WorldWideScience

Sample records for scanning vibrating electrode

  1. Measuring Spatial Vibration Using Continuous Laser Scanning

    Directory of Open Access Journals (Sweden)

    Izhak Bucher

    2000-01-01

    Full Text Available This paper presents a method, which allows one to use a single point laser vibrometer as a continuous sensor measuring along a line or a 2D surface. The mathematical background of the curve-fitting procedure and the necessary signal processing allowing one to extract the amplitude of sinusoidal vibration are discussed. In the current work, use has been made with an ordinary laser interferometer equipped with glavanometer-based x, y mirros. This system is not designed for continuous scanning therefore some effort needs to be spent in order to overcome the dynamical characteristics of this system. The potential of such an instrument, as demonstrated in this work, may encourage the development of mechanically better scanning devices.

  2. Measurement of Mechatronic Property of Biological Gel with Micro-Vibrating Electrode at Ultrasonic Frequency

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2008-10-01

    Full Text Available A measurement system has been designed with a micro-vibrating electrode at ultrasonic frequency to measure local impedance of biological gel in vitro. The designed system consists of two electrodes, where one of the electrodes vibrates with a piezoelectric actuator. The component of variation at impedance between two electrodes with vibration of one electrode is analyzed at the corresponding spectrum. The manufactured system was applied to measure impedance of a physiological saline solution, a potassium chloride solution, a dextran aqueous solution, and an egg. The experimental results show that the designed system is effective to measure local mechatronic property of biological gel.

  3. AGNES at vibrated gold microwire electrode for the direct quantification of free copper concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Rute F., E-mail: rdomingos@ipgp.fr [Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Torre Sul Lab 11-6.3, Av. Rovisco Pais #1, 1049-001 Lisbon (Portugal); Carreira, Sara [Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Torre Sul Lab 11-6.3, Av. Rovisco Pais #1, 1049-001 Lisbon (Portugal); Galceran, Josep [Department of Chemistry, University of Lleida and Agrotecnio, Rovira Roure 191, 25198 Lleida (Spain); Salaün, Pascal [School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L693 GP (United Kingdom); Pinheiro, José P. [LIEC/ENSG, UMR 7360 CNRS – Université de Lorraine, 15 Avenue du Charmois, 54500 Vandoeuvre-les-Nancy (France)

    2016-05-12

    The free metal ion concentration and the dynamic features of the metal species are recognized as key to predict metal bioavailability and toxicity to aquatic organisms. Quantification of the former is, however, still challenging. In this paper, it is shown for the first time that the concentration of free copper (Cu{sup 2+}) can be quantified by applying AGNES (Absence of Gradients and Nernstian equilibrium stripping) at a solid gold electrode. It was found that: i) the amount of deposited Cu follows a Nernstian relationship with the applied deposition potential, and ii) the stripping signal is linearly related with the free metal ion concentration. The performance of AGNES at the vibrating gold microwire electrode (VGME) was assessed for two labile systems: Cu-malonic acid and Cu-iminodiacetic acid at ionic strength 0.01 M and a range of pH values from 4.0 to 6.0. The free Cu concentrations and conditional stability constants obtained by AGNES were in good agreement with stripping scanned voltammetry and thermodynamic theoretical predictions obtained by Visual MinteQ. This work highlights the suitability of gold electrodes for the quantification of free metal ion concentrations by AGNES. It also strongly suggests that other solid electrodes may be well appropriate for such task. This new application of AGNES is a first step towards a range of applications for a number of metals in speciation, toxicological and environmental studies for the direct determination of the key parameter that is the free metal ion concentration. - Highlights: • AGNES principles are valid at the vibrating gold microwire electrode (VGME). • VGME was successfully employed to quantify free Cu concentrations by using AGNES. • Stability constants of labile systems were in good agreement with predictions.

  4. Vibration-to-electric energy conversion with porous graphene oxide-nickel electrode

    Science.gov (United States)

    Zhang, Chen; Dang, Fei; Chen, Youlong; Yan, Yuan; Liu, Yilun; Chen, Xi

    2017-11-01

    In this work, we present a new approach of converting vibration energy to electric energy using porous graphene oxide-nickel (pGO-Ni) electrode and ionic solution. When actuated by vibration, the ionic solution repeatedly flows across the pGO-Ni electrode which changes the electric double layer at the interface between the pGO-Ni electrode and ionic solution. Therefore, a significant potential difference between the working electrode and the reference electrode immersed into the static ionic solution is observed. The output voltage first increases with the vibration frequency and then gradually approaches to a saturated value of 70.12 mV as the vibration frequency increases to 15 Hz. By connecting a 3 kΩ resistance to the energy conversion system, the discharging behaviors of the energy conversion system are studied, which shows an exponential decay of the output voltage and current. The proposed energy conversion system is analogous to a supercapacitor, whose effective capacitance, internal resistance and energy conversion efficiency are deduced based on the discharging experiments. The work provides a new vibration-to-electric energy conversion mechanism, which may inspire potential applications in flow sensor and harvesting waste mechanical or vibration energy.

  5. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer.

    Science.gov (United States)

    Kitamura, Tatsuya; Ohtani, Keisuke

    2015-01-01

    This paper presents a method of measuring the vibration patterns on facial surfaces by using a scanning laser Doppler vibrometer (LDV). The surfaces of the face, neck, and body vibrate during phonation and, according to Titze (2001), these vibrations occur when aerodynamic energy is efficiently converted into acoustic energy at the glottis. A vocalist's vibration velocity patterns may therefore indicate his or her phonatory status or singing skills. LDVs enable laser-based non-contact measurement of the vibration velocity and displacement of a certain point on a vibrating object, and scanning LDVs permit multipoint measurements. The benefits of scanning LDVs originate from the facts that they do not affect the vibrations of measured objects and that they can rapidly measure the vibration patterns across planes. A case study is presented herein to demonstrate the method of measuring vibration velocity patterns with a scanning LDV. The objective of the experiment was to measure the vibration velocity differences between the modal and falsetto registers while three professional soprano singers sang sustained vowels at four pitch frequencies. The results suggest that there is a possibility that pitch frequency are correlated with vibration velocity. However, further investigations are necessary to clarify the relationships between vibration velocity patterns and phonation status and singing skills.

  6. Measurement of Translational and Angular Vibration Using a Scanning Laser Doppler Vibrometer

    Directory of Open Access Journals (Sweden)

    A.B. Stanbridge

    1996-01-01

    Full Text Available An experimental procedure for obtaining angular and translational vibration in one measurement, using a continuously scanning laser Doppler vibrometer, is described. Sinusoidal scanning, in a straight line, enables one angular vibration component to be measured, but by circular scanning, two principal angular vibrations and their directions can be derived directly from the frequency response sidebands. Examples of measurements on a rigid cube are given. Processes of narrow-band random excitation and modal analysis are illustrated with reference to measurements on a freely suspended beam. Sideband frequency response references are obtained by using multiplied excitation force and mirror-drive signals.

  7. Investigation of Heat Transfer and Magnetohydrodynamic Flow in Electroslag Remelting Furnace Using Vibrating Electrode

    Science.gov (United States)

    Wang, Fang; Wang, Qiang; Lou, Yanchun; Chen, Rui; Song, Zhaowei; Li, Baokuan

    2016-01-01

    A transient three-dimensional (3D) coupled mathematical model has been developed to understand the effect of a vibrating electrode on the electromagnetic, two-phase flow and temperature fields as well as the solidification in the electroslag remelting (ESR) process. With the magnetohydrodynamic model, the Joule heating and Lorentz force, which are the source terms in the energy and momentum equations, are recalculated at each iteration as a function of the phase distribution. The influence of the vibrating electrode on the formation of the metal droplet is demonstrated by the volume of fluid approach. Additionally, the solidification of the metal is modeled by an enthalpy-based technique, in which the mushy zone is treated as a porous medium with porosity equal to the liquid fraction. The present work is the first attempt to investigate the innovative technology of the ESR process with a vibrating electrode by a transient 3D comprehensive model. A reasonable agreement between the experiment and simulation is obtained. The results indicate that the whole process is presented as a periodic activity. When the metal droplets fall from the tip of the electrode, the horizontal component of velocity will generate electrode vibration. This will lead to the distribution variation of the flow field in the slag layer. The variation of temperature distribution occurs regularly and is periodically accompanied by the behavior of the falling metal droplets. With the decreasing vibrating frequency and amplitude, the relative velocity of the electrode and molten slag increase accordingly. The diameter of the molten droplets, the maximum temperature and the depth of the molten pool gradually become smaller, lower and shallower.

  8. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer

    Directory of Open Access Journals (Sweden)

    Tatsuya eKitamura

    2015-11-01

    Full Text Available This paper presents a method of measuring the vibration patterns onfacial surfaces by using a scanning laser Doppler vibrometer(LDV. The surfaces of the face, neck, and body vibrate duringphonation and, according to Titze (2001, these vibrations occur whenaerodynamic energy is efficiently converted into acoustic energy atthe glottis. A vocalist's vibration velocity patterns may thereforeindicate his or her phonatory status or singing skills. LDVs enablelaser-based non-contact measurement of the vibration velocity anddisplacement of a certain point on a vibrating object, and scanningLDVs permit multipoint measurements. The benefits of scanning LDVsoriginate from the facts that they do not affect the vibrations ofmeasured objects and that they can rapidly measure the vibrationpatterns across planes. A case study is presented herein todemonstrate the method of measuring vibration velocity patterns with ascanning LDV. The objective of the experiment was to measure thevibration velocity differences between the modal and falsettoregisters while three professional soprano singers sang sustainedvowels at four pitch frequencies. The results suggest that there is apossibility that pitch frequency are correlated with vibrationvelocity. However, further investigations are necessary to clarify therelationships between vibration velocity patterns and phonation statusand singing skills.

  9. Videokymography : High-speed line scanning of vocal fold vibration

    NARCIS (Netherlands)

    Svec, JG; Schutte, HK

    A digital technique for high-speed visualization of vibration, called videokymography, was developed and applied to the vocal folds. The system uses a modified video camera able to work in two modes: high-speed (nearly 8,000 images/s) and standard (50 images/s in CCIR norm). In the high-speed mode,

  10. Harvesting vibrational energy with liquid-bridged electrodes: thermodynamics in mechanically and electrically driven RC-circuits

    NARCIS (Netherlands)

    Janssen, Mathijs; Werkhoven, Ben; Van Roij, René

    2016-01-01

    We theoretically study a vibrating pair of parallel electrodes bridged by a (deformed) liquid droplet, which is a recently developed microfluidic device to harvest vibrational energy. The device can operate with various liquids, including liquid metals, electrolytes, as well as ionic liquids. We

  11. Scanning Electron Microscopy study of Macbat regeneration effect on lead-acid battery electrodes

    OpenAIRE

    Emanuelsson, Christian

    2013-01-01

    Electrodes from lead-acid batteries were studied using scanning electron microscopy and energy dispersive spectroscopy. This to observe the effects of cycling on the batteries and how a capacity recovery process, known as Macbat regeneration, affected the active material with focus on hard sulphation. First, two new batteries were cycled for two months and electrodes from them were studied when the batteries were new, cycled, fully charged after cycling and regenerated after cycling. Then ele...

  12. Measuring ultra-sonic in-plane vibrations with the scanning confocal heterodyne interferometer

    Science.gov (United States)

    Rembe, C.; Ur-Rehman, F.; Heimes, F.; Boedecker, S.; Dräbenstedt, A.

    2010-05-01

    The advanced progress in miniaturization technologies of mechanical systems and structures has led to a growing demand of measurement tools for three-dimensional vibrations at ultra-high frequencies. Particularly radio-frequency, micro-electro-mechanical (RF-MEM) technology is a planar technology and, thus, the resonating structures are much larger in lateral dimensions compared to the height. Consequently, most ultra-high-frequency devices have larger inplane vibration amplitudes than out-of-plane amplitudes. Recently, we have presented a heterodyne interferometer for vibration frequencies up to 1.2 GHz. In this paper we demonstrate a new method to extract broad-bandwidth spectra of in-plane vibrations with our new heterodyne interferometer. To accomplish this goal we have combined heterodyne interferometry, scanning vibrometry, edge-knife technique, amplitude demodulation, and digital-image processing. With our experimental setup we can realize in-plane vibration measurements up to 600 MHz. We will also show our first measurements of a broad-bandwidth, in-plane vibration around 200 MHz. Our in-plane and out-of-plane vibration measurements are phase-correlated and, therefore, our technique is suitable for broad-bandwidth, full-3D vibration measurements of ultrasonic microdevices.

  13. Membrane Vibration Studies Using a Scanning Laser Vibrometer

    Science.gov (United States)

    Gaspar, James L.; Solter, Micah J.; Pappa, Richard S.

    2001-01-01

    This paper summarizes on-going experimental work at NASA Langley Research Center to measure the dynamics of a 1.016 m (40 in.) square polyimide film Kapton membrane. A fixed fully automated impact hammer and Polytec PSV-300-H scanning laser vibrometer were used for non-contact modal testing of the membrane with zero-mass-loading. The paper discusses the results obtained by testing the membrane at various tension levels and at various excitation locations. Results obtained by direct shaker excitation to the membrane are also discussed.

  14. Broadband measurement of translational and angular vibrations using a single continuously scanning laser Doppler vibrometer.

    Science.gov (United States)

    Salman, Muhammad; Sabra, Karim G

    2012-09-01

    A continuous scanning laser Doppler velocimetry (CSLDV) technique is used to measure the low frequency broadband vibrations associated with human skeletal muscle vibrations (typically f laser beam over distances that are short compared to the characteristic wavelengths of the vibrations. The high frequency scan (compared to the vibration frequency) enables the detection of broadband translational and angular velocities at a single point using amplitude demodulation of the CSDLV signal. For instance, linear scans allow measurement of the normal surface velocity and one component of angular velocity vector, while circular scans allow measurement of an additional angular velocity component. This CSLDV technique is first validated here using gel samples mimicking soft tissues and then applied to measure multiple degrees of freedom (DOF) of a subject's hand exhibiting fatigue-induced tremor. Hence this CSLDV technique potentially provides a means for measuring multiple DOF of small human body parts (e.g., fingers, tendons, small muscles) for various applications (e.g., haptic technology, remote surgery) when the use of skin-mounted sensors (e.g. accelerometers) can be problematic due to mass-loading artifacts or tethering issues.

  15. Investigation of three-dimensional vibration measurement by a single scanning laser Doppler vibrometer

    Science.gov (United States)

    Chen, Da-Ming; Zhu, W. D.

    2017-01-01

    A scanning laser Doppler vibrometer (SLDV) has been widely used in non-contact vibration measurement. This paper presents a novel investigation of three-dimensional (3D) vibration measurement by a single SLDV sequentially placed at three different positions, where 3D vibration is defined as three vibration components along axes of a specified measurement coordinate system (MCS), which can give more precise knowledge of structural dynamic characteristics. A geometric model of the SLDV is proposed and a vibrometer coordinate system (VCS) based on the geometric model is defined and fixed on the SLDV. The pose of a SLDV with respect to a MCS is expressed in the form of a translation vector and a direction cosine matrix from the VCS to the MCS, which can be calculated by four or more target points with known coordinates in both the MCS and the VCS. An improved method based on the least squares method and singular value decomposition is proposed to obtain the pose of the SLDV. Compared with an inverse method, the proposed method can yield an orthogonal direction cosine matrix and be applicable to a two-dimensional structure. Effects of the number of target points on the accuracy and stability of the proposed method are investigated. With three direction cosine matrices of three different positions obtained by the proposed method, measured vibration velocities along laser line-of-sight directions can be transformed to vibration components along axes of the MCS. An experiment was conducted to measure 3D vibration of a target point on a beam under sinusoidal excitation by a single SLDV sequentially placed at three different positions. Vibration components along axes of the MCS obtained by the single SLDV were in good agreement with those from a commercial Polytec 3D scanning laser vibrometer PSV-500-3D.

  16. Method to characterize the vibrational response of a beetle type scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Behler, S.; Rose, M.K.; Ogletree, D.F.; Salmeron, M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    1997-01-01

    We describe a method for analyzing the external vibrations and intrinsic mechanical resonances affecting scanning probe microscopes by using the microscope as an accelerometer. We show that clear correlations can be established between the frequencies of mechanical vibrational modes and the frequencies of peaks in the tunnel current noise power spectrum. When this method is applied to our {open_quotes}beetle{close_quotes} type scanning tunneling microscope (STM), we find unexpected low frequency {open_quotes}rattling resonances{close_quotes} in the 500{endash}1700 Hz range that depend on the exact lateral position of the STM, in addition to the expected mechanical resonances of the STM above 4 kHz which are in good agreement with theoretical estimates. We believe that these rattling resonances may be a general problem for scanning probe microscopes that use some type of kinetic motion for coarse positioning. {copyright} {ital 1997 American Institute of Physics.}

  17. Axial Fan Blade Vibration Assessment under Inlet Cross-Flow Conditions Using Laser Scanning Vibrometry

    Directory of Open Access Journals (Sweden)

    Till Heinemann

    2017-08-01

    Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.

  18. Effect of vibrating electrode on temperature profiles, fluid flow, and pool shape in ESR system based on a comprehensive coupled model

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2015-07-01

    Full Text Available The vibrating electrode method was proposed in the electro-slag remelting (ESR process in this paper, and the effect of vibrating electrode on the solidification structure of ingot was studied. A transient three-dimensional (3D coupled mathematical model was established to simulate the electromagnetic phenomenon, fluid flow as well as pool shape in the ESR process with the vibrating electrode. The finite element volume method is developed to solve the electromagnetic field using ANSYS mechanical APDL software. Moreover, the electromagnetic force and Joule heating are interpolated as the source term of the momentum and energy equations. The multi-physical fields have been investigated and compared between the traditional electrode and the vibrating electrode in the ESR process. The results show that the drop process of metal droplets with the traditional electrode is scattered randomly. However, the drop process of metal droplets with the vibrating electrode is periodic. The highest temperature of slag layer with the vibrating electrode is higher than that with the traditional electrode, which can increase the melting rate due to the enhanced heat transfer in the vicinity of the electrode tip. The results also show that when the amplitude and frequency of the vibrating electrode increase, the cycle of drop process of metal droplets decreases significantly.

  19. Human hand-transmitted vibration measurements on pedestrian controlled tractor operators by a laser scanning vibrometer.

    Science.gov (United States)

    Deboli, R; Miccoli, G; Rossi, G L

    1999-06-01

    A first application of a new measurement technique to detect vibration transmitted to the human body in working conditions is presented. The technique is based on the use of a laser scanning vibrometer. It was previously developed, analysed and tested using laboratory test benches with electrodynamical exciters, and comparisons with traditional measurement techniques based on accelerometers were made. First, results of tests performed using a real machine generating vibration are illustrated. The machine used is a pedestrian-controlled tractor working in a fixed position. Reference measurements by using the accelerometer have been simultaneously performed while scanning the hand surface by the laser-based measurement system. Results achieved by means of both measurement techniques have been processed, analysed, compared and used to calculate transmissibility maps of the hands of three subjects.

  20. Electro-Mechanical Stimulation of the Cochlea by Vibrating Cochlear Implant Electrodes.

    Science.gov (United States)

    Mueller, Mathias; Salcher, Rolf; Majdani, Omid; Lenarz, Thomas; Maier, Hannes

    2015-12-01

    Electro-acoustic stimulation (EAS) of the cochlea uses the preserved residual low-frequency hearing for acoustic stimulation in combination with electrical stimulation. The acoustic low-frequency component is amplified and high-frequency hearing is enhanced by a cochlear implant (CI). In this work, the feasibility of EAS by the floating mass transducers (FMTs) firmly attached to the implanted electrode was investigated and the achieved stapes displacement was compared with sound stimulation. Experiments were performed in eight fresh human temporal bones compliant to the ASTM standard (F2504-5). Four EAS custom-made prototypes (EAS-CMP) were tested, consisting of standard MED-EL CI electrodes with Vibrant Soundbridge (VSB) FMTs or a Bonebridge (BB) FMT tightly molded to the electrode in different orientations. The stapes footplate (SFP) response to EAS-CMP stimulation and sound stimulation was measured using a Laser Doppler Vibrometer (LDV). The SFP displacement amplitudes achieved by EAS-CMP stimulation were calculated to 1 VRMS FMT input and were pair-wise statistically compared between prototypes yielding no significant differences at frequencies ≤1 kHz. At frequencies ≤1 kHz stimulation by the BB FMT resulted in a flat and potentially highest SFP displacement amplitude of approximately -40 dB re μm at 1 VRMS input voltage. Estimated equivalent sound pressure levels achieved by the BB FMT prototype were approximately 83-90 eq. dB SPL at frequencies ≤1 kHz. The feasibility of cochlear stimulation by vibrating electrodes was shown although the achieved output level at frequencies ≤1 kHz was too low for EAS applications.

  1. Imaging and Analysis of Human Vocal Fold Vibration Using Two-Dimensional (2D) Scanning Videokymography.

    Science.gov (United States)

    Park, Hee-June; Cha, Wonjae; Kim, Geun-Hyo; Jeon, Gye-Rok; Lee, Byung Joo; Shin, Bum-Joo; Choi, Yang-Gyu; Wang, Soo-Geun

    2016-05-01

    Laryngeal videokymography and high-speed digital kymography are the currently available techniques for studying aperiodic vibration of the vocal folds. However, videokymography has a fundamental limitation that only linear portions of the vocal fold mucosa can be visualized, whereas high-speed digital kymography has the disadvantages of lack of immediate feedback during examination and considerable waiting time before kymographic visualization. We developed a new system, two-dimensional (2D) scanning videokymography, that provides a possible alternative for evaluation of the vibratory pattern of the vocal folds. Herein, we report the application of 2D scanning videokymography for visualization of vocal fold vibration in humans and an analysis of its parameters. Two young healthy volunteers (one man and one woman) took part in this study. The vibratory patterns of their vocal folds were evaluated using 2D scanning videokymography and laryngeal stroboscopy. Two-dimensional scanning videokymography provided a high-definition image of the vibratory movements of the vocal folds. In analysis of the images acquired by the device, various parameters including fundamental frequency; ratio of the vibratory phases; phase, amplitude, and glottal area symmetry; and cycle-to-cycle variability were extracted. Our results indicate that 2D scanning videokymography is a useful and promising tool for visualization of the vibratory movement of the vocal folds. This new technique might improve our understanding of the mechanism of vocal fold vibration and contribute to voice research as well as clinical practice. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Vibration Analysis of Collecting Electrodes by means of the Hybrid Finite Element Method

    Directory of Open Access Journals (Sweden)

    I. Adamiec-Wójcik

    2014-01-01

    Full Text Available The paper presents a hybrid finite element method of shell modeling in order to model collecting electrodes of electrostatic precipitators. The method uses the finite element method to reflect elastic features and the rigid finite element method in order to model mass features of the body. A model of dust removal systems of an electrostatic precipitator is presented. The system consists of two beams which are modeled by means of the rigid finite element method and a system of collecting shells modeled by means of the hybrid finite element method. The paper discusses both the procedure of deriving the equations of motion and the results of numerical simulations carried out in order to analyze vibrations of the whole system. Experimental verification of the model is also presented.

  3. Model for continuously scanning ultrasound vibrometer sensing displacements of randomly rough vibrating surfaces.

    Science.gov (United States)

    Ratilal, Purnima; Andrews, Mark; Donabed, Ninos; Galinde, Ameya; Rappaport, Carey; Fenneman, Douglas

    2007-02-01

    An analytic model is developed for the time-dependent ultrasound field reflected off a randomly rough vibrating surface for a continuously scanning ultrasound vibrometer system in bistatic configuration. Kirchhoff's approximation to Green's theorem is applied to model the three-dimensional scattering interaction of the ultrasound wave field with the vibrating rough surface. The model incorporates the beam patterns of both the transmitting and receiving ultrasound transducers and the statistical properties of the rough surface. Two methods are applied to the ultrasound system for estimating displacement and velocity amplitudes of an oscillating surface: incoherent Doppler shift spectra and coherent interferometry. Motion of the vibrometer over the randomly rough surface leads to time-dependent scattering noise that causes a randomization of the received signal spectrum. Simulations with the model indicate that surface displacement and velocity estimation are highly dependent upon the scan velocity and projected wavelength of the ultrasound vibrometer relative to the roughness height standard deviation and correlation length scales of the rough surface. The model is applied to determine limiting scan speeds for ultrasound vibrometer measuring ground displacements arising from acoustic or seismic excitation to be used in acoustic landmine confirmation sensing.

  4. Molecular images and vibrational spectroscopy of sorbic acid with the scanning tunneling microscope

    Science.gov (United States)

    Smith, Douglas P. E.; Kirk, Michael D.; Quate, Calvin F.

    1987-06-01

    Images of sorbic acid molecules absorbed onto graphite have been taken with a scanning tunneling microscope (STM) operating in liquid helium. Molecular clusters were clearly observed, as was the atomic structure of the graphite substrate. The molecules were seen to diffuse across the substrate at a rate of about 1 Å/min. When dI/dV vs V was measured with the STM probe directly over a sorbic acid molecule, a well-defined spectrum of peaks was obtained whose energies corresponded to the vibrational resonances of the molecule. Large changes in the spectra occurred if the tip was moved a lateral distance of 5 Å.

  5. Analysis of classical guitars' vibrational behavior based on scanning laser vibrometer measurements

    Science.gov (United States)

    Czajkowska, Marzena

    2012-06-01

    One of the main goals in musical acoustics research is to link measurable, physical properties of a musical instrument with subjective assessments of its tone quality. The aim of the research discussed in this paper was to observe the structural vibrations of different class classical guitars in relation to their quality. This work focuses on mid-low-and low-class classical (nylon-stringed) guitars. The main source of guitar body vibrations come from top and back plate vibrations therefore these were the objects of structural mode measurements and analysis. Sixteen classical guitars have been investigated, nine with cedar and seven with spruce top plate. Structural modes of top and back plates have been measured with the aid of a scanning laser vibrometer and the instruments were excited with a chirp signal transferred by bone vibrator. The issues related to excitor selection have been discussed. Correlation and descriptive statistics of top and back plates measurement results have been investigated in relation to guitar quality. The frequency range of 300 Hz to 5 kHz as well as selected narrowed frequency bands have been analyzed for cedar and spruce guitars. Furthermore, the influence of top plate wood type on vibration characteristics have been observed on three pairs of guitars. The instruments were of the same model but different top plate material. Determination and visualization of both guitar plates' modal patterns in relation to frequency are a significant attainment of the research. Scanning laser vibrometer measurements allow particular mode observation and therefore mode identification, as opposed to sound pressure response measurements. When correlating vibration characteristics of top and back plates it appears that Pearson productmoment correlation coefficient is not a parameter that associates with guitar quality. However, for best instruments with cedar top, top-back correlation coefficient has relatively greater value in 1-2 kHz band and lower in

  6. Improving thermal ablation delineation with electrode vibration elastography using a bidirectional wave propagation assumption.

    Science.gov (United States)

    DeWall, Ryan J; Varghese, Tomy

    2012-01-01

    Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation. In this work, we assume both lateral and axial wave propagation and compare wave velocity images to those assuming only lateral shear wave propagation in finite element simulations, tissue-mimicking phantoms, and bovine liver tissue. Our results show that assuming bidirectional wave propagation minimizes artifacts above and below ablated volumes, yielding a more accurate representation of the ablated region on shear wave velocity images. Area overestimation was reduced from 13.4% to 3.6% in a stiff-inclusion tissue-mimicking phantom and from 9.1% to 0.8% in a radio-frequency ablation in bovine liver tissue. More accurate ablation representation during ablation procedures increases the likelihood of complete treatment of the malignant target, decreasing tumor recurrence. © 2012 IEEE

  7. Fast Orthogonal Row-Column Electronic Scanning With Top-Orthogonal-to-Bottom Electrode Arrays.

    Science.gov (United States)

    Ceroici, Chris; Harrison, Tyler; Zemp, Roger J

    2017-06-01

    Recently, top-orthogonal-to-bottom electrode 2-D arrays were introduced as a practical design for 3-D ultrasound imaging without requiring the wiring of a 2-D grid of elements. However, previously proposed imaging schemes suffered from speed or image-quality limitations. Here, we propose a new imaging scheme which we call Fast Orthogonal Row-Column Electronic Scanning (FORCES). This new approach takes advantage of bias sensitivity to enable high-quality and fast B-scan imaging. We compare this imaging scheme with an equivalent linear array, a previously proposed row-column imaging scheme, as well as with the Explososcan imaging scheme for 2-D arrays through simulations. In a point phantom simulation, the lateral (azimuthal) resolution of a 64 ×64 element 6.67-MHz λ /2-pitch array using the FORCES imaging scheme with an f-number of 1.7 was 0.52 mm with similar in-plane image quality to an equivalent linear array but with improved and electronically steerable elevational resolution. When compared with other 3-D imaging schemes in point phantom simulations, the FORCES imaging scheme showed an azimuthal resolution improvement of 54% compared with Explososcan. Compared with a previously introduced row-column method, the FORCES imaging scheme had similar resolution but a 25-dB decrease in sidelobe amplitude, significantly impacting contrast to noise in scattering phantoms.

  8. Vibrational Stark Effect to Probe the Electric-Double Layer of the Ionic Liquid-Metal Electrodes

    Science.gov (United States)

    Garcia Rey, Natalia; Moore, Alexander Knight; Toyouchi, Shuichi; Dlott, Dana

    2017-06-01

    Vibrational sum frequency generation (VSFG) spectroscopy is used to study the effect of room temperature ionic liquids (RTILs) in situ at the electrical double layer (EDL). RTILs have been recognized as electrolytes without solvent for applications in batteries, supercapacitors and electrodeposition^{1}. The molecular response of the RTIL in the EDL affects the performance of these devices. We use the vibrational Stark effect on CO as a probe to detect the changes in the electric field affected by the RTIL across the EDL on metal electrodes. The Stark effect is a shift in the frequency in response to an externally applied electric field and also influenced by the surrounding electrolyte and electrode^{2}. The CO Stark shift is monitored by the CO-VSFG spectra on Pt or Ag in a range of different imidazolium-based RTILs electrolytes, where their composition is tuned by exchanging the anion, the cation or the imidazolium functional group. We study the free induction decay (FID)^{3} of the CO to monitor how the RTIL structure and composition affect the vibrational relaxation of the CO. Combining the CO vibrational Stark effect and the FID allow us to understand how the RTIL electrochemical response, molecular orientation response and collective relaxation affect the potential drop of the electric field across the EDL, and, in turn, how determines the electrical capacitance or reactivity of the electrolyte/electrode interface. ^{1}Fedorov, M. V.; Kornyshev, A. A., Ionic Liquids at Electrified Interfaces. Chem. Rev. 2014, 114, 2978-3036. ^{2} (a) Lambert, D. K., Vibrational Stark Effect of Adsorbates at Electrochemical Interfaces. Electrochim. Acta 1996, 41, 623-630. (b) Oklejas, V.; Sjostrom, C.; Harris, J. M., SERS Detection of the Vibrational Stark Effect from Nitrile-Terminated SAMs to Probe Electric Fields in the Diffuse Double-Layer. J. Am. Chem. Soc. 2002, 124, 2408-2409. ^{3}Symonds, J. P. R.; Arnolds, H.; Zhang, V. L.; Fukutani, K.; King, D. A

  9. Simultaneous electrochemical determination of arsenic, copper, lead and mercury in unpolluted fresh waters using a vibrating gold microwire electrode

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Georgina M.S.; Magalhaes, Julia M.C.S. [REQUIMTE, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua. Dr. Roberto Frias, 4200-465 Porto (Portugal); Salauen, Pascal; Berg, Constant M.G. van den [Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Soares, Helena M.V.M., E-mail: hsoares@fe.up.pt [REQUIMTE, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua. Dr. Roberto Frias, 4200-465 Porto (Portugal)

    2011-10-03

    Highlights: {yields} Simultaneous DPASV determination of four metals with a vibrating gold microwire. {yields} Multi-element detection in the presence of oxygen with short deposition time (30 s). {yields} Detection limits of As, Cu, Hg, Pb: 0.07, 0.4, 0.07, 0.2 {mu}g L{sup -1}, respectively. {yields} Successful simultaneous determination of the four metals in real freshwaters. - Abstract: In this work, a simple, rapid, reliable and low cost method for simultaneous electrochemical determination of As, Cu, Hg and Pb ions, on a vibrating gold microwire electrode combined with stripping voltammetry, is described for the first time. The multi-element detection was performed in the presence of oxygen by differential pulse anodic stripping voltammetry (DPASV) in HCl 0.1 M with NaCl 0.5 M. This media was found optimum in terms of peak resolution, peak shape and sensitivities, and has a composition similar to seawater to which the method could potentially be applied. The gold microwire electrode presented well defined, undistorted, sharp and reproducible peaks for trace concentrations of Cu, Hg and Pb and As presented a reproducible peak with a small shoulder. Using a gold vibrating microwire electrode of 25 {mu}m diameter and 30 s deposition time, the detection limits of As, Cu, Hg and Pb were 0.07, 0.4, 0.07 and 0.2 {mu}g L{sup -1}, respectively. Possible effects of Al, Cd, Cr, Fe, Mn, Ni, Sb and Zn were investigated but did not cause any significant interferences. Finally, the method was applied for the simultaneous determination of these four metals in unpolluted river water samples and the results were validated by Atomic Absorption Spectroscopy with Electrothermal Atomization (AAS-EA) or by Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

  10. Vibrational dynamics of CO at single-crystal platinum electrodes in aqueous and non-aqueous electrolytes

    Science.gov (United States)

    Peremans, A.; Tadjeddine, A.; Zheng, W.-Q.; Le Rille, A.; Guyot-Sionnest, P.; Thiry, P. A.

    1996-12-01

    The vibrational dynamics of CO at two electrochemical interfaces is studied as a function of the electrode potential, for {CO}/{Pt(100) } in 0.1M aqueous H 2SO 4 and {CO}/{Pt(110) } in 0.05M C 16H 36ClNO 4 acetonitrile electrolyte. The measured lifetime of ˜1.7 ps is in line with those previously determined for dry CO-metal interfaces. The lifetime appears to be independent of the electrolyte composition, and unaffected by an electrode-potential variation as large as 2 V achieved for the non-aqueous electrolyte experiment. These measurements suggest that the 2π∗ CO acceptor orbital involved in the substrate/adsorbate charge transfer process is much broader than 0.8 eV.

  11. Electrical double layer at various electrode potentials: A modification by vibration

    Czech Academy of Sciences Publication Activity Database

    Zhan, H.; Červenka, Jiří; Prawer, S.; Garrett, D.J.

    2017-01-01

    Roč. 121, č. 8 (2017), s. 4760-4764 ISSN 1932-7447 Institutional support: RVO:68378271 Keywords : electrical double layer * vibration * high concentration * model Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.536, year: 2016

  12. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Science.gov (United States)

    Kim, Dongkyu; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan

    2016-06-01

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  13. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, South Korea, 500-712 (Korea, Republic of)

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  14. Vibration Pattern Imager (VPI): A control and data acquisition system for scanning laser vibrometers

    Science.gov (United States)

    Rizzi, Stephen A.; Brown, Donald E.; Shaffer, Thomas A.

    1993-01-01

    The Vibration Pattern Imager (VPI) system was designed to control and acquire data from scanning laser vibrometer sensors. The PC computer based system uses a digital signal processing (DSP) board and an analog I/O board to control the sensor and to process the data. The VPI system was originally developed for use with the Ometron VPI Sensor, but can be readily adapted to any commercially available sensor which provides an analog output signal and requires analog inputs for control of mirror positioning. The sensor itself is not part of the VPI system. A graphical interface program, which runs on a PC under the MS-DOS operating system, functions in an interactive mode and communicates with the DSP and I/O boards in a user-friendly fashion through the aid of pop-up menus. Two types of data may be acquired with the VPI system: single point or 'full field.' In the single point mode, time series data is sampled by the A/D converter on the I/O board (at a user-defined sampling rate for a selectable number of samples) and is stored by the PC. The position of the measuring point (adjusted by mirrors in the sensor) is controlled via a mouse input. The mouse input is translated to output voltages by the D/A converter on the I/O board to control the mirror servos. In the 'full field' mode, the measurement point is moved over a user-selectable rectangular area. The time series data is sampled by the A/D converter on the I/O board (at a user-defined sampling rate for a selectable number of samples) and converted to a root-mean-square (rms) value by the DSP board. The rms 'full field' velocity distribution is then uploaded for display and storage on the PC.

  15. A Semi-Analytical Solution for the Thickness-Vibration of Centrally Partially-Electroded Circular AT-Cut Quartz Resonators

    Science.gov (United States)

    Wang, Bin; Dai, Xiaoyun; Zhao, Xintao; Qian, Zhenghua

    2017-01-01

    Vibration frequencies and modes for the thickness-shear vibrations of infinite partially-electroded circular AT-cut quartz plates are obtained by solving the two-dimensional (2D) scalar differential equation derived by Tiersten and Smythe. The Mathieu and modified Mathieu equations are derived from the governing equation using the coordinate transform and the collocation method is used to deal with the boundary conditions. Solutions of the resonant frequencies and trapped modes are validated by those results obtained from COMSOL software. The current study provides a theoretical way for figuring out the vibration analysis of circular quartz resonators. PMID:28783124

  16. Vibration Sensitivity of a Wide-Temperature Electronically Scanned Pressure Measurement (ESP) Module

    Science.gov (United States)

    Zuckerwar, Allan J.; Garza, Frederico R.

    2001-01-01

    A vibration sensitivity test was conducted on a Wide-Temperature ESP module. The test object was Module "M4," a 16-channel, 4 psi unit scheduled for installation in the Arc Sector of NTF. The module was installed on a vibration exciter and loaded to positive then negative full-scale pressures (+/-2.5 psid). Test variables were the following: Vibration frequencies: 20, 55, 75 Hz. Vibration level: 1 g. Vibration axes: X, Y, Z. The pressure response was measured on each channel, first without and then with the vibration turned on, and the difference analyzed by means of the statistical t-test. The results show that the vibration sensitivity does not exceed 0.01% Full Scale Output per g (with the exception of one channel on one axis) to a 95 percent confidence level. This specification, limited by the resolution of the pressure source, lies well below the total uncertainty specification of 0.1 percent Full Scale Output.

  17. Voltammetry and In Situ Scanning Tunneling Microscopy of Cytochrome c Nitrite Reductase on Au(111)-Electrodes

    DEFF Research Database (Denmark)

    Gwyer, James; Zhang, Jingdong; Butt, Julea

    2006-01-01

    Escherichia coli cytochrome c nitrite reductase (NrfA) catalyzes the six-electron reduction of nitrite to perform an important role in the biogeochemical cycling of nitrogen. Here we describe NrfA adsorption on single-crystal Au(111) electrodes as an electrocatalytically active film in which the ...

  18. The dissolution of Ag(111) electrodes investigated by in situ scanning tunnelling microscopy

    CERN Document Server

    Wilson, T K

    1998-01-01

    voltammetric methods. This remained evident for varying extents of silver dissolution. Ag(111) electrodes were oxidised in 0.1 M KCIO sub 4 solutions by a single swept ORC of 0.77x10 sup - sup 3 C cm sup - sup 2. The final rest potential of the Ag(111) working electrode was over the potential range of -36 mV to 114 mV versus the SCE where the silver islands of the reformed surface are believed to be unstable. Results show that a majority of silver islands of all sizes are stable with time, whereas the silver islands with irregular shapes tended to evolve to exhibit higher degrees of spherical geometry. Additionally, the position of the silver islands did not remain constant during the acquisition of STM images. Results from in situ STM demonstrated that the underlying step-terrace morphology of the Ag(111) electrodes did not remain constant with time. Both macroscale and nanoscale changes to the Ag(111) electrode surface were observed. It is concluded that this is due to the transport of material along and fr...

  19. A new two-dimensional theory for vibrations of piezoelectric crystal plates with electroded faces

    Science.gov (United States)

    Lee, P. C. Y.; Yu, J. D.; Lin, W. S.

    1998-02-01

    A system of two-dimensional (2-D) governing equations for piezoelectric plates with general crystal symmetry and with electroded faces is deduced from the three-dimensional (3-D) equations of linear piezoelectricity by expansion in series of trigonometric functions of thickness coordinate. The essential difference of the present derivation from the earlier studies by trigonometrical series expansion is that the antisymmetric in-plane displacements induced by gradients of the bending deflection (the zero-order component of transverse displacement) are expressed by the linear functions of the thickness coordinate, and the rest of displacements are expanded in cosine series of the thickness coordinate. For the electric potential, a sine-series expansion is used for it is well suited for satisfying the electrical conditions at the faces covered with conductive electrodes. A system of approximate first-order equations is extracted from the infinite system of 2-D equations. Dispersion curves for thickness shear, flexure, and face-shear modes varying along x1 and those for thickness twist and face shear varying along x3 for AT-cut quartz plates are calculated from the present 2-D equations as well as from the 3-D equations, and comparison shows that the agreement is very close without introducing any corrections. Predicted frequency spectra by the present equations are shown to agree closely with the experimental data by Koga and Fukuyo [J. Inst. Elec. Comm. Engrs. of Japan 36, 59 (1953)] and those by Nakazawa, Horiuchi, and Ito [Proceedings of 1990 IEEE Ultrasonics Symposium (IEEE, New York, 1990)].

  20. In-line monitoring of Li-ion battery electrode porosity and areal loading using active thermal scanning - modeling and initial experiment

    Science.gov (United States)

    Rupnowski, Przemyslaw; Ulsh, Michael; Sopori, Bhushan; Green, Brian G.; Wood, David L.; Li, Jianlin; Sheng, Yangping

    2018-01-01

    This work focuses on a new technique called active thermal scanning for in-line monitoring of porosity and areal loading of Li-ion battery electrodes. In this technique a moving battery electrode is subjected to thermal excitation and the induced temperature rise is monitored using an infra-red camera. Static and dynamic experiments with speeds up to 1.5 m min-1 are performed on both cathodes and anodes and a combined micro- and macro-scale finite element thermal model of the system is developed. It is shown experimentally and through simulations that during thermal scanning the temperature profile generated in an electrode depends on both coating porosity (or area loading) and thickness. It is concluded that by inverting this relation the porosity (or areal loading) can be determined, if thermal response and thickness are simultaneously measured.

  1. Electrochemistry and in situ scanning tunnelling microscopy of pure and redox-marked DNA- and UNA-based oligonucleotides on Au(111)-electrode surfaces

    DEFF Research Database (Denmark)

    Hansen, Allan Glargaard; Salvatore, Princia; Karlsen, K.

    2013-01-01

    We have studied adsorption and electrochemical electron transfer of several 13- and 15-base DNA and UNA (unlocked nucleic acids) oligonucleotides (ONs) linked to Au(111)-electrode surfaces via a 50-C6-SH group using cyclic voltammetry (CV) and scanning tunnelling microscopy in aqueous buffer unde...

  2. VPI - VIBRATION PATTERN IMAGER: A CONTROL AND DATA ACQUISITION SYSTEM FOR SCANNING LASER VIBROMETERS

    Science.gov (United States)

    Rizzi, S. A.

    1994-01-01

    The Vibration Pattern Imager (VPI) system was designed to control and acquire data from laser vibrometer sensors. The PC computer based system uses a digital signal processing (DSP) board and an analog I/O board to control the sensor and to process the data. The VPI system was originally developed for use with the Ometron VPI Sensor (Ometron Limited, Kelvin House, Worsley Bridge Road, London, SE26 5BX, England), but can be readily adapted to any commercially available sensor which provides an analog output signal and requires analog inputs for control of mirror positioning. VPI's graphical user interface allows the operation of the program to be controlled interactively through keyboard and mouse-selected menu options. The main menu controls all functions for setup, data acquisition, display, file operations, and exiting the program. Two types of data may be acquired with the VPI system: single point or "full field". In the single point mode, time series data is sampled by the A/D converter on the I/O board at a user-defined rate for the selected number of samples. The position of the measuring point, adjusted by mirrors in the sensor, is controlled via a mouse input. In the "full field" mode, the measurement point is moved over a user-selected rectangular area with up to 256 positions in both x and y directions. The time series data is sampled by the A/D converter on the I/O board and converted to a root-mean-square (rms) value by the DSP board. The rms "full field" velocity distribution is then uploaded for display and storage. VPI is written in C language and Texas Instruments' TMS320C30 assembly language for IBM PC series and compatible computers running MS-DOS. The program requires 640K of RAM for execution, and a hard disk with 10Mb or more of disk space is recommended. The program also requires a mouse, a VGA graphics display, a Four Channel analog I/O board (Spectrum Signal Processing, Inc.; Westborough, MA), a break-out box and a Spirit-30 board (Sonitech

  3. Voltammetry and single-molecule in situ scanning tunneling microscopy of laccases and bilirubin oxidase in electrocatalytic dioxygen reduction on Au(111) single-crystal electrodes

    DEFF Research Database (Denmark)

    Climent, Victor; Zhang, Jingdong; Friis, Esben Peter

    2012-01-01

    to elucidate the catalytic mechanism, where laccase (sub)monolayer voltammetry has been a core approach. In this report, we address voltammetry and electrocatalysis of O2 reduction of (sub)monolayers of several laccases in new ways. These are based on the use of single-crystal, atomically planar bare Au(111......)-electrode surfaces or surfaces modified by thiol-based self-assembled molecular monolayers. These well-defined surfaces enable introducing electrochemical scanning tunneling microscopy directly in aqueous biological media in which the enzymes are operative (in situ STM), to the level of resolution...... of the single enzyme molecule in electrocatalytic action. Enzyme-electrode electronic contact and intramolecular electron transfer triggered by the electrode potential or by O2-substrate binding to the enzyme, followed at the single-molecule level, are the most important observations of this study. © 2011...

  4. Surface-Embedded Stretchable Electrodes by Direct Printing and their Uses to Fabricate Ultrathin Vibration Sensors and Circuits for 3D Structures.

    Science.gov (United States)

    Song, Jun Hyuk; Kim, Young-Tae; Cho, Sunghwan; Song, Woo-Jin; Moon, Sungmin; Park, Chan-Gyung; Park, Soojin; Myoung, Jae Min; Jeong, Unyong

    2017-11-01

    Printing is one of the easy and quick ways to make a stretchable wearable electronics. Conventional printing methods deposit conductive materials "on" or "inside" a rubber substrate. The conductors made by such printing methods cannot be used as device electrodes because of the large surface topology, poor stretchability, or weak adhesion between the substrate and the conducting material. Here, a method is presented by which conductive materials are printed in the way of being surface-embedded in the rubber substrate; hence, the conductors can be widely used as device electrodes and circuits. The printing process involves a direct printing of a metal precursor solution in a block-copolymer rubber substrate and chemical reduction of the precursor into metal nanoparticles. The electrical conductivity and sensitivity to the mechanical deformation can be controlled by adjusting the number of printing operations. The fabrication of highly sensitive vibration sensors is thus presented, which can detect weak pulses and sound waves. In addition, this work takes advantage of the viscoelasticity of the composite conductor to fabricate highly conductive stretchable circuits for complicated 3D structures. The printed electrodes are also used to fabricate a stretchable electrochemiluminescence display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Real-time dual visualization of two different modalities for the evaluation of vocal fold vibration - Laryngeal videoendoscopy and 2D scanning videokymography: Preliminary report.

    Science.gov (United States)

    Kim, Geun-Hyo; Wang, Soo-Geun; Lee, Byung-Joo; Park, Hee-June; Kim, Yong-Cheol; Kim, Hyung-Soon; Sohn, Keon-Tae; Kwon, Soon-Bok

    2017-04-01

    Currently, various tools have been introduced for the assessment of vocal fold vibration: laryngeal videolaryngoscopy (LV), videokymography (VKG), high speed videoendoscopy (HSV), digital videokymography (DKG), and 2D scanning videokymography (2D VKG). Among these, the authors have recently designed a dual modality examination system using LV and 2D VKG for more detailed information regarding the vibrations of the vocal folds. The clinical availability of this hybrid system offers medical imaging departments a range of potential advantages in the evaluation of vocal fold vibration. The obvious benefit of simultaneous acquisition is the improved integration of information that allows not only optimal anatomic localization, but also physical movement patterns. Other advantages include the lessened inconvenience to patients due to no longer requiring repeated examinations and shortening the examination time, and increased profitability. The purpose of study was to identify the efficacy of real-time dual examination of two different modalities for the evaluation of vocal fold vibration in human subjects and vocal fold vibration simulator. One vocally healthy subject and three patients with vocal fold nodules, a vocal cyst, and vocal fold paralysis took part in this study. The vibratory patterns of the vocal folds were visualized using simultaneous real-time examination of two different modalities. Additionally, qualitative and quantitative analyses of the dual LV and 2D VKG images were performed. Real-time dual examination using a two modality system provided high definition images of the vibratory movements of the vocal folds. By assessing the obtained images, we confirmed that the dual modality examination method was useful in the evaluation of pathologic vibratory patterns, even in non-periodic phonation. The present system might improve the understanding of the processes of vocal fold vibration and make a contribution to pathologic voice research, as well as

  6. Dynamics of rotating and vibrating thin hemispherical shell with mass and damping imperfections and parametrically driven by discrete electrodes

    CSIR Research Space (South Africa)

    Shatalov, M

    2009-05-01

    Full Text Available The parametric electrode is normally used in the hemispherical resonator gyroscopes, operating in the whole angle regime, for maintaining of amplitudes of vibratory patterns. It is well known that due to variation of the gap between the resonator...

  7. Insights into electrode/electrolyte interfacial processes and the effect of nanostructured cobalt oxides loading on graphene-based hybrids by scanning electrochemical microscopy

    Science.gov (United States)

    Gupta, Sanju; Carrizosa, Sara B.

    2016-12-01

    Nanostructured cobalt oxide polymorphs (CoO and Co3O4) deposited via electrodeposition allowed optimal loading on supercapacitive graphene nanosheets producing a set of graphene-based hybrids namely, CoO/GO, CoO/ErGO, Co3O4/GO, Co3O4/rGO, and Co3O4/ErGO, as pseudocapacitive electrochemical electrodes. We gained fundamental insights into the complex physicochemical interfacial processes at electrode surfaces and electrode/electrolyte (or solid/liquid) interfaces by scanning electrochemical microscopy operating in the feedback probe approach and imaging modes while monitoring and mapping the redox probe (re)activity behavior. We determined the various experimental descriptors including diffusion coefficient, electron transfer rate, and electroactive site distribution on electrodes. We emphasize the interplay of (1) heterogeneous basal and edge plane active sites, (2) graphene surface functional moieties (conducting/semiconducting), and (3) crystalline spinel cobalt oxides (semiconducting/insulating) coated graphene, reinforcing the available electron density of states in the vicinity of the Fermi level contributing to higher electroactivity, faster interfacial diffusion, and shorter distances for electron transfer, facilitated through molecular and chemical bridges obtained by electrodeposition as compared with the physical deposition.

  8. Vibrational Stark Effect of the Electric-Field Reporter 4-Mercaptobenzonitrile as a Tool for Investigating Electrostatics at Electrode/SAM/Solution Interfaces

    Directory of Open Access Journals (Sweden)

    Peter Hildebrandt

    2012-06-01

    Full Text Available 4-mercaptobenzonitrile (MBN in self-assembled monolayers (SAMs on Au and Ag electrodes was studied by surface enhanced infrared absorption and Raman spectroscopy, to correlate the nitrile stretching frequency with the local electric field exploiting the vibrational Stark effect (VSE. Using MBN SAMs in different metal/SAM interfaces, we sorted out the main factors controlling the nitrile stretching frequency, which comprise, in addition to external electric fields, the metal-MBN bond, the surface potential, and hydrogen bond interactions. On the basis of the linear relationships between the nitrile stretching and the electrode potential, an electrostatic description of the interfacial potential distribution is presented that allows for determining the electric field strengths on the SAM surface, as well as the effective potential of zero-charge of the SAM-coated metal. Comparing this latter quantity with calculated values derived from literature data, we note a very good agreement for Au/MBN but distinct deviations for Ag/MBN which may reflect either the approximations and simplifications of the model or the uncertainty in reported structural parameters for Ag/MBN. The present electrostatic model consistently explains the electric field strengths for MBN SAMs on Ag and Au as well as for thiophenol and mercaptohexanoic acid SAMs with MBN incorporated as a VSE reporter.

  9. Catalytic monolayer voltammetry and in situ scanning tunneling microscopy of copper nitrite reductase on cysteamine-modified Au(111) electrodes

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Welinder, A.C.; Hansen, Allan Glargaard

    2003-01-01

    and the actual rate constant 120-220 s(-1) is much closer to the values in homogeneous solution. The results show that AxCuNiR can be brought to immobilization in a functional state on suitably modified, well-defined, atomically planar Au(111)-electrode surfaces. This would be important for forthcoming......We have studied the adsorption and electrocatalysis of the redox metalloenzyme blue copper nitrite reductase from Achromobacter xylosoxidans (AxCuNiR) on single-crystal Au(111)-electrode surfaces modified by a self-assembled monolayer of cysteamine. A combination of cyclic voltammetry and in situ...

  10. Z-scan measurements of the third-order optical nonlinearities and vibrational spectral studies by DFT computations on azo dye 1-(2-Methylphenylazo)-2-napthol

    Science.gov (United States)

    Sreenath, M. C.; Mathew, S.; Hubert Joe, I.; Rastogi, V. K.

    2017-12-01

    The nonlinear optical properties of azo dye 1-(2-Methylphenylazo)-2-napthol have been studied. The complete vibrational features and electronic absorption spectra of the title compound were analyzed by FT-IR, FT-Raman and UV-visible spectra combined with density functional theory and time-dependent density functional computations respectively. Nonlinear optical behavior was investigated by calculating the second-order hyperpolarizablity at DFT level. Third-order nonlinear optical parameters of 1-(2-Methylphenylazo)-2-napthol were measured using closed and open aperture Z-scan technique. The Z-scan result confirms, the dye exhibit self-focusing effect and the sign of the refractive nonlinearity is positive. The nonlinear refractive index (n2), nonlinear absorption coefficient (β), real and imaginary parts of third-order susceptibility (χ (3)) and second-order hyperpolarizability (γ) are calculated. The calculated results indicated that 1-(2-Methylphenylazo)-2-napthol have potential applications in optoelectronics and photonics.

  11. Study of Dye-Sensitized Solar Cells by Scanning Electron Micrograph Observation and Thickness Optimization of Porous TiO2 Electrodes

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2009-01-01

    Full Text Available In order to improve the photoenergy conversion efficiency of dye-sensitized solar cells (DSCs, it is important to optimize their porous TiO2 electrodes. This paper examines the surface and cross-sectional views of the electrodes using scanning electron micrography. Two types of samples for cross-sectional viewing were prepared by mechanically breaking the substrate and by using an Ar-ion etching beam. The former displays the surface of the TiO2 particles and the latter shows the cross-section of the TiO2 particles. We found interesting surface and cross-sectional structures in the scattering layer containing the 400 nm diameter particles, which have an angular and horned shape. The influence of TiO2 particle size and the thickness of the nanocrystalline-TiO2 electrode in DSCs using four kinds of sensitizing dyes (D149, K19, N719 and Z907 and two kinds of electrolytes (acetonitrile-based and ionic-liquid electrolytes are discussed in regards to conversion efficiency, which this paper aims to optimize.

  12. Vibrational spectroscopic characterisation of salmeterol xinafoate polymorphs and a preliminary investigation of their transformation using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Hassan Refat H. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)], E-mail: H.G.M.Edwards@bradford.ac.uk; Hargreaves, Michael D.; Munshi, Tasnim; Scowen, Ian J.; Telford, Richard J. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)

    2008-07-14

    Knowledge and control of the polymorphic phases of chemical compounds are important aspects of drug development in the pharmaceutical industry. Salmeterol xinafoate, a long acting {beta}-adrenergic receptor agonist, exists in two polymorphic Forms, I and II. Raman and near infrared spectra were obtained of these polymorphs at selected wavelengths in the range of 488-1064 nm; significant differences in the Raman and near-infrared spectra were apparent and key spectral marker bands have been identified for the vibrational spectroscopic characterisation of the individual polymorphs which were also characterised with X ray diffractometry. The solid-state transition of salmeterol xinafoate polymorphs was studied using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry isothermally between transitions. This method assisted in the unambiguous characterisation of the two polymorphic forms by providing a simultaneous probe of both the thermal and vibrational data. The study demonstrates the value of a rapid in situ analysis of a drug polymorph which can be of potential value for at-line in-process control.

  13. Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy

    Directory of Open Access Journals (Sweden)

    Xiaofei Zhang

    2018-01-01

    Full Text Available Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode. Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing.

  14. Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy.

    Science.gov (United States)

    Zhang, Xiaofei; Gao, Fengli; Li, Xide

    2018-01-24

    Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p) sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode) and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode). Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing.

  15. Synthesis, crystal structure, vibrational spectral analysis and Z-scan studies of a new organic crystal N,N‧dimethylurea ninhydrin: A scaled quantum mechanical force field study

    Science.gov (United States)

    John, Jerin Susan; Sajan, D.; Umadevi, T.; Chaitanya, K.; Sankar, Pranitha; Philip, Reji

    2015-10-01

    A new organic material, N,N‧dimethylurea ninhydrin (3a,8a-dihydroxy-1,3-dimethyl-1,3,3a,8a-tetrahydroindeno[2,1-d]imidazole-2,8-dione) (NDUN) was synthesized. Structural details were obtained from single crystal X-ray diffraction (XRD) data. A detailed interpretation of the vibrational spectra is carried out with the aid of normal coordinate analysis following the scaled quantum mechanical force field methodology. TG/DTA and 1H NMR studies were carried out. Linear optical properties were studied from UV-Vis spectra. From the open aperture Z-scan data, it is found that the molecule shows third order nonlinear optical behaviour due to two photon absorption (2PA) mechanism.

  16. Scanning slit for HIE-ISOLDE: vibrations test (linear motion actuator from UHV design, MAXON brushless motor, speed = 10 mm/s)

    CERN Document Server

    Bravin, E; Sosa, A

    2014-01-01

    This report summarizes the results of a series of tests performed on the prototype HIE-ISOLDE diagnostic box (HIE-DB) regarding the vibrations and drifts in the transverse position of the scanning blade while moving in and out of beam path in the HIE-ISOLDE short box prototype. To monitor the transverse position of the blade, a series of 0.1 mm diameter holes were drilled on it and their positions were tracked with an optical system. The linear motion actuator was acquired from UHV design (model LSM38-150-SS), and it was adapted to be driven by a brushless EC motor from MAXON. The speed of the scanning blade during the tests was 10 mm/s. The transverse movement of the slit in the direction perpendicular to the movement was lower than 40 m, and is dominated by the displacement of the contact point of the applied force on the lead-screw. An offset on the slit position was observed while changing the direction of movement of the blade, its amplitude being of the order of 30 m. The amplitudes of the displacements...

  17. Scanning slit for HIE-ISOLDE: vibrational test (linear motion actuator from UHV design, speed = 2.5 mm/s)

    CERN Document Server

    Bravin, E; Sosa, A

    2014-01-01

    This report summarizes the results of a series of tests performed on the prototype HIE-ISOLDE diagnostic box (HIE-DB) regarding the vibrations and drifts in the transverse position of the scanning blade while moving inside or outside the box. To monitor the transverse position of the blade, a series of 0.1 mm diameter holes were drilled on it and their positions were tracked with an optical system. The linear motion actuator was acquired from UHV design (model LSM38-150-SS), is driven by a stepper motor and has all the guiding mechanisms outside vacuum. The maximum speed of the scanning blade during the tests was 2.5 mm/s. The transverse movement of the slit in the direction perpendicular to the movement was lower than 50 m, and is dominated by the displacement of the contact point of the applied force on the lead-screw. An offset on the slit position was observed while changing the direction of movement of the blade, its amplitude being of the order of 30 m. The amplitudes of the displacements of the transve...

  18. Probing the structure and nano-scale mechanical properties of polymer surfaces with scanning force microscopy and sum frequency vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gracias, David Hugo [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    Scanning Force Microscopy (SFM) has been used to quantitatively measure the elastic modulus, friction and hardness of polymer surfaces with special emphasis on polyethylene and polypropylene. In the experiments, tips of different radii of curvature ranging from 20 nm to 1000 nm have been used and the high pressure applied by the SFM have been observed to affect the values obtained in the measurements. The contact of the SFM tip with the polymer surface is explained by fitting the experimental curves to theoretical predictions of contact mechanics. Sum Frequency Generation (SFG) Vibrational Spectroscopy has been used to measure vibrational spectra of polymer surfaces in the vibrational range of 2700 to 3100 cm-1. Strong correlations are established between surface chemistry and surface structure as probed by SFG and mechanical properties measured by SFM on the surfaces. In these studies segregation of low surface energy moieties, from the bulk of the polymer to the surface have been studied. It was found that surface segregation occurs in miscible polymer blends and a small concentration of surface active polymer can be used to totally modify the surface properties of the blend. A novel high vacuum SFM was built to do temperature dependent measurements of mechanical changes occurring at the surface of polypropylene during the glass transition of the polymer. Using this instrument the modulus and friction of polypropylene was measured in the range of room temperature to ˜-60°C. An increase in the ordering of the backbone of the polymer chains below the glass transition measured by SFG correlates well with the increase in modulus measured on the same surface with SFM. Friction measurements have been done on polyethylene with three different instruments by applying loads ranging from nN to sub newton i.e. over eight orders of magnitude. Pressure and contact area effects were observed to play a significant role in determining the frictional response of the polymer

  19. Nanoscale controlled Li-insertion reaction induced by scanning electron-beam irradiation in a Li4Ti5O12 electrode material for lithium-ion batteries.

    Science.gov (United States)

    Kitta, Mitsunori; Kohyama, Masanori

    2017-05-10

    The development of a nanoscale battery reaction in an electrode material associated with in situ microscopic observation is significant to an understanding of the solid-state mechanism of a battery reaction. With a Li4Ti5O12 (LTO) crystal as the negative electrode of a Li-ion battery (LIB), we show that a nanoscale-controlled Li-insertion reaction can be produced by electron beam irradiation with scanning transmission electron microscopy (STEM). A selected area in a Li2O-coated thin LTO crystal was irradiated by the electron probe of STEM with a high beam intensity of 2.5 × 10(7) (electrons per nm(2)). Electron energy-loss spectroscopy (EELS) revealed that significant changes in the chemical feature occurred only in the high-dose irradiation area in the LTO specimen. The features of Li-K, Ti-L and O-K spectra in that area were completely equal to those of a Li7Ti5O12 (Li-LTO) phase, as an electrochemically Li-inserted LTO phase, in contrast to usual LTO-like spectra in the region surrounding the specimen. For a pristine LTO specimen without Li2O coating, no Li-insertion reaction was observed under the same irradiation conditions. The high-dose electron beam seems to induce the dissociation of Li2O, providing Li ions and electrons, and the rapid and directional growth of a Li-LTO phase along the electron beam in the LTO specimen, forming a nanoscale steep interface with the surrounding LTO phase. The present phenomenon is a new type of electron beam assisted chemical reaction in a solid state, and could have a large impact on the science and technology of battery materials.

  20. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  1. A unifying model for non-adiabatic coupling at metallic surfaces beyond the local harmonic approximation: from vibrational relaxation to scanning tunneling microscopy.

    Science.gov (United States)

    Tremblay, Jean Christophe

    2013-06-28

    A model for treating excitation and relaxation of adsorbates at metallic surfaces induced by non-adiabatic coupling is developed. The derivation is based on the concept of resonant electron transfer, where the adsorbate serves as a molecular bridge for the inelastic transition between an electron source and a sink. In this picture, energy relaxation and scanning tunneling microscopy (STM) at metallic surfaces are treated on an equal footing as a quasi-thermal process. The model goes beyond the local harmonic approximation and allows for an unbiased description of floppy systems with multiple potential wells. Further, the limitation of the product ansatz for the vibronic wave function to include the position-dependence of the non-adiabatic couplings is avoided by explicitly enforcing detailed balance. The theory is applied to the excitation of hydrogen on palladium, which has multiple local potential minima connected by low energy barriers. The main aspects investigated are the lifetimes of adsorbate vibrations in different adsorption sites, as well as the dependence of the excitation, response, and transfer rates on an applied potential bias. The excitation and relaxation simulations reveal intricate population dynamics that depart significantly from the simplistic tunneling model in a truncated harmonic potential. In particular, the population decay from an initially occupied local minimum induced by the contact with an STM tip is found to be better described by a double exponential. The two rates are interpreted as a response to the system perturbation and a transfer rate following the perturbation. The transfer rate is found to obey a power law, as was the case in previous experimental and theoretical work.

  2. Microstructure formation of lithium-ion battery electrodes during drying - An ex-situ study using cryogenic broad ion beam slope-cutting and scanning electron microscopy (Cryo-BIB-SEM)

    Science.gov (United States)

    Jaiser, Stefan; Kumberg, Jana; Klaver, Jop; Urai, Janos L.; Schabel, Wilhelm; Schmatz, Joyce; Scharfer, Philip

    2017-03-01

    Properties of lithium-ion battery electrodes relate to the complex microstructure that develops during solvent removal. We use cryogenic scanning electron microscopy in combination with broad ion beam slope-cutting (Cryo-BIB-SEM) for the ex-situ imaging of film formation in battery electrodes. Drying of anode films is quenched by cryo-preservation in slushy nitrogen at systematically increasing drying times, followed by SEM imaging under cryogenic conditions. Energy dispersive x-ray spectroscopy (EDS) and image processing of segmented cross-sections are used to analyze the development of component gradients with time. We find electrode films to shrink homogeneously and not in a top-down consolidation process as previously hypothesized. Binder gradients evolve in the liquid phase and initiate solvent diffusion from the bulk to the surface, thereby dragging binder towards the surface. Capillary transport is identified as a fundamental process that directly impacts drying kinetics and binder distribution.

  3. Imbalance of Ca2+ and K+ fluxes in C6 glioma cells after PDT measured with scanning ion-selective electrode technique.

    Science.gov (United States)

    Hu, Sheng-Li; Du, Peng; Hu, Rong; Li, Fei; Feng, Hua

    2014-05-01

    Photodynamic therapy (PDT) possesses the capacity to lead to death of C6 glioma in vitro and in vivo. The purpose of this study was to investigate whether Ca(2+) and K(+) homeostasis of C6 glioma cells were affected by PDT. C6 glioma cells were randomly divided into five groups: control group, Hematoporphyrin derivative (HpD) group (10 mg/l, without irradiation), PDT group (HpD 10 mg/l + irradiation), PDT&6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) group (HpD 10 mg/l + CNQX 50 mol/l + irradiation), and HpD&CNQX group (HpD 10 mg/l + CNQX 50 mol/l, without irradiation). Glioma cells in PDT and PDT&CNQX group were subjected to PDT. Cells in PDT&CNQX group were administered α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor antagonist CNQX prior to PDT on C6 glioma cells. The changes of Ca(2+) and K(+) fluxes were studied by using a non-invasive scanning ion-selective electrode technique (SIET). Morphology of C6 cells was observed with optical microscopy. PDT induced Ca(2+) influx and K(+) efflux significantly, which resulted in death of C6 cells. When AMPA glutamate receptor antagonist CNQX was applied, Ca(2+) influx and K(+) efflux were partly blocked up and viability of C6 cells increased. These results indicate that Ca(2+) influx and K(+) efflux may correlate with the treatment effects of PDT on C6 glioma cells.

  4. Solid Electrolyte Interphase (SEI) at TiO2 Electrodes in Li-Ion Batteries: Defining Apparent and Effective SEI Based on Evidence from X-ray Photoemission Spectroscopy and Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Ventosa, Edgar; Madej, Edyta; Zampardi, Giorgia; Mei, Bastian; Weide, Philipp; Antoni, Hendrik; La Mantia, Fabio; Muhler, Martin; Schuhmann, Wolfgang

    2017-01-25

    The high (de)lithiation potential of TiO2 (ca. 1.7 V vs Li/Li+ in 1 M Li+) decreases the voltage and, thus, the energy density of a corresponding Li-ion battery. On the other hand, it offers several advantages such as the (de)lithiation potential far from lithium deposition or absence of a solid electrolyte interphase (SEI). The latter is currently under controversial debate as several studies reported the presence of a SEI when operating TiO2 electrodes at potentials above 1.0 V vs Li/Li+. We investigate the formation of a SEI at anatase TiO2 electrodes by means of X-ray photoemission spectroscopy (XPS) and scanning electrochemical microscopy (SECM). The investigations were performed in different potential ranges, namely, during storage (without external polarization), between 3.0-2.0 V and 3.0-1.0 V vs Li/Li+, respectively. No SEI is formed when a completely dried and residues-free TiO2 electrode is cycled between 3.0 and 2.0 V vs Li/Li+. A SEI is detected by XPS in the case of samples stored for 6 weeks or cycled between 3.0 and 1.0 V vs Li/Li+. With use of SECM, it is verified that this SEI does not possess the electrically insulating character as expected for a "classic" SEI. Therefore, we propose the term apparent SEI for TiO2 electrodes to differentiate it from the protecting and effective SEI formed at graphite electrodes.

  5. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  6. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  7. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  8. Supercapacitive evaluation of carbon black/exfoliated graphite/MnO{sub 2} ternary nanocomposite electrode by continuous cyclic voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, Hamid Reza, E-mail: hrnaderi@ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Norouzi, Parviz, E-mail: norouzi@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza, E-mail: ganjali@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-08-01

    A new ternary nanocomposite was prepared by using MnO{sub 2}, carbon black (CB), and exfoliated graphite (EG) through a sonochemical method. In this process, the MnO{sub 2} nanoparticles was anchored on the mixture of CB and EG to maximize the specific capacitances of these materials. Structure and morphology of the CB/EG/MnO{sub 2} nanocomposites were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the CB/EG/MnO{sub 2} nanocomposites with different content of MnO{sub 2} were studied by cyclic voltammetry (CV), fast Fourier transformation continuous cyclic voltammetry (FFTCCV) technique, galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS). The best nanocomposite electrode displayed specific capacitance of 364 F g{sup −1} at the scan rate of 2 mV s{sup −1} in 0.5 M Na{sub 2}SO{sub 4} aqueous solution, which is higher than pure MnO{sub 2} (289 F g{sup −1}). The capacitance stability of the nanocomposite electrode was studied by FFTCCV at the scan rate of 500 mV s{sup −1}. The result shows that after recording 4000 CVs, the specific capacitance of the nanocomposite decline only 5%. Furthermore, the nanocomposite electrode showed higher energy density than MnO{sub 2} electrode. - Highlights: • MnO{sub 2}/exfoliated graphite/Carbon black nanocomposites were synthesized by ultrasonic vibration. • The best nanocomposite electrode exhibits specific capacitance of 364 F g{sup −1} in 2 mV s{sup −1}. • The stability of the nanocomposite electrode was study FFTCCV technique. • The capacitance decreases only 5.2% of initial capacitance after 4000 cycles.

  9. A high stability and repeatability electrochemical scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhigang; Wang, Jihao; Lu, Qingyou, E-mail: qxl@ustc.edu.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hou, Yubin [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-12-15

    We present a home built electrochemical scanning tunneling microscope (ECSTM) with very high stability and repeatability. Its coarse approach is driven by a closely stacked piezo motor of GeckoDrive type with four rigid clamping points, which enhances the rigidity, compactness, and stability greatly. It can give high clarity atomic resolution images without sound and vibration isolations. Its drifting rates in XY and Z directions in solution are as low as 84 pm/min and 59 pm/min, respectively. In addition, repeatable coarse approaches in solution within 2 mm travel distance show a lateral deviation less than 50 nm. The gas environment can be well controlled to lower the evaporation rate of the cell, thus reducing the contamination and elongating the measurement time. Atomically resolved SO{sub 4}{sup 2−} image on Au (111) work electrode is demonstrated to show the performance of the ECSTM.

  10. Composite Electrodes for Electrochemical Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yang QuanMin

    2010-01-01

    Full Text Available Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7–15 mg cm−2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC. The highest SC of 185 F g−1 was obtained at a scan rate of 2 mV s−1 for mass loading of 7 mg cm−2. The SC decreased with increasing scan rate and increasing electrode mass.

  11. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    Science.gov (United States)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  12. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  13. Laserlike Vibrational Instability in Rectifying Molecular Conductors

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Hedegård, Per; Brandbyge, Mads

    2011-01-01

    We study the damping of molecular vibrations due to electron-hole pair excitations in donor-acceptor (D-A) type molecular rectifiers. At finite voltage additional nonequilibrium electron-hole pair excitations involving both electrodes become possible, and contribute to the stimulated emission and...

  14. Phase sensitive scanning optical microscope

    Energy Technology Data Exchange (ETDEWEB)

    Jungerman, R.L.; Hobbs, P.C.D.; Kino, G.S.

    1984-10-15

    An electronically scanned optical microscope which quantitatively measures amplitude and phase is described. The system is insenstive to mechanical vibrations. The phase infromation makes it possible to measure surface height variations with an accuracy of better than 100 A and can also be used to improve the lateral resolution.

  15. Renal scan

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003790.htm Renal scan To use the sharing features on this ... anaphylaxis . Alternative Names Renogram; Kidney scan Images Kidney anatomy Kidney - blood and urine flow References Chernecky CC, ...

  16. Differential-concentration scanning ion conductance microscopy

    OpenAIRE

    Perry, David; Page, Ashley; Chen, Baoping; Frenguelli, Bruno G.; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based scanning probe microscopy technique that utilizes the ionic current flowing between an electrode inserted inside a nanopipette probe containing electrolyte solution and a second electrode placed in a bulk electrolyte bath, to provide information on a substrate of interest. For most applications to date, the composition and concentration of the electrolyte inside and outside the nanopipette is identical, but it is shown herein t...

  17. Coupled diffusion and mechanics in battery electrodes

    Science.gov (United States)

    Eshghinejad, Ahmadreza

    measuring the surface vibrations. Different aspects of this technique are analyzed and the limitations are discussed. Such limitations moves the dissertation toward development of a new technique for probing the electrochemical activities, to overcome the previous limitations, called Scanning Thermo-ionic Microscopy (STIM). In this method, the local activities are probed by inducing AC temperature oscillations to perturb ionic activities and measuring the surface vibrations. The principle mathematical analysis of the coupled governing equations and the method of probing electrochemical activities are discussed in detail. Also, the method is implemented into the AFM hardware/software and the STIM response is confirmed using experiments on LiFePO4 and Sm-doped Ceria as well-known battery and fuel cell electrodes. The STIM method provides a clean method for analyzing energy storage materials and designing novel nano-structured materials for improved performance. Finally, conclusion of the presented work is discussed in the last chapter and the future works to continue the development of the modeling and experiments are listed.

  18. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  19. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  20. Cooperative scans

    NARCIS (Netherlands)

    M. Zukowski (Marcin); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2004-01-01

    textabstractData mining, information retrieval and other application areas exhibit a query load with multiple concurrent queries touching a large fraction of a relation. This leads to individual query plans based on a table scan or large index scan. The implementation of this access path in most

  1. Compact Active Vibration Control System for a Flexible Panel

    Science.gov (United States)

    Schiller, Noah H. (Inventor); Cabell, Randolph H. (Inventor); Perey, Daniel F. (Inventor)

    2014-01-01

    A diamond-shaped actuator for a flexible panel has an inter-digitated electrode (IDE) and a piezoelectric wafer portion positioned therebetween. The IDE and/or the wafer portion are diamond-shaped. Point sensors are positioned with respect to the actuator and measure vibration. The actuator generates and transmits a cancelling force to the panel in response to an output signal from a controller, which is calculated using a signal describing the vibration. A method for controlling vibration in a flexible panel includes connecting a diamond-shaped actuator to the flexible panel, and then connecting a point sensor to each actuator. Vibration is measured via the point sensor. The controller calculates a proportional output voltage signal from the measured vibration, and transmits the output signal to the actuator to substantially cancel the vibration in proximity to each actuator.

  2. transparent electrode

    Science.gov (United States)

    Li, Fumin; Chen, Chong; Tan, Furui; Li, Chunxi; Yue, Gentian; Shen, Liang; Zhang, Weifeng

    2014-10-01

    We report a new semitransparent inverted polymer solar cell (PSC) with a structure of glass/FTO/nc-TiO2/P3HT:PCBM/MoO3/Ag/MoO3. Because high-temperature annealing which decreased the conductivity of indium tin oxide (ITO) must be handled in the process of preparation of nanocrystalline titanium oxide (nc-TiO2), we replace glass/ITO with a glass/fluorine-doped tin oxide (FTO) substrate to improve the device performance. The experimental results show that the replacing FTO substrate enhances light transmittance between 400 and 600 nm and does not change sheet resistance after annealing treatment. The dependence of device performances on resistivity, light transmittance, and thickness of the MoO3/Ag/MoO3 film was investigated. High power conversion efficiency (PCE) was achieved for FTO substrate inverted PSCs, which showed about 75% increase compared to our previously reported ITO substrate device at different thicknesses of the MoO3/Ag/MoO3 transparent electrode films illuminated from the FTO side (bottom side) and about 150% increase illuminated from the MoO3/Ag/MoO3 side (top side).

  3. MRI Scans

    Science.gov (United States)

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from ...

  4. Bone Scan

    Science.gov (United States)

    ... posts Join Mayo Clinic Connect Bone scan About Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  5. Relevance of motion artifact in electromyography recordings during vibration treatment.

    Science.gov (United States)

    Fratini, Antonio; Cesarelli, Mario; Bifulco, Paolo; Romano, Maria

    2009-08-01

    Electromyography readings (EMGs) from quadriceps of fifteen subjects were recorded during whole body vibration treatment at different frequencies (10-50 Hz). Additional electrodes were placed on the patella to monitor the occurrence of motion artifact, triaxial accelerometers were placed onto quadriceps to monitor motion. Signal spectra revealed sharp peaks corresponding to vibration frequency and its harmonics, in accordance with the accelerometer data. EMG total power was compared to that associated with vibration harmonics narrow bands, before and during vibration. On average, vibration associated power resulted in only 3% (+/-0.9%) of the total power prior to vibration and 29% (+/-13.4%) during vibration. Often, studies employ surface EMG to quantitatively evaluate vibration evoked muscular activity and to set stimulation frequency. However, previous research has not accounted for motion artifacts. The data presented in this study emphasize the need for the removal of motion artifacts, as they consistently affect RMS estimation, which is often used as a concise muscle activity index during vibrations. Such artifacts, rather unpredictable in amplitude, might be the cause of large inter-study differences and must be eliminated before analysis. Motion artifact filtering will contribute to thorough and precise interpretation of neuromuscular response to vibration treatment.

  6. The Electrode Modality Development in Pulsed Electric Field Treatment Facilitates Biocellular Mechanism Study and Improves Cancer Ablation Efficacy.

    Science.gov (United States)

    Cen, Chao; Chen, Xinhua

    2017-01-01

    Pulsed electric field treatment is now widely used in diverse biological and medical applications: gene delivery, electrochemotherapy, and cancer therapy. This minimally invasive technique has several advantages over traditional ablation techniques, such as nonthermal elimination and blood vessel spare effect. Different electrodes are subsequently developed for a specific treatment purpose. Here, we provide a systematic review of electrode modality development in pulsed electric field treatment. For electrodes invented for experiment in vitro, sheet electrode and electrode cuvette, electrodes with high-speed fluorescence imaging system, electrodes with patch-clamp, and electrodes with confocal laser scanning microscopy are introduced. For electrodes invented for experiment in vivo, monopolar electrodes, five-needle array electrodes, single-needle bipolar electrode, parallel plate electrodes, and suction electrode are introduced. The pulsed electric field provides a promising treatment for cancer.

  7. The Electrode Modality Development in Pulsed Electric Field Treatment Facilitates Biocellular Mechanism Study and Improves Cancer Ablation Efficacy

    Directory of Open Access Journals (Sweden)

    Chao Cen

    2017-01-01

    Full Text Available Pulsed electric field treatment is now widely used in diverse biological and medical applications: gene delivery, electrochemotherapy, and cancer therapy. This minimally invasive technique has several advantages over traditional ablation techniques, such as nonthermal elimination and blood vessel spare effect. Different electrodes are subsequently developed for a specific treatment purpose. Here, we provide a systematic review of electrode modality development in pulsed electric field treatment. For electrodes invented for experiment in vitro, sheet electrode and electrode cuvette, electrodes with high-speed fluorescence imaging system, electrodes with patch-clamp, and electrodes with confocal laser scanning microscopy are introduced. For electrodes invented for experiment in vivo, monopolar electrodes, five-needle array electrodes, single-needle bipolar electrode, parallel plate electrodes, and suction electrode are introduced. The pulsed electric field provides a promising treatment for cancer.

  8. Templated synthesis, characterization, and sensing application of macroscopic platinum nanowire network electrodes

    DEFF Research Database (Denmark)

    Wang, D. H.; Kou, R.; Gil, M. P.

    2005-01-01

    Abstract: Novel platinum nanowire network electrodes have been fabricated through electrodeposition using mesoporous silica thin films as templates. These electrodes were characterized by X-ray diffraction, transmission electron microscope, and scanning electron microscope. The electrochemical...... properties of the electrodes, such as electrochemical active area and methanol oxidation, have also been studied. Compared with conventional polycrystalline Pt electrodes, these novel nanowire network electrodes possess high electrochemical active areas and demonstrate higher current densities and a lower...

  9. Damage Detection by Laser Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Elena Daniela Birdeanu

    2008-10-01

    Full Text Available The technique based on the vibration analysis by scanning laser Doppler vibrometer is one of the most promising, allowing to extract also small defect and to directly correlate it to local dynamic stiffness and structural integrity. In fact, the measurement capabilities of vibrometers, such as sensitivity, accuracy and reduced intrusively, allow having a very powerful instrument in diagnostic.

  10. Scanning table

    CERN Multimedia

    1960-01-01

    Before the invention of wire chambers, particles tracks were analysed on scanning tables like this one. Today, the process is electronic and much faster. Bubble chamber film - currently available - (links can be found below) was used for this analysis of the particle tracks.

  11. Scan Statistics

    CERN Document Server

    Glaz, Joseph

    2009-01-01

    Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.

