molecular epidemiology.

  11. Interaction of the tick immune system with transmitted pathogens

    Directory of Open Access Journals (Sweden)

    Ondrej eHajdusek

    2013-07-01

    Full Text Available Ticks are hematophagous arachnids transmitting a wide variety of pathogens including viruses, bacteria, and protozoans to their vertebrate hosts. The tick vector competence has to be intimately linked to the ability of transmitted pathogens to evade tick defense mechanisms encountered on their route through the tick body comprising midgut, hemolymph, salivary glands or ovaries. Tick innate immunity is, like in other invertebrates, based on an orchestrated action of humoral and cellular immune responses. The direct antimicrobial defense in ticks is accomplished by a variety of small molecules such as defensins, lysozymes or by tick-specific antimicrobial compounds such as microplusin/hebraein or 5.3-kDa family proteins. Phagocytosis of the invading microbes by tick hemocytes seems to be mediated by the primordial complement-like system composed of thioester-containing proteins, fibrinogen-related lectins and convertase-like factors. Moreover, an important role in survival of the ingested microbes seems to be played by host proteins and redox balance maintenance in the tick midgut. Here, we summarize recent knowledge about the major components of tick immune system and focus on their interaction with the relevant tick-transmitted pathogens, represented by spirochetes (Borrelia, rickettsiae (Anaplasma, and protozoans (Babesia. Availability of the tick genomic database and feasibility of functional genomics based on RNA interference greatly contribute to the understanding of molecular and cellular interplay at the tick-pathogen interface and may provide new targets for blocking the transmission of tick pathogens.

  12. A retrospective study of the characterization of Rickettsia species in ticks collected from humans.

    Science.gov (United States)

    Blanda, Valeria; Torina, Alessandra; La Russa, Francesco; D'Agostino, Rosalia; Randazzo, Kety; Scimeca, Salvatore; Giudice, Elisabetta; Caracappa, Santo; Cascio, Antonio; de la Fuente, José

    2017-06-01

    Rickettsiae (family Rickettsiaceae, order Rickettsiales) are obligate intracellular bacteria transmitted by arthropod vectors. Several Rickettsia species causing vector-borne rickettsioses belong to the spotted fever group (SFG). Traditionally, Rickettsia conorii has been considered as the main etiologic agent of Mediterranean spotted fever. However, the molecular characterization of rickettsiae allowed identifying other species involved in spotted fever in the Mediterranean region. In this study, 42 ticks collected from humans were subjected to morphological identification and molecular characterization of Rickettsia species potentially involved in human rickettsiosis in Sicily. Fourteen ticks positive to at least two Rickettsia spp. molecular markers were used in the study. Identified Rickettsia spp. included R. conorii, found in Rhipicephalus sanguineus sensu lato and Rhipicephalus turanicus, Rickettsia aeschlimannii found in Hyalomma marginatum, Hyalomma lusitanicum, Dermacentor marginatus and Ixodes ricinus, Rickettsia massiliae found in R. turanicus and R. sanguineus s.l., and Rickettsia slovaca found in D. marginatus and R. sanguineus s.l. Our results showed a great variety of zoonotic Rickettsia spp. in ticks collected from humans in Sicily. The Rickettsia spp. reported in this study were identified in previously recognized or new potential tick vectors in Europe, highlighting the risk of infection by different Rickettsia spp. for humans bitten by ticks in Sicily. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  13. Delay differential systems for tick population dynamics.

    Science.gov (United States)

    Fan, Guihong; Thieme, Horst R; Zhu, Huaiping

    2015-11-01

    Ticks play a critical role as vectors in the transmission and spread of Lyme disease, an emerging infectious disease which can cause severe illness in humans or animals. To understand the transmission dynamics of Lyme disease and other tick-borne diseases, it is necessary to investigate the population dynamics of ticks. Here, we formulate a system of delay differential equations which models the stage structure of the tick population. Temperature can alter the length of time delays in each developmental stage, and so the time delays can vary geographically (and seasonally which we do not consider). We define the basic reproduction number [Formula: see text] of stage structured tick populations. The tick population is uniformly persistent if [Formula: see text] and dies out if [Formula: see text]. We present sufficient conditions under which the unique positive equilibrium point is globally asymptotically stable. In general, the positive equilibrium can be unstable and the system show oscillatory behavior. These oscillations are primarily due to negative feedback within the tick system, but can be enhanced by the time delays of the different developmental stages.

  14. The Recent Evolution of a Maternally-Inherited Endosymbiont of Ticks Led to the Emergence of the Q Fever Pathogen, Coxiella burnetii.

    Directory of Open Access Journals (Sweden)

    Olivier Duron

    2015-05-01

    Full Text Available Q fever is a highly infectious disease with a worldwide distribution. Its causative agent, the intracellular bacterium Coxiella burnetii, infects a variety of vertebrate species, including humans. Its evolutionary origin remains almost entirely unknown and uncertainty persists regarding the identity and lifestyle of its ancestors. A few tick species were recently found to harbor maternally-inherited Coxiella-like organisms engaged in symbiotic interactions, but their relationships to the Q fever pathogen remain unclear. Here, we extensively sampled ticks, identifying new and atypical Coxiella strains from 40 of 58 examined species, and used this data to infer the evolutionary processes leading to the emergence of C. burnetii. Phylogenetic analyses of multi-locus typing and whole-genome sequencing data revealed that Coxiella-like organisms represent an ancient and monophyletic group allied to ticks. Remarkably, all known C. burnetii strains originate within this group and are the descendants of a Coxiella-like progenitor hosted by ticks. Using both colony-reared and field-collected gravid females, we further establish the presence of highly efficient maternal transmission of these Coxiella-like organisms in four examined tick species, a pattern coherent with an endosymbiotic lifestyle. Our laboratory culture assays also showed that these Coxiella-like organisms were not amenable to culture in the vertebrate cell environment, suggesting different metabolic requirements compared to C. burnetii. Altogether, this corpus of data demonstrates that C. burnetii recently evolved from an inherited symbiont of ticks which succeeded in infecting vertebrate cells, likely by the acquisition of novel virulence factors.

  15. Pet ownership increases human risk of encountering ticks.

    Science.gov (United States)

    Jones, E H; Hinckley, A F; Hook, S A; Meek, J I; Backenson, B; Kugeler, K J; Feldman, K A

    2018-02-01

    We examined whether pet ownership increased the risk for tick encounters and tickborne disease among residents of three Lyme disease-endemic states as a nested cohort within a randomized controlled trial. Information about pet ownership, use of tick control for pets, property characteristics, tick encounters and human tickborne disease were captured through surveys, and associations were assessed using univariate and multivariable analyses. Pet-owning households had 1.83 times the risk (95% CI = 1.53, 2.20) of finding ticks crawling on and 1.49 times the risk (95% CI = 1.20, 1.84) of finding ticks attached to household members compared to households without pets. This large evaluation of pet ownership, human tick encounters and tickborne diseases shows that pet owners, whether of cats or dogs, are at increased risk of encountering ticks and suggests that pet owners are at an increased risk of developing tickborne disease. Pet owners should be made aware of this risk and be reminded to conduct daily tick checks of all household members, including the pets, and to consult their veterinarian regarding effective tick control products. © 2017 Blackwell Verlag GmbH.

  16. The wild life of tick-borne pathogens

    OpenAIRE

    Hofmeester, Tim R.

    2016-01-01

    Diseases that are transmitted by arthropod vectors from animal hosts to humans – so called zoonotic vector-borne diseases – have increased in incidence in the last decades. In North America and Europe, tick-borne pathogens cause the majority of vector-borne diseases, including Lyme borreliosis and tick-borne encephalitis. The pathogens causing these diseases are transmitted by tick species within the Ixodes ricinus complex. These are generalist ticks that have a multi-year lifecycle with thre...

  17. A Tick on the Move?

    Centers for Disease Control (CDC) Podcasts

    2016-08-04

    CDC’s tick expert, Dr. Christopher Paddock, discusses ticks found in a new location.  Created: 8/4/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/4/2016.

  18. Efficacy of orally administered powdered aloe juice (Aloe ferox against ticks on cattle and ticks and fleas on dogs

    Directory of Open Access Journals (Sweden)

    J.J. Fourie

    2005-06-01

    Full Text Available The efficacy of orally administered powdered aloe juice (Aloe ferox was evaluated against ticks on cattle and against ticks and fleas on dogs. Twelve calves were each infested over a 25-day period with approximately 4000 larvae of Rhipicephalus (Boophilus decoloratus and allocated to 3 groups of 4 calves each. Three days after the last larval infestation and daily for 22 days thereafter, the calves in 1 group were fed 5 mg / kg body weight and those in another 25 mg / kg body weight of powdered aloe juice incorporated in game maintenance pellets, while the animals in the 3rd group received only pellets. Detached female ticks were collected daily and counted and the weights and the fertility of groups of 50 engorged female ticks collected from the animals were ascertained. The powdered aloe juice in the game maintenance pellets had no effect on the tick burdens of the calves or on the fertility of the ticks. Six dogs, in each of 2 groups, were treated daily for 15 consecutive days, commencing on Day -5 before the 1st tick infestation, with either 0.39 g or 0.74 g of powdered aloe juice, administered orally in gelatin capsules, while a 3rd group of 6 dogs served as untreated controls. All the dogs were challenged with Haemaphysalis leachi on Days 0 and +7, and with Ctenocephalides felis on Days+1and +8, and efficacy assessments were made 1 day after flea and 2 days after tick challenge, respectively. Treatment was not effective against ticks or fleas on the dogs.

  19. Molecular methods routinely used to detect Coxiella burnetii in ticks cross-react with Coxiella-like bacteria

    Directory of Open Access Journals (Sweden)

    Jourdain Elsa

    2015-11-01

    Full Text Available Background: Q fever is a widespread zoonotic disease caused by Coxiella burnetii. Ticks may act as vectors, and many epidemiological studies aim to assess C. burnetii prevalence in ticks. Because ticks may also be infected with Coxiella-like bacteria, screening tools that differentiate between C. burnetii and Coxiella-like bacteria are essential. Methods: In this study, we screened tick specimens from 10 species (Ornithodoros rostratus, O. peruvianus, O. capensis, Ixodes ricinus, Rhipicephalus annulatus, R. decoloratus, R. geigy, O. sonrai, O. occidentalis, and Amblyomma cajennense known to harbor specific Coxiella-like bacteria, by using quantitative PCR primers usually considered to be specific for C. burnetii and targeting, respectively, the IS1111, icd, scvA, p1, and GroEL/htpB genes. Results: We found that some Coxiella-like bacteria, belonging to clades A and C, yield positive PCR results when screened with primers initially believed to be C. burnetii-specific. Conclusions: These results suggest that PCR-based surveys that aim to detect C. burnetii in ticks by using currently available methods must be interpreted with caution if the amplified products cannot be sequenced. Future molecular methods that aim at detecting C. burnetii need to take into account the possibility that cross-reactions may exist with Coxiella-like bacteria.

  20. Immunization of Cattle with Tick Salivary Gland Extracts

    Directory of Open Access Journals (Sweden)

    Ali Nikpay

    2016-01-01

    Full Text Available Background: Rhipicephalus (Boophilus annulatus tick is one of the most important ectoparasite of cattle. Re­cently, several laboratories in the world have been concentrated on immunizing cattle against tick using various types of tissue extracts of ticks. The aim of this study was to evaluate the effect of immunization of cattle with tick salivary gland extract on biological parameters of ticks and humoral immune responses of cattle.Methods: Fourteen more dominant protein bands identified as immunogenic by Western-blot analysis were eluted from polyacrylamide gel. Test and control groups were injected three times with eluted proteins and sterile PBS (pH= 7.2 respectively with equivalent amount of adjuvant. After four weeks a tick challenge was performed. Fi­nally, biological parameters of collected engorged female ticks were recorded and humoral immune responses to immunization measured by ELISA.Results: The results indicated immunization of cattle resulted in reduction in mean tick counts, attachment, en­gorgement weights, feeding index, egg mass weight, hatchability and fertility index (respectively 63.1%, 62.6%, 30.2%, 36.4%, 40%, 78.7% and 13.3% and increased duration of feeding, pre-oviposition and incubation period of eggs (respectively 8.6%, 45 and 31.34%. All changes were statistically significant (P< 0.05. Results showed an increase in antibody production of test group from the first week after immunization. The antibody level was boosted following tick infestation.Conclusion: This investigation indicates that immunization of cattle with these antigens could induce a protective immune response against Rh. (B. annulatus tick that would be expected to provide a safe non-chemical means of tick control.

  1. Catalase is a determinant of the colonization and transovarial transmission of Rickettsia parkeri in the Gulf Coast tick Amblyomma maculatum.

    Science.gov (United States)

    Budachetri, K; Kumar, D; Karim, S

    2017-08-01

    The Gulf Coast tick (Amblyomma maculatum) has evolved as a competent vector of the spotted-fever group rickettsia, Rickettsia parkeri. In this study, the functional role of catalase, an enzyme responsible for the degradation of toxic hydrogen peroxide, in the colonization of the tick vector by R. parkeri and transovarial transmission of this pathogen to the next tick generation, was investigated. Catalase gene (CAT) expression in midgut, salivary glands and ovarian tissues exhibited a 2-11-fold increase in transcription level upon R. parkeri infection. Depletion of CAT transcripts using an RNA-interference approach significantly reduced R. parkeri infection levels in midgut and salivary gland tissues by 53-63%. The role of CAT in transovarial transmission of R. parkeri was confirmed by simultaneously blocking the transcript and the enzyme by injecting double-stranded RNA for CAT and a catalase inhibitor (3-amino-1,2,4-triazole) into gravid females. Simultaneous inhibition of the CAT transcript and the enzyme significantly reduced the egg conversion ratio with a 44% reduction of R. parkeri transovarial transmission. These data suggest that catalase is required for rickettsial colonization of the tick vector and transovarial transmission to the next generation. © 2017 The Royal Entomological Society.

  2. Ticks infected via co-feeding transmission can transmit Lyme borreliosis to vertebrate hosts

    Czech Academy of Sciences Publication Activity Database

    Belli, A.; Sarr, A.; Rais, O.; Rego, Ryan O. M.; Voordouw, M.J.

    2017-01-01

    Roč. 7, JUL 10 (2017), č. článku 5006. ISSN 2045-2322 Institutional support: RVO:60077344 Keywords : Ixodes ricinus ticks * disease spirochete * borne pathogens * r-0 model * vector * mice * immunity * persistence Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine OBOR OECD: Veterinary science Impact factor: 4.259, year: 2016

  3. Rickettsia species infecting Amblyomma ticks from an area endemic for Brazilian spotted fever in Brazil Rickettsia infectando carrapatos Amblyomma de uma área endêmica para febre maculosa Brasileira no Brasil

    Directory of Open Access Journals (Sweden)

    Elizângela Guedes

    2011-12-01

    Full Text Available This study reports rickettsial infection in Amblyomma cajennense and Amblyomma dubitatum ticks collected in an area of the state of Minas Gerais, Brazil, where Brazilian spotted fever is considered endemic. For this purpose, 400 adults of A. cajenennse and 200 adults of A. dubitatum, plus 2,000 larvae and 2,000 nymphs of Amblyomma spp. were collected from horses and from the vegetation. The ticks were tested for rickettsial infection through polymerase chain reaction (PCR protocols targeting portions of three rickettsial genes (gltA, ompA, and ompB. Only two free-living A. cajennense adult ticks, and four pools of free-living Amblyomma spp. nymphs were shown to contain rickettsial DNA. PCR products from the two A. cajennense adult ticks were shown to be identical to corresponding sequences of the Rickettsia rickettsii strain Sheila Smith. DNA sequences of gltA-PCR products of the four nymph pools of Amblyomma spp. revealed a new genotype, which was shown to be closest (99.4% to the corresponding sequence of Rickettsia tamurae. Our findings of two R. rickettsii-infected A. cajennense ticks corroborate the endemic status of the study area, where human cases of BSF were reported recently. In addition, we report for the first time a new Rickettsia genotype in Brazil.Este trabalho relata infecção por Rickettsia em carrapatos Amblyomma cajennense e Amblyomma dubitatum, colhidos numa área do Estado de Minas Gerais, onde a febre maculosa brasileira (FMB é considerada endêmica. Para esse estudo, 400 adultos de A. cajennense, 200 adultos de A. dubitatum, 2.000 larvas e 2.000 ninfas de Amblyomma spp. foram colhidas de equinos e da vegetação. Os carrapatos foram testados para infecção por rickettsia através de reação em cadeia pela polimerase (PCR direcionada a fragmentos de três genes de rickettsia (gltA, ompA, e ompB. Apenas 2 A. cajennense adultos de vida livre, e 4 grupos de ninfas de Amblyomma spp. continham DNA de rickettsia. Os produtos

  4. Laboratory Study on Biological Control of Ticks (Acari: Ixodidae by Entomopathogenic Indigenous Fungi (Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    M Abdigoudarzi

    2009-12-01

    Full Text Available Background: Chemical control method using different acaricides as spray, dipping solution or pour-on is routinely used for controlling ticks. Biological control agents are favorable due to their safety for animals and environment. Entomopathogenic fungi such as Beauveria bassiana are well known for controlling ticks. In this study, two Iranian indigenous strains of B. bassiana (B. bassiana 5197 and B. bassiana Evin were selected and grown on specific me­dia. The pathogenic effects of these strains were evaluated on adult stages of two Iranian Ixodidae members (H. anatolicum anatolicum Koch 1844, and H. marginatum Koch 1844 by dipping method.Methods: Two Iranian strains of Beauveria bassiana (Beauveria bassiana 5197 and Beauveria bassiana Evin were selected and were grown successfully on specific media. The pathogenic effects of these strains were evaluated on adult stages of Iranian Ixodidae members such as, Hyalomma anatolicum anatolicum and H. marginatum by dipping method (these ticks were grown up at laboratory conditions during 2002 up to 2003 and still it is continued .Results: There was no effect of strain 5197 on mortality or fecundity rates for ticks. There was acute phase sign of paralysis in test group after dipping ticks in suspension made from Evin strain of B. bassiana. In addition, the test groups were totally died after four months, but the control groups survived for six months.Conclusion: High concentration of fungal spores is needed for inducing fungal infection. Additional study using different strains and fungi on Iranian ticks is proposed. 

  5. The application of lambda-cyhalothrin in tick control.

    Science.gov (United States)

    Jurisic, Aleksandar D; Petrovic, Aleksandra P; Rajkovic, Dragana V; Nicin, Slobodan Dj

    2010-09-01

    In recent years, in urban areas of Novi Sad, unique ecological conditions, specific floristic and faunistic composition and poor habits of citizens in sense of public health, facilitate the development and maintenance of ticks. Regarding the importance of ticks as vectors of severe human and animal diseases, complex and detailed studies are conducted with an aim to find the most efficient methods for tick control. Two tick species, Ixodes ricinus and Dermacentor marginatus, were identified during a 3-year period on the territory of Municipality of Novi Sad. During 2006, the efficacy of the pyrethroid lambda-cyhalothrin in tick control varied from 60.7 to 100%. The highest efficacy recorded in 2007 was 92.3%. The efficacy of lambda-cyhalothrin in 2008 varied from 39.1 to 100%. Lambda-cyhalothrin showed high efficacy in tick control at localities which were improved before the application (mowed, litter removed, abundance control and euthanasia of abandoned cats and dogs). The results of this research indicate that lambda-cyhalothrin has a toxic effect on ticks and could be used as efficient acaricide for tick control, although its efficacy depends on formulation, terrain features and methods of application.

  6. Novel Immunomodulators from Hard Ticks Selectively Reprogramme Human Dendritic Cell Responses

    Czech Academy of Sciences Publication Activity Database

    Preston, S. G.; Majtán, J.; Kouremenou, C.; Rysnik, O.; Burger, L.F.; Cabezas Cruz, Alejandro; Guzman, M.C.; Nunn, M. A.; Paesen, G.C.; Nuttall, P.A.; Austyn, J.M.

    2013-01-01

    Roč. 9, č. 6 (2013), e1003450 E-ISSN 1553-7374 Institutional support: RVO:60077344 Keywords : scapularis salivary protein * histamine-binding proteins * tumor necrosis factor Subject RIV: EC - Immunology Impact factor: 8.057, year: 2013

  7. A tick B-cell inhibitory protein from salivary glands of the hard tick, Hyalomma asiaticum asiaticum

    International Nuclear Information System (INIS)

    Yu Da; Liang Jiangguo; Yu Haining; Wu Haifeng; Xu Chunhua; Liu Jingze; Lai Ren

    2006-01-01

    Some studies done to date suggest that B-cell inhibitory factor occurred in tick saliva. In this study, a novel protein having B-cell inhibitory activity was purified and characterized from the salivary glands of the hard tick, Hyalomma asiaticum asiaticum. This protein was named B-cell inhibitory factor (BIF). The cDNA encoding BIF was cloned by cDNA library screening. The predicted protein from the cDNA sequence is composed of 138 amino acids including the mature BIF. No similarity was found by Blast search. The lipopolysaccharide-induced B-cell proliferation was inhibited by BIF. This is First report of the identification and characterization of B-cell inhibitory protein from tick. The current study facilitates the study of identifying the interaction among tick, Borrelia burgdorferi, the causative agent of Lyme disease, and host

  8. Mapping the distribution of tick-borne encephalitis in mainland China.

    Science.gov (United States)

    Sun, Ruo-Xi; Lai, Sheng-Jie; Yang, Yang; Li, Xin-Lou; Liu, Kun; Yao, Hong-Wu; Zhou, Hang; Li, Yu; Wang, Li-Ping; Mu, Di; Yin, Wen-Wu; Fang, Li-Qun; Yu, Hong-Jie; Cao, Wu-Chun

    2017-06-01

    Tick-borne encephalitis (TBE) has become an increasing public health threat in recent years, ranging from Europe, through far-eastern Russia to Japan and northern China. However, the neglect of its expansion and scarce analyses of the dynamics have made the overall disease burden and the risk distribution of the disease being unclear in mainland China. In this study, we described epidemiological characteristics of 2117 reported human TBE cases from 2006 to 2013 in mainland China. About 99% of the cases were reported in forest areas of northeastern China, and 93% of reported infections occurred during May-July. Cases were primarily male (67%), mostly in 30-59 years among all age-gender groups. Farmers (31.6%), domestic workers (20.1%) and forest workers (17.9%) accounted for the majority of the patients, and the proportions of patients from farmers and domestic workers were increasing in recent years. The epidemiological features of TBE differed slightly across the affected regions. The distribution and features of the disease in three main endemic areas of mainland China were also summarized. Using the Boosted Regression Trees (BRT) model, we found that the presence of TBE was significantly associated with a composite meteorological index, altitude, the coverage of broad-leaved forest, the coverage of mixed broadleaf-conifer forest, and the distribution of Ixodes persulcatus (I. persulcatus) ticks. The model-predicted probability of presence of human TBE cases in mainland China was mapped at the county level. The spatial distribution of human TBE in China was largely driven by the distributions of forests and I. persulcatus ticks, altitude, and climate. Enhanced surveillance and intervention for human TBE in the high-risk regions, particularly on the forest areas in north-eastern China, is necessary to prevent human infections. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  9. Simulation of climate-tick-host-landscape interactions: Effects of shifts in the seasonality of host population fluctuations on tick densities.

    Science.gov (United States)

    Wang, Hsiao-Hsuan; Grant, W E; Teel, P D; Hamer, S A

    2015-12-01

    Tick vector systems are comprised of complex climate-tick-host-landscape interactions that are difficult to identify and estimate from empirical observations alone. We developed a spatially-explicit, individual-based model, parameterized to represent ecological conditions typical of the south-central United States, to examine effects of shifts in the seasonal occurrence of fluctuations of host densities on tick densities. Simulated shifts in the seasonal occurrence of periods of high and low host densities affected both the magnitude of unfed tick densities and the seasonality of tick development. When shifting the seasonal densities of all size classes of hosts (small, medium, and large) synchronously, densities of nymphs were affected more by smaller shifts away from the baseline host seasonality than were densities of larval and adult life stages. When shifting the seasonal densities of only a single size-class of hosts while holding other size classes at their baseline levels, densities of larval, nymph, and adult life stages responded differently. Shifting seasonal densities of any single host-class earlier resulted in a greater increase in adult tick density than when seasonal densities of all host classes were shifted earlier simultaneously. The mean densities of tick life stages associated with shifts in host densities resulted from system-level interactions of host availability with tick phenology. For example, shifting the seasonality of all hosts ten weeks earlier resulted in an approximately 30% increase in the relative degree of temporal co-occurrence of actively host-seeking ticks and hosts compared to baseline, whereas shifting the seasonality of all hosts ten weeks later resulted in an approximately 70% decrease compared to baseline. Differences among scenarios in the overall presence of active host-seeking ticks in the system were due primarily to the degree of co-occurrence of periods of high densities of unfed ticks and periods of high densities

  10. Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica.

    Science.gov (United States)

    Campos-Calderón, Liliana; Ábrego-Sánchez, Leyda; Solórzano-Morales, Antony; Alberti, Alberto; Tore, Gessica; Zobba, Rosanna; Jiménez-Rocha, Ana E; Dolz, Gaby

    2016-10-01

    Although vector-borne diseases are globally widespread with considerable impact on animal production and on public health, few reports document their presence in Central America. This study focuses on the detection and molecular identification of species belonging to selected bacterial genera (Ehrlichia, Anaplasma and Rickettsia) in ticks sampled from dogs in Costa Rica by targeting several genes: 16S rRNA/dsb genes for Ehrlichia; 16S rRNA/groEL genes for Anaplasma, and ompA/gltA/groEL genes for Rickettsia. PCR and sequence analyses provides evidences of Ehrlichia canis, Anaplasma platys, and Anaplasma phagocytophilum infection in Rhipicephalus sanguineus s.l ticks, and allow establishing the presence of Rickettsia monacensis in Ixodes boliviensis. Furthermore, the presence of recently discovered Mediterranean A. platys-like strains is reported for the first time in Central America. Results provide new background on geographical distribution of selected tick-transmitted bacterial pathogens in Costa Rica and on their molecular epidemiology, and are pivotal to the development of effective and reliable diagnostic tools in Central America. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. First evidence of [i]Babesia venatorum[/i] and [i]Babesia capreoli[/i] in questing Ixodes ricinus ticks in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Kristyna Venclikova

    2015-05-01

    Full Text Available Introduction and objective. [i]Ixodes ricinus[/i] is the most common tick species occurring in Central Europe and it serves as a principal vector of emerging human pathogens. The aim of this study was to determine the prevalence of [i]Babesia spp[/i]. in host-seeking [i]I. ricinus[/i] in urban and natural habitats. Materials and methods. PCR was applied on samples to assess prevalence of [i]Babesia spp.[/i] in questing ixodid ticks. Sequencing was used for [i]Babesia[/i] species determination. Results. 1,473 [i]I. ricinus[/i] ticks (1,294 nymphs, 99 males and 80 females were examined for the presence of [i]Babesia spp[/i]. at the two study sites. Minimum infection rate for [i]Babesia[/i] spp. was found to be 0.5% (infected I. ricinus nymphs were only detected in the natural ecosystem. Two[i] Babesia[/i] species were identified by sequencing: [i]B. venatorum[/i] (formerly called[i] Babesia[/i] sp. EU1 and [i]B. capreoli. [/i] Conclusions. The results obtained represent the first evidence of the occurrence of [i]B. venatorum[/i] and [i]B. capreoli[/i] in host-seeking[i] I. ricinus[/i] ticks in the Czech Republic.

  12. Novel Babesia and Hepatozoon agents infecting non-volant small mammals in the Brazilian Pantanal, with the first record of the tick Ornithodoros guaporensis in Brazil.

    Science.gov (United States)

    Wolf, Rafael William; Aragona, Mônica; Muñoz-Leal, Sebastián; Pinto, Leticia Borges; Melo, Andréia Lima Tomé; Braga, Isis Assis; Costa, Jackeliny dos Santos; Martins, Thiago Fernandes; Marcili, Arlei; Pacheco, Richard de Campos; Labruna, Marcelo B; Aguiar, Daniel Moura

    2016-04-01

    Taking into account the diversity of small terrestrial mammals of the Pantanal, the present study aimed to verify the occurrence of infection by Ehrlichia spp., Anaplasma spp., Rickettsia spp., Hepatozoon spp., Babesia spp. and parasitism by ticks in non-volant small mammals collected in the Brazilian Pantanal. Samples of blood, liver and spleen were collected from 64 captured animals, 22 marsupials and 42 rodents. Pathogen detection was performed by the use of genus-specific Polymerase Chain Reaction (PCR) assays. Ticks collected from the animals consisted of Amblyomma sculptum and Amblyomma triste nymphs, and Ornithodoros guaporensis larvae. None of the vertebrate samples (blood, liver, or spleen) yielded detectable DNA of Rickettsia spp. or Ehrlichia spp. The blood of the rodent Hylaeamys megacephalus yielded an Anaplasma sp. genotype (partial 16S rRNA gene) 99% similar to multiple Anaplasma spp. genotypes around the world. The blood of three rodents of the species Calomys callosus were positive for a novel Hepatozoon sp. agent, phylogenetically related (18S rDNA gene) to distinct Hepatozoon genotypes that have been detected in rodents from different parts of the world. One marsupial (Monodelphis domestica) and three rodents (Thrichomys pachyurus) were positive to novel piroplasmid genotypes, phylogenetically (18S rDNA gene) related to Theileria bicornis, Cytauxzoon manul, and Cytauxzoon felis. The present study provides the first molecular detection of Hepatozoon sp. and piroplasmids in small mammals in Brazil. Additionally, we expanded the distribution of O. guaporensis to Brazil, since this tick species was previously known to occur only in Bolivia. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Pigeon tick bite

    DEFF Research Database (Denmark)

    Rolla, G; Heffler, E; Boita, M

    2018-01-01

    Anaphylaxis is a serious systemic allergic reaction with rapid onset and potentially life-threatening. We report in detail a case of severe nocturnal anaphylaxis due to pigeon tick bite showing the diagnostic value of the extract and the recombinant allergen in the diagnostic procedures (basophil...... reagents. Because of the growing number of pigeons in Middle and Southern Europe cities, some cases of idiopathic anaphylaxis could potentially be caused by A. reflexus in those countries. The identification of pigeon ticks as a trigger of anaphylaxis would greatly improve medical care and advice...

  14. Occurrence of Hepatozoon canis and Cercopithifilaria bainae in an off-host population of Rhipicephalus sanguineus sensu lato ticks.

    Science.gov (United States)

    Ramos, Rafael Antonio Nascimento; Giannelli, Alessio; Carbone, Domenico; Baneth, Gad; Dantas-Torres, Filipe; Otranto, Domenico

    2014-04-01

    Hepatozoon canis (Eucoccidiorida, Hepatozoidae) and the filarioid Cercopithifilaria bainae (Spirurida, Onchocercidae) are tick-transmitted infectious agents of dogs, highly prevalent in the Mediterranean basin in association with Rhipicephalus sanguineus sensu lato. Ticks were collected from the environment every 25±2 days in a confined location in southern Italy where a community of dogs lives, from August 2012 to July 2013. In order to study the occurrence of H. canis and C. bainae, 1091 tick specimens (770 adults; 271 nymphs, and 50 larvae) were dissected, and oocysts of H. canis and larvae of C. bainae were morphologically identified. Out of 1091 dissected ticks, 13.47% (n=147) were positive for H. canis, with the highest prevalence recorded in unfed adults (16.4%; 126/770), followed by nymphs collected as larvae and allowed to moult (14%; 7/50), unfed nymphs dissected immediately after collection (3%; 8/271), and adults collected as nymphs and allowed to moult (2%; 6/271). The highest number of H. canis-positive ticks (35.5%; 43/121; Pcanis and C. bainae infections in the study area seem to be dependent on the seasonality of vector tick populations. Hence, dogs living in these areas are more exposed to both pathogens during the warmer months. These findings provide new insights into the ecology of both H. canis and C. bainae. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. [Characteristics of clinical features of tick-borne encephalitis in Crimea].

    Science.gov (United States)

    Borisova, M A; Markeshin, S Ia; Riazanova, N Ia; Degtiareva, A A; Zakharova, T F; Bychkova, M V

    1989-12-01

    The analysis of data collected from the clinical epidemiological and virological surveys in 1985-1988 on the incidence of arbovirus infection in population provided evidence for circulation of tick-borne encephalitis (TBE) virus in the Crimea. Etiological relevance of TBE virus in the onset of the diseases was revealed. Clinical picture of TBE in the Crimea is characterized by severe forms and diphasic fever with the relapse running more grave and protracted course.

  16. Detection of tick-borne bacteria and babesia with zoonotic potential in Argas (Carios) vespertilionis (Latreille, 1802) ticks from British bats.

    Science.gov (United States)

    Lv, Jizhou; Fernández de Marco, Maria Del Mar; Goharriz, Hooman; Phipps, L Paul; McElhinney, Lorraine M; Hernández-Triana, Luis M; Wu, Shaoqiang; Lin, Xiangmei; Fooks, Anthony R; Johnson, Nicholas

    2018-01-30

    Ticks host a wide range of zoonotic pathogens and are a significant source of diseases that affect humans and livestock. However, little is known about the pathogens associated with bat ticks. We have collected ectoparasites from bat carcasses over a seven year period. Nucleic acids (DNA and RNA) were extracted from 296 ticks removed from bats and the species designation was confirmed in all ticks as Argas (Carios) vespertilionis. A subset of these samples (n = 120) were tested for the presence of zoonotic pathogens by molecular methods. Babesia species, Rickettsia spp., within the spotted fever group (SFG), and Ehrlichia spp. were detected in ticks removed from 26 bats submitted from 14 counties across England. The prevalence of Rickettsia spp. was found to be highest in Pipistrellus pipistrellus from southern England. This study suggests that the tick species that host B. venatorum may include the genus Argas in addition to the genus Ixodes. As A. vespertilionis has been reported to feed on humans, detection of B. venatorum and SFG Rickettsia spp. could present a risk of disease transmission in England. No evidence for the presence of flaviviruses or Issyk-Kul virus (nairovirus) was found in these tick samples.

  17. Bartonella infection in shelter cats and dogs and their ectoparasites.

    Science.gov (United States)

    Tsai, Yi-Lun; Lin, Chao-Chen; Chomel, Bruno B; Chuang, Shih-Te; Tsai, Kun-Hsien; Wu, Wen-Jer; Huang, Chin-Gi; Yu, Jiann-Chung; Sung, Min-Hua; Kass, Philip H; Chang, Chao-Chin

    2011-08-01

    Mainly through vector transmission, domestic cats and dogs are infected by several Bartonella spp. and represent a large reservoir for human infections. This study investigated the relationship of prevalences of Bartonella infection in shelter dogs and cats and various ectoparasite species infesting them (fleas, ticks, and lice). Moreover, relationships between Bartonella infection and animal gender and age and presence of ectoparasites were analyzed. Blood samples were collected from 120 dogs and 103 cats. There were 386 ticks and 36 fleas harvested on these dogs, and 141 fleas, 4 ticks, and 2 lice harvested on these cats. Isolation/detection of Bartonella sp. was performed by culture, polymerase chain reaction (PCR), and partial sequencing. Bartonella was isolated from 21 (20.4%) cats and detected by PCR from 20 (19.4%) cats, 2 (1.7%) dogs, 55 (39%) fleas collected from cats, 28 (10%) ticks DNA samples, and 1 (2.8%) flea collected from dogs. When combining culture and PCR data, 27 cats and 55 fleas collected on cats were positive for Bartonella henselae or Bartonella clarridgeiae, but none were coinfected. Approximately half of the B. henselae isolates from 21 cats were B. henselae type I. Moreover, B. henselae, Bartonella phoceensis, Bartonella queenslandensis, Bartonella rattimassiliensis, Bartonella elizabethae DNA was detected in ticks collected from dogs and one flea was B. clarridgeiae PCR positive. This is the first report of such a wide variety of Bartonella spp. detected in Rhipicephalus sanguineus. Further studies are required to understand the relative importance of these ectoparasites to transmit Bartonella spp. in dogs and cats.

  18. Infection rate of Babesia spp. sporokinetes in engorged Boophilus microplus from an area of enzootic stability in the State of Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Quintão-Silva Maria G

    2003-01-01

    Full Text Available The infection rates of Babesia sporokinetes in engorged Boophilus microplus were evaluated during a 2-year period in a dairy farm located in an area of enzootic stability. Every 14 days engorged females were collected from calves and from adult animals. Ticks were incubated at 27 ± 0.5ºC and 80-90% relative humidity and Babesia infection rates were determined by microscopic examination of Giemsa-stained hemolymph smears. After 52 collections, 2105 ticks were obtained, from which 982 were collected from calves and 1123 from cows. The total Babesia infection rate was 10%, however the incidence was higher (p < 0.05 in ticks collected from calves (17.5% than in those collected from cows (3.6%. Females collected from cows showed the highest infection rates in January, March, and August, and absence of infection in April and May. Ticks feeding on calves were infected throughout the experimental period. The infection rates of engorged females collected from naturally infected calves that were artificially infested with Babesia-free-larvae of B. microplus gradually decreased until the calves were four months old. No differences were observed among infection rates of ticks collected from calves maintained under natural conditions.

  19. O virus do mixoma no coelho do mato (Sylvilagus minenses, sua transmissão pelos Aedes scapularis e aegypti

    Directory of Open Access Journals (Sweden)

    Henrique Beaurepaire Aragão

    1943-01-01

    Full Text Available The brazilian wild rabbit (Sylvilagus minensis is sensible to the virus of the mixomatosis but the desease takes on it a mild character, lasts for long time and generally do not kill the animal. The tumors are generally smaller and less numerous than those of the domestic rabbit, but sometimes there were noted large and flat lesions (fig. 3. The natural infection of the wild rabbit may be quite common not only because many rabbits caught in the country were found to be immune as also because it was found among the animals caught in the country near Rio, one that was infected with mixomatosis. The experimental infection of the Sylvilagus may be easily obtained by cutan, subcutan or conjuntival way and also when a health wild rabbit is placed in the same cage with a sick domestic animal. It is also possible to obtain the infection of the wild and domestic rabbits by the bite of infected blood sucking insects as fleas and mosquitoes. The infected mosquito can transmit the disease 2 or 3 times til 17 days after an infective meal on a sick rabbit. The transmission is a mecanical one and only the proboscis of the insect contains the virus as it was shown by the inoculation of emulsions of the proboscis, thorax and abdomen of the mosquito. Though mecanical this kind of transmission acts as an important epidemiological mean of dissemination of the deseasse and splains the suddendly outbreaks of mixomatosis in rabbits breedings where no new rabbits were introduced since very long time. The transmition of mixomatosis by fleas (Slenopsylla was at first demonstrated by us, then S. Torres pointed out the capacity of Culex fatigans to transmit the desease and now we have proved that Aedes scapularis and Aedes aegypti were also able to transmit it (Foto 1 and 2. The virus of the mixomatosis (Chlamidozoon mixoma is seen on the smeavs of the tumors of the wild reabbit with the same morphology, as in the material of the domestic animal.

  20. New Rickettsia species in soft ticks Ornithodoros hasei collected from bats in French Guiana.

    Science.gov (United States)

    Tahir, Djamel; Socolovschi, Cristina; Marié, Jean-Lou; Ganay, Gautier; Berenger, Jean-Michel; Bompar, Jean-Michel; Blanchet, Denis; Cheuret, Marie; Mediannikov, Oleg; Raoult, Didier; Davoust, Bernard; Parola, Philippe

    2016-10-01

    In French Guiana, located on the northeastern coast of South America, bats of different species are very numerous. The infection of bats and their ticks with zoonotic bacteria, especially Rickettsia species, is so far unknown. In order to improve knowledge of these zoonotic pathogens in this French overseas department, the presence and diversity of tick-borne bacteria was investigated with molecular tools in bat ticks. In the beginning of 2013, 32 bats were caught in Saint-Jean-du-Maroni, an area close to the coast of French Guiana, and the ticks of these animals were collected. A total of 354 larvae of Argasidae soft ticks (Ornithodoros hasei) from 12 bats (Noctilio albiventris) were collected and 107 of them were analysed. DNA was extracted from the samples and quantitative real-time PCR was carried out to detect Rickettsia spp., Bartonella spp., Borrelia spp. and Coxiella burnetii. All tested samples were negative for Bartonella spp., Borrelia spp. and Coxiella burnetii. Rickettsia DNA was detected in 31 (28.9%) ticks. An almost entire (1118 base pairs long) sequence of the gltA gene was obtained after the amplification of some positive samples on conventional PCR and sequencing. A Bayesian tree was constructed using concatenated rrs, gltA, ompA, ompB, and gene D sequences. The study of characteristic sequences shows that this Rickettsia species is very close (98.3-99.8%) genetically to R. peacockii. Nevertheless, the comparative analysis of sequences obtained from gltA, ompA, ompB, rrs and gene D fragments demonstrated that this Rickettsia is different from the other members of the spotted fever group. The sequences of this new species were deposited in GenBank as Candidatus Rickettsia wissemanii. This is the first report showing the presence of nucleic acid of Rickettsia in Ornithodoros hasei ticks from South American bats. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Nucleic acid probes as a diagnostic method for tick-borne hemoparasites of veterinary importance.

    Science.gov (United States)

    Figueroa, J V; Buening, G M

    1995-03-01

    An increased number of articles on the use of nucleic acid-based hybridization techniques for diagnostic purposes have been recently published. This article reviews nucleic acid-based hybridization as an assay to detect hemoparasite infections of economic relevance in veterinary medicine. By using recombinant DNA techniques, selected clones containing inserts of Anaplasma, Babesia, Cowdria or Theileria genomic DNA sequences have been obtained, and they are now available to be utilized as specific, highly sensitive DNA or RNA probes to detect the presence of the hemoparasite DNA in an infected animal. Either in an isotopic or non-isotopic detection system, probes have allowed scientists to test for--originally in samples collected from experimentally infected animals and later in samples collected in the field--the presence of hemoparasites during the prepatent, patent, convalescent, and chronic periods of the infection in the host. Nucleic acid probes have given researchers the opportunity to carry out genomic analysis of parasite DNA to differentiate hemoparasite species and to identify genetically distinct populations among and within isolates, strains and clonal populations. Prevalence of parasite infection in the tick vector can now be accomplished more specifically with the nucleic acid probes. Lately, with the advent of the polymerase chain reaction technique, small numbers of hemoparasites can be positively identified in the vertebrate host and tick vector. These techniques can be used to assess the veterinary epidemiological situation in a particular geographical region for the planning of control measures.

  2. Molecular ecological insights into neotropical bird-tick interactions

    NARCIS (Netherlands)

    Miller, Matthew J.; Esser, Helen J.; Loaiza, Jose R.; Herre, Edward Allen; Aguilar, Celestino; Quintero, Diomedes; Alvarez, Eric; Bermingham, Eldredge

    2016-01-01

    In the tropics, ticks parasitize many classes of vertebrate hosts. However, because many tropical tick species are only identifiable in the adult stage, and these adults usually parasitize mammals, most attention on the ecology of tick-host interactions has focused on mammalian hosts. In

  3. Factors Associated with Tick Bite Preventive Practices among Farmworkers in Malaysia

    Science.gov (United States)

    Wong, Li Ping; Tay, Sun Tee; Bulgiba, Awang; Zandi, Keivan; Kho, Kai Ling; Koh, Fui Xian; Ong, Bee Lee; Jaafar, Tariq; Hassan Nizam, Quaza Nizamuddin

    2016-01-01

    Background Farmworkers are at high-risk for tick bites, which potentially transmit various tick-borne diseases. Previous studies show that personal prevention against tick bites is key, and certain factors namely, knowledge, experience of tick bites, and health beliefs influence compliance with tick bites preventive behaviour. This study aimed to assess these factors and their associations with tick bite preventive practices among Malaysian farmworkers. Methods A total of eight cattle, goat and sheep farms in six states in Peninsular Malaysia participated in a cross-sectional survey between August and October 2013 Results A total of 151 (72.2%) out of 209 farmworkers answered the questionnaire. More than half of the farmworkers (n = 91) reported an experience of tick bites. Farms with monthly acaricide treatment had significantly (P<0.05) a low report of tick bites. Tick bite exposure rates did not differ significantly among field workers and administrative workers. The mean total knowledge score of ticks for the overall farmworkers was 13.6 (SD±3.2) from 20. The mean total tick bite preventive practices score for all farmworkers was 8.3 (SD±3.1) from 15. Fixed effect model showed the effects of four factors on tick bite prevention: (1) farms, (2) job categories (administrative workers vs. field workers), (3) perceived severity of tick bites, and (4) perceived barriers to tick bite prevention. Conclusions A high proportion of farmworkers, including administrative workers, reported an experience of tick bites. The effectiveness of monthly acaricide treatment was declared by low reports of tick bites on these farms. Tick bite preventive practices were insufficient, particularly in certain farms and for administrative workers. Our findings emphasise the need to have education programmes for all farmworkers and targeting farms with low prevention practices. Education and health programmes should increase the perception of the risk of tick bites and remove perceived

  4. Arsenophonus nasoniae and Rickettsiae Infection of Ixodes ricinus Due to Parasitic Wasp Ixodiphagus hookeri.

    Directory of Open Access Journals (Sweden)

    Monika Bohacsova

    Full Text Available Arsenophonus nasoniae, a male-killing endosymbiont of chalcid wasps, was recently detected in several hard tick species. Following the hypothesis that its presence in ticks may not be linked to the direct occurrence of bacteria in tick's organs, we identified A. nasoniae in wasps emerging from parasitised nymphs. We confirmed that 28.1% of Ixodiphagus hookeri wasps parasitizing Ixodes ricinus ticks were infected by A. nasoniae. Moreover, in examined I. ricinus nymphs, A. nasoniae was detected only in those, which were parasitized by the wasp. However, in part of the adult wasps as well as in some ticks that contained wasp's DNA, we did not confirm A. nasoniae. We also found, that in spite of reported male-killing, some newly emerged adult wasp males were also infected by A. nasoniae. Additionally, we amplified the DNA of Rickettsia helvetica and Rickettsia monacensis (known to be Ixodes ricinus-associated bacteria in adult parasitoid wasps. This may be related either with the digested bacterial DNA in wasp body lumen or with a role of wasps in circulation of rickettsiae among tick vectors.

  5. Survey of Hard Ticks (Ixodidae) Infesting Camels ( Camelus ...

    African Journals Online (AJOL)

    To determine the prevalence and abundance of hard ticks infesting camels, 414 nomadic one - humped camels in Kano State, northwestern Nigeria were selected by random sampling and examined for the presence of ticks on their bodies between January and December 2007. Three species of ticks, Amblyomma ...

  6. Ixodidae ticks in the megapolis of Kyiv, Ukraine

    Science.gov (United States)

    The Ixodidae include the most common tick species encountered in Europe. The ticks transmit a variety of bacterial and protozoan agents of medical and veterinary significance. The aim of the current work was to investigate distribution of Ixodes ricinus and Dermacentor reticulatus ticks in Kyiv, the...

  7. Tick size and stock returns

    Science.gov (United States)

    Onnela, Jukka-Pekka; Töyli, Juuso; Kaski, Kimmo

    2009-02-01

    Tick size is an important aspect of the micro-structural level organization of financial markets. It is the smallest institutionally allowed price increment, has a direct bearing on the bid-ask spread, influences the strategy of trading order placement in electronic markets, affects the price formation mechanism, and appears to be related to the long-term memory of volatility clustering. In this paper we investigate the impact of tick size on stock returns. We start with a simple simulation to demonstrate how continuous returns become distorted after confining the price to a discrete grid governed by the tick size. We then move on to a novel experimental set-up that combines decimalization pilot programs and cross-listed stocks in New York and Toronto. This allows us to observe a set of stocks traded simultaneously under two different ticks while holding all security-specific characteristics fixed. We then study the normality of the return distributions and carry out fits to the chosen distribution models. Our empirical findings are somewhat mixed and in some cases appear to challenge the simulation results.

  8. Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host.

    Directory of Open Access Journals (Sweden)

    Jodi L McGill

    Full Text Available Ehrlichia chaffeensis is a tick-borne rickettsial pathogen and the causative agent of human monocytic ehrlichiosis. Transmitted by the Amblyomma americanum tick, E. chaffeensis also causes disease in several other vertebrate species including white-tailed deer and dogs. We have recently described the generation of an attenuated mutant strain of E. chaffeensis, with a mutation in the Ech_0660 gene, which is able to confer protection from secondary, intravenous-administered, wild-type E. chaffeensis infection in dogs. Here, we extend our previous results, demonstrating that vaccination with the Ech_0660 mutant protects dogs from physiologic, tick-transmitted, secondary challenge with wild-type E. chaffeensis; and describing, for the first time, the cellular and humoral immune responses induced by Ech_0660 mutant vaccination and wild-type E. chaffeensis infection in the canine host. Both vaccination and infection induced a rise in E. chaffeensis-specific antibody titers and a significant Th1 response in peripheral blood as measured by E. chaffeensis antigen-dependent CD4+ T cell proliferation and IFNγ production. Further, we describe for the first time significant IL-17 production by peripheral blood leukocytes from both Ech_0660 mutant vaccinated animals and control animals infected with wild-type E. chaffeensis, suggesting a previously unrecognized role for IL-17 and Th17 cells in the immune response to rickettsial pathogens. Our results are a critical first step towards defining the role of the immune system in vaccine-induced protection from E. chaffeensis infection in an incidental host; and confirm the potential of the attenuated mutant clone, Ech_0660, to be used as a vaccine candidate for protection against tick-transmitted E. chaffeensis infection.

  9. Imported Arbovirus Infections in Canada 1974-89

    Directory of Open Access Journals (Sweden)

    Harvey Artsob

    1991-01-01

    Full Text Available From 1974 to 1989, sera from symptomatic patients with histories of recent travel outside Canada were tested for antibodies to several arboviruses, principally of the alphavirus and flavivirus families. Diagnostic seroconversions were documented in 84 individuals from six provinces, including one alphavirus (Chikungunya and 83 flavivirus seroconvertors. Dengue 1 virus was isolated from the blood of one patient. Most flavivirus seroconvertors were likely infected with dengue virus, but infections with tick-borne encephalitis, St Louis encephalitis and Powassan viruses were also recognized. Patients had histories of recent travel to the Caribbean, South America, Asia, Africa, North America (outside Canada, Tahiti, Fiji and Europe. Possible imported infections due to Japanese encephalitis, Ross River, western equine encephalitis and Colorado tick fever viruses were also encountered.

  10. Detection of Babesia spp. in Dogs and Their Ticks From Peninsular Malaysia: Emphasis on Babesia gibsoni and Babesia vogeli Infections in Rhipicephalus sanguineus sensu lato (Acari: Ixodidae).

    Science.gov (United States)

    Prakash, Batah Kunalan; Low, Van Lun; Vinnie-Siow, Wei Yin; Tan, Tiong Kai; Lim, Yvonne Ai-Lian; Morvarid, Akhavan Rezaei; AbuBakar, Sazaly; Sofian-Azirun, Mohd

    2018-05-12

    Canine babesiosis is an emerging tick-borne disease with a worldwide distribution, including Malaysia. While the prevalence of Babesia has been documented from dogs in Malaysia, occurrence of Babesia has been relatively little studied in their tick vectors. Accordingly, a total of 240 dogs and 140 Rhipicephalus sanguineus sensu lato (s.l.) (Acari: Ixodidae) ticks from Malaysia were molecularly screened for the presence of Babesia protozoa in the present study. Babesia gibsoni was only detected in ticks (1.4%), whereas Babesia vogeli was detected in both ticks (1.4%) and dogs (2.1%). This study highlights the detection of B. gibsoni and B. vogeli for the first time, in both adult and nymphal stages of R. sanguineus s.l. in Malaysia, suggesting the potential role of this tick species in transmitting canine babesiosis.

  11. Ticks (Acari: Ixodida) on wild carnivores in Brazil.

    Science.gov (United States)

    Labruna, Marcelo B; Jorge, Rodrigo S P; Sana, Dênis A; Jácomo, Anah Tereza A; Kashivakura, Cyntia K; Furtado, Mariana M; Ferro, Claudia; Perez, Samuel A; Silveira, Leandro; Santos, Tarcísio S; Marques, Samuel R; Morato, Ronaldo G; Nava, Alessandra; Adania, Cristina H; Teixeira, Rodrigo H F; Gomes, Albério A B; Conforti, Valéria A; Azevedo, Fernando C C; Prada, Cristiana S; Silva, Jean C R; Batista, Adriana F; Marvulo, Maria Fernanda V; Morato, Rose L G; Alho, Cleber J R; Pinter, Adriano; Ferreira, Patrícia M; Ferreira, Fernado; Barros-Battesti, Darci M

    2005-01-01

    The present study reports field data of ticks infesting wild carnivores captured from July 1998 to September 2004 in Brazil. Additional data were obtained from one tick collection and from previous published data of ticks on carnivores in Brazil. During field work, a total of 3437 ticks were collected from 89 Cerdocyon thous (crab-eating fox), 58 Chrysocyon brachyurus (maned wolf), 30 Puma concolor (puma), 26 Panthera onca (jaguar), 12 Procyon cancrivorus (crab-eating raccoon), 4 Speothos venaticus (bush dog), 6 Pseudalopex vetulus (hoary fox), 6 Nasua nasua (coati), 6 Leopardus pardalis (ocelot), 2 Leopardus tigrinus (oncilla), 1 Leopardus wiedii (margay), 1 Herpailurus yagouaroundi (jaguarundi), 1 Oncifelis colocolo (pampas cat), 1 Eira barbara (tayara), 1 Galictis vittata (grison), 1 Lontra longicaudis (neotropical otter), and 1 Potus flavus (kinkajou). Data obtained from the Acari Collection IBSP included a total of 381 tick specimens collected on 13 C. thous, 8 C. brachyurus, 3 P. concolor, 10 P. onca, 3 P. cancrivorus, 4 N. nasua, 1 L. pardalis, 1 L. wiedii, 4 H. yagouaroundi, 1 Galictis cuja (lesser grison), and 1 L. longicaudis. The only tick-infested carnivore species previously reported in Brazil, for which we do not present any field data are Pseudalopex gymnocercus (pampas fox), Conepatus chinga (Molina's hog-nosed skunk), and Conepatus semistriatus (striped hog-nosed skunk). We report the first tick records in Brazil on two Felidae species (O. colocolo, H. yagouaroundi), two Canidae species (P. vetulus, S. venaticus), one Procyonidae species (P. flavus) and one Mustelidae (E. barbara). Tick infestation remains unreported for 5 of the 26 Carnivora species native in Brazil: Oncifelis geoffroyi (Geoffroy's cat), Atelocynus microtis (short-eared dog), Pteronura brasiliensis (giant otter), Mustela africana (Amazon weasel), and Bassaricyon gabbii (olingo). Our field data comprise 16 tick species represented by the genera Amblyomma (12 species), Ixodes (1

  12. Host Immunization with Recombinant Proteins to Screen Antigens for Tick Control.

    Science.gov (United States)

    Galay, Remil Linggatong; Miyata, Takeshi; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2016-01-01

    Ticks (Parasitiformes: Ixodida) are known for their obligate blood feeding habit and their role in transmitting pathogens to various vertebrate hosts. Tick control using chemical acaricides is extensively used particularly in livestock management, but several disadvantages arise from resistance development of many tick species, and concerns on animal product and environmental contamination. Vaccination offers better protection and more cost-effective alternative to application of chemical acaricides, addressing their disadvantages. However, an ideal anti-tick vaccine targeting multiple tick species and all the tick stages is still wanting. Here, we describe the procedures involved in the evaluation of a vaccine candidate antigen against ticks at the laboratory level, from the preparation of recombinant proteins, administration to the rabbit host and monitoring of antibody titer, to tick infestation challenge and determination of the effects of immunization to ticks.

  13. Detection of Hepatozoon canis in the Brown Dog Tick and Domestic Dogs in Peninsular Malaysia.

    Science.gov (United States)

    Prakash, Batah Kunalan; Low, Van Lun; Tan, Tiong Kai; Vinnie-Siow, Wei Yin; Lim, Yvonne Ai-Lian; Morvarid, Akhavan Rezaei; Azman, Adzzie Shazleen; Yeong, Yze Shiuan; AbuBakar, Sazaly; Sofian-Azirun, Mohd

    2018-05-17

    Hepatozoon canis has been widely reported in dogs. Its prevalence in ticks, however, has not been well-established. Here we determine the occurrence of Hepatozoon DNA in the brown dog tick Rhipicephalus sanguineus (Latreille) (Acari: Ixodidae) sensu lato (s.l.) and domestic dogs from Peninsular Malaysia using a polymerase chain reaction (PCR) assay based on amplification of the 18S ribosomal RNA coding sequence. Our results revealed a relatively low prevalence of H. canis DNA in both R. sanguineus s.l. (0.7%) and dogs (3.33%). This study represents the first report of H. canis DNA in R. sanguineus s.l. in Malaysia, highlighting the risk of this infection in dogs.

  14. Detection of Anaplasma phagocytophilum DNA in Ixodes ticks (Acari: Ixodidae) from Madeira Island and Setubal District, mainland Portugal.

    Science.gov (United States)

    Santos, Ana Sofia; Santos-Silva, Maria Margarida; Almeida, Victor Carlos; Bacellar, Fátima; Dumler, John Stephen

    2004-09-01

    A total of 278 Ixodes ticks, collected from Madeira Island and Setubal District, mainland Portugal, were examined by polymerase chain reaction (PCR) for the presence of Anaplasma phagocytophilum. Six (4%) of 142 Ixodes ricinus nymphs collected in Madeira Island and 1 nymph and 1 male (2%) of 93 I. ventalloi collected in Setubal District tested positive for A. phagocytophilum msp2 genes or rrs. Infection was not detected among 43 I. ricinus on mainland Portugal. All PCR products were confirmed by nucleotide sequencing to be identical or to be most closely related to A. phagocytophilum. To our knowledge, this is the first evidence of A. phagocytophilum in ticks from Setubal District, mainland Portugal, and the first documentation of Anaplasma infection in I. ventalloi. Moreover, these findings confirm the persistence of A. phagocytophilum in Madeira Island's I. ricinus.

  15. Molecular detection of Rickettsia species in ticks collected from the southwestern provinces of the Republic of Korea.

    Science.gov (United States)

    Noh, Yoontae; Lee, Yeong Seon; Kim, Heung-Chul; Chong, Sung-Tae; Klein, Terry A; Jiang, Ju; Richards, Allen L; Lee, Hae Kyeong; Kim, Su Yeon

    2017-01-10

    Rickettsiae constitute a group of arthropod-borne, Gram-negative, obligate intracellular bacteria that are the causative agents of diseases ranging from mild to life threatening that impact on medical and veterinary health worldwide. A total of 6,484 ticks were collected by tick drag from June-October 2013 in the southwestern provinces of the Republic of Korea (ROK) (Jeollanam, n = 3,995; Jeollabuk, n = 680; Chungcheongnam, n = 1,478; and Chungcheongbuk, n = 331). Ticks were sorted into 311 pools according to species, collection site, and stage of development. DNA preparations of tick pools were assayed for rickettsiae by 17 kDa antigen gene and ompA nested PCR (nPCR) assays and the resulting amplicons sequenced to determine the identity and prevalence of spotted fever group rickettsiae (SFGR). Haemaphysalis longicornis (4,471; 52 adults, 123 nymphs and 4,296 larvae) were the most commonly collected ticks, followed by Haemaphysalis flava (1,582; 28 adults, 263 nymphs and 1,291 larvae), and Ixodes nipponensis (431; 25 adults, 5 nymphs and 401 larvae). The minimum field infection rate/100 ticks (assuming 1 positive tick/pool) was 0.93% for the 17 kDa antigen gene and 0.82% for the ompA nPCR assays. The partial 17 kDa antigen and ompA gene sequences from positive pools of H. longicornis were similar to: Rickettsia sp. HI550 (99.4-100%), Rickettsia sp. FUJ98 (99.3-100%), Rickettsia sp. HIR/D91 (99.3-100%), and R. japonica (99.7%). One sequence of the partial 17 kDa antigen gene for H. flava was similar to Rickettsia sp. 17kd-005 (99.7%), while seven sequences of the 17 kDa antigen gene obtained from I. nipponensis ticks were similar to R. monacensis IrR/Munich (98.7-100%) and Rickettsia sp. IRS3 (98.9%). SFG rickettsiae were detected in three species of ixodid ticks collected in the southwestern provinces of the ROK during 2013. A number of rickettsiae have been recently reported from ticks in Korea, some of which were identified as medically

  16. The occurrence of Spotted Fever Group (SFG) Rickettsiae in Ixodes ricinus ticks (Acari: Ixodidae) in northern Poland.

    Science.gov (United States)

    Stańczak, Joanna

    2006-10-01

    Ixodes ricinus, the most commonly observed tick species in Poland, is known vector of microorganisms pathogenic for humans as TBE virus, Borrelia burgdorferi s.1., Anaplasma phagocytophilum and Babesia sp. in this country. Our study aimed to find out whether this tick can also transmit also rickettsiae of the spotted fever group (SFG). DNA extracts from 560 ticks (28 females, 34 males, and 488 nymphs) collected in different wooded areas in northern Poland were examined by PCR for the detection of Rickettsia sp., using a primer set RpCS.877p and RpCS.1258n designated to amplify a 381-bp fragment of gltA gene. A total of 2.9% ticks was found to be positive. The percentage of infected females and males was comparable (10.5% and 11.8%, respectively) and 6.6-7.6 times higher than in nymphs (1.6%). Sequences of four PCR-derived DNA fragments (acc. no. DQ672603) demonstrated 99% similarity with the sequence of Rickettsia helvetica deposited in GenBank. The results obtained suggest the possible role of I. ricinus as a source of a microorganism, which recently has been identified as an agent of human rickettsioses in Europe.

  17. Exposure to ticks and seroprevalence of [i]Borrelia burgdorferi [/i]among a healthy young population living in the area of southern Podlasie, Poland

    Directory of Open Access Journals (Sweden)

    Anna Pańczuk

    2014-09-01

    Full Text Available [b]Objectives[/b]. The objective of the study was assessment of risk of infection with [i]Borrelia burgdorferi[/i] in the area of southern Podlasie in Poland, near the border with Belarus, by analysis of post-exposure procedure, and evaluation of asymptomatic infection in adolescents bitten by a tick, confirmed by serologic tests. [b]Material and methods[/b]. The study was conducted among 128 healthy individuals aged 16–20 who declared being bitten by a tick. The level of IgM and IgG class antibodies was determined using the immunoenzymatic test (Borrelia 14 kD + OspC IgM ELISA and Borrelia IgG + VlsE ELISA, DRG Diagnostics. Positive and doubtful results were confirmed using the Western blot method (EUROLINE-WB, EUROIMMUN. [b]Results[/b]. In the study group, the largest number of respondents (59.4% declared tick bite in the region of the lower extremities, most often in the knee pit. Among the methods for removing the tick the largest number of respondents indicated removing it with the use of tweezers, with a simple, swift steady movement (29.7%, and pulling it out with the fingers (22.7%. In the ELISA test, a positive or doubtful result in at least one class was observed in 25.0% of respondents (n=32/128: in IgM class – 23.4% (n=30/128, and in IgG class – 4.7% (n=6/128. After verification with the Western blot test, infection was confirmed in 5.5% of respondents (n=7/128: in IgM class – 1.6% (n=2/128, in IgG class – 3.9% (n=5/128. In IgM class antibodies, the Western blot test confirmed positive or doubtful results of the ELISA test in 6.7%, while in IgG class antibodies in 83.3%. [b]Conclusion[/b]. Evaluation of the actual infection with [i]Borrelia spp.[/i] using serologic tests is difficult due to a certain non-specificity of the ELISA test, especially in IgM class antibodies, and difficulties with performance of a wide scope of specific Western blot tests. The variety of methods of tick removal declared by adolescents suggests

  18. Clinical, haematological and blood biochemical changes in goats after experimental infection with tick-borne fever

    NARCIS (Netherlands)

    Miert, A.S.J.P.A.M. van; Duin, C.T.M. van; Schotman, A.J.H.; Franssen, F.F.

    1984-01-01

    Tick-borne fever in goats caused by Ehrlichia (Cytoecetes) phagocytophila was characterised by high fever, dullness, anorexia, tachycardia and a slight to moderate inhibition of rumen motility. The animals developed a gradual decline in the total number of circulating white blood cells. There was a

  19. Ticks and Tick-Borne Pathogens of the Caribbean: Current Understanding and Future Directions for More Comprehensive Surveillance

    Czech Academy of Sciences Publication Activity Database

    Gondard, M.; Cabezas Cruz, Alejandro; Charles, R. A.; Vayssier-Taussat, M.; Albina, E.; Moutailler, S.

    2017-01-01

    Roč. 7, NOV 29 (2017), č. článku 490. ISSN 2235-2988 Institutional support: RVO:60077344 Keywords : tick-borne pathogens * ticks * Caribbean * epidemiology * newhigh-throughput technologies * surveillance Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.300, year: 2016

  20. How ticks get under your skin: insertion mechanics of the feeding apparatus of Ixodes ricinus ticks

    Science.gov (United States)

    Richter, Dania; Matuschka, Franz-Rainer; Spielman, Andrew; Mahadevan, L.

    2013-01-01

    The tick Ixodes ricinus uses its mouthparts to penetrate the skin of its host and to remain attached for about a week, during which time Lyme disease spirochaetes may pass from the tick to the host. To understand how the tick achieves both tasks, penetration and attachment, with the same set of implements, we recorded the insertion events by cinematography, interpreted the mouthparts’ function by scanning electron microscopy and identified their points of articulation by confocal microscopy. Our structural dynamic observations suggest that the process of insertion and attachment occurs via a ratchet-like mechanism with two distinct stages. Initially, the two telescoping chelicerae pierce the skin and, by moving alternately, generate a toehold. Subsequently, a breaststroke-like motion, effected by simultaneous flexure and retraction of both chelicerae, pulls in the barbed hypostome. This combination of a flexible, dynamic mechanical ratchet and a static holdfast thus allows the tick to solve the problem of how to penetrate skin and also remain stuck for long periods of time. PMID:24174106

  1. Proteomics Approach to the Study of Cattle Tick Adaptation to White Tailed Deer

    Directory of Open Access Journals (Sweden)

    Marina Popara

    2013-01-01

    Full Text Available Cattle ticks, Rhipicephalus (Boophilus microplus, are a serious threat to animal health and production. Some ticks feed on a single host species while others such as R. microplus infest multiple hosts. White tailed deer (WTD play a role in the maintenance and expansion of cattle tick populations. However, cattle ticks fed on WTD show lower weight and reproductive performance when compared to ticks fed on cattle, suggesting the existence of host factors that affect tick feeding and reproduction. To elucidate these factors, a proteomics approach was used to characterize tick and host proteins in R. microplus ticks fed on cattle and WTD. The results showed that R. microplus ticks fed on cattle have overrepresented tick proteins involved in blood digestion and reproduction when compared to ticks fed on WTD, while host proteins were differentially represented in ticks fed on cattle or WTD. Although a direct connection cannot be made between differentially represented tick and host proteins, these results suggested that differentially represented host proteins together with other host factors could be associated with higher R. microplus tick feeding and reproduction observed in ticks fed on cattle.

  2. Ticks imported to Europe with exotic reptiles.

    Science.gov (United States)

    Mihalca, Andrei Daniel

    2015-09-30

    It is known that traded exotic animals carry with them an immense number of associated symbionts, including parasites. Reptiles are no exception. Most of the imported reptiles originate from tropical countries and their possibility to carry potentially dangerous pathogens is high. According to CITES, Europe is currently the main reptile importer in the world. Despite this, there is no review or analysis available for the risk related to the importation of tick-borne diseases with traded reptile to the EU. The main aim of the manuscript is to provide a review on the available literature on ticks introduced to and exchanged between European countries via the live reptile trade. So far, the published reports of ticks imported on reptiles are limited to few European countries: Italy, Poland, Spain, Netherlands, Belgium, Slovenia and UK. The following species have been reported: Hyalomma aegyptium, Amblyomma dissimile, Amblyomma exornatum, Amblyomma flavomaculatum, Amblyomma fuscolineatum, Amblyomma latum, Amblyomma quadricavum, Amblyomma marmoreum, Amblyomma nuttalli, Amblyomma sparsum, Amblyomma sphenodonti, Amblyomma transversale and Amblyomma varanense. The majority of species are of African origin, followed by American and Asian species. All groups of reptiles (chelonians, snakes, lizards, crocodiles, tuataras) were involved. However, it seems that certain groups (i.e. tortoises of genus Testudo, monitor lizards of genus Varanus, snakes of genus Python) are more important as host for imported ticks, but this may be related to higher levels of international trade. Even fewer are the reports of tick-borne pathogens associated with imported reptile ticks. Despite the diversity of tick species reported on imported reptiles, the situations of truly invasive species are atypical and are limited in natural environments to maximum two cases where H. aegyptium was involved. Otherwise, the risk associated with reptile trade for introduction of invasive tick to Europe is low

  3. [Activating effect of cyclophosphane at late stages of persistence of the tick-borne encephalitis virus].

    Science.gov (United States)

    Frolova, T V; Pogodina, V V; Larina, G I; Frolova, M P; Karmysheva, V Ia

    1982-01-01

    Conditions of activation of persistent infection caused by subcutaneous inoculation of Syrian hamsters with the B-383 and Vasilchenko strains of tick-borne encephalitis virus (TBE) were studied. After 2 administrations of cyclophosphane (CP) on day 170 of infection clinically manifest disease developed in some animals with increasingly severe pathomorphological lesions in the CNS. Several variants of activated TBE virus were isolated from brains and spleens of CP-treated hamsters. The activation of persistent infection was observed in the presence of marked decreased of humoral immunity level, weight of the thymus, and values of spontaneous rosette-formation.

  4. Host body size and the diversity of tick assemblages on Neotropical vertebrates

    Directory of Open Access Journals (Sweden)

    Helen J. Esser

    2016-12-01

    Full Text Available Identifying the factors that influence the species diversity and distribution of ticks (Acari: Ixodida across vertebrate host taxa is of fundamental ecological and medical importance. Host body size is considered one of the most important determinants of tick abundance, with larger hosts having higher tick burdens. The species diversity of tick assemblages should also be greater on larger-bodied host species, but empirical studies testing this hypothesis are lacking. Here, we evaluate this relationship using a comparative dataset of feeding associations from Panama between 45 tick species and 171 host species that range in body size by three orders of magnitude. We found that tick species diversity increased with host body size for adult ticks but not for immature ticks. We also found that closely related host species tended to have similar tick species diversity, but correcting for host phylogeny did not alter the relationships between host body size and tick species diversity. The distribution of tick species was highly aggregated, with approximately 20% of the host species harboring 80% of all tick species, following the Pareto principle or 20/80 Rule. Thus, the aggregated pattern commonly observed for tick burdens and disease transmission also holds for patterns of tick species richness. Our finding that the adult ticks in this system preferentially parasitize large-bodied host species suggests that the ongoing anthropogenic loss of large-bodied vertebrates is likely to result in host-tick coextinction events, even when immature stages feed opportunistically. As parasites play critical roles in ecological and evolutionary processes, such losses may profoundly affect ecosystem functioning and services.

  5. Tick Haller’s Organ, a New Paradigm for Arthropod Olfaction: How Ticks Differ from Insects

    Directory of Open Access Journals (Sweden)

    Ann L. Carr

    2017-07-01

    Full Text Available Ticks are the vector of many human and animal diseases; and host detection is critical to this process. Ticks have a unique sensory structure located exclusively on the 1st pairs of legs; the fore-tarsal Haller’s organ, not found in any other animals, presumed to function like the insect antennae in chemosensation but morphologically very different. The mechanism of tick chemoreception is unknown. Utilizing next-generation sequencing and comparative transcriptomics between the 1st and 4th legs (the latter without the Haller’s organ, we characterized 1st leg specific and putative Haller’s organ specific transcripts from adult American dog ticks, Dermacentor variabilis. The analysis suggested that the Haller’s organ is involved in olfaction, not gustation. No known odorant binding proteins like those found in insects, chemosensory lipocalins or typical insect olfactory mechanisms were identified; with the transcriptomic data only supporting a possible olfactory G-protein coupled receptor (GPCR signal cascade unique to the Haller’s organ. Each component of the olfactory GPCR signal cascade was identified and characterized. The expression of GPCR, Gαo and β-arrestin transcripts identified exclusively in the 1st leg transcriptome, and putatively Haller’s organ specific, were examined in unfed and blood-fed adult female and male D. variabilis. Blood feeding to repletion in adult females down-regulated the expression of all three chemosensory transcripts in females but not in males; consistent with differences in post-feeding tick behavior between sexes and an expected reduced chemosensory function in females as they leave the host. Data are presented for the first time of the potential hormonal regulation of tick chemosensation; behavioral assays confirmed the role of the Haller’s organ in N,N-diethyl-meta-toluamide (DEET repellency but showed no role for the Haller’s organ in host attachment. Further research is needed to understand

  6. Survey of canine tick-borne diseases in Lábrea, Brazilian Amazon: ‘accidental’ findings of Dirofilaria immitis infection

    Directory of Open Access Journals (Sweden)

    Herbert Sousa Soares

    2014-12-01

    Full Text Available Blood samples were collected from 99 domestic dogs from the urban and rural areas of the Lábrea municipality, state of Amazonas, Brazil. Canine serum samples were tested by immunofluorescence assay against Rickettsia spp., which revealed that only 3.0% (1/33 and 7.6% (5/66 of the dogs from urban and rural areas, respectively, reacted positively to at least one Rickettsia species. DNA was extracted from canine blood and tested by a battery of PCR assays targeting protozoa of the genera Babesia and Hepatozoon, and bacteria of the genera Rickettsia and Ehrlichia and family Anaplasmataceae. All samples were negative in the PCR assays targeting the genera Babesia, Hepatozoon, Ehrlichia and Rickettsia. For Anaplasmataceae, 3% (1/33 and 39.4% (26/66 of the urban and rural dogs, respectively, yielded amplicons that generated DNA sequences 100% identical to the corresponding sequence of Wolbachia endosymbiont of Dirofilaria immitis. Because of these results, all canine DNA samples were further tested in a PCR assay targeting filarial nematodes, which was positive for 18.2% (6/33 and 57.6% (38/66 urban and rural dogs, respectively. Filarial-PCR products generated DNA sequences 100% identical to D. immitis. While tick-borne infections were rare in Lábrea, D. immitis infection rates were among the highest reported in South America.

  7. Detection of Anaplasma phagocytophilum DNA in Ixodes Ticks (Acari: Ixodidae) from Madeira Island and Setúbal District, Mainland Portugal

    Science.gov (United States)

    Santos-Silva, Maria Margarida; Almeida, Victor Carlos; Bacellar, Fátima; Dumler, John Stephen

    2004-01-01

    A total of 278 Ixodes ticks, collected from Madeira Island and Setúbal District, mainland Portugal, were examined by polymerase chain reaction (PCR) for the presence of Anaplasma phagocytophilum. Six (4%) of 142 Ixodes ricinus nymphs collected in Madeira Island and 1 nymph and 1 male (2%) of 93 I. ventalloi collected in Setúbal District tested positive for A. phagocytophilum msp2 genes or rrs. Infection was not detected among 43 I. ricinus on mainland Portugal. All PCR products were confirmed by nucleotide sequencing to be identical or to be most closely related to A. phagocytophilum. To our knowledge, this is the first evidence of A. phagocytophilum in ticks from Setúbal District, mainland Portugal, and the first documentation of Anaplasma infection in I. ventalloi. Moreover, these findings confirm the persistence of A. phagocytophilum in Madeira Island's I. ricinus. PMID:15498168

  8. Pesky Ticks

    Centers for Disease Control (CDC) Podcasts

    2013-04-09

    In this podcast for kids, the Kidtastics talk about the dangers of ticks and how to protect yourself from them.  Created: 4/9/2013 by Centers for Disease Control and Prevention (CDC).   Date Released: 4/9/2013.

  9. The relationship between the Southern Oscillation Index, rainfall and the occurrence of canine tick paralysis, feline tick paralysis and canine parvovirus in Australia.

    Science.gov (United States)

    Rika-Heke, Tamara; Kelman, Mark; Ward, Michael P

    2015-07-01

    The aim of this study was to describe the association between climate, weather and the occurrence of canine tick paralysis, feline tick paralysis and canine parvovirus in Australia. The Southern Oscillation Index (SOI) and monthly average rainfall (mm) data were used as indices for climate and weather, respectively. Case data were extracted from a voluntary national companion animal disease surveillance resource. Climate and weather data were obtained from the Australian Government Bureau of Meteorology. During the 4-year study period (January 2010-December 2013), a total of 4742 canine parvovirus cases and 8417 tick paralysis cases were reported. No significant (P ≥ 0.05) correlations were found between the SOI and parvovirus, canine tick paralysis or feline tick paralysis. A significant (P parvovirus occurrence and rainfall in the same month (0.28), and significant negative cross-correlations (-0.26 to -0.36) between parvovirus occurrence and rainfall 4-6 months previously. Significant (P canine tick paralysis occurrence and rainfall 1-3 months previously, and significant positive cross-correlations (0.29-0.47) between canine tick paralysis occurrence and rainfall 7-10 months previously. Significant positive cross-correlations (0.37-0.68) were found between cases of feline tick paralysis and rainfall 6-10 months previously. These findings may offer a useful tool for the management and prevention of tick paralysis and canine parvovirus, by providing an evidence base supporting the recommendations of veterinarians to clients thus reducing the impact of these diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Detection of Babesia and Theileria species infection in cattle from Portugal using a reverse line blotting method.

    Science.gov (United States)

    Silva, M G; Marques, P X; Oliva, A

    2010-12-15

    Babesiosis and Theileriosis are tick-borne diseases widespread in tropical and sub-tropical regions with high economic impact worldwide. In Portugal there are at least 4 tick vectors known to be competent for the transmission of Babesia and Theileria sp. identified: Rhipicephalus bursa, Rhipicephalus (Boophilus) annulatus, Ixodes ricinus and Haemaphysalis punctata. All these potential Babesia and Theileria tick vectors are widely distributed in Portugal, although they are predominant in the Southern region. In this study, 1104 cattle blood samples were randomly collected from Central and Southern regions of Portugal and analyzed by PCR-reverse line blotting (RLB) for the detection of Babesia and Theileria sp. Testing indicated that 74.7% of the bovines tested were positive for either Babesia and/or Theileria sp. In addition, five different apicomplexan species, namely, Theileria buffeli, Theileria annulata, Babesia divergens, Babesia bovis, and Babesia bigemina were detected by RLB among the bovines tested. T. buffeli was the most frequently found species, being present in 69.9% of the positive samples either as single infections (52.4%), or as mixed infections (17.5%). The Babesia specie most frequently found was B. divergens, detected in 4.2% of the infected bovines. Overall, infected bovines were found in all regions tested; however the highest number of infected bovines was observed in Évora district (96.2%) and in cattle from Limousin breeds (81.7%). The results indicate widespread Babesia and Theileria infections in Portuguese bovines, suggesting the need for improved control of ticks and tick-borne diseases. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Rickettsia rickettsii isolation from naturally infected Amblyomma parvum ticks by centrifugation in a 24-well culture plate technique

    Directory of Open Access Journals (Sweden)

    K. Dzul-Rosado

    2013-09-01

    Full Text Available Rocky Mountain spotted fever is an acute illness caused by Rickettsia rickettsii (R. rickettsii and is transmitted by the bite of ticks of the genera Dermacentor, Amblyomma and Rhipicephalus. The illness results in a high mortality rate and may be easily confused with other febrile syndromes. In Yucatan State, Mexico, childhood cases with a high mortality have been reported. In this work we report the isolation of a Mexican R. rickettsii strain from a tick egg mass using an alternative method for Rickettsia isolation with 24-well plates. We also identified a potential vector of R. rickettsii in the southeast of Mexico, which is Amblyomma parvum.

  12. Experimental infection in Cavia porcellus by infected Amblyomma ovale nymphs with Rickettsia sp. (Atlantic rainforest strain).

    Science.gov (United States)

    Brustolin, Joice Magali; da Silva Krawczak, Felipe; Alves, Marta Elena Machado; Weiller, Maria Amélia; de Souza, Camila Lopes; Rosa, Fábio Brum; Cadore, Gustavo Cauduro; Dos Anjos Lopes, Sônia Terezinha; Labruna, Marcelo Bahia; Vogel, Fernanda Silveira Flores; de Avila Botton, Sônia; Sangioni, Luís Antônio

    2018-03-01

    This study describes experimental infection of guinea pigs (Cavia porcellus) infested with naturally infected Amblyomma ovale nymphs with Rickettsia sp. (Atlantic rainforest strain), and the capacity of A. ovale nymphs to transmit this bacterium. Twenty-six guinea pigs were divided into the following groups: G1, 10 animals infested with uninfected A. ovale nymphs; G2, 10 animals infested with nymphs infected with Rickettsia sp. (Atlantic rainforest strain); and G3, 6 animals without tick infestation. Blood samples were taken 7, 14, 21, and 28 days post-infestation for serological and hematological tests. For histopathological analysis and rickettsial DNA detection, fragments of the spleen, lung, brain, and liver were harvested after euthanasia. The average feeding period for nymphs was 6.6 days for G1 and 6 days for G2. Hemolymph and PCR assays, performed to detect the causative agent in ticks, indicated that in G1, all ticks were negative, and in G2, all nymphs were positive by PCR and 80% (8/10) was positive by hemolymph tests. The only clinical change was skin scarring at the tick attachment site. Hematological parameters indicated leukopenia and total plasma protein (TPP) increased with decreased platelets in G1. In G2, leukocytosis, neutrophilia, monocytosis, an increase in platelets, and reduced TPP were observed. Only G2 guinea pigs were seroconverted (80%; 8/10). Histopathology tests indicated mild, diffuse hemosiderosis and mild, multifocal, follicular hyperplasia in the spleen. Molecular analysis did not detect Rickettsia sp. DNA in C. porcellus tissues. We demonstrated the capacity of A. ovale nymphs to transmit Rickettsia sp. (Atlantic rainforest strain) to guinea pigs.

  13. Microbial Communities in North American Ixodid Ticks of Veterinary and Medical Importance

    Directory of Open Access Journals (Sweden)

    Andrea S. Varela-Stokes

    2017-10-01

    Full Text Available Interest in microbial communities, or microbiota, of blood-feeding arthropods such as ticks (order Parasitiformes, suborder Ixodida is increasing. Studies on tick microorganisms historically emphasized pathogens of high medical or veterinary importance. Current techniques allow for simultaneous detection of pathogens of interest, non-pathogenic symbionts, like Coxiella-LE and Francisella-LE, and microorganisms of unknown pathogenic potential. While each generation of ticks begins with a maternally acquired repertoire of microorganisms, microhabitats off and on vertebrate hosts can alter the microbiome during the life cycle. Further, blood-feeding may allow for horizontal exchange of various pathogenic microbiota that may or may not also be capable of vertical transmission. Thus, the tick microbiome may be in constant flux. The geographical spread of tick vector populations has resulted in a broader appreciation of tick-borne diseases and tick-associated microorganisms. Over the last decade, next-generation sequencing technology targeting the 16S rRNA gene led to documented snapshots of bacterial communities among life stages of laboratory and field-collected ticks, ticks in various feeding states, and tick tissues. Characterizing tick bacterial communities at population and individual tissue levels may lead to identification of markers for pathogen maintenance, and thus, indicators of disease “potential” rather than disease state. Defining the role of microbiota within the tick may lead to novel control measures targeting tick-bacterial interactions. Here, we review our current understanding of microbial communities for some vectors in the family Ixodidae (hard ticks in North America, and interpret published findings for audiences in veterinary and medical fields with an appreciation of tick-borne disease.

  14. A molecular survey of bovine Theileria parasites among apparently healthy cattle and with a note on the distribution of ticks in eastern Turkey.

    Science.gov (United States)

    Aktas, Munir; Altay, Kursat; Dumanli, Nazir

    2006-06-15

    A survey of Theileria parasites in cattle in eastern Turkey was carried out using specific polymerase chain reaction. A total of 252 blood samples were collected from clinically healthy cattle between June and July 2004. Of 252 blood samples examined, 41 (16%) were positive for piroplasms by microscopy, whereas 114 (45%) were positive for the presence of at least one species of Theileria by PCR. The percentages of positive animals for Theileria annulata and benign Theileria species (Theileria sergenti/buffeli/orientalis) were 39% (99/252) and 7% (18/252), respectively. By allele-specific PCR examination of 18 field isolates which were positive for benign Theileria parasites, 8 samples were only amplified by B-type specific primers and 10 samples were amplified by both of the B and C-type specific primers, indicating a mixed infection with B and C-type of the parasite. None of the field isolates was amplified by I-type specific primers. Three samples were co-infected with T. annulata and benign Theileria parasites. Two of them which were infected with B-type parasite were also infected with T. annulata, the other sample which was infected both of B and C-type parasites was also infected with T. annulata. A total of 724 ixodid ticks were collected from the cattle. Hyalomma anatolicum anatolicum was the dominant species with 32% (230/724) in the region. H. a. excavatum, Boophylus annulatus and Rhipicephalus bursa represented 25% (183/724), 19% (140/724) and 15% (112/724) of the total number of ticks, respectively. R. sanguineus was the minor species and represented 8% (59/724) of the tick population.

  15. Ticks infesting bats (Mammalia: Chiroptera) in the Brazilian Pantanal.

    Science.gov (United States)

    Muñoz-Leal, Sebastián; Eriksson, Alan; Santos, Carolina Ferreira; Fischer, Erich; de Almeida, Juliana Cardoso; Luz, Hermes R; Labruna, Marcelo B

    2016-05-01

    Ticks associated with bats have been poorly documented in the Neotropical Zoogeographical Region. In this study, a total of 1028 bats were sampled for tick infestations in the southern portion of the Brazilian Pantanal. A total of 368 ticks, morphologically identified as Ornithodoros hasei (n = 364) and O. mimon (n = 4), were collected from the following bat species: Artibeus planirostris, Platyrrhinus lineatus, Phyllostomus hastatus, Mimon crenulatum and Noctilio albiventris. Morphological identification of O. hasei was confirmed by molecular analysis. Regarding the most abundant bat species, only 40 (6.2%) out of 650 A. planirostris were infested by O. hasei, with a mean intensity of 7.2 ticks per infested bat, or a mean abundance of 0.44 ticks per sampled bat. Noteworthy, one single P. hastatus was infested by 55 O. hasei larvae, in contrast to the 2.5-7.2 range of mean intensity values for the whole study. As a complement to the present study, a total of 8 museum bat specimens (6 Noctilio albiventris and 2 N. leporinus), collected in the northern region of Pantanal, were examined for tick infestations. These bats contained 176 ticks, which were all morphologically identified as O. hasei larvae. Mean intensity of infestation was 22, with a range of 1-46 ticks per infested bat. Our results suggest that A. planirostris might play an important role in the natural life cycle of O. hasei in the Pantanal.

  16. Preferências alimentares e domiciliação de mosquitos Culicidae no Vale do Ribeira, São Paulo, Brasil, com especial referência a Aedes scapularis e a Culex (Melanoconion Feeding preferences and domiciliation of Culicidae mosquitoes in the Ribeira Valley, S. Paulo State, Brazil, with particular reference to Aedes scapularis and Culex (Melanoconion

    Directory of Open Access Journals (Sweden)

    Oswaldo Paulo Forattini

    1989-02-01

    Full Text Available Apresentam-se novos dados sobre a identificação do sangue ingerido por culicídeos ingurgitados e coletados em quatro localidades do Vale do Ribeira, Estado de São Paulo (Brasil, no período de fevereiro a novembro de 1986, e que já tinham sido sede de observações anteriores. São fornecidos dados sobre a distribuição de algumas espécies relacionadas ao tipo de ambiente. Focalizam-se Ae. scapularis e representantes de Culex (Melanoconion, principalmente Cx. ribeirensis e Cx. sacchettae. Foi possível a identificação de 651 repastos sangüíneos. Confirmou-se a preferência de Ae. scapularis por mamíferos de grande porte representados por bovinos, eqüinos e o próprio homem, tendo reagido a todos os anti-soros testados, com exceção do correspondente a animais de sangue frio representados por anfíbio. Cx. ribeirensis revelou resultados que sugerem possível preferência por mamíferos. As duas espécies supracitadas mostram tendência nítida para adaptação ao ambiente modificado pelo homem e capacidade de evolução de seus hábitos de possível domiciliação. Quanto aos outros culicídeos, as coletas de An. bellator, An. cruzii e Cq. chrysonotum limitaram-se à isca humana que a segunda dessas espécies rendeu 31,6% do total de fêmeas capturadas.New results on blood-meal identification and the environmental distribution of mosquitoes collected in four different Ribeira Valley (S. Paulo State, Brazil environments, during the period February to November 1986, are presented. Sources of 651 blood-meals were identified. The preference of Ae. scapularis for large mammals, chiefly cattle, horse and even man, was confirmed. Data suggests that a similar behavioral pattern is presented by Cx. ribeirensis. Both mosquitoes seem to be strongly attracted by peridomiciliar blood sources represented by domestic animals sheltered in that environment. Nevertheless, the female of Ae. scapularis females may use the extradomiciliary environment

  17. Economic downturn results in tick-borne disease upsurge.

    Science.gov (United States)

    Godfrey, Elinor R; Randolph, Sarah E

    2011-03-15

    The emergence of zoonoses is due both to changes in human activities and to changes in their natural wildlife cycles. One of the most significant vector-borne zoonoses in Europe, tick-borne encephalitis (TBE), doubled in incidence in 1993, largely as a consequence of the socio-economic transition from communism to capitalism and associated environmental changes. To test the effect of the current economic recession, unemployment in 2009 and various socio-economic indices were compared to weather indices (derived from principal component analyses) as predictors for the change in TBE case numbers in 2009 relative to 2004-08, for 14 European countries. Greatest increases in TBE incidence occurred in Latvia, Lithuania and Poland (91, 79 and 45%, respectively). The weather was rejected as an explanatory variable. Indicators of high background levels of poverty, e.g. percent of household expenditure on food, were significant predictors. The increase in unemployment in 2009 relative to 2008 together with 'in-work risk of poverty' is the only case in which a multivariate model has a second significant term. Background socio-economic conditions determine susceptibility to risk of TBE, while increased unemployment triggered a sudden increase in risk. Mechanisms behind this result may include reduced resistance to infection through stress; reduced uptake of costly vaccination; and more exposure of people to infected ticks in their forest habitat as they make greater use of wild forest foods, especially in those countries, Lithuania and Poland, with major marketing opportunities in such products. Recognition of these risk factors could allow more effective protection through education and a vaccination programme targeted at the economically most vulnerable.

  18. Economic downturn results in tick-borne disease upsurge

    Directory of Open Access Journals (Sweden)

    Randolph Sarah E

    2011-03-01

    Full Text Available Abstract Background The emergence of zoonoses is due both to changes in human activities and to changes in their natural wildlife cycles. One of the most significant vector-borne zoonoses in Europe, tick-borne encephalitis (TBE, doubled in incidence in 1993, largely as a consequence of the socio-economic transition from communism to capitalism and associated environmental changes. Methods To test the effect of the current economic recession, unemployment in 2009 and various socio-economic indices were compared to weather indices (derived from principal component analyses as predictors for the change in TBE case numbers in 2009 relative to 2004-08, for 14 European countries. Results Greatest increases in TBE incidence occurred in Latvia, Lithuania and Poland (91, 79 and 45%, respectively. The weather was rejected as an explanatory variable. Indicators of high background levels of poverty, e.g. percent of household expenditure on food, were significant predictors. The increase in unemployment in 2009 relative to 2008 together with 'in-work risk of poverty' is the only case in which a multivariate model has a second significant term. Conclusion Background socio-economic conditions determine susceptibility to risk of TBE, while increased unemployment triggered a sudden increase in risk. Mechanisms behind this result may include reduced resistance to infection through stress; reduced uptake of costly vaccination; and more exposure of people to infected ticks in their forest habitat as they make greater use of wild forest foods, especially in those countries, Lithuania and Poland, with major marketing opportunities in such products. Recognition of these risk factors could allow more effective protection through education and a vaccination programme targeted at the economically most vulnerable.

  19. Borrelia burgdorferi sensu lato spirochetes in wild birds in northwestern California: associations with ecological factors, bird behavior and tick infestation.

    Science.gov (United States)

    Newman, Erica A; Eisen, Lars; Eisen, Rebecca J; Fedorova, Natalia; Hasty, Jeomhee M; Vaughn, Charles; Lane, Robert S

    2015-01-01

    Although Borrelia burgdorferi sensu lato (s.l.) are found in a great diversity of vertebrates, most studies in North America have focused on the role of mammals as spirochete reservoir hosts. We investigated the roles of birds as hosts for subadult Ixodes pacificus ticks and potential reservoirs of the Lyme disease spirochete B. burgdorferi sensu stricto (s.s.) in northwestern California. Overall, 623 birds representing 53 species yielded 284 I. pacificus larvae and nymphs. We used generalized linear models and zero-inflated negative binomial models to determine associations of bird behaviors, taxonomic relationships and infestation by I. pacificus with borrelial infection in the birds. Infection status in birds was best explained by taxonomic order, number of infesting nymphs, sampling year, and log-transformed average body weight. Presence and counts of larvae and nymphs could be predicted by ground- or bark-foraging behavior and contact with dense oak woodland. Molecular analysis yielded the first reported detection of Borrelia bissettii in birds. Moreover, our data suggest that the Golden-crowned Sparrow (Zonotrichia atricapilla), a non-resident species, could be an important reservoir for B. burgdorferi s.s. Of 12 individual birds (9 species) that carried B. burgdorferi s.l.-infected larvae, no birds carried the same genospecies of B. burgdorferi s.l. in their blood as were present in the infected larvae removed from them. Possible reasons for this discrepancy are discussed. Our study is the first to explicitly incorporate both taxonomic relationships and behaviors as predictor variables to identify putative avian reservoirs of B. burgdorferi s.l. Our findings underscore the importance of bird behavior to explain local tick infestation and Borrelia infection in these animals, and suggest the potential for bird-mediated geographic spread of vector ticks and spirochetes in the far-western United States.

  20. Advances in disease control of tick and tick-borne diseases

    African Journals Online (AJOL)

    J.nfection and treatment method ofimmunisation has been devised ... providing research and training and in extension work on. TBDs. ... systems, cattle types, level of disease risk, disease control policies ... This paper highlights tick .control,.