WorldWideScience

Sample records for scanning tunneling imaging

  1. Scanning Tunneling Microscopy - image interpretation

    International Nuclear Information System (INIS)

    Maca, F.

    1998-01-01

    The basic ideas of image interpretation in Scanning Tunneling Microscopy are presented using simple quantum-mechanical models and supplied with examples of successful application. The importance is stressed of a correct interpretation of this brilliant experimental surface technique

  2. Towards vortex imaging with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Fuchs, Dan T.

    1994-02-01

    A low temperature, Besocke beetle type scanning tunneling microscope, with a scan range of 10 by 10 microns was built. The scanning tunneling microscope was calibrates for various temperatures and tested on several samples. Gold monolayers evaporated at 400 deg C were resolved and their dynamic behavior observed. Atomic resolution images of graphite were obtained. The scanning tunneling microscope was designed for future applications of vortex imaging in superconductors. The special design considerations for this application are discussed and the physics underlying it reviewed. (author)

  3. Scanning tunneling microscopic images and scanning tunneling spectra for coupled rectangular quantum corrals

    International Nuclear Information System (INIS)

    Mitsuoka, Shigenori; Tamura, Akira

    2011-01-01

    Assuming that an electron confined by double δ-function barriers lies in a quasi-stationary state, we derived eigenstates and eigenenergies of the electron. Such an electron has a complex eigenenergy, and the imaginary part naturally leads to the lifetime of the electron associated with tunneling through barriers. We applied this point of view to the electron confined in a rectangular quantum corral (QC) on a noble metal surface, and obtained scanning tunneling microscopic images and a scanning tunneling spectrum consistent with experimental ones. We investigated the electron states confined in coupled QCs and obtained the coupled states constructed with bonding and anti-bonding states. Using those energy levels and wavefunctions we specified scanning tunneling microscope (STM) images and scanning tunneling spectra (STS) for the doubly and triply coupled QCs. In addition we pointed out the feature of resonant electron states associated with the same QCs at both ends of the triply coupled QCs.

  4. Probing superconductors. Spectroscopic-imaging scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Hanaguri, Tetsuo

    2011-01-01

    Discovery of high-temperature superconductivity in a cuprate triggered developments of various spectroscopic tools which have been utilized to elucidate electronic states of this mysterious compound. Particularly, angle-resolved photoemission spectroscopy and scanning-tunneling microscopy/spectroscopy are improved considerably. It is now possible to map the superconducting gap in both momentum and real spaces using these two techniques. Here we review spectroscopic-imaging scanning tunneling microscopy which is able to explore momentum-space phase structure of the superconducting gap, as well as real-space structure. Applications of this technique to a cuprate and an iron-based superconductor are discussed. (author)

  5. Scanning tunneling microscope for magneto-optical imaging

    NARCIS (Netherlands)

    Prins, M.W.J.; Groeneveld, R.H.M.; Abraham, D.L.; Schad, R.; Kempen, van H.; Kesteren, van H.W.

    1996-01-01

    Images of magnetic bits written in a Pt/Co multilayer are presented. Using photosensitive semiconducting tips in a scanning tunneling microscope the surface topography as well as the polarization-dependent optical transmission are measured. Magnetic contrast is achieved by detection of the Faraday

  6. New approach towards imaging -DNA using scanning tunneling

    Indian Academy of Sciences (India)

    DNA; scanning tunneling microscopy; Langmuir Blodget technique; silanization. ... Scanning tunneling spectroscopy (STS) at different stages depict a broad distribution of defect states in the bandgap region of -Si(111) which ... Current Issue

  7. Electronic structure classifications using scanning tunneling microscopy conductance imaging

    International Nuclear Information System (INIS)

    Horn, K.M.; Swartzentruber, B.S.; Osbourn, G.C.; Bouchard, A.; Bartholomew, J.W.

    1998-01-01

    The electronic structure of atomic surfaces is imaged by applying multivariate image classification techniques to multibias conductance data measured using scanning tunneling microscopy. Image pixels are grouped into classes according to shared conductance characteristics. The image pixels, when color coded by class, produce an image that chemically distinguishes surface electronic features over the entire area of a multibias conductance image. Such open-quotes classedclose quotes images reveal surface features not always evident in a topograph. This article describes the experimental technique used to record multibias conductance images, how image pixels are grouped in a mathematical, classification space, how a computed grouping algorithm can be employed to group pixels with similar conductance characteristics in any number of dimensions, and finally how the quality of the resulting classed images can be evaluated using a computed, combinatorial analysis of the full dimensional space in which the classification is performed. copyright 1998 American Institute of Physics

  8. Imaging Anyons with Scanning Tunneling Microscopy

    Science.gov (United States)

    Papić, Zlatko; Mong, Roger S. K.; Yazdani, Ali; Zaletel, Michael P.

    2018-01-01

    Anyons are exotic quasiparticles with fractional charge that can emerge as fundamental excitations of strongly interacting topological quantum phases of matter. Unlike ordinary fermions and bosons, they may obey non-Abelian statistics—a property that would help realize fault-tolerant quantum computation. Non-Abelian anyons have long been predicted to occur in the fractional quantum Hall (FQH) phases that form in two-dimensional electron gases in the presence of a large magnetic field, such as the ν =5 /2 FQH state. However, direct experimental evidence of anyons and tests that can distinguish between Abelian and non-Abelian quantum ground states with such excitations have remained elusive. Here, we propose a new experimental approach to directly visualize the structure of interacting electronic states of FQH states with the STM. Our theoretical calculations show how spectroscopy mapping with the STM near individual impurity defects can be used to image fractional statistics in FQH states, identifying unique signatures in such measurements that can distinguish different proposed ground states. The presence of locally trapped anyons should leave distinct signatures in STM spectroscopic maps, and enables a new approach to directly detect—and perhaps ultimately manipulate—these exotic quasiparticles.

  9. Electric field effects in scanning tunneling microscope imaging

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Quaade, Ulrich; Grey, Francois

    1998-01-01

    We present a high-voltage extension of the Tersoff-Hamann theory of scanning tunneling microscope (STM) images, which includes the effect of the electric field between the tip and the sample. The theoretical model is based on first-principles electronic structure calculations and has no adjustable...... parameters. We use the method to calculate theoretical STM images of the monohydrate Si(100)-H(2x1) surface with missing hydrogen defects at -2V and find an enhanced corrugation due to the electric field, in good agreement with experimental images....

  10. New approach towards imaging λ-DNA using scanning tunneling ...

    Indian Academy of Sciences (India)

    Wintec

    spectroscopy (STS) at different stages depict a broad distribution of defect states in the bandgap ... DNA; scanning tunneling microscopy; Langmuir Blodget technique; silanization. 1. ... assembled monolayer (SAM) of C-8 silane gave stable.

  11. Spatio-temporal imaging of voltage pulses with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Keil, Ulrich Dieter Felix; Hvam, Jørn Märcher

    1997-01-01

    Measurements on an ultrafast scanning tunneling microscope with simultaneous spatial and temporal resolution are presented. We show images of picosecond pulses propagating on a coplanar waveguide and resolve their mode structures. The influence of transmission line discontinuities on the mode...

  12. Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, Lars [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); TOTAL Marketing Services, New Energies, La Défense 10, 92069 Paris La Défense Cedex (France); Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Schofield, Steven R. [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom); Curson, Neil J., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, UCL, London WC1E 7JE (United Kingdom)

    2014-06-23

    We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

  13. Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Oberbeck, Lars; Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y.; Schofield, Steven R.; Curson, Neil J.

    2014-01-01

    We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

  14. An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large scale imaging.

    Science.gov (United States)

    Diaconescu, Bogdan; Nenchev, Georgi; de la Figuera, Juan; Pohl, Karsten

    2007-10-01

    We describe the design and performance of a fast-scanning, variable temperature scanning tunneling microscope (STM) operating from 80 to 700 K in ultrahigh vacuum (UHV), which routinely achieves large scale atomically resolved imaging of compact metallic surfaces. An efficient in-vacuum vibration isolation and cryogenic system allows for no external vibration isolation of the UHV chamber. The design of the sample holder and STM head permits imaging of the same nanometer-size area of the sample before and after sample preparation outside the STM base. Refractory metal samples are frequently annealed up to 2000 K and their cooldown time from room temperature to 80 K is 15 min. The vertical resolution of the instrument was found to be about 2 pm at room temperature. The coarse motor design allows both translation and rotation of the scanner tube. The total scanning area is about 8 x 8 microm(2). The sample temperature can be adjusted by a few tens of degrees while scanning over the same sample area.

  15. Imaging by Electrochemical Scanning Tunneling Microscopy and Deconvolution Resolving More Details of Surfaces Nanomorphology

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    observed in high-resolution images of metallic nanocrystallites may be effectively deconvoluted, as to resolve more details of the crystalline morphology (see figure). Images of surface-crystalline metals indicate that more than a single atomic layer is involved in mediating the tunneling current......Upon imaging, electrochemical scanning tunneling microscopy (ESTM), scanning electrochemical micro-scopy (SECM) and in situ STM resolve information on electronic structures and on surface topography. At very high resolution, imaging processing is required, as to obtain information that relates...... to crystallographic-surface structures. Within the wide range of new technologies, those images surface features, the electrochemical scanning tunneling microscope (ESTM) provides means of atomic resolution where the tip participates actively in the process of imaging. Two metallic surfaces influence ions trapped...

  16. Tip-Dependent Scanning Tunneling Microscopy Imaging of Ultrathin FeO Films on Pt(111)

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Grabow, Lars C.; Peng, Guowen

    2011-01-01

    High-resolution scanning tunneling microscope (STM) images of moiré-structured FeO films on Pt(111) were obtained in a number of different tip-dependent imaging modes. For the first time, the STM images are distinguished and interpreted unambiguously with the help of distinct oxygen...

  17. Local crystallography analysis for atomically resolved scanning tunneling microscopy images

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Li, Qing; Belianinov, Alexei; Gai, Zheng; Baddorf, Arthur P; Pan, Minghu; Jesse, Stephen; Kalinin, Sergei V; Sales, Brian C; Sefat, Athena

    2013-01-01

    Scanning probe microscopy has emerged as a powerful and flexible tool for atomically resolved imaging of surface structures. However, due to the amount of information extracted, in many cases the interpretation of such data is limited to being qualitative and semi-quantitative in nature. At the same time, much can be learned from local atom parameters, such as distances and angles, that can be analyzed and interpreted as variations of local chemical bonding, or order parameter fields. Here, we demonstrate an iterative algorithm for indexing and determining atomic positions that allows the analysis of inhomogeneous surfaces. This approach is further illustrated by local crystallographic analysis of several real surfaces, including highly ordered pyrolytic graphite and an Fe-based superconductor FeTe 0.55 Se 0.45 . This study provides a new pathway to extract and quantify local properties for scanning probe microscopy images. (paper)

  18. Scanning tunnelling microscope imaging of nanoscale electron density gradients on the surface of GaAs

    International Nuclear Information System (INIS)

    Hamilton, B; Jacobs, J; Missous, M

    2003-01-01

    This paper is concerned with the scanning tunnelling microscope tunnelling conditions needed to produce constant current images dominated either by surface topology or by electronic effects. A model experimental structure was produced by cleaving a GaAs multiδ-doped layer in UHV and so projecting a spatially varying electron gas density onto the (110) surface. This cross sectional electron density varies on a nanometre scale in the [100] growth direction. The electronic structure and tunnelling properties of this system were modelled, and the tunnelling conditions favouring sensitivity to the surface electron gas density determined

  19. Fermi surface contours obtained from scanning tunneling microscope images around surface point defects

    International Nuclear Information System (INIS)

    Khotkevych-Sanina, N V; Kolesnichenko, Yu A; Van Ruitenbeek, J M

    2013-01-01

    We present a theoretical analysis of the standing wave patterns in scanning tunneling microscope (STM) images, which occur around surface point defects. We consider arbitrary dispersion relations for the surface states and calculate the conductance for a system containing a small-size tunnel contact and a surface impurity. We find rigorous theoretical relations between the interference patterns in the real-space STM images, their Fourier transforms and the Fermi contours of two-dimensional electrons. We propose a new method for reconstructing Fermi contours of surface electron states, directly from the real-space STM images around isolated surface defects. (paper)

  20. Ionic channels in Langmuir-Blodgett films imaged by a scanning tunneling microscope.

    Science.gov (United States)

    Kolomytkin, O V; Golubok, A O; Davydov, D N; Timofeev, V A; Vinogradova, S A; Tipisev SYa

    1991-01-01

    The molecular structure of channels formed by gramicidin A in a lipid membrane was imaged by a scanning tunneling microscope operating in air. The mono- and bimolecular films of lipid with gramicidin A were deposited onto a highly oriented pyrolitic graphite substrate by the Langmuir-Blodgett technique. It has been shown that under high concentration gramicidin A molecules can form in lipid films a quasi-regular, densely packed structure. Single gramicidin A molecules were imaged for the first time as well. The cavity of 0.4 +/- 0.05 nm in halfwidth was found on the scanning tunneling microscopy image of the gramicidin A molecule. The results of direct observation obtained by means of scanning tunneling microscope are in good agreement with the known molecular model of gramicidin A. It was shown that gramicidin A molecules can exist in a lipid monolayer as individual molecules or combined into clusters. The results demonstrate that scanning tunneling microscope can be used for high spatial resolution study of ionic channel structure. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 PMID:1712239

  1. Imaging of surface plasmon polariton interference using phase-sensitive scanning tunneling microscope

    NARCIS (Netherlands)

    Jose, J.; Segerink, Franciscus B.; Korterik, Jeroen P.; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2011-01-01

    We report the surface plasmon polariton interference, generated via a ‘buried’ gold grating, and imaged using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM). The phase-resolved PSTM measurement unravels the complex surface plasmon polariton interference fields at the gold-air

  2. Covalently Immobilised Cytochrome C Imaged by In Situ Scanning Tunnelling Microscopy

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Olesen, Klaus G.; Danilov, Alexey I.

    1997-01-01

    In situ scanning tunnelling microscopy (STM) imaging of cytochrome c (cyt c) on polycrystalline Pt surfaces and on Au(lll) was achieved first by covalent immobilisation of 3-aminopropyltriethoxysilane (3-APTS) brought to react with oxide present on the Pt surfaces. Covalently bound 3-APTS forms...

  3. Scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Binnig, G.; Rohrer, H.

    1983-01-01

    Based on vacuum tunneling, a novel type of microscope, the scanning tunneling microscope (STM) was developed. It has an unprecedented resolution in real space on an atomic scale. The authors review the important technical features, illustrate the power of the STM for surface topographies and discuss its potential in other areas of science and technology. (Auth.)

  4. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  5. Introduction to scanning tunneling microscopy

    CERN Document Server

    Chen, C Julian

    2008-01-01

    The scanning tunneling and the atomic force microscope, both capable of imaging individual atoms, were crowned with the Physics Nobel Prize in 1986, and are the cornerstones of nanotechnology today. This is a thoroughly updated version of this 'bible' in the field.

  6. Construction and performance of a dilution-refrigerator based spectroscopic-imaging scanning tunneling microscope.

    Science.gov (United States)

    Singh, U R; Enayat, M; White, S C; Wahl, P

    2013-01-01

    We report on the set-up and performance of a dilution-refrigerator based spectroscopic imaging scanning tunneling microscope. It operates at temperatures below 10 mK and in magnetic fields up to 14T. The system allows for sample transfer and in situ cleavage. We present first-results demonstrating atomic resolution and the multi-gap structure of the superconducting gap of NbSe(2) at base temperature. To determine the energy resolution of our system we have measured a normal metal/vacuum/superconductor tunneling junction consisting of an aluminum tip on a gold sample. Our system allows for continuous measurements at base temperature on time scales of up to ≈170 h.

  7. Time-resolved scanning tunnelling microscopy

    NARCIS (Netherlands)

    van Houselt, Arie; Zandvliet, Henricus J.W.

    2010-01-01

    Scanning tunneling microscopy has revolutionized our ability to image, study, and manipulate solid surfaces on the size scale of atoms. One important limitation of the scanning tunneling microscope (STM) is, however, its poor time resolution. Recording a standard image with a STM typically takes

  8. Imaging sequential dehydrogenation of methanol on Cu(110) with a scanning tunneling microscope.

    Science.gov (United States)

    Kitaguchi, Y; Shiotari, A; Okuyama, H; Hatta, S; Aruga, T

    2011-05-07

    Adsorption of methanol and its dehydrogenation on Cu(110) were studied by using a scanning tunneling microscope (STM). Upon adsorption at 12 K, methanol preferentially forms clusters on the surface. The STM could induce dehydrogenation of methanol sequentially to methoxy and formaldehyde. This enabled us to study the binding structures of these products in a single-molecule limit. Methoxy was imaged as a pair of protrusion and depression along the [001] direction. This feature is fully consistent with the previous result that it adsorbs on the short-bridge site with the C-O axis tilted along the [001] direction. The axis was induced to flip back and forth by vibrational excitations with the STM. Two configurations were observed for formaldehyde, whose structures were proposed based on their characteristic images and motions.

  9. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  10. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.; Hanafy, Sherif M.; Huang, Yunsong

    2012-01-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  11. A scanning tunneling microscope capable of imaging specified micron-scale small samples.

    Science.gov (United States)

    Tao, Wei; Cao, Yufei; Wang, Huafeng; Wang, Kaiyou; Lu, Qingyou

    2012-12-01

    We present a home-built scanning tunneling microscope (STM) which allows us to precisely position the tip on any specified small sample or sample feature of micron scale. The core structure is a stand-alone soft junction mechanical loop (SJML), in which a small piezoelectric tube scanner is mounted on a sliding piece and a "U"-like soft spring strip has its one end fixed to the sliding piece and its opposite end holding the tip pointing to the sample on the scanner. Here, the tip can be precisely aligned to a specified small sample of micron scale by adjusting the position of the spring-clamped sample on the scanner in the field of view of an optical microscope. The aligned SJML can be transferred to a piezoelectric inertial motor for coarse approach, during which the U-spring is pushed towards the sample, causing the tip to approach the pre-aligned small sample. We have successfully approached a hand cut tip that was made from 0.1 mm thin Pt∕Ir wire to an isolated individual 32.5 × 32.5 μm(2) graphite flake. Good atomic resolution images and high quality tunneling current spectra for that specified tiny flake are obtained in ambient conditions with high repeatability within one month showing high and long term stability of the new STM structure. In addition, frequency spectra of the tunneling current signals do not show outstanding tip mount related resonant frequency (low frequency), which further confirms the stability of the STM structure.

  12. A scanning tunneling microscope capable of imaging specified micron-scale small samples

    Science.gov (United States)

    Tao, Wei; Cao, Yufei; Wang, Huafeng; Wang, Kaiyou; Lu, Qingyou

    2012-12-01

    We present a home-built scanning tunneling microscope (STM) which allows us to precisely position the tip on any specified small sample or sample feature of micron scale. The core structure is a stand-alone soft junction mechanical loop (SJML), in which a small piezoelectric tube scanner is mounted on a sliding piece and a "U"-like soft spring strip has its one end fixed to the sliding piece and its opposite end holding the tip pointing to the sample on the scanner. Here, the tip can be precisely aligned to a specified small sample of micron scale by adjusting the position of the spring-clamped sample on the scanner in the field of view of an optical microscope. The aligned SJML can be transferred to a piezoelectric inertial motor for coarse approach, during which the U-spring is pushed towards the sample, causing the tip to approach the pre-aligned small sample. We have successfully approached a hand cut tip that was made from 0.1 mm thin Pt/Ir wire to an isolated individual 32.5 × 32.5 μm2 graphite flake. Good atomic resolution images and high quality tunneling current spectra for that specified tiny flake are obtained in ambient conditions with high repeatability within one month showing high and long term stability of the new STM structure. In addition, frequency spectra of the tunneling current signals do not show outstanding tip mount related resonant frequency (low frequency), which further confirms the stability of the STM structure.

  13. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pelliccione, M. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States); Bartel, J.; Goldhaber-Gordon, D. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States); Sciambi, A. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Pfeiffer, L. N.; West, K. W. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-11-03

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.

  14. Scanning tunneling microscope nanoetching method

    Science.gov (United States)

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  15. Transition between scanning tunneling microscopy images of alkane derivatives on graphite

    International Nuclear Information System (INIS)

    Hibino, Masahiro; Tsuchiya, Hiroshi

    2015-01-01

    Graphical abstract: - Highlights: • SAMs of dialkyl sulfides form at the liquid–graphite interface. • STM contrast of molecules change reversibly between zigzag and aligned bright spot patterns. • The free energy for contrast change is smaller than the thermal energy (RT). • STM contrast change is caused by electronic effects and registry of the alkyl chains. - Abstract: Self-assembled monolayers of alkylated sulfides containing two alkyl chains and a sulfur atom positioned at the center of the molecules were studied on a graphite surface using scanning tunneling microscopy (STM). STM images of the closed-packed alkyl chains that extend linearly from the sulfur atoms change reversibly between a zigzag pattern and an aligned bright spot pattern on a time scale of minutes. The observation times of the zigzag and aligned bright spot patterns indicate that the difference between the free energies of these two stable molecular configurations with respect to the graphite surface is smaller than their thermal energies in the presence of a solvent, and 10 times smaller than the theoretical free energy between parallel and perpendicular configurations of the alkyl chains on graphite under vacuum. The change in the contrast of the STM images occurred owing to the electronic effects that depend on the registry of the alkyl chains on the graphite surface, and not by the classical observation of transfer between parallel and perpendicular orientations of alkyl chains on the surface.

  16. Submolecular Electronic Mapping of Single Cysteine Molecules by in Situ Scanning Tunneling Imaging

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Nazmutdinov, R. R.

    2009-01-01

    We have used L-Cysteine (Cys) as a model system to study the surface electronic structures of single molecules at the submolecular level in aqueous buffer solution by a combination of electrochemical scanning tunneling microscopy (in situ STM), electrochemistry including voltammetry and chronocou...

  17. Investigation into scanning tunnelling luminescence microscopy

    International Nuclear Information System (INIS)

    Manson-Smith, S.K.

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provide information on recombination processes and material properties. The design and construction of a scanning tunnelling luminescence microscope is described in detail. Operating under ambient conditions, the microscope has several novel features, including a new type of miniature inertial slider-based approach motor, large solid-angle light collection optical arrangement and a tip-height regulation system which requires the minimum of operator input. (author)

  18. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    International Nuclear Information System (INIS)

    Wang, Qi; Wang, Junting; Lu, Qingyou; Hou, Yubin

    2013-01-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d 31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices

  19. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability.

    Science.gov (United States)

    Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou

    2013-11-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  20. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    Science.gov (United States)

    Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou

    2013-11-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  1. Analysis of photon-scanning tunneling microscope images of inhomogeneous samples: Determination of the local refractive index of channel waveguides

    International Nuclear Information System (INIS)

    Bourillot, E.; Fornel, F. de.; Goudonnet, J.P.

    1995-01-01

    Channel waveguides are imaged by a photon-scanning tunneling microscope (PSTM). The polarization of the light and its orientation with respect to the guide aids are shown to be very important parameters in the analysis of the images of such samples. We simulated image formation for the plane of incidence parallel to the axis of the guide. Our theoretical results are qualitatively in agreement with our measurements. These results show the ability of the PSTM to give information about the local refractive-index variations of a sample. 21 refs., 14 figs

  2. Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast

    International Nuclear Information System (INIS)

    Cummings, M.L.; Chien, T.Y.; Preissner, C.; Madhavan, V.; Diesing, D.; Bode, M.; Freeland, J.W.; Rose, V.

    2012-01-01

    The combination of high-brilliance synchrotron radiation with scanning tunneling microscopy opens the path to high-resolution imaging with chemical, electronic, and magnetic contrast. Here, the design and experimental results of an in-situ synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system are presented. The system is designed to allow monochromatic synchrotron radiation to enter the chamber, illuminating the sample with x-ray radiation, while an insulator-coated tip (metallic tip apex open for tunneling, electron collection) is scanned over the surface. A unique feature of the SXSTM is the STM mount assembly, designed with a two free-flex pivot, providing an angular degree of freedom for the alignment of the tip and sample with respect to the incoming x-ray beam. The system designed successfully demonstrates the ability to resolve atomic-scale corrugations. In addition, experiments with synchrotron x-ray radiation validate the SXSTM system as an accurate analysis technique for the study of local magnetic and chemical properties on sample surfaces. The SXSTM system's capabilities have the potential to broaden and deepen the general understanding of surface phenomena by adding elemental contrast to the high-resolution of STM. -- Highlights: ► Synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system designed. ► Unique STM mount design allows angular DOF for tip alignment with x-ray beam. ► System demonstrates ability to resolve atomic corrugations on HOPG. ► Studies show chemical sensitivity with STM tip from photocurrent and tunneling. ► Results show system's ability to study local magnetic (XMCD) properties on Fe films.

  3. Analysis and Calibration of in situ scanning tunnelling microscopy Images with atomic Resolution Influenced by Surface Drift Phenomena

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per

    1994-01-01

    The influence of surface drift velocities on in situ scanning tunnelling microscopy (STM) experiments with atomic resolution is analysed experimentally and mathematically. Constant drift velocities much smaller than the speed of scanning can in many in situ STM experiments with atomic resolution ...... as well as the vectors of the non-distorted surface lattice can be determined. The calibration of distances can thus be carried out also when the image is influenced by drift. Results with gold surfaces and graphite surfaces are analysed and discussed....

  4. The scanning tunneling microscope

    International Nuclear Information System (INIS)

    Salvan, F.

    1986-01-01

    A newly conceived microscope, based on a pure quantum phenomenon, is an ideal tool to study atom by atom the topography and properties of surfaces. Applications are presented: surface ''reconstruction'' of silicon, lamellar compound study, etc... Spectroscopy by tunnel effect will bring important information on electronic properties; it is presented with an application on silicon [fr

  5. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    International Nuclear Information System (INIS)

    Lima, E A; Weiss, B P; Bruno, A C; Carvalho, H R

    2014-01-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x–y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz 1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10 –14  A m 2 , a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays. (paper)

  6. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    Science.gov (United States)

    Lima, E. A.; Bruno, A. C.; Carvalho, H. R.; Weiss, B. P.