  12. Characterization of Transition-Metal Oxide Deposition on Carbon Electrodes of a Supercapacitor

    Directory of Open Access Journals (Sweden)

    Ying-Chung Chen

    2016-12-01

    Full Text Available In order to fabricate the composite electrodes of a supercapacitor, transition-metal oxide materials NiO and WO3 were deposited on carbon electrodes by electron beam evaporation. The influences of various transition-metal oxides, scan rates of cyclic voltammograms (CVs, and galvanostatic charge/discharge tests on the characteristics of supercapacitor were studied. The charge/discharge efficiency and the lifetime of the composite electrodes were also investigated. It was found that the composite electrodes exhibited more favorable capacitance properties than those of the carbon electrodes at high scan rates. The results revealed the promotion of the capacitance property of the supercapacitor with composite electrode and the improving of the decay property in capacitance at high scan rate. In addition, the charge/discharge efficiency is close to 100% after 5000 cycles, and the composite electrode retains strong adhesion between the electrode material and the substrate.

  13. Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  14. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  15. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  16. Cyclic biamperometry at micro-interdigitated electrodes.

    Science.gov (United States)

    Rahimi, Mehdi; Mikkelsen, Susan R

    2011-10-01

    Cyclic biamperometry was studied as an analytical method for use with commercially available, comb-type, coplanar microinterdigitated electrodes (μIDEs), using the ferri-/ferrocyanide redox couple as a model analyte. The μIDEs studied in this work were made of gold that had been deposited onto a Ti/W adhesion layer on borosilicate glass chips and had 5 and 10 μm bands with equal gap sizes. Close proximity of the two working electrodes, and their interdigitation, resulted in signal amplification by redox cycling. Results were compared with those obtained by cyclic voltammetry, where one of the two IDE electrodes was used as the working electrode and external reference and auxiliary electrodes were used. Amplification factors of almost 20 were achieved due to redox cycling. Attempts to apply cyclic voltammetry to the μIDEs, with one of the combs as the working and the other as the auxiliary electrode, were unsuccessful due to corrosion of the auxiliary electrode comb. Results of this study, and the electrochemically unique feature of biamperometry to probe but not change the net contents of the medium under examination, suggest the applicability of scanning biamperometry at μIDEs to the very small volumes and electrochemical cell dimensions that are now of great interest.

  17. Electrostatic MEMS vibration energy harvester for HVAC applications

    Science.gov (United States)

    Oxaal, J.; Hella, M.; Borca-Tasciuc, D.-A.

    2015-12-01

    This paper reports on an electrostatic MEMS vibration energy harvester with gapclosing interdigitated electrodes, designed for and tested on HVAC air ducts. The device is fabricated on SOI wafers using a custom microfabrication process. A dual-level physical stopper system is implemented in order to control the minimum gap between the electrodes and maximize the power output. It utilizes cantilever beams to absorb a portion of the impact energy as the electrodes approach the impact point, and a film of parylene with nanometer thickness deposited on the electrode sidewalls, which defines the absolute minimum gap and provides electrical insulation. The fabricated device was first tested on a vibration shaker to characterize its resonant behavior. The device exhibits spring hardening behavior due to impacts with the stoppers and spring softening behavior with increasing voltage bias. Testing was carried out on HVAC air duct vibrating with an RMS acceleration of 155 mgRMS and a primary frequency of 60 Hz with a PSD of 7.15·10-2 g2/Hz. The peak power measured is 12nW (0.6 nW RMS) with a PSD of 6.9·10-11 W/Hz at 240 Hz (four times of the primary frequency of 60 Hz), which is the highest output reported for similar vibration conditions and biasing voltages.

  18. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  19. Microresonator electrode design

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, III, Roy H.; Wojciechowski, Kenneth; Branch, Darren W.

    2016-05-10

    A microresonator with an input electrode and an output electrode patterned thereon is described. The input electrode includes a series of stubs that are configured to isolate acoustic waves, such that the waves are not reflected into the microresonator. Such design results in reduction of spurious modes corresponding to the microresonator.

  20. Fuel cell electrodes

    Science.gov (United States)

    Strmcnik, Dusan; Cuesta, Angel; Stamenkovic, Vojislav; Markovic, Nenad

    2015-06-23

    A process includes patterning a surface of a platinum group metal-based electrode by contacting the electrode with an adsorbate to form a patterned platinum group metal-based electrode including platinum group metal sites blocked with adsorbate molecules and platinum group metal sites which are not blocked.

  1. Vibration analysis of cryocoolers

    Science.gov (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  2. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  3. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  4. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  5. Surface modification of recording electrodes

    Directory of Open Access Journals (Sweden)

    Iaci Miranda Pereira

    2013-01-01

    Full Text Available Waterborne Polyurethanes (PUs are a family of polymers that contains urethane linkages synthesized in an aqueous environment and are thus free of organic solvents. Recently, waterborne PUs have been extensively studied for biomedical applications because of their biocompatibility. The present work investigates the following: (1 the impact on electrical performance of electrode materials (platinum and silicon modified chemically by a layer of waterborne PU, and (2 the behavior of rat cardiac fibroblasts and rat cardiomyocytes when in contact with an electrode surface. Diisocyanate and poly(caprolactone diol were the main reagents for producing PUs. The electrochemical impedance of the electrode/electrolyte interface was accessed by electrochemical impedance spectroscopy. The cellular viability, proliferation, and morphology changes were investigated using an MTT assay. Cardiomyocyte adherence was observed by scanning electron microscopy. The obtained surface was uniform, flat, and transparent. The film showed good adhesion, and no peeling was detected. The electrochemical impedance decreased over time and was influenced by the ionic permeability of the PU layer. The five samples did not show cytotoxicity when in contact with neonatal rat cells.

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ... the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is a ...

  7. Thyroid Scan and Uptake

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ... the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is a ...

  8. A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones

    Directory of Open Access Journals (Sweden)

    Yongmeng Zhang

    2015-01-01

    Full Text Available Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.

  9. An electroactive polymer based concept for vibration reduction via adaptive supports

    Science.gov (United States)

    Wolf, Kai; Röglin, Tobias; Haase, Frerk; Finnberg, Torsten; Steinhoff, Bernd

    2008-03-01

    A concept for the suppression of resonant vibration of an elastic system undergoing forced vibration coupled to electroactive polymer (EAP) actuators based on dielectric elastomers is demonstrated. The actuators are utilized to vary the stiffness of the end support of a clamped beam, which is forced to harmonic vibration via a piezoelectric patch. Due to the nonlinear dependency of the elastic modulus of the EAP material, the modulus can be changed by inducing an electrostrictive deformation. The resulting change in stiffness of the EAP actuator leads to a shift of the resonance frequencies of the vibrating beam, enabling an effective reduction of the vibration amplitude by an external electric signal. Using a custom-built setup employing an aluminum vibrating beam coupled on both sides to electrodized strips of VHB tape, a significant reduction of the resonance amplitude was achieved. The effectiveness of this concept compared to other active and passive concepts of vibration reduction is discussed.

  10. Morphological and electrochemical studies of spherical boron doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mendes de Barros, R.C. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Ferreira, N.G. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Azevedo, A.F. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Corat, E.J. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Sumodjo, P.T.A. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Serrano, S.H.P. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil)]. E-mail: shps@iq.usp.br

    2006-08-14

    Morphological and electrochemical characteristics of boron doped diamond electrode in new geometric shape are presented. The main purpose of this study is a comparison among voltammetric behavior of planar glassy carbon electrode (GCE), planar boron doped diamond electrode (PDDE) and spherical boron doped diamond electrode (SDDE), obtained from similar experimental parameters. SDDE was obtained by the growth of boron doped film on textured molybdenum tip. This electrode does not present microelectrode characteristics. However, its voltammetric peak current, determined at low scan rates, is largest associated to the smallest {delta}E {sub p} values for ferrocyanide system when compared with PDDE or GCE. In addition, the capacitance is about 200 times smaller than that for GCE. These results show that the analytical performance of boron doped diamond electrodes can be implemented just by the change of sensor geometry, from plane to spherical shape.

  11. Flushing Enhancement with Vibration and Pulsed Current in Electrochemical Machining

    Directory of Open Access Journals (Sweden)

    Zhujian Feng

    2017-12-01

    Full Text Available This research aims to understand flushing of by-products in electrochemical machining (ECM by modeling and experimentally verifying mechanism of particle transport in inter-electrode gap under low frequency vibration. A series of hole were drilled on steel plates to evaluate the effect of vibration on material removal rate and hole quality. Infinite focus optical technique was used to capture and analyze the three-dimensional images of ECM'ed features. Experimental results showed that maximum machining depth and minimum taper angle can be achieved when vibrating the workpiece at 40 Hz and 10 µm amplitude. Simulation results showed that the highest average flushing speed of 0.4 m/s was obtained at this vibration frequency and amplitude. Machining depth and material removal rate has a positive correlation with the average flushing speed. Sharper ECM’ed profile is obtained since the taper angle is favorably reduced at high average flushing speed.

  12. Optomechanical proposal for monitoring microtubule mechanical vibrations

    Science.gov (United States)

    Barzanjeh, Sh.; Salari, V.; Tuszynski, J. A.; Cifra, M.; Simon, C.

    2017-07-01

    Microtubules provide the mechanical force required for chromosome separation during mitosis. However, little is known about the dynamic (high-frequency) mechanical properties of microtubules. Here, we theoretically propose to control the vibrations of a doubly clamped microtubule by tip electrodes and to detect its motion via the optomechanical coupling between the vibrational modes of the microtubule and an optical cavity. In the presence of a red-detuned strong pump laser, this coupling leads to optomechanical-induced transparency of an optical probe field, which can be detected with state-of-the art technology. The center frequency and line width of the transparency peak give the resonance frequency and damping rate of the microtubule, respectively, while the height of the peak reveals information about the microtubule-cavity field coupling. Our method opens the new possibilities to gain information about the physical properties of microtubules, which will enhance our capability to design physical cancer treatment protocols as alternatives to chemotherapeutic drugs.

  13. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  14. Modal Testing Using Impact Excitation and a Scanning LDV

    Directory of Open Access Journals (Sweden)

    A.B. Stanbridge

    2000-01-01

    Full Text Available If a laser Doppler vibrometer is used in a continuously-scanning mode to measure the response of a vibrating structure, its output spectrum contains side-bands from which the response mode shape, as defined along the scan line, may be obtained. With impact excitation, the response is the summation of a set of exponentially-decaying sinusoids which, in the frequency domain, has peaks at the natural frequencies and at `sideband' pseudo-natural frequencies, spaced at multiples of the scan frequency. Techniques are described for deriving natural mode shapes from these, using standard modal analysis procedures. Some limitations as to the types of mode which can be analysed are described. The process is simple and speedy, even when compared with a normal point-by-point impact test survey. Information may also be derived, using a circular scan, on the direction of vibration, and angular vibration, at individual points.

  15. Classical electricity analysis of the coupling mechanisms between admolecule vibrations and localized surface plasmons in STM for vibration detectability

    Science.gov (United States)

    Inaoka, Takeshi; Uehara, Yoich

    2017-08-01

    The presence of a dynamic dipole moment in the gap between the tip of a scanning tunneling microscope (STM) and a substrate, both of which are made of metal, produces a large dynamic dipole moment via the creation of localized surface plasmons (LSPLs). With regard to the vibration-induced structures that have been experimentally observed in STM light emission spectra, we have incorporated the effect of the phonon vibrations of an admolecule below the STM tip into the local response theory, and we have evaluated the enhancement of the dynamic dipole involving phonon vibrations. Our analysis shows how effectively this vibration becomes coupled with the LSPLs. This was shown using three mechanisms that considered the vibrations of a dipole-active molecule and the vibrations of a charged molecule emitting and receiving tunneling electrons. In each of the mechanisms, phonon vibrations with angular frequency ωp shifted each LSPL resonance by ℏωp or by a multiple of ℏωp . The phonon effect was negligibly small when the position of the dipole-active molecule vibrated with ωp, but it was largest and most detectable when the point charge corresponding to the admolecule at the surface of the tip vibrated with ωp. It was found that a series of LSPL resonances with or without phonon-energy shifts can be characterized by a few dominant orders of multipole excitations, and these orders become higher as the resonance energy increases.

  16. Model Indepedent Vibration Control

    OpenAIRE

    Yuan, Jing

    2010-01-01

    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  17. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  18. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...

  19. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus

    2002-01-01

    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  20. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  1. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  2. Utility of CT-compatible EEG electrodes in critically ill children

    Energy Technology Data Exchange (ETDEWEB)

    Abend, Nicholas S. [Perelman School of Medicine at the University of Pennsylvania, Departments of Neurology and Pediatrics, The Children' s Hospital of Philadelphia, Philadelphia, PA (United States); CHOP Neurology, Philadelphia, PA (United States); Dlugos, Dennis J. [Perelman School of Medicine at the University of Pennsylvania, Departments of Neurology and Pediatrics, The Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Zhu, Xiaowei; Schwartz, Erin S. [Perelman School of Medicine at the University of Pennsylvania, Department of Radiology, The Children' s Hospital of Philadelphia, Philadelphia, PA (United States)

    2015-05-01

    Electroencephalographic monitoring is being used with increasing frequency in critically ill children who may require frequent and sometimes urgent brain CT scans. Standard metallic disk EEG electrodes commonly produce substantial imaging artifact, and they must be removed and later reapplied when CT scans are indicated. To determine whether conductive plastic electrodes caused artifact that limited CT interpretation. We describe a retrospective cohort of 13 consecutive critically ill children who underwent 17 CT scans with conductive plastic electrodes during 1 year. CT images were evaluated by a pediatric neuroradiologist for artifact presence, type and severity. All CT scans had excellent quality images without artifact that impaired CT interpretation except for one scan in which improper wire placement resulted in artifact. Conductive plastic electrodes do not cause artifact limiting CT scan interpretation and may be used in critically ill children to permit concurrent electroencephalographic monitoring and CT imaging. (orig.)

  3. Enhanced energy transfer efficiency in a four-electrodes configuration DBD plasma jet

    Science.gov (United States)

    do Nascimento, Fellype; Machida, Munemasa; Kostov, Konstantin; Moshkalev, Stanislav; Honda, Roberto Y.; Mota, Rogério P.; Nishime, Thalita M. C.; Castro, Alonso H. R.

    2017-11-01

    In this work a dielectric barrier discharge (DBD) plasma jet that uses a multiple electrodes configuration is investigated. The results show that both plasma power and its rotational and vibrational temperatures tend to increase with the number of powered electrodes in the DBD device. The emission intensities of the excited species in the plasma, and consequently their number density, also grow as a function of the number of powered electrodes. Based on these facts and since the electric power provided by the power supply was kept constant, there is an indication that the use of multiple electrodes improves the energy efficiency of the device.

  4. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  5. Redox Response of Reduced Graphene Oxide-Modified Glassy Carbon Electrodes to Hydrogen Peroxide and Hydrazine

    Directory of Open Access Journals (Sweden)

    Jun-ichi Anzai

    2013-05-01

    Full Text Available The surface of a glassy carbon (GC electrode was modified with reduced graphene oxide (rGO to evaluate the electrochemical response of the modified GC electrodes to hydrogen peroxide (H2O2 and hydrazine. The electrode potential of the GC electrode was repeatedly scanned from −1.5 to 0.6 V in an aqueous dispersion of graphene oxide (GO to deposit rGO on the surface of the GC electrode. The surface morphology of the modified GC electrode was characterized by scanning electron microscopy (SEM and atomic force microscopy (AFM. SEM and AFM observations revealed that aggregated rGO was deposited on the GC electrode, forming a rather rough surface. The rGO-modified electrodes exhibited significantly higher responses in redox reactions of H2O2 as compared with the response of an unmodified GC electrode. In addition, the electrocatalytic activity of the rGO-modified electrode to hydrazine oxidation was also higher than that of the unmodified GC electrode. The response of the rGO-modified electrode was rationalized based on the higher catalytic activity of rGO to the redox reactions of H2O2 and hydrazine. The results suggest that rGO-modified electrodes are useful for constructing electrochemical sensors.

  6. Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study

    Directory of Open Access Journals (Sweden)

    Kevin E. Bennet

    2013-12-01

    Full Text Available Building on diamond characteristics such as hardness, chemical inertness and low electron emission threshold voltage, the current microscopic, spectroscopic and voltammetric investigations are directed towards improving the properties of electrode coating materials for their future use in clinical studies of deep brain stimulation via fast-scan cyclic voltammetry (FSCV. In this study we combine the capabilities of confocal Raman mapping in providing detailed and accurate analysis of local distributions of material constituents in a series of boron-doped polycrystalline diamond films grown by chemical vapor deposition, with information from the more conventional techniques of scanning electron microscopy (SEM and infrared absorption spectroscopy. Although SEM images show a uniform distribution of film crystallites, they have the limitation of being unable to differentiate the distribution of boron in the diamond. Values of 1018–1021 atoms/cm3 of boron content have been estimated from the absorption coefficient of the 1290 cm−1 infrared absorption band and from the 500 cm−1 Raman vibration. The observed accumulation of boron atoms and carbon sp2 impurities at the grain boundaries suggests that very high doping levels do not necessarily contribute to improvement of the material’s conductivity, corroborating with voltammetric data. FSCV results also indicate an enhanced stability of analyte detection.

  7. Miniature hemispherical shell resonator with large-scale effective electrodes based on piezoelectric drive mechanism.

    Science.gov (United States)

    Tang, Jian; Zhang, Weiping; Cheng, Yuxiang; Liu, Wu; Wang, Yinghai; Sun, Dianjun

    2016-05-01

    Miniature resonators with three-dimensional curved surface are mostly driven by electrostatic capacitive. However, it is quite difficult to fabricate a curved surface electrostatic resonator with large-scale effective electrodes. This paper presents the first miniature hemispherical shell resonator with large-scale effective electrodes based on piezoelectric drive mechanism. The vibrating body and electrodes of the piezoelectric resonator are easily integrated without micro-scale or nano-scale narrow capacitive gap. Vibration experiment and finite element analysis both reveal that there exist seven significant vibration modes between 10 kHz and 100 kHz. Mode shape validation is also carried out by measuring the vibration velocity of upper perimeter and lateral perimeter with laser doppler vibrometer. Special vibration characteristics of each vibration mode are described in detail, based on which the resonator may be used for many specific applications. Compared with common electrostatic resonators, even smaller drive voltage applied to the piezoelectric resonator may produce larger vibration displacement at atmosphere. According to the experiment results, the resonator may provide a new way of realizing high performance three-dimensional miniature devices for communication and inertial navigation applications.

  8. Amperometric enzyme electrodes

    OpenAIRE

    Calvo,E.J.; Danilowicz, C.

    1997-01-01

    Recent advances on amperometric enzyme electrodes are reviewed with particular emphasis on biosensors based on Glucose Oxidase and Horseradish Peroxidase. Redox mediation by artificial soluble and polymer attached redox mediators is discussed in terms of recent theoretical developments and experimental verification. The dependence of the amperometric response on substrate and mediator concentration, enzyme concentration, electrode potential and film thickness are analyzed. Possible applicatio...

  9. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  10. Membrane Bioprobe Electrodes

    Science.gov (United States)

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... limitations of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... top of page What are some common uses of the procedure? The thyroid scan is used to ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... of page What are some common uses of the procedure? The thyroid scan is used to determine ...

  13. Lumbar spine CT scan

    Science.gov (United States)

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower ... The lumbar CT scan is good for evaluating large herniated disks, ... smaller ones. This test can be combined with a myelogram to get ...

  14. Arm CT scan

    Science.gov (United States)

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... stopping.) A computer creates separate images of the arm area, called slices. These images can be stored, ...

  15. Thoracic spine CT scan

    Science.gov (United States)

    CAT scan - thoracic spine; Computed axial tomography scan - thoracic spine; Computed tomography scan - thoracic spine; CT scan - ... Philadelphia, PA: Elsevier Mosby; 2013:chap 44. US Food and Drug Administration. Computed tomography (CT). Updated August ...

  16. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  17. Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Shirmir D.; Lines, Amanda M.; Lynch, John A.; Bello, Job M.; Heineman, William R.; Bryan, Samuel A.

    2017-07-03

    The electrochemical and spectroelectrochemical applications of an optically transparent thin film electrode chip are investigated. The working electrode is composed of indium tin oxide (ITO); the counter and quasi-reference electrodes are composed of platinum. The stability of the platinum quasi-reference electrode is modified by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference is characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Open circuit potential measurements indicate that the potential of the planar Ag/AgCl electrode varies a maximum of 20 mV over four days. Cyclic voltammetry measurements show that the electrode chip is comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe(CN)6] in 0.1 M KCl using the electrode chip shows a diffusion coefficient of 1.59 × 10-6 cm2/s, in comparison to the standard electrochemical cell value of 2.38 × 10-6 cm2/s. By using the electrode chip in an optically transparent thin layer electrode (OTTLE), the spectroelectrochemical modulation of [Ru(bpy)3]2+ florescence was demonstrated, achieving a detection limit of 36 nM.

  18. Rotationally Vibrating Electric-Field Mill

    Science.gov (United States)

    Kirkham, Harold

    2008-01-01

    A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.

  19. Effects of Contraction Joints on Vibrational Characteristics of Arch Dams: Experimental Study

    Directory of Open Access Journals (Sweden)

    S. S. Wang

    2015-01-01

    Full Text Available This study experimentally investigates the effects of contraction joints on the vibrational characteristics of high arch dams. Three scale models of the world’s second highest dam, the Xiaowan Arch Dam, are used as experimental specimens identified by zero, one, and two contraction joints. When a scale model vibrates harmonically at a specific frequency, its operating deflection shape is acquired by using a scanning laser vibrometer to scan the side surface of the model. The effects of contraction joints on the vibrational characteristics of arch dams are studied by examining the changes in operating deflection shapes. Experimental results demonstrate that (i contraction joints can significantly affect the vibrational characteristics of arch dams, (ii the operating deflection shape intuitively illustrates the vibrational characteristics of arch dams, and (iii a scanning laser vibrometer has marked advantages over traditional equipment in accurately and efficiently acquiring full-field dynamic responses of a structure.

  20. Vibration Analysis and the Accelerometer

    Science.gov (United States)

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  1. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    . The theoretical basis for such electrodes is discussedand, using a simplified model, equations are derived to describe the distribution of potential and current duringdischarge/charge operation. Under the assumption that the insertion compound particles are small enough to ensureequilibrium, and that the local...... electrode potential depends linearly on the degree of insertion, these equations are solvedto obtain analytical expressions for the discharge curve. It is shown that the parameters which determine the dischargebehavior for a given discharge current are simply related to the effective ionic and electronic...... conductivities, the thicknessof the electrode, the volume fractions, and the slope of the potential curve....

  2. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics...

  3. Microtitrimetry by differential electrolytic potentiometry using metallic electrodes and nanomaterials modified metallic electrodes

    Science.gov (United States)

    Amro, Abdulaziz Nabil

    For the first time silver wire electrodes have been coated with carbon nanotubes using floating catalyst chemical vapor deposition (CVD) method. The production of CNTs has been conducted in a horizontal tubular reactor. Acetylene gas was used as a carbon source. Ferrocene has been used as a catalyst precursor for the growth of CNT. Different parameters have been optimized to get a high yield of CNTs and ensure their growth on the silver electrodes using univariate method. The parameters studied include the hydrogen flow rate, acetylene flow rate, temperature of the furnace, time of the reaction and the location of the electrodes in the reactor tube. The optimum conditions for those parameters were: for hydrogen and acetylene, the flow rates were 25 mL /min and 75 mL / min respectively. The furnace temperature was found to be 700 °C and the reaction time was 15 minutes. Regarding the location of the silver wires it should be located in the first 10 cm of the front side of the tube. Scanning electron microscopy (SEM) and transition electron microscopy (TEM) have been used to characterize carbon on silver electrodes. According to the experimental results, TEM figures show that CNT produced on Silver wire is multiwall carbon nanotubes MWCNT. Silver electrodes either pure or coated with CNT were used as indicating systems in micro titration using both dc differential electrolytic potentiometry (DEP) and mark-space bias DEP techniques. All types of titrimetric reactions were investigated using different types of electrodes like Pt and gold for oxidation reduction titrations, antimony electrodes for acid base titrations, silver electrodes for precipitation titrations in addition to Ag-CNT electrodes. End points at volumes of 1 microL were determined. Different parameters were optimized like the current density, the percentage bias, the volume of the sample and the concentrations of the reactants. Microtitrimetry has been applied on several types of analytes; Ferrous

  4. Model reduction and analysis of a vibrating beam microgyroscope

    KAUST Repository

    Ghommem, Mehdi

    2012-05-08

    The present work is concerned with the nonlinear dynamic analysis of a vibrating beam microgyroscope composed of a rotating cantilever beam with a tip mass at its end. The rigid mass is coupled to two orthogonal electrodes in the drive and sense directions, which are attached to the rotating base. The microbeam is driven by an AC voltage in the drive direction, which induces vibrations in the orthogonal sense direction due to rotation about the microbeam axis. The electrode placed in the sense direction is used to measure the induced motions and extract the underlying angular speed. A reduced-order model of the gyroscope is developed using the method of multiple scales and used to examine its dynamic behavior. © The Author(s) 2012 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. Preparation of Platinum Nanoparticles-Graphene Modified Electrode and Selective Determination of Rutin

    Directory of Open Access Journals (Sweden)

    Shu-Hong Yu

    2012-01-01

    Full Text Available Platinum nanoparticles were electrodeposited on graphene modified glassy carbon electrode to form a modified electrode, and the electrode was characterized with scanning electron microscopy (SEM. At the modified electrode, rutin, a natural flavonoid, shows a couple of well-defined redox peaks, which is corresponded to the reduction and reoxidation of rutin. The electrochemical behaviors of rutin at the electrode were investigated, and the results indicated that the electrode reaction is controlled by adsorption process. Under the optimal conditions, the peak currents of differential pulse voltammetry (DPV increased linearly with the rutin concentration in the range from 2.0×10−8 to 8.0×10−5 M with a limit of detection of 6.7×10−9 M. The as-prepared electrode was successfully used for the selective determination of rutin in tablet, displaying a potential application of graphene composite modified electrode.

  6. Brain PET scan

    Science.gov (United States)

    ... have false results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  7. Coronary Calcium Scan

    Science.gov (United States)

    ... Back To Health Topics / Coronary Calcium Scan Coronary Calcium Scan Also known as Calcium Scan Test A coronary calcium scan is a CT scan of your heart that detects and measures the amount of calcium in the walls of your coronary arteries. Overview ...

  8. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2017-01-01

    Full Text Available A new scan-head structure for the scanning tunneling microscope (STM is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan. They are fixed at one end (called common end. A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  9. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans.

    Science.gov (United States)

    Chen, Xu; Guo, Tengfei; Hou, Yubin; Zhang, Jing; Meng, Wenjie; Lu, Qingyou

    2017-01-01

    A new scan-head structure for the scanning tunneling microscope (STM) is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans) coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan). They are fixed at one end (called common end). A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  10. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  11. Optimal electrode shape and size for shear mode thin film acoustic wave resonators

    Science.gov (United States)

    Xu, L. M.; Tang, B. B.; Hu, Y. T.; Fan, H.; Yang, J. S.

    2009-12-01

    We study electrode shape and size for plates of hexagonal crystals or polarized ceramics with the sixfold axis or the poling direction parallel to the plate surfaces so that they can be excited into thickness-shear vibration by an electric field in the plate thickness direction. Electrode size and shape optimal in the sense that they satisfy the criterion of Bechmann's number in every direction are determined.

  12. Determination of arsenate in natural pH seawater using a manganese-coated gold microwire electrode

    Energy Technology Data Exchange (ETDEWEB)

    Gibbon-Walsh, Kristoff [Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Salauen, Pascal, E-mail: Salaun@liv.ac.uk [Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Berg, Constant M.G. van den, E-mail: Vandenberg@liv.ac.uk [Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Determination of arsenic(V) in water of neutral pH. Black-Right-Pointing-Pointer An unusual redox couple of elemental Mn/As{sup V} reduces As{sup V} to As{sup III}. Black-Right-Pointing-Pointer Novel manganese coated gold microwire electrode. - Abstract: Direct electrochemical determination of arsenate (As{sup V}) in neutral pH waters is considered impossible due to electro-inactivity of As{sup V}. As{sup III} on the other hand is readily plated as As{sup 0} on a gold electrode and quantified by anodic stripping voltammetry (ASV). We found that the reduction of As{sup V} to As{sup III} was mediated by elemental Mn on the electrode surface in a novel redox couple in which 2 electrons are exchanged causing the Mn to be oxidised to Mn{sup II}. Advantage is taken of this redox couple to enable for the first time the electrochemical determination of As{sup V} in natural waters of neutral pH including seawater by ASV using a manganese-coated gold microwire electrode. Thereto Mn is added to excess ({approx}1 {mu}M Mn) to the water leading to a Mn coating during the deposition of As on the electrode at a deposition potential of -1.3 V. Deposition of As{sup 0} from dissolved As{sup V} caused elemental Mn to be re-oxidised to Mn{sup II} in a 1:1 molar ratio providing evidence for the reaction mechanism. The deposited As{sup V} is subsequently quantified using an ASV scan. As{sup III} interferes and should be quantified separately at a more positive deposition potential of -0.9 V. Combined inorganic As is quantified after oxidation of As{sup III} to As{sup V} using hypochlorite. The microwire electrode was vibrated during the deposition step to improve the sensitivity. The detection limit was 0.2 nM As{sup V} using a deposition time of 180 s.

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... code: Phone no: Thank you! Do you have a personal story about radiology? Share your patient story ...

  14. Heart PET scan

    Science.gov (United States)

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... taking our brief survey: Survey Do you have a personal story about radiology? Share your patient story ...

  16. Interfacial Infrared Vibrational Spectroscopy.

    Science.gov (United States)

    1986-07-30

    aqueous sulphuric acid has been used as the electrolyte, bands in the 900 to 1250 cmŕ region are often observed, and these can be assigned to...high angles of incidence. Fig. 2 shows that Ep is maximized for angles of incidence near 80. For aqueous acid solutions the largest angle of incidence...from a change in dielectric function of the electrode producing a difference in reflectivity of the electrode at the two potentials defining the

  17. Vibration-free stirling cryocooler for high definition microscopy

    Science.gov (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2009-12-01

    The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi

  18. Fabrication and Characterisation of the Graphene Ring Micro Electrode (GRiME with an Integrated, Concentric Ag/AgCl Reference Electrode

    Directory of Open Access Journals (Sweden)

    Colin Boxall

    2013-03-01

    Full Text Available Abstract: We report the fabrication and characterisation of the first graphene ring micro electrodes with the addition of a miniature concentric Ag/AgCl reference electrode. The graphene ring electrode is formed by dip coating fibre optics with graphene produced by a modified Hummers method. The reference electrode is formed using an established photocatalytically initiated electroless deposition (PIED plating method. The performance of the so-formed graphene ring micro electrodes (GRiMEs and associated reference electrode is studied using the probe redox system ferricyanide and electrode thicknesses assessed using established electrochemical methods. Using 220 µm diameter fibre optics, a ~15 nm thick graphene ring electrode is obtained corresponding to an inner to outer radius ratio of >0.999, so allowing for use of extant analytical descriptions of very thin ring microelectrodes in data analysis. GRiMEs are highly reliable (current response invariant over >3,000 scans, with the concentric reference electrode showing comparable stability (current response invariant over >300 scans. Furthermore the micro-ring design allows for efficient use of electrochemically active graphene edge sites and the associated nA scale currents obtained neatly obviate issues relating to the high resistivity of undoped graphene. Thus, the use of graphene in ring microelectrodes improves the reliability of existing micro-electrode designs and expands the range of use of graphene-based electrochemical devices.

  19. Capacitive de-ionization electrode

    Science.gov (United States)

    Daily, III, William D.

    2013-03-19

    An electrode "cell" for use in a capacitive deionization (CDI) reactor consists of the electrode support structure, a non-reactive conductive material, the electrode accompaniment or substrate and a flow through screen/separator. These "layers" are repeated and the electrodes are sealed together with gaskets between two end plates to create stacked sets of alternating anode and cathode electrodes in the CDI reactor.

  20. Graphene based nanocomposite hybrid electrodes for supercapacitors

    Science.gov (United States)

    Aphale, Ashish N.

    There is an unmet need to develop high performance energy storage systems (ESS), capable of storing energy from both renewable and non-renewable sources to meet the current energy crisis and depletion of non-renewable sources. Amongst many available ESS, supercapacitors (ECs) are the most promising because they exhibit a high charge/discharge rate and power density, along with a long cycle life. The possibility of exploring the use of atomically thin carbon allotropes like graphene, carbon nanotubes (CNTs) and electrically conducting polymers (ECPs) such as polypyrrole (PPy) has been studied as a high performance conducting electrodes in supercapacitor application. A novel templated sustainable nanocomposite electrode has been fabricated using cellulose extracted from Cladophora c. aegagropila algae as component of the assembled supercapacitor device which later has been transitioned to a unique template-less freestanding nanocomposite supercapacitor electrode. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 F g -1 at the scan rate 50 m Vs-1 in the presence of 1M NaCl electrolyte. The open circuit voltage of the device with polypyrrole -graphene-cellulose electrode was found to be around 225 m V and that of the polypyrrole -cellulose device is only 53 m V without the presence of graphene in the nanocomposite electrode. Understanding the fundamentals by fabricating template nanocomposite electrode, it led to fabricate a unique nanocomposite template-less freestanding film which comprises of polypyrrole-graphene-CNT hybrid. Various experiments have been performed using different electrolytes such ascorbic acid, sodium sulfate and sulfuric acid in different scan rates. The specific capacitance of polypyrrole-graphene-CNT nanocomposite with 0.1 wt% of graphene-CNT, as calculated from cyclic voltammetry curve is 450 F g-1 at the scan rate 5 m V s-1. For the first time a nanofibrous membrane has

  1. Active isolation of vibrations with adaptive structures

    Science.gov (United States)

    Guigou, C.; Fuller, C. R.; Wagstaff, P. R.

    1991-01-01

    Vibration transmission in structures is controlled by means of a technique which employs distributed arrays of piezoelectric transducers bonded to the supporting structure. Distributed PVDF piezoelectric strips are employed as error sensors, and a two-channel feedforward adaptive LMS algorithm is used for minimizing error signals and thereby controlling the structure. A harmonic force input excites a thick plate, and a receiving plate is configured with three pairs of piezoelectric actuators. Modal analyses are performed to determine the resonant frequencies of the system, and a scanning laser vibrometer is used to study the shape of the response of the receiving plate during excitation with and without the control algorithm. Efficient active isolation of the vibrations is achieved with modal suppression, and good control is noted in the on-resonance cases in which increased numbers of PVDF sensors and piezoelectric actuators are employed.

  2. A novel MEMS S-springs vibrating ring gyroscope with atmosphere package

    Science.gov (United States)

    Kou, Zhiwei; Liu, Jun; Cao, Huiliang; Shi, Yunbo; Ren, Jianjun; Zhang, Yingjie

    2017-12-01

    This study presents a new MEMS vibrating ring gyroscope (VRG), which is driven by electrostatic force and detected by capacitance. A novel ring resonator with eight S-shaped symmetrical supporting springs is developed based on the advantageous characteristics of a thin-shell vibrating gyroscope. The capacitance electrodes, including the drive electrodes, the sense electrodes and the mode control electrodes, are designed according to the vibration characteristics of the ring resonator and the shape of the supporting springs. In addition, the operational principle of these electrode capacitors and the electrostatic force of the drive electrodes are discussed in detail. The gyroscope with high aspect-ratio structures is manufactured through an efficient fabrication process. Finally, the performance characteristics of the fabricated VRG are tested, and the experimentally obtained the zero-bias instability is about 0.0167°/s and angle random walk (ARW) is about 0.1363°/s1/2 at room temperature. Experimental results show that the VRG has a simple structure and relatively better performance characteristics for low and medium angular velocity measurements.

  3. A novel MEMS S-springs vibrating ring gyroscope with atmosphere package

    Directory of Open Access Journals (Sweden)

    Zhiwei Kou

    2017-12-01

    Full Text Available This study presents a new MEMS vibrating ring gyroscope (VRG, which is driven by electrostatic force and detected by capacitance. A novel ring resonator with eight S-shaped symmetrical supporting springs is developed based on the advantageous characteristics of a thin-shell vibrating gyroscope. The capacitance electrodes, including the drive electrodes, the sense electrodes and the mode control electrodes, are designed according to the vibration characteristics of the ring resonator and the shape of the supporting springs. In addition, the operational principle of these electrode capacitors and the electrostatic force of the drive electrodes are discussed in detail. The gyroscope with high aspect-ratio structures is manufactured through an efficient fabrication process. Finally, the performance characteristics of the fabricated VRG are tested, and the experimentally obtained the zero-bias instability is about 0.0167°/s and angle random walk (ARW is about 0.1363°/s1/2 at room temperature. Experimental results show that the VRG has a simple structure and relatively better performance characteristics for low and medium angular velocity measurements.

  4. Mechanisms of molecular electronic rectification through electronic levels with strong vibrational coupling

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2002-01-01

    , corresponding to the fully diabatic limit. The rectification process then reduces to a sequence of vibrationally relaxed single-electron transfer steps. In the limits where the interactions are strong, denoted as the partially and fully adiabatic limits, the character of the rectification process is different......, and electron flow proceeds coherently, without vibrational relaxation. In still another class of mechanisms the electronic level broadening of either donor or acceptor from the adjacent electrode is so strong that it is comparable to the vibrational broadening. The process then reduces to a three...

  5. Electrochemical Behavior Of Copper Electrode In Potassium Sulfide Solutions

    OpenAIRE

    Zaafarany, I.; Boller, H.

    2014-01-01

    The electro chemical behavior of copper electrode in 2M potassium sulfide solution was studied using cyclic voltammograms and potentiostatic polarization techniques. The morphology studies were applied using scanning electron microscope (SEM) and energy dispersive analysis of X-rays (EDAX) and X-ray powder diffraction. Three anodic peaks were observed in the anodic scan of cyclic voltammograms. SEM and EDAX analysis show the formation of an anodic copper sulfide layer on the surface of copper...

  6. Numerical verification and experimental validation of the FEM model of collecting electrodes in a dry electrostatic precipitator

    Directory of Open Access Journals (Sweden)

    Andrzej Nowak

    Full Text Available The subject of the present work is the numerical verification and experimental validation of the FEM model which would enable us to analyse the vibrations of collecting electrodes. The effectiveness of electrostatic precipitators (ESP depends on many factors. One of these factors is the efficiency of periodic cleaning of the collecting electrodes; thus the dust is removed by inducing vibrations. These vibrations are caused by the axial impact of a hammer on an anvil beam. In the course of the impact, and afterwards, the stresses due to the impact are produced in both the rapper system and in the collecting electrode section. The paper presents a modified finite element method which can be used in simulations and to analyse the vibrations of collecting electrodes. In the verification process the calculation results obtained were compared with those from commercial software (Abaqus. The calculations and measured results were compared for validation. The comparisons were made using peak and RMS (root-mean-squared values as well as special factors and hit rates. An acceptable compatibility of the results proves that the model can be applied in the analysis of vibrations of electrodes in design practice.

  7. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  8. Vibrational spectroscopy of resveratrol

    Science.gov (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  9. Bumblebee vibration activated foraging

    OpenAIRE

    Su, Dan Kuan-Nien

    2009-01-01

    The ability use vibrational signals to activate nestmate foraging is found in the highly social bees, stingless bees and honey bees, and has been hypothesized to exist in the closely related, primitively eusocial bumble bees. We provide the first strong and direct evidence that this is correct. Inside the nest, bumble bee foragers produce brief bursts of vibration (foraging activation pulses) at 594.5 Hz for 63±26 ms (velocityRMS=0.46±0.02mm/s, forceRMS=0.8±0.2 mN. Production of these vibrati...

  10. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard

    1994-01-01

    concerned with spectator-induced vertical vibrations on grandstands. The idea is to use impulse response analysis and base the load description on the load impulse. If the method is feasable, it could be used in connection with the formulation of requirements in building codes. During the last two decades...... work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  11. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  12. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  13. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  14. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  15. Composite Struts Would Damp Vibrations

    Science.gov (United States)

    Dolgin, Benjamin P.

    1991-01-01

    New design of composite-material (fiber/matrix laminate) struts increases damping of longitudinal vibrations without decreasing longitudinal stiffness or increasing weight significantly. Plies with opposing chevron patterns of fibers convert longitudinal vibrational stresses into shear stresses in intermediate viscoelastic layer, which dissipate vibrational energy. Composite strut stronger than aluminum strut of same weight and stiffness.

  16. Electrode erosion in steady-state electric propulsion engines

    Science.gov (United States)

    Pivirotto, Thomas J.; Deininger, William D.

    1988-01-01

    The anode and cathode of a 30 kW class arcjet engine were sectioned and analyzed. This arcjet was operated for a total time of 573 hr at power levels between 25 and 30 kW with ammonia at flow rates of 0.25 and 0.27 gm/s. The accumulated run time was sufficient to clearly establish erosion patterns and their causes. The type of electron emission from various parts of the cathode surface was made clear by scanning electron microscope analysis. A scanning electron microscope was used to study recrystallization on the hot anode surface. These electrodes were made of 2 percent thoriated tungsten and the surface thorium content and gradient perpendicular to the surfaces was determined by quantitative microprobe analysis. The results of this material analysis on the electrodes and recommendations for improving electrode operational life time are presented.

  17. Ship Vibration Design Guide

    Science.gov (United States)

    1989-07-01

    Frachtschiffen," Werft Reederie Hafen, 1925. 4-21 Noonan, E. F. "Vibration Considerations for 120,000 CM LNG Ships," NKF: Preliminary Report No. 7107, 25...Ship Response to Ice - A Second Season by C. Daley, J. W. St. John, R. Brown, J. Meyer , and I. Glen 1990 SSC-340 Ice Forces and Ship Response to Ice

  18. Compact Vibration Damper

    Science.gov (United States)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  19. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    The vibrating string problem is the source of much mathematicsand physics. This article describes Lagrange's formulationof a discretised version of the problem and its solution.This is also the first instance of an eigenvalue problem. Author Affiliations. Rajendra Bhatia1. Ashoka University, Rai, Haryana 131 029, India.

  20. Blade Vibration Measurement System

    Science.gov (United States)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  1. Vibration Sensitive Keystroke Analysis

    NARCIS (Netherlands)

    Lopatka, M.; Peetz, M.-H.; van Erp, M.; Stehouwer, H.; van Zaanen, M.

    2009-01-01

    We present a novel method for performing non-invasive biometric analysis on habitual keystroke patterns using a vibration-based feature space. With the increasing availability of 3-D accelerometer chips in laptop computers, conventional methods using time vectors may be augmented using a distinct

  2. Near-field infrared vibrational dynamics and tip-enhanced decoherence.

    Science.gov (United States)

    Xu, Xiaoji G; Raschke, Markus B

    2013-04-10

    Ultrafast infrared spectroscopy can reveal the dynamics of vibrational excitations in matter. In its conventional far-field implementation, however, it provides only limited insight into nanoscale sample volumes due to insufficient spatial resolution and sensitivity. Here, we combine scattering-scanning near-field optical microscopy (s-SNOM) with femtosecond infrared vibrational spectroscopy to characterize the coherent vibrational dynamics of a nanoscopic ensemble of C-F vibrational oscillators of polytetrafluoroethylene (PTFE). The near-field mode transfer between the induced vibrational molecular coherence and the metallic scanning probe tip gives rise to a tip-mediated radiative IR emission of the vibrational free-induction decay (FID). By increasing the tip–sample coupling, we can enhance the vibrational dephasing of the induced coherent vibrational polarization and associated IR emission, with dephasing times up to T2(NF) is approximately equal to 370 fs in competition against the intrinsic far-field lifetime of T2(FF) is approximately equal to 680 fs as dominated by nonradiative damping. Near-field antenna-coupling thus provides for a new way to modify vibrational decoherence. This approach of ultrafast s-SNOM enables the investigation of spatiotemporal dynamics and correlations with nanometer spatial and femtosecond temporal resolution.

  3. The Pore Structure of Direct Methanol Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    Lund, Peter Brilner

    2005-01-01

    The pore structure and morphology of direct methanol fuel cell electrodes are characterized using mercury intrusion porosimetry and scanning electron microscopy. It is found that the pore size distributions of printed primer and catalyst layers are largely dictated by the powders used to make...

  4. Analysis of polypyrrole-coated stainless steel electrodes-Estimation ...

    Indian Academy of Sciences (India)

    Analysis of polypyrrole-coated stainless steel electrodes - Estimation of specific capacitances and construction of equivalent circuits ... The morphology of the film is studied from Scanning Electron Microscopy (SEM) measurements while the nature of the substrate is analysed using Energy Dispersive X-ray Spectroscopy ...

  5. A study of nanostructured gold modified glassy carbon electrode for ...

    Indian Academy of Sciences (India)

    A nanostructured gold modified glassy carbon electrode (Aunano/GCE) was employed for the determination of trace chromium(VI). To prepare Aunano/GCE, the GCE was immersed into KAuCl4 solution and electrodeposition was conducted at the potential of -0.4 V (vs Ag/AgCl) for 600 s. Scanning electron microscopy ...

  6. Electrochemistry on nanopillared electrodes

    Directory of Open Access Journals (Sweden)

    Chandni Lotwala

    2017-02-01

    Full Text Available The addition of nanopillars to electrodes increases their electrochemical capabilities through an increase in electroactive surface area. The nanopillars can be applied on either cathodes or anodes to engage in reduction-oxidation reactions. This minireview summaries some work on cyclic voltammetry, chronoamperometry, impedance change on nanopillared surface and compared their electrochemistry behavior on planar surfaces.

  7. Dry EEG Electrodes

    Science.gov (United States)

    Lopez-Gordo, M. A.; Sanchez-Morillo, D.; Valle, F. Pelayo

    2014-01-01

    Electroencephalography (EEG) emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications. PMID:25046013

  8. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta...

  9. Recovery Of Electrodic Powder From Spent Lithium Ion Batteries (LIBs

    Directory of Open Access Journals (Sweden)

    Shin S.M.

    2015-06-01

    Full Text Available This study was focused on recycling process newly proposed to recover electrodic powder enriched in cobalt (Co and lithium (Li from spent lithium ion battery. In addition, this new process was designed to prevent explosion of batteries during thermal treatment under inert atmosphere. Spent lithium ion batteries (LIBs were heated over the range of 300°C to 600°C for 2 hours and each component was completely separated inside reactor after experiment. Electrodic powder was successfully recovered from bulk components containing several pieces of metals through sieving operation. The electrodic powder obtained was examined by X-ray diffraction (XRD, energy dispersive X-ray spectroscopy (EDS, and atomic absorption spectroscopy (AA and furthermore image of the powder was taken by scanning electron microscopy (SEM. It was finally found that cobalt and lithium were mainly recovered to about 49 wt.% and 4 wt.% in electrodic powder, respectively.

  10. Preparation of glucose sensors using gold nanoparticles modified diamond electrode

    Science.gov (United States)

    Fachrurrazie; Ivandini, T. A.; Wibowo, W.

    2017-04-01

    A glucose sensor was successfully developed by immobilizing glucose oxidase (GOx) at boron-doped diamond (BDD) electrodes. Prior to GOx immobilization, the BDD was modified with gold nanoparticles (AuNPs). To immobilize AuNPs, the gold surface was modified to nitrogen termination. The characterization of the electrode surface was performed using an X-ray photoelectron spectroscopy and a scanning electron microscope, while the electrochemical properties of the enzyme electrode were characterized using cyclic voltammetry. Cyclic voltammograms of the prepared electrode for D-glucose in phosphate buffer solution pH 7 showed a new reduction peak at +0.16 V. The currents of the peak were linear in the concentration range of 0.1 M to 0.9 M, indicated that the GOx-AuNP-BDD can be applied for electrochemical glucose detection.

  11. Electrodeposition of uranium and thorium onto small platinum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Reichenberger, Michael A., E-mail: mar89@ksu.edu [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering Dept., Kansas State University, Manhattan, KS 66506 (United States); Ito, Takashi [Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, KS 66506-0401 (United States); Ugorowski, Philip B.; Montag, Benjamin W.; Stevenson, Sarah R.; Nichols, Daniel M.; McGregor, Douglas S. [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering Dept., Kansas State University, Manhattan, KS 66506 (United States)

    2016-03-11

    Preparation of thin U- and Th-coated 0.3 mm diameter Pt working electrodes by the cyclic potential sweep method is described. Uranyl- and thorium hydroxide layers were electrodeposited from ethanol solutions containing 0.02 M natural uranyl and 0.02 M natural thorium nitrate, each with 3.6 M ammonium nitrate. The cell for electrodeposition was specially developed in order to accommodate the small working electrodes for this research by including a working electrode probe, 3-D translation stage, and microscope. The source material deposition was analyzed using digital microscopy and scanning electron microscopy, and confirmed using x-ray fluorescence measurements. The appropriate potential range for electrodeposition was determined to be −0.62 V to −0.64 V for a 0.3 mm diameter Pt working electrode placed 1 cm from the counter electrode. Smooth, uniform deposition was observed near the central region of the working electrode, while surface cracking and crystalline formations were found near the edge of the working electrode. The final procedure for sample substrate preparation, electrolytic solution preparation and electrodeposition are described.

  12. Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring

    Directory of Open Access Journals (Sweden)

    Cunguang Lou

    2016-11-01

    Full Text Available This paper describes the development of a graphene-based dry flexible electrocardiography (ECG electrode and a portable wireless ECG measurement system. First, graphene films on polyethylene terephthalate (PET substrates and graphene paper were used to construct the ECG electrode. Then, a graphene textile was synthesized for the fabrication of a wearable ECG monitoring system. The structure and the electrical properties of the graphene electrodes were evaluated using Raman spectroscopy, scanning electron microscopy (SEM, and alternating current impedance spectroscopy. ECG signals were then collected from healthy subjects using the developed graphene electrode and portable measurement system. The results show that the graphene electrode was able to acquire the typical characteristics and features of human ECG signals with a high signal-to-noise (SNR ratio in different states of motion. A week-long continuous wearability test showed no degradation in the ECG signal quality over time. The graphene-based flexible electrode demonstrates comfortability, good biocompatibility, and high electrophysiological detection sensitivity. The graphene electrode also combines the potential for use in long-term wearable dynamic cardiac activity monitoring systems with convenience and comfort for use in home health care of elderly and high-risk adults.

  13. Electrodeposition of uranium and thorium onto small platinum electrodes

    Science.gov (United States)

    Reichenberger, Michael A.; Ito, Takashi; Ugorowski, Philip B.; Montag, Benjamin W.; Stevenson, Sarah R.; Nichols, Daniel M.; McGregor, Douglas S.

    2016-03-01

    Preparation of thin U- and Th-coated 0.3 mm diameter Pt working electrodes by the cyclic potential sweep method is described. Uranyl- and thorium hydroxide layers were electrodeposited from ethanol solutions containing 0.02 M natural uranyl and 0.02 M natural thorium nitrate, each with 3.6 M ammonium nitrate. The cell for electrodeposition was specially developed in order to accommodate the small working electrodes for this research by including a working electrode probe, 3-D translation stage, and microscope. The source material deposition was analyzed using digital microscopy and scanning electron microscopy, and confirmed using x-ray fluorescence measurements. The appropriate potential range for electrodeposition was determined to be -0.62 V to -0.64 V for a 0.3 mm diameter Pt working electrode placed 1 cm from the counter electrode. Smooth, uniform deposition was observed near the central region of the working electrode, while surface cracking and crystalline formations were found near the edge of the working electrode. The final procedure for sample substrate preparation, electrolytic solution preparation and electrodeposition are described.

  14. A mercury free electrode for anodic stripping voltammetric determination of Pb (II) ions using poly zincon film modified electrode

    Science.gov (United States)

    Vasanthi, S.; Devendiran, M.; Narayanan, S. Sriman

    2017-11-01

    With an aim of developing a mercury-free electrode for anodic stripping voltammetric determination of Pb (II) ions, a poly zincon film (PZF) modified electrode is reported here. The PZF on the electrode surface has been obtained by electropolymerisation of zincon. PZF present on the electrode surface has been used for preconcentrating Pb (II) ions through complexation. The electrochemical determination of the above metal ion has been carried out by reducing the preconcentrated Pb (II) at -1.0 V followed by anodic stripping in acetate buffer of pH 6 and measuring the stripping current at -0.64 V. The PZF and Pb preconcentrated PZF modified electrodes have been characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The factors influencing the determination of Pb (II) ions such as the nature of medium/background electrolyte, pH, preconcentration time and electrode regeneration have been studied in detail. Under optimum conditions, a linear relation for the stripping current with Pb (II) ions in the solution has been observed in the range from 3.45 to 136.3 μg L-1 with a detection limit of 0.98 μg L-1. The regeneration of the modified electrode after each experiment has been achieved by simply immersing the electrode in 0.1 M EDTA solution for 2 min and washing thoroughly in de-ionised water. PZF modified electrode has shown a promising and sensitive platform for the anodic stripping determination of Pb (II) ions and the regeneration of the electrode has been found to be easy for subsequent uses. The proposed method has been applied for the determination of Pb (II) ions in ground water and tap water samples.

  15. Compact and Low-Frequency Vibration Energy Scavenger using the longitudinal excitation of a piezoelectric bar

    Science.gov (United States)

    Colin, M.; Mortier, Q.; Basrour, S.; Bencheikh, N.

    2013-12-01

    This paper introduces an innovative architecture of a piezoelectric harvester, which enables harvesting vibration energy at low frequency using the {33}-transduction mode of a piezoelectric element. Unlike cantilevers integrating ferroelectric material combined with interdigitated electrodes, the concept that we propose is based on the elongation/compression excitation of a piezoelectric bar.

  16. Blowing the Fuse: Berry's Phase and Runaway Vibrations in Molecular Conductors

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Brandbyge, Mads; Hedegård, P.

    2010-01-01

    We examine a molecular bridge connecting two metallic electrodes. We find that an electronic current passing across the bridge can cause a vibrational instability of the molecule, which ultimately can lead to a breakdown of the bridge. This instability is generated by a hitherto never considered ...

  17. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  18. SERS spectroelectrochemical study of electrode processes at copper hexacyanoferrate modified electrode

    Science.gov (United States)

    Mažeikienė, Regina; Niaura, Gediminas; Malinauskas, Albertas

    2017-06-01

    Electrochemical redox processes taking place at copper hexacyanoferrate (CuHCF) modified electrode have been investigated by near-infrared laser (785 nm) induced surface-enhanced Raman spectroscopy (SERS). Raman bands observed within the spectral ranges of 2200-2000 cm- 1 and 500-100 cm- 1, as well as their dependence on electrode potential, have been analysed. The most characteristic Raman bands, related to triple CN bond vibrations and centered at 2187 and 2127 cm- 1 were assigned to the oxidised and the reduced forms of CuHCF, respectively. Time-resolved Raman spectroelectrochemical study shows that the electrochemical redox interconversions between these two forms proceed relatively slow, thus resembling the behaviour of structurally related cobalt hexacyanoferrate, and differing essentially from that of Prussian blue layer studied previously. It has been shown by the time-resolved Raman spectroelectrochemistry that the rate of some redox processes of solute species like the anodic oxidation of ascorbate or cathodic reduction of hydrogen peroxide at CuHCF modified electrode appears to be limited by the slow electrochemical redox transformations within the modifier layer itself rather than by the redox interactions of a modifier with the solute species.

  19. Experimental measurement and numerical analysis on resonant characteristics of piezoelectric disks with partial electrode designs.

    Science.gov (United States)

    Lin, Yu-Chih; Ma, Chien-Ching

    2004-08-01

    Three experimental techniques are used in this study to access the influence of the electrode arrangement on the resonant characteristics of piezoceramic disks. These methods, including the amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), laser Doppler vibrometer-dynamic signal analyzer (LDV-DSA), and impedance analysis, are based on the measurement of full-field displacement, pointwise displacement, and electric impedance, respectively. In this study, one full electrode design and three nonsymmetrical partial electrode designs of piezoelectric disks are investigated. Because the clear fringe patterns measured by the AF-ESPI method will be shown only at resonant frequencies, both the resonant frequencies and the corresponding vibration mode shapes are successfully obtained at the same time for out-of-plane and in-plane motions. The second experimental method is the impedance analysis, which is used to measure the resonant and antiresonant frequencies. In addition to these experimental methods, LDV-DSA is used to determine the resonant frequencies of the vibration mode with out-of-plane motion. From the experimental results, the dependence of electrode design on the vibration frequencies and mode shapes is addressed. Numerical computations based on the finite element method are presented, and the results are compared with the experimental measurements. The effect of different designs of electrode is more significant in the in-plane modes than that in the out-of-plane modes.

  20. Animal Communications Through Seismic Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Peggy (University of Tulsa)

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  1. Synthesis, characterization and application of electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    He, Lin [Iowa State Univ., Ames, IA (United States)

    1995-07-07

    It has been known that significant advances in electrochemistry really depend on improvements in the sensitivity, selectivity, convenience, and/or economy of working electrodes, especially through the development of new working electrode materials. The advancement of solid state chemistry and materials science makes it possible to provide the materials which may be required as satisfactory electrode materials. The combination of solid state techniques with electrochemistry expands the applications of solid state materials and leads to the improvement of electrocatalysis. The study of Ru-Ti4O7 and Pt-Ti4O7 microelectrode arrays as introduced in paper 1 and paper 4, respectively, focuses on their synthesis and characterization. The synthesis is described by high temperature techniques for Ru or Pt microelectrode arrays within a conductive Ti4O7ceramic matrix. The characterization is based on the data obtained by x-ray diffractometry, scanning electron microscopy, voltammetry and amperometry. These microelectrode arrays show significant enhancement in current densities in comparison to solid Ru and Pt electrodes. Electrocatalysis at pyrochlore oxide Bi2Ru2O7.3 and Bi2Ir2O7 electrodes are described in paper 2 and paper 3, respectively. Details are reported for the synthesis and characterization of composite Bi2Ru2O7.3 electrodes. Voltammetric data are examined for evidence that oxidation can occur with transfer of oxygen to the oxidation products in the potential region corresponding to anodic discharge of H2O with simultaneous evolution of O2. Paper 3 includes electrocatalytic activities of composite Bi2Ir2O7 disk electrodes for the oxidation of I- and the reduction of IO3-.

  2. Vibration Attenuation of Plate Using Multiple Vibration Absorbers

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin

    2014-07-01

    Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... concern for you. If you had an intravenous line inserted for the procedure, it will usually be ... procedure that same day that requires an intravenous line. Actual scanning time for a thyroid scan is ...

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the limitations of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid ... body converts food to energy. top of page What are some common uses of the procedure? The ...

  5. RBC nuclear scan

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  6. Theory of single molecule vibrational spectroscopy and microscopy.

    Science.gov (United States)

    Lorente, N; Persson, M

    2000-10-02

    We have carried out a density functional study of vibrationally inelastic tunneling in the scanning tunneling microscope of acetylene on copper. Our approach is based on a many-body generalization of the Tersoff-Hamann theory. We explain why only the carbon-hydrogen stretch modes are observed in terms of inelastic and elastic contributions to the tunneling conductance. The inelastic tunneling is found to be efficient and highly localized in space without any resonant interaction and to be governed by a vibration-induced change in tunneling amplitude.

  7. Good vibrations. [Hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, P.

    1994-07-01

    The latest developments in the Voith Turbine Control and Automation System (VTLS), which couples digital control technology to hydropower plant equipment, are described. Prominent among these is the vibration diagnostics module for hydraulic turbines. It provides machine-specific diagnostic logic for a vibration monitoring and analysis system. Of the two other VTLS modules described, the operation module optimizes the control of a power plant with three or more turbines by considering the individual properties of each in turn, recommending which should be run, and how, in order to partition the load for a required power output. The cavitation module is a diagnostic system which enables the limits of operation of the turbines to be extended to bands just outside those determined by cavitation calculations. (3 figures). (UK)

  8. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  9. Ice electrode electrolytic cell

    Science.gov (United States)

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  10. Electrostatic Levitator Electrode Layout

    Science.gov (United States)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  11. Fuel cell oxygen electrode

    Science.gov (United States)

    Shanks, H.R.; Bevolo, A.J.; Danielson, G.C.; Weber, M.F.

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A/sub x/WO/sub 3/ where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt/sub y/WO/sub 3/ where y is at least 0.8.

  12. Pickin’ up good vibrations

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins.   A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...

  13. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu

    2013-05-01

    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  14. Shielded capacitive electrode

    Science.gov (United States)

    Kireeff Covo, Michel

    2013-07-09

    A device is described, which is sensitive to electric fields, but is insensitive to stray electrons/ions and unlike a bare, exposed conductor, it measures capacitively coupled current while rejecting currents due to charged particle collected or emitted. A charged particle beam establishes an electric field inside the beam pipe. A grounded metallic box with an aperture is placed in a drift region near the beam tube radius. The produced electric field that crosses the aperture generates a fringe field that terminates in the back surface of the front of the box and induces an image charge. An electrode is placed inside the grounded box and near the aperture, where the fringe fields terminate, in order to couple with the beam. The electrode is negatively biased to suppress collection of electrons and is protected behind the front of the box, so the beam halo cannot directly hit the electrode and produce electrons. The measured signal shows the net potential (positive ion beam plus negative electrons) variation with time, as it shall be observed from the beam pipe wall.

  15. ZEOLITE-MODIFIED CARBON PASTE ELECTRODE FOR DETERMINATION OF COPPER USING ANODIC STRIPPING VOLTAMMETRY METHOD

    Directory of Open Access Journals (Sweden)

    Irdhawati

    2017-03-01

    Full Text Available In this research, the unmodified and modified carbon paste electrode with zeolite has been prepared, for determination of Cu(II using anodic stripping voltammetry method. The parameters observed involved deposition time, scan rates, zeolite composition in carbon paste, and validation of working electrode. The optimum performance of carbon paste electrode modified with zeolite was applied for determination of Cu(II in wastewater of the gong fabrication. The results of this research showed the optimum of deposition time and scan rates obtained at 410 s and 7.5 mV/s for unmodified carbon paste electrode, respectively. The optimum composition of zeolite-modifier is 20 % from total graphite, with deposition time 380 s and scan rates 10 mV/s. The detection limit of the measurement of Cu(II standard solution using unmodified carbon paste electrode is 46.13 ppb, is lower than unmodified carbon paste electrode, 99.93 ppb. Zeolite-modified carbon paste electrode has good precision and accuration. The concentration of Cu(II in waste water of gong fabrication , using carbon paste electrode modified with zeolite is 93.54 ± 0.87 ppb.

  16. Fabrication, characterization and electrocatalytic application of a lead dioxide electrode with porous titanium substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenli; Kong, Haishen [College of Chemistry, Jilin University, Changchun 130012 (China); Lin, Haibo [College of Chemistry, Jilin University, Changchun 130012 (China); Key Laboratory of Physics and Technology for Advanced Batteries of Ministry of Education, Jilin University, Changchun, 130012 (China); Lu, Haiyan, E-mail: luhy@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China); Huang, Weimin; Yin, Jian; Lin, Zheqi; Bao, Jinpeng [College of Chemistry, Jilin University, Changchun 130012 (China)

    2015-11-25

    In this study, PbO{sub 2} electrode was prepared on porous Ti/SnO{sub 2}–Sb{sub 2}O{sub 5} substrate (denoted as 3D-Ti/PbO{sub 2} electrode), and its electrochemical properties were investigated in detail. The electrodeposition mechanism of 3D-Ti/PbO{sub 2} electrode was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Scanning electron microscope (SEM) result showed that the 3D-Ti/PbO{sub 2} electrode possessed porous structure when it was electrodeposited for time less than 30 min. The 3D-Ti/PbO{sub 2} electrode prepared for 10 min had more active sites than the lead dioxide electrode electrodeposited on planar titanium substrate (denoted as 2D-Ti/PbO{sub 2} electrode) and its electrochemical porosity is about 54%. The embedded structure between porous Ti/SnO{sub 2}–Sb{sub 2}O{sub 5} substrate and PbO{sub 2} coating increased the stability of 3D-Ti/PbO{sub 2} electrode. The service life of 3D-Ti/PbO{sub 2} electrode was about 350 h which was much longer than 2D-Ti/PbO{sub 2} electrode. What's more, 3D-Ti/PbO{sub 2} electrode had better electrocatalytic activity towards phenol degradation than 2D-Ti/PbO{sub 2} electrode. - Highlights: • 3D-Ti/PbO{sub 2} electrode was prepared on a porous titanium substrate. • The electrochemical active surface area was investigated. • The activity of 3D-Ti/PbO{sub 2} electrode towards phenol oxidation was investigated. • 3D-Ti/PbO{sub 2} electrode shows superior electrocatalytic activity.

  17. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  18. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  19. Spark Gap Electrode Erosion

    Science.gov (United States)

    1984-12-01

    Graduate Students : A. Donaldson B. M~aas C. Yeh* * Paid by the Republic of China (Taiwan) ~rYC -i"."." V, " .~ *.-,........ A...addressed here but is being considered for future work. -2- 29 0 Numerous studies 2 - 6 have shown that the choice of gas, electrode, and insulator material...obtained in C4Pmr-tunwqt, (-33) Air 9.5 0.20 1.2 0.4 this experiment are in generally good agreement with the inea- Caeer -tt,.esn Air 11.5 0.24 1., U.3

  20. Chaotic vortex induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Sheridan, J. [Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Leontini, J. S. [Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Lo Jacono, D. [Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS and Université de Toulouse, 31400 Toulouse (France)

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  1. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.

    1974-01-01

    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...

  2. Consideration of stiffness and mass effects of relatively thicker electrodes with Mindlin plate theory.

    Science.gov (United States)

    Wang, Ji

    2006-06-01

    Mindlin plate theory has been widely used in the high-frequency vibrations of piezoelectric crystal plates with emphasis on its applications in crystal resonator analysis and design. The plate equations were derived without considering the effect of electrodes from the beginning. But continuing efforts have been made to include the mechanical effect, or the mass loading, through the consideration of the mass ratio of the electrodes and crystal blank. Such a consideration has been effective for relatively thin electrodes before, but the ever-increasing mass ratio has been pressing further improvement to take into account relatively thicker electrodes. To extend Mindlin plate equations for these applications, we derive the plate equations systematically with the approximation of displacements in electrodes with those in the crystal blank. As a result, both mass and stiffness effects of electrodes are considered through ratios of the thickness, density, and elastic constants of the electrodes to those of the crystal blank, respectively, and the plate equations are modified accordingly. A practical design of the electrodes and crystal blank are analyzed to demonstrate the necessity of such modifications to Mindlin plate equations.

  3. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  4. New Applications of Scanning Tunneling Microscopy

    Science.gov (United States)

    Smith, Douglas Philip Edward

    This dissertation describes the application of the scanning tunneling microscope (STM) technique to four new fields of study: thin organic films, phonon spectroscopy of bulk surfaces, the vibrational spectroscopy of molecules, and the tribological forces which occur between STM tip and sample. Images with atomic resolution were obtained with speeds approaching video rates. Two types of microscopes were used: one operated at room temperature in air, another at 4.2K in liquid helium. At room temperature, the STM was able to image molecules of cadmium arachidate deposited onto graphite by the Langmuir-Blodgett technique. The packing of molecules in the lipid bilayer was found to be partially ordered, with density of 1 molecule per 19.4 square angstroms. At liquid-helium temperature, inelastic electron processes were detected, and it was possible to determine within an area of a few square angstroms where the vibrational excitations occurred. On a bare graphite substrate, phonons of the sample and tip caused step increases in the tunneling conductivity at the phonon energies. Molecules of sorbic acid could be resolved when deposited onto graphite, and these molecules caused spatially localized peaks in conductivity at the energies of the bond vibrations. Although the STM is usually considered a non-contact instrument, under certain circumstances the tip and sample exerted strong forces on each other. With a tungsten tip and a graphite sample, friction and mechanical deformations on the atomic scale were observed.

  5. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Quantum dynamics of vibrational excitations and vibrational charge transfer processes in H+ + O2 collisions at collision energy 23 eV ... The Fritz Haber Research Centre and The Department of Physical Chemisry, Hebrew University of Jerusalem, Jerusalem, Israel 91904; Department of Chemistry, Indian Institute of ...

  6. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    Single-molecule junctions are among the smallest electric circuits. They consist of a molecule that is bound to a left and a right electrode. With such a molecular nanocontact, the flow of electrical currents through a single molecule can be studied and controlled. Experiments on single-molecule junctions show that a single molecule carries electrical currents that can even be in the microampere regime. Thereby, a number of transport phenomena have been observed, such as, for example, diode- or transistor-like behavior, negative differential resistance and conductance switching. An objective of this field, which is commonly referred to as molecular electronics, is to relate these transport phenomena to the properties of the molecule in the contact. To this end, theoretical model calculations are employed, which facilitate an understanding of the underlying transport processes and mechanisms. Thereby, one has to take into account that molecules are flexible structures, which respond to a change of their charge state by a profound reorganization of their geometrical structure or may even dissociate. It is thus important to understand the interrelation between the vibrational degrees of freedom of a singlemolecule junction and the electrical current flowing through the contact. In this thesis, we investigate vibrational effects in electron transport through singlemolecule junctions. For these studies, we calculate and analyze transport characteristics of both generic and first-principles based model systems of a molecular contact. To this end, we employ a master equation and a nonequilibrium Green's function approach. Both methods are suitable to describe this nonequilibrium transport problem and treat the interactions of the tunneling electrons on the molecular bridge non-perturbatively. This is particularly important with respect to the vibrational degrees of freedom, which may strongly interact with the tunneling electrons. We show in detail that the resulting

  7. Electrodynamic Arrays Having Nanomaterial Electrodes

    Science.gov (United States)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  8. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  9. Piezoelectric Paint Sensor for Impact and Vibration Monitoring

    OpenAIRE

    Kang, Lae-Hyong; Lee, Jyung-Ryul

    2014-01-01

    International audience; This paper presents a fabrication method for a piezoelectric paint sensor, and its application to impact and vibration monitoring of a beam structure. The piezoelectric paint in the paper is composed of Pb(Nb,Ni)O3-Pb(Zr,Ti)O3 (PNN-PZT) powder and epoxy resin. The piezoelectric paint has been coated on an aluminum beam structure, and the electrode has been made on the upper surface of the piezoelectric paint using silver paste. By using the aluminum structure as the op...

  10. Literature survey on anti-vibration gloves

    CSIR Research Space (South Africa)

    Sampson, E

    2003-08-01

    Full Text Available ............................................................................................................... 1 2. HAND ARM VIBRATION SYNDROME (HAVS).......................................................... 2 2.1 Hand-arm vibration................................................. Error! Bookmark not defined. 2.2 Human Response to vibration...

  11. Electrochemical characterisation of novel screen-printed carbon paste electrodes for voltammetric measurements

    Directory of Open Access Journals (Sweden)

    Sýs Milan

    2017-01-01

    Full Text Available This work is focused on the homemade screen-printed carbon paste electrode containing basically graphite powder (or glassy carbon powder, poly(vinylbchloride (PVC and paraffin oil. It compares the electrochemical properties of conventional carbon-based electrodes and prepared screen-printed carbon paste electrodes towards [Fe(CN6]3-/[Fe(CN6]4- and quinone/hydroquinone redox couples. Significant attention is paid to the development of the corresponding carbon inks, printing and the surface characterisation of the resulting electrodes by the scanning electron microscopy. An optimization consisted of the selection of the organic solvent, the optimal content of the used polymer with the chosen paste binder, appropriate isolation of electric contact, etc. Very similar properties of the prepared screen-printed electrodes, containing only corresponding carbon powder and 3 % PVC, with their conventional carbon paste electrode and glassy carbon-based electrodes, were observed during their characterisation. Screen-printed electrodes, with the pasting liquid usually provided satisfactory analytical data. Moreover, they can be used in the flow injection analysis and could undoubtedly replace the carbon paste grooved electrodes. It can be assumed that certain progress in the development of electrode materials was achieved by this research.

  12. Fabrication of working and counter electrodes on plastic substrates for flexible dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Lai Yeong-Lin

    2017-01-01

    Full Text Available This paper presents the fabrication technologies related to flexible titanium-dioxide (TiO2 working electrodes and graphite counter electrodes on plastic substrates for dye-sensitized solar cells (DSSCs. The DSSC on a plastic substrate had a sandwich structure consisting of a TiO2 working electrode, an electrolyte, and a graphite counter electrode. Nano-crystalline TiO2 powder, titanium (IV bis (ammonium lactato dihydroxide (TALH, de-ionized water (DI water, and Triton X-100 were added to the mixture of PDMS base and curing agents to form TiO2 colloids for the TiO2 working electrode. The material analysis of the TiO2 working electrode and the graphite counter electrode employed field-emission scanning electron microscopy (FE-SEM, atomic force microscopy (AFM, and X-ray diffraction (XRD. Nano-crystalline TiO2 powder was used to form the TiO2 working electrode. The surface characteristics of the TiO2 and graphite films were investigated herein. The low-cost fabrication technologies of the TiO2 working electrode and graphite counter electrode on the plastic substrate were clearly demonstrated.

  13. Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J.; Fernandez, J.; Rio, A.I. del; Bonastre, J. [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Cases, F., E-mail: fjcases@txp.upv.es [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain)

    2012-06-15

    The electrochemical characterization of two organic dyes (amaranth and procion orange MX-2R) has been performed on Pt electrodes and Pt electrodes coated with polyaniline and dispersed Pt. Electrodes with different Pt loads have been synthesized and characterized obtaining that a load of 300 {mu}g cm{sup -2} was the optimum one. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was employed to observe the distribution and morphology of the Pt nanoparticles. The electroactivity of the electrodes has also been characterized by means of scanning electrochemical microscopy (SECM). The chemical characterization of Pt dispersed Pani coated Pt electrodes (Pt-Pani-Pt) was performed by means of X-ray photoelectron spectroscopy (XPS). The electrochemical characterization of the dyes has been performed by means of cyclic voltammetry. Voltammograms have shown that the presence of the dyes diminishes characteristic Pt oxidation and reduction peaks. However, redox processes due to the dyes, appeared in the voltammograms. The different species responsible of these redox processes were generated in the vicinity of the electrode and were not adsorbed on the electrode surface since after stirring, the different redox processes disappeared. Characterization with different scan rates showed that redox processes of both dyes were controlled by diffusion.

  14. A New Methodology for Vibration Error Compensation of Optical Encoders

    OpenAIRE

    Mariano Artes; Jesus Lopez

    2012-01-01

    Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error into the counter to be added up to graduation, system and installation errors. Behavior improvement...

  15. Nonequilibrium electron-vibration coupling and conductance fluctuations in a C-60 junction

    DEFF Research Database (Denmark)

    Ulstrup, Soren; Frederiksen, Thomas; Brandbyge, Mads

    2012-01-01

    displacement. Combined with a vibrational heating mechanism we construct a model from our results that explain the polarity-dependent two-level conductance fluctuations observed in recent scanning tunneling microscopy (STM) experiments [N. Neel et al., Nano Lett. 11, 3593 (2011)]. These findings highlight...... the significance of nonequilibrium effects in chemical bond formation/breaking and in electron-vibration coupling in molecular electronics....

  16. Activation tribologique des perceptions tactiles par vibrations induites sur la surface de contact du doigt

    OpenAIRE

    Fagiani, Ramona

    2011-01-01

    This thesis deals with the tribological and dynamic aspects of tactile perception given by the scanning of the finger on a surface. The attention is focused on a direct analysis of the vibration spectrum characteristics, induced by the surface features that is a relatively new research field. In fact, it is accepted that vibrations activate the tactile afferents and their essential role for the perception of fine textures (duplex theory of tactile texture perception) but it is still unknown t...

  17. Vibrational Sensing in Marine Invertebrates

    Science.gov (United States)

    1997-09-30

    VIBRATIONAL SENSING IN MARINE INVERTEBRATES Peter A. Jumars School of Oceanography University of Washington Box 357940 Seattle, WA 98195-7940 (206...DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Vibrational Sensing in Marine Invertebrates 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  18. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  19. Trace determination of cadmium in water using anodic stripping voltammetry at a carbon paste electrode modified with coconut shell powder

    National Research Council Canada - National Science Library

    Rajawat, Deepak Singh; Kumar, Nitin; Satsangee, Soami Piara

    2014-01-01

    ... samples.Determination was carried out using anodic stripping voltammetry. It is a two-step process. First, the metal ions get accumulated at the electrode surface at open-circuit potential, followed by a potential scan for voltammetric determination...

  20. Non-Infectious Peri-Electrode Edema and Contrast Enhancement Following Deep Brain Stimulation Surgery.

    Science.gov (United States)

    Arocho-Quinones, Elsa V; Pahapill, Peter A

    2016-12-01

    Dramatic radiographic abnormalities seen after electrode placement (DRAAEP) in deep brain stimulation (DBS) surgery is rare and it has not been associated with infection or hemorrhage. It has consisted of peri-electrode low-attenuation signals on CT scans and extensive T2-hyperintense signals without associated contrast enhancement (CE) on MRI scans. Report on the management of a patient with Parkinson's disease (PD) presenting with a seizure and findings of DRAAEP with positive CE 12 days after the placement of a subthalamic nucleus (STN) DBS electrode. Head CT and contrasted brain MRI scans were completed on presentation. Standard laboratory work up was obtained to evaluate for infection. Operative exploration deep to the burr-hole site surrounding the electrode was performed and cultures were obtained. Serial contrasted MRI scans were completed to determine the abnormal signal duration. A MRI revealed extensive T2-hyperintensity and positive CE concentrated around the burr-hole site surrounding the electrode. Intraoperative exploration revealed no evidence of infection and electrode revision was avoided. There was near resolution of the abnormal T2 signal and CE at six weeks from detection. The patient remained without signs of intracranial infection and responded well to DBS. To our knowledge, this is the first reported case of DRAAEP with positive gadolinium enhancement. Despite the extensive contrast enhancement, these DRAAEP appear to remain benign transient events that, in the absence of clinical signs of infection or neurologic decline, may warrant no further aggressive intervention such as hardware removal. © 2016 International Neuromodulation Society.

  1. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase...

  2. The origins of vibration theory

    Science.gov (United States)

    Dimarogonas, A. D.

    1990-07-01

    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  3. Microstructural Characterization of Ni/YSZ Electrodes in a Solid Oxide Electrolysis Stack Tested for 9000 Hours

    DEFF Research Database (Denmark)

    Trini, Martina; Jørgensen, Peter Stanley; Hauch, Anne

    2017-01-01

    The effects of long-term operation in electrolysis mode on the microstructure of Ni/YSZ electrodes were investigated. The electrode structures were investigated in “as reduced” state and after 9000 h of operation in a 25 cell stack. Microstructural data were obtained by scanning electron microscopy...

  4. Light addressable gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas

    2011-07-01

    The main objective carried out in this dissertation was to fabricate Light Amplified Potentiometric sensors (LAPS) based upon the semiconductor nanoparticles (quantum dots) instead of its bulk form. Quantum dots (QDs) were opted for this device fabrication because of their superior fluorescent, electric and catalytic properties. Also in comparison to their bulk counterparts they will make device small, light weighted and power consumption is much lower. QDs were immobilized on a Au substrate via 1,4 benzene dithiol (BDT) molecule. Initially a self-assembled monolayer (SAM) of BDT was established on Au substrate. Because of SAM, the conductivity of Au substrate decreased dramatically. Furthermore QDs were anchored with the help of BDT molecule on Au substrate. When QDs immobilized on Au substrate (QD/Au) via BDT molecule were irradiated with UV-visible light, electron-hole pairs were generated in QDs. The surface defect states in QDs trapped the excited electrons and long lived electron-hole pairs were formed. By the application of an appropriate bias potential on Au substrate the electrons could be supplied or extracted from the QDs via tunneling through BDT. Thus a cathodic or anodic current could be observed depending upon bias potential under illumination. However without light illumination the QD/Au electrode remained an insulator. To improve the device different modifications were made, including different substrates (Au evaporated on glass, Au evaporated on mica sheets and Au sputtered on SiO{sub 2}/Si) and different dithiol molecules (capped and uncapped biphenyl 4,4' dithiol and capped and uncapped 4,4' dimercaptostilbenes) were tried. Also different QD immobilization techniques (normal incubation, spin coating, layer by layer assembly (LbL) of polyelectrolytes and heat immobilization) were employed. This device was able to detect electrochemically different analytes depending upon the QDs incorporated. For example CdS QDs were able to detect 4

  5. Peculiarities of the Third Natural Frequency Vibrations of a Cantilever for the Improvement of Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Vytautas Ostasevicius

    2015-05-01

    Full Text Available This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4–4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation.

  6. Gel electrolytes and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  7. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  8. Study on the Effect of the Three-Dimensional Electrode in Degradation of Methylene Blue by Lithium Modified Rectorite

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2016-01-01

    Full Text Available This study presents the electrochemical degradation of methylene blue (MB wastewater in a synthetic solution using three-dimensional particle electrodes. The novel particle electrodes were fabricated in this work using the lithium modified rectorite (Li-REC. The adsorption property of the fabricated particle electrodes was studied in a series of experiments. The optimum electrochemical operating conditions of plate distance, cell voltage, and concentration of electrolyte were 2 cm, 9 V, and 0.06 mol L−1, respectively. It was also found that microwave irradiation can effectively improve the adsorption property and electrical property of the fabricated electrodes. In addition, the scanning electron microscope (SEM of the fabricated electrodes was investigated. The experimental results revealed the order of adsorption property and electrical property of the fabricated electrodes. So, fabricated electrodes are not only of low cost and mass produced, but also efficient to achieve decolorization of MB solution.

  9. Electrode for a lithium cell

    Science.gov (United States)

    Thackeray, Michael M [Naperville, IL; Vaughey, John T [Elmhurst, IL; Dees, Dennis W [Downers Grove, IL

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  10. Laser Scanning in Forests

    Directory of Open Access Journals (Sweden)

    Håkan Olsson

    2012-09-01

    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  11. A freeze-dried graphene counter electrode enhances the performance of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Kai-Hsiang; Wang, Hong-Wen, E-mail: hongwen@cycu.edu.tw

    2014-01-01

    A flexible graphene/polyimide (PI) counter electrode without a fluorine-doped tin oxide (FTO) layer has been fabricated for dye-sensitized solar cell (DSSCs) applications. The flexible counter electrode consists of polyimide double-sided tape as a substrate beneath a graphene film acting as the conductive and catalytic layer. Chemically reduced graphene oxide (rGO) on the PI electrode (rGO-PI) shows comparable catalytic activity to that of the reference sputtered platinum/FTO counter electrodes (Sputter-Pt/FTO). A DSSC with a freeze-dried rGO-PI (FD-rGO-PI) counter electrode shows an overall conversion efficiency (η) of 5.45%, while that of the conventional Sputter-Pt/FTO electrode is 5.52%. The DSSC with a thermally dried rGO-PI (Gel-rGO-PI) counter electrode (not freeze-dried) exhibits a smooth morphology and much poorer performance (η = 1.61%). Field emission scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry measurements demonstrate that the FD-rGO-PI electrode possesses a porous structure, numerous edges, minimum charge-transfer resistance and a higher electrocatalytic activity toward the I{sub 3}{sup −}/I{sup −} redox couple than that of the Gel-rGO-PI electrode. The high electrocatalytic activity, facile preparation procedure, absence of FTO, and material flexibility render the FD-rGO-PI electrode an ideal alternative to conventional DSSC counter electrodes. - Highlights: • Highly rough and conductive graphene-based counter electrode is synthesized. • The characteristics of graphene surface by freeze drying are different. • The graphene counter electrode exhibits comparable performance to that of sputtered Pt one.

  12. Advantage of four-electrode over two-electrode defibrillators

    Science.gov (United States)

    Bragard, J.; Šimić, A.; Laroze, D.; Elorza, J.

    2015-12-01

    Defibrillation is the standard clinical treatment used to stop ventricular fibrillation. An electrical device delivers a controlled amount of electrical energy via a pair of electrodes in order to reestablish a normal heart rate. We propose a technique that is a combination of biphasic shocks applied with a four-electrode system rather than the standard two-electrode system. We use a numerical model of a one-dimensional ring of cardiac tissue in order to test and evaluate the benefit of this technique. We compare three different shock protocols, namely a monophasic and two types of biphasic shocks. The results obtained by using a four-electrode system are compared quantitatively with those obtained with the standard two-electrode system. We find that a huge reduction in defibrillation threshold is achieved with the four-electrode system. For the most efficient protocol (asymmetric biphasic), we obtain a reduction in excess of 80% in the energy required for a defibrillation success rate of 90%. The mechanisms of successful defibrillation are also analyzed. This reveals that the advantage of asymmetric biphasic shocks with four electrodes lies in the duration of the cathodal and anodal phase of the shock.

  13. Vibration response of misaligned rotors

    Science.gov (United States)

    Patel, Tejas H.; Darpe, Ashish K.

    2009-08-01

    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  14. Differential-Concentration Scanning Ion Conductance Microscopy.

    Science.gov (United States)

    Perry, David; Page, Ashley; Chen, Baoping; Frenguelli, Bruno G; Unwin, Patrick R

    2017-11-21

    Scanning ion conductance microscopy (SICM) is a nanopipette-based scanning probe microscopy technique that utilizes the ionic current flowing between an electrode inserted inside a nanopipette probe containing electrolyte solution and a second electrode placed in a bulk electrolyte bath, to provide information on a substrate of interest. For most applications to date, the composition and concentration of the electrolyte inside and outside the nanopipette is identical, but it is shown herein that it can be very beneficial to lift this restriction. In particular, an ionic concentration gradient at the end of the nanopipette, generates an ionic current with a greatly reduced electric field strength, with particular benefits for live cell imaging. This differential concentration mode of SICM (ΔC-SICM) also enhances surface charge measurements and provides a new way to carry out reaction mapping measurements at surfaces using the tip for simultaneous delivery and sensing of the reaction rate. Comprehensive finite element method (FEM) modeling has been undertaken to enhance understanding of SICM as an electrochemical cell and to enable the interpretation and optimization of experiments. It is shown that electroosmotic flow (EOF) has much more influence on the nanopipette response in the ΔC-SICM configuration compared to standard SICM modes. The general model presented advances previous treatments, and it provides a framework for quantitative SICM studies.

  15. Stretching dependence of the vibration modes of a single-molecule Pt-H-2-Pt bridge

    DEFF Research Database (Denmark)

    Djukic, D.; Thygesen, Kristian Sommer; Untiedt, C.

    2005-01-01

    A conducting bridge of a single hydrogen molecule between Pt electrodes is formed in a break junction experiment. It has a conductance near the quantum unit, G(0)=2e(2)/h, carried by a single channel. Using point-contact spectroscopy three vibration modes are observed and their variation upon...

  16. Tissue vibration in prolonged running.

    Science.gov (United States)

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M

    2011-01-04

    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. ALICE: A tool for automatic localization of intra-cranial electrodes for clinical and high-density grids.

    Science.gov (United States)

    Branco, Mariana P; Gaglianese, Anna; Glen, Daniel; Hermes, Dora; Saad, Ziad S; Petridou, Natalia; Ramsey, Nick F

    2017-10-31

    Electrocorticographic (ECoG) measurements require the accurate localization of implanted electrodes with respect to the subject's neuroanatomy. Electrode localization is particularly relevant to associate structure with function. Several procedures have attempted to solve this problem, namely by co-registering a post-operative computed tomography (CT) scan, with a pre-operative magnetic resonance imaging (MRI) anatomy scan. However, this type of procedure requires a manual and time-consuming detection and transcription of the electrode coordinates from the CT volume scan and restricts the extraction of smaller high-resolution ECoG grid electrodes due to the downsampling of the CT. ALICE automatically detects electrodes on the post-operative high-resolution CT scan, visualizes them in a combined 2D and 3D volume space using AFNI and SUMA software and then projects the electrodes on the individual's cortical surface rendering. The pipeline integrates the multiple-step method into a user-friendly GUI in Matlab ® , thus providing an easy, automated and standard tool for ECoG electrode localization. ALICE was validated in 13 subjects implanted with clinical ECoG grids by comparing the calculated electrode center-of-mass coordinates with those computed using a commonly used method. A novel aspect of ALICE is the combined 2D-3D visualization of the electrodes on the CT scan and the option to also detect high-density ECoG grids. Feasibility was shown in 5 subjects and validated for 2 subjects. The ALICE pipeline provides a fast and accurate detection, discrimination and localization of ECoG electrodes spaced down to 4mm apart. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Carbon-based Composite Electrodes: Preparation, Characterization and Application in Electroanalysis

    Directory of Open Access Journals (Sweden)

    Joop Schoonman

    2007-11-01

    Full Text Available Electrodes based on carbon, i.e., expanded graphite (20%, wt.-epoxy composite(20EG-Epoxy and expanded graphite (20%, wt.-polystyrene composite (20EG-PS havebeen prepared, characterized using scanning electron microscopy (SEM and cyclicvoltammetry (CV, and tested as anodic sensors. The electrodes exhibited good mechanicalresistance and low electrical resistances. Scan rate dependent cyclic voltammetry responsesat 20EG-Epoxy and 20EG-PS composite electrodes, which were exemplified for thiourea(TU, a toxic sulphur organic compound selected as testing target analyte in 0.1 M Na2SO4 supporting electrolyte, were investigated. The obtained voltammetric data were inaccordance with those for a random array of microelectrodes. The voltammetric andchronoamperometric detection results of TU in tap water samples, without a supplementaryaddition of supporting electrolyte, at 20EG-Epoxy electrode proved its use for directanalysis of environmental samples.

  19. Universal electrode interface for electrocatalytic oxidation of liquid fuels.

    Science.gov (United States)

    Liao, Hualing; Qiu, Zhipeng; Wan, Qijin; Wang, Zhijie; Liu, Yi; Yang, Nianjun

    2014-10-22

    Electrocatalytic oxidations of liquid fuels from alcohols, carboxylic acids, and aldehydes were realized on a universal electrode interface. Such an interface was fabricated using carbon nanotubes (CNTs) as the catalyst support and palladium nanoparticles (Pd NPs) as the electrocatalysts. The Pd NPs/CNTs nanocomposite was synthesized using the ethylene glycol reduction method. It was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, voltammetry, and impedance. On the Pd NPs/CNTs nanocomposite coated electrode, the oxidations of those liquid fuels occur similarly in two steps: the oxidations of freshly chemisorbed species in the forward (positive-potential) scan and then, in the reverse scan (negative-potential), the oxidations of the incompletely oxidized carbonaceous species formed during the forward scan. The oxidation charges were adopted to study their oxidation mechanisms and oxidation efficiencies. The oxidation efficiency follows the order of aldehyde (formaldehyde) > carboxylic acid (formic acid) > alcohols (ethanol > methanol > glycol > propanol). Such a Pd NPs/CNTs nanocomposite coated electrode is thus promising to be applied as the anode for the facilitation of direct fuel cells.

  20. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C

    1980-01-01

    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  1. Nanostructured ternary electrodes for energy-storage applications

    KAUST Repository

    Baby, Rakhi Raghavan

    2012-02-13

    A three-component, flexible electrode is developed for supercapacitors over graphitized carbon fabric, utilizing γ-MnO 2 nanoflowers anchored onto carbon nanotubes (γ-MnO 2/CNT) as spacers for graphene nanosheets (GNs). The three-component, composite electrode doubles the specific capacitance with respect to GN-only electrodes, giving the highest-reported specific capacitance (308 F g -1) for symmetric supercapacitors containing MnO 2 and GNs using a two-electrode configuration, at a scan rate of 20 mV s -1. A maximum energy density of 43 W h kg -1 is obtained for our symmetric supercapacitors at a constant discharge-current density of 2.5 A g -1 using GN-(γ-MnO 2/CNT)-nanocomposite electrodes. The fabricated supercapacitor device exhibits an excellent cycle life by retaining ≈90% of the initial specific capacitance after 5000 cycles. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Avoid heat transfer equipment vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.

    1987-06-01

    Tube bundles in heat exchangers, boilers, superheaters and heaters are often subject to vibration and noise problems. Vibration can lead to tube thinning and wear, resulting in tube failures. Excessive noise can be a problem to plant operating personnel. Large gas pressure drop across the equipment is also a side effect, which results in large operating costs. With the design checks presented in this paper, one can predict during design if problems associated with noise and vibration are likely to occur in petroleum refineries.

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... energy. top of page What are some common uses of the procedure? The thyroid scan is used ... gland evaluate changes in the gland following medication use, surgery, radiotherapy or chemotherapy top of page How ...

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential to ... tells you otherwise, you may resume your normal activities after your nuclear medicine scan. If any special ...

  5. Body CT (CAT Scan)

    Science.gov (United States)

    ... Professions Site Index A-Z Computed Tomography (CT) - Body Computed tomography (CT) of the body uses special ... the Body? What is CT Scanning of the Body? Computed tomography, more commonly known as a CT ...

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and uptake uses small amounts of radioactive materials called radiotracers, a special camera and a computer ... last two months that used iodine-based contrast material. Your doctor will instruct you on how to ...

  7. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... evaluate changes in the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should ... such as an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the ...

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... imaging procedures. For many diseases, nuclear medicine scans yield the most useful information needed to make a ... any. Nuclear medicine is less expensive and may yield more precise information than exploratory surgery. Risks Because ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Actual scanning time for each thyroid uptake is five minutes or less. top of page What will ... diagnostic procedures have been used for more than five decades, and there are no known long-term ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is ... thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that uses ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... several hours before your exam because eating can affect the accuracy of the uptake measurement. Jewelry and ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... iodine, medications and anesthetics. are breastfeeding. In the days prior to your examination, blood tests may be ... are scheduled for an additional procedure that same day that requires an intravenous line. Actual scanning time ...

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... gland in the neck that controls metabolism , a chemical process that regulates the rate at which the body converts food to energy. top of page What are some common uses of the procedure? The thyroid scan is ...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... liquid or capsule form, it is typically swallowed up to 24 hours before the scan. The radiotracer given by intravenous injection is usually given up to 30 minutes prior to the test. When ...

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... regulates the rate at which the body converts food to energy. top of page What are some ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. The thyroid scan and thyroid uptake provide ...

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... body. top of page How does the procedure work? With ordinary x-ray examinations, an image is ... with other imaging techniques, such as CT or MRI. However, nuclear medicine scans are more sensitive than ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... a special camera or imaging device that produces pictures and provides molecular information. The thyroid scan and ... and with the help of a computer, create pictures offering details on both the structure and function ...

  19. Pediatric CT Scans

    Science.gov (United States)

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... abnormal was found, and should not be a cause of concern for you. If you had an ... abnormal was found, and should not be a cause of concern for you. Actual scanning time for ...

  1. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is ... computer, create pictures offering details on both the structure and function of organs and tissues in your ...

  3. The Scanning Optical Microscope.

    Science.gov (United States)

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan you are undergoing. top of page What does the equipment look like? The special camera and ... area of your body. top of page How does the procedure work? With ordinary x-ray examinations, ...

  5. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... found, and should not be a cause of concern for you. If you had an intravenous line ... found, and should not be a cause of concern for you. Actual scanning time for each thyroid ...

  7. Slow Scan Telemedicine

    Science.gov (United States)

    1984-01-01

    Originally developed under contract for NASA by Ball Bros. Research Corporation for acquiring visual information from lunar and planetary spacecraft, system uses standard closed circuit camera connected to a device called a scan converter, which slows the stream of images to match an audio circuit, such as a telephone line. Transmitted to its destination, the image is reconverted by another scan converter and displayed on a monitor. In addition to assist scans, technique allows transmission of x-rays, nuclear scans, ultrasonic imagery, thermograms, electrocardiograms or live views of patient. Also allows conferencing and consultation among medical centers, general practitioners, specialists and disease control centers. Commercialized by Colorado Video, Inc., major employment is in business and industry for teleconferencing, cable TV news, transmission of scientific/engineering data, security, information retrieval, insurance claim adjustment, instructional programs, and remote viewing of advertising layouts, real estate, construction sites or products.

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? The thyroid scan is used to determine ... you are undergoing. top of page What does the equipment look like? The special camera and imaging ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... to identify disease in its earliest stages as well as a patient’s immediate response to therapeutic interventions. ... but is often performed on hospitalized patients as well. Thyroid Scan You will be positioned on an ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Uptake? A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) ... of thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... medical tests that help physicians diagnose and evaluate medical conditions. These imaging scans use radioactive materials called radiopharmaceuticals or radiotracers . Depending on the type of nuclear medicine exam, the radiotracer is either injected into the body, ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. Because ... with other imaging techniques, such as CT or MRI. However, nuclear medicine scans are more sensitive than ...

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... are noninvasive and, with the exception of intravenous injections, are usually painless medical tests that help physicians ... before the scan. The radiotracer given by intravenous injection is usually given up to 30 minutes prior ...

  14. Target preparation by means of the vibrational motion of particles at one atmosphere

    CERN Document Server

    Sugai, I

    1999-01-01

    The new target preparation method, which is based on the vibrational motion of microparticles in the electric field between parallel electrodes, has been applied to prepare Pd and Si self-supporting foils at one atmosphere in air. We successfully prepared targets of 0.10-0.50 mg/cm sup 2 thick with an electrode separation of 10 mm and an applied voltage of 10 kV. The impurities in the prepared targets were examined by using the Rutherford scattering of a 65 MeV alpha-beam. It was found that the impurity amounts depend on the prepared element.

  15. Scanning ultrafast electron microscopy

    OpenAIRE

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for whic...

  16. Ultra-low vibration linear stirling cryogenic refrigerator for sub-nano resolution microscopy

    Science.gov (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2008-04-01

    Wide use of so called "dry-cooling" technology, eventually replacing the LN2 cooling approach in high-resolution instrumentation, such as Scanning Electronic Microscopes, Helium Ion Microscopes, Superconductive Quantum Interference Devices, etc., motivates further quieting of appropriate cryogenic refrigerators. Linear Stirling cryogenic refrigerators are known to be a major source of harmful vibration export compromising the overall performance of vibration-sensitive equipment. The dual-piston approach to a design of a linear compressor yields inherently low vibration export and, therefore, is widely accepted across the industry. However, the residual vibration disturbance originated even from the technological tolerances, natural wear and contamination cannot be completely eliminated. Moreover, a vibration disturbance produced by a pneumatically driven cold head is much more powerful as compared to this of a compressor. The authors successfully redesigned the existing Ricor model K535 Stirling cryogenic refrigerator for use in vibration-sensitive electronic microscopy, where the image resolution is specified in angstroms. The objective was achieved by passive mechanical counterbalancing of the expander portion of the refrigerator, in a combination with an active two-axis control of residual vibrations, relying on National Instruments CompactRIO hardware, incorporating a real-time processor and reconfigurable FPGA for reliable stand-alone embedded application, developed using LabVIEW graphical programming tools. The attainable performance of the Ultra-Low Vibration linear Stirling cryogenic refrigerator RICOR model K535-ULV was evaluated through the full-scale experimentation.

  17. MHD Electrode and wall constructions

    Science.gov (United States)

    Way, Stewart; Lempert, Joseph

    1984-01-01

    Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.

  18. Electrochemical characterization of screen-printed and conventional carbon paste electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fanjul-Bolado, Pablo; Hernandez-Santos, David; Lamas-Ardisana, Pedro Jose [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain); Martin-Pernia, Alberto [Departamento de Ingenieria Electrica, Electronica de Computadores y Sistemas, Universidad de Oviedo, 33204 Gijon, Asturias (Spain); Costa-Garcia, Agustin [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain)], E-mail: costa@fq.uniovi.es

    2008-04-01

    This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru{sup 3+} did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode.

  19. Active current-noise cancellation for Scanning Tunneling Microscopy

    Science.gov (United States)

    Pabbi, Lavish; Shoop, Conner; Banerjee, Riju; Dusch, Bill; Hudson, E. W.

    The high sensitivity of the scanning tunneling microscope (STM) poses a barrier to its use in a noisy environment. Vibrational noise, whether structural or acoustic in source, manifests as relative motion between the probe tip and the sample, then appearing in the Z feedback that tries to cancel it. Here we describe an active noise cancellation process that nullifies this motion by adding a drive signal into the existing Z feedback loop. The drive is digitally calculated by actively monitoring vibrations measured by an accelerometer placed in-situ close to the STM head. By transferring the vibration cancellation effort to this drive signal, vibration-created noise in the Z-feedback (during topography) or current (during spectroscopy) is significantly reduced. This inexpensive and easy solution, requiring no major instrumental modifications, is ideal for those looking to place their STM in a noisier environment, for example in the presence of active refrigeration systems (e.g. pulse tube cryocoolers) or coupled to high-vibration instrumentation. This material is based upon work supported by the National Science Foundation under Grant No. 1229138.

  20. 14 CFR 33.63 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure. ...

  1. 14 CFR 33.83 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components that...

  2. 14 CFR 33.33 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  3. 14 CFR 33.43 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each engine must undergo a vibration survey to establish the torsional and bending vibration characteristics...

  4. 49 CFR 178.819 - Vibration test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for...

  5. Rectangular Parallelepiped Vibration in Plane Strain State

    OpenAIRE

    Hanckowiak, Jerzy

    2004-01-01

    In this paper we present a vibration spectrum of a homogenous parallelepiped (HP) under the action of volume and surface forces resulting from the exponent displacements entering the Fourier transforms. Vibration under the action of axial surface tractions and the free vibration are described separately. A relationship between the high frequency vibration and boundary conditions (BC) is also considered.

  6. Estimation of random bending strain using a scanning laser vibrometer

    Science.gov (United States)

    Miles, R. N.; Xu, Y.; Bao, W.

    1993-01-01

    Results are presented which were obtained from vibration measurements at discrete locations on a randomly excited structure to estimate the power spectral density of bending strain. The technique is intended to be applied using a scanning laser vibrometer to allow a non-contacting measurement of random bending strain over the surface of a structure. The experimental setup is described along with the data analysis procedure. The results presented here indicate that the method is practical and can lead to reliable estimates.

  7. Study of o-fluorbenzonal electrochemical behavior with the carbon electrode using voltammetry

    Directory of Open Access Journals (Sweden)

    Slepchenko Galina

    2016-01-01

    Full Text Available A high sensitive stripping voltammetric method was for the first time proposed for determination of o-fluorbenzonal. This method is based on the ability to be electrochemically reduced with the carbon electrodes of different types. The working conditions of o-fluorbenzonal voltammetric determination are: pH of the background electrolyte, electrolysis potential and time scan rate. The effective dissociation constant of various forms of o-fluorbenzonal, number of electrons involved in the electrode process were calculated.

  8. Dynamic Raman Spectroelectrochemistry of Single Walled Carbon Nanotubes modified electrodes using a Langmuir-Schaefer method

    OpenAIRE

    Ibáñez, David; Romero, Edna Cecilia; Colina, Álvaro; Heras, Aránzazu

    2014-01-01

    Raman spectroelectrochemistry is a fundamental technique to characterize single walled carbon nanotube (SWCNT) films. In this work, we have performed the study of SWCNT films transferred to a glassy carbon electrode using a Langmuir-Schaefer method. Langmuir balance has allowed us to control the characteristics of the film that can be easily transferred to the electrode support. Time-resolved Raman spectroelectrochemistry experiments at scan rates between 20 and 400 mV s−1 were done in two di...

  9. Technology ready use of single layer graphene as a transparent electrode for hybrid photovoltaic devices

    OpenAIRE

    Wang, Zhibing; Puls, Conor P.; Staley, Neal E.; Zhang, Yu; Todd, Aaron; Xu, Jian; Howsare, Casey A.; Hollander, Matthew J.; Robinson, Joshua A.; Liu, Ying

    2011-01-01

    Graphene has been used recently as a replacement for indium tin oxide (ITO) for the transparent electrode of an organic photovoltaic device. Due to its limited supply, ITO is considered as a limiting factor for the commercialization of organic solar cells. We explored the use of large-area graphene grown on copper by chemical vapor deposition (CVD) and then transferred to a glass substrate as an alternative transparent electrode. The transferred film was shown by scanning Raman spectroscopy m...

  10. New electrodes for biofuel cells

    Science.gov (United States)

    Stom, D. I.; Zhdanova, G. O.; Lashin, A. F.

    2017-11-01

    Two new types of electrodes for biofuel elements (BFC) are proposed. One of them is based on a microchannel plate (MCP). Its peculiarity is a special structure with a large number of glass channels being 6-10 μm in diameter with an internal semiconducting surface. The MCP operation is based on the principle of the channel secondary emission multiplication of the electrons. The second type of electrode presented in the work is made of silicon carbide. This type of electrodes has a developed porous structure. The electrode pores account for at least 30% of the total volume. The pore size varies from 10 to 100 μm. Such porosity greatly increases the anode area and volume. This allows us to achieve sorption of a larger number of microorganisms interacting with the anode and transformed by electron donors. The work of the electrodes developed in BFC was tested, their effectiveness was estimated. A comparison is made with electrodes made of carbon cloth, the most widely used material for working with BFC. It is shown that the MCP based electrode is not inferior to the power characteristics of carbon cloth. The generated power when using silicon carbide was slightly lower than the other two electrodes. However, the stability of silicon carbide to aggressive media (alkalis, acids, strong oxidants, etc.), as well as to mechanical damages gives additional advantages to such electrodes compared to the materials that are commonly used in BFC. The noted features are extremely important for the BFC to work in harsh conditions of treatment facilities and to utilize wastewater components.

  11. Investigation of atomic layer deposition for the synthesis of electrochemical electrodes

    Science.gov (United States)

    Comstock, David John

    Electrochemical processes dominate a wide range of applications, including sensing, catalysis, and energy storage. Critical to these applications is the electrochemical electrode at which the electrochemical processes are conducted. In this dissertation, atomic layer deposition (ALD) is demonstrated for the controlled synthesis of electrochemical electrodes. ALD is a thin film deposition technique that provides for highly conformal, pinhole-free films with precisely controlled thickness and composition. In particular, the deposition of thin insulating films by ALD is exploited to fabricate ultramicroelectrode (UME) probes for electrochemical imaging applications, and the conformal deposition of thin metal films within nanoporous templates is exploited to synthesize nanostructured, high surface area electrodes. UME probes are commonly used for spatially resolved electrochemical imaging via scanning electrochemical microscopy (SECM) techniques. One of the challenges in UME probe fabrication is the deposition of thin, high quality insulating films to define the conductive electrode solely at the probe tip. This work demonstrates the application of ALD Al2O3 as a high quality, insulating thin film that enables the fabrication of novel UME probes for SECM. In particular, ALD Al2O3 is utilized to prepare integrated probes, in which a UME is integrated into an atomic force microscopy tip and cantilever for scanning electrochemical microscopy-atomic force microscopy and into a nanopipette probe for scanning electrochemical microscopyscanning ion conductance microscopy. High surface area electrodes are also valuable in a range of electrochemical applications. The conformality of ALD is ideally-suited to the synthesis of these electrodes via the deposition of metal films within nanoporous templates. The combination of ALD and nanoporous templates provides for the synthesis of electrodes with precisely controlled morphologies and compositions. To this end, nanostructured Pt

  12. Late onset cervical myelopathy secondary to fibrous scar tissue formation around the spinal cord stimulation electrode.

    Science.gov (United States)

    Wada, E; Kawai, H

    2010-08-01

    Case report. To report the late onset of cervical myelopathy secondary to fibrous scar tissue formation around an epidural electrode implanted for spinal cord stimulation (SCS). Department of Orthopaedic Surgery, Hoshigaoka Koseinenkin Hospital, Osaka, Japan. A 49-year-old man who had an electrode implanted for SCS 5 years ago was referred to our department on 2 March 2005, complaining of difficulty using chopsticks and walking. A computed tomography scan with myelography revealed severe spinal cord compression around the epidural electrode. Surgical removal of the electrode was not effective. Removal of fibrous scar tissue during a second surgery significantly improved his neurological symptoms. Late onset cervical myelopathy secondary to fibrous scar tissue formation around the epidural electrode should be considered a possible event associated with SCS therapy.

  13. Effect of Different Electrode Materials on the Electropolymerization Process of Aniline in Nitric Acid Media

    Science.gov (United States)

    Li, Yaozong; Yi, Yun; Yang, Weifang; Liu, Xiaoqing; Li, Yuanyuan; Wang, Wei

    2017-02-01

    The electropolymerization process of aniline on different electrode surfaces such as Pt, Au, RuTi and polyaniline film in nitric acid solution containing 1 M aniline was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Proposed electrical equivalent circuits were used to give a further analysis. Results show that the electrode materials accelerate the aniline electropolymerization remarkably as a catalyst, especially the electrochemical oxidation process of monomer aniline to its cation radical, which is the key step to incur the electropolymerization reaction of aniline on the electrode surface. The polymerization of aniline on RuTi electrode has the lowest reaction resistance for its adsorption sites, and the catalytic effects of these different electrodes decrease in the order: RuTi > polyaniline film > Pt > Au. The results also show that several states of polyaniline films are formed during the potential linear scan process in nitric acid solution and the corresponding oxidation and reduction reaction are reversible.

  14. Synthesis of TiO2 Nanotubes Electrode for Photo Electrochemical cells Application

    Science.gov (United States)

    Pooyodying, Pattarapon; Sung, Youl-Moon; Anuntahirunrat, Jirapat

    2017-09-01

    In this research propose a synthesis and study characteristics of electrode for photoelectrochemical cells using TiO2 nanotubes electrode. The fabrication of electrode for photoelectrochemical cells using TiO2 nanotubes which made from anodization process at size area 2×2 cm2 and counter electrode used platinum pastes coated on fluoride-doped tin oxide (FTO) glass at size area 2×2 cm2. The solar simulation was used as the light source for the photoelectrochemical cells at 100mW/cm2. The morphological properties of TiO2 electrode was confirmed by X-ray diffraction (XRD) and scanning electron microscope (SEM). We measure the sheet resistance, open circuit voltage and short circuit current for analyse the photoconversion efficiency. The photoconversion efficiency was 5.78%, open circuit voltage was 0.72V and short circuit current was 2.87mA.

  15. Structural modifications in chronic microwire electrodes for cortical neuroprosthetics: a case study.

    Science.gov (United States)

    Sanchez, Justin C; Alba, Nicolas; Nishida, Toshikazu; Batich, Christopher; Carney, Paul R

    2006-06-01

    Long-term viability of chronic invasive neural probes is a necessary condition for extracting robust control signals directly from neural tissue. Although immune/tissue response is a leading factor in the degradation of single neuron recording, we investigate a second component of signal degradation connected to the structural changes associated with microwire electrodes chronically exposed to extracelluar environments in vivo. Scanning electron microscopy is used to assess the surface modifications to the electrodes after an implantation duration of four weeks in rats. The electrode developed a smooth fracture surface, a reduction of the metal diameter, and pitting in the insulation of the electrode structure. Over the duration of implantation, recording properties of the electrode were marked by a reduction in the peak-to-peak amplitude in neuronal firing.

  16. Vibrational Damping of Composite Materials

    OpenAIRE

    Biggerstaff, Janet M.

    2006-01-01

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss facto...

  17. Vibration Theory, Vol. 1B

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Nielsen, Søren R. K.

    The present collection of MATLAB exercises has been published as a supplement to the textbook, Svingningsteori, Bind 1 and the collection of exercises in Vibration theory, Vol. 1A, Solved Problems. Throughout the exercise references are made to these books. The purpose of the MATLAB exercises...... is to give a better understanding of the physical problems in linear vibration theory and to surpress the mathematical analysis used to solve the problems. For this purpose the MATLAB environment is excellent....

  18. Harmonic vibrations of multispan beams

    DEFF Research Database (Denmark)

    Dyrbye, Claes

    1996-01-01

    Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....

  19. Smart accelerometer. [vibration damage detection

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  20. Improved Predictions for Geotechnical Vibrations

    OpenAIRE

    Macijauskas, Darius

    2015-01-01

    In urban areas where the infrastructure is dense and construction of new structures is near existing and sensitive buildings, frequently vibrations, caused by human activities, occur. Generated waves in the soil may adversely affect surrounding buildings. These vibrations have to be predicted a priori by using currently available knowledge of the soil dynamics. Current research, conducted by Deltares research institute, showed that the reliability of methods for prediction of m...

  1. Stress analysis of vibrating pipelines

    Science.gov (United States)

    Zachwieja, Janusz

    2017-03-01

    The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the

  2. Vibrational modes of nanolines

    Science.gov (United States)

    Heyliger, Paul R.; Flannery, Colm M.; Johnson, Ward L.

    2008-04-01

    Brillouin-light-scattering spectra previously have been shown to provide information on acoustic modes of polymeric lines fabricated by nanoimprint lithography. Finite-element methods for modeling such modes are presented here. These methods provide a theoretical framework for determining elastic constants and dimensions of nanolines from measured spectra in the low gigahertz range. To make the calculations feasible for future incorporation in inversion algorithms, two approximations of the boundary conditions are employed in the calculations: the rigidity of the nanoline/substrate interface and sinusoidal variation of displacements along the nanoline length. The accuracy of these approximations is evaluated as a function of wavenumber and frequency. The great advantage of finite-element methods over other methods previously employed for nanolines is the ability to model any cross-sectional geometry. Dispersion curves and displacement patterns are calculated for modes of polymethyl methacrylate nanolines with cross-sectional dimensions of 65 nm × 140 nm and rectangular or semicircular tops. The vibrational displacements and dispersion curves are qualitatively similar for the two geometries and include a series of flexural, Rayleigh-like, and Sezawa-like modes. This paper is a contribution of the National Institute of Standards and Technology and is not subject to copyright in the United States.

  3. Cochlear implant electrode localization in post-operative CT using a spherical measure

    DEFF Research Database (Denmark)

    Braithwaite, Benjamin Michael; Kjer, Hans Martin; Fagertun, Jens

    2016-01-01

    When implanting cochlear implants the positions of electrodes have a large impact on the quality of the restored hearing. Due to metal artifacts it is difficult to estimate the precise location in post-operative scans. In this paper we present a method for automatically locating and determining...... the ordering of electrode contacts on implanted electrode arrays from post-operative CT images. Our method applies a specialized filter chain to the images based on a threshold and spherical measure, and selects contact positions at local maxima in the filtered image. Two datasets of 13 temporal bone specimens...

  4. Effect of Experimental Parameters on Nanofiber Diameter from Electrospinning with Wire Electrodes

    Science.gov (United States)

    Zhu, Guocheng; Zhao, L. Y.; Zhu, L. T.; Deng, X. Y.; Chen, W. L.

    2017-09-01

    Polyvinylidene Fluoride (PVDF) nanofibers were electrospun by Nanospider equipment with wire electrodes. The parameters which would influence the fiber diameter were investigated in terms of solution concentration, cartridge speed (feed rate of solution), voltage, electrode distance, rotating wire speed, winding speed and slit diameter. The morphology and diameter of fibers were observed by scanning electron microscope. The results revealed that the solution concentration had significant influence on both fiber morphology and fiber diameter; the cartridge speed, voltage, electrode distance and slit diameter had slight effect on fiber diameter since the standard deviations were large; the rotating wire speed and the winding speed had insignificant influence on fiber diameter.

  5. Voltammetry and Electrocatalysis of Achrornobacter Xylosoxidans Copper Nitrite Reductase on Functionalized Au(111)-Electrode Surfaces

    DEFF Research Database (Denmark)

    Welinder, Anna C.; Zhang, Jingdong; Hansen, Allan G.

    2007-01-01

    planar electrode surfaces is a step towards the resolution of this central issue. We report here the voltammetry of copper nitrite reductase (CNiR, Achromobacter xylosoxidons) on Au(111)-electrode surfaces modified by monolayers of a broad variety of thiol-based linker molecules. These represent......NiR thus shows highly efficient, close to ideal reversible electrocatalytic voltammetry on cysteamine-covered Au(111)-electrode surfaces, most likely due to two cysteamine orientations previously disclosed by in situ scanning tunnelling microscopy. Such a dual orientation exposes both a hydrophobic...

  6. Electro-chemical deposition of zinc oxide nanostructures by using two electrodes

    Directory of Open Access Journals (Sweden)

    B. A. Taleatu

    2011-09-01

    Full Text Available One of the most viable ways to grow nanostructures is electro deposition. However, most electrodeposited samples are obtained by three-electrode electrochemical cell. We successfully use a much simpler two-electrode cell to grow different ZnO nanostructures from common chemical reagents. Concentration, pH of the electrolytes and growth parameters like potentials at the electrodes, are tailored to allow fast growth without complexity. Morphology and surface roughness are investigated by Scanning Electron and Air Force Microscopy (SEM and AFM respectively, crystal structure by X-Ray Diffraction measurements (XRD and ZnO stoichiometry by core level photoemission spectroscopy (XPS.

  7. Proof mass effects on spiral electrode d33 mode piezoelectric diaphragm-based energy harvester

    KAUST Repository

    Shen, Zhiyuan

    2013-01-01

    This paper presents the characterization of an energy harvester using a piezoelectric diaphragm as the vibration energy conversion microstructure. The diaphragm containing the spiral electrode operates in the d33 mode. The energy harvesting performance of the diaphragm was characterized. The optimal resistance load and the working frequency were characterized. The resonance tuning and the energy harvesting enhancement due to a proof mass were verified. © 2013 IEEE.

  8. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  9. ECG artefacts after electrode misplacements

    National Research Council Canada - National Science Library

    Thaler, T; Rudiger, A

    2009-01-01

    ...). They can lead to the clinically important false diagnosis of myocardial ischemia. Lateral and inferior myocardial ischemia can be mimicked by an electrode exchange between right and left arm and between right arm and left leg, respectively...

  10. Electrode materials for rechargeable batteries

    Science.gov (United States)

    Abouimrane, Ali; Amine, Khalil

    2015-04-14

    Selenium or selenium-containing compounds may be used as electroactive materials in electrodes or electrochemical devices. The selenium or selenium-containing compound is mixed with a carbon material.

  11. Laser Scanning Fluorescence Microscope

    Science.gov (United States)

    Hansen, Eric W.; Zelten, J. Peter; Wiseman, Benjamin A.

    1988-06-01

    We report on the development of a laser scanning fluorescence microscope possessing several features which facilitate its application to biological and biophysical analyses in living cells. It is built around a standard inverted microscope stand, enabling the use of standard optics, micromanipulation apparatus, and conventional (including video) microscopy in conjunction with laser scanning. The beam is scanned across the specimen by a pair of galvanometer-mounted mirrors, driven by a programmable controller which can operate in three modes: full raster scan, region of interest, and random-access. A full 512x512 pixel image can be acquired in one second. In region of interest mode, several subareas of the field can be selected for more rapid or detailed analysis. For those cases where the time scale of the observed phenomenon precludes full-field imaging, or where a full-field image is unnecessary, the random access mode enables an arbitrary pattern of isolated points to be selected and rapidly sequenced through. Via a graphical user interface implemented on the system's host computer, a user will be able to take a scout image either with video or a full-field laser scan, select regions or points on the scout image with a mouse, and set up experimental parameters such as detector integration times with a window-style menu. The instrument is designed to be a flexible testbed for investigating new techniques, without compromising its utility as a tool for biological research.

  12. Electrode materials for rechargeable battery

    Science.gov (United States)

    Johnson, Christopher; Kang, Sun-Ho

    2015-09-08

    A positive electrode is disclosed for a non-aqueous electrolyte lithium rechargeable cell or battery. The electrode comprises a lithium containing material of the formula Na.sub.yLi.sub.xNi.sub.zMn.sub.1-z-z'M.sub.z'O.sub.d, wherein M is a metal cation, x+y>1, 0replace sodium ions of a precursor material with lithium ions.

  13. High frequency vibration conditioning stimulation centrally reduces myoelectrical manifestation of fatigue in healthy subjects.

    Science.gov (United States)

    Casale, Roberto; Ring, Haim; Rainoldi, Alberto

    2009-10-01

    Vibration conditioning has been adopted as a tool to improve muscle force and reduce fatigue onset in various rehabilitation settings. This study was designed to asses if high frequency vibration can induce some conditioning effects detectable in surface EMG (sEMG) signal; and whether these effects are central or peripheral in origin. 300 Hz vibration was applied for 30 min during 5 consecutive days, to the right biceps brachii muscle of 10 healthy males aged from 25 to 50 years. sEMG was recorded with a 16 electrode linear array placed on the skin overlying the vibrated muscle. The test protocol consisted of 30% and 60% maximal voluntary contraction (MVC) as well as involuntary (electrically elicited) contractions before and after treatment. No statistically significant differences were found between PRE and POST vibration conditioning when involuntary stimulus-evoked contraction and 30% MVC were used. Significant differences in the initial values and rates of change of muscle fibre conduction velocity were found only at 60% MVC. 300 Hz vibration did not induce any peripheral changes as demonstrated by the lack of differences when fatigue was electrically induced. Differences were found only when the muscle was voluntarily fatigued at 60% MVC suggesting a modification in the centrally driven motor unit recruitment order, and interpreted as an adaptive response to the reiteration of the vibratory conditioning.

  14. Low-energy defibrillation research using a rabbit ventricular model: optimizing the potential gradient distribution using multiple epicardial electrodes.

    Science.gov (United States)

    Jianfei Wang; Lian Jin; Xiaomei Wu; Biao Song; Li Qian; Weiqi Wang

    2016-08-01

    Cardiac potential gradient distribution directly affects defibrillation efficacy, and the electrode configuration that ensures optimal distribution is yet to be determined. In this study, a rabbit ventricular finite element conductor model containing blood perfusion in ventricular cavities was developed. The electric field was solved on the model by using 95% myocardial volume potential gradient higher than 5 V/cm as the successful defibrillation threshold (DFT). Multiple epicardial electrodes (MEE) protocols and a SCAN protocol were used to identify the optimum defibrillation method. Results showed that when using the SCAN protocol, DFT energy reduced to 4.3% that of the control group which had the traditional implantable cardioverter defibrillator current path. Rapidly switching scanning stimuli generated using MEE pairs is a promising low-energy defibrillation method. For multiple electrodes defibrillation, the distribution of the electrode pairs determine the defibrillation efficacy, and the counteraction effect has negative effect on defibrillation. These findings can provide suggestions for clinical applications.

  15. Sound Power Estimation by Laser Doppler Vibration Measurement Techniques

    Directory of Open Access Journals (Sweden)

    G.M. Revel

    1998-01-01

    Full Text Available The aim of this paper is to propose simple and quick methods for the determination of the sound power emitted by a vibrating surface, by using non-contact vibration measurement techniques. In order to calculate the acoustic power by vibration data processing, two different approaches are presented. The first is based on the method proposed in the Standard ISO/TR 7849, while the second is based on the superposition theorem. A laser-Doppler scanning vibrometer has been employed for vibration measurements. Laser techniques open up new possibilities in this field because of their high spatial resolution and their non-intrusivity. The technique has been applied here to estimate the acoustic power emitted by a loudspeaker diaphragm. Results have been compared with those from a commercial Boundary Element Method (BEM software and experimentally validated by acoustic intensity measurements. Predicted and experimental results seem to be in agreement (differences lower than 1 dB thus showing that the proposed techniques can be employed as rapid solutions for many practical and industrial applications. Uncertainty sources are addressed and their effect is discussed.

  16. Novel Applications of Laser Doppler Vibration Measurements to Medical Imaging

    Science.gov (United States)

    Tabatabai, Habib; Oliver, David E.; Rohrbaugh, John W.; Papadopoulos, Christopher

    2013-06-01

    Laser Doppler Vibrometry (LDV) has been widely used in engineering applications involving non-contact vibration and sound measurements. This technique has also been used in some biomedical applications including hearing research. The detectable frequencies are in the range of near-DC to 1 GHz or higher. This paper reviews applications of LDV in biomedical engineering and proposes new medical imaging applications based on measuring surface vibrations of tissues and organs. Tests were conducted on human skin using single point and scanning laser vibrometers. These tests suggest that skin vibrations due to the forcing excitation from the heart can be used in imaging of blood flow. The results of these tests illustrate the potential of such vibration measurements in a variety of diagnostic medical imaging applications including blood flow/restrictions, real-time monitoring of blood pressure variations, wound healing, muscle movements, etc. The fact that the measurements can be conducted remotely (non-contact) is an important benefit that adds to the promise of this approach.

  17. Scanning laser video camera/ microscope

    Science.gov (United States)

    Wang, C. P.; Bow, R. T.

    1984-10-01

    A laser scanning system capable of scanning at standard video rate has been developed. The scanning mirrors, circuit design and system performance, as well as its applications to video cameras and ultra-violet microscopes, are discussed.

  18. The effects of load and toothpaste on powered toothbrush vibrations.

    Science.gov (United States)

    Lea, Simon C; Khan, Amina; Patanwala, Hussein S; Landini, Gabriel; Walmsley, A Damien

    2007-04-01

    The primary cleaning action of powered toothbrushes is the motion of the bristles in contact with the tooth surfaces. The aim of this study was to use scanning laser vibrometry to determine the effects of load and toothpaste on the bristle vibration characteristics of four powered toothbrushes (Oral-B Sonic Complete; Oral-B Professional Care 8000 Series; Sonicare Elite and Ultrasonex). Toothbrushes were initially scanned, with the laser vibrometer, under unloaded conditions to provide baseline readings. Toothbrushes were then assessed under loaded conditions (1.00 N and 2.00 N), with and without toothpaste, to observe the effect on bristle motion. Application of 1.00 N load significantly reduced the displacement amplitudes of all powered toothbrushes (p0.497). With toothpaste, 1.00 N load caused a significant decrease in vibration displacement amplitude for all brushes (ptoothpaste, significantly reduced all toothbrushes vibration displacement amplitude (ptoothbrushes tested. Load and toothpaste significantly affected the performance of powered toothbrushes. Understanding why these factors affect certain toothbrush designs more than others may lead to toothbrushes being designed with greater clinical efficacy.

  19. Inspection for kissing bonds in composite materials using vibration measurements

    Science.gov (United States)

    Adams, Douglas E.; Sharp, Nathan D.; Myrent, Noah; Sterkenburg, Ronald

    2011-04-01

    Improper bonding of composite structures can result in close contact cracks under compressive stresses, called kissing bonds. These bond defects are very difficult to detect using conventional inspection techniques such as tap testing or local ultrasonic scanning and can lead to local propagation of damage if the structure is subjected to crack opening stresses. A method is investigated for identifying kissing bonds in composite material repairs based on vibration measurements. A damage feature of the kissing bond is extracted from the response of the input-output measurement that is a function of the structural path. This path exhibits local decoupling associated with the close contact cracks. Experimental vibration measurements from sandwich composite materials are presented along with the results of the damage detection algorithm for the healthy sections of the material and the kissing bond sections. A vibration based inspection technique could increase the ability to detect kissing bonds in composite material repairs while decreasing inspection time. Benefits of this method of identification over conventional techniques include its robust, objective damage detection methodology and the reduced requirement for specimen preparation and surface texture when compared to ultrasonic scanning.

  20. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  1. Tomographic scanning imager.

    Science.gov (United States)

    Hovland, Harald

    2009-07-06

    In tomographic scanning (TOSCA) imaging, light from a scene is focused onto a reticle mask using conical scan optics, and collected on a single element detector. Alternatively, one or several detectors replace the reticle. Tomographic processing techniques are then applied to the one-dimensional signal to reproduce a two-dimensional image. The TOSCA technique is presented in detail, including its mathematical foundations and some of its limitations. It is shown how TOSCA imaging can be used in a multispectral configuration, and compares well with more conventional alternatives both in simplicity and performance. Examples of image reconstruction using TOSCA techniques are shown.

  2. Scanning the phenomenological MSSM

    CERN Document Server

    Wuerzinger, Jonas

    2017-01-01

    A framework to perform scans in the 19-dimensional phenomenological MSSM is developed and used to re-evaluate the ATLAS experiments' sensitivity to R-parity-conserving supersymmetry with LHC Run 2 data ($\\sqrt{s}=13$ TeV), using results from 14 separate ATLAS searches. We perform a $\\tilde{t}_1$ dedicated scan, only considering models with $m_{\\tilde{t}_1}<1$ TeV, while allowing both a neutralino ($\\tilde{\\chi}_1^0$) and a sneutrino ($\\tilde{\

  3. Evaluation of hand-arm vibration reducing effect of anti-vibration glove

    OpenAIRE

    樹野, 淳也; 前田, 節雄; 横田, 和樹; 平, 雄一郎

    2015-01-01

    Many kinds of the anti-vibration glove have been developed for reducing hand-arm vibration during the operation with vibration tools. International standard ISO 10819 evaluates the physical effect of gloves' vibration transmissibility but not evaluates the physiological effect of human hands. Thus, in this paper, we proposed the evaluation using the temporary threshold shift of vibrotactile perception threshold to evaluate the hand-arm vibration reducing effect of anti-vibration glove. We per...

  4. Stimulation and recording electrodes for neural prostheses

    CERN Document Server

    Pour Aryan, Naser; Rothermel, Albrecht

    2015-01-01

    This book provides readers with basic principles of the electrochemistry of the electrodes used in modern, implantable neural prostheses. The authors discuss the boundaries and conditions in which the electrodes continue to function properly for long time spans, which are required when designing neural stimulator devices for long-term in vivo applications. Two kinds of electrode materials, titanium nitride and iridium are discussed extensively, both qualitatively and quantitatively. The influence of the counter electrode on the safety margins and electrode lifetime in a two electrode system is explained. Electrode modeling is handled in a final chapter.

  5. Experimental investigation on low-frequency vibration assisted micro-WEDM of Inconel 718

    Directory of Open Access Journals (Sweden)

    Deepak Rajendra Unune

    2017-02-01

    Full Text Available The micro-wire electric discharge machining (micro-WEDM has emerged as the popular micromachining processes for fabrication of micro-features. However, the low machining rate and poor surface finish are restricting wide applications of this process. Therefore, in this study, an attempt was made to improve machining rate of micro-WEDM with low-frequency workpiece vibration assistance. The gap voltage, capacitance, feed rate and vibrational frequency were chosen as control factors, whereas, the material removal rate (MRR and kerf width were selected as performance measures while fabricating microchannels in Inconel 718. It was observed that in micro-WEDM, the capacitance is the most significant factor affecting both MRR and kerf width. It was witnessed that the low-frequency workpiece vibration improves the performance of micro-WEDM by improving the MRR due to enhanced flushing conditions and reduced electrode-workpiece adhesion.

  6. Scanning transmission electron microscope

    NARCIS (Netherlands)

    Kruit, P.

    2006-01-01

    The invention relates to a scanning transmission electron microscope comprising an electron source, an electron accelerator and deflection means for directing electrons emitted by the electron source at an object to be examined, and in addition a detector for detecting electrons coming from the

  7. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... you: have had any tests, such as an x-ray or CT scan, surgeries or treatments using iodinated ... page How does the procedure work? With ordinary x-ray examinations, an image is made by passing x- ...

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... may be performed to measure the level of thyroid hormones in your blood. You may be told not to eat for several hours before your exam because eating can affect the ... as well. Thyroid Scan You will be positioned on an examination ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... or less. top of page What will I experience during and after the procedure? Most thyroid scan ... areas. Outside links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo. ...

  10. Scanning bubble chamber pictures

    CERN Multimedia

    1974-01-01

    These were taken at the 2 m hydrogen bubble chamber. The photo shows an early Shiva system where the pre-measurements needed to qualify the event were done manually (cf photo 7408136X). The scanning tables were located in bld. 12. Gilberte Saulmier sits on foreground, Inge Arents at centre.

  11. Cervical MRI scan

    Science.gov (United States)

    ... cancer in the spine Arthritis in the spine MRI works better than CT scan in diagnosing these problems ... test. The strong magnetic fields created during an MRI can cause heart pacemakers and other implants to not work as well. It can also cause a piece ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page Additional Information and Resources RTAnswers.org Radiation Therapy for Head and Neck Cancer top of page ... and Neck Cancer Treatment Radioactive Iodine (I-131) Therapy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear ... to Thyroid Scan and Uptake ...

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is also known as a thyroid uptake. ... a patient’s immediate response to therapeutic interventions. Nuclear ... medical tests that help physicians diagnose and evaluate medical conditions. ...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake ...

  15. Terahertz scanning probe microscope

    NARCIS (Netherlands)

    Klapwijk, T.M.

    2014-01-01

    The invention provides aterahertz scanning probe microscope setup comprising (i) a terahertz radiation source configured to generate terahertz radiation; (ii) a terahertz lens configured to receive at least part of the terahertz radiation from the terahertz radiation source; (iii) a cantilever unit

  16. SPM: Scanning positron microscope

    Directory of Open Access Journals (Sweden)

    Marcel Dickmann

    2015-08-01

    Full Text Available The Munich scanning positron microscope, operated by the Universität der Bundeswehr München and the Technische Universität München, located at NEPOMUC, permits positron lifetime measurements with a lateral resolution in the µm range and within an energy range of 1 – 20 keV.

  17. Laser Beam Scanning Device.

    Science.gov (United States)

    metal mirror. Multiple thermocouple wires attached to the rear of the mirror provide temperature (and hence beam power) information at various points...on the mirror. Scanning is achieved by means of a selector switch which sequentially samples the thermocouple outputs. The thermocouple output voltages are measured and recorded as a function of laser beam power.

  18. Characterization of nanoporous gold electrodes for bioelectrochemical applications.

    Science.gov (United States)

    Scanlon, Micheál D; Salaj-Kosla, Urszula; Belochapkine, Serguei; MacAodha, Domhnall; Leech, Dónal; Ding, Yi; Magner, Edmond

    2012-01-31

    The high surface areas of nanostructured electrodes can provide for significantly enhanced surface loadings of electroactive materials. The fabrication and characterization of nanoporous gold (np-Au) substrates as electrodes for bioelectrochemical applications is described. Robust np-Au electrodes were prepared by sputtering a gold-silver alloy onto a glass support and subsequent dealloying of the silver component. Alloy layers were prepared with either a uniform or nonuniform distribution of silver and, post dealloying, showed clear differences in morphology on characterization with scanning electron microscopy. Redox reactions under kinetic control, in particular measurement of the charge required to strip a gold oxide layer, provided the most accurate measurements of the total electrochemically addressable electrode surface area, A(real). Values of A(real) up to 28 times that of the geometric electrode surface area, A(geo), were obtained. For diffusion-controlled reactions, overlapping diffusion zones between adjacent nanopores established limiting semi-infinite linear diffusion fields where the maximum current density was dependent on A(geo). The importance of measuring the surface area available for the immobilization was determined using the redox protein, cyt c. The area accessible to modification by a biological macromolecule, A(macro), such as cyt c was reduced by up to 40% compared to A(real), demonstrating that the confines of some nanopores were inaccessible to large macromolecules due to steric hindrances. Preliminary studies on the preparation of np-Au electrodes modified with osmium redox polymer hydrogels and Myrothecium verrucaria bilirubin oxidase (MvBOD) as a biocathode were performed; current densities of 500 μA cm(-2) were obtained in unstirred solutions. © 2011 American Chemical Society

  19. Determination of zinc and cadmium with characterized Electrodes of carbon and polyurethane modified by a bismuth film

    Directory of Open Access Journals (Sweden)

    Jossy Karla Brasil Bernardelli

    2011-09-01

    Full Text Available This study aims to use electrodes modified with bismuth films for the determination of zinc and cadmium. The film was electrodeposited ex situ on a composite carbon electrode with polyurethane and 2% metallic bismuth (2BiE and on a carbon bar electrode (CBE. The electrodes were characterized by scanning electron microscopy and energy dispersive spectroscopy. Through differential pulse anodic stripping voltammetry, the electrodes 2BiE and CBE containing bismuth films showed a limit of detection (LOD of 5.56 × 10-5 and 3.07 × 10-5 g.L-1 for cadmium and 1.24 × 10-4 and 1.53 × 10-4 g.L-1 for zinc, respectively. The presence of a bismuth film increased the sensitivity of both electrodes.

  20. Stability and deactivation research of RuO2-PdO/Ti electrode in dye water degradation.

    Science.gov (United States)

    Du, Lin; Wu, Jin; Li, Guiying; Hu, Changwei

    2014-01-01

    RuO2-PdO/Ti electrode was prepared and used for the electro-catalytic degradation of Active Red K-2BP. It was found that the electrode was very stable in the process. A discoloration rate of 96.2% could still be achieved on the electrode after being used for 100 runs. X-ray photoelectron spectroscopy, X-ray diffraction, and scanning electron microscopy characterizations of the electrode were carried out. Results showed that the deactivation of the electrode was caused by the reconstruction and oxidation of titanium substrate as well as by the coverage of the active phases on the surface of the electrode by silicon. The cracks on the coating layer also contributed to the deactivation.

  1. A Microbeam Resonator with Partial Electrodes for Logic and Memory Elements

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-11-10

    We demonstrate logic and memory elements based on an in-plane clamped-clamped microbeam resonator. The micro-resonator is electrostatically actuated through a drive electrode and the motional signal is capacitively sensed at a sense electrode, while the resonance characteristics are modulated by DC voltage pulses provided at two separate partial electrodes, independent of the drive/sense electrodes. For the logic applications, we use two separate electrodes to provide DC voltages defined as the logic inputs. The high (low) motional signal at on-resonance (off-resonance) state is defined as the logic output state “1” (“0”). For the memory operation, two stable vibrational states, high and low, within the hysteretic regime are defined as the memory states, “1” and “0”, respectively. We take advantage of the split electrode configuration to provide positive and negative DC voltage pulses selectively to set/reset the memory states (“1”/“0”) without affecting the driving and sensing terminals. Excluding the energy cost for supporting electronics, these devices consume energy in 10’s of picojoules per logic/memory operations. Furthermore, the devices are fabricated using silicon on insulator (SOI) wafers, have the potential for on-chip integration, and operate at moderate pressure (~1 Torr) and room temperature.

  2. Imaging acoustic vibrations in an ear model using spectrally encoded interferometry

    Science.gov (United States)

    Grechin, Sveta; Yelin, Dvir

    2018-01-01

    Imaging vibrational patterns of the tympanic membrane would allow an accurate measurement of its mechanical properties and provide early diagnosis of various hearing disorders. Various optical technologies have been suggested to address this challenge and demonstrated in vitro using point scanning and full-field interferometry. Spectrally encoded imaging has been previously demonstrated capable of imaging tissue acoustic vibrations with high spatial resolution, including two-dimensional phase and amplitude mapping. In this work, we demonstrate a compact optical apparatus for imaging acoustic vibrations that could be incorporated into a commercially available digital otoscope. By transmitting harmonic sound waves through the otoscope insufflation port and analyzing the spectral interferograms using custom-built software, we demonstrate high-resolution vibration imaging of a circular rubber membrane within an ear model.

  3. Experimental Investigations on Microcracks in Vibrational and Conventional Drilling of Cortical Bone

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2013-01-01

    Full Text Available Bone drilling is widely used in orthopedic surgery. Microcracks will be generated in bone drilling, which may cause fatigue damages and stress fractures. Fresh bovine cortical bones were drilled via vibrational and conventional ways. Drilling operations were performed by a dynamic material testing machine, which can provide the vibration while maintaining uniform feed motion. The drill site and bone debris were observed through scanning electron microscope (SEM. The experimental results showed that fewer and shorter micro-cracks were formed in vibrational drilling than those formed in conventional way. And the surface morphology of bone debris from two different drilling ways was also quite different. It is expected that vibrational drilling in orthopedic surgery operation could decrease the microdamage to the bone, which could lower the incidence of stress fracture and contribute to the postoperative recovery.

  4. An Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.H.; Nevin, K.P.; Franks, A.; Englert, A.; Long, P.E.; Lovley, D.R.

    2009-11-15

    Current production by microorganisms colonizing subsurface electrodes and its relationship to substrate availability and microbial activity was evaluated in an aquifer undergoing bioremediation. Borehole graphite anodes were installed downgradient from a region of acetate injection designed to stimulate bioreduction of U(VI); cathodes consisted of graphite electrodes embedded at the ground surface. Significant increases in current density ({<=}50 mA/m{sup 2}) tracked delivery of acetate to the electrodes, dropping rapidly when acetate inputs were discontinued. An upgradient control electrode not exposed to acetate produced low, steady currents ({<=}0.2 mA/m{sup 2}). Elevated current was strongly correlated with uranium removal but minimal correlation existed with elevated Fe(II). Confocal laser scanning microscopy of electrodes revealed firmly attached biofilms, and analysis of 16S rRNA gene sequences indicated the electrode surfaces were dominated (67-80%) by Geobacter species. This is the first demonstration that electrodes can produce readily detectable currents despite long-range (6 m) separation of anode and cathode, and these results suggest that oxidation of acetate coupled to electron transfer to electrodes by Geobacter species was the primary source of current. Thus it is expected that current production may serve as an effective proxy for monitoring in situ microbial activity in a variety of subsurface anoxic environments.

  5. Localization of neurosurgically implanted electrodes via photograph-MRI-radiograph coregistration.

    Science.gov (United States)

    Dalal, Sarang S; Edwards, Erik; Kirsch, Heidi E; Barbaro, Nicholas M; Knight, Robert T; Nagarajan, Srikantan S

    2008-09-15

    Intracranial electroencephalography (iEEG) is clinically indicated for medically refractory epilepsy and is a promising approach for developing neural prosthetics. These recordings also provide valuable data for cognitive neuroscience research. Accurate localization of iEEG electrodes is essential for evaluating specific brain regions underlying the electrodes that indicate normal or pathological activity, as well as for relating research findings to neuroimaging and lesion studies. However, electrodes are frequently tucked underneath the edge of a craniotomy, inserted via a burr hole, or placed deep within the brain, where their locations cannot be verified visually or with neuronavigational systems. We show that one existing method, registration of postimplant computed tomography (CT) with preoperative magnetic resonance imaging (MRI), can result in errors exceeding 1cm. We present a novel method for localizing iEEG electrodes using routinely acquired surgical photographs, X-ray radiographs, and magnetic resonance imaging scans. Known control points are used to compute projective transforms that link the different image sets, ultimately allowing hidden electrodes to be localized, in addition to refining the location of manually registered visible electrodes. As the technique does not require any calibration between the different image modalities, it can be applied to existing image databases. The final result is a set of electrode positions on the patient's rendered MRI yielding locations relative to sulcal and gyral landmarks on individual anatomy, as well as MNI coordinates. We demonstrate the results of our method in eight epilepsy patients implanted with electrode grids spanning the left hemisphere.

  6. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating

    Directory of Open Access Journals (Sweden)

    Nicolas A. Alba

    2015-10-01

    Full Text Available Neural electrodes hold tremendous potential for improving understanding of brain function and restoring lost neurological functions. Multi-walled carbon nanotube (MWCNT and dexamethasone (Dex-doped poly(3,4-ethylenedioxythiophene (PEDOT coatings have shown promise to improve chronic neural electrode performance. Here, we employ electrochemical techniques to characterize the coating in vivo. Coated and uncoated electrode arrays were implanted into rat visual cortex and subjected to daily cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS for 11 days. Coated electrodes experienced a significant decrease in 1 kHz impedance within the first two days of implantation followed by an increase between days 4 and 7. Equivalent circuit analysis showed that the impedance increase is the result of surface capacitance reduction, likely due to protein and cellular processes encapsulating the porous coating. Coating’s charge storage capacity remained consistently higher than uncoated electrodes, demonstrating its in vivo electrochemical stability. To decouple the PEDOT/MWCNT material property changes from the tissue response, in vitro characterization was conducted by soaking the coated electrodes in PBS for 11 days. Some coated electrodes exhibited steady impedance while others exhibiting large increases associated with large decreases in charge storage capacity suggesting delamination in PBS. This was not observed in vivo, as scanning electron microscopy of explants verified the integrity of the coating with no sign of delamination or cracking. Despite the impedance increase, coated electrodes successfully recorded neural activity throughout the implantation period.

  7. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation.

    Science.gov (United States)

    O'Callahan, Brian T; Lewis, William E; Möbius, Silke; Stanley, Jared C; Muller, Eric A; Raschke, Markus B

    2015-12-14

    Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy. With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainable near-field signal levels in s-SNOM in general. The use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy.

  8. A new methodology for vibration error compensation of optical encoders.

    Science.gov (United States)

    Lopez, Jesus; Artes, Mariano

    2012-01-01

    Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error into the counter to be added up to graduation, system and installation errors. Behavior improvement can be based on different techniques trying to compensate the error from measurement signals processing. In this work a new "ad hoc" methodology is presented to compensate the error of the encoder when is working under the influence of vibration. The methodology is based on fitting techniques to the Lissajous figure of the deteriorated measurement signals and the use of a look up table, giving as a result a compensation procedure in which a higher accuracy of the sensor is obtained.

  9. A New Methodology for Vibration Error Compensation of Optical Encoders

    Directory of Open Access Journals (Sweden)

    Mariano Artes

    2012-04-01

    Full Text Available Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error into the counter to be added up to graduation, system and installation errors. Behavior improvement can be based on different techniques trying to compensate the error from measurement signals processing. In this work a new “ad hoc” methodology is presented to compensate the error of the encoder when is working under the influence of vibration. The methodology is based on fitting techniques to the Lissajous figure of the deteriorated measurement signals and the use of a look up table, giving as a result a compensation procedure in which a higher accuracy of the sensor is obtained.

  10. Piezoelectrically forced vibrations of rectangular SC-cut quartz plates

    Science.gov (United States)

    Lee, P. C. Y.; Lin, W. S.

    1998-06-01

    A system of two-dimensional first-order equations for piezoelectric crystal plates with general symmetry and with electroded faces was recently deduced from the three-dimensional equations of linear piezoelectricity. Solutions of these equations for AT-cut plates of quartz were shown to give accurate dispersion curves without corrections, and the resonances predicted agree closely with the experimental data of Koga and Fukuyo [I. Koga and H. Fukuyo, J. Inst. Electr. Commun. Eng. Jpn. 36, 59 (1953)] and that of Nakazawa, Horiuchi, and Ito (M. Nakazawa, K. Horiuchi, and H. Ito, Proceedings of the 1990 IEEE Ultrasonics Symposium, pp. 547-555). In this article, these equations are employed to study the free as well as the forced vibrations of doubly rotated quartz plates. Solutions of straight-crested vibrational modes varying in the x1 and x3 directions of SC-cut quartz plates of infinite extent are obtained and from which dispersion curves are computed. Comparison of those dispersion curves with those from the three-dimensional equations shows that the agreement is very close without any corrections. Resonance frequencies for free vibrations and capacitance ratios for piezoelectrically forced vibrations are computed and examined for various length-to-thickness or width-to-thickness ratios of rectangular SC-cut quartz plates. The capacitance ratio as a function of forcing frequency is computed for a rectangular AT-cut quartz and compared with the experimental data of Seikimoto, Watanabe, and Nakazawa (H. Sekimoto, Y. Watanabe, and M. Nakazawa, Proceedings of the 1992 IEEE Frequency Control Symposium, pp. 532-536) and is in close agreement.

  11. Whole-body vibration augments resistance training effects on body composition in postmenopausal women.

    Science.gov (United States)

    Fjeldstad, Cecilie; Palmer, Ian J; Bemben, Michael G; Bemben, Debra A

    2009-05-20

    Age-related changes in body composition are well-documented with a decrease in lean body mass and a redistribution of body fat generally observed. Resistance training alone has been shown to have positive effects on body composition, however, these benefits may be enhanced by the addition of a vibration stimulus. The purpose of this study was to determine the effects of 8 months of resistance training with and without whole-body vibration (WBV) on body composition in sedentary postmenopausal women. Fifty-five women were assigned to resistance only (RG, n=22), vibration plus resistance (VR, n=21) or non-exercising control (CG, n=12) groups. Resistance training (3 sets 10 repetitions 80% strength) was performed using isotonic weight training equipment and whole-body vibration was done with the use of the power plate (Northbrooke, IL) vibration platform for three times per week for 8 months. Total and regional body composition was assessed from the total body DXA scans at baseline (pre) and after 8 months (post) of training. In the VR group, total % body fat decreased from pre- to post-time points (ptraining groups exhibited significant increases in bone free lean tissue mass for the total body, arm and trunk regions from pre to post (ptraining alone and with whole-body vibration resulted in positive body composition changes by increasing lean tissue. However, only the combination of resistance training and whole-body vibration was effective for decreasing percent body fat.

  12. Ultrasonic metal welding with a vibration source using longitudinal and torsional vibration transducers

    Science.gov (United States)

    Asami, Takuya; Tamada, Yosuke; Higuchi, Yusuke; Miura, Hikaru

    2017-07-01

    Conventional ultrasonic metal welding for joining dissimilar metals uses a linear vibration locus, although this method suffers from problems such as low overall weld strength. Our previous studies have shown that ultrasonic welding with a planar vibration locus improves the weld strength. However, the vibration source in our previous studies had problems in longitudinal-torsional vibration controllability and small welding tip. Therefore, the study of the optimal shape of the vibration locus was difficult. Furthermore, improvement of weld strength cannot be expected. We have developed a new ultrasonic vibration source that can control the longitudinal-torsional vibration and can connect to a large welding tip. In this study, we clarified the longitudinal-torsional vibration controllability of the developed ultrasonic vibration source. Moreover, we clarified that using the planar locus of the developed vibration source produced a higher weld strength than our previous studies, and clarified the optimal shape of the vibration locus.

  13. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L

    2012-01-01

    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...

  14. High performance lithium insertion negative electrode materials for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Channu, V.S. Reddy, E-mail: chinares02@gmail.com [SMC Corporation, College Station, TX 77845 (United States); Rambabu, B. [Solid State Ionics and Surface Sciences Lab, Department of Physics, Southern University and A& M College, Baton Rouge, LA 70813 (United States); Kumari, Kusum [Department of Physics, National Institute of Technology, Warangal (India); Kalluru, Rajmohan R. [The University of Southern Mississippi, College of Science and Technology, 730 E Beach Blvd, Long Beach, MS 39560 (United States); Holze, Rudolf [Institut für Chemie, AG Elektrochemie, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-11-30

    Highlights: • LiCrTiO{sub 4} nanostructures were synthesized for electrochemical applications by soft chemical synthesis followed by annealing. • The presence of Cr and Ti elements are confirmed from the EDS spectrum. • Oxalic acid assisted LiCrTiO{sub 4} electrode shows higher specific capacity (mAh/g). - Abstract: Spinel LiCrTiO{sub 4} oxides to be used as electrode materials for a lithium ion battery and an asymmetric supercapacitor were synthesized using a soft-chemical method with and without chelating agents followed by calcination at 700 °C for 10 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 50–10 nm in size are observed in the microscopic images. The presence of Cr and Ti is confirmed from the EDS spectrum. Electrochemical properties of LiCrTiO{sub 4} electrode were examined in a lithium ion battery. The electrode prepared with oxalic acid-assisted LiCrTiO{sub 4} shows higher specific capacity.This LiCrTiO{sub 4} is also used as anode material for an asymmetric hybrid supercapacitor. The cell exhibits a specific capacity of 65 mAh/g at 1 mA/cm{sup 2}. The specific capacity decreases with increasing current densities.

  15. A Novel AED Electrode Design Significantly Improves Laypersons Abillities to Correctly Place AED Electrodes

    DEFF Research Database (Denmark)

    Bødtker, Henrik; Stærk, Mathilde; Glerup Lauridsen, Kasper

    2017-01-01

    Introduction: Defibrillation with an automated external defibrillator (AED) improves survival after cardiac arrest. Laypersons rarely place the left apical AED electrodes according to international guidelines. Incorrect electrode placement may reduce the chance of successful defibrillation.......Hypothesis: Novel AED electrodes with pictures of correct electrode placement on a human improves left apical AED electrode placement compared with conventional AED electrodes with standard pictograms.Methods: Untrained laypersons were randomized to apply A) Novel AED electrodes with pictures of correct electrode...... placement on a human (Figure), or B) conventional AED electrodes with pictograms on a resuscitation manikin. Positioning of AED electrodes was compared to the recommended electrode position. Time to AED electrode placement was measured. Participants were asked to rate the user-friendliness of the two...

  16. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  17. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-10-13

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was

  18. Spin-polarized scanning tunnelling microscopy

    CERN Document Server

    Bode, M

    2003-01-01

    The recent experimental progress in spin-polarized scanning tunnelling microscopy (SP-STM) - a magnetically sensitive imaging technique with ultra-high resolution - is reviewed. The basics of spin-polarized electron tunnelling are introduced as they have been investigated in planar tunnel junctions for different electrode materials, i.e. superconductors, optically excited GaAs, and ferromagnets. It is shown that ferromagnets and antiferromagnets are suitable tip materials for the realization of SP-STM. Possible tip designs and modes of operations are discussed for both classes of materials. The results of recent spatially resolved measurements as performed with different magnetic probe tips and using different modes of operation are reviewed and discussed in terms of applicability to surfaces, thin films, and nanoparticles. The limits of spatial resolution, and the impact of an external magnetic field on the imaging process.

  19. Stroboscopic shearography for vibration analysis

    Science.gov (United States)

    Steinchen, Wolfgang; Kupfer, Gerhard; Maeckel, Peter; Voessing, Frank

    1999-09-01

    Digital Shearography, a laser interferometric technique in conjunction with the digital image processing, has the potential for vibration analysis due to its simple optical system and insensitivity against small rigid body motions. This paper will focus on its recent developments for vibration analysis and for nondestructive testing (NDT) by dynamic (harmonical) excitation. With the introduction of real time observation using automatically refreshing reference frame, both small and large rigid body motions are greatly suppressed. The development of a smaller and more mobile measuring device in conjunction with a user guided comfortable program Shearwin enables the digital shearography to be applied easily as an industrial online testing tool.

  20. Vibrational Collapse of Hexapod Packings

    Science.gov (United States)

    Zhao, Yuchen; Ding, Jingqiu; Barés, Jonathan; Zheng, Hu; Dierichs, Karola; Menges, Achim; Behringer, Robert

    2017-06-01

    Columns made of convex noncohesive grains like sand collapse after being released from a confining container. However, structures built from non-convex grains can be stable without external support. In the current experiments, we investigate the effect of vibration on destroying such columns. The change of column height during vertical vibration, can be well characterized by stretched exponential relaxation when the column is short, which is in agreement with previous work, while a faster collapse happens when the column is tall. We investigate the collapse after the fast process including its dependence on column geometry, and on interparticle and basal friction.

  1. Innovative Techniques Simplify Vibration Analysis

    Science.gov (United States)

    2010-01-01

    In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."

  2. RETGEM with polyvinylchloride (PVC) electrodes

    CERN Document Server

    Razin, V I; Reshetin, A I; Filippov, S N

    2009-01-01

    This paper presents a new design of the RETGEM (Resistive Electrode Thick GEM) based on electrodes made of a polyvinylchloride material (PVC). Our device can operate with gains of 10E5 as a conventional TGEM at low counting rates and as RPC in the case of high counting rates without of the transit to the violent sparks. The distinct feature of present RETGEM is the absent of the metal coating and lithographic technology for manufacturing of the protective dielectric rms. The electrodes from PVC permit to do the holes by a simple drilling machine. Detectors on a RETGEM basis could be useful in many fields of an application requiring a more cheap manufacturing and safe operation, for example, in a large neutrino experiments, in TPC, RICH systems.

  3. Mammographic scanning equalization radiography.

    Science.gov (United States)

    Sabol, J M; Soutar, I C; Plewes, D B

    1993-01-01

    It is well recognized that variations in breast thickness and parenchymal composition can produce a range of exposure which exceeds the latitude of high contrast mammographic film/screen combinations. Optimal imaging of the dense breast is desired since 30%-60% of women present with dense breasts, and they are believed to be at the highest relative risk of developing breast cancer. The application of scanning equalization radiography to mammography has been investigated through the construction and characterization of a prototype mammographic scanning equalization radiography (MSER) system, designed to image mammographic phantoms. The MSER system exposes a Min-R/MRH cassette by raster scanning a 2.0 x 1.6 cm beam of pulsed x-rays across the cassette. A scanning detector behind the cassette measures the local x-ray transmission of the breast. Feedback of the transmission information is used to modulate the duration of each x-ray pulse, to equalize the film exposure. The effective dynamic range of the MSER system is 25 times greater than that of conventional mammography. Artifact-free images of mammographic phantoms show that MSER effectively overcomes the latitude limitations of film/screen mammography, enabling high contrast imaging over a wide range of object x-ray transmission. Anthropomorphic phantom images show that MSER offers up to a sixfold increase in film contrast in the normally underexposed regions of conventional mammograms. Characterization of the entrance exposure shows that there is not a significant difference in exposure between MSER and conventional mammographic techniques, suggesting that both would pose comparable risk to the patient. Calculations show that the construction of a clinical multiple beam MSER system is feasible with minor changes to existing technology.

  4. Scanning transmission electron microscope

    OpenAIRE

    Kruit, P.

    2006-01-01

    The invention relates to a scanning transmission electron microscope comprising an electron source, an electron accelerator and deflection means for directing electrons emitted by the electron source at an object to be examined, and in addition a detector for detecting electrons coming from the object and, connected to the detector, a device for processing the detected electrons so as to form an object image, wherein a beam splitter is provided for dividing the electron beam from the electron...

  5. Scanning micro-sclerometer

    Science.gov (United States)

    Oliver, Warren C.; Blau, Peter J.

    1994-01-01

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch.

  6. Scanning drop sensor

    Science.gov (United States)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  7. Scanning ultrafast electron microscopy.

    Science.gov (United States)

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  8. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes

    Science.gov (United States)

    Vasudevan, Srikanth; Patel, Kunal; Welle, Cristin

    2017-02-01

    Objective. In the US alone, there are approximately 185 000 cases of limb amputation annually, which can reduce the quality of life for those individuals. Current prosthesis technology could be improved by access to signals from the nervous system for intuitive prosthesis control. After amputation, residual peripheral nerves continue to convey motor signals and electrical stimulation of these nerves can elicit sensory percepts. However, current technology for extracting information directly from peripheral nerves has limited chronic reliability, and novel approaches must be vetted to ensure safe long-term use. The present study aims to optimize methods to establish a test platform using rodent model to assess the long term safety and performance of electrode interfaces implanted in the peripheral nerves. Approach. Floating Microelectrode Arrays (FMA, Microprobes for Life Sciences) were implanted into the rodent sciatic nerve. Weekly in vivo recordings and impedance measurements were performed in animals to assess performance and physical integrity of electrodes. Motor (walking track analysis) and sensory (Von Frey) function tests were used to assess change in nerve function due to the implant. Following the terminal recording session, the nerve was explanted and the health of axons, myelin and surrounding tissues were assessed using immunohistochemistry (IHC). The explanted electrodes were visualized under high magnification using scanning electrode microscopy (SEM) to observe any physical damage. Main results. Recordings of axonal action potentials demonstrated notable session-to-session variability. Impedance of the electrodes increased upon implantation and displayed relative stability until electrode failure. Initial deficits in motor function recovered by 2 weeks, while sensory deficits persisted through 6 weeks of assessment. The primary cause of failure was identified as lead wire breakage in all of animals. IHC indicated myelinated and unmyelinated axons

  9. Nanofiber membrane-electrode-assembly and method of fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    2016-02-02

    In one aspect of the present invention, a fuel cell membrane-electrode-assembly (MEA) has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode. At least one of the anode electrode, the cathode electrode and the membrane is formed of electrospun nanofibers.

  10. Electrodes for Semiconductor Gas Sensors

    Science.gov (United States)

    Lee, Sung Pil

    2017-01-01

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  11. Ceramic components for MHD electrode

    Science.gov (United States)

    Marchant, D.D.

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hf/sub x/In/sub y/A/sub z/O/sub 2/ where x = 0.1 to 0.4, y = 0.3 to 0.6, z = 0.1 to 0.4 and A is a lanthanide rare earth or yttrium. The component is suitable for use in the fabrication of MHD electrodes or as the current leadout portion of a composite electrode with other ceramic components.

  12. Nanoengineered membrane electrode assembly interface

    Science.gov (United States)

    Song, Yujiang; Shelnutt, John A

    2013-08-06

    A membrane electrode structure suitable for use in a membrane electrode assembly (MEA) that comprises membrane-affixed metal nanoparticles whose formation is controlled by a photochemical process that controls deposition of the metal nanoparticles using a photocatalyst integrated with a polymer electrolyte membrane, such as an ionomer membrane. Impregnation of the polymer membrane with the photocatalyst prior to metal deposition greatly reduces the required amount of metal precursor in the deposition reaction solution by restricting metal reduction substantially to the formation of metal nanoparticles affixed on or near the surface of the polymer membrane with minimal formation of metallic particles not directly associated with the membrane.

  13. Progress in understanding SOFC electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels; Jørgensen, M.J.

    2002-01-01

    The literature of SOFC electrode kinetics and mechanisms is full of contradicting details in case of both the SOFC anode and cathode processes. Only weak patterns may be identified. One interpretation is that each of the reported data sets reflects a laboratory specific nature of each of the elec......The literature of SOFC electrode kinetics and mechanisms is full of contradicting details in case of both the SOFC anode and cathode processes. Only weak patterns may be identified. One interpretation is that each of the reported data sets reflects a laboratory specific nature of each...

  14. Spontaneous adsorption and electrochemical behaviour of safranine O at electrochemically activated glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Abdessamad, NourElHouda [Laboratoire de Chimie Analytique et d' Electrochimie, Institut National des Sciences Appliquees et de Technologie, Centre Urbain Nord B.P. No. 676, 1080 Tunis Cedex (Tunisia); Adhoum, Nafaa, E-mail: Nafaa.adhoum@insat.rnu.tn [Laboratoire de Chimie Analytique et d' Electrochimie, Institut National des Sciences Appliquees et de Technologie, Centre Urbain Nord B.P. No. 676, 1080 Tunis Cedex (Tunisia)

    2009-08-15

    The adsorption behaviour of safranine O (SO) at electrochemically pretreated glassy carbon electrodes has been studied. It was found that SO adsorption depended on the properties of the electrode surface, as determined by the nature and duration of the activation step. It was noticed that SO was adsorbed spontaneously and strongly on the surface of anodically pretreated electrode. The electrochemical behaviour of the modified electrode was investigated in H{sub 2}SO{sub 4} (0.25 M) using cyclic voltammetry (CV). A reversible two electron, two proton wave was observed at -180 mV vs. SCE and the formal potential was found to be decreasing upon increasing the solution pH (-56.8 mV pH{sup -1}). The modified electrode exhibited good stability on repeated scanning between -500 and 200 mV vs. SCE, causing only 5% decrease in the peak height after 100 cycles at a scan rate of 20 mV s{sup -1}. The surface coverage was calculated to be 0.812 nmol cm{sup -2} and the electron transfer rate constant (k{sub s}{sup 0}=1.45s{sup -1}) and transfer coefficient ({alpha} = 0.43) for the adsorbed SO were evaluated using the Laviron method. The modified electrode clearly showed good electrocatalytic ability for oxygen reduction to H{sub 2}O{sub 2}.

  15. Preparation and characterization of carbon paste electrode modified with tin and hexacyanoferrate ions

    Directory of Open Access Journals (Sweden)

    REZA E. SABZI

    2007-10-01

    Full Text Available A carbon paste electrode was modified chemically using Sn(II or Sn(IV chlorides and hexacyanoferrate(II or hexacyanoferrate(III. The electrochemical behavior of such SnHCF carbon paste electrodes was studied by cyclic voltammetry. The study revealed that Sn(IV and hexacyanoferrate(II yield the best results. This electrode showed one pair of peaks: the anodic and cathodic peak at the potentials of 0.195 and 0.154 V vs. SCE, respectively, at a scan rate of 20 mV s-1 in a 0.5 M phosphate buffer as the supporting electrolyte. The SnHCF modified electrodes were very stable under potential scanning. The effects of pH and alkali metal cations of the supporting electrolyte on the electrochemical characteristics of the modified electrode were studied. The results showed that cations have a considerable effect on the electrochemical behavior of the modified electrode. The diffusion coefficients of hydrated K+ and Na+ in the film, the transfer coefficient and the electron transfer rate constant were determined.

  16. Energetics, structures, vibrational frequencies, vibrational absorption, vibrational circular dichroism and Raman intensities of Leu-enkephalin

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.

    2003-01-01

    Here we present several low energy conformers of Leu-enkephalin (LeuE) calculated with the density functional theory using the Becke 3LYP hybrid functional and the 6-31G* basis set. The structures, conformational energies, vibrational frequencies, vibrational absorption (VA) intensities......, vibrational circular dichroism (VCD) intensities and Raman scattering intensities are reported for the conformers of LeuE which are expected to be populated at room temperature. The species of LeuE-present in non-polar solvents is the neutral non-ionic species with the NH2 and CO2H groups, in contrast...... to the zwitterionic neutral species with the NH3+ and CO2- groups which predominates in aqueous solution and in the crystal. All of our attempts to find the zwitterionic species in the isolated state failed, with the result that a hydrogen atom from the positively charged N-terminus ammonium group transferred either...

  17. Acute effects of vibration from a chipping hammer and a grinder on the hand-arm system.

    Science.gov (United States)

    Kihlberg, S; Attebrant, M; Gemne, G; Kjellberg, A

    1995-11-01

    The purpose of this study was to compare various effects on the hand-arm system of vibration exposure from a chipping hammer and a grinder with the same frequency weighted acceleration. Grip and push forces were measured and monitored during the exposure. The various effects were: muscle activity (measured with surface electrodes), discomfort ratings for different parts of the hand-arm system (made during and after exposure), and vibration perception threshold (for 10 minutes before and 10 minutes after the exposure). No increase in muscle activity due to exposure to vibration was found in the hand muscle studied. In the forearm, conversely, there was an increase in both muscle studied. For the upper arm the muscle activity only increased when exposed to impact vibration. Subjective ratings in the hand and shift in vibration perception threshold were effected more by the grinder than the hammer exposure. These results show that the reaction of the hand-arm system to vibration varies with frequency quantitatively as well as qualitatively. They do not support the notion that one single frequency weighted curve would be valid for the different health effects of hand-arm vibration (vascular, musculoskeletal, neurological, and psychophysiological).

  18. Low Temperature Scanning Tunneling Spectroscopy

    Science.gov (United States)

    Kirk, Michael Dominic

    A scanning tunneling microscope (STM) was designed and built to operate at liquid helium temperature and was used to measure highly localized electron tunneling spectroscopy. Several instruments were built, all capable of operating in many different environments: air, vacuum, liquid helium and in a transfer gas. An adaptation of one particular design was made into an atomic force microscope capable of operating at low temperatures. Using a low temperature STM, three adsorbed molecular species (liquid crystals, sorbic acid, and carbon monoxide), deposited on a graphite substrate, have been imaged at 4.2K. The inelastic tunneling spectra of these adsorbates show strong peaks in dI/dV vs V curves at energies that correspond to known vibrational modes. The increase in conductance at the onset of inelastic tunneling was measured to be as high as 100 times. The spatial variation of the spectra was measured and was seen to change dramatically on the scale of angstroms, suggesting that individual molecular bonds could be measured. A theoretical model is presented to explain the contrast seen in the STM images of adsorbed molecules, thereby explaining why adsorbed molecules appear to be more conductive than the background. The microscope proved very useful for measuring the energy gap of high temperature superconductors. These materials often have submicron grain sizes. For LaSrCuO, YBaCuO, and BiCaSrCuO, the conductance curves showed a large energy gap suggesting a strongly coupled superconductor. The conductance curves also indicated that intergrain tunneling may occur and that the background conductance varied linearly with the applied voltage. The crystalline structure of rm Bi_2 Sr_2 CaCu_2 O_ {8 + delta} was imaged by an STM operating in air and in ultra-high vacuum. From the STM images the bulk crystal structure model for this material was refined. Finally, the STM was used to make holes reproducibly on a graphite surface with diameters less than 40A. Because the

  19. On the noise performance of pt electrodes.

    Science.gov (United States)

    Liu, Xiao; Demosthenous, Andreas; Donaldson, Nick

    2007-01-01

    We measured the noise and impedance from Pt electrode pairs in a frequency band from 100 Hz to 10 kHz, containing the ENG band (500 Hz 5 kHz). The results show that the Pt electrode noise is the same as the thermal noise from the real part of the electrode impedance, which is a summation of the polarisation resistance and the access resistance. This differs from Ag-AgCl electrodes for which the electrode noise has been reported to be higher than the thermal noise. Our study shows that Pt electrodes are suitable for neural recording.

  20. Resonant vibration control of rotating beams

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2011-01-01

    Rotatingstructures,like e.g.wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor–actuator system, governed by a resonant controller. The theory is here demonstrated...... modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency....

  1. Nanofiber membrane-electrode-assembly and method of fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    2018-01-23

    In one aspect of the present invention, a method of fabricating a fuel cell membrane-electrode-assembly (MEA) having an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode, includes fabricating each of the anode electrode, the cathode electrode, and the membrane separately by electrospinning; and placing the membrane between the anode electrode and the cathode electrode, and pressing then together to form the fuel cell MEA.

  2. Experimental validation of a newly designed 6 degrees of freedom scanning laser head: application to three-dimensional beam structure.

    Science.gov (United States)

    Di Maio, D; Copertaro, E

    2013-12-01

    A new scanning laser head is designed to use single Laser Doppler Vibrometer (LDV) for performing measurements up to 6 degrees of freedom (DOF) at a target. The scanning head is supported by a rotating hollow shaft, which allows the laser beam to travel up to the scanning head from an opposite direction where an LDV is set up. The scanning head is made of a set of two mirrors, which deflects the laser beam with an angle so that the rotation of the scanning head produces a conical scan. When measurements are performed at the focal point of the conical scan then three translational vibration components can be measured, otherwise the very small circle scan, before and after the focal point, can measure up to 6 degrees of freedom, including three translations and three rotations. This paper presents the 6DOF scanning head and the measurements of 3D operational deflection shapes of a test structure.

  3. Low-energy isovector quadrupole vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Faessler, A.; Nojarov, R.

    1986-01-23

    The low-lying isovector quadrupole vibrations are described by an extension of the vibrational model allowing independent proton and neutron vibrations coupled by the symmetry energy. The recently detected low-lying isovector states in nearly spherical nuclei with N=84 are described well concerning their energies and E2/M1 mixing ratios. (orig.).

  4. Ground Vibration Measurements at LHC Point 4

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, Kirk; /SLAC; Gaddi, Andrea; /CERN

    2012-09-17

    Ground vibration was measured at Large Hadron Collider (LHC) Point 4 during the winter shutdown in February 2012. This report contains the results, including power and coherence spectra. We plan to collect and analyze vibration data from representative collider halls to inform specifications for future linear colliders, such as ILC and CLIC. We are especially interested in vibration correlations between final focus lens locations.

  5. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... with experiment, and simulations show the feasibility of controlling shaft vibration through this active device....

  6. 33 CFR 159.103 - Vibration test.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes, at...

  7. 14 CFR 27.907 - Engine vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of the...

  8. 14 CFR 29.251 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...

  9. 14 CFR 29.907 - Engine vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The...

  10. 14 CFR 27.251 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...

  11. 49 CFR 178.608 - Vibration standard.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration standard. 178.608 Section 178.608... Testing of Non-bulk Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section...

  12. 49 CFR 178.985 - Vibration test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.985 Section 178.985... Testing of Large Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A...

  13. Vibration measurements on timber frame floors

    NARCIS (Netherlands)

    Kuilen, J.W.G. van de; Oosterhout, G.P.C. van; Donkervoort, R.

    1998-01-01

    In the design of lightweight floors vibrational aspects become more and more important. With the foreseen introduction of Eurocode 5 the vibration of timber floors becomes a part of the design for serviceability. Design rules for the vibrational behaviour are given in Eurocode 5. The first rule is

  14. Vibrations in a moving flexible robot arm

    Science.gov (United States)

    Wang, P. K. C.; Wei, Jin-Duo

    1987-01-01

    The vibration in a flexible robot arm modeled by a moving slender prismatic beam is considered. It is found that the extending and contracting motions have destabilizing and stabilizing effects on the vibratory motions, respectively. The vibration analysis is based on a Galerkin approximation with time-dependent basis functions. Typical numerical results are presented to illustrate the qualitative features of vibrations.

  15. Vibration Theory, Vol. 1A

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present collection of solved problems has been published as a supplement to the textbook Svingningsteori. Bind 1. Lineær svingningsteori,Aalborg tekniske Universitetsforlag, 1991, whicj is used in the introductory course on linear vibration theory that is being given on th e8th semester...

  16. Vibration Damping Circuit Card Assembly

    Science.gov (United States)

    Hunt, Ronald Allen (Inventor)

    2016-01-01

    A vibration damping circuit card assembly includes a populated circuit card having a mass M. A closed metal container is coupled to a surface of the populated circuit card at approximately a geometric center of the populated circuit card. Tungsten balls fill approximately 90% of the metal container with a collective mass of the tungsten balls being approximately (0.07) M.

  17. Wideband Piezomagnetoelastic Vibration Energy Harvesting

    DEFF Research Database (Denmark)

    Lei, Anders; Thomsen, Erik Vilain

    2014-01-01

    This work presents a small-scale wideband piezomagnetoelastic vibration energy harvester (VEH) aimed for operation at frequencies of a few hundred Hz. The VEH consists of a tape-casted PZT cantilever with thin sheets of iron foil attached on each side of the free tip. The wideband operation...

  18. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  19. Effect of shelf aging on vibration transmissibility of anti-vibration gloves.

    Science.gov (United States)

    Shibata, Nobuyuki

    2017-10-05

    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 years of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves.

  20. Analysis of SOFCs Using Reference Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Finklea, H.; Chen, X.; Gerdes, K.; Pakalapati, S.; Celik, I.

    2013-01-01

    Reference electrodes are frequently applied to isolate the performance of one electrode in a solid oxide fuel cell. However, reference electrode simulations raise doubt to veracity of data collected using reference electrodes. The simulations predict that the reported performance for the one electrode will frequently contain performance of both electrodes. Nonetheless, recent reports persistently treat data so collected as ideally isolated. This work confirms the predictions of the reference electrode simulations on two SOFC designs, and to provides a method of validating the data measured in the 3-electrode configuration. Validation is based on the assumption that a change in gas composition to one electrode does not affect the impedance of the other electrode at open circuit voltage. This assumption is supported by a full physics simulation of the SOFC. Three configurations of reference electrode and cell design are experimentally examined using various gas flows and two temperatures. Impedance data are subjected to deconvolution analysis and equivalent circuit fitting and approximate polarization resistances of the cathode and anode are determined. The results demonstrate that the utility of reference electrodes is limited and often wholly inappropriate. Reported impedances and single electrode polarization values must be scrutinized on this basis.

  1. Rough Gold Electrodes for Decreasing Impedance at the Electrolyte/Electrode Interface

    Science.gov (United States)

    Koklu, Anil; Sabuncu, Ahmet C.; Beskok, Ali

    2016-01-01

    Electrode polarization at the electrolyte/electrode interface is often undesirable for bio-sensing applications, where charge accumulated over an electrode at constant potential causes large potential drop at the interface and low measurement sensitivity. In this study, novel rough electrodes were developed for decreasing electrical impedance at the interface. The electrodes were fabricated using electrochemical deposition of gold and sintering of gold nanoparticles. The performances of the gold electrodes were compared with platinum black electrodes. A constant phase element model was used to describe the interfacial impedance. Hundred folds of decrease in interfacial impedance were observed for fractal gold electrodes and platinum black. Biotoxicity, contact angle, and surface morphology of the electrodes were investigated. Relatively low toxicity and hydrophilic nature of the fractal and granulated gold electrodes make them suitable for bioimpedance and cell electromanipulation studies compared to platinum black electrodes which are both hydrophobic and toxic. PMID:27695132

  2. Nickel Hydrogen Cell Positive-Electrode Studies: Cobalt Segregation in Reducing Environments,

    Science.gov (United States)

    1987-05-22

    Encyclopedia of Chemical Electrode Potentials, Plenum Press, New York, 1982. 8. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions...such conditions, it is possible that chemical or electrochemical reactions that are normally thought not to occur in battery cells can occur with...diffraction, ESCA (electron spectroscopy for chemical analysis), SEM (scanning electron microscopy), and EVS ( electrochemical - -voltage spectroscopy). S6

  3. Ti/TiO2 nanotube array electrode as a new sensor to ...

    Indian Academy of Sciences (India)

    The surface morphology of Ti-NTA electrode was studied using scanning electron microscopy images. For EG determination, the photocurrent of EG (EG oxidation current in the UV irradiation) was assessed using the hydrodynamic photoamperometric method in the phosphate buffers. Ultimately, the optimum conditions of ...

  4. Carbon-based Composite Electrodes : Preparation, Characterization and Application in Electroanalysis

    NARCIS (Netherlands)

    Corb, I.; Manea, F.; Radovan, C.; Pop, A.; Burtica, G.; Malchev, P.G.; Picken, S.J.; Schoonman, J.

    2007-01-01

    Electrodes based on carbon, i.e., expanded graphite (20%, wt.)-epoxy composite (20EG-Epoxy) and expanded graphite (20%, wt.)-polystyrene composite (20EG-PS) have been prepared, characterized using scanning electron microscopy (SEM) and cyclic voltammetry (CV), and tested as anodic sensors. The

  5. Scanning radiographic apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Albert, R.D.

    1980-04-01

    Visual display of dental, medical or other radiographic images is realized with an x-ray tube in which an electron beam is scanned through an x-y raster pattern on a broad anode plate, the scanning being synchronized with the x-y sweep signals of a cathode ray tube display and the intensity signal for the display being derived from a small x-ray detector which receives x-rays that have passed through the subject to be imaged. Positioning and support of the detector are provided for by disposing the detector in a probe which may be attached to the x-ray tube at any of a plurality of different locations and by providing a plurality of such probes of different configuration in order to change focal length, to accommodate to different detector placements relative to the subject, to enhance patient comfort and to enable production of both periapical images and wider angle pantomographic images. High image definition with reduced radiation dosage is provided for by a lead glass collimator situated between the x-ray tube and subject and having a large number of spaced-apart minute radiation transmissive passages convergent on the position of the detector. Releasable mounting means enable changes of collimator in conjunction with changes of the probe to change focal length. A control circuit modifies the x-y sweep signals applied to the x-ray tube and modulates electron beam energy and current in order to correct for image distortions and other undesirable effects which can otherwise be present in a scanning x-ray system.

  6. Multiple input electrode gap controller

    Science.gov (United States)

    Hysinger, C.L.; Beaman, J.J.; Melgaard, D.K.; Williamson, R.L.

    1999-07-27

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows. 17 figs.

  7. Luminescence studies of semiconductor electrodes

    NARCIS (Netherlands)

    Kelly, J.J.; Kooij, Ernst S.; Meulenkamp, E.A.

    1999-01-01

    In this paper we review our recent results of in-situ luminescence studies of semiconductor electrodes. Three classes of materials are considered: single crystal compound semiconductors, porous silicon and semiconducting oxides doped with luminescent ions. We show how photoluminescence (PL) and

  8. Horizon Scanning for Pharmaceuticals

    DEFF Research Database (Denmark)

    Lepage-Nefkens, Isabelle; Douw, Karla; Mantjes, GertJan

    In 2016, the Belgian, Dutch, Luxembourg and Austrian governments declared their intention to collaborate on pharmaceutical policy (BeNeLuxA Collaboration). KCE was asked to lead a task force responsible for developing a Horizon Scanning methodology for pharmaceuticals and a possible model...... and filtration of new and emerging pharmaceutical products. It will maintain and update the HS database, organise company pipeline meetings, and disseminate the HSS’s outputs.  The HS unit works closely together with the designated national HS experts in each collaborating country. The national HS experts...

  9. Surface micromachined scanning mirrors

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    1992-01-01

    Both aluminum cantilever and torsional scanning mirrors have been fabricated and their static and dynamic properties are studied experimentally and theoretically. The experiments showed resonance frequencies in the range of 163 k-Hz - 632 kHz for cantilever beams with Q values between 5 and 11....... Torsional mirrors showed resonance frequencies in the range of 410 kHz - 667 kHz with Q values of 10 - 17. All measurements performed at atmospheric pressure. Both types of mechanical structures were deflected electrostatically at large angles (± 5°) more than 1011 times without breaking and without any...

  10. Recovery Of Electrodic Powder From Spent Nickel-Metal Hydride Batteries (NiMH

    Directory of Open Access Journals (Sweden)

    Shin S.M.

    2015-06-01

    Full Text Available This study was focused on recycling process newly proposed to recover electrodic powder enriched in nickel (Ni and rare earth elements (La and Ce from spent nickel-metal hydride batteries (NiMH. In addition, this new process was designed to prevent explosion of batteries during thermal treatment under inert atmosphere. Spent nickel metal hydride batteries were heated over range of 300°C to 600°C for 2 hours and each component was completely separated inside reactor after experiment. Electrodic powder was successfully recovered from bulk components containing several pieces of metals through sieving operation. The electrodic powder obtained was examined by X-ray diffraction (XRD and energy dispersive X-ray spectroscopy (EDX and image of the powder was taken by scanning electron microscopy (SEM. It was finally found that nickel and rare earth elements were mainly recovered to about 45 wt.% and 12 wt.% in electrodic powder, respectively.

  11. Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils

    Directory of Open Access Journals (Sweden)

    Itir Bakis Dogru

    2016-06-01

    Full Text Available In this work, vertically aligned carbon nanotubes (VACNTs grown on aluminum foils were used as flexible supercapacitor electrodes. Aluminum foils were used as readily available, cheap and conductive substrates, and VACNTs were grown directly on these foils through chemical vapor deposition (CVD method. Solution based ultrasonic spray pyrolysis (USP method was used for the deposition of the CNT catalyst. Direct growth of VACNTs on aluminum foils ruled out both the internal resistance of the supercapacitor electrodes and the charge transfer resistance between the electrode and electrolyte. A specific capacitance of 2.61 mF/cm2 at a scan rate of 800 mV/s was obtained from the fabricated electrodes, which is further improved through the bending cycles.

  12. Safety of externally stimulated intracranial electrodes during functional MRI at 1.5T.

    Science.gov (United States)

    Bhattacharyya, Pallab K; Mullin, Jeffery; Lee, Bryan S; Gonzalez-Martinez, Jorge A; Jones, Stephen E

    2017-05-01

    Surgical resection of the epileptogenic zone (EZ) is a potential cure for medically refractory focal epilepsy. Proper identification of the EZ is essential for such resection. Synergistic application of functional magnetic resonance imaging (fMRI) simultaneously with stimulation of a single externalized intracranial stereotactic EEG (SEEG) electrode has the potential to improve identification of the EZ. While most EEG-fMRI studies use the electrodes passively to record electrical activity, it is possible to stimulate the brain using the electrodes by connecting them with conducting cables to the stimulation hardware. In this study, we investigated the effect of MRI-induced heating on a single SEEG electrode and its sensitivity to geometry, configuration, and associated connections required for the stimulation. The temperature increase of a single electrode embedded within a gel phantom and connected to an external stimulation system was measured during 1.5T MRI scans using adjacent fluoroptic temperature sensors. A receive-only split-array head coil and a transmit-receive head coil were used for testing. Sequences included a standard localizer, T1-weighted axial fast low-angle shot (FLASH), gradient echo-planar imaging (GE-EPI) axial fMRI, and a high specific absorption rate T2-weighted turbo spin-echo (TSE) axial scan. Variations of the electrode location and connecting cable configuration were tested. No unacceptable heating was observed with the standard sequences used for evaluation of the EZ. Considerable heating (up to 14°C) was observed with the TSE sequence, which is not used clinically. The temperature increase was insignificant (FLASH, and GE-EPI fMRI may be safely performed in patients with a single SEEG electrode following the configurations tested in this study, but high SAR TSE scans should not be performed in these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The effects of sound level and vibration magnitude on the relative discomfort of noise and vibration.

    Science.gov (United States)

    Huang, Yu; Griffin, Michael J

    2012-06-01

    The relative discomfort caused by noise and vibration, how this depends on the level of noise and the magnitude of vibration, and whether the noise and vibration are presented simultaneously or sequentially has been investigated in a laboratory study with 20 subjects. Noise and vertical vibration were reproduced with all 49 combinations of 7 levels of noise and 7 magnitudes of vibration to allow the discomfort caused by one of the stimuli to be judged relative to the other stimulus using magnitude estimation. In four sessions, subjects judged noise relative to vibration and vibration relative to noise, with both simultaneous and sequential presentations of the stimuli. The equivalence of noise and vibration was not greatly dependent on whether the stimuli were simultaneous or sequential, but highly dependent on whether noise was judged relative to vibration or vibration was judged relative to noise. When judging noise, higher magnitude vibrations appeared to mask the discomfort caused by low levels of noise. When judging vibration, higher level noises appeared to mask the discomfort caused by low magnitudes of vibration. The judgment of vibration discomfort was more influenced by noise than the judgment of noise discomfort was influenced by vibration.

  14. Integral skin electrode for electrocardiography is expendable

    Science.gov (United States)

    1966-01-01

    Inexpensive, expendable skin electrode for use in electrocardiography combines an electrical contact, conductive paste, and a skin-attachment adhesive. Application of the electrode requires only degreasing of the skin area.

  15. Transient vibration of wind turbine blades

    Science.gov (United States)

    Li, Yuanzhe; Li, Minghai; Jiang, Feng

    2017-09-01

    This article aims to the transient vibration of wind turbine blades. We firstly introduce transient vibration and previous studies in this area. The report then shows the fundamental equations and derivation of Euler Equation. A 3-D beam are created to compare the analytical and numerical result. In addition we operate the existing result and Patran result of a truncation wedge beam, especially the frequencies of free vibration and transient vibration. Transient vibration cannot be vanished but in some case it can be reduced.

  16. Detection of Trace Copper Metal at Carbon Nanotube Based Electrodes Using Squarewave Anodic Stripping Voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Changkun; Jeong, Youngsam; Kwon, Yongchai [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of)

    2013-03-15

    We investigate sensitivity and limit of detection (LOD) of trace copper (Cu) metal using pristine carbon nanotube (CNT) and acidified CNT (ACNT) electrodes. Squarewave based anodic stripping voltammetry (SWASV) is used to determine the stripped Cu concentration. Prior to performing the SWASV measurements, its optimal conditions are determined and with that, effects of potential scan rate and Cu{sup 2+} concentration on stripping current are evaluated. The measurements indicate that (1) ACNT electrode shows better results than CNT electrode and (2) stripping is controlled by surface reaction. In the given Cu{sup 2+} concentration range of 25-150 ppb, peak stripping current has linearity with Cu{sup 2+} concentration. Quantitatively, sensitivity and LOD of Cu in ACNT electrode are 9.36 μA μM{sup -1} and 3 ppb, while their values are 3.99 μA μM{sup -1} and 3 ppb with CNT electrode. We evaluate the effect of three different water solutions (deionized water, tap water and river water) on stripping current and the confirm types of water don't affect the sensitivity of Cu. It turns out by optical inspection and cyclic voltammetry that superiority of ACNT electrode to CNT electrode is attributed to exfoliation of CNT bundles and improved interfacial adhesion occurring during oxidation of CNTs.

  17. Activated graphene nanoplatelets as a counter electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jiawei [Center for Advanced Photovoltaics, Department of Electrical Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota 58102 (United States); Zhou, Zhengping; Qiao, Qiquan, E-mail: qiquan.qiao@sdstate.edu [Center for Advanced Photovoltaics, Department of Electrical Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Sumathy, K. [Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota 58102 (United States); Yang, Huojun [Department of Construction Management and Engineering, North Dakota State University, Fargo, North Dakota 58102 (United States)

    2016-04-07

    Activated graphene nanoplatelets (aGNPs) prepared by a hydrothermal method using KOH as activating agent were used as counter electrode for high efficiency dye-sensitized solar cells (DSSCs). After the KOH activation, the scanning electron microscopy image shows that aGNPs demonstrate a more curled, rough, and porous morphology which could contain both micro- and mesopores. The KOH activation changed the stacked layers of GNPs to a more crumpled and curved morphology. The microstructure of large pores significantly increased the electrode surface area and roughness, leading to the high electrocatalytic activity for triiodide reduction at the counter electrode. The DSSCs fabricated using aGNP as counter electrodes were tested under standard AM 1.5 illumination with an intensity of 91.5 mW/cm{sup 2}. The device achieved an overall power conversion efficiency of 7.7%, which is comparable to the conventional platinum counter electrode (8%). Therefore, the low cost and high performance aGNP based counter electrode is a promising alternative to conventional Pt counter electrode in DSSCs.

  18. Production and characterization of TI/PbO2 electrodes by a thermal-electrochemical method

    Directory of Open Access Journals (Sweden)

    Laurindo Edison A.

    2000-01-01

    Full Text Available Looking for electrodes with a high overpotential for the oxygen evolution reaction (OER, useful for the oxidation of organic pollutants, Ti/PbO2 electrodes were prepared by a thermal-electrochemical method and their performance was compared with that of electrodeposited electrodes. The open-circuit potential for these electrodes in 0.5 mol L-1 H2SO4 presented quite stable similar values. X-ray diffraction analyses showed the thermal-electrochemical oxide to be a mixture of ort-PbO, tetr-PbO and ort-PbO2. On the other hand, the electrodes obtained by electrodeposition were in the tetr-PbO2 form. Analyses by scanning electron microscopy showed that the basic morphology of the thermal-electrochemical PbO2 is determined in the thermal step, being quite distinct from that of the electrodeposited electrodes. Polarization curves in 0.5 mol L-1 H2SO4 showed that in the case of the thermal-electrochemical PbO2 electrodes the OER was shifted to more positive potentials. However, the values of the Tafel slopes, quite high, indicate that passivating films were possibly formed on the Ti substrates, which could eventually explain the somewhat low current values for OER.

  19. Electropolymerization of phenol on a vitreous carbon electrode in alkaline aqueous solution at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Belhadj Tahar, Noureddine [Departement de Chimie, Faculte des Sciences de Monastir, Universite de Monastir, Route de Kairouan, 5000 Monastir (Tunisia); Savall, Andre, E-mail: savall@chimie.ups-tlse.f [Laboratoire de Genie Chimique, CNRS, Universite Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse (France)

    2009-12-30

    Electrochemical oxidation of phenol in basic aqueous solution has been studied on a vitreous carbon electrode at different temperatures in the range of 25-85 deg. C by cyclic voltammetry and chronoamperometry techniques. The electrochemical oxidation of phenol led to a complete deactivation of the electrode, whatever the temperature used, as a result of the deposition of an adhesive and insulating polymeric film. The electrochemical activity of the electrode was progressively restored by repeated potential scans in the range of water stability only when conducted at high temperatures; electrode reactivation was explained by an increase in the polymeric film permeability for both electrons (electron tunneling) and phenol molecules (diffusion). Chronoamperometric measurements carried out in the potential region of water stability have shown that electrode passivation was reduced or prevented at high temperatures. For chronoamperometry performed at the onset of oxygen evolution, the electrode remained active even at low temperatures because the discharge of water involved the production of hydroxyl radicals that destructively oxidized the polymeric film. The effect of temperature on electrode reactivation was determined by the measurement of current at an electrolysis time of 300 s; an increase of the temperature from 25 to 85 deg. C amplified the current from 0.212 to 5.373 mA.

  20. Improvement of Amperometric Sensor Used for Determination of Nitrate with Polypyrrole Nanowires Modified Electrode

    Directory of Open Access Journals (Sweden)

    Shi-chang Wang

    2005-12-01

    Full Text Available Polypyrrole(PPy nanowire modified electrodes were developed by template-freeelectrochemical method based on graphite electrode. The modified electrode wascharacterized by their amperometric response towards nitrate ions. Before reduction ofnitrate ions, electrochemical solid-phase extraction (EC-SPE of nitrate in/on modifiedelectrodes was conducted. It is found that the unusual nanowired structure of polypyrrolelayer (instead of well known cauliflower structure allows us to increase the effectivesurface area of the electrode and subsequently the sensitivity. And the effects ofelectrochemical preparation parameters of PPy nanowire modified electrodes on theircorresponding characters were evaluated. The experimental results show that theelectrochemical preparation parameters of the modified electrodes such as scan rate,polymerization potential, temperature of polymerization solution and polymerization timehave significantly effects on the morphology of PPy nanowires and subsequently effectivesurface area of the electrode and electroreduction current density of nitrate. Thedetermination sensitivity may be varied according to the modification parameters. Under acertain polymerization conditions, the corresponding sensitivity reaches 336.28 mA/M cm2 and the detection limit is 1.52×10-6 M. The proposed method was successfully applied in thedetection of nitrate in the real samples.

  1. Confocal scanning Mueller polarimeter

    Science.gov (United States)

    Lompado, Arthur

    2009-08-01

    We describe the design, construction, calibration and testing of a confocal scanning Mueller polarimeter. A polarization state generator and polarization state analyzer have been inserted into the optical path of a conventional confocal scanning imager to collect the reflectance Muller matrix of samples measuring up to 6.26 mm on a side. Four sources are available for sample interrogation using diode lasers centered at 532 nm, 635 nm, 670 nm, and 785 nm. The device captures all required imagery to calculate the Mueller matrix of each image pixel in approximately 90 s. These matrices are then reduced into polarization imagery such as the diattenuation, retardance and depolarization index. Oftentimes this polarization imagery is quite different and potentially more informative than a conventional intensity image. There are a number of fields that can benefit from alternative/enhanced imagery, most notably in the biomedical, discrimination, and target recognition communities. The sensor has been designed for biomedical applications aimed at improving the technique of noninvasive detection of melanoma lesions.

  2. Morphology Effect of Vertical Graphene on the High Performance of Supercapacitor Electrode.

    Science.gov (United States)

    Zhang, Yu; Zou, Qionghui; Hsu, Hua Shao; Raina, Supil; Xu, Yuxi; Kang, Joyce B; Chen, Jun; Deng, Shaozhi; Xu, Ningsheng; Kang, Weng P

    2016-03-23

    Graphene and its composites are widely investigated as supercapacitor electrodes due to their large specific surface area. However, the severe aggregation and disordered alignment of graphene sheets hamper the maximum utilization of its surface area. Here we report an optimized structure for supercapacitor electrode, i.e., the vertical graphene sheets, which have a vertical structure and open architecture for ion transport pathway. The effect of morphology and orientation of vertical graphene on the performance of supercapacitor is examined using a combination of model calculation and experimental study. Both results consistently demonstrate that the vertical graphene electrode has a much superior performance than that of lateral graphene electrode. Typically, the areal capacitances of a vertical graphene electrode reach 8.4 mF/cm(2) at scan rate of 100 mV/s; this is about 38% higher than that of a lateral graphene electrode and about 6 times higher than that of graphite paper. To further improve its performance, a MnO2 nanoflake layer is coated on the surface of graphene to provide a high pseudocapacitive contribution to the overall areal capacitance which increases to 500 mF/cm(2) at scan rate of 5 mV/s. The reasons for these significant improvements are studied in detail and are attributed to the fast ion diffusion and enhanced charge storage capacity. The microscopic manipulation of graphene electrode configuration could greatly improve its specific capacitance, and furthermore, boost the energy density of supercapacitor. Our results demonstrate that the vertical graphene electrode is more efficient and practical for the high performance energy storage device with high power and energy densities.

  3. Characteristic of Thermally Reduced Graphene Oxide as Supercapacitors Electrode Materials

    Science.gov (United States)

    Marcelina, Vika; Syakir, Norman; Wyantuti, Santhy; Hartati, Yeni W.; Hidayat, Rahmat; Fitrilawati

    2017-05-01

    We investigated graphene like material named reduced graphene oxide (RGO) as an electrode material by employed graphene oxide (GO). Thin film of GO was prepared on the indium thin oxide (ITO) substrate by spin-coating method using varied concentration of GO that dispersed in water. In order to remove its oxygen contained, GO film was thermally reduced at 200 °C for 1 hour. We used cyclic voltammetry to measure its CV characteristic and estimated its specific capacitance. We obtained the highest specific capacitance of 6.53 mF g-1 that measured from 4 mg ml-1 RGO thin film at scan rate 25 mVs-1.

  4. Multi-beam laser Doppler vibrometry for acoustic landmine detection using airborne and mechanically coupled vibration

    Science.gov (United States)

    Aranchuk, Vyacheslav; Sabatier, James M.; Lal, Amit K.; Hess, Cecil F.; Burgett, Richard D.; O'Neill, Michael

    2005-06-01

    Acoustic-to-seismic coupling-based technology using a multi-beam laser Doppler vibrometer (LDV) as a vibration sensor has proved itself as a potential confirmatory sensor for buried landmine detection. The multi-beam LDV simultaneously measures the vibration of the ground at 16 points spread over a 1-meter line. The multi-beam LDV was used in two modes of operation: stop-and-stare, and continuously scanning beams. The noise floor of measurements in the continuously scanning mode increased with increasing scanning speed. This increase in the velocity noise floor is caused by dynamic speckles. The influence of amplitude and phase fluctuations of the Doppler signal due to dynamic speckles on the phase locked loop (PLL) demodulated output is discussed in the paper. Either airborne sound or mechanical shakers can be used as a source to excite vibration of the ground. A specially-designed loudspeaker array and mechanical shakers were used in the frequency range from 85-2000 Hz to excite vibrations in the ground and elicit resonances in the mine. The efficiency of these two methods of excitation has been investigated and is discussed in the paper. This research is supported by the U. S. Army Research, Development, and Engineering Command, Night, Vision and Electronic Sensors Directorate under Contract DAAB15-02-C-0024.

  5. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling.

    Science.gov (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W

    2016-10-07

    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  6. Vibrations on board and health effects

    DEFF Research Database (Denmark)

    Jensen, Anker; Jepsen, Jørgen Riis

    2014-01-01

    for such relation among seafarers except for fishermen, who, however, are also exposed to additional recognised physical risk factors at work. The assessment and reduction of vibrations by naval architects relates to technical implications of this impact for the ships’ construction, but has limited value......There is only limited knowledge of the exposure to vibrations of ships’ crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places...... of the health consequences of whole body vibrations in land-transportation, such exposure at sea may affect ships’ passengers and crews. While the relation of back disorders to high levels of whole body vibration has been demonstrated among e.g. tractor drivers, there are no reported epidemiological evidence...

  7. An ionization chamber with magnetic levitated electrodes

    CERN Document Server

    Kawaguchi, T

    1999-01-01

    A new type of ionization chamber which has magnetically levitated electrodes has been developed. The electrodes are supplied voltages for the repelling of ions by a battery which is also levitated with the electrodes. The characteristics of this ionization chamber are investigated in this paper.

  8. Membrane electrode assembly for a fuel cell

    Science.gov (United States)

    Prakash, Surya (Inventor); Narayanan, Sekharipuram R. (Inventor); Atti, Anthony (Inventor); Olah, George (Inventor); Smart, Marshall C. (Inventor)

    2006-01-01

    A catalyst ink for a fuel cell including a catalytic material and poly(vinylidene fluoride). The ink may be applied to a substrate to form an electrode, or bonded with other electrode layers to form a membrane electrode assembly (MEA).

  9. Electrode placement during electro-desalination of

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Andersson, Lovisa C. H.

    2017-01-01

    , where the most fragile parts thus can be desalinated without physically placing electrodes on them. The Cl removal rate was higher in the areas closest to the electrodes and slowest in the part, which was not placed directly between the electrodes. This is important to incorporate in the monitoring...

  10. Advancements in electrode design and laser techniques for fabricating micro-electrode arrays as part of a retinal prosthesis.

    Science.gov (United States)

    Dodds, C W D; Schuettler, M; Guenther, T; Lovell, N H; Suaning, G J

    2011-01-01

    Retinal micro-electrode arrays (MEAs) for a visual prosthesis were fabricated by laser structuring of platinum (Pt) foil and liquid silicone rubber. A new design was created using a folding technique to create a multi-layered array from a single Pt sheet. This method allowed a reduction in both the electrode pitch, and the overall width of the array, while maintaining coplanar connection points for more stable interconnections to other components of the system. The design also included a section which could be rolled to create a cylindrical segment in order to minimise the size of the exit in the sclera after implantation. A picosecond mode-locked 532 nm laser system was investigated as a replacement for the nanosecond Q-switched 1064 nm laser currently in use. Trials showed that the ps system could produce high quality electrode tracks with a minimum pitch of 30 μm, less than 40% the pitch achievable with the ns laser. A method was investigated for the cutting of Pt foils without damaging the underlying silicone by laser machining to a depth just below the thickness of the foil. Initial samples showed promise with full penetration of the foil only occurring at cross points of the laser paths. The ps laser was also used to create roughened surfaces, in order to increase the electrochemical surface area of the electrodes. Surfaces were imaged using a scanning electron microscope, and compared to surfaces roughened with the ns laser. The ps laser was seen to offer a reduction in feature size, as well as an increase in control over the appearance of the electrode surface.

  11. Characterization of Platinum Electrodes and In-situ Cell Confluency Measurement Based on Current Changes of Cell-Electrodes

    Directory of Open Access Journals (Sweden)

    Chin Fhong SOON

    2015-04-01

    Full Text Available This study aimed at the development of a biosensor to examine the growth confluency of human derived keratinocytes (HaCaT cell lines in-situ. The biosensor consists of a sputter- coated glass substrate with platinum patterns. Cells were grown on the conductive substrates and the confluency of the cells were monitored in-situ based on the conductivity changes of the substrates. Characterization of the cell proliferation and confluency were interrogated using electrical cell-substrate impedance sensing (ECIS techniques and current change of cells using a pico-ammeter. The investigation was followed by the electrical characterization of the platinum electrode (PE using a two probe I-V measurement system. The surface morphology of platinum electrodes were studied using an atomic force microscopy (AFM and the HaCaT cell morphology was studied using Field-Emission Scanning Electron Microscopy (FE-SEM. The microscopy results showed that the cells coupled and proliferated on the platinum electrodes. For monitoring the conductivity and impedance changes of the cell-electrode in-situ, the cover of a Petri dish was inserted with pogo pins to be in contact with the platinum electrodes. The impedance was sampled using the ECIS technique at a twenty-four hour interval. In our findings, the cell proliferation rate can be measured by observing the changes in capacitance or impedance measured at low ac frequencies ranged from 10 - 1 kHz. In good agreement, the current measured at micro-ampere range by the biosensor decreased as the cell coverage area increased over the time. Thus, the percent of cell confluence was shown inversely proportional to the current changes.

  12. Point Electrode Studies of the Solid Electrolyte-Electrode Interface

    DEFF Research Database (Denmark)

    Jacobsen, Torben

    In the development of new electrode materials for high temperature Solid Oxide Fuel Cells methods are needed for the electrochemical evaluation of the catalytic properties of the materials. A major problem in the comparison of materials is how to determine the geometry and the effective length of......$mm diameter) platinum electrodes mounted in a thin alumina tube resting on a polished 8 mol\\% yttria stabilized zirconia electrolyte at $1000^\\circ$C in air. The results where analysed in terms of the equivalent circuit $R_{YSZ}(R_r Q)$ in the frequency range 0.5MHz--1kHz. Fig.\\,1 shows...... capacities calculated from CPA elements can be questioned, this indicates a change in the interfacial structure. It is noted that after the strong activation in step 11-12 the interface slowly (timescale of days) relaxes toward the equilibrium....

  13. The apparent mass and mechanical impedance of the hand and the transmission of vibration to the fingers, hand, and arm

    Science.gov (United States)

    Concettoni, Enrico; Griffin, Michael

    2009-08-01

    Although hand-transmitted vibration causes injury and disease, most often evident in the fingers, the biodynamic responses of the fingers, hand, and arm are not yet well understood. A method of investigating the motion of the entire finger-hand-arm system, based on the simultaneous measurement of the biodynamic response at the driving point and the transmissibility to many points on the finger-hand-arm system, is illustrated. Fourteen male subjects participated in an experiment in which they pushed down on a vertically vibrating metal plate with their right forearm pronated and their elbow bent at 90°. The apparent mass and mechanical impedance of the finger-hand-arm system were measured for each of seven different contact conditions between the plate and the fingers and hand. Simultaneously, the vibration of the fingers, hand, and arm was measured at 41 locations using a scanning laser Doppler vibrometer. Transmissibilities showed how the vibration was transmitted along the arm and allowed the construction of spectral operating deflection shapes showing the vibration pattern of the fingers, hand, and arm for each of the seven contact conditions. The vibration patterns at critical frequencies for each contact condition have been used to explain features in the driving point biodynamic responses and the vibration behaviour of the hand-arm system. Spectral operating deflection shapes for the upper limb assist the interpretation of driving point biodynamic responses and help to advance understanding required to predict, explain, and control the various effects of hand-transmitted vibration.

  14. 21 CFR 870.1220 - Electrode recording catheter or electrode recording probe.

    Science.gov (United States)

    2010-04-01

    ... recording probe. 870.1220 Section 870.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... Devices § 870.1220 Electrode recording catheter or electrode recording probe. (a) Identification. An electrode recording catheter or an electrode recording probe is a device used to detect an intracardiac...

  15. Submicron Surface Vibration Profiling Using Doppler Self-Mixing Techniques

    Directory of Open Access Journals (Sweden)

    Tânia Pereira

    2014-01-01

    Full Text Available Doppler self-mixing laser probing techniques are often used for vibration measurement with very high accuracy. A novel optoelectronic probe solution is proposed, based on off-the-shelf components, with a direct reflection optical scheme for contactless characterization of the target’s movement. This probe was tested with two test bench apparatus that enhance its precision performance, with a linear actuator at low frequency (35 µm, 5–60 Hz, and its dynamics, with disc shaped transducers for small amplitude and high frequency (0.6 µm, 100–2500 Hz. The results, obtained from well-established signal processing methods for self-mixing Doppler signals, allowed the evaluation of vibration velocity and amplitudes with an average error of less than 10%. The impedance spectrum of piezoelectric (PZ disc target revealed a maximum of impedance (around 1 kHz for minimal Doppler shift. A bidimensional scan over the PZ disc surface allowed the categorization of the vibration mode (0, 1 and explained its deflection directions. The feasibility of a laser vibrometer based on self-mixing principles and supported by tailored electronics able to accurately measure submicron displacements was, thus, successfully demonstrated.

  16. Online Monitoring and Analysis of Hydroabrasive Cutting by Vibration

    Directory of Open Access Journals (Sweden)

    Sergej Hloch

    2013-01-01

    Full Text Available The paper deals with the investigation of accompanying physical process, vibration, arising from the abrasive waterjet cutting of stainless steel. Samples of the square cross-section with the use of preplanned range of technological factors were cut. During the cutting of target material AISI 309 vibration by piezoelectrical accelerometers PCB IMI 607 A11 was recorded. The accelerometers were oriented perpendicular to the direction of the cut. Scanned data were processed through a virtual instrument created in LabVIEW 6.8. Sampling frequency of the recorded signal was 30 kHz. Investigated was development of the RMS value in particular frequencies. In order to confirm hypothetical assumptions about direct relation between vibration emission and surface quality, further experiment will be done. Current results are possible used for detection of defects during hydroabrasive cutting of materials, in case of focusing tube fracture, orifice damage in the cutting head, in case of fragile material cutting by means of controlled penetration.

  17. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dorraji, Parisa S.; Jalali, Fahimeh, E-mail: fjalali@razi.ac.ir

    2016-04-01

    An electrochemical sensor for the sensitive detection of acyclovir was developed by the electropolymerization of Eriochrome black T at a pretreated glassy carbon electrode. The surface morphology of the modified electrode was characterized by field emission scanning electron microscopy. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of acyclovir on the modified electrode surface relative to the unmodified electrode. The detection limit of 12 nM and two linear calibration ranges of 0.03–0.3 μM and 0.3–1.5 μM were obtained for acyclovir determination using a differential pulse voltammetric method in acetate buffer (0.1 M, pH 4.0). Real sample studies were carried out in human blood serum and pharmaceutical formulations, which offered good recovery (98–102%). The electrode showed excellent reproducibility, selectivity and antifouling effects. - Graphical abstract: Eriochrome black T (EBT) was electropolymerized at the surface of a pretreated glassy carbon electrode. The modified electrode enhanced the oxidation current of acyclovir, significantly. The sensor was used in the determination of acyclovir in human blood serum samples and pharmaceutical dosages. - Highlights: • Construction of a voltammetric sensor for acyclovir is described. • Eriochrome black T was electropolymerized at the electrode surface. • The sensor improved the sensitivity of the electrode for monitoring acyclovir. • The recoveries and standard deviations were acceptable in spiked human blood serum. • The proposed sensor had good lifetime to be used in biological matrices.

  18. An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer.

    Science.gov (United States)

    Zhang, Qiang; Shi, Shengjun; Chen, Weishan

    2016-03-01

    An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer is proposed. The transducer is a Langevin type transducer which is composed of an exponential horn, four groups of PZT ceramics and a back beam. The exponential horn can focus the vibration energy, and can enlarge vibration amplitude and velocity efficiently. A bending vibration model of the transducer is first constructed, and subsequently an electromechanical coupling model is constructed based on the vibration model. In order to obtain the most suitable excitation position of the PZT ceramics, the effective electromechanical coupling coefficient is optimized by means of the quadratic interpolation method. When the effective electromechanical coupling coefficient reaches the peak value of 42.59%, the optimal excitation position (L1=22.52 mm) is found. The FEM method and the experimental method are used to validate the developed analytical model. Two groups of the FEM model (the Group A center bolt is not considered, and but the Group B center bolt is considered) are constructed and separately compared with the analytical model and the experimental model. Four prototype transducers around the peak value are fabricated and tested to validate the analytical model. A scanning laser Doppler vibrometer is employed to test the bending vibration shape and resonance frequency. Finally, the electromechanical coupling coefficient is tested indirectly through an impedance analyzer. Comparisons of the analytical results, FEM results and experiment results are presented, and the results show good agreement. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. [Short-term memory characteristics of vibration intensity tactile perception on human wrist].

    Science.gov (United States)

    Hao, Fei; Chen, Li-Juan; Lu, Wei; Song, Ai-Guo

    2014-12-25

    In this study, a recall experiment and a recognition experiment were designed to assess the human wrist's short-term memory characteristics of tactile perception on vibration intensity, by using a novel homemade vibrotactile display device based on the spatiotemporal combination vibration of multiple micro vibration motors as a test device. Based on the obtained experimental data, the short-term memory span, recognition accuracy and reaction time of vibration intensity were analyzed. From the experimental results, some important conclusions can be made: (1) The average short-term memory span of tactile perception on vibration intensity is 3 ± 1 items; (2) The greater difference between two adjacent discrete intensities of vibrotactile stimulation is defined, the better average short-term memory span human wrist gets; (3) There is an obvious difference of the average short-term memory span on vibration intensity between the male and female; (4) The mechanism of information extraction in short-term memory of vibrotactile display is to traverse the scanning process by comparison; (5) The recognition accuracy and reaction time performance of vibrotactile display compares unfavourably with that of visual and auditory. The results from this study are important for designing vibrotactile display coding scheme.

  20. Modeling and parameter identification of an active anti-vibration system

    Science.gov (United States)

    Beadle, Brad M.; Hurlebaus, Stefan; Stoebener, Uwe; Gaul, Lothar

    2005-05-01

    In the fields of high-resolution metrology and manufacturing, effective anti-vibration measures are required to obtain precise and repeatable results. This is particularly true when the amplitudes of ambient vibration and the dimensions of the investigated or manufactured structure are comparable, e.g. in sub-micron semiconductor chip production, holographic interferometry, confocal optical imaging, and scanning probe microscopy. In the active anti-vibration system examined, signals are acquired by extremely sensitive vibration detectors, and the vibration is reduced using a feedback controller to drive electrodynamic actuators. This paper deals with the modeling of this anti-vibration system. First, a six-degree-of-freedom rigid body model of the system is developed. The unknown parameters of the unloaded system, including actuator transduction constants, spring stiffness, damping, moments of inertia, and the location of the center of mass, are determined by comparing measured transfer functions to those calculated using the updated model. The model is then re-updated for the case of an arbitrarily loaded system. The responses predicted by the final updated model agree well with the experimental measurements, thereby giving confidence in the model and the updating procedure.

  1. Selected characteristics of vibration signal at a minimal energy consumption for the rock disintegration

    Directory of Open Access Journals (Sweden)

    Viera Miklúšová

    2011-12-01

    Full Text Available The rock disintegration process involves the action of disintegrating tool, resulting in the formation of forced mechanicaloscillations of all components, i.e. the disintegration device, tool and the rock. The vibration signal scanned during the process dependson all of the presented components, on their properties and on the regime parameters. The paper presents relations of the vibrationsignal characteristics, effective values of the acceleration of vibration oscillations and dominant frequencies, and the energyconsumption needed for the rock disintegration, which is characterized by a specific disintegration energy. Presented results wereacquired as a part of laboratory experimental research on the rotary drilling of rocks.

  2. Scanning quantum decoherence microscopy.

    Science.gov (United States)

    Cole, Jared H; Hollenberg, Lloyd C L

    2009-12-09

    The use of qubits as sensitive nanoscale magnetometers has been studied theoretically and recently demonstrated experimentally. In this paper we propose a new concept, in which a scanning two-state quantum system is used to probe a sample through the subtle effects of decoherence. Mapping both the Hamiltonian and decoherence properties of a qubit simultaneously provides a unique image of the magnetic (or electric) field properties at the nanoscale. The resulting images are sensitive to the temporal as well as spatial variation in the fields created by the sample. As examples we theoretically study two applications; one from condensed matter physics, the other biophysics. The individual components required to realize the simplest version of this device (characterization and measurement of qubits, nanoscale positioning) have already been demonstrated experimentally.

  3. Automatic Ultrasound Scanning

    DEFF Research Database (Denmark)

    Moshavegh, Ramin

    Medical ultrasound has been a widely used imaging modality in healthcare platforms for examination, diagnostic purposes, and for real-time guidance during surgery. However, despite the recent advances, medical ultrasound remains the most operator-dependent imaging modality, as it heavily relies...... on the user adjustments on the scanner interface to optimize the scan settings. This explains the huge interest in the subject of this PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been to develop automated techniques to minimize the unnecessary settings...... on the scanners, and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new quantitative measures. Thus, four major issues concerning automation of the medical ultrasound are addressed in this PhD project. They touch upon gain adjustments in ultrasound, automatic synthetic aperture image...

  4. Vibration characteristics of casing string under the exciting force of an electric vibrator

    Directory of Open Access Journals (Sweden)

    Yiyong Yin

    2017-11-01

    Full Text Available Vibration cementing is a new technique that can significantly improve the bond strength of cementing interface. To popularize this technique, it is necessary to solve the key problem of how to make cementing string generate downhole radial vibration in the WOC stage. For this purpose, an electric vibrator was developed. With this vibrator, electric energy is converted into mechanical energy by means of a high-temperature motor vibration unit. The motor vibration unit rotates the eccentric block through an output shaft to generate an exciting source, which produces an axial-rotating exciting force at the bottom of the casing string. Then, the vibration characteristics of vertical well casing string under the exciting force were analyzed by using the principal coordinate analysis method, and the response model of casing string to an electric vibrator was developed. Finally, the effects of casing string length, exciting force and vibration frequency on the vibration amplitude at the lowermost of the casing string were analyzed based on a certain casing program. It is indicated that the casing string length and the square of vibration frequency are inversely proportional to the vibration amplitude at the lowermost of the casing string, and the exciting force is proportional to the vibration amplitude at the lowermost of the casing string. These research results provide a theoretical support for the application of vibration cementing technology to the cementing sites with different requirements on well depth and amplitude.

  5. Glycolate adsorption at gold and platinum electrodes: A theoretical and in situ spectroelectrochemical study

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Jose Manuel; Blanco, Raquel; Orts, Jose Manuel; Perez, Juan Manuel [Departamento de Quimica Fisica e Instituto Universitario de Electroquimica, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Rodes, Antonio, E-mail: Antonio.Rodes@ua.e [Departamento de Quimica Fisica e Instituto Universitario de Electroquimica, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2010-02-15

    The adsorption of glycolate anions at sputtered gold thin-film electrodes was studied in perchloric acid solutions by cyclic voltammetry experiments combined with in situ Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Infrared Reflection Absorption Spectroscopy under attenuated total reflection conditions (ATR-SEIRAS). Theoretical harmonic vibrational frequencies and band intensities obtained from B3LYP/LANL2DZ,6-31+G(d) calculations for glycolate species adsorbed on Au clusters with (1 1 1) orientation were used to interpret the experimental spectra. Vibrational data confirm the bidentate bonding of glycolate anions through the oxygen atoms of the carboxylate group, in a bridge configuration with the OCO plane perpendicular to the metal surface. The DFT calculations show no significant effect of the total charge of the metal cluster-adsorbate adduct on the vibrational frequencies of adsorbed glycolate species. The infrared experimental study is extended to platinum films electrochemically deposited onto sputtered gold thin-film electrodes showing the potential-dependent formation of adsorbed CO upon dissociative adsorption of glycolate anions. As in the case of gold, the reversible adsorption of glycolate anions takes place in a bidentate configuration as predicted by DFT calculations for glycolate adsorbed on Pt(1 1 1) clusters. At low glycolic acid concentration, the in situ ATR-SEIRA spectra evidence the formation of adsorbed oxalate as reaction intermediate.

  6. Powder processing of hybrid titanium neural electrodes

    Science.gov (United States)

    Lopez, Jose Luis, Jr.

    A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.

  7. Electrostatic MEMS vibration energy harvester for HVAC applications with impact-based frequency up-conversion

    Science.gov (United States)

    Oxaal, J.; Hella, M.; Borca-Tasciuc, D.-A.

    2016-12-01

    This paper reports on electrostatic MEMS vibration energy harvesters with gap-closing interdigitated electrodes, designed for and tested on HVAC air ducts. The harvesters were fabricated on SOI wafers with 200 µm device layer using a custom microfabrication process. Designs with aspects ratio (electrodes’ gap versus depth) of 10 and 20 were implemented, while the overall footprint was approximately 1 cm  ×  1 cm in both cases. In order to enhance the power output, a dual-level physical stopper system was designed to control the minimum gap between the electrodes, which is a key parameter in the conversion process. The dual-level stopper utilizes cantilever beams to absorb a portion of the impact energy as the electrodes approach the impact point, and a film of parylene with nanometer thickness deposited on the electrode sidewalls. The parylene layer defines the absolute minimum gap and provides electrical insulation. The fabricated devices were first tested on a vibration shaker to characterize the resonant behavior. Devices with aspect ratio 10 were found to exhibit frequency up-conversion, which enhances the amount of converted power. Devices with both aspect ratios were found to exhibits spring hardening due to impact with the stoppers and spring softening behavior at increasing voltage bias. The highest power measured on shaker table for sinusoidal vibrations was 3.13 µW (includes enhancement due to frequency up-conversion driven by impact) for aspect ratio 10, and 0.166 µW for aspect ratio 20. The corresponding dimensional figure-of-merit, defined as the power output normalized to vibration acceleration and frequency, squared voltage and device mass, was in the range of 10 · 10-8 m V-2 for both devices, about an order of magnitude higher than state-of-the-art. Testing was carried out on HVAC air duct vibrating with an RMS acceleration of 155 mg RMS, a primary frequency of 60 Hz and a PSD of 7.15 · 10-2 g2 Hz-1. The peak power measured was

  8. Vibrational damping of composite materials

    Science.gov (United States)

    Biggerstaff, Janet M.

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss factor and modulus could be tailored by changing the angle, were produced and investigated. The addition of particles between composite prepreg layers to increase damping was studied. Electroviscoelastic materials that drastically changed properties such as loss factor and modulus with an applied voltage were manufactured and tested.

  9. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.

    2011-12-01

    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  10. Dynamical response of vibrating ferromagnets

    CERN Document Server

    Gaganidze, E; Ziese, M

    2000-01-01

    The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...

  11. Vibrational coupling in plasmonic molecules.

    Science.gov (United States)

    Yi, Chongyue; Dongare, Pratiksha D; Su, Man-Nung; Wang, Wenxiao; Chakraborty, Debadi; Wen, Fangfang; Chang, Wei-Shun; Sader, John E; Nordlander, Peter; Halas, Naomi J; Link, Stephan

    2017-10-31

    Plasmon hybridization theory, inspired by molecular orbital theory, has been extremely successful in describing the near-field coupling in clusters of plasmonic nanoparticles, also known as plasmonic molecules. However, the vibrational modes of plasmonic molecules have been virtually unexplored. By designing precisely configured plasmonic molecules of varying complexity and probing them at the individual plasmonic molecule level, intramolecular coupling of acoustic modes, mediated by the underlying substrate, is observed. The strength of this coupling can be manipulated through the configuration of the plasmonic molecules. Surprisingly, classical continuum elastic theory fails to account for the experimental trends, which are well described by a simple coupled oscillator picture that assumes the vibrational coupling is mediated by coherent phonons with low energies. These findings provide a route to the systematic optical control of the gigahertz response of metallic nanostructures, opening the door to new optomechanical device strategies. Published under the PNAS license.

  12. A night with good vibrations

    CERN Multimedia

    2002-01-01

    Next week-end, the Geneva Science History Museum invites you to a Science Night under the banner of waves and vibrations. Scientists, artists and storytellers from more than forty institutes and local or regional associations will show that waves and vibrations form an integral part of our environment. You will be able to get in contact with the nature of waves through interactive exhibitions on sound and light and through hands-on demonstrations arranged in the Park of the Perle du Lac. On the CERN stand, you will be able to measure the speed of light with a bar of chocolate, and understand the scattering of waves with plastic ducks. Amazing, no? In addition to the stands, the Night will offer many other activities: reconstructions of experiments, a play, a concert of crystal glasses, an illuminated fountain, a house of spirits. More information Science Night, 6 and 7 July, Park of the Perle du Lac, Geneva

  13. Space Suit Electrocardiographic Electrode Selection: Are commercial electrodes better than the old Apollo technology?

    Science.gov (United States)

    Redmond, M.; Polk, J. D.; Hamilton, D.; Schuette, M.; Guttromson, J.; Guess, T.; Smith, B.

    2005-01-01

    The NASA Manned Space Program uses an electrocardiograph (ECG) system to monitor astronauts during extravehicular activity (EVA). This ECG system, called the Operational Bioinstrumentation System (OBS), was developed during the Apollo era. Throughout the Shuttle program these electrodes experienced failures during several EVAs performed from the Space Shuttle and International Space Station (ISS) airlocks. An attempt during Shuttle Flight STS-109 to replace the old electrodes with new commercial off-the-shelf (COTS) disposable electrodes proved unsuccessful. One assumption for failure of the STS-109 COTS electrodes was the expansion of trapped gases under the foam electrode pad, causing the electrode to be displaced from the skin. Given that our current electrodes provide insufficient reliability, a number of COTS ECG electrodes were tested at the NASA Altitude Manned Chamber Test Facility. Methods: OBS disposable electrodes were tested on human test subjects in an altitude chamber simulating an Extravehicular Mobility Unit (EMU) operating pressure of 4.3 psia with the following goals: (1) to confirm the root cause of the flight certified, disposable electrode failure during flight STS-109. (2) to identify an adequate COTS replacement electrode and determine if further modifications to the electrodes are required. (3) to evaluate the adhesion of each disposable electrode without preparation of the skin with isopropyl alcohol. Results: There were several electrodes that failed the pressure testing at 4.3psia, including the electrodes used during flight STS-109. Two electrodes functioned well throughout all testing and were selected for further testing in an EMU at altitude. A vent hole placed in all electrodes was also tested as a possible solution to prevent gas expansion from causing electrode failures. Conclusions: Two failure modes were identified: (1) foam-based porous electrodes entrapped air bubbles under the pad (2) poor adhesion caused some electrodes to

  14. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2013-01-01

    Full Text Available The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR. The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM and transmission electron microscope (TEM. It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs irreversibly at a potential about 214 mV less negative than at a bare GC electrode in pH 7.0 buffer solution. Cyclic voltammetric and rotating disk electrode (RDE techniques indicated that the MHAQ/MWCNTs nanohybrid has high electrocatalytic activity for the two-electron reduction of oxygen in the studied potential range. The kinetic parameters of ORR at the MHAQ/MWCNTs nanohybrid modified GC electrode were also determined by RDE and EIS techniques.

  15. Quasi-reference electrodes in confined electrochemical cells can result in in situ production of metallic nanoparticles.

    Science.gov (United States)

    Perera, Rukshan T; Rosenstein, Jacob K

    2018-01-31

    Nanoscale working electrodes and miniaturized electroanalytical devices are valuable platforms to probe molecular phenomena and perform chemical analyses. However, the inherent close distance of metallic electrodes integrated into a small volume of electrolyte can complicate classical electroanalytical techniques. In this study, we use a scanning nanopipette contact probe as a model miniaturized electrochemical cell to demonstrate measurable side effects of the reaction occurring at a quasi-reference electrode. We provide evidence for in situ generation of nanoparticles in the absence of any electroactive species and we critically analyze the origin, nucleation, dissolution and dynamic behavior of these nanoparticles as they appear at the working electrode. It is crucial to recognize the implications of using quasi-reference electrodes in confined electrochemical cells, in order to accurately interpret the results of nanoscale electrochemical experiments.

  16. Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Cheng [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Qi, Li; Wang, Hongyu [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Yoshio, Masaki [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2010-07-01

    The capacitive characteristics of micro- and meso-porous carbon materials have been compared in cyclic voltammetric studies and galvanostatic charge-discharge tests. Meso-porous carbon can keep certain high capacitance values at high scan rates, whereas micro-porous carbon possesses very high capacitance values at low scan rates but fades quickly as the scan rate rises up. For better performance of electric double-layer capacitors (EDLCs), the cooperative application of both kinds of carbon materials has been proposed in the following two ways: mixing both kinds of carbons in the same electrode or using the asymmetric configuration of carbon electrodes in the same EDLC. The cooperative effect on the electrochemical performance has also been addressed. (author)

  17. Vibration Control in Periodic Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2017-01-01

    Within the framework of periodic structures, the calibration of RL shunted piezoelectric inclusions is investigated with respect to maximum damping of a particular wave form. A finite element setting is assumed, with local shunted inclusions inside the unit cell. The effect of the shunts is repre....... The presentation contains dispersion diagrams and vibration amplitude curves for the optimally calibrated RL shunt system in a 1-D periodic structure with local piezoelectric inclusions....

  18. Long life lithium batteries with stabilized electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil [Downers Grove, IL; Liu, Jun [Naperville, IL; Vissers, Donald R [Naperville, IL; Lu, Wenquan [Darien, IL

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  19. Control of electrode depth in electroslag remelting

    Energy Technology Data Exchange (ETDEWEB)

    Melgaard, David K. (Albuquerque, NM); Shelmidine, Gregory J. (Tijeras, NM); Damkroger, Brian K. (Albuquerque, NM)

    2002-01-01

    A method of and apparatus for controlling an electroslag remelting furnace by driving the electrode at a nominal speed based upon melting rate and geometry while making minor proportional adjustments based on a measured metric of the electrode immersion depth. Electrode drive speed is increased if a measured metric of electrode immersion depth differs from a set point by a predetermined amount, indicating that the tip is too close to the surface of a slag pool. Impedance spikes are monitored to adjust the set point for the metric of electrode immersion depth based upon one or more properties of the impedance spikes.

  20. [ECG artefacts after electrode misplacements].

    Science.gov (United States)

    Thaler, T; Rudiger, A

    2009-01-07

    Artefacts due to electrode misplacement occur in 0.4 to 4% of all performed electrocardiograms (ECG). They can lead to the clinically important false diagnosis of myocardial ischemia. Lateral and inferior myocardial ischemia can be mimicked by an electrode exchange between right and left arm and between right arm and left leg, respectively. Misplaced anterior leads suggest damage of the anterior wall. ECG criteria proposed in this review article will help to identify such artefacts. They include abnormal QRS axis (-90 degrees to +180 degrees), positive P-waves in aVR, negative P-waves in I or II, low voltage in lead I, II or III as well as an irregular R-wave progression in V1 to V6.

  1. Investigation on Electrochemical Properties of Polythiophene Nanocomposite with Graphite Derivatives as Supercapacitor Material on Breath Figure-Decorated PMMA Electrode

    Science.gov (United States)

    Azimi, Mona; Abbaspour, Mohsen; Fazli, Ali; Setoodeh, Hamideh; Pourabbas, Behzad

    2018-03-01

    Breath figures have been formed by the direct breath figure method on polymethyl methacrylate electrode sand hexagonal oriented holes with 0.5- to 10- μm2 surface area have been created. Deposition of materials on the electrodes has been performed by the spray-coating method. polythiophene (PTh) nanoparticles, polythiophene-graphene oxide (PTh-GO) and polythiophene-reduced graphene oxide (PTh-G) nanocomposites were synthesized by emulsion polymerization, while characterization of synthetic materials have been carried out by Fourier transform infrared, Χ-ray diffraction, transmission electron microscopy, UV-Vis spectroscopy and field emission scanning electron microscopy techniques. Also, the electrochemical properties of the designed electrodes were investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. Specific capacitance of porous electrodes coated by PTh nanoparticles, PTh-GO and PTh-G nanocomposites were calculated from cyclic voltammetry curves at 5 mV/s scan rate, andthe values are 3.5 F/g, 16.39 F/g, and 28.68 F/g, respectively. Also, the energy density of each electrode at 5 mV/s scan rate has been calculated and the results show that incorporation of GO and G nanolayers with PTh nanoparticles enhances the electrochemical properties of electrodes.

  2. Package security recorder of vibration

    Science.gov (United States)

    Wang, Xiao-na; Hu, Jin-liang; Song, Shi-de

    2013-08-01

    This paper introduces a new kind of electronic product — Package Security Recorder of Vibration. It utilizes STC89C54RD+ LQFP-44 MCU as its main controller. At the same time, it also utilizes Freescale MMA845A 3-Axis 8-bit/12-bit Digital Accelerometer and Maxim DS1302 Trickle Charge Timekeeping Chip. It utilizes the MCU to read the value of the accelerometer and the value of the timekeeping chip, and records the data into the inner E2PROM of MCU. The whole device achieves measuring, reading and recording the time of the vibration and the intensity of the vibration. When we need the data, we can read them out. The data can be used in analyzing the condition of the cargo when it transported. The device can be applied to monitor the security of package. It solves the problem of responsibility affirming, when the valuable cargo are damaged while it transported. It offers powerful safeguard for the package. It's very value for application.

  3. Eletrodo compósito à base de grafite-araldite®: aplicações didáticas Graphite-araldite® composite electrode: didactic applications

    Directory of Open Access Journals (Sweden)

    Carolina Maria Fioramonti Calixto

    2008-01-01

    Full Text Available A composite electrode prepared by mixing a commercial epoxy resin Araldite® and graphite powder is proposed to be used in didactic experiments. The electrode is prepared by the students and applied in simple experiments to demonstrate the effect of the composite composition on the conductivity and the voltammetric response of the resulting electrode, as well as the response in relation to the scan rate dependence on mass transport. The possibility of using the composite electrode in quantitative analysis is also demonstrated.

  4. Organoclay-enzyme film electrodes.

    Science.gov (United States)

    Mbouguen, Justin Kemmegne; Ngameni, Emmanuel; Walcarius, Alain

    2006-09-25

    This paper aims at showing the interest of organoclays (clay minerals containing organic groups covalently attached to the inorganic particles) as suitable host matrices likely to immobilize enzymes onto electrode surfaces for biosensing applications. The organoclays used in this work were natural Cameroonian smectites grafted with either aminopropyl (AP) or trimethylpropylammonium (TMPA) groups. The first ones were exploited for their ability to anchor biomolecules by covalent bonding while the second category exhibited favorable electrostatic interactions with negatively charged enzymes due to ion exchange properties that were pointed out here by means of multisweep cyclic voltammetry. AP-clay materials were applied to the immobilization of glucose oxidase (GOD) and TMPA-clays for polyphenol oxidase (PPO) anchoring. When deposited onto the surface of platinum or glassy carbon electrodes as enzyme/organoclay films, these systems were evaluated as biosensing electrochemical devices for detection of glucose and catechol chosen as model analytes. The advantageous features of these organoclays were discussed by comparison to the performance of related film electrodes made of non-functionalized clays. It appeared that organoclays provide a favorable environment to enzymes activity, as highlighted from the biosensors characteristics and determination of Michaelis-Menten constants.

  5. Stretchable Micro-Electrode Array

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, M; Hamilton, J; Polla, D; Rose, K; Wilson, T; Krulevitch, P

    2002-03-08

    This paper focuses on the design consideration, fabrication processes and preliminary testing of the stretchable micro-electrode array. We are developing an implantable, stretchable micro-electrode array using polymer-based microfabrication techniques. The device will serve as the interface between an electronic imaging system and the human eye, directly stimulating retinal neurons via thin film conducting traces and electroplated electrodes. The metal features are embedded within a thin ({approx}50 micron) substrate fabricated using poly (dimethylsiloxane) (PDMS), a biocompatible elastomeric material that has very low water permeability. The conformable nature of PDMS is critical for ensuring uniform contact with the curved surface of the retina. To fabricate the device, we developed unique processes for metalizing PDMS to produce robust traces capable of maintaining conductivity when stretched (5%, SD 1.5), and for selectively passivating the conductive elements. An in situ measurement of residual strain in the PDMS during curing reveals a tensile strain of 10%, explaining the stretchable nature of the thin metalized devices.

  6. Electrode materials for rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christopher; Kang, Sun-Ho

    2015-09-08

    A positive electrode is disclosed for a non-aqueous electrolyte lithium rechargeable cell or battery. The electrode comprises a lithium containing material of the formula Na.sub.yLi.sub.xNi.sub.zMn.sub.1-z-z'M.sub.z'O.sub.d, wherein M is a metal cation, x+y>1, 0electrode material can be synthesized using an ion-exchange reaction with a lithium salt in an organic-based solvent to partially replace sodium ions of a precursor material with lithium ions.

  7. Modeling of Changing Electrode Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, Geoffrey Allen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1980-12-01

    A model for simulating the transient behavior of solid electrodes undergoing deposition or dissolution has been developed. The model accounts for ohmic drop, charge transfer overpotential, and mass transport limitations. The finite difference method, coupled with successive overrelaxation, was used as the basis of the solution technique. An algorithm was devised to overcome the computational instabilities associated with the calculations of the secondary and tertiary current distributions. Simulations were performed on several model electrode profiles: the sinusoid, the rounded corner, and the notch. Quantitative copper deposition data were obtained in a contoured rotating cylinder system, Sinusoidal cross-sections, machined on stainless steel cylinders, were used as model geometries, Kinetic parameters for use in the simulation were determined from polarization curves obtained on copper rotating cylinders, These parameters, along with other physical property and geometric data, were incorporated in simulations of growing sinusoidal profiles. The copper distributions on the sinusoidal cross-sections were measured and found to compare favorably with the simulated results. At low Wagner numbers the formation of a slight depression at the profile peak was predicted by the simulation and observed on the profile. At higher Wagner numbers, the simulated and experimental results showed that the formation of a depression was suppressed. This phenomenon was shown to result from the competition between ohmic drop and electrode curvature.

  8. Preparation of Pt/polypyrrole-para toluene sulfonate hydrogen peroxide sensitive electrode for the utilizing as a biosensor.

    Science.gov (United States)

    Çete, Servet; Bal, Özgür

    2013-12-01

    A film electrode with electropolymerization of pyrrole (Py) and para-toluene sulfonate (pTS) as a anionic dopant is prepared and its sensitivity to hydrogen peroxide is investigated. The polypyrrole is deposited on a 0.5 cm(2) Pt plate an electrochemically prepared pTS ion-doped polypyrrole film by scanning the electrode potential between - 0.8 and + 0.8 V at a scan rate of 20 mV/s. The electrode's sensitivity to hydrogen peroxide is investigated at room temperature using 0.1 M phosphate buffer at pH 7.5. The working potential is found as a 0.3 V. The concentrations of pyrrole and pTS are 50mM M and 25 mM. Polypyrrole was coated on the electrode surface within 10 cycles. İmmobilization of glucose oxidase carried out on Pt/polypyrrole-para toluene sulfonate (Pt/PPy-pTS) film by cross-linking with glutaraldehyde. The morphology of electrodes was characterized by SEM and AFM. Moreover, contact angle measurements were made with 1 μL water of polymer film and enzyme electrode. It has shown that enzyme electrode is very sensitive against to glucose.

  9. Hierarchical electrode architectures for electrical energy storage & conversion.

    Energy Technology Data Exchange (ETDEWEB)

    Zavadil, Kevin Robert; Missert, Nancy A.; Shelnutt, John Allen; van Swol, Frank B.

    2012-01-01

    The integration and stability of electrocatalytic nanostructures, which represent one level of porosity in a hierarchical structural scheme when combined with a three-dimensional support scaffold, has been studied using a combination of synthetic processes, characterization techniques, and computational methods. Dendritic platinum nanostructures have been covalently linked to common electrode surfaces using a newly developed chemical route; a chemical route equally applicable to a range of metals, oxides, and semiconductive materials. Characterization of the resulting bound nanostructure system confirms successful binding, while electrochemistry and microscopy demonstrate the viability of these electroactive particles. Scanning tunneling microscopy has been used to image and validate the short-term stability of several electrode-bound platinum dendritic sheet structures toward Oswald ripening. Kinetic Monte Carlo methods have been applied to develop an understanding of the stability of the basic nano-scale porous platinum sheets as they transform from an initial dendrite to hole containing sheets. Alternate synthetic strategies were pursued to grow dendritic platinum structures directly onto subunits (graphitic particles) of the electrode scaffold. A two-step photocatalytic seeding process proved successful at generating desirable nano-scale porous structures. Growth in-place is an alternate strategy to the covalent linking of the electrocatalytic nanostructures.

  10. Photoelectrocatalytic degradation of methyl orange over mesoporous film electrodes.

    Science.gov (United States)

    Li, Jun; Wang, Jun; Huang, Liang; Lu, Guanzhong

    2010-01-01

    Mesoporous TiO(2) films and ion-doped photocatalytic films, displaying a worm-like pattern, have been synthesized by dip-coating of ITO glass into an organic-inorganic sol followed by aging and calcination of the coating at different temperature. The prepared films were investigated by X-ray diffraction (XRD), UV-Vis reflectance spectra, scanning electron microscope (SEM), transmission electron microscopy (TEM) and photoelectrochemical measurement, and were confirmed to be of mesoporous characteristic. Degradation of methyl orange (MO) has been performed using the new film electrodes under UV light and artificial solar light illumination. The influence of variables, such as applied bias, pH, supporting electrolyte, MO concentration and the load of the films, on the degradation of the dye was investigated. More than 97% degradation of MO was achieved under the feasible experimental conditions in 2 h photoelectrocatalytic reaction with UV light illumination and mesoporous film TiO(2)/ITO as electrode. The activity of the mesoporous film V-TiO(2) was the highest of the newly synthesized films V-TiO(2), Ce-TiO(2), F-TiO(2) and pure TiO(2) under artificial solar light. The degradation ratio of MO was about 43% over 2 h reaction using V-TiO(2)/ITO as the electrode. The activity of the mesoporous film under artificial solar light needs to be increased further.

  11. Analysis of Intraoperative Radiographic Electrode Placement During Cochlear Implantation.

    Science.gov (United States)

    Gnagi, Sharon H; Baker, Trenton R; Pollei, Taylor R; Barrs, David M

    2015-07-01

    To investigate the clinical value of intraoperative plain radiographs in determining correct placement of cochlear implants. All cochlear implant insertions over a 10-year period by a single surgeon. Cochlear implantation with intraoperative imaging. Whether intraoperative imaging affects clinical/surgical management. A consecutive retrospective review of 207 cochlear implantations performed in 187 patients was performed. All implants performed had intraoperative plain film imaging. Etiology of hearing loss, surgical variations, gender, age, and implant type did not affect intraoperative imaging. Four cases were identified where variations in intraoperative imaging interpreted by the surgeon warranted further discussion. In one patient, the intraoperative x-ray interpretation missed an incorrectly placed electrode. Postoperative CT scan confirmed implant electrode within the superior semicircular canal. In three patients, intraoperative x-ray results aided management by confirming surgical findings; however, no subsequent clinical or surgical alterations were made based on imaging. One of these three patients experienced a noticeable function decline postoperatively that correlated with altered positioning of the cochlear implant on intraoperative radiographs. In all surgeries, no changes were made to the electrode placement based on the intraoperative radiographs. Intraoperative plain film imaging during cochlear implantation, although commonly employed, does not typically affect clinical management. For select cases, imaging may continue to be useful based on the surgeon's discretion and intraoperative findings for confirmatory purposes.

  12. Migration of the ball electrode after cochlear implantation.

    Science.gov (United States)

    Tange, Rinze A; Grolman, Wilko; Carelsen, Bart

    2007-02-01

    To review the postoperative radiographic investigations of patients implanted with a cochlear implant. Retrospective case series. Thirty-nine patients (22-77 yrs old) implanted for sensorineural deafness in the cochlear implants program of the Academic Medical Center of Amsterdam. Cochlear implantation with Cochlear Nucleus 24 Contour and Cochlear Nucleus Freedom (Cochlear Corp., Lane Cove, New South Wales, Australia) implant. This retrospective analysis of the postoperative computed tomographic scans showed that, in a large number of the implantations, the external ball electrode of the cochlear implant migrated from the insertion place toward the magnet of the receiver/stimulator unit of the implant. It seems that this migration of the external ball electrode does not influence the function of the cochlear implant and the result of the hearing rehabilitation in the short term. Because of the magnetic field of the receiver/stimulator unit of the cochlear implant and the magnet of the external transmitting coil of the speech processor, it seems to be possible that the extracochlear ball electrode can migrate in the space between the temporal bone and the temporal muscle during the postoperative healing phase. The importance of our observation is still not clear.

  13. Selective self-excitation of higher vibrational modes of graphene nano-ribbons and carbon nanotubes through magnetomotive instability

    OpenAIRE

    Nordenfelt, Anders

    2011-01-01

    We demonstrate theoretically the feasibility of selective self-excitation of higher-mode flexural vibrations of graphene nano-ribbons and carbon nanotubes by the means of magnetomotive instability. Apart from the mechanical resonator, the device consists only of a constant voltage source, an inductor, a capacitor, a gate electrode and a constant magnetic field. Numerical simluations were performed on both graphene and carbon nanotubes displaying an overall similar behaviour, but with some dif...

  14. In vivo estimates of the position of advanced bionics electrode arrays in the human cochlea.

    Science.gov (United States)

    Skinner, Margaret W; Holden, Timothy A; Whiting, Bruce R; Voie, Arne H; Brunsden, Barry; Neely, J Gail; Saxon, Eugene A; Hullar, Timothy E; Finley, Charles C

    2007-04-01

    A new technique for determining the position of each electrode in the cochlea is described and applied to spiral computed tomography data from 15 patients implanted with Advanced Bionics HiFocus I, Ij, or Helix arrays. ANALYZE imaging software was used to register 3-dimensional image volumes from patients' preoperative and postoperative scans and from a single body donor whose unimplanted ears were scanned clinically, with micro computed tomography and with orthogonal-plane fluorescence optical sectioning (OPFOS) microscopy. By use of this registration, we compared the atlas of OPFOS images of soft tissue within the body donor's cochlea with the bone and fluid/ tissue boundary available in patient scan data to choose the midmodiolar axis position and judge the electrode position in the scala tympani or scala vestibuli, including the distance to the medial and lateral scalar walls. The angular rotation 0 degrees start point is a line joining the midmodiolar axis and the middle of the cochlear canal entry from the vestibule. The group mean array insertion depth was 477 degrees (range, 286 degrees to 655 degrees). The word scores were negatively correlated (r = -0.59; p = .028) with the number of electrodes in the scala vestibuli. Although the individual variability in all measures was large, repeated patterns of suboptimal electrode placement were observed across subjects, underscoring the applicability of this technique.

  15. Nanoporous carbon derived from agro-waste pineapple leaves for supercapacitor electrode

    Science.gov (United States)

    Sodtipinta, Jedsada; Amornsakchai, Taweechai; Pakawatpanurut, Pasit

    2017-09-01

    By using KOH as the chemical activating agent in the synthesis, the activated carbon derived from pineapple leaf fiber (PALF) was prepared. The structure, morphology, and the surface functional groups of the as-prepared activated carbon were investigated using x-ray diffraction, field emission scanning electron microscope equipped with energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical behavior and performance of the as-synthesized activated carbon electrode were measured using the cyclic voltammetry and the electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte solution in three-electrode setup. The activated carbon electrode exhibited the specific capacitance of 131.3 F g-1 at a scan rate of 5 mV s-1 with excellent cycling stability. The capacitance retention after 1000 cycles was about 97% of the initial capacitance at a scan rate of 30 mV s-1. Given these good electrochemical properties along with the high abundance of PALF, this activated carbon electrode has the potential to be one of the materials for future large-scale production of the electrochemical capacitors. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  16. LANL Robotic Vessel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Nels W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  17. GPR scan assessment

    Directory of Open Access Journals (Sweden)

    Abbas M. Abbas

    2015-06-01

    Full Text Available Mekaad Radwan monument is situated in the neighborhood of Bab Zuweila in the historical Cairo, Egypt. It was constructed at the middle XVII century (1635 AD. The building has a rectangle shape plan (13 × 6 m with the longitudinal sides approximately WNW-ESE. It comprises three storages namely; the ground floor; the opened floor (RADWAN Bench and the living floor with a total elevation of 15 m above the street level. The building suffers from severe deterioration phenomena with patterns of damage which have occurred over time. These deterioration and damages could be attributed to foundation problems, subsoil water and also to the earthquake that affected the entire Greater Cairo area in October 1992. Ground Penetrating Radar (GPR scan was accomplished against the walls of the opened floor (RADWAN Bench to evaluate the hazard impact on the walls textures and integrity. The results showed an anomalous feature through the southern wall of RADWAN Bench. A mathematical model has been simulated to confirm the obtained anomaly and the model response exhibited a good matching with the outlined anomaly.

  18. Actively controlled vibration welding system and method

    Science.gov (United States)

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  19. Coupled rotor/airframe vibration analysis

    Science.gov (United States)

    Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.

    1982-01-01

    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.

  20. Carbon nanopipette electrodes for dopamine detection in Drosophila.

    Science.gov (United States)

    Rees, Hillary R; Anderson, Sean E; Privman, Eve; Bau, Haim H; Venton, B Jill

    2015-04-07

    Small, robust, sensitive electrodes are desired for in vivo neurotransmitter measurements. Carbon nanopipettes have been previously manufactured and used for single-cell drug delivery and electrophysiological measurements. Here, a modified fabrication procedure was developed to produce batches of solid carbon nanopipette electrodes (CNPEs) with ∼250 nm diameter tips, and controllable lengths of exposed carbon, ranging from 5 to 175 μm. The electrochemical properties of CNPEs were characterized with fast-scan cyclic voltammetry (FSCV) for the first time. CNPEs were used to detect the electroactive neurotransmitters dopamine, serotonin, and octopamine. CNPEs were significantly more sensitive for serotonin detection than traditional carbon-fiber microelectrodes (CFMEs). Similar to CFMEs, CNPEs have a linear response for dopamine concentrations ranging from 0.1 to 10 μM and a limit of detection of 25 ± 5 nM. Recordings with CNPEs were stable for over 3 h when the applied triangle waveform was scanned between -0.4 and +1.3 V vs Ag/AgCl/Cl(-) at 400 V/s. CNPEs were used to detect endogenous dopamine release in Drosophila larvae using optogenetics, which verified the utility of CNPEs for in vivo neuroscience studies. CNPEs are advantageous because they are 1 order of magnitude smaller in diameter than typical CFMEs and have a sharp, tunable geometry that facilitates penetration and implantation for localized measurements in distinct regions of small organisms, such as the Drosophila brain.