    2014-10-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x-y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10-14 A m2, a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays.

  7. Proposed alteration of images of molecular orbitals obtained using a scanning tunneling microscope as a probe of electron correlation.

    Science.gov (United States)

    Toroz, Dimitrios; Rontani, Massimo; Corni, Stefano

    2013-01-04

    Scanning tunneling spectroscopy (STS) allows us to image single molecules decoupled from the supporting substrate. The obtained images are routinely interpreted as the square moduli of molecular orbitals, dressed by the mean-field electron-electron interaction. Here we demonstrate that the effect of electron correlation beyond the mean field qualitatively alters the uncorrelated STS images. Our evidence is based on the ab initio many-body calculation of STS images of planar molecules with metal centers. We find that many-body correlations alter significantly the image spectral weight close to the metal center of the molecules. This change is large enough to be accessed experimentally, surviving to molecule-substrate interactions.

  8. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images

    Science.gov (United States)

    Yothers, Mitchell P.; Browder, Aaron E.; Bumm, Lloyd A.

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  9. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images.

    Science.gov (United States)

    Yothers, Mitchell P; Browder, Aaron E; Bumm, Lloyd A

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  10. Preparation of theoretical scanning tunneling microscope images of adsorbed molecules: a theoretical study of benzene on the Cu(110) surface

    International Nuclear Information System (INIS)

    Shapter, J.G.; Rogers, B.L.; Ford, M.J.

    2003-01-01

    Full text: Since its development in 1982, the Scanning Tunneling Microscope (STM) has developed into a powerful tool for the study of surfaces and adsorbates. However, the utility of the technique can be further enhanced through the development of techniques for generating theoretical STM images. This is particularly true when studying molecules adsorbed on a substrate, as the results are often interpreted superficially due to an inadequate understanding of the orbital overlap probed in the experiment. A method of preparing theoretical scanning tunneling microscope (STM) images using comparatively inexpensive desktop computers and the commercially available CRYSTAL98 package is presented through a study of benzene adsorbed on the Cu(110) surface. Density Functional Theory (DFT) and Hartree-Fock (HF) methods are used to model clean Cu(110) slabs of various thicknesses and to simulate the adsorption of benzene onto these slabs. Eight possible orientations of benzene on the Cu(110) surface are proposed, and the optimum orientation according to the calculations is presented. Theoretical STM images of the Cu(110) surface and benzene adsorbed on the Cu(110) surface are compared with experimental STM images of the system from a published study. Significant differences are observed and are examined in detail

  11. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    Science.gov (United States)

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  12. Scanning tunneling microscopy of hexagonal BN grown on graphite

    International Nuclear Information System (INIS)

    Fukumoto, H.; Hamada, T.; Endo, T.; Osaka, Y.

    1991-01-01

    The microscopic surface topography of thin BN x films grown on graphite by electron cyclotron resonance plasma chemical vapor deposition have been imaged with scanning tunneling microscopy in air. The scanning tunneling microscope has generated images of hexagonal BN with atomic resolution

  13. Scanning Tunneling Optical Resonance Microscopy

    Science.gov (United States)

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically tunneling current

  14. Imaging molecular interaction of NO on Cu(110) with a scanning tunneling microscope.

    Science.gov (United States)

    Okuyama, Hiroshi

    2014-10-01

    Molecular interaction on metal surfaces is one of the central issues of surface science for the microscopic understanding of heterogeneous catalysis. In this Personal Account, I review the recent studies on NO/Cu(110) employing a scanning tunneling microscope (STM) to probe and control the molecule-molecule interaction on the surface. An individual NO molecule was observed as a characteristic dumbbell-shaped protrusion, visualizing the 2π* orbital. By manipulating the intermolecular distance with the STM, the overlap of the 2π* orbital between two NO molecules was controlled. The interaction causes the formation of the bonding and antibonding orbitals below and above the Fermi level, respectively, as a function of the intermolecular distance. The 2π* orbital also plays a role in the reaction of NO with water molecules. A water molecule donates a H-bond to NO, giving rise to the down-shift of the 2π* level below the Fermi level. This causes electron transfer from the substrate to NO, weakening, and eventually rupturing, the N-O bond. The facile bond cleavage by water molecules has implications for the catalytic reduction of NO under ambient conditions. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. New directions in scanning-tunneling microscopy

    International Nuclear Information System (INIS)

    Ferrell, T.L.; Warmack, R.J.; Reddick, R.C.

    1989-01-01

    The tunneling of electrons in scanning-tunneling microscopy (STM) has permitted imaging of the electronic distribution about individual atoms on surfaces. The need for use of conducting surfaces in STM limits its applicability, and new forms of scanning microscopy have emerged as a result of interest in poorly conducting samples. Atomic force microscopy has demonstrated that the force between a surface and a probe tip can be used to image selected materials. Now being developed are magnetic probe STM's and photon tunneling microscopes in which the probe is a sharpened optical fiber. Also of great interest presently is the measurement of differential conductance of surfaces using electron STM's. This method supplies spectral information and contrast enhancement in images. At present there remains much theoretical work to be carried out in order to better characterize related data on inelastic electron tunneling, and valuable insight may be gained from data being gathered on the local work function of materials. As matters stand today, the key problems lie in determining tip and contamination effects, preparation of samples, and understanding conductivity mechanisms in very thin materials on conducting substrates. Resolution of these problems and introduction of new forms of scanning microscopy may permit novel and important applications in biology as well as surface science

  16. Direct, coherent and incoherent intermediate state tunneling and scanning tunnel microscopy (STM)

    International Nuclear Information System (INIS)

    Halbritter, J.

    1997-01-01

    Theory and experiment in tunneling are still qualitative in nature, which hold true also for the latest developments in direct-, resonant-, coherent- and incoherent-tunneling. Those tunnel processes have recently branched out of the field of ''solid state tunnel junctions'' into the fields of scanning tunnel microscopy (STM), single electron tunneling (SET) and semiconducting resonant tunnel structures (RTS). All these fields have promoted the understanding of tunneling in different ways reaching from the effect of coherence, of incoherence and of charging in tunneling, to spin flip or inelastic effects. STM allows not only the accurate measurements of the tunnel current and its voltage dependence but, more importantly, the easy quantification via the (quantum) tunnel channel conductance and the distance dependence. This new degree of freedom entering exponentially the tunnel current allows an unique identification of individual tunnel channels and their quantification. In STM measurements large tunnel currents are observed for large distances d > 1 nm explainable by intermediate state tunneling. Direct tunneling with its reduced tunnel time and reduced off-site Coulomb charging bridges distances below 1 nm, only. The effective charge transfer process with its larger off-site and on-site charging at intermediate states dominates tunnel transfer in STM, biology and chemistry over distances in the nm-range. Intermediates state tunneling becomes variable range hopping conduction for distances larger than d > 2 nm, for larger densities of intermediate states n 1 (ε) and for larger temperatures T or voltages U, still allowing high resolution imaging

  17. Scanning tunnel microscopic image of tungsten (100) and (110) real surfaces and nature of conduction electron reflection

    International Nuclear Information System (INIS)

    Pryadkin, S.L.; Tsoj, V.S.

    1988-01-01

    The electrically polished (100) and (110) surfaces of tungsten are studied with the aid of a scanning tunnel microscope at atmospheric pressure. The (110) surface consists of a large number of atomically plane terraces whereas the (100) surface is faceted. The scanning tunnel microscope data can explain such results of experiments on transverse electron focussing as the strong dependence of the probability for specular reflection of conduction electrons scattered by the (100) surface on the electron de Broglie wavelength and the absence of a dependence of the probability for specular reflection on the wavelength for the (110) surface

  18. Imaging by in situ Scanning Tunnelling Microscopy and its Nanotechnological Perspectives

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2002-01-01

    of the tip and working electrode. In collaboration with Danish Micro Engineering A/S, the instrument was constructed and tested in laboratory environments. The system was successfully developed, as to meet international-market requirements. Within the frame of the work, procedures of tip coating...... of simultaneous imaging and electrochemical manipulation offers unprecedented possibilities of device construction at the nanometer level. The present work is therefore intended as a promotion of in situ STM as a tool of nanotechnology that allows device fabrication of sub-nanometer tolerances. Novel applications......-biotechnology are evaluated. It is thus documented that in situ STM constitutes an indispensable tool of nanotechnology. Keywords are imaging and control. The manufacture of nanotechnological devices is exemplified by construction of a ‘nanotypewriter’ that exploits a novel feature of electrochemistry. The nanotypewriter...

  19. Design and calibration of a vacuum compatible scanning tunneling microscope

    Science.gov (United States)

    Abel, Phillip B.

    1990-01-01

    A vacuum compatible scanning tunneling microscope was designed and built, capable of imaging solid surfaces with atomic resolution. The single piezoelectric tube design is compact, and makes use of sample mounting stubs standard to a commercially available surface analysis system. Image collection and display is computer controlled, allowing storage of images for further analysis. Calibration results from atomic scale images are presented.

  20. Scanning Tunneling Microscope For Use In Vacuum

    Science.gov (United States)

    Abel, Phillip B.

    1993-01-01

    Scanning tunneling microscope with subangstrom resolution developed to study surface structures. Although instrument used in air, designed especially for use in vacuum. Scanning head is assembly of small, mostly rigid components made of low-outgassing materials. Includes coarse-positioning mechanical-translation stage, on which specimen mounted by use of standard mounting stub. Tunneling tip mounted on piezoelectric fine-positioning tube. Application of suitable voltages to electrodes on piezoelectric tube controls scan of tunneling tip across surface of specimen. Electronic subsystem generates scanning voltages and collects data.

  1. Thermovoltages in vacuum tunneling investigated by scanning tunneling microscopy

    OpenAIRE

    Hoffmann, D. H.; Rettenberger, Armin; Grand, Jean Yves; Läuger, K.; Leiderer, Paul; Dransfeld, Klaus; Möller, Rolf

    1995-01-01

    By heating the tunneling tip of a scanning tunneling microscope the thermoelectric properties of a variable vacuum barrier have been investigated. The lateral variation of the observed thermovoltage will be discussed for polycrystalline gold, stepped surfaces of silver, as well as for copper islands on silver.

  2. Atomic origin of the scanning tunneling microscopy images of charge-density-waves on 1T-TaSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stoltz, D. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands)], E-mail: stoltz@physics.leidenuniv.nl; Bielmann, M.; Schlapbach, L. [Swiss Federal Lab for Materials Science and Technology (EMPA), CH-8600 Duebendorf (Switzerland); Bovet, M. [Institut de Physique, Universite de Neuchatel, CH-2000 Neuchatel (Switzerland); Berger, H. [Institut de Physique Appliquee, EPF, 1015 Lausanne (Switzerland); Goethelid, M. [Materialfysik, MAP, KTH-Electrum, SE-16440 Kista (Sweden); Stoltz, S.E. [MAX-Lab, Lund University, SE-22100 Lund (Sweden); Starnberg, H.I. [Department of Physics, Goeteborg University and Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2008-07-01

    We show atomically resolved scanning tunneling microscopy (STM) images of charge density waves (CDWs) at room temperature together with angle-resolved photoelectron band-mapping of 1T-TaSe{sub 2}. By comparing the results of these two techniques, we demonstrate the atomic structure of the CDW-features observed by the STM and atomic origin of the reconstructed band-structure in this material.

  3. Theoretical approach to the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Noguera, C.

    1990-01-01

    Within a one-electron approach, based on a Green's-function formalism, a nonperturbative expression for the tunneling current is obtained and used to discuss which spectroscopic information may be deduced from a scanning-tunneling-microscope experiment. It is shown up to which limits the voltage dependence of the tunneling current reproduces the local density of states at the surface, and how the reflection coefficients of the electronic waves at the surface may modify it

  4. NEW SCANNING DEVICE FOR SCANNING TUNNELING MICROSCOPE APPLICATIONS

    NARCIS (Netherlands)

    SAWATZKY, GA; Koops, Karl Richard

    A small, single piezo XYZ translator has been developed. The device has been used as a scanner for a scanning tunneling microscope and has been tested successfully in air and in UHV. Its simple design results in a rigid and compact scanning unit which permits high scanning rates.

  5. Optical characterication of probes for photon scanning tunnelling microscopy

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    The photon scanning tunnelling microscope is a well-established member of the family of scanning near-field optical microscopes used for optical imaging at the sub-wavelength scale. The quality of the probes, typically pointed uncoated optical fibres, used is however difficult to evaluate...

  6. Scanning-tunneling microscope imaging of single-electron solitons in a material with incommensurate charge-density waves.

    Science.gov (United States)

    Brazovskii, Serguei; Brun, Christophe; Wang, Zhao-Zhong; Monceau, Pierre

    2012-03-02

    We report on scanning-tunneling microscopy experiments in a charge-density wave (CDW) system allowing visually capturing and studying in detail the individual solitons corresponding to the self-trapping of just one electron. This "Amplitude Soliton" is marked by vanishing of the CDW amplitude and by the π shift of its phase. It might be the realization of the spinon--the long-sought particle (along with the holon) in the study of science of strongly correlated electronic systems. As a distinct feature we also observe one-dimensional Friedel oscillations superimposed on the CDW which develop independently of solitons.

  7. Fiber coupled ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    We report on a scanning tunneling microscope with a photoconductive gate in the tunneling current circuit. The tunneling tip is attached to a coplanar transmission line with an integrated photoconductive switch. The switch is illuminated through a fiber which is rigidly attached to the switch...... waveguide. The measurements show that the probe works as a transient voltage detector in contact and a capacitively coupled transient field detector in tunneling mode. We do not measure the transient voltage change in the ohmic tunneling current. In this sense, the spatial resolution for propagating...... substrate. By using a firmly attached fiber we achieve an excellent reproducibility and unconstrained positioning of the tip. We observe a transient signal with 2.9 ps pulse width in tunneling mode and 5 ps in contact mode. The instrument is applied to investigating the mode structure on a coplanar...

  8. Development of the tunneling junction simulation environment for scanning tunneling microscope evaluation

    International Nuclear Information System (INIS)

    Gajewski, Krzysztof; Piasecki, Tomasz; Kopiec, Daniel; Gotszalk, Teodor

    2017-01-01

    Proper configuration of scanning tunneling microscope electronics plays an important role in the atomic scale resolution surface imaging. Device evaluation in the tunneling contact between scanning tip and sample may be prone to the surface quality or mechanical disturbances. Thus the use of tunneling junction simulator makes electronics testing more reliable and increases its repeatability. Here, we present the theoretical background enabling the proper selection of electronic components circuitry used as a tunneling junction simulator. We also show how to simulate mechanics related to the piezoelectric scanner, which is applied in real experiments. Practical use of the proposed simulator and its application in metrological characterization of the developed scanning tunneling microscope is also shown. (paper)

  9. Fluctuation Dominated Josephson Tunneling with a Scanning Tunneling Microscope

    International Nuclear Information System (INIS)

    Naaman, O.; Teizer, W.; Dynes, R. C.

    2001-01-01

    We demonstrate Josephson tunneling in vacuum tunnel junctions formed between a superconducting scanning tunneling microscope tip and a Pb film, for junction resistances in the range 50--300 k Omega. We show that the superconducting phase dynamics is dominated by thermal fluctuations, and that the Josephson current appears as a peak centered at small finite voltage. In the presence of microwave fields (f=15.0 GHz) the peak decreases in magnitude and shifts to higher voltages with increasing rf power, in agreement with theory

  10. A Student-Built Scanning Tunneling Microscope

    Science.gov (United States)

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  11. Scanning tunneling spectroscopy under large current flow through the sample.

    Science.gov (United States)

    Maldonado, A; Guillamón, I; Suderow, H; Vieira, S

    2011-07-01

    We describe a method to make scanning tunneling microscopy/spectroscopy imaging at very low temperatures while driving a constant electric current up to some tens of mA through the sample. It gives a new local probe, which we term current driven scanning tunneling microscopy/spectroscopy. We show spectroscopic and topographic measurements under the application of a current in superconducting Al and NbSe(2) at 100 mK. Perspective of applications of this local imaging method includes local vortex motion experiments, and Doppler shift local density of states studies.

  12. Scanning tunnel microscopy of semiconductor nanostructures

    International Nuclear Information System (INIS)

    Eder, C.

    1997-09-01

    In this work a scanning tunneling microscope (STM) is utilized as a surface sensitive tool for local characterization of internal potential profiles of GaAs/AlGaAs heterostructures. The STM is operated at variable temperatures under ambient conditions, i.e. either in air or in the variable temperature insert of a cryostat. Distinct local differences between current-voltage curves taken on inverted heterostructures, which were patterned by wet chemically etching, are found. The spectroscopic differences can be ascribed to the internal potential profile in the subsurface regions of the sample. Current imaging tunneling spectroscopy (CITS) is applied to study quantum wire regions. It is found that the magnitude of the CITS-current is an indirect measure of edge depletion zones, which are much larger at 4.2 K. Direct measurements of relevant energy levels in quantum structures were obtained by ballistic electron emission microscopy (BEEM). It is shown that this 3-terminal technique is an excellent tool for transport characterization of minibands formed in semiconductor superlattices. Furthermore, low dimensional electron gases are shown to act as very efficient collector electrodes at low temperatures. For the first time, BEEM experiments were performed at 4.2 K. The enhanced thermal resolution at 4.2 K allows an analysis of the relevant scattering processes. It is found that the collector current is strongly influenced by diffusive scattering at the metal/semiconductor interface. (author)

  13. Enhanced resolution imaging of ultrathin ZnO layers on Ag(111) by multiple hydrogen molecules in a scanning tunneling microscope junction

    Science.gov (United States)

    Liu, Shuyi; Shiotari, Akitoshi; Baugh, Delroy; Wolf, Martin; Kumagai, Takashi

    2018-05-01

    Molecular hydrogen in a scanning tunneling microscope (STM) junction has been found to enhance the lateral spatial resolution of the STM imaging, referred to as scanning tunneling hydrogen microscopy (STHM). Here we report atomic resolution imaging of 2- and 3-monolayer (ML) thick ZnO layers epitaxially grown on Ag(111) using STHM. The enhanced resolution can be obtained at a relatively large tip to surface distance and resolves a more defective structure exhibiting dislocation defects for 3-ML-thick ZnO than for 2 ML. In order to elucidate the enhanced imaging mechanism, the electric and mechanical properties of the hydrogen molecular junction (HMJ) are investigated by a combination of STM and atomic force microscopy. It is found that the HMJ shows multiple kinklike features in the tip to surface distance dependence of the conductance and frequency shift curves, which are absent in a hydrogen-free junction. Based on a simple modeling, we propose that the junction contains several hydrogen molecules and sequential squeezing of the molecules out of the junction results in the kinklike features in the conductance and frequency shift curves. The model also qualitatively reproduces the enhanced resolution image of the ZnO films.

  14. Imaging the electron-boson coupling in superconducting FeSe films using a scanning tunneling microscope.

    Science.gov (United States)

    Song, Can-Li; Wang, Yi-Lin; Jiang, Ye-Ping; Li, Zhi; Wang, Lili; He, Ke; Chen, Xi; Hoffman, Jennifer E; Ma, Xu-Cun; Xue, Qi-Kun

    2014-02-07

    Scanning tunneling spectroscopy has been used to reveal signatures of a bosonic mode in the local quasiparticle density of states of superconducting FeSe films. The mode appears below Tc as a "dip-hump" feature at energy Ω∼4.7kBTc beyond the superconducting gap Δ. Spectra on strained regions of the FeSe films reveal simultaneous decreases in Δ and Ω. This contrasts with all previous reports on other high-Tc superconductors, where Δ locally anticorrelates with Ω. A local strong coupling model is found to reconcile the discrepancy well, and to provide a unified picture of the electron-boson coupling in unconventional superconductors.

  15. Imaging Josephson vortices on the surface superconductor Si(111)-(√7×√3)-In using a scanning tunneling microscope.

    Science.gov (United States)

    Yoshizawa, Shunsuke; Kim, Howon; Kawakami, Takuto; Nagai, Yuki; Nakayama, Tomonobu; Hu, Xiao; Hasegawa, Yukio; Uchihashi, Takashi

    2014-12-12

    We have studied the superconducting Si(111)-(√7×√3)-In surface using a ³He-based low-temperature scanning tunneling microscope. Zero-bias conductance images taken over a large surface area reveal that vortices are trapped at atomic steps after magnetic fields are applied. The crossover behavior from Pearl to Josephson vortices is clearly identified from their elongated shapes along the steps and significant recovery of superconductivity within the cores. Our numerical calculations combined with experiments clarify that these characteristic features are determined by the relative strength of the interterrace Josephson coupling at the atomic step.

  16. Scanning tunneling microscope assembly, reactor, and system

    Science.gov (United States)

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  17. Scanning Tunneling Spectroscope Use in Electrocatalysis Testing

    Science.gov (United States)

    Knutsen, Turid

    2010-01-01

    The relationship between the electrocatalytic properties of an electrode and its ability to transfer electrons between the electrode and a metallic tip in a scanning tunneling microscope (STM) is investigated. The alkaline oxygen evolution reaction (OER) was used as a test reaction with four different metallic glasses, Ni78Si8B14, Ni70Mo20Si5B5, Ni58Co20Si10B12, and Ni25Co50Si15B10, as electrodes. The electrocatalytic properties of the electrodes were determined. The electrode surfaces were then investigated with an STM. A clear relationship between the catalytic activity of an electrode toward the OER and its tunneling characteristics was found. The use of a scanning tunneling spectroscope (STS) in electrocatalytic testing may increase the efficiency of the optimization of electrochemical processes.

  18. Scanning Tunneling Spectroscope Use in Electrocatalysis Testing

    Directory of Open Access Journals (Sweden)

    Turid Knutsen

    2010-06-01

    Full Text Available The relationship between the electrocatalytic properties of an electrode and its ability to transfer electrons between the electrode and a metallic tip in a scanning tunneling microscope (STM is investigated. The alkaline oxygen evolution reaction (OER was used as a test reaction with four different metallic glasses, Ni78Si8B14, Ni70Mo20Si5B5, Ni58Co20Si10B12, and Ni25Co50Si15B10, as electrodes. The electrocatalytic properties of the electrodes were determined. The electrode surfaces were then investigated with an STM. A clear relationship between the catalytic activity of an electrode toward the OER and its tunneling characteristics was found. The use of a scanning tunneling spectroscope (STS in electrocatalytic testing may increase the efficiency of the optimization of electrochemical processes.

  19. Study of Scanning Tunneling Microscope control electronics

    International Nuclear Information System (INIS)

    Oliva, A.J.; Pancarobo, M.; Denisenko, N.; Aguilar, M.; Rejon, V.; Pena, J.L.

    1994-01-01

    A theoretical study of Scanning Tunneling Microscope control electronics is made. The knowledge of its behaviour allows us to determine accurately the region where the unstable operation could effect the measurements, and also to set the optimal working parameters. Each feedback circuitry compound is discussed as well as their mutual interaction. Different working conditions analysis and results are presented. (Author) 12 refs

  20. Commendable surface physics by means of scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Besenbacher, F.; Laegsgaard, E.; Stensgard, I.

    1995-01-01

    The scanning tunneling microscope, developed at the Aarhus University (Denmark) allows taking several STM images per second, as opposite to other similar microscopes, where the typical scanning time is 0,5-1 min. This new system enables collecting of important information concerning dynamic processes on the surfaces. The Aarhus microscope is very stable, hence atomic resolution is achievable even on close-packed metallic surfaces, while it is difficult to achieve by means of the conventional STM. (EG)

  1. Visualization of postoperative anterior cruciate ligament reconstruction bone tunnels: Reliability of standard radiographs, CT scans, and 3D virtual reality images

    NARCIS (Netherlands)

    D.E. Meuffels (Duncan); J.W. Potters (Jan Willem); A.H.J. Koning (Anton); C.H. Brown Jr Jr. (Charles); J.A.N. Verhaar (Jan); M. Reijman (Max)

    2011-01-01

    textabstractBackground and purpose: Non-anatomic bone tunnel placement is the most common cause of a failed ACL reconstruction. Accurate and reproducible methods to visualize and document bone tunnel placement are therefore important. We evaluated the reliability of standard radiographs, CT scans,

  2. Simulation of the soft-landing and adsorption of C{sub 60} molecules on a graphite substrate and computation of their scanning-tunnelling-microscopy-like images

    Energy Technology Data Exchange (ETDEWEB)

    Rafii-Tabar, H. [Computational Nano-Science Research Group, Centre for Numerical Modelling and Process Analysis, School of Computing and Mathematical Sciences, University of Greenwich, Greenwich, London (United Kingdom); Jurczyszyn, L.; Stankiewicz, B. [Institute of Experimental Physics, University of Wroclaw, Wroclaw (Poland)

    2000-07-03

    A constant-temperature molecular dynamics (MD) simulation was performed to model the soft-landing and adsorption of C{sub 60} molecules on a graphite substrate with the C{sub 60}s treated as soft molecules and released individually towards the substrate. The intra-molecular and intra-planar covalently bonding interactions were modelled by very accurate many-body potentials, and the non-bonding forces were derived from various pairwise potentials. The simulation extended over 1.6 million time steps covering a significant period of 160 picoseconds. The final alignment of the molecules on the surface agrees closely with that observed in an experiment based on scanning tunnelling microscopy (STM) on the same system, performed at room temperature and under ultrahigh-vacuum (UHV) conditions. Using a tungsten tip in a constant-current mode of imaging, we have also computed the STM-like images of one of the adsorbed molecules using a formulation of the STM tunnelling current based on Keldysh's non-equilibrium Green function formalism. Our aim has been to search for tip-induced states, which were speculated, on the basis of another STM-based experiment, performed in air, to form one of the possible origins of the extra features purported to have been observed in that experiment. We have not obtained any such states. (author)

  3. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1995-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in STM I, these studies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described in chapters on scanning force microscopy, magnetic force microscopy, and scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Together, the two volumes give a comprehensive account of experimental aspects of STM. They provide essential reading and reference material for all students and researchers involved in this field. In this second edition the text has been updated and new methods are discussed.

  4. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1992-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in Vol. I, these sudies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described inchapters on scanning force microscopy, magnetic force microscopy, scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Togehter, the two volumes give a comprehensive account of experimental aspcets of STM. They provide essentialreading and reference material for all students and researchers involvedin this field.

  5. Scanning Tunneling Spectroscopy of Potassium on Graphene

    Science.gov (United States)

    Cormode, Daniel; Leroy, Brian; Yankowitz, Matthew

    2012-02-01

    We investigate the effect of charged impurities on the electronic properties of large single crystal CVD grown graphene using scanning tunneling microscopy. Mono- and multilayer crystals were prepared by transferring graphene from copper onto exfoliated boron nitride flakes on 300 nm SiO2 substrates. The boron nitride provides an ultra flat surface for the graphene. Potassium atoms are controllably deposited on the graphene at low temperature by heating a nearby getter source. Scanning tunneling spectroscopy and transport measurements were performed in ultra high vacuum at 4.5 K. Transport measurements demonstrate the shifting of the Dirac point as the samples are doped, while STM measurements demonstrate the size, arrangement and local electronic influence of the potassium atoms.

  6. Atomic physics with the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Kleber, M.; Bracher, C.; Riza, M.

    1999-01-01

    Backscattering of atomic beams above a given surface yields information similar to the one obtained from scanning the same surface with a scanning tunneling microscope (STM): In both cases the experimentally accessible quantity is the local density of states (LDOS) n(r,E) of the surface. For the case of backscattering, the LDOS at the turning point of the atom is an important ingredient of the potential between atom and surface. In experiments performed with an STM, the LDOS at the apex of an atomically sharp tip can be determined directly. Probing surfaces locally by an STM allows for the study of basic phenomena in atomic physics, with tunneling of electrons in three dimensions being a central issue

  7. Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates.

    Science.gov (United States)

    Zhang, Hao; Li, Xianqi; Chen, Yunmei; Park, Jewook; Li, An-Ping; Zhang, X-G

    2017-01-01

    We present an image postprocessing framework for Scanning Tunneling Microscope (STM) to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a "rubber band" model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA). The numerical results on measurement from copper(111) surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data.

  8. Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-01-01

    Full Text Available We present an image postprocessing framework for Scanning Tunneling Microscope (STM to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a “rubber band” model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA. The numerical results on measurement from copper(111 surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data.

  9. Excitation of propagating surface plasmons with a scanning tunnelling microscope.

    Science.gov (United States)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G

    2011-04-29

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10  µm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  10. Atomic resolution ultrafast scanning tunneling microscope with scan rate breaking the resonant frequency of a quartz tuning fork resonator.

    Science.gov (United States)

    Li, Quanfeng; Lu, Qingyou

    2011-05-01

    We present an ultra-fast scanning tunneling microscope with atomic resolution at 26 kHz scan rate which surpasses the resonant frequency of the quartz tuning fork resonator used as the fast scan actuator. The main improvements employed in achieving this new record are (1) fully low voltage design (2) independent scan control and data acquisition, where the tuning fork (carrying a tip) is blindly driven to scan by a function generator with the scan voltage and tunneling current (I(T)) being measured as image data (this is unlike the traditional point-by-point move and measure method where data acquisition and scan control are switched many times).

  11. Extension of Seismic Scanning Tunneling Macroscope to Elastic Waves

    KAUST Repository

    Tarhini, Ahmad

    2017-11-06

    The theory for the seismic scanning tunneling macroscope is extended from acoustic body waves to elastic body-wave propagation. We show that, similar to the acoustic case, near-field superresolution imaging from elastic body waves results from the O(1/R) term, where R is the distance between the source and near-field scatterer. The higher-order contributions R−n for n>1 are cancelled in the near-field region for a point source with normal stress.

  12. Extension of Seismic Scanning Tunneling Macroscope to Elastic Waves

    KAUST Repository

    Tarhini, Ahmad; Guo, Bowen; Dutta, Gaurav; Schuster, Gerard T.

    2017-01-01

    The theory for the seismic scanning tunneling macroscope is extended from acoustic body waves to elastic body-wave propagation. We show that, similar to the acoustic case, near-field superresolution imaging from elastic body waves results from the O(1/R) term, where R is the distance between the source and near-field scatterer. The higher-order contributions R−n for n>1 are cancelled in the near-field region for a point source with normal stress.

  13. Scanning tunneling spectroscopy study of DNA conductivity

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Král, Karel; Bunček, M.; Nešpůrek, Stanislav; Todorciuc, Tatiana; Weiter, M.; Navrátil, J.; Schneider, Bohdan; Pavluch, J.

    2008-01-01

    Roč. 6, č. 3 (2008), s. 422-426 ISSN 1895-1082 R&D Projects: GA AV ČR KAN401770651; GA MŠk OC 137; GA AV ČR KAN400720701; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40500505; CEZ:AV0Z40550506 Keywords : molecular electronics * DNA * scanning tunneling microscopy * conductivity * charge carrier transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.448, year: 2008

  14. Fabrication of silver tips for scanning tunneling microscope induced luminescence.

    Science.gov (United States)

    Zhang, C; Gao, B; Chen, L G; Meng, Q S; Yang, H; Zhang, R; Tao, X; Gao, H Y; Liao, Y; Dong, Z C

    2011-08-01

    We describe a reliable fabrication procedure of silver tips for scanning tunneling microscope (STM) induced luminescence experiments. The tip was first etched electrochemically to yield a sharp cone shape using selected electrolyte solutions and then sputter cleaned in ultrahigh vacuum to remove surface oxidation. The tip status, in particular the tip induced plasmon mode and its emission intensity, can be further tuned through field emission and voltage pulse. The quality of silver tips thus fabricated not only offers atomically resolved STM imaging, but more importantly, also allows us to perform challenging "color" photon mapping with emission spectra taken at each pixel simultaneously during the STM scan under relatively small tunnel currents and relatively short exposure time.

  15. Scanning tunneling spectroscopy of Pb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Michael

    2010-12-13

    The present thesis deals with the electronic structure, work function and single-atom contact conductance of Pb thin films, investigated with a low-temperature scanning tunneling microscope. The electronic structure of Pb(111) thin films on Ag(111) surfaces is investigated using scanning tunneling spectroscopy (STS). Quantum size effects, in particular, quantum well states (QWSs), play a crucial role in the electronic and physical properties of these films. Quantitative analysis of the spectra yields the QWS energies as a function of film thickness, the Pb bulk-band dispersion in {gamma}-L direction, scattering phase shifts at the Pb/Ag interface and vacuum barrier as well as the lifetime broadening at anti {gamma}. The work function {phi} is an important property of surfaces, which influences catalytic reactivity and charge injection at interfaces. It controls the availability of charge carriers in front of a surface. Modifying {phi} has been achieved by deposition of metals and molecules. For investigating {phi} at the atomic scale, scanning tunneling microscopy (STM) has become a widely used technique. STM measures an apparent barrier height {phi}{sub a}, which is commonly related to the sample work function {phi}{sub s} by: {phi}{sub a}=({phi}{sub s}+{phi}{sub t}- vertical stroke eV vertical stroke)/2, with {phi}{sub t} the work function of the tunneling tip, V the applied tunneling bias voltage, and -e the electron charge. Hence, the effect of the finite voltage in STM on {phi}{sub a} is assumed to be linear and the comparison of {phi}{sub a} measured at different surface sites is assumed to yield quantitative information about work function differences. Here, the dependence of {phi}{sub a} on the Pb film thickness and applied bias voltage V is investigated. {phi}{sub a} is found to vary significantly with V. This bias dependence leads to drastic changes and even inversion of contrast in spatial maps of {phi}{sub a}, which are related to the QWSs in the Pb

  16. A scanning tunneling microscope for a dilution refrigerator.

    Science.gov (United States)

    Marz, M; Goll, G; Löhneysen, H v

    2010-04-01

    We present the main features of a home-built scanning tunneling microscope that has been attached to the mixing chamber of a dilution refrigerator. It allows scanning tunneling microscopy and spectroscopy measurements down to the base temperature of the cryostat, T approximately 30 mK, and in applied magnetic fields up to 13 T. The topography of both highly ordered pyrolytic graphite and the dichalcogenide superconductor NbSe(2) has been imaged with atomic resolution down to T approximately 50 mK as determined from a resistance thermometer adjacent to the sample. As a test for a successful operation in magnetic fields, the flux-line lattice of superconducting NbSe(2) in low magnetic fields has been studied. The lattice constant of the Abrikosov lattice shows the expected field dependence proportional to 1/square root of B and measurements in the scanning tunneling spectroscopy mode clearly show the superconductive density of states with Andreev bound states in the vortex core.

  17. Theory and feasibility tests for a seismic scanning tunnelling macroscope

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunnelling macroscope (SSTM) that can detect subwavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the scatterer is in the near-field region. This means that, as the scatterer approaches the source, imaging of the scatterer with super-resolution can be achieved. Acoustic and elastic simulations support this concept, and a seismic experiment in an Arizona tunnel shows a TRM profile with super-resolution adjacent to the fault location. The SSTM is analogous to the optical scanning tunnelling microscopes having subwavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by the imaging of near-field seismic energy.

  18. Electron spin resonance scanning tunneling microscope

    International Nuclear Information System (INIS)

    Guo Yang; Li Jianmei; Lu Xinghua

    2015-01-01

    It is highly expected that the future informatics will be based on the spins of individual electrons. The development of elementary information unit will eventually leads to novel single-molecule or single-atom devices based on electron spins; the quantum computer in the future can be constructed with single electron spins as the basic quantum bits. However, it is still a great challenge in detection and manipulation of a single electron spin, as well as its coherence and entanglement. As an ideal experimental tool for such tasks, the development of electron spin resonance scanning tunneling microscope (ESR-STM) has attracted great attention for decades. This paper briefly introduces the basic concept of ESR-STM. The development history of this instrument and recent progresses are reviewed. The underlying mechanism is explored and summarized. The challenges and possible solutions are discussed. Finally, the prospect of future direction and applications are presented. (authors)

  19. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans.

    Science.gov (United States)

    Chen, Xu; Guo, Tengfei; Hou, Yubin; Zhang, Jing; Meng, Wenjie; Lu, Qingyou

    2017-01-01

    A new scan-head structure for the scanning tunneling microscope (STM) is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans) coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan). They are fixed at one end (called common end). A hollow tantalum shaft is coaxially housed in the XY -scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  20. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2017-01-01

    Full Text Available A new scan-head structure for the scanning tunneling microscope (STM is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan. They are fixed at one end (called common end. A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  1. Scanning tunneling spectroscopy on superconducting proximity nanostructures

    International Nuclear Information System (INIS)

    Chapelier, C; Vinet, M; Lefloch, F

    2001-01-01

    We investigated the local density of states (LDOS) of a normal metal (N) in good electrical contact with a superconductor (S) as a function of the distance x to the NS interface. The sample consists of a pattern of alternate L = 1 mm wide strips of Au and Nb made by UV lithography. We used a low temperature scanning tunneling microscope and a lock-in detection technique to record simultaneously dI/dV(V,x) curves and the topographic profile z(x) at 1.5 K. We scanned along lines perpendicular to the strips. All the spectra show a dip near the Fermi energy, which spectral extension decreases from the superconducting gap Δ at the NS interface to zero at distances x >> ξ N where ξ N ≅ √hD N /2Δ ≅ 53nm is the coherence length in the normal metal. Our measurements are correctly described in the framework of the quasi-classical Green's function formalism. We numerically solved the 1D Usadel equation and extracted a decoherence time in gold of 4 ps. We also investigated the LDOS of small ridges of Au deposited on the top of the Nb lines. In this case, L ≤ ξ N and the spatial variations of the spectra depend on the exact shape of the Au ridge. However, our results are consistent with a predicted minigap related to the Thouless energy. (4. mesoscopic superconductivity)

  2. Measurement of the vortex-core radius by scanning tunneling microscopy

    NARCIS (Netherlands)

    Hartmann, U.; Golubov, Alexandre Avraamovitch; Drechsler, T.; Kupriyanov, M. Yu; Heiden, C.

    1994-01-01

    Using a scanning tunneling microscope operated in a spectroscopic mode we imaged flux-line lattices in niobium diselenide at various external magnetic fields. From the evaluation of a large number of tunneling-current profiles taken across the individual vortices we deduced the dependence of the

  3. Manipulation of magnetic Skyrmions with a Scanning Tunneling Microscope

    OpenAIRE

    Wieser, R.

    2016-01-01

    The dynamics of a single magnetic Skyrmion in an atomic spin system under the influence of Scanning Tunneling Microscope is investigated by computer simulations solving the Landau-Lifshitz-Gilbert equation. Two possible scenarios are described: manipulation with aid of a spin-polarized tunneling current and by an electric field created by the scanning tunneling microscope. The dynamics during the creation and annihilation process is studied and the possibility to move single Skyrmions is showed.

  4. Regular Scanning Tunneling Microscope Tips can be Intrinsically Chiral

    International Nuclear Information System (INIS)

    Tierney, Heather L.; Murphy, Colin J.; Sykes, E. Charles H.

    2011-01-01

    We report our discovery that regular scanning tunneling microscope tips can themselves be chiral. This chirality leads to differences in electron tunneling efficiencies through left- and right-handed molecules, and, when using the tip to electrically excite molecular rotation, large differences in rotation rate were observed which correlated with molecular chirality. As scanning tunneling microscopy is a widely used technique, this result may have unforeseen consequences for the measurement of asymmetric surface phenomena in a variety of important fields.

  5. Regular scanning tunneling microscope tips can be intrinsically chiral.

    Science.gov (United States)

    Tierney, Heather L; Murphy, Colin J; Sykes, E Charles H

    2011-01-07

    We report our discovery that regular scanning tunneling microscope tips can themselves be chiral. This chirality leads to differences in electron tunneling efficiencies through left- and right-handed molecules, and, when using the tip to electrically excite molecular rotation, large differences in rotation rate were observed which correlated with molecular chirality. As scanning tunneling microscopy is a widely used technique, this result may have unforeseen consequences for the measurement of asymmetric surface phenomena in a variety of important fields.

  6. Small-size low-temperature scanning tunnel microscope

    International Nuclear Information System (INIS)

    Al'tfeder, I.B.; Khajkin, M.S.

    1989-01-01

    A small-size scanning tunnel microscope, designed for operation in transport helium-filled Dewar flasks is described. The microscope design contains a device moving the pin to the tested sample surface and a piezoelectric fine positioning device. High vibration protection of the microscope is provided by its suspension using silk threads. The small-size scanning tunnel microscope provides for atomic resolution

  7. Direct observation of atoms on surfaces by scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Baldeschwieler, J.D.

    1989-01-01

    The scanning tunnelling microscope is a non-destructive means of achieving atomic level resolution of crystal surfaces in real space to elucidate surface structures, electronic properties and chemical composition. Scanning tunnelling microscope is a powerful, real space surface structure probe complementary to other techniques such as x-ray diffraction. 21 refs., 8 figs

  8. Excitation of propagating surface plasmons with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G

    2011-01-01

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 μm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  9. Excitation of propagating surface plasmons with a scanning tunnelling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G, E-mail: Elizabeth.Boer-Duchemin@u-psud.fr [Institut des Sciences Moleculaire d' Orsay (ISMO), CNRS Universite Paris-Sud, 91405 Orsay (France)

    2011-04-29

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 {mu}m. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  10. Near-field optical microscopy with a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Barbara, A.; Lopez-Rios, T.; Quemerais, P.

    2005-01-01

    A homemade apertureless near-field optical microscope using a scanning tunneling microscope (STM) is described. The experimental set-up simultaneously provides optical and topographic images of the sample. Technical details and features of the set-up are presented, together with results demonstrating the sub-wavelength resolution achieved as well as its sensitivity to dielectric contrasts. We show that the use of a STM permits to precisely control very small distances between the tip and the sample which is a great advantage to excite localized optical resonances between the tip and the surface

  11. Spin-polarized scanning tunneling microscopy: breakthroughs and highlights.

    Science.gov (United States)

    Bode, Matthias

    2012-01-01

    The principle of scanning tunneling microscopy, an imaging method with atomic resolution capability invented by Binnig and Rohrer in 1982, can be adapted for surface magnetism studies by using magnetic probe tips. The contrast mechanism of this so-called spin-polarized scanning tunneling microscopy, or SP-STM, relies on the tunneling magneto-resistance effect, i.e. the tip-sample distance as well as the differential conductance depend on the relative magnetic orientation of tip and sample. To illustrate the working principle and the unique capabilities of SP-STM, this compilation presents some key experiments which have been performed on various magnetic surfaces, such as the topological antiferromagnet Cr(001), a double-layer of Fe which exhibits a stripe- domain pattern with about 50 nm periodicity, and the Mn monolayer on W(110), where the combination of experiment and theory reveal an antiferromagnetic spin cycloid. Recent experimental results also demonstrate the suitability of SP-STM for studies of dynamic properties, such as the spin relaxation time of single magnetic nanostructures.

  12. SPATIAL REPARTITION OF CURRENT FLUCTUATIONS IN A SCANNING TUNNELING MICROSCOPE

    Directory of Open Access Journals (Sweden)

    Jerome Lagoute

    2011-05-01

    Full Text Available Scanning Tunneling Microscopy (STM is a technique where the surface topography of a conducting sample is probed by a scanning metallic tip. The tip-to-surface distance is controlled by monitoring the electronic tunneling current between the two metals. The aim of this work is to extend the temporal range of this instrument by characterising the time fluctuations of this current on different surfaces. The current noise power spectral density is dominated by a characteristic 1/f component, the physical origin of which is not yet clearly identified, despite a number of investigations. A new I-V preamplifier was developed in order to characterise these fluctuations of the tunnelling current and to obtain images of their spatial repartition. It is observed that their intensity is correlated with some topographical features. This information can be used to get insights on the physical phenomena involved that are not accessible by the usual STM set-up, which is limited to low frequencies.

  13. Design and performance of a beetle-type double-tip scanning tunneling microscope

    International Nuclear Information System (INIS)

    Jaschinsky, Philipp; Coenen, Peter; Pirug, Gerhard; Voigtlaender, Bert

    2006-01-01

    A combination of a double-tip scanning tunneling microscope with a scanning electron microscope in ultrahigh vacuum environment is presented. The compact beetle-type design made it possible to integrate two independently driven scanning tunneling microscopes in a small space. Moreover, an additional level for coarse movement allows the decoupling of the translation and approach of the tunneling tip. The position of the two tips can be controlled from the millimeter scale down to 50 nm with the help of an add-on electron microscope. The instrument is capable of atomic resolution imaging with each tip

  14. Measuring voltage transients with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    circuit, where the tunneling tip is directly connected to the current amplifier of the scanning tunneling microscope, this dependence is eliminated. Ail results can be explained with coupling through the geometrical capacitance of the tip-electrode junction. By illuminating the current......We use an ultrafast scanning tunneling microscope to resolve propagating voltage transients in space and time. We demonstrate that the previously observed dependence of the transient signal amplitude on the tunneling resistance was only caused by the electrical sampling circuit. With a modified...

  15. From Graphite to Graphene via Scanning Tunneling Microscopy

    Science.gov (United States)

    Qi, Dejun

    The primary objective of this dissertation is to study both graphene on graphite and pristine freestanding grapheme using scanning tunneling microscopy (STM) and density functional theory (DFT) simulation technique. In the experiment part, good quality tungsten metalic tips for experiment were fabricated using our newly developed tip making setup. Then a series of measurements using a technique called electrostatic-manipulation scanning tunneling microscopy (EM-STM) of our own development were performed on a highly oriented pyrolytic graphite (HOPG) surface. The electrostatic interaction between the STM tip and the sample can be tuned to produce both reversible and irreversible large-scale movement of the graphite surface. Under this influence, atomic-resolution STM images reveal that a continuous electronic transition between two distinct patterns can be systematically controlled. DFT calculations reveal that this transition can be related to vertical displacements of the top layer of graphite relative to the bulk. Evidence for horizontal shifts in the top layer of graphite is also presented. Excellent agreement is found between experimental STM images and those simulated using DFT. In addition, the EM-STM technique was also used to controllably and reversibly pull freestanding graphene membranes up to 35 nm from their equilibrium height. Atomic-scale corrugation amplitudes 20 times larger than the STM electronic corrugation for graphene on a substrate were observed. The freestanding graphene membrane responds to a local attractive force created at the STM tip as a highly conductive yet flexible grounding plane with an elastic restoring force.

  16. Molecular tips for scanning tunneling microscopy: intermolecular electron tunneling for single-molecule recognition and electronics.

    Science.gov (United States)

    Nishino, Tomoaki

    2014-01-01

    This paper reviews the development of molecular tips for scanning tunneling microscopy (STM). Molecular tips offer many advantages: first is their ability to perform chemically selective imaging because of chemical interactions between the sample and the molecular tip, thus improving a major drawback of conventional STM. Rational design of the molecular tip allows sophisticated chemical recognition; e.g., chiral recognition and selective visualization of atomic defects in carbon nanotubes. Another advantage is that they provide a unique method to quantify electron transfer between single molecules. Understanding such electron transfer is mandatory for the realization of molecular electronics.

  17. Closed-loop conductance scanning tunneling spectroscopy: demonstrating the equivalence to the open-loop alternative.

    Science.gov (United States)

    Hellenthal, Chris; Sotthewes, Kai; Siekman, Martin H; Kooij, E Stefan; Zandvliet, Harold J W

    2015-01-01

    We demonstrate the validity of using closed-loop z(V) conductance scanning tunneling spectroscopy (STS) measurements for the determination of the effective tunneling barrier by comparing them to more conventional open-loop I(z) measurements. Through the development of a numerical model, the individual contributions to the effective tunneling barrier present in these experiments, such as the work function and the presence of an image charge, are determined quantitatively. This opens up the possibility of determining tunneling barriers of both vacuum and molecular systems in an alternative and more detailed manner.

  18. Design of a high-speed electrochemical scanning tunneling microscope.

    Science.gov (United States)

    Yanson, Y I; Schenkel, F; Rost, M J

    2013-02-01

    In this paper, we present a bottom-up approach to designing and constructing a high-speed electrochemical scanning tunneling microscope (EC-STM). Using finite element analysis (FEA) calculations of the frequency response of the whole mechanical loop of the STM, we analyzed several geometries to find the most stable one that could facilitate fast scanning. To test the FEA results, we conducted measurements of the vibration amplitudes using a prototype STM setup. Based on the FEA analysis and the measurement results, we identified the potentially most disturbing vibration modes that could impair fast scanning. By modifying the design of some parts of the EC-STM, we reduced the amplitudes as well as increased the resonance frequencies of these modes. Additionally, we designed and constructed an electrochemical flow-cell that allows STM imaging in a flowing electrolyte, and built a bi-potentiostat to achieve electrochemical potential control during the measurements. Finally, we present STM images acquired during high-speed imaging in air as well as in an electrochemical environment using our newly-developed EC-STM.

  19. Single-atom contacts with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Kroeger, J; Neel, N; Sperl, A; Wang, Y F; Berndt, R

    2009-01-01

    The tip of a cryogenic scanning tunnelling microscope is used to controllably contact single atoms adsorbed on metal surfaces. The transition between tunnelling and contact is gradual for silver, while contact to adsorbed gold atoms is abrupt. The single-atom junctions are stable and enable spectroscopic measurements of, e.g., the Abrikosov-Suhl resonance of single Kondo impurities.

  20. Ultrafast terahertz scanning tunneling microscopy with atomic resolution

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2016-01-01

    We demonstrate that ultrafast terahertz scanning tunneling microscopy (THz-STM) can probe single atoms on a silicon surface with simultaneous sub-nanometer and sub-picosecond spatio-temporal resolution. THz-STM is established as a new technique for exploring high-field non-equilibrium tunneling...

  1. Modulated photodetection with semiconductor tips in a scanning tunneling microscope

    NARCIS (Netherlands)

    Groeneveld, R.H.M.; Prins, M.W.J.; Kempen, van H.

    1995-01-01

    We report on the detection of modulated light power irradiated into the tunnel junction of a scanning tunneling microscope. When semiconductor tips are used we can distinguish three contributions to the measured current: photocurrent due to electron-hole pair generation at the apex of the tip, a

  2. Detection of picosecond electrical transients in a scanning tunneling microscope

    NARCIS (Netherlands)

    Groeneveld, R.H.M.; Rasing, T.H.M.; Kaufmann, L.M.F.; Smalbrugge, E.; Wolter, J.H.; Melloch, M.R.; Kempen, van H.

    1996-01-01

    We have developed a scanning tunneling microscope using an optoelectronic switch which gates the tunneling tip current. The switch is fabricated within several tens of microns from the tip by photolithography and an accurate cleavage method. We demonstrate this approach by detecting picosecond

  3. Photoelectrical properties of semiconductor tips in scanning tunneling microscopy

    NARCIS (Netherlands)

    Prins, M.W.J.; Jansen, R.; Groeneveld, R.H.M.; Gelder, Van A.P.; Kempen, van H.

    1996-01-01

    We describe a model as well as experiments on the electrical properties of a photoexcited tunnel junction between a metal and a semiconductor material, as is established in a scanning tunneling microscope. The model treats the case in which carrier transport is mediated by capture and relaxation in

  4. A high stability and repeatability electrochemical scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhigang; Wang, Jihao; Lu, Qingyou, E-mail: qxl@ustc.edu.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hou, Yubin [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-12-15

    We present a home built electrochemical scanning tunneling microscope (ECSTM) with very high stability and repeatability. Its coarse approach is driven by a closely stacked piezo motor of GeckoDrive type with four rigid clamping points, which enhances the rigidity, compactness, and stability greatly. It can give high clarity atomic resolution images without sound and vibration isolations. Its drifting rates in XY and Z directions in solution are as low as 84 pm/min and 59 pm/min, respectively. In addition, repeatable coarse approaches in solution within 2 mm travel distance show a lateral deviation less than 50 nm. The gas environment can be well controlled to lower the evaporation rate of the cell, thus reducing the contamination and elongating the measurement time. Atomically resolved SO{sub 4}{sup 2−} image on Au (111) work electrode is demonstrated to show the performance of the ECSTM.

  5. A combined scanning tunneling microscope-atomic layer deposition tool.

    Science.gov (United States)

    Mack, James F; Van Stockum, Philip B; Iwadate, Hitoshi; Prinz, Fritz B

    2011-12-01

    We have built a combined scanning tunneling microscope-atomic layer deposition (STM-ALD) tool that performs in situ imaging of deposition. It operates from room temperature up to 200 °C, and at pressures from 1 × 10(-6) Torr to 1 × 10(-2) Torr. The STM-ALD system has a complete passive vibration isolation system that counteracts both seismic and acoustic excitations. The instrument can be used as an observation tool to monitor the initial growth phases of ALD in situ, as well as a nanofabrication tool by applying an electric field with the tip to laterally pattern deposition. In this paper, we describe the design of the tool and demonstrate its capability for atomic resolution STM imaging, atomic layer deposition, and the combination of the two techniques for in situ characterization of deposition.

  6. A high stability and repeatability electrochemical scanning tunneling microscope.

    Science.gov (United States)

    Xia, Zhigang; Wang, Jihao; Hou, Yubin; Lu, Qingyou

    2014-12-01

    We present a home built electrochemical scanning tunneling microscope (ECSTM) with very high stability and repeatability. Its coarse approach is driven by a closely stacked piezo motor of GeckoDrive type with four rigid clamping points, which enhances the rigidity, compactness, and stability greatly. It can give high clarity atomic resolution images without sound and vibration isolations. Its drifting rates in XY and Z directions in solution are as low as 84 pm/min and 59 pm/min, respectively. In addition, repeatable coarse approaches in solution within 2 mm travel distance show a lateral deviation less than 50 nm. The gas environment can be well controlled to lower the evaporation rate of the cell, thus reducing the contamination and elongating the measurement time. Atomically resolved SO4(2-) image on Au (111) work electrode is demonstrated to show the performance of the ECSTM.

  7. Surface physics studied by means of scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Besenbacher, F.; Laegsgaard, E.; Stensgaard, I.

    1993-01-01

    Scanning tunneling microscopy has been applied to study silicon crystal structures, oxygen on Cu (110), and real industrial catalyst surfaces. For the latter purpose an Atomic Force Microscope is being developed. (EG)

  8. Making Mn substitutional impurities in InAs using a scanning tunneling microscope.

    Science.gov (United States)

    Song, Young Jae; Erwin, Steven C; Rutter, Gregory M; First, Phillip N; Zhitenev, Nikolai B; Stroscio, Joseph A

    2009-12-01

    We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.

  9. Graphene quantum dots probed by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morgenstern, Markus; Freitag, Nils; Nent, Alexander; Nemes-Incze, Peter; Liebmann, Marcus [II. Institute of Physics B and JARA-FIT, RWTH Aachen University, Aachen (Germany)

    2017-11-15

    Scanning tunneling spectroscopy results probing the electronic properties of graphene quantum dots are reviewed. After a short summary of the study of squared wave functions of graphene quantum dots on metal substrates, we firstly present data where the Landau level gaps caused by a perpendicular magnetic field are used to electrostatically confine electrons in monolayer graphene, which are probed by the Coulomb staircase revealing the consecutive charging of a quantum dot. It turns out that these quantum dots exhibit much more regular charging sequences than lithographically confined ones. Namely, the consistent grouping of charging peaks into quadruplets, both, in the electron and hole branch, portrays a regular orbital splitting of about 10meV. At low hole occupation numbers, the charging peaks are, partly, additionally grouped into doublets. The spatially varying energy separation of the doublets indicates a modulation of the valley splitting by the underlying BN substrate. We outline that this property might be used to eventually tune the valley splitting coherently. Afterwards, we describe graphene quantum dots with multiple contacts produced without lithographic resist, namely by local anodic oxidation. Such quantum dots target the goal to probe magnetotransport properties during the imaging of the corresponding wave functions by scanning tunneling spectroscopy. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Spectroscopic Imaging Scanning Tunneling Microscopy Studies of Electronic Structure in the Superconducting and Pseudogap Phases of Cuprate High-Tc Superconductors

    Science.gov (United States)

    Fujita, Kazuhiro; Schmidt, Andrew R.; Kim, Eun-Ah; Lawler, Michael J.; Lee, Dung Hai; Davis, J. C.; Eisaki, Hiroshi; Uchida, Shin-ichi

    2012-01-01

    One of the key motivations for the development of atomically resolved spectroscopic imaging scanning tunneling microscopy (SI-STM) has been to probe the electronic structure of cuprate high temperature superconductors. In both the d-wave superconducting (dSC) and the pseudogap (PG) phases of underdoped cuprates, two distinct classes of electronic states are observed using SI-STM. The first class consists of the dispersive Bogoliubov quasiparticles of a homogeneous d-wave superconductor. These are detected below a lower energy scale |E|=Δ0 and only upon a momentum space (k-space) arc which terminates near the lines connecting k=±(π/a0,0) to k=±(0,π/a0). Below optimal doping, this ``nodal'' arc shrinks continuously with decreasing hole density. In both the dSC and PG phases, the only broken symmetries detected in the |E|≤Δ0 states are those of a d-wave superconductor. The second class of states occurs at energies near the pseudogap energy scale |E|˜ Δ1 which is associated conventionally with the ``antinodal'' states near k=±(π/a0,0) and k=±(0,π/a0). We find that these states break the expected 90°-rotational (C4) symmetry of electronic structure within CuO2 unit cells, at least down to 180°-rotational (C2) symmetry (nematic) but in a spatially disordered fashion. This intra-unit-cell C4 symmetry breaking coexists at |E|˜Δ1 with incommensurate conductance modulations locally breaking both rotational and translational symmetries (smectic). The characteristic wavevector Q of the latter is determined, empirically, by the k-space points where Bogoliubov quasiparticle interference terminates, and therefore evolves continuously with doping. The properties of these two classes of |E|˜Δ1 states are indistinguishable in the dSC and PG phases. To explain this segregation of k-space into the two regimes distinguished by the symmetries of their electronic states and their energy scales |E|˜Δ1 and |E|≤Δ0, and to understand how this impacts the electronic

  11. Three-dimensional scanning force/tunneling spectroscopy at room temperature

    International Nuclear Information System (INIS)

    Sugimoto, Yoshiaki; Ueda, Keiichi; Abe, Masayuki; Morita, Seizo

    2012-01-01

    We simultaneously measured the force and tunneling current in three-dimensional (3D) space on the Si(111)-(7 × 7) surface using scanning force/tunneling microscopy at room temperature. The observables, the frequency shift and the time-averaged tunneling current were converted to the physical quantities of interest, i.e. the interaction force and the instantaneous tunneling current. Using the same tip, the local density of states (LDOS) was mapped on the same surface area at constant height by measuring the time-averaged tunneling current as a function of the bias voltage at every lateral position. LDOS images at negative sample voltages indicate that the tip apex is covered with Si atoms, which is consistent with the Si-Si covalent bonding mechanism for AFM imaging. A measurement technique for 3D force/current mapping and LDOS imaging on the equivalent surface area using the same tip was thus demonstrated. (paper)

  12. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope.

    Science.gov (United States)

    Nazin, G V; Wu, S W; Ho, W

    2005-06-21

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.

  13. Scanning tunneling microscope with two-dimensional translator.

    Science.gov (United States)

    Nichols, J; Ng, K-W

    2011-01-01

    Since the invention of the scanning tunneling microscope (STM), it has been a powerful tool for probing the electronic properties of materials. Typically STM designs capable of obtaining resolution on the atomic scale are limited to a small area which can be probed. We have built an STM capable of coarse motion in two dimensions, the z- and x-directions which are, respectively, parallel and perpendicular to the tip. This allows us to image samples with very high resolution at sites separated by macroscopic distances. This device is a single unit with a compact design making it very stable. It can operate in either a horizontal or vertical configuration and at cryogenic temperatures.

  14. Compact, single-tube scanning tunneling microscope with thermoelectric cooling.

    Science.gov (United States)

    Jobbins, Matthew M; Agostino, Christopher J; Michel, Jolai D; Gans, Ashley R; Kandel, S Alex

    2013-10-01

    We have designed and built a scanning tunneling microscope with a compact inertial-approach mechanism that fits inside the piezoelectric scanner tube. Rigid construction allows the microscope to be operated without the use of external vibration isolators or acoustic enclosures. Thermoelectric cooling and a water-ice bath are used to increase temperature stability when scanning under ambient conditions.

  15. Structural monitoring of tunnels using terrestrial laser scanning

    NARCIS (Netherlands)

    Lindenbergh, R.C.; Uchanski, L.; Bucksch, A.; Van Gosliga, R.

    2009-01-01

    In recent years terrestrial laser scanning is rapidly evolving as a surveying technique for the monitoring of engineering objects like roof constructions, mines, dams, viaducts and tunnels. The advantage of laser scanning above traditional surveying methods is that it allows for the rapid

  16. Fully low voltage and large area searching scanning tunneling microscope

    International Nuclear Information System (INIS)

    Pang, Zongqiang; Wang, Jihui; Lu, Qingyou

    2009-01-01

    We present a novel scanning tunneling microscope (STM), which allows the tip to travel a large distance (millimeters) on the sample and take images (to find microscopic targets) anywhere it reaches without losing atomic resolution. This broad range searching capability, together with the coarse approach and scan motion, is all done with only one single piezoelectric tube scanner as well as with only low voltages (<15 V). Simple structure, low interference and high precision are thus achieved. To this end, a pillar and a tube scanner are mounted in parallel on a base with one ball glued on the pillar top and two balls glued on the scanner top. These three balls form a narrow triangle, which supports a triangular slider piece. By inertial stepping, the scanner can move the slider toward the pillar (coarse approach) or rotate the slider about the pillar (travel along sample surface). Since all the stepping motions are driven by the scanner's lateral bending which is large per unit voltage, high voltages are unnecessary. The technology is also applicable to scanning force microscopes (SFM) such as atomic force microscopes (AFM), etc

  17. Transient measurements with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    We use a photoconductively gated ultrafast scanning tunneling microscope to resolve laser-induced transients on transmission lines and photoconductors. The photoconductive switch on the tunneling probe is illuminated through a rigidly attached fiber. The use of the fiber enables us to scan across...... the transmission line while the change in delay time between pump beam (on the sample) and probe beam (on the probe) provides the temporal information. The investigated photoconductor sample is a low-temperature-grown GaAs layer placed on a sapphire substrate with a thin, semitransparent gold layer. In tunneling...... mode the probe is sensitive to laser-induced field changes in the semiconductor layer. Laser-induced transient signals of 2.2 ps widths are detected. As for the transmission lines, the signals can be explained by a capacitive coupling across the tunneling gap....

  18. Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors

    International Nuclear Information System (INIS)

    Hoffman, Jennifer E

    2011-01-01

    In the first three years since the discovery of Fe-based high T c superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless s± within a single family, FeTe 1-x Se x . Second, STM has imaged C4 → C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.

  19. Scanning Tunneling Spectroscopy on Electron-Boson Interactions in Superconductors

    OpenAIRE

    Schackert, Michael Peter

    2014-01-01

    This thesis describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  20. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schackert, Michael Peter

    2014-07-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  1. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    CERN Document Server

    Schackert, Michael Peter

    2015-01-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  2. Solid-State Quantum Computer Based on Scanning Tunneling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berman, G. P.; Brown, G. W.; Hawley, M. E.; Tsifrinovich, V. I.

    2001-08-27

    We propose a solid-state nuclear-spin quantum computer based on application of scanning tunneling microscopy (STM) and well-developed silicon technology. It requires the measurement of tunneling-current modulation caused by the Larmor precession of a single electron spin. Our envisioned STM quantum computer would operate at the high magnetic field ({approx}10 T) and at low temperature {approx}1 K .

  3. Solid-State Quantum Computer Based on Scanning Tunneling Microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Brown, G. W.; Hawley, M. E.; Tsifrinovich, V. I.

    2001-01-01

    We propose a solid-state nuclear-spin quantum computer based on application of scanning tunneling microscopy (STM) and well-developed silicon technology. It requires the measurement of tunneling-current modulation caused by the Larmor precession of a single electron spin. Our envisioned STM quantum computer would operate at the high magnetic field (∼10 T) and at low temperature ∼1 K

  4. A modular scanning tunneling microscope with an interchangeable elastic closed cell and external actuators

    International Nuclear Information System (INIS)

    Bjarnason, Elias H.; Arnalds, Unnar B.; Olafsson, Sveinn

    2006-01-01

    We introduce a novel modular cell based scanning tunneling microscope with external piezoelectric actuators. A tip and a sample are contained in a closed interchangeable cell, consisting of a stiff top plate and a bottom part, fastened together by an elastic material. The bottom part, containing a scanning tip, is fastened to a base unit while the top plate, containing a sample, is capable of scanning motion by external piezoelectric actuators mounted in the same base unit. The actuators are pre-loaded by the deformation of the elastic material of the cell, giving an increased stability. This design is expected to simplify the scanning tunneling microscope (STM) operation in difficult environments greatly by enclosing only the tip and sample in a small cell-module, which is pluggable to a scanning mechanism and other supportive functionalities. A frequency characterization and an image scan showing atomic resolution of highly oriented graphite in air, at room temperature, is presented

  5. A nanoscale gigahertz source realized with Josephson scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jäck, Berthold, E-mail: b.jaeck@fkf.mpg.de; Eltschka, Matthias; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart (Germany); Hardock, Andreas [Institut für Theoretische Elektrotechnik, Technische Universität Hamburg-Harburg, 21079 Hamburg (Germany); Kern, Klaus [Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart (Germany); Institut de Physique de la Matière Condensée, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)

    2015-01-05

    Using the AC Josephson effect in the superconductor-vacuum-superconductor tunnel junction of a scanning tunneling microscope (STM), we demonstrate the generation of GHz radiation. With the macroscopic STM tip acting as a λ/4-monopole antenna, we first show that the atomic scale Josephson junction in the STM is sensitive to its frequency-dependent environmental impedance in the GHz regime. Further, enhancing Cooper pair tunneling via excitations of the tip eigenmodes, we are able to generate high-frequency radiation. We find that for vanadium junctions, the enhanced photon emission can be tuned from about 25 GHz to 200 GHz and that large photon flux in excess of 10{sup 20 }cm{sup −2} s{sup −1} is reached in the tunnel junction. These findings demonstrate that the atomic scale Josephson junction in an STM can be employed as a full spectroscopic tool for GHz frequencies on the atomic scale.

  6. Scanning tunneling microscopy I general principles and applications to clean and adsorbate-covered surfaces

    CERN Document Server

    Wiesendanger, Roland

    1992-01-01

    Scanning Tunneling Microscopy I provides a unique introduction to a novel and fascinating technique that produces beautiful images of nature on an atomic scale. It is the first of three volumes that together offer a comprehensive treatment of scanning tunneling microscopy, its diverse applications, and its theoretical treatment. In this volume the reader will find a detailed description of the technique itself and of its applications to metals, semiconductors, layered materials, adsorbed molecules and superconductors. In addition to the many representative results reviewed, extensive references to original work will help to make accessible the vast body of knowledge already accumulated in this field.

  7. Polarization contrast in photon scanning tunnelling microscopy combined with atomic force microscopy

    NARCIS (Netherlands)

    Propstra, K.; Propstra, K.; van Hulst, N.F.

    1995-01-01

    Photon scanning tunnelling microscopy combined with atomic force microscopy allows simultaneous acquisition and direct comparison of optical and topographical images, both with a lateral resolution of about 30 nm, far beyond the optical diffraction limit. The probe consists of a modified

  8. Probing Field Distributions on Waveguide Structures with an Atomic Force/Photon Scanning Tunneling Microscope

    NARCIS (Netherlands)

    Borgonjen, E.G.; Borgonjen, E.G.; Moers, M.H.P.; Moers, M.H.P.; Ruiter, A.G.T.; van Hulst, N.F.

    1995-01-01

    A 'stand-alone' Photon Scanning Tunneling Microscope combined with an Atomic force Microscope, using a micro-fabricated silicon-nitride probe, is applied to the imaging of field distribution in integrated optical ridge waveguides. The electric field on the waveguide is locally probed by coupling to

  9. A cryogen-free low temperature scanning tunneling microscope capable of inelastic electron tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai; Huang, Di [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433 (China); Wu, Shiwei, E-mail: swwu@fudan.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)

    2016-06-15

    The design and performance of a cryogen-free low temperature scanning tunneling microscope (STM) housed in ultrahigh vacuum (UHV) are reported. The cryogen-free design was done by directly integrating a Gifford-McMahon cycle cryocooler to a Besocke-type STM, and the vibration isolation was achieved by using a two-stage rubber bellow between the cryocooler and a UHV-STM interface with helium exchange gas cooling. A base temperature of 15 K at the STM was achieved, with a possibility to further decrease by using a cryocooler with higher cooling power and adding additional low temperature stage under the exchange gas interface. Atomically sharp STM images and high resolution dI/dV spectra on various samples were demonstrated. Furthermore, we reported the inelastic tunneling spectroscopy on a single carbon monoxide molecule adsorbed on Ag(110) surface with a cryogen-free STM for the first time. Being totally cryogen-free, the system not only saves the running cost significantly but also enables uninterrupted data acquisitions and variable temperature measurements with much ease. In addition, the system is capable of coupling light to the STM junction by a pair of lens inside the UHV chamber. We expect that these enhanced capabilities could further broaden our views to the atomic-scale world.

  10. A cryogen-free low temperature scanning tunneling microscope capable of inelastic electron tunneling spectroscopy.

    Science.gov (United States)

    Zhang, Shuai; Huang, Di; Wu, Shiwei

    2016-06-01

    The design and performance of a cryogen-free low temperature scanning tunneling microscope (STM) housed in ultrahigh vacuum (UHV) are reported. The cryogen-free design was done by directly integrating a Gifford-McMahon cycle cryocooler to a Besocke-type STM, and the vibration isolation was achieved by using a two-stage rubber bellow between the cryocooler and a UHV-STM interface with helium exchange gas cooling. A base temperature of 15 K at the STM was achieved, with a possibility to further decrease by using a cryocooler with higher cooling power and adding additional low temperature stage under the exchange gas interface. Atomically sharp STM images and high resolution dI/dV spectra on various samples were demonstrated. Furthermore, we reported the inelastic tunneling spectroscopy on a single carbon monoxide molecule adsorbed on Ag(110) surface with a cryogen-free STM for the first time. Being totally cryogen-free, the system not only saves the running cost significantly but also enables uninterrupted data acquisitions and variable temperature measurements with much ease. In addition, the system is capable of coupling light to the STM junction by a pair of lens inside the UHV chamber. We expect that these enhanced capabilities could further broaden our views to the atomic-scale world.

  11. Scanning tunneling spectroscopy on organic semiconductors : experiment and model

    NARCIS (Netherlands)

    Kemerink, M.; Alvarado, S.F.; Müller, P.; Koenraad, P.M.; Salemink, H.W.M.; Wolter, J.H.; Janssen, R.A.J.

    2004-01-01

    Scanning-tunneling spectroscopy expts. performed on conjugated polymer films are compared with three-dimensional numerical model calcns. for charge injection and transport. It is found that if a sufficiently sharp tip is used, the field enhancement near the tip apex leads to a significant increase

  12. Scanning-tunneling spectroscopy on conjugated polymer films

    NARCIS (Netherlands)

    Kemerink, M.; Alvarado, S.F.; Koenraad, P.M.; Janssen, R.A.J.; Salemink, H.W.M.; Wolter, J.H.; Blom, P.W.M.

    2003-01-01

    Scanning-tunneling spectroscopy experiments have been performed on conjugated polymer films and have been compared to a three-dimensional numerical model for charge injection and transport. It is found that field enhancement near the tip apex leads to significant changes in the injected current,

  13. Oxygen-free in situ scanning tunnelling microscopy

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Ulstrup, Jens

    2007-01-01

    Scanning tunneling microscopy under full electrochemical potential control (in situ STM) has been used extensively as an efficient method to characterize microstructures at solid/liquid interfaces at the atomic and molecular levels. However, under ambient conditions oxygen may interfere in open i...

  14. Photon scanning tunneling microscope in combination with a force microscope

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Tack, R.G.; van Hulst, N.F.; Bölger, B.; Bölger, B.

    1994-01-01

    The simultaneous operation of a photon scanning tunneling microscope with an atomic force microscope is presented. The use of standard atomic force silicon nitride cantilevers as near-field optical probes offers the possibility to combine the two methods. Vertical forces and torsion are detected

  15. Electromigration of single metal atoms observed by scanning tunneling microscopy

    NARCIS (Netherlands)

    Braun, K.-F.; Soe, W.H.; Flipse, C.F.J.

    2007-01-01

    The authors show in this letter that single metal atoms on a Ni(111) surface can be pushed by electromigration forces from a scanning tunneling microscope tip. This repulsive interaction is obsd. over a length scale of 6 nm. While for voltages above -300 mV the atoms are pulled by the microscope

  16. Fabrication of metallic nanowires with a scanning tunnelling microscope

    NARCIS (Netherlands)

    Kramer, N.; Kramer, N.; Birk, H.; Jorritsma, J.; Schönenberger, C.

    1995-01-01

    A procedure to pattern thin metal films on a nanometer scale with a scanning tunneling microscope (STM) operating in air is reported. A 30 nm film of hydrogenated amorphous silicon (a‐Si:H) is deposited on a 10 nm film of TaIr. Applying a negative voltage between the STM tip and the a‐Si:H film

  17. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope

    OpenAIRE

    Nazin, G. V.; Wu, S. W.; Ho, W.

    2005-01-01

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks correspondi...

  18. Tetrairon(III) Single Molecule Magnet Studied by Scanning Tunneling Microscopy and Spectroscopy

    Science.gov (United States)

    Oh, Youngtek; Jeong, Hogyun; Lee, Minjun; Kwon, Jeonghoon; Yu, Jaejun; Mamun, Shariful Islam; Gupta, Gajendra; Kim, Jinkwon; Kuk, Young

    2011-03-01

    Tetrairon(III) single-molecule magnet (SMM) on a clean Au(111) has studied using scanning tunneling microscopy (STM) and spectroscopy (STS) to understand quantum mechanical tunneling of magnetization and hysteresis of pure molecular origin. Before the STM studies, elemental analysis, proton nuclear magnetic resonance (NMR) measurement and Energy Dispersive X- ray Spectroscopy (EDS) were carried out to check the robustness of the sample. The STM image of this molecule shows a hexagonal shape, with a phenyl ring at the center and surrounding six dipivaloylmethane ligands. Two peaks are observed at 0.5 eV, 1.5 eV in the STS results, agreeing well with the first principles calculations. Spin-polarized scanning tunneling microscopy (SPSTM) measurements have been performed with a magnetic tip to get the magnetization image of the SMM. We could observe the antiferromagnetic coupling and a centered- triangular topology with six alkoxo bridges inside the molecule while applying external magnetic fields.

  19. Scanning tunneling microscopy studies of glucose oxidase on gold surface

    International Nuclear Information System (INIS)

    Losic, D.; Shapter, J.G.; Gooding, J.J.

    2002-01-01

    Full text: Three immobilization methods have been used for scanning tunneling microscopy (STM) studies of glucose oxidase (GOD) on gold. They are based on a) physical adsorption from solution, b) microcontact printing and c) covalent bonding onto self-assembled monolayers (SAM) of 3-mercaptopropionic acid (MPA). The STM images are used to provide information about the organization of individual GOD molecules and more densely packed monolayers of GOD on electrode surfaces, thus providing information of the role of interfacial structure on biosensor performance. The use of atomically flat gold substrates enables easy distinction of deposited enzyme features from the flat gold substrate. Microcontact printing is found to be a more reliable method than adsorption from solution for preparing individual GOD molecules on the gold surface STM images of printed samples reveal two different shapes of native GOD molecules. One is a butterfly shape with dimensions of 10 ± 1 nm x 6 ± 1 nm, assigned to the lying position of molecule while the second is an approximately spherical shape with dimensions of 6.5 ± 1 nm x 5 ± 1nm assigned to a standing position. Isolated clusters of 5 to 6 GOD molecules are also observed. With monolayer coverage, GOD molecules exhibit a tendency to organize themselves into a two dimensional array with adequate sample stability to obtain high-resolution STM images. Within these two-dimensional arrays are clearly seen repeating clusters of five to six enzyme molecules in a unit STM imaging of GOD monolayers covalently immobilized onto SAM (MPA) are considerably more difficult than when the enzyme is adsorbed directly onto the metal. Cluster structures are observed both high and low coverage despite the fact that native GOD is a negatively charged molecule. Copyright (2002) Australian Society for Electron Microscopy Inc

  20. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1996-01-01

    Scanning Tunneling Microscopy III provides a unique introduction to the theoretical foundations of scanning tunneling microscopy and related scanning probe methods. The different theoretical concepts developed in the past are outlined, and the implications of the theoretical results for the interpretation of experimental data are discussed in detail. Therefore, this book serves as a most useful guide for experimentalists as well as for theoreticians working in the filed of local probe methods. In this second edition the text has been updated and new methods are discussed.

  1. Scanning tunnel microscope with large vision field compatible with a scanning electron microscope

    International Nuclear Information System (INIS)

    Volodin, A.P.; Stepanyan, G.A.; Khajkin, M.S.; Ehdel'man, V.S.

    1989-01-01

    A scanning tunnel microscope (STM) with the 20μm vision field and 1nm resolution, designed to be compatible with a scanning electron microscope (SEM), is described. The sample scanning area is chosen within the 3x10mm limits with a 0.1-1μm step. The STM needle is moved automatically toward the sample surface from the maximum distance of 10mm until the tunneling current appears. Bimorphous elements of the KP-1 piezocorrector are used in the STM design. The device is installed on a table of SEM object holders

  2. Fabrication of tungsten tip for scanning tunneling microscope by the lever principle

    International Nuclear Information System (INIS)

    Wang Yang; Wang Huabin; Chinese Academy of Sciences, Beijing; Gong Jinlong; Zhu Dezhang

    2007-01-01

    A novel experimental setup was designed to fabricate tungsten tips for scanning tunneling microscope (STM), based on simple mechanical lever principle. The equipment can quickly separate the tip from electrolyte to avoid the further etching of the fine-shaped tungsten tip. The setup is advantageous for its simplicity over complex electronic control systems. The use result in scanning electron microscope demonstrates that the radius of the tip can reach 50 nm. The tip was applied to scan the surface of highly-oriented pyrolytic graphite, and the results were satisfactory. It is shown that the tip can be used for the scanning of atomically resolved images. (authors)

  3. Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111.

    Science.gov (United States)

    Pechenezhskiy, Ivan V; Hong, Xiaoping; Nguyen, Giang D; Dahl, Jeremy E P; Carlson, Robert M K; Wang, Feng; Crommie, Michael F

    2013-09-20

    We have developed a new scanning-tunneling-microscopy-based spectroscopy technique to characterize infrared (IR) absorption of submonolayers of molecules on conducting crystals. The technique employs a scanning tunneling microscope as a precise detector to measure the expansion of a molecule-decorated crystal that is irradiated by IR light from a tunable laser source. Using this technique, we obtain the IR absorption spectra of [121]tetramantane and [123]tetramantane on Au(111). Significant differences between the IR spectra for these two isomers show the power of this new technique to differentiate chemical structures even when single-molecule-resolved scanning tunneling microscopy (STM) images look quite similar. Furthermore, the new technique was found to yield significantly better spectral resolution than STM-based inelastic electron tunneling spectroscopy, and to allow determination of optical absorption cross sections. Compared to IR spectroscopy of bulk tetramantane powders, infrared scanning tunneling microscopy (IRSTM) spectra reveal narrower and blueshifted vibrational peaks for an ordered tetramantane adlayer. Differences between bulk and surface tetramantane vibrational spectra are explained via molecule-molecule interactions.

  4. Nanofabrication with the Scanning Tunneling Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Shedd, G.M.; Russell, P.E.

    1988-12-01

    The Precision Engineering Center has recently begun a research program into applications of STM to Nanotechnology. Few tools permit humans to control events and processes at the manometer level, and of those, the STM is the most well-suited to the task. A versatile new ultra-high-vacuum (UHV) STM is being built to study the use of STM for the manipulation of nanometer-scale particles. Part of the STM`s usefulness will be due to its being positioned directly beneath the focused ion beam (FIB). The interface of the STM with the FIB will allow the STM to take advantage of the FIB for long-range imaging and as a particle source; the FIB can in turn use the STM for in situ, high-resolution imaging of micromachined features.

  5. Apparent Barrier Height in Scanning Tunneling Microscopy Revisited

    DEFF Research Database (Denmark)

    Olesen, L.; Brandbyge, Mads; Sørensen, Mads Reinholdt

    1996-01-01

    The apparent barrier height phi(ap), that is, the rate of change of the logarithm of the conductance with tip-sample separation in a scanning tunneling microscope (STM), has been measured for Ni, Pt, and Au single crystal surfaces. The results show that phi(ap) is constant until point contact...... is reached rather than decreasing at small tunneling gap distances, as previously reported. The findings for phi(ap) can be accounted for theoretically by including the relaxations of the tip-surface junction in an STM due to the strong adhesive forces at close proximity. These relaxation effects are shown...

  6. Seismic scanning tunneling macroscope - Elastic simulations and Arizona mine test

    KAUST Repository

    Hanafy, Sherif M.; Schuster, Gerard T.

    2012-01-01

    Elastic seismic simulations and field data tests are used to validate the theory of a seismic scanning tunneling macroscope (SSTM). For nearfield elastic simulation, the SSTM results show superresolution to be better than λ/8 if the only scattered data are used as input data. If the direct P and S waves are muted then the resolution of the scatterer locations are within about λ/5. Seismic data collected in an Arizona tunnel showed a superresolution limit of at least λ/19. These test results are consistent with the theory of the SSTM and suggest that the SSTM can be a tool used by geophysicists as a probe for near-field scatterers.

  7. Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene

    Science.gov (United States)

    Zuo, Wei-Jie; Qiao, Jia-Bin; Ma, Dong-Lin; Yin, Long-Jing; Sun, Gan; Zhang, Jun-Yang; Guan, Li-Yang; He, Lin

    2018-01-01

    Twist, as a simple and unique degree of freedom, could lead to enormous novel quantum phenomena in bilayer graphene. A small rotation angle introduces low-energy van Hove singularities (VHSs) approaching the Fermi level, which result in unusual correlated states in the bilayer graphene. It is reasonable to expect that the twist could also affect the electronic properties of few-layer graphene dramatically. However, such an issue has remained experimentally elusive. Here, by using scanning tunneling microscopy/spectroscopy (STM/STS), we systematically studied a twisted trilayer graphene (TTG) with two different small twist angles between adjacent layers. Two sets of VHSs, originating from the two twist angles, were observed in the TTG, indicating that the TTG could be simply regarded as a combination of two different twisted bilayers of graphene. By using high-resolution STS, we observed a split of the VHSs and directly imaged the spatial symmetry breaking of electronic states around the VHSs. These results suggest that electron-electron interactions play an important role in affecting the electronic properties of graphene systems with low-energy VHSs.

  8. Simultaneously measured signals in scanning probe microscopy with a needle sensor: frequency shift and tunneling current.

    Science.gov (United States)

    Morawski, Ireneusz; Voigtländer, Bert

    2010-03-01

    We present combined noncontact scanning force microscopy and tunneling current images of a platinum(111) surface obtained by means of a 1 MHz quartz needle sensor. The low-frequency circuit of the tunneling current was combined with a high-frequency signal of the quartz resonator enabling full electrical operation of the sensor. The frequency shift and the tunneling current were detected simultaneously, while the feedback control loop of the topography signal was fed using one of them. In both cases, the free signal that was not connected to the feedback loop reveals proportional-integral controller errorlike behavior, which is governed by the time derivative of the topography signal. A procedure is proposed for determining the mechanical oscillation amplitude by utilizing the tunneling current also including the average tip-sample work function.

  9. Scanning tunneling microscopy and spectroscopy studies of graphite edges

    International Nuclear Information System (INIS)

    Niimi, Y.; Matsui, T.; Kambara, H.; Tagami, K.; Tsukada, M.; Fukuyama, Hiroshi

    2005-01-01

    We studied experimentally and theoretically the electronic local density of states (LDOS) near single-step edges at the surface of exfoliated graphite. In scanning tunneling microscopy measurements, we observed the (3x3)R30 o and honeycomb superstructures extending over 3-4-bar nm both from the zigzag and armchair edges. Calculations based on a density-functional-derived non-orthogonal tight-binding model show that these superstructures can coexist if the two types of edges admix each other in real graphite step edges. Scanning tunneling spectroscopy measurements near the zigzag edge reveal a clear peak in the LDOS at an energy below the Fermi energy by 20-bar meV. No such a peak was observed near the armchair edge. We concluded that this peak corresponds to the 'edge state' theoretically predicted for graphene ribbons, since a similar prominent LDOS peak due to the edge state is obtained by the first principles calculations

  10. Scanning tunneling microscopy: A powerful tool for surface analysis

    International Nuclear Information System (INIS)

    Walle, G.F.A. van de; Nelissen, B.J.; Soethout, L.L.; Kempen, H. van

    1987-01-01

    The invention of the Scanning Tunneling Microscope (STM) has opened a new area of surface analysis. A description of the principle of operation is given in this paper. Also the technical problems encountered and their solution are described. Two examples demonstrating the possibilities of the STM are presented: topographic and spectroscopic measurements on a stepped Ni (111) surface and photoconductive measurements on GaAs. (orig.)

  11. Application of piezoceramic materials in low temperature scanning tunnel microscope

    International Nuclear Information System (INIS)

    Volodin, A.P.; Panich, A.E.

    1989-01-01

    Temperature dependences of the voltage-to-movement conversion coefficients for piezoceramic domestic materials PKR and TsTS-19 are measured using a capacitance dilatometer in the 0.4< T<300K temperature range. Anisotropy of thermal expansion of materials determined by the polarization vector is observed. Some recommendations concerning the use of the given materials in low-temperature scanning tunnel microscopes are given

  12. Distinction of nuclear spin states with the scanning tunneling microscope.

    Science.gov (United States)

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2013-10-25

    We demonstrate rotational excitation spectroscopy with the scanning tunneling microscope for physisorbed H(2) and its isotopes HD and D(2). The observed excitation energies are very close to the gas phase values and show the expected scaling with the moment of inertia. Since these energies are characteristic for the molecular nuclear spin states we are able to identify the para and ortho species of hydrogen and deuterium, respectively. We thereby demonstrate nuclear spin sensitivity with unprecedented spatial resolution.

  13. Scanning tunneling microscopy - STM: history, principle, construction, and related techniques

    International Nuclear Information System (INIS)

    Ostadal, I.; Sobotik, P.

    1998-01-01

    The method of scanning tunneling microscopy (STM) is discussed. The principle of STM and some other related methods is highlighted, and spectroscopy using STM is dealt with. A brief summary is given of problems to be solved in microscope design, and the influence of these on the resolution obtained is presented. A comparison of STM with other methods used at present in the physics of thin films and surfaces confirms its irreplaceability

  14. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1993-01-01

    While the first two volumes on Scanning Tunneling Microscopy (STM) and its related scanning probe (SXM) methods have mainly concentrated on intro­ ducing the experimental techniques, as well as their various applications in different research fields, this third volume is exclusively devoted to the theory of STM and related SXM methods. As the experimental techniques including the reproducibility of the experimental results have advanced, more and more theorists have become attracted to focus on issues related to STM and SXM. The increasing effort in the development of theoretical concepts for STM/SXM has led to considerable improvements in understanding the contrast mechanism as well as the experimental conditions necessary to obtain reliable data. Therefore, this third volume on STM/SXM is not written by theorists for theorists, but rather for every scientist who is not satisfied by just obtaining real­ space images of surface structures by STM/SXM. After a brief introduction (Chap. 1), N. D. Lang first co...

  15. A combined scanning tunnelling microscope and x-ray interferometer

    Science.gov (United States)

    Yacoot, Andrew; Kuetgens, Ulrich; Koenders, Ludger; Weimann, Thomas

    2001-10-01

    A monolithic x-ray interferometer made from silicon and a scanning tunnelling microscope have been combined and used to calibrate grating structures with periodicities of 100 nm or less. The x-ray interferometer is used as a translation stage which moves in discrete steps of 0.192 nm, the lattice spacing of the silicon (220) planes. Hence, movements are traceable to the definition of the metre and the nonlinearity associated with the optical interferometers used to measure displacement in more conventional metrological scanning probe microscopes (MSPMs) removed.

  16. A compact atomic force-scanning tunneling microscope for studying microelectronics and environmental aerosols

    International Nuclear Information System (INIS)

    Chen, G.

    1996-06-01

    This dissertation describes the characteristics and the construction of a compact atomic force/scanning tunneling microscope (AFM/STM). The basics and the method of preparing a tunneling junction between a chemically etched tunneling tip and a micro-manufactured cantilever is outlined by analyzing the forces between tunneling tip and cantilever as well as between force-sensing tip and sample surfaces. To our best knowledge this instrument is the first one using a commercial cantilever with only one piezoelectric tube carrying the whole tunneling sensor. The feedback control system has been optimized after a careful analysis of the electronic loop characteristics. The mode of operation has been determined by analyzing the dynamic characteristics of the scan heads and by investigating the time characteristics of the data acquisition system. The vibration isolation system has been calibrated by analyzing the characteristics of the damping setup and the stiffness of the scan head. The calculated results agree well with the measured ones. Also, a software package for data acquisition and real time display as well as for image processing and three-dimensional visualization has been developed. With this home-made software package, the images can be processed by means of a convolution filter, a Wiener filter and other 2-D FFT filters, and can be displayed in different ways. Atomic resolution images of highly oriented pyrolytic graphite (HOPG) and graphite surfaces have been obtained in AFM and STM mode. New theoretical explanations have been given for the observed anomalous STM and AFM images of graphite by calculating the asymmetric distribution of quantum conductance and tip-surface forces on a graphite surface. This not only resolved the theoretical puzzles of STM and AFM of graphite, but also revealed the relation between atomic force microscopy and scanning tunneling microscopy of graphite. Applications of STM and AFM to micro-electronic devices have been investigated

  17. MR imaging of the carpal tunnel syndrome

    International Nuclear Information System (INIS)

    Elias, D.; Lind, J.; Blair, S.; Light, T.; Wisniewski, R.; Moncado, R.

    1987-01-01

    MR is an ideal noninvasive means to image the structures forming the carpal tunnel in both normal and pathologic conditions. The carpal tunnel syndrome is a frequently encountered entity caused by compression of the median nerve as it passes through the carpal tunnel. This may result from a variety of conditions including edema from acute chronic trauma, rheumatoid tenosynovitis, degenerative joint disease or soft-tissue masses. This exhibit demonstrates the optimal MR imaging techniques to display the structures of the carpal tunnel. The normal anatomy is reviewed and variations in normal anatomy that may predispose to disease are included. Examples of the morphologic changes demonstrated in 20 patients diagnosed with carpal tunnel syndrome are displayed. The exhibit also reviews the findings in 20 postoperative cases

  18. Multiple-scanning-probe tunneling microscope with nanoscale positional recognition function.

    Science.gov (United States)

    Higuchi, Seiji; Kuramochi, Hiromi; Laurent, Olivier; Komatsubara, Takashi; Machida, Shinichi; Aono, Masakazu; Obori, Kenichi; Nakayama, Tomonobu

    2010-07-01

    Over the past decade, multiple-scanning-probe microscope systems with independently controlled probes have been developed for nanoscale electrical measurements. We developed a quadruple-scanning-probe tunneling microscope (QSPTM) that can determine and control the probe position through scanning-probe imaging. The difficulty of operating multiple probes with submicrometer precision drastically increases with the number of probes. To solve problems such as determining the relative positions of the probes and avoiding of contact between the probes, we adopted sample-scanning methods to obtain four images simultaneously and developed an original control system for QSPTM operation with a function of automatic positional recognition. These improvements make the QSPTM a more practical and useful instrument since four images can now be reliably produced, and consequently the positioning of the four probes becomes easier owing to the reduced chance of accidental contact between the probes.

  19. Scanning tunnelling spectroscopy of low pentacene coverage on the Ag/Si(111)-(√3 x √3) surface

    International Nuclear Information System (INIS)

    Guaino, Ph; Cafolla, A A; McDonald, O; Carty, D; Sheerin, G; Hughes, G

    2003-01-01

    The low coverage S1 phase of pentacene deposited on Ag/Si(111)-(√3 x √3) has been investigated at room temperature by scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS). Current-voltage data were acquired simultaneously with STM images for this phase. The normalized conductivity reveals two pronounced peaks at -1.10 and +2.25 V relative to the Fermi level. These peaks are attributed to resonant tunnelling through the highest occupied molecular orbital and lowest unoccupied molecular orbital molecular levels of the pentacene layer. The electronic properties of this interface are discussed in relation to results obtained for pentacene adsorbed on other metallic surfaces

  20. Optical and electrical characterization at the nanoscale with a transparent probe of a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Sychugov, Ilya; Omi, Hiroo; Murashita, Tooru; Kobayashi, Yoshihiro

    2009-01-01

    A new type of scanning probe microscope, combining features of the scanning tunnelling microscope, the scanning tunnelling luminescence microscope with a transparent probe and the aperture scanning near-field optical microscope, is described. Proof-of-concept experiments were performed under ultrahigh vacuum conditions at varying temperature on GaAs/AlAs heterostructures.

  1. Surface confined metallosupramolecular architectures: formation and scanning tunneling microscopy characterization.

    Science.gov (United States)

    Li, Shan-Shan; Northrop, Brian H; Yuan, Qun-Hui; Wan, Li-Jun; Stang, Peter J

    2009-02-17

    Metallosupramolecular compounds have attracted a great deal of attention over the past two decades largely because of their unique, highly complex structural characteristics and their potential electronic, magnetic, optical, and catalytic properties. These molecules can be prepared with relative ease using coordination-driven self-assembly techniques. In particular, the use of electron-poor square-planar Pt(II) transition metals in conjunction with rigid, electron-rich pyridyl donors has enabled the spontaneous self-assembly of a rich library of 2D metallacyclic and 3D metallacage assemblies via the directional-bonding approach. With this progress in the preparation and characterization of metallosupramolecules, researchers have now turned their attention toward fully exploring and developing their materials properties. Assembling metallosupramolecular compounds on solid supports represents a vitally important step toward developing their materials properties. Surfaces provide a means of uniformly aligning and orienting these highly symmetric metallacycles and metallacages. This uniformity increases the level of coherence between molecules above that which can be achieved in the solution phase and provides a way to integrate adsorbed layers, or adlayers, into a solid-state materials setting. The dynamic nature of kinetically labile Pt(II)-N coordination bonds requires us to adjust deposition and imaging conditions to retain the assemblies' stability. Toward these aims, we have used scanning tunneling microscopy (STM) to image these adlayers and to understand the factors that govern surface self-assembly and the interactions that influence their structure and stability. This Account describes our efforts to deposit 2D rectangular and square metallacycles and 3D trigonal bipyramidal and chiral trigonal prism metallacages on highly oriented pyrolytic graphite (HOPG) and Au(111) substrates to give intact assemblies and ordered adlayers. We have investigated the effects

  2. Compact scanning tunneling microscope for spin polarization measurements.

    Science.gov (United States)

    Kim, Seong Heon; de Lozanne, Alex

    2012-10-01

    We present a design for a scanning tunneling microscope that operates in ultrahigh vacuum down to liquid helium temperatures in magnetic fields up to 8 T. The main design philosophy is to keep everything compact in order to minimize the consumption of cryogens for initial cool-down and for extended operation. In order to achieve this, new ideas were implemented in the design of the microscope body, dewars, vacuum chamber, manipulators, support frame, and vibration isolation. After a brief description of these designs, the results of initial tests are presented.

  3. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

  4. Scanning tunneling spectroscopy of Co adsorbates on superconducting Pb nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Regis; Caminale, Michael; Oka, Hirofumi; Stepniak, Agnieszka; Leon Vanegas, Augusto A.; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2015-07-01

    Superconductivity in low-dimensional structures has become an active research area. In order to understand the superconducting pairing, long-standing work has been devoted to the pair breaking effect, where magnetic impurities break Cooper pair singlets. We performed scanning tunneling spectroscopy at low temperature on Co adsorbates on superconducting Pb nanoislands. On the Co adsorbates, we observe spectral features in the superconductor's energy gap, which we attribute to magnetic impurity induced bound states, a hallmark of the pair breaking effect. We discuss the response of the superconducting islands to the presence of Co adsorbates.

  5. EDITORIAL: Three decades of scanning tunnelling microscopy that changed the course of surface science Three decades of scanning tunnelling microscopy that changed the course of surface science

    Science.gov (United States)

    Ramachandra Rao, M. S.; Margaritondo, Giorgio

    2011-11-01

    Three decades ago, with a tiny tip of platinum, the scientific world saw the real space imaging of single atoms with unprecedented spatial resolution. This signalled the birth of one of the most versatile surface probes, based on the physics of quantum mechanical tunnelling: the scanning tunnelling microscope (STM). Invented in 1981 by Gerd Binnig and Heinrich Rohrer of IBM, Zurich, it led to their award of the 1986 Nobel Prize. Atoms, once speculated to be abstract entities used by theoreticians for mere calculations, can be seen to exist for real with the nano-eye of an STM tip that also gives real-space images of molecules and adsorbed complexes on surfaces. From a very fundamental perspective, the STM changed the course of surface science and engineering. STM also emerged as a powerful tool to study various fundamental phenomena relevant to the properties of surfaces in technological applications such as tribology, medical implants, catalysis, sensors and biology—besides elucidating the importance of local bonding geometries and defects, non-periodic structures and the co-existence of nano-scale phases. Atom-level probing, once considered a dream, has seen the light with the evolution of STM. An important off-shoot of STM was the atomic force microscope (AFM) for surface mapping of insulating samples. Then followed the development of a flurry of techniques under the general name of scanning probe microscopy (SPM). These techniques (STM, AFM, MFM, PFM etc) designed for atomic-scale-resolution imaging and spectroscopy, have led to brand new developments in surface analysis. All of these novel methods enabled researchers in recent years to image and analyse complex surfaces on microscopic and nanoscopic scales. All of them utilize a small probe for sensing the surface. The invention of AFM by Gerd Binnig, Calvin Quate and Christopher Gerber opened up new opportunities for characterization of a variety of materials, and various industrial applications could be

  6. Linking world scan and image

    International Nuclear Information System (INIS)

    Timmer, H.; Alcamo, J.; Bollen, J.; Gielen, A.; Gerlach, R.; Den Ouden, A.; Zuidema, G.

    1995-01-01

    In march 1994 the Central Planning Bureau (CPB) in the Hague, the National Institute of Public Health and Environmental Protection (RIVM) in Bilthoven and the Institute of Environmental Studies (IES) in Amsterdam started the first phase of a joint research program aimed at creating integrated scenarios of the global economy, GHG emissions, and climate impacts. The goal of the first phase of this project was to design and test a linked version of the economic model WORLD SCAN of the former, and the climate model IMAGE 2 of the latter institute. This first phase has resulted in the planned test runs with an operational version of the linked models by May 1995. The experiences in the first year were encouraging, both in the scientific and the organizational sense. In a sense, a link was made between scientific disciplines: a coupling of disciplines concerning with global economic development and the global physical climate system is difficult and novel. The goal of the project was to integrate long-term economic developments and effects of climate change. Both the WORLD SCAN model and IMAGE 2 provide a consistent analysis of the global system, but from different perspectives. IMAGE 2 simulates climate change and its effects in a global context but treats the economic system as exogenous. WORLD SCAN covers the world economic system in a consistent manner but does not take into account the global environment. The links are constructed in the area of agriculture and energy. The basic idea is that WORLD SCAN determines demand and supply on economic principles, while IMAGE 2 provides information on changes of land area and average quality of productive land, and other damage costs based on its three sub-systems. The demand for energy is fed into IMAGE 2's Energy Industry subsystem (EIS), which in turn determines emissions of greenhouse gases. Furthermore, some additional output from WORLD SCAN on activity levels, prices and capital structure can be used to determine

  7. Scanning Terahertz Heterodyne Imaging Systems

    Science.gov (United States)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  8. Rapid-scan EPR imaging.

    Science.gov (United States)

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Molecular electronics of a single photosystem I reaction center: Studies with scanning tunneling microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, I.; Lee, J.W.; Warmack, R.J.; Allison, D.P.; Greenbaum, E. [Oak Ridge National Lab., TN (United States)

    1995-03-14

    Thylakoids and photosystem I (PSI) reaction centers were imaged by scanning tunneling microscopy. The thylakoids were isolated from spinach chloroplasts, and PSI reaction centers were extracted from thylakoid membranes. Because thylakoids are relatively thick nonconductors, they were sputter-coated with Pd/Au before imaging. PSI photosynthetic centers and chemically platinized PSI were investigated without sputter-coating. They were mounted on flat gold substrates that had been treated with mercaptoacetic acid to help bind the proteins. With tunneling spectroscopy, the PSI centers displayed a semiconductor-like response with a band gap of 1.8 eV. Lightly platinized (platinized for 1 hr) centers displayed diode-like conduction that resulted in dramatic contrast changes between images taken with opposite bias voltages. The electronic properties of this system were stable under long-term storage. 42 refs., 7 figs.

  10. Effects of the finite duration of quantum tunneling in laser-assisted scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Hagmann, M.J.

    1994-01-01

    Previous measurements of tunnel conductance in heterostructures and experiments with Josephson junctions suggest quantum tunneling has a definite duration. The authors use semiclassical methods to determine the effects of this delay on the tunneling current in a laser-assisted STM. A planar-planar STM model is used with the exact multiple image potential, and the energy distribution for a free-electron metal. It is necessary to average over the phase at barrier entry, and iteration with back propagated solutions is required to obtain the transmission coefficients for evenly spaced phases and specified energies at barrier entry. The simulations suggest that the dependence of the tunneling current on the wavelength of illumination can serve as a basis for determining the duration of barrier traversal. A power flux density of 10 11 W/m 2 would be required at several wavelengths from 1 to 10 μm. It is possible that thermal effects could be separated from the modeled phenomena by determining the time dependence of the tunneling current with a pulsed laser

  11. Tip preparation for usage in an ultra-low temperature UHV scanning tunneling microscope

    Directory of Open Access Journals (Sweden)

    S. Ernst, S. Wirth, M. Rams, V. Dolocan and F. Steglich

    2007-01-01

    Full Text Available This work deals with the preparation and characterization of tungsten tips for the use in UHV low-temperature scanning tunneling microscopy and spectroscopy (STM and STS, respectively. These specific environments require in situ facilities for tip conditioning, for further sharpening of the tips, as well as for reliable tip characterization. The implemented conditioning methods include direct resistive annealing, annealing by electron bombardment, and self-sputtering with noble gas ions. Moreover, results from in situ tip characterization by field emission and STM experiments were compared to ex situ scanning electron microscopy. Using the so-prepared tips, high resolution STM images and tunneling spectra were obtained in a temperature range from ambient down to 350 mK, partially with applied magnetic field, on a variety of materials.

  12. A scanning tunneling microscope with a scanning range from hundreds of micrometers down to nanometer resolution.

    Science.gov (United States)

    Kalkan, Fatih; Zaum, Christopher; Morgenstern, Karina

    2012-10-01

    A beetle type stage and a flexure scanning stage are combined to form a two stages scanning tunneling microscope (STM). It operates at room temperature in ultrahigh vacuum and is capable of scanning areas up to 300 μm × 450 μm down to resolution on the nanometer scale. This multi-scale STM has been designed and constructed in order to investigate prestructured metallic or semiconducting micro- and nano-structures in real space from atomic-sized structures up to the large-scale environment. The principle of the instrument is demonstrated on two different systems. Gallium nitride based micropillars demonstrate scan areas up to hundreds of micrometers; a Au(111) surface demonstrates nanometer resolution.

  13. Ab initio simulations of scanning-tunneling-microscope images with embedding techniques and application to C58-dimers on Au(111).

    Science.gov (United States)

    Wilhelm, Jan; Walz, Michael; Stendel, Melanie; Bagrets, Alexei; Evers, Ferdinand

    2013-05-14

    We present a modification of the standard electron transport methodology based on the (non-equilibrium) Green's function formalism to efficiently simulate STM-images. The novel feature of this method is that it employs an effective embedding technique that allows us to extrapolate properties of metal substrates with adsorbed molecules from quantum-chemical cluster calculations. To illustrate the potential of this approach, we present an application to STM-images of C58-dimers immobilized on Au(111)-surfaces that is motivated by recent experiments.

  14. Scanning Tunneling Microscopy Evidence for the Dissociation of Carbon Monoxide on Ruthenium Steps

    DEFF Research Database (Denmark)

    Tison, Yann; Nielsen, Kenneth; Mowbray, Duncan J.

    2012-01-01

    –Tropsch processes under certain conditions, has been debated for years. Here, scanning tunneling microscopy (STM) and density functional theory (DFT) are used to clarify the role of monatomic steps in the splitting of CO on a stepped Ru(0 1 54) crystal, which displays alternating steps with either 4-fold or 3-fold...... symmetry. After CO doses at elevated temperatures, the STM images reveal step decorations characteristic of atomic oxygen resulting from CO dissociation on every second step. The comparison of the STM images with the results of DFT calculations shows that the step decoration occurs on the steps displaying...

  15. Note: long range and accurate measurement of deep trench microstructures by a specialized scanning tunneling microscope.

    Science.gov (United States)

    Ju, Bing-Feng; Chen, Yuan-Liu; Zhang, Wei; Zhu, Wule; Jin, Chao; Fang, F Z

    2012-05-01

    A compact but practical scanning tunneling microscope (STM) with high aspect ratio and high depth capability has been specially developed. Long range scanning mechanism with tilt-adjustment stage is adopted for the purpose of adjusting the probe-sample relative angle to compensate the non-parallel effects. A periodical trench microstructure with a pitch of 10 μm has been successfully imaged with a long scanning range up to 2.0 mm. More innovatively, a deep trench with depth and step height of 23.0 μm has also been successfully measured, and slope angle of the sidewall can approximately achieve 67°. The probe can continuously climb the high step and exploring the trench bottom without tip crashing. The new STM could perform long range measurement for the deep trench and high step surfaces without image distortion. It enables accurate measurement and quality control of periodical trench microstructures.

  16. Local tunneling spectroscopy of a Nb/InAs/Nb superconducting proximity system with a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Inoue, K.; Takayanagi, H.

    1991-01-01

    Local tunneling spectroscopy for a Nb/In/As/Nb superconducting proximity system was demonstrated with a low-temperature scanning tunneling microscope. It is found that the local electron density of states in the InAs region is spatially modulated by the neighboring superconductor Nb

  17. Fast-scan NMR imaging

    International Nuclear Information System (INIS)

    Iwaoka, Hideto; Matsuura, Hiroyuki; Sugiyama, Tadashi; Hirata, Takaaki

    1987-01-01

    This paper describes the Fast Recovery (FR) method for fast-scan Nuclear Magnetic Resonance imaging. The FR method uses a sequence of four radio frequency pulses - alternating selective 90 deg nutation pulses and nonselective 180 deg pulses. One free induction decay (FID) signal and one echo signal are detected and averaged to compute a 2-D image. In the modified FR method, extra 180 deg pulses are applied between 90 deg pulses to cause refocusing and the resultant spin echo signals are averaged to improve the signal to noise ratio. For the FR and modified FR sequences, the macroscopic magnetization is restored to equilibrium quickly and exactly; scan time can consequently be less than that for conventional pulse sequences, such as used in the saturation recovery method, without any penalty in signal to noise ratio. This paper derives expressions for the signal to noise ratio, scan time ratio and contrast noise ratio, compares the FR and modified FR methods with the saturation recovery method and presents experimental results for human body images. In theory and practice, the signal to noise ratio for the FR method is larger than that for the modified FR method. For a given signal to noise ratio the scan time is between one half and one fourth that for the saturation recovery method. The optimum repetition period, T r , is 0.07 ∼ 0.25 s for the FR method, and 0.1 ∼ 0.5 s for the modified FR method. Contrast noise ratio is low for high speed imaging, T r = 0.07 ∼ 0.25 s, but, high contrast noise ratio image is obtained for T r > 0.5 s. (author)

  18. Recent advances in atomic-scale spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Smith, Arthur R; Yang, Rong; Yang, Haiqiang; Dick, Alexey; Neugebauer, Joerg; Lambrecht, Walter R L

    2005-02-01

    The Mn3N2 (010) surface has been studied using spin-polarized scanning tunneling microscopy at the atomic scale. The principle objective of this work is to elucidate the properties and potential of this technique to measure atomic-scale magnetic structures. The experimental approach involves the use of a combined molecular beam epitaxy/scanning tunneling microscopy system that allows the study of atomically clean magnetic surfaces. Several key findings have been obtained. First, both magnetic and non-magnetic atomic-scale information has been obtained in a single spin-polarized image. Magnetic modulation of the height profile having an antiferromagnetic super-period of c = 12.14 A (6 atomic rows) together with a non-magnetic superstructure having a period of c/2 = 6.07 A (3 atomic rows) was observed. Methods of separation of magnetic and non-magnetic profiles are presented. Second, bias voltage-dependent spin-polarized images show a reversal of the magnetic modulation at a particular voltage. This reversal is clearly due to a change in the sign of the magnetic term in the tunnel current. Since this term depends on both the tip's as well as the sample's magnetic local density of states, the reversal can be caused by either the sample or the tip. Third, the shape of the line profile was found to vary with the bias voltage, which is related to the energy-dependent spin contribution from the 2 chemically inequivalent Mn sites on the surface. Overall, the results shown here expand the application of the method of spin-polarized scanning tunneling microscopy to measure atomic-scale magnetic structures. (c) 2005 Wiley-Liss, Inc.

  19. Fault detection by surface seismic scanning tunneling macroscope: Field test

    KAUST Repository

    Hanafy, Sherif M.

    2014-08-05

    The seismic scanning tunneling macroscope (SSTM) is proposed for detecting the presence of near-surface impedance anomalies and faults. Results with synthetic data are consistent with theory in that scatterers closer to the surface provide brighter SSTM profiles than those that are deeper. The SSTM profiles show superresolution detection if the scatterers are in the near-field region of the recording line. The field data tests near Gulf of Aqaba, Haql, KSA clearly show the presence of the observable fault scarp, and identify the subsurface presence of the hidden faults indicated in the tomograms. Superresolution detection of the fault is achieved, even when the 35 Hz data are lowpass filtered to the 5-10 Hz band.

  20. Fault detection by surface seismic scanning tunneling macroscope: Field test

    KAUST Repository

    Hanafy, Sherif M.; Schuster, Gerard T.

    2014-01-01

    The seismic scanning tunneling macroscope (SSTM) is proposed for detecting the presence of near-surface impedance anomalies and faults. Results with synthetic data are consistent with theory in that scatterers closer to the surface provide brighter SSTM profiles than those that are deeper. The SSTM profiles show superresolution detection if the scatterers are in the near-field region of the recording line. The field data tests near Gulf of Aqaba, Haql, KSA clearly show the presence of the observable fault scarp, and identify the subsurface presence of the hidden faults indicated in the tomograms. Superresolution detection of the fault is achieved, even when the 35 Hz data are lowpass filtered to the 5-10 Hz band.

  1. Molecules on vicinal Au surfaces studied by scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Kroeger, J; Neel, N; Jensen, H; Berndt, R; Rurali, R; Lorente, N

    2006-01-01

    Using low-temperature scanning tunnelling microscopy and spectroscopy we investigated the adsorption characteristics of 3,4,9,10-perylenetetracarboxylic-dianhydride and fullerenes on Au(788), Au(433), and Au(778). On Au(788) and Au(778), 3,4,9,10-perylenetetracarboxylic-dianhydride exhibits three coexisting superstructures, which do not reflect the periodicity of the hosting substrate. The adsorption on Au(433) leads to the formation of molecule chains along the step edges after annealing the sample. Fullerene molecules on Au(788) arrange in a mesh of islands, which extends over several hundreds of nanometres with an extraordinarily high periodicity. A combination of fullerene adsorption and annealing leads to facetting of Au(433) and the formation of extraordinarily long fullerene stripes

  2. Scanning tunneling microscope with a rotary piezoelectric stepping motor

    Science.gov (United States)

    Yakimov, V. N.

    1996-02-01

    A compact scanning tunneling microscope (STM) with a novel rotary piezoelectric stepping motor for coarse positioning has been developed. An inertial method for rotating of the rotor by the pair of piezoplates has been used in the piezomotor. Minimal angular step size was about several arcsec with the spindle working torque up to 1 N×cm. Design of the STM was noticeably simplified by utilization of the piezomotor with such small step size. A shaft eccentrically attached to the piezomotor spindle made it possible to push and pull back the cylindrical bush with the tubular piezoscanner. A linear step of coarse positioning was about 50 nm. STM resolution in vertical direction was better than 0.1 nm without an external vibration isolation.

  3. Simple and efficient scanning tunneling luminescence detection at low-temperature

    NARCIS (Netherlands)

    Keizer, J.G.; Garleff, J.K.; Koenraad, P.M.

    2009-01-01

    We have designed and built an optical system to collect light that is generated in the tunneling region of a low-temperature scanning tunneling microscope. The optical system consists of an in situ lens placed approximately 1.5 cm from the tunneling region and an ex situ optical lens system to

  4. Wavelength dependence of the magnetic resolution of the magneto-optical near-field scanning tunneling microscope

    NARCIS (Netherlands)

    Schad, R.; Jordan, S.M.; Stoelinga, M.J.P.; Prins, M.W.J.; Groeneveld, R.H.M.; Kempen, van H.; Kesteren, van H.W.

    1998-01-01

    A magneto-optical near-field scanning tunneling microscope is used to image the prewritten magnetic domain structure of a Pt/Co multilayer. A semiconducting tip acts as a local photodetector to measure the magnetic circular dichroism signal coming from the magnetic sample. The resolution of the

  5. Scanning tunneling spectroscopy on vortex cores in high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, B.W.; Maggio-Aprile, I.; Fischer, Oe. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Renner, C. [NEC Research Inst., Princeton, NJ (United States)

    2002-07-01

    Scanning tunneling spectroscopy (STS) with its unique capacity for tunneling spectroscopy with sub-nanometer spatial resolution, has opened new ways to look at the flux lines and their distribution in superconductors. In contrast to all other imaging techniques, which are sensitive to the local magnetic field, STM relies on local changes in the density of states near the Fermi level to generate a real space image of the vortex distribution. It is thus sensitive to the vortex cores, which in high temperature superconductors have a size approaching the interatomic distances. The small size of the vortex cores and the anisotropic character of the high temperature superconductors allow pinning to play a large role in determining the vortex core positions. Vortex hopping between different pinning sites, again down to a sub-nanometer scale, has been studied by STM imaging as a function of time. These studies give microscopic indications for quantum tunneling of vortices. Moreover, STM provides new insights into the detailed electronic vortex core structure, revealing localized quasiparticles. (orig.)

  6. Haptic-STM: a human-in-the-loop interface to a scanning tunneling microscope.

    Science.gov (United States)

    Perdigão, Luís M A; Saywell, Alex

    2011-07-01

    The operation of a haptic device interfaced with a scanning tunneling microscope (STM) is presented here. The user moves the STM tip in three dimensions by means of a stylus attached to the haptic instrument. The tunneling current measured by the STM is converted to a vertical force, applied to the stylus and felt by the user, with the user being incorporated into the feedback loop that controls the tip-surface distance. A haptic-STM interface of this nature allows the user to feel atomic features on the surface and facilitates the tactile manipulation of the adsorbate/substrate system. The operation of this device is demonstrated via the room temperature STM imaging of C(60) molecules adsorbed on an Au(111) surface in ultra-high vacuum.

  7. Four-probe measurements with a three-probe scanning tunneling microscope

    International Nuclear Information System (INIS)

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A.

    2014-01-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe

  8. Four-probe measurements with a three-probe scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Salomons, Mark [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A., E-mail: rwolkow@ualberta.ca [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  9. Four-probe measurements with a three-probe scanning tunneling microscope.

    Science.gov (United States)

    Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A

    2014-04-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  10. Variable-temperature independently driven four-tip scanning tunneling microscope

    International Nuclear Information System (INIS)

    Hobara, Rei; Nagamura, Naoka; Hasegawa, Shuji; Matsuda, Iwao; Yamamoto, Yuko; Miyatake, Yutaka; Nagamura, Toshihiko

    2007-01-01

    The authors have developed an ultrahigh vacuum (UHV) variable-temperature four-tip scanning tunneling microscope (STM), operating from room temperature down to 7 K, combined with a scanning electron microscope (SEM). Four STM tips are mechanically and electrically independent and capable of positioning in arbitrary configurations in nanometer precision. An integrated controller system for both of the multitip STM and SEM with a single computer has also been developed, which enables the four tips to operate either for STM imaging independently and for four-point probe (4PP) conductivity measurements cooperatively. Atomic-resolution STM images of graphite were obtained simultaneously by the four tips. Conductivity measurements by 4PP method were also performed at various temperatures with the four tips in square arrangement with direct contact to the sample surface

  11. Dysprosium disilicide nanostructures on silicon(001) studied by scanning tunneling microscopy and transmission electron microscopy

    International Nuclear Information System (INIS)

    Ye Gangfeng; Nogami, Jun; Crimp, Martin A.

    2006-01-01

    The microstructure of self-assembled dysprosium silicide nanostructures on silicon(001) has been studied by scanning tunneling microscopy and transmission electron microscopy. The studies focused on nanostructures that involve multiple atomic layers of the silicide. Cross-sectional high resolution transmission electron microscopy images and fast Fourier transform analysis showed that both hexagonal and orthorhombic/tetragonal silicide phases were present. Both the magnitude and the anisotropy of lattice mismatch between the silicide and the substrate play roles in the morphology and epitaxial growth of the nanostructures formed

  12. Development of a scanning tunneling microscope combined with a synchrotron radiation light source

    International Nuclear Information System (INIS)

    Hasegawa, Yukio; Okuda, Taichi; Eguchi, Toyoaki; Matsushima, Takeshi; Harasawa, Ayumi; Akiyama, Kotone; Kinoshita, Toyohiko

    2005-01-01

    We have developed a scanning tunneling microscope (STM) combined with a synchrotron-radiation light source (SR-STM) aiming at elemental analysis in a spatial resolution of STM. Using SR-STM atomically resolved STM images under the irradiation and also X-ray adsorption spectra clearly showing an adsorption edge of a substrate were successfully obtained by detecting photo-emitted electrons with the STM tip. In order to focus the probing area of the photo-induced current, a glass-coated metal tip sharpened with focused ion beam was used as a probe. The present situation and prospects of the instrument are discussed in this review. (author)

  13. Current–Voltage Characterization of Individual As-Grown Nanowires Using a Scanning Tunneling Microscope

    Science.gov (United States)

    2013-01-01

    Utilizing semiconductor nanowires for (opto)electronics requires exact knowledge of their current–voltage properties. We report accurate on-top imaging and I–V characterization of individual as-grown nanowires, using a subnanometer resolution scanning tunneling microscope with no need for additional microscopy tools, thus allowing versatile application. We form Ohmic contacts to InP and InAs nanowires without any sample processing, followed by quantitative measurements of diameter dependent I–V properties with a very small spread in measured values compared to standard techniques. PMID:24059470

  14. Note: A quartz cell with Pt single crystal bead electrode for electrochemical scanning tunneling microscope measurements.

    Science.gov (United States)

    Xia, Zhigang; Wang, Jihao; Hou, Yubin; Lu, Qingyou

    2014-09-01

    In this paper, we provide and demonstrate a design of a unique cell with Pt single crystal bead electrode for electrochemical scanning tunneling microscope (ECSTM) measurements. The active metal Pt electrode can be protected from air contamination during the preparation process. The transparency of the cell allows the tip and bead to be aligned by direct observation. Based on this, a new and effective alignment method is introduced. The high-quality bead preparations through this new cell have been confirmed by the ECSTM images of Pt (111).

  15. Current-voltage characterization of individual as-grown nanowires using a scanning tunneling microscope.

    Science.gov (United States)

    Timm, Rainer; Persson, Olof; Engberg, David L J; Fian, Alexander; Webb, James L; Wallentin, Jesper; Jönsson, Andreas; Borgström, Magnus T; Samuelson, Lars; Mikkelsen, Anders

    2013-11-13

    Utilizing semiconductor nanowires for (opto)electronics requires exact knowledge of their current-voltage properties. We report accurate on-top imaging and I-V characterization of individual as-grown nanowires, using a subnanometer resolution scanning tunneling microscope with no need for additional microscopy tools, thus allowing versatile application. We form Ohmic contacts to InP and InAs nanowires without any sample processing, followed by quantitative measurements of diameter dependent I-V properties with a very small spread in measured values compared to standard techniques.

  16. Tunneling Mode of Scanning Electrochemical Microscopy: Probing Electrochemical Processes at Single Nanoparticles.

    Science.gov (United States)

    Sun, Tong; Wang, Dengchao; Mirkin, Michael V

    2018-06-18

    Electrochemical experiments at individual nanoparticles (NPs) can provide new insights into their structure-activity relationships. By using small nanoelectrodes as tips in a scanning electrochemical microscope (SECM), we recently imaged individual surface-bound 10-50 nm metal NPs. Herein, we introduce a new mode of SECM operation based on tunneling between the tip and a nanoparticle immobilized on the insulating surface. The obtained current vs. distance curves show the transition from the conventional feedback response to electron tunneling between the tip and the NP at separation distances of less than about 3 nm. In addition to high-resolution imaging of the NP topography, the tunneling mode enables measurement of the heterogeneous kinetics at a single NP without making an ohmic contact with it. The developed method should be useful for studying the effects of nanoparticle size and geometry on electrocatalytic activity in real-world applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The possibility to determine a constant of spin-orbit interaction by scanning tunneling microscopy method

    International Nuclear Information System (INIS)

    Khotkevich, N.V.; Kolesnichenko, Yu.A.; Vovk, N.P.

    2016-01-01

    The electron tunneling from the quasi-two-dimensional (surface) states with the spin-orbit interaction into bulk-mode states is studied in the framework of a model of an infinitely thin inhomogeneous tunnel magnetic barrier. The influence of the scattering of quasi-two-dimensional electrons by a single magnetic defect on the tunnel current is analyzed. Analytic formulas for the conductance of a tunnel point-contact as a function of its distance from the defect are obtained. It is shown that the analysis of the local magnetization density around the defect by means of spin-polarized scanning tunneling microscopy allows finding the constant of spin orbit interaction.

  18. A compact combined ultrahigh vacuum scanning tunnelling microscope (UHV STM) and near-field optical microscope

    International Nuclear Information System (INIS)

    Woolley, R A J; Hayton, J A; Cavill, S; Ma, Jin; Beton, P H; Moriarty, P

    2008-01-01

    We have designed and constructed a hybrid scanning near-field optical microscope (SNOM)–scanning tunnelling microscope (STM) instrument which operates under ultrahigh vacuum (UHV) conditions. Indium tin oxide (ITO)-coated fibre-optic tips capable of high quality STM imaging and tunnelling spectroscopy are fabricated using a simple and reliable method which foregoes the electroless plating strategy previously employed by other groups. The fabrication process is reproducible, producing robust tips which may be exchanged under UHV conditions. We show that controlled contact with metal surfaces considerably enhances the STM imaging capabilities of fibre-optic tips. Light collection (from the cleaved back face of the ITO-coated fibre-optic tip) and optical alignment are facilitated by a simple two-lens arrangement where the in-vacuum collimation/collection lens may be adjusted using a slip-stick motor. A second in-air lens focuses the light (which emerges from the UHV system as a parallel beam) onto a cooled CCD spectrograph or photomultiplier tube. The application of the instrument to combined optical and electronic spectroscopy of Au and GaAs surfaces is discussed

  19. Probing Single Nanometer-scale Particles with Scanning Tunneling Microscopy and Spectroscopies

    International Nuclear Information System (INIS)

    McCarty, G.S.; Love, J.C.; Kushmerick, J.G.; Charles, L.F.; Keating, C.D.; Toleno, B.J.; Lyn, M.E.; Castleman, A.W.; Natan, M.J.; Weiss, P.S.

    1999-01-01

    Scanning tunneling microscopy can be used to isolate single particles on surfaces for further study. Local optical and electronic properties coupled with topographic information collected by the scanning tunneling microscope (STM) give insight into the intrinsic properties of the species under study. Since each spectroscopic measurement is done on a single particle, each sample is 'monodisperse', regardless of the degree of heterogeneity of the original preparation. We illustrate this with three example systems - a metal cluster of known atomic structure, metal nanoparticles dispersed from colloid suspensions, and metallocarbohedrenes (Met-Cars) deposited with other reaction products. Au and Ag nanoparticles were imaged using a photon emission STM. The threshold voltage, the lowest bias voltage at which photons are produced, was determined for Au nanoparticles. Electronic spectra of small clusters of Ni atoms on MoS 2 were recorded. Preliminary images of Zr-based Met-Car-containing soot were obtained on Au and MoS 2 substrates and partial electronic spectra were recorded of these possible Met-Car particles

  20. Scanning tunneling microscopy and atomic force microscopy: application to biology and technology.

    Science.gov (United States)

    Hansma, P K; Elings, V B; Marti, O; Bracker, C E

    1988-10-14

    The scanning tunneling microscope (STM) and the atomic force microscope (AFM) are scanning probe microscopes capable of resolving surface detail down to the atomic level. The potential of these microscopes for revealing subtle details of structure is illustrated by atomic resolution images including graphite, an organic conductor, an insulating layered compound, and individual adsorbed oxygen atoms on a semiconductor. Application of the STM for imaging biological materials directly has been hampered by the poor electron conductivity of most biological samples. The use of thin conductive metal coatings and replicas has made it possible to image some biological samples, as indicated by recently obtained images of a recA-DNA complex, a phospholipid bilayer, and an enzyme crystal. The potential of the AFM, which does not require a conductive sample, is shown with molecular resolution images of a nonconducting organic monolayer and an amino acid crystal that reveals individual methyl groups on the ends of the amino acids. Applications of these new microscopes to technology are demonstrated with images of an optical disk stamper, a diffraction grating, a thin-film magnetic recording head, and a diamond cutting tool. The STM has even been used to improve the quality of diffraction gratings and magnetic recording heads.

  1. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    Science.gov (United States)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  2. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke; Li, Zhean; Chen, Xiangjun, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-08-15

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  3. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-01-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  4. Development of a scanning tunneling potentiometry system for measurement of electronic transport at short length scales

    Science.gov (United States)

    Rozler, Michael

    It is clear that complete understanding of macroscopic properties of materials is impossible without a thorough knowledge of behavior at the smallest length scales. While the past 25 years have witnessed major advances in a variety of techniques that probe the nanoscale properties of matter, electrical transport measurements -- the heart of condensed matter research -- have lagged behind, never progressing beyond bulk measurements. This thesis describes a scanning tunneling potentiometry (STP) system developed to simultaneously map the transport-related electrochemical potential distribution of a biased sample along with its surface topography, extending electronic transport measurements to the nanoscale. Combining a novel sample biasing technique with a continuous current-nulling feedback scheme pushes the noise performance of the measurement to its fundamental limit - the Johnson noise of the STM tunnel junction. The resulting 130 nV voltage sensitivity allows us to spatially resolve local potentials at scales down to 2 nm, while maintaining atomic scale STM imaging, all at scan sizes of up to 15 microns. A mm-range two-dimensional coarse positioning stage and the ability to operate from liquid helium to room temperature with a fast turn-around time greatly expand the versatility of the instrument. Use of carefully selected model materials, combined with excellent topographic and voltage resolution has allowed us to distinguish measurement artifacts caused by surface roughness from true potentiometric features, a major problem in previous STP measurements. The measurements demonstrate that STP can produce physically meaningful results for homogeneous transport as well as non-uniform conduction dominated by material microstructures. Measurements of several physically interesting materials systems are presented as well, revealing new behaviors at the smallest length sales. The results establish scanning tunneling potentiometry as a useful tool for physics and

  5. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat.

    Science.gov (United States)

    Hackley, Jason D; Kislitsyn, Dmitry A; Beaman, Daniel K; Ulrich, Stefan; Nazin, George V

    2014-10-01

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  6. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, Jason D.; Kislitsyn, Dmitry A.; Beaman, Daniel K.; Nazin, George V., E-mail: gnazin@uoregon.edu [Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403 (United States); Ulrich, Stefan [RHK Technology, Inc., 1050 East Maple Road, Troy, Michigan 48083 (United States)

    2014-10-15

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  7. Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion

    International Nuclear Information System (INIS)

    Svensson, K.; Jompol, Y.; Olin, H.; Olsson, E.

    2003-01-01

    A scanning tunneling microscope (STM) with a compact, three-dimensional, inertial slider design is presented. Inertial sliding of the STM tip, in three dimensions, enables coarse motion and scanning using only one piezoelectric tube. Using the same electronics both for scanning and inertial sliding, step lengths of less than 5% of the piezo range were achieved. The compact design, less than 1 cm3 in volume, ensures a low mechanical noise level and enables us to fit the STM into the sample holder of a transmission electron microscope (TEM), while maintaining atomic scale resolution in both STM and TEM imaging

  8. Field-Induced Deformation as a Mechanism for Scanning Tunneling Microscopy Based Nanofabrication

    DEFF Research Database (Denmark)

    Hansen, Ole; Ravnkilde, Jan Tue; Quaade, Ulrich

    1998-01-01

    The voltage between tip and sample in a scanning tunneling microscope (STM) results in a large electric field localized near the tip apex. The mechanical stress due to this field can cause appreciable deformation of both tip and sample on the scale of the tunnel gap. We derive an approximate...

  9. Study of Nb-oxide Nb-Pb film structures by tunnel scanning microscope

    International Nuclear Information System (INIS)

    Golyamina, E.M.; Troyanovskij, A.M.

    1986-01-01

    The surface of niobium films, which were earlier used to create niobium-niobium oxide-lead film structures on their base, was investigated, using tunnel scanning microscope. The results obtained agree well with the observed properties of these structures, containing josephson and tunnel junctions

  10. Multiterminal semiconductor/ferromagnet probes for spin-filter scanning tunneling microscopy

    NARCIS (Netherlands)

    Vera Marun, I.J.; Jansen, R.

    2009-01-01

    We describe the fabrication of multiterminal semiconductor/ferromagnet probes for a new technique to study magnetic nanostructures: spin-filter scanning tunneling microscopy. We describe the principle of the technique, which is based on spin-polarized tunneling and subsequent analysis of the spin

  11. Spectroscopy of surface adsorbed molecules (scanning tunneling microscopy). Progress report, May 1, 1985-April 30, 1986

    International Nuclear Information System (INIS)

    Coleman, R.V.

    1986-01-01

    A review of the scanning tunneling microscopy program is given. This article contains a description of the design and fabrication of the microscope in addition to description of studies which use the microscope: studies of charge-density waves and studies of tunnel junctions doped with metals and semiconductors. 48 refs., 26 figs

  12. Studies of superconductors using a low-temperature, high-field scanning tunneling microscope

    International Nuclear Information System (INIS)

    Kirtley, J.R.; Feenstra, R.M.; Fein, A.P.

    1988-01-01

    We have developed a scanning tunneling microscope (STM) capable of operating at temperatures as low as 0.4 K and fields as high as 8 T. We have used this STM to study the energy gap of the high-T/sub c/ superconductors La--Sr--Cu--O and Y--Ba--Cu--O. We find that the reduced gap for these oxide superconductors falls in the range 3<2Δ/k/sub B/T/sub c/<7, for polycrystalline, single-crystal, and thin-film samples. We have also simultaneously imaged the surface topography and superconducting energy gap for thin films of the granular superconductor NbN. We occasionally see regions with smaller best-fit gaps that correlate with surface topographical features, but have been unable so far to image flux vortices

  13. Scanning tunneling microscopy study of a newly proposed topological insulator ZrTe{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Timo; Gragnaniello, Luca; Fonin, Mikhail [Universitaet Konstanz (Germany); Autes, Gabriel; Berger, Helmuth; Yazyev, Oleg [Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Manzoni, Giulia [Universita degli Studi di Trieste (Italy); Crepaldi, Alberto; Parmigiani, Fulvio [Elettra-Sincrotrone Trieste, Trieste (Italy)

    2016-07-01

    Topological insulators belong to a new kind of material class that posses robust gapless states inside the insulating bulk gap, which makes them promising candidates for achieving dissipationless transport devices. We present a Scanning tunneling microscopy (STM) and spectroscopy (STS) study on a layered material ZrTe{sub 5}, a promising candidate for a new topological insulator. The crystal structure could clearly be identified in topography images. STM measurements enabled direct imaging of standing waves at steps and defects. The standing waves show a clearly dispersive character. Furthermore STS measurements are in good agreement with density functional theory calculations and reveal Landau quantization with applied magnetic field. Comparison with data obtained by angle resolved photoemission spectroscopy allows for detailed insights into the electronic properties of this material.

  14. Dielectric breakdown of ultrathin aluminum oxide films induced by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Magtoto, N. P.; Niu, C.; Ekstrom, B. M.; Addepalli, S.; Kelber, J. A.

    2000-01-01

    Dielectric breakdown of 7-Aa-thick Al 2 O 3 (111) films grown on Ni 3 Al(111) under ultrahigh vacuum conditions is induced by increasing the bias voltage on the scanning tunneling microscopy tip under constant current feedback. Breakdown is marked by the precipitous retreat of the tip from the surface, and the formation of an elevated feature in the scanning tunneling microscopy image, typically greater than 5 nm high and ∼100 nm in diameter. Constant height measurements performed at tip/sample distances of 1 nm or less yield no tip/substrate physical interaction, indicating that such features do not result from mass transport. Consistent with this, current/voltage measurements within the affected regions indicate linear behavior, in contrast to a band gap of 1.5 eV observed at unaffected regions of the oxide surface. A threshold electric field value of 11±1 MV cm -1 is required to induce breakdown, in good agreement with extrapolated values from capacitance measurements on thicker oxides. (c) 2000 American Institute of Physics

  15. High Pressure Scanning Tunneling Microscopy Studies of AdsorbateStructure and Mobility during Catalytic Reactions: Novel Design of anUltra High Pressure, High Temperature Scanning Tunneling MicroscopeSystem for Probing Catalytic Conversions

    Energy Technology Data Exchange (ETDEWEB)

    Tang, David Chi-Wai [Univ. of California, Berkeley, CA (United States)

    2005-05-16

    The aim of the work presented therein is to take advantage of scanning tunneling microscope’s (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 °C).

  16. Photothermal modulation of the gap distance in scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Amer, N.M.; Skumanich, A.; Ripple, D.

    1986-01-01

    We have employed the photothermal effect to modulate the gap distance in a tunneling microscope. In this approach, optical heating induces the expansion and buckling of laser-illuminated sample surface. The surface displacement can be modulated over a wide frequency range, and its height (typically <1 A-circle) can be varied by changing the illumination intensity and modulation frequency. This novel method provides an alternative means for performing tunneling spectroscopy and microscopy, and for determining work functions of materials

  17. Superconducting phonon spectroscopy using a low-temperature scanning tunneling microscope

    Science.gov (United States)

    Leduc, H. G.; Kaiser, W. J.; Hunt, B. D.; Bell, L. D.; Jaklevic, R. C.

    1989-01-01

    The low-temperature scanning tunneling microscope (STM) system described by LeDuc et al. (1987) was used to observe the phonon density of states effects in a superconductor. Using techniques based on those employed in macroscopic tunneling spectroscopy, electron tunneling current-voltage (I-V) spectra were measured for NbN and Pb, and dI/dV vs V spectra were measured using standard analog derivative techniques. I-V measurements on NbN and Pb samples under typical STM conditions showed no evidence for multiparticle tunneling effects.

  18. First-principles theory of inelastic currents in a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Hu, Ben Yu-Kuang; Thirstrup, C.

    1998-01-01

    A first-principles theory of inelastic tunneling between a model probe tip and an atom adsorbed on a surface is presented, extending the elastic tunneling theory of Tersoff and Hamann. The inelastic current is proportional to the change in the local density of states at the center of the tip due...... to the addition of the adsorbate. We use the theory to investigate the vibrational heating of an adsorbate below a scanning tunneling microscopy tip. We calculate the desorption rate of PI from Si(100)-H(2 X 1) as a function of the sample bias and tunnel current, and find excellent a,agreement with recent...

  19. Directional scanning tunneling spectroscopy in MgB2

    International Nuclear Information System (INIS)

    Iavarone, M.; Karapetrov, G.; Koshelev, A.E.; Kwok, W.K.; Crabtree, G.W.; Hinks, D.G.; Cook, R.; Kang, W.N.; Choi, E.M.; Kim, H.J.; Lee, S.I.

    2003-01-01

    The superconductivity in MgB 2 has a two-band character with the dominating band having a 2D character and the second band being isotropic in the three dimensions. We use tunneling microscopy and spectroscopy to reveal the two distinct energy gaps at Δ 1 =2.3 meV and Δ 2 =7.1 meV. Different spectral weights of the partial superconducting density of states are a reflection of different tunneling directions in this multi-band system. The results are consistent with the existence of two-band superconductivity in the presence of strong interband superconducting pair interaction and quasiparticle scattering. The temperature evolution of the tunneling spectra shows both gaps vanishing at the bulk T c

  20. Spin-polarized tunneling with GaAs tips in scanning tunneling microscopy

    NARCIS (Netherlands)

    Prins, M.W.J.; Jansen, R.; Kempen, van H.

    1996-01-01

    We describe a model as well as experiments on spin-polarized tunneling with the aid of optical spin orientation. This involves tunnel junctions between a magnetic material and gallium arsenide (GaAs), where the latter is optically excited with circularly polarized light in order to generate

  1. Newly developed low-temperature scanning tunneling microscope and its application to the study of superconducting materials

    International Nuclear Information System (INIS)

    Gao, F.; Dai, C.; Chen, Z.; Huang, G.; Bai, C.; Tao, H.; Yin, B.; Yang, Q.; Zhao, Z.

    1994-01-01

    A newly developed scanning tunneling microscope (STM) capable of operating at room temperature, 77 K, and 4.2 K is presented. This compact STM has a highly symmetric and rigid tunneling unit designed as an integral frame except the coarse and fine adjustment parts. The tunneling unit is incorporated into a small vacuum chamber that is usually pumped down to 2x10 -4 Pa to avoid water contamination. The fine mechanic adjustment makes the tip approach the sample in 5 nm steps. The coarse adjustment not only changes the distance between the tip and the sample, but also adjusts the tip to be normal to the surface of the sample. With this low-temperature STM atomic resolution images of Bi-2212 single-crystal and large-scale topographies of a YBa 2 Cu 3 O 7 thin film are observed at 77 K

  2. Voltammetry and In Situ Scanning Tunnelling Microscopy of De Novo Designed Heme Protein Monolayers on Au(111)-Electrode Surfaces

    DEFF Research Database (Denmark)

    Albrecht, Tim; Li, Wu; Haehnel, Wolfgang

    2006-01-01

    to the tunnelling current, apparently due to slow electron transfer kinetics. As a consequence, STM images of heme-containing and heme-free MOP-C did not reveal any notable differences in apparent height or physical extension. The apparent height of heme-containing MOP-C did not show any dependence on the substrate...... potential being varied around the redox potential of the protein. The mere presence of an accessible molecular energy level is not sufficient to result in detectable tunnelling current modulation. (c) 2006 Elsevier B.V. All rights reserved.......In the present work, we report the electrochemical characterization and in situ scanning tunnelling microscopy (STM) studies of monolayers of an artificial de novo designed heme protein MOP-C, covalently immobilized on modified Au(111) surfaces. The protein forms closely packed monolayers, which...

  3. Preparation of scanning tunneling microscopy tips using pulsed alternating current etching

    International Nuclear Information System (INIS)

    Valencia, Victor A.; Thaker, Avesh A.; Derouin, Jonathan; Valencia, Damian N.; Farber, Rachael G.; Gebel, Dana A.; Killelea, Daniel R.

    2015-01-01

    An electrochemical method using pulsed alternating current etching (PACE) to produce atomically sharp scanning tunneling microscopy (STM) tips is presented. An Arduino Uno microcontroller was used to control the number and duration of the alternating current (AC) pulses, allowing for ready optimization of the procedures for both Pt:Ir and W tips using a single apparatus. W tips prepared using constant and pulsed AC power were compared. Tips fashioned using PACE were sharper than those etched with continuous AC power alone. Pt:Ir tips were prepared with an initial coarse etching stage using continuous AC power followed by fine etching using PACE. The number and potential of the finishing AC pulses was varied and scanning electron microscope imaging was used to compare the results. Finally, tip quality using the optimized procedures was verified by UHV-STM imaging. With PACE, at least 70% of the W tips and 80% of the Pt:Ir tips were of sufficiently high quality to obtain atomically resolved images of HOPG or Ni(111)

  4. Preparation of scanning tunneling microscopy tips using pulsed alternating current etching

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, Victor A.; Thaker, Avesh A.; Derouin, Jonathan; Valencia, Damian N.; Farber, Rachael G.; Gebel, Dana A.; Killelea, Daniel R., E-mail: dkillelea@luc.edu [Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, Illinois 60660 (United States)

    2015-03-15

    An electrochemical method using pulsed alternating current etching (PACE) to produce atomically sharp scanning tunneling microscopy (STM) tips is presented. An Arduino Uno microcontroller was used to control the number and duration of the alternating current (AC) pulses, allowing for ready optimization of the procedures for both Pt:Ir and W tips using a single apparatus. W tips prepared using constant and pulsed AC power were compared. Tips fashioned using PACE were sharper than those etched with continuous AC power alone. Pt:Ir tips were prepared with an initial coarse etching stage using continuous AC power followed by fine etching using PACE. The number and potential of the finishing AC pulses was varied and scanning electron microscope imaging was used to compare the results. Finally, tip quality using the optimized procedures was verified by UHV-STM imaging. With PACE, at least 70% of the W tips and 80% of the Pt:Ir tips were of sufficiently high quality to obtain atomically resolved images of HOPG or Ni(111)

  5. In silico simulations of tunneling barrier measurements for molecular orbital-mediated junctions: A molecular orbital theory approach to scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Terryn, Raymond J.; Sriraman, Krishnan; Olson, Joel A., E-mail: jolson@fit.edu; Baum, J. Clayton, E-mail: cbaum@fit.edu [Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901 (United States); Novak, Mark J. [Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, 501 E. Saint Joseph Street, Rapid City, South Dakota 57701 (United States)

    2016-09-15

    A new simulator for scanning tunneling microscopy (STM) is presented based on the linear combination of atomic orbitals molecular orbital (LCAO-MO) approximation for the effective tunneling Hamiltonian, which leads to the convolution integral when applied to the tip interaction with the sample. This approach intrinsically includes the structure of the STM tip. Through this mechanical emulation and the tip-inclusive convolution model, dI/dz images for molecular orbitals (which are closely associated with apparent barrier height, ϕ{sub ap}) are reported for the first time. For molecular adsorbates whose experimental topographic images correspond well to isolated-molecule quantum chemistry calculations, the simulator makes accurate predictions, as illustrated by various cases. Distortions in these images due to the tip are shown to be in accord with those observed experimentally and predicted by other ab initio considerations of tip structure. Simulations of the tunneling current dI/dz images are in strong agreement with experiment. The theoretical framework provides a solid foundation which may be applied to LCAO cluster models of adsorbate–substrate systems, and is extendable to emulate several aspects of functional STM operation.

  6. In silico simulations of tunneling barrier measurements for molecular orbital-mediated junctions: A molecular orbital theory approach to scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Terryn, Raymond J.; Sriraman, Krishnan; Olson, Joel A.; Baum, J. Clayton; Novak, Mark J.

    2016-01-01

    A new simulator for scanning tunneling microscopy (STM) is presented based on the linear combination of atomic orbitals molecular orbital (LCAO-MO) approximation for the effective tunneling Hamiltonian, which leads to the convolution integral when applied to the tip interaction with the sample. This approach intrinsically includes the structure of the STM tip. Through this mechanical emulation and the tip-inclusive convolution model, dI/dz images for molecular orbitals (which are closely associated with apparent barrier height, ϕ_a_p) are reported for the first time. For molecular adsorbates whose experimental topographic images correspond well to isolated-molecule quantum chemistry calculations, the simulator makes accurate predictions, as illustrated by various cases. Distortions in these images due to the tip are shown to be in accord with those observed experimentally and predicted by other ab initio considerations of tip structure. Simulations of the tunneling current dI/dz images are in strong agreement with experiment. The theoretical framework provides a solid foundation which may be applied to LCAO cluster models of adsorbate–substrate systems, and is extendable to emulate several aspects of functional STM operation.

  7. Low-temperature-compatible tunneling-current-assisted scanning microwave microscope utilizing a rigid coaxial resonator.

    Science.gov (United States)

    Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka

    2016-06-01

    We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.

  8. Probing the location of displayed cytochrome b562 on amyloid by scanning tunnelling microscopy

    Science.gov (United States)

    Forman, C. J.; Wang, N.; Yang, Z. Y.; Mowat, C. G.; Jarvis, S.; Durkan, C.; Barker, P. D.

    2013-05-01

    Amyloid fibres displaying cytochrome b562 were probed using scanning tunnelling microscopy (STM) in vacuo. The cytochromes are electron transfer proteins containing a haem cofactor and could, in principle, mediate electron transfer between the tip and the gold substrate. If the core fibres were insulating and electron transfer within the 3D haem network was detected, then the electron transport properties of the fibre could be controlled by genetic engineering. Three kinds of STM images were obtained. At a low bias (<1.5 V) the fibres appeared as regions of low conductivity with no evidence of cytochrome mediated electron transfer. At a high bias, stable peaks in tunnelling current were observed for all three fibre species containing haem and one species of fibre that did not contain haem. In images of this kind, some of the current peaks were collinear and spaced around 10 nm apart over ranges longer than 100 nm, but background monomers complicate interpretation. Images of the third kind were rare (1 in 150 fibres); in these, fully conducting structures with the approximate dimensions of fibres were observed, suggesting the possibility of an intermittent conduction mechanism, for which a precedent exists in DNA. To test the conductivity, some fibres were immobilized with sputtered gold, and no evidence of conduction between the grains of gold was seen. In control experiments, a variation of monomeric cytochrome b562 was not detected by STM, which was attributed to low adhesion, whereas a monomeric multi-haem protein, GSU1996, was readily imaged. We conclude that the fibre superstructure may be intermittently conducting, that the cytochromes have been seen within the fibres and that they are too far apart for detectable current flow between sites to occur. We predict that GSU1996, being 10 nm long, is more likely to mediate successful electron transfer along the fibre as well as being more readily detectable when displayed from amyloid.

  9. Note: long-range scanning tunneling microscope for the study of nanostructures on insulating substrates.

    Science.gov (United States)

    Molina-Mendoza, Aday J; Rodrigo, José G; Island, Joshua; Burzuri, Enrique; Rubio-Bollinger, Gabino; van der Zant, Herre S J; Agraït, Nicolás

    2014-02-01

    The scanning tunneling microscope (STM) is a powerful tool for studying the electronic properties at the atomic level, however, it is of relatively small scanning range and the fact that it can only operate on conducting samples prevents its application to study heterogeneous samples consisting of conducting and insulating regions. Here we present a long-range scanning tunneling microscope capable of detecting conducting micro and nanostructures on insulating substrates using a technique based on the capacitance between the tip and the sample and performing STM studies.

  10. Note: Long-range scanning tunneling microscope for the study of nanostructures on insulating substrates

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Mendoza, Aday J., E-mail: aday.molina@uam.es [Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Rodrigo, José G.; Rubio-Bollinger, Gabino [Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales “Nicolás Cabrera,” Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Island, Joshua; Burzuri, Enrique; Zant, Herre S. J. van der [Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Agraït, Nicolás [Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales “Nicolás Cabrera,” Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Instituto Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia, E-28049 Madrid (Spain)

    2014-02-15

    The scanning tunneling microscope (STM) is a powerful tool for studying the electronic properties at the atomic level, however, it is of relatively small scanning range and the fact that it can only operate on conducting samples prevents its application to study heterogeneous samples consisting of conducting and insulating regions. Here we present a long-range scanning tunneling microscope capable of detecting conducting micro and nanostructures on insulating substrates using a technique based on the capacitance between the tip and the sample and performing STM studies.

  11. Multicolor Scanning Laser Imaging in Diabetic Retinopathy.

    Science.gov (United States)

    Ahmad, Mohammad S Z; Carrim, Zia Iqbal

    2017-11-01

    Diabetic retinopathy is a common cause of blindness in individuals younger than 60 years. Screening for retinopathy is undertaken using conventional color fundus photography and relies on the identification of hemorrhages, vascular abnormalities, exudates, and cotton-wool spots. These can sometimes be difficult to identify. Multicolor scanning laser imaging, a new imaging modality, may have a role in improving screening outcomes, as well as facilitating treatment decisions. Observational case series comprising two patients with known diabetes who were referred for further examination after color fundus photography revealed abnormal findings. Multicolor scanning laser imaging was undertaken. Features of retinal disease from each modality were compared. Multicolor scanning laser imaging provides superior visualization of retinal anatomy and pathology, thereby facilitating risk stratification and treatment decisions. Multicolor scanning laser imaging is a novel imaging technique offering the potential for improving the reliability of screening for diabetic retinopathy. Validation studies are warranted.

  12. Scanning tunneling microscopy of the atomically smooth (001) surface of vanadium pentoxide V_2O_5 crystals

    International Nuclear Information System (INIS)

    Muslimov, A. E.; Butashin, A. V.; Kanevsky, V. M.

    2017-01-01

    The (001) cleavage surface of vanadium pentoxide (V_2O_5) crystal has been studied by scanning tunneling spectroscopy (STM). It is shown that the surface is not reconstructed; the STM image allows geometric lattice parameters to be determined with high accuracy. The nanostructure formed on the (001) cleavage surface of crystal consists of atomically smooth steps with a height multiple of unit-cell parameter c = 4.37 Å. The V_2O_5 crystal cleavages can be used as references in calibration of a scanning tunneling microscope under atmospheric conditions both along the (Ñ…, y) surface and normally to the sample surface (along the z axis). It is found that the terrace surface is not perfectly atomically smooth; its roughness is estimated to be ~0.5 Å. This circumstance may introduce an additional error into the microscope calibration along the z coordinate.

  13. Selective scanning tunneling microscope light emission from rutile phase of VO2.

    Science.gov (United States)

    Sakai, Joe; Kuwahara, Masashi; Hotsuki, Masaki; Katano, Satoshi; Uehara, Yoichi

    2016-09-28

    We observed scanning tunneling microscope light emission (STM-LE) induced by a tunneling current at the gap between an Ag tip and a VO2 thin film, in parallel to scanning tunneling spectroscopy (STS) profiles. The 34 nm thick VO2 film grown on a rutile TiO2 (0 0 1) substrate consisted of both rutile (R)- and monoclinic (M)-structure phases of a few 10 nm-sized domains at room temperature. We found that STM-LE with a certain photon energy of 2.0 eV occurs selectively from R-phase domains of VO2, while no STM-LE was observed from M-phase. The mechanism of STM-LE from R-phase VO2 was determined to be an interband transition process rather than inverse photoemission or inelastic tunneling processes.

  14. Magnetic-field-controlled negative differential conductance in scanning tunneling spectroscopy of graphene npn junction resonators

    Science.gov (United States)

    Li, Si-Yu; Liu, Haiwen; Qiao, Jia-Bin; Jiang, Hua; He, Lin

    2018-03-01

    Negative differential conductance (NDC), characterized by the decreasing current with increasing voltage, has attracted continuous attention for its various novel applications. The NDC typically exists in a certain range of bias voltages for a selected system and controlling the regions of NDC in curves of current versus voltage (I -V ) is experimentally challenging. Here, we demonstrate a magnetic-field-controlled NDC in scanning tunneling spectroscopy of graphene npn junction resonators. The magnetic field not only can switch on and off the NDC, but also can continuously tune the regions of the NDC in the I -V curves. In the graphene npn junction resonators, magnetic fields generate sharp and pronounced Landau-level peaks with the help of the Klein tunneling of massless Dirac fermions. A tip of scanning tunneling microscope induces a relatively shift of the Landau levels in graphene beneath the tip. Tunneling between the misaligned Landau levels results in the magnetic-field-controlled NDC.

  15. Tunneling spectroscopy study of YBa2Cu3O7 thin films using a cryogenic scanning tunneling microscope

    International Nuclear Information System (INIS)

    Wilkins, R.; Amman, M.; Soltis, R.E.; Ben-Jacob, E.; Jaklevic, R.C.

    1990-01-01

    We have measured reproducible tunneling spectra on YBa 2 Cu 3 O 7 (T c ∼85 K) thin films (thickness ∼2 μm) with a cryogenic scanning tunneling microscope. We find that the I-V curves are generally of three types. The most common type, featured in a large majority of the data, shows a region of high conductance at zero bias. The amplitude of this region is inversely proportional to the tunneling resistance between the tip and sample. It is possible that this can be explained in terms of Josephson effects within the films, although an alternative is given based on electronic self-energy corrections. Data showing capacitive charging steps are analyzed in terms of two ultrasmall tunnel junctions in series.. Theoretical fits to the data give specific values of the junction parameters that are consistent with the assumed geometry of the tip probing an individual grain of the film. The third type of I-V curves exhibits negative differential resistance. We conclude that this phenomenon is probably due to tunneling to localized states in the surface oxide. We also present and discuss data with energy-gap-like behavior; the best example gives Δ to be about 27 mV

  16. Development and trial measurement of synchrotron-radiation-light-illuminated scanning tunneling microscope

    International Nuclear Information System (INIS)

    Matsushima, Takeshi; Okuda, Taichi; Eguchi, Toyoaki; Ono, Masanori; Harasawa, Ayumi; Wakita, Takanori; Kataoka, Akira; Hamada, Masayuki; Kamoshida, Atsushi; Hasegawa, Yukio; Kinoshita, Toyohiko

    2004-01-01

    Scanning tunneling microscope (STM) study is performed under synchrotron-radiation-light illumination. The equipment is designed so as to achieve atomic resolution even under rather noisy conditions in the synchrotron radiation facility. By measuring photoexcited electron current by the STM tip together with the conventional STM tunneling current, Si 2p soft-x-ray absorption spectra are successfully obtained from a small area of Si(111) surface. The results are a first step toward realizing a new element-specific microscope

  17. Interfacial scanning tunneling spectroscopy (STS) of chalcogenide/metal hybrid nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Mahmoud M.; Abdallah, Tamer [Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo (Egypt); Easawi, Khalid; Negm, Sohair [Department of Physics and Mathematics, Faculty of Engineering (Shoubra), Benha University (Egypt); Talaat, Hassan, E-mail: hassantalaat@hotmail.com [Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo (Egypt)

    2015-05-15

    Graphical abstract: - Highlights: • Comparing band gaps values obtained optically with STS. • Comparing direct imaging with calculated dimensions. • STS determination of the interfacial band bending of metal/chalcogenide. - Abstract: The electronic structure at the interface of chalcogenide/metal hybrid nanostructure (CdSe–Au tipped) had been studied by UHV scanning tunneling spectroscopy (STS) technique at room temperature. This nanostructure was synthesized by a phase transfer chemical method. The optical absorption of this hybrid nanostructure was recorded, and the application of the effective mass approximation (EMA) model gave dimensions that were confirmed by the direct measurements using the scanning tunneling microscopy (STM) as well as the high-resolution transmission electron microscope (HRTEM). The energy band gap obtained by STS agrees with the values obtained from the optical absorption. Moreover, the STS at the interface of CdSe–Au tipped hybrid nanostructure between CdSe of size about 4.1 ± 0.19 nm and Au tip of size about 3.5 ± 0.29 nm shows a band bending about 0.18 ± 0.03 eV in CdSe down in the direction of the interface. Such a result gives a direct observation of the electron accumulation at the interface of CdSe–Au tipped hybrid nanostructure, consistent with its energy band diagram. The presence of the electron accumulation at the interface of chalcogenides with metals has an important implication for hybrid nanoelectronic devices and the newly developed plasmon/chalcogenide photovoltaic solar energy conversion.

  18. Probing Nanoscale Electronic and Magnetic Interaction with Scanning Tunneling Spectroscopy

    DEFF Research Database (Denmark)

    Bork, Jakob

    tunneling microscope (STM). Especially at low temperatures the Kondo resonance is used to probe magnetic interaction with ferromagnetic islands and between two atoms. The latter showing a crossover between Kondo screened atoms and antiferromagnetically coupled atoms close to the quantum critical point....... This is related to research in correlated electron materials such as studies of phase transitions in heavy fermion compounds and magnetic interaction in spintronic research. The capping of cobalt islands on Cu(111) with silver is investigated with STM and photoemission spectroscopy. It is shown that at low...

  19. Combined Scanning Nanoindentation and Tunneling Microscope Technique by Means of Semiconductive Diamond Berkovich Tip

    International Nuclear Information System (INIS)

    Lysenko, O; Novikov, N; Gontar, A; Grushko, V; Shcherbakov, A

    2007-01-01

    A combined Scanning Probe Microscope (SPM) - nanoindentation instrument enables submicron resolution indentation tests and in-situ scanning of structure surfaces. A newly developed technique is based on the scanning tunneling microscopy (STM) with integrated Berkovich diamond semiconductive tip. Diamond tips for a combined SPM were obtained using the developed procedure including the synthesis of the semiconductive borondoped diamond monocrystals by the temperature gradient method at high pressure - high temperature conditions and fabrication of the tips from these crystals considering their zonal structure. Separately grown semiconductive diamond single crystals were studied in order to find the best orientation of diamond crystals. Optimal scanning characteristics and experimental data errors were calculated by an analysis of the general functional dependence of the tunneling current from properties of the tip and specimen. Tests on the indentation and scanning of the gold film deposited on the silicon substrate employing the fabricated tips demonstrated their usability, acceptable resolution and sensitivity

  20. A new variable temperature solution-solid interface scanning tunneling microscope.

    Science.gov (United States)

    Jahanbekam, Abdolreza; Mazur, Ursula; Hipps, K W

    2014-10-01

    We present a new solution-solid (SS) interface scanning tunneling microscope design that enables imaging at high temperatures with low thermal drift and with volatile solvents. In this new design, distinct from the conventional designs, the entire microscope is surrounded in a controlled-temperature and controlled-atmosphere chamber. This allows users to take measurements at high temperatures while minimizing thermal drift. By incorporating an open solution reservoir in the chamber, solvent evaporation from the sample is minimized; allowing users to use volatile solvents for temperature dependent studies at high temperatures. The new design enables the user to image at the SS interface with some volatile solvents for long periods of time (>24 h). An increase in the nonlinearity of the piezoelectric scanner in the lateral direction as a function of temperature is addressed. A temperature dependent study of cobalt(II) octaethylporphyrin (CoOEP) at the toluene/Au(111) interface has been performed with this instrument. It is demonstrated that the lattice parameters remain constant within experimental error from 24 °C to 75 °C. Similar quality images were obtained over the entire temperature range. We report the unit cell of CoOEP at the toluene/Au(111) interface (based on two molecules per unit cell) to be A = (1.36 ± 0.04) nm, B = (2.51 ± 0.04) nm, and α = 97° ± 2°.

  1. Linking IMAGE 2 and WORLD SCAN

    International Nuclear Information System (INIS)

    Gelauff, G.; Geurts, B.; Gielen, A.; Den Ouden, A.; Alcamo, J.; Gerlagh, R.

    1995-01-01

    The links between the climate model IMAGE 2 and the economic model WORLD SCAN, which are set up to obtain an integrated scenario instrument for comprehensive and consistent climate-economy scenarios, are presented and discussed. The links are made with respect to energy (in WORLD SCAN) and agriculture (in IMAGE 2), thus providing a consistent linkage with feedbacks running both ways. 2 figs., 1 tab

  2. Scanning tunneling spectroscopy of CdSe nanocrystals covalently bound to GaAs

    DEFF Research Database (Denmark)

    Walzer, K.; Marx, E.; Greenham, N.C.

    2003-01-01

    We present scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) measurements of CdSe nanocrystals covalently attached to doped GaAs substrates using monolayers of 1,6-hexanedithiol. STM measurements showed the formation of stable, densely packed, homogeneous monolayers...... of nanocrystals. STS measurements showed rectifying behaviour, with high currents at the opposite sample bias to that previously observed for CdSe nanocrystals adsorbed on Si substrates. We explain the rectifying behaviour by considering the interaction between the electronic states of the nanocrystals...

  3. Thin films of metal oxides on metal single crystals: Structure and growth by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Galloway, H.C.

    1995-12-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(III) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing, the structures of different oxides

  4. Investigation of non-collinear spin states with scanning tunneling microscopy.

    Science.gov (United States)

    Wulfhekel, W; Gao, C L

    2010-03-05

    Most ferromagnetic and antiferromagnetic substances show a simple collinear arrangement of the local spins. Under certain circumstances, however, the spin configuration is non-collinear. Scanning tunneling microscopy with its potential atomic resolution is an ideal tool for investigating these complex spin structures. Non-collinearity can be due to topological frustration of the exchange interaction, due to relativistic spin-orbit coupling or can be found in excited states. Examples for all three cases are given, illustrating the capabilities of spin-polarized scanning tunneling microscopy.

  5. Insulating nanoparticles on YBa2Cu3O7-δ thin films revealed by comparison of atomic force and scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Thomson, R.E.; Moreland, J.; Missert, N.; Rudman, D.A.; Sanders, S.C.; Cole, B.F.

    1993-01-01

    The surface topography of YBa 2 Cu 3 O 7-δ thin films has been studied with both atomic force microscopy (AFM) and scanning tunneling microscopy (STM). The AFM images reveal a high density of small distinct nanoparticles, 10--50 nm across and 5--20 nm high, which do not appear in STM images of the same samples. In addition, we have shown that scanning the STM tip across the surface breaks off these particles and moves them to the edge of the scanned area, where they can later be imaged with the AFM

  6. Coating of tips for electrochemical scanning tunneling microscopy by means of silicon, magnesium, and tungsten oxides

    Science.gov (United States)

    Salerno, Marco

    2010-09-01

    Different combinations of metal tips and oxide coatings have been tested for possible operation in electrochemical scanning tunneling microscopy. Silicon and magnesium oxides have been thermally evaporated onto gold and platinum-iridium tips, respectively. Two different thickness values have been explored for both materials, namely, 40 and 120 nm for silicon oxide and 20 and 60 nm for magnesium oxide. Alternatively, tungsten oxide has been grown on tungsten tips via electrochemical anodization. In the latter case, to seek optimal results we have varied the pH of the anodizing electrolyte between one and four. The oxide coated tips have been first inspected by means of scanning electron microscopy equipped with microanalysis to determine the morphological results of the coating. Second, the coated tips have been electrically characterized ex situ for stability in time by means of cyclic voltammetry in 1 M aqueous KCl supporting electrolyte, both bare and supplemented with K3[Fe(CN)6] complex at 10 mM concentration in milliQ water as an analyte. Only the tungsten oxide coated tungsten tips have shown stable electrical behavior in the electrolyte. For these tips, the uncoated metal area has been estimated from the electrical current levels, and they have been successfully tested by imaging a gold grating in situ, which provided stable results for several hours. The successful tungsten oxide coating obtained at pH=4 has been assigned to the WO3 form.

  7. Three-Dimensional Laser Scanning for Geometry Documentation and Construction Management of Highway Tunnels during Excavation

    Science.gov (United States)

    Gikas, Vassilis

    2012-01-01

    Driven by progress in sensor technology, computer software and data processing capabilities, terrestrial laser scanning has recently proved a revolutionary technique for high accuracy, 3D mapping and documentation of physical scenarios and man-made structures. Particularly, this is of great importance in the underground space and tunnel construction environment as surveying engineering operations have a great impact on both technical and economic aspects of a project. This paper discusses the use and explores the potential of laser scanning technology to accurately track excavation and construction activities of highway tunnels. It provides a detailed overview of the static laser scanning method, its principles of operation and applications for tunnel construction operations. Also, it discusses the planning, execution, data processing and analysis phases of laser scanning activities, with emphasis given on geo-referencing, mesh model generation and cross-section extraction. Specific case studies are considered based on two construction sites in Greece. Particularly, the potential of the method is examined for checking the tunnel profile, producing volume computations and validating the smoothness/thickness of shotcrete layers at an excavation stage and during the completion of excavation support and primary lining. An additional example of the use of the method in the geometric documentation of the concrete lining formwork is examined and comparisons against dimensional tolerances are examined. Experimental comparisons and analyses of the laser scanning method against conventional surveying techniques are also considered. PMID:23112655

  8. The use of Scanning Tunneling Microscope as a novel characterization tool for metallic alloys

    International Nuclear Information System (INIS)

    Brezenitsky, M.; Moreh, R.; Dayan, D.; Kimmel, G.

    1996-01-01

    A novel method is reported for characterizing the microstructure of metals and alloys by utilizing the surface imaging properties of a STM (Scanning Tunneling microscope). In the present work there is no need to take advantage of the high atomic resolution of the STM, instead only gross resolution is required. Twenty different samples having different grain sizes (caused by the mosaic structure) and ranging between 20 to 200 nm were prepared. These dimensions are far below the resolution limit of optical microscopes. The samples were first studied using line profile analysis of XRD spectra while focusing on two of the most characteristic properties of steel which are: grain size and the deviation from cubic symmetry. Some of the samples showed nonuniform XRD line broadening effects, which could be attributed to a tetragonal distortion. If it is true, the samples must consist of martensitic twinned structure, as a result of the typical y to a shear transformation in steels. The samples were then studied using the STM. In general, many 1000 nm x 1000 )zm STM scans were carried out on each sample. In all cases of irregular XRD line broadening, the STM identified bands and sub-bands in the images which fitted the usual twining structure in steels. In addition, the STM images were found to show individual domains, from which histograms of the grain dimensions for each sample were prepared and compared to the XRD data. An excellent agreement was observed between tile two sets of data of grain sizes. The present method is much simpler than that which employs the Transmission Electron Microscope (TEM) as it can be carried out in air and no special requirements on sample preparation is necessary. This work establishes the STM as a very useful characterization tool for studies in metallurgy and metal physics. (author)

  9. Construction of a four tip scanning tunneling microscope/scanning electron microscope combination and conductivity measurements of silicide nanowires

    International Nuclear Information System (INIS)

    Zubkov, Evgeniy

    2013-01-01

    In this work the combination of a four-tip scanning tunneling microscope with a scanning electron microscope is presented. By means of this apparatus it is possible to perform the conductivity measurements on the in-situ prepared nanostructures in ultra-high vacuum. With the aid of a scanning electron microscope (SEM), it becomes possible to position the tunneling tips of the four-tip scanning tunneling microscope (STM), so that an arrangement for a four-point probe measurement on nanostructures can be obtained. The STM head was built according to the novel coaxial Beetle concept. This concept allows on the one hand, a very compact arrangement of the components of the STM and on the other hand, the new-built STM head has a good mechanical stability, in order to achieve atomic resolution with all four STM units. The atomic resolution of the STM units was confirmed by scanning a Si(111)-7 x 7 surface. The thermal drift during the STM operation, as well as the resonant frequencies of the mechanical structure of the STM head, were determined. The scanning electron microscope allows the precise and safe navigation of the tunneling tips on the sample surface. Multi tip spectroscopy with up to four STM units can be performed synchronously. To demonstrate the capabilities of the new-built apparatus the conductivity measurements were carried out on metallic yttrium silicide nanowires. The nanowires were prepared by the in-situ deposition of yttrium on a heated Si(110) sample surface. Current-voltage curves were recorded on the nanowires and on the wetting layer in-between. The curves indicate an existence of the Schottky barrier between the yttrium silicide nanowires and the silicon bulk. By means of the two-tip measurements with a gate, the insulating property of the Schottky barrier has been confirmed. Using this Schottky barrier, it is possible to limit the current to the nanowire and to prevent it from flowing through the silicon bulk. A four-tip resistance measurement

  10. Photon emission spectroscopy of NiAl(110) in the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Nilius, N.; Ernst, N.; Freund, H.-J.; Johansson, P.

    2000-01-01

    Spectroscopic measurements have been carried out of the light emitted from the NiAl(110)/W tunnel junction of a scanning tunneling microscope. The data reveal two prominent emission lines in the visible and near-infrared region. Corresponding model calculations assign the observed light emission to the radiating decay of the tip-induced plasmon excited in the tip-sample cavity. In agreement with the theory, a low- and a high-energy mode of the plasmon can be distinguished in the experimental data. Since the excitation probability of the two modes is determined by the size of the tunnel cavity, it can be influenced by the radius of the tunnel tip. A blunted tip favors the observation conditions of the higher mode

  11. Transient measurements with an ultrafast scanning tunneling microscope on semiconductor surfaces

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    We demonstrate: the use of an ultrafast scanning tunneling microscope on a semiconductor surface. Laser-induced transient signals with 1.8 ps rise time are detected, The investigated sample is a low-temperature grown GaAs layer plated on a sapphire substrate with a thin gold layer that serves as st...... bias contact, For comparison, the measurements are performed with the tip in contact to the sample as well as in tunneling above the surface, In contact and under bias, the transient signals are identified as a transient photocurrent, An additional signal is generated by a transient voltage induced...... by the nonuniform carrier density created by the absorption of the light (photo Dember effect). The transient depends in sign and in shape on the direction of optical excitation. This signal is the dominating transient in tunneling mode. The signals are explained by a capacitive coupling across the tunneling gap...

  12. Mirror Buckling Transitions in Freestanding Graphene Membranes Induced through Scanning Tunneling Microscopy

    Science.gov (United States)

    Schoelz, James K.

    Graphene has the ability to provide for a technological revolution. First isolated and characterized in 2004, this material shows promise in the field of flexible electronics. The electronic properties of graphene can be tuned by controlling the shape of the membrane. Of particular interest in this endeavor are the thermal ripples in graphene membranes. Years of theoretical work by such luminaries as Lev Landau, Rudolf Peierls, David Mermin and Herbert Wagner have established that 2D crystals should not be thermodynamically stable. Experimental research on thin films has supported this finding. Yet graphene exists, and freestanding graphene films have been grown on large scales. It turns out that coupling between the bending and stretching phonons can stabilize the graphene in a flat, albeit rippled phase. These ripples have attracted much attention, and recent work has shown how to arrange these ripples in a variety of configurations. In this thesis, I will present work done using a scanning tunneling microscope (STM) to interact with freestanding graphene membranes. First I will present STM images of freestanding graphene and show how these images show signs of distortion under the electrostatic influence of the STM tip. This electrostatic attraction between the STM tip and the graphene sample can be used to pull on the graphene sample. At the same time, by employing Joule heating in order to heat graphene using the tunneling current, and exploiting the negative coefficient of thermal expansion, a repulsive thermal load can be generated. By repeatedly pulling on the graphene using the electrostatic potential, while sequentially increasing the setpoint current we can generate a thermal mirror buckling event. Slowly heating the graphene using the tunneling current, prepares a small convex region of graphene under the tip. By increasing thermal stress, as well as pulling using the out of plane electrostatic force, the graphene suddenly and irreversibly switches the

  13. An experimental study of furan adsorption and decomposition on vicinal palladium surfaces using scanning tunneling microscopy

    Science.gov (United States)

    Loui, A.; Chiang, S.

    2018-04-01

    The intact adsorption and decomposition of furan (C4H4O) on vicinal palladium surfaces with (111)-oriented terraces has been studied by scanning tunneling microscopy (STM) over a range of temperatures. STM images at 225 K show that furan molecules lie flat and prefer to adsorb at upper step edges. At 225 K, furan molecules adsorbed on "narrow" terraces of 20 to 45 Å in width appear to diffuse more readily than those adsorbed on "wide" terraces of 160 to 220 Å. A distinct population of smaller features appears in STM images on "narrow" terraces at 288 K and on "wide" terraces at 415 K and is identified with the C3H3 decomposition product, agreeing with prior studies which demonstrated that furan dissociates on Pd(111) to yield carbon monoxide (CO) and a C3H3 moiety in the 280 to 320 K range. Based on our direct visualization of this reaction using STM, we propose a spatial mechanism in which adsorption of furan at upper step edges allows catalysis of the dissociation, followed by diffusion of the product to lower step edges.

  14. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, Anita [Laboratory for Physical Sciences, College Park, Maryland 20742 (United States); Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, Maryland 20740 (United States); Gubrud, M. A.; Dana, R.; Dreyer, M. [Laboratory for Physical Sciences, College Park, Maryland 20742 (United States); Anderson, J. R.; Lobb, C. J.; Wellstood, F. C. [Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, Maryland 20740 (United States)

    2014-04-15

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of Cu{sub x}Bi{sub 2}Se{sub 3}. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.

  15. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips.

    Science.gov (United States)

    Roychowdhury, Anita; Gubrud, M A; Dana, R; Anderson, J R; Lobb, C J; Wellstood, F C; Dreyer, M

    2014-04-01

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of CuxBi2Se3. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.

  16. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Thomas König

    2011-01-01

    Full Text Available Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001 and line defects in aluminum oxide on NiAl(110, respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM and the electronic structure by scanning tunneling spectroscopy (STS. On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.

  17. Visualizing period fluctuations in strained-layer superlattices with scanning tunneling microscopy

    Science.gov (United States)

    Kanedy, K.; Lopez, F.; Wood, M. R.; Gmachl, C. F.; Weimer, M.; Klem, J. F.; Hawkins, S. D.; Shaner, E. A.; Kim, J. K.

    2018-01-01

    We show how cross-sectional scanning tunneling microscopy (STM) may be used to accurately map the period fluctuations throughout epitaxial, strained-layer superlattices based on the InAs/InAsSb and InGaAs/InAlAs material systems. The concept, analogous to Bragg's law in high-resolution x-ray diffraction, relies on an analysis of the [001]-convolved reciprocal-space satellite peaks obtained from discrete Fourier transforms of individual STM images. Properly implemented, the technique enables local period measurements that reliably discriminate vertical fluctuations localized to within ˜5 superlattice repeats along the [001] growth direction and orthogonal, lateral fluctuations localized to within ˜40 nm along directions in the growth plane. While not as accurate as x-ray, the inherent, single-image measurement error associated with the method may be made as small as 0.1%, allowing the vertical or lateral period fluctuations contributing to inhomogeneous energy broadening and carrier localization in these structures to be pinpointed and quantified. The direct visualization of unexpectedly large, lateral period fluctuations on nanometer length scales in both strain-balanced systems supports a common understanding in terms of correlated interface roughness.

  18. Probing the location of displayed cytochrome b562 on amyloid by scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Forman, C J; Barker, P D; Wang, N; Durkan, C; Yang, Z Y; Mowat, C G; Jarvis, S

    2013-01-01

    Amyloid fibres displaying cytochrome b 562 were probed using scanning tunnelling microscopy (STM) in vacuo. The cytochromes are electron transfer proteins containing a haem cofactor and could, in principle, mediate electron transfer between the tip and the gold substrate. If the core fibres were insulating and electron transfer within the 3D haem network was detected, then the electron transport properties of the fibre could be controlled by genetic engineering. Three kinds of STM images were obtained. At a low bias ( 562 was not detected by STM, which was attributed to low adhesion, whereas a monomeric multi-haem protein, GSU1996, was readily imaged. We conclude that the fibre superstructure may be intermittently conducting, that the cytochromes have been seen within the fibres and that they are too far apart for detectable current flow between sites to occur. We predict that GSU1996, being 10 nm long, is more likely to mediate successful electron transfer along the fibre as well as being more readily detectable when displayed from amyloid. (paper)

  19. Scanning tunneling spectroscopy on neutron irradiated MgB2 thin films

    International Nuclear Information System (INIS)

    Di Capua, Roberto; Salluzzo, Marco; Vaglio, Ruggero; Ferdeghini, Carlo; Ferrando, Valeria; Putti, Marina; Xi Xiaoxing; Aebersold, Hans U.

    2007-01-01

    Neutron irradiation was performed on MgB 2 thin films grown by hybrid physical chemical vapor deposition. Samples irradiated with different neutron fluences, having different critical temperatures, were studied by scanning tunneling spectroscopy in order to investigate the effect of the introduced disorder on the superconducting and spectroscopic properties. A monotonic increase of the π gap with increasing disorder was found

  20. Scanning tunneling spectroscopy on neutron irradiated MgB{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Di Capua, Roberto [University of Napoli and CNR-INFM/Coherentia, Via Cinthia, Naples I-80126 (Italy)], E-mail: rdicapua@na.infn.it; Salluzzo, Marco; Vaglio, Ruggero [University of Napoli and CNR-INFM/Coherentia, Via Cinthia, Naples I-80126 (Italy); Ferdeghini, Carlo [CNR-INFM/LAMIA, Via Dodecaneso 33, Genova I-16146 (Italy); Ferrando, Valeria [CNR-INFM/LAMIA, Via Dodecaneso 33, Genova I-16146 (Italy); Pennsylvania State University, University Park, PA 16802 (United States); Putti, Marina [CNR-INFM/LAMIA, Via Dodecaneso 33, Genova I-16146 (Italy); Xi Xiaoxing [Pennsylvania State University, University Park, PA 16802 (United States); Aebersold, Hans U. [Paul Scherrer Institut, Villigen CH-5232 (Switzerland)

    2007-09-01

    Neutron irradiation was performed on MgB{sub 2} thin films grown by hybrid physical chemical vapor deposition. Samples irradiated with different neutron fluences, having different critical temperatures, were studied by scanning tunneling spectroscopy in order to investigate the effect of the introduced disorder on the superconducting and spectroscopic properties. A monotonic increase of the {pi} gap with increasing disorder was found.

  1. Optical detection of ballistic electrons injected by a scanning-tunneling microscope

    NARCIS (Netherlands)

    Kemerink, M.; Sauthoff, K.; Koenraad, P.M.; Gerritsen, J.W.; Kempen, van H.; Wolter, J.H.

    2001-01-01

    We demonstrate a spectroscopic technique which is based on ballistic injection of minority carriers from the tip of a scanning-tunneling microscope into a semiconductor heterostructure. By analyzing the resulting electroluminescence spectrum as a function of tip-sample bias, both the injection

  2. In situ scanning tunnelling microscopy of redox molecules. Coherent electron transfer at large bias voltages

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Kuznetsov, A.M.; Ulstrup, Jens

    2003-01-01

    Theories of in situ scanning tunnelling microscopy (STM) of molecules with redox levels near the substrate and tip Fermi levels point to 'spectroscopic' current-overpotential features. Prominent features require a narrow 'probing tip', i.e. a small bias voltage, eV(bias), compared...

  3. Adsorption of Cu phthalocyanine on Pt modified Ge(001): A scanning tunneling microscopy study

    NARCIS (Netherlands)

    Saedi, A.; Berkelaar, Robin P.; Kumar, Avijit; Poelsema, Bene; Zandvliet, Henricus J.W.

    2010-01-01

    The adsorption configurations of copper phthalocyanine (CuPc) molecules on platinum-modified Ge(001) have been studied using scanning tunneling microscopy. After deposition at room temperature and cooling down to 77 K the CuPc molecules are still dynamic. However, after annealing at 550±50 K, the

  4. Observation of a Ag protrusion on a Ag2S island using a scanning tunneling microscope

    Directory of Open Access Journals (Sweden)

    Takeo Ohno

    2015-01-01

    Full Text Available A silver sulfide (Ag2S island as an ionic conductor in resistive switching memories was formed and a protrusion of silver from the Ag2S formed by an electrochemical reaction was observed using a scanning tunneling microscope.

  5. New design of a variable-temperature ultrahigh vacuum scanning tunneling microscope

    NARCIS (Netherlands)

    Mugele, Friedrich Gunther; Rettenberger, A.; Boneberg, J.; Leiderer, P.

    1998-01-01

    We present the design of a variable-temperature ultrahigh vacuum (UHV) scanning tunneling microscope which can be operated between 20 and 400 K. The microscope is mounted directly onto the heat exchanger of a He continuous flow cryostat without vibration isolation inside the UHV chamber. The coarse

  6. Field-based scanning tunneling microscope manipulation of antimony dimers on Si(001)

    NARCIS (Netherlands)

    Rogge, S.; Timmerman, R.H.; Scholte, P.M.L.O.; Geerligs, L.J.; Salemink, H.W.M.

    2001-01-01

    The manipulation of antimony dimers, Sb2, on the silicon (001) surface by means of a scanning tunneling microscope (STM) has been experimentally investigated. Directed hopping of the Sb2 dimers due the STM tip can dominate over the thermal motion at temperatures between 300 and 500 K. Statistics on

  7. Visible Light Emission from Atomic Scale Patterns Fabricated by the Scanning Tunneling Microscope

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Stokbro, Kurt

    1999-01-01

    Scanning tunneling microscope (STM) induced light emission from artificial atomic scale structures comprising silicon dangling bonds on hydrogen-terminated Si(001) surfaces has been mapped spatially and analyzed spectroscopically in the visible spectral range. The light emission is based on a novel...

  8. Scanning tunneling microscopy in TTF-TCNQ: Phase and amplitude modulated charge density waves

    DEFF Research Database (Denmark)

    Wang, Z.Z.; Gorard, J.C.; Pasquier, C.

    2003-01-01

    Charge density waves (CDWs) have been studied at the surface of a cleaved tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) single crystal using a low temperature scanning tunneling microscope (STM) under ultrahigh-vacuum conditions, between 300 and 33 K with molecular resolution. All CDW...

  9. A simple, ultrahigh vacuum compatible scanning tunneling microscope for use at variable temperatures

    NARCIS (Netherlands)

    Mugele, Friedrich Gunther; Kloos, Ch.; Leiderer, P.; Moller, R.

    1996-01-01

    We present the construction of a very compact scanning tunneling microscope (STM) which can be operated at temperatures between 4 and 350 K. The tip and a tiny tip holder are the only movable parts, whereas the sample and the piezoscanner are rigidly attached to the body of the STM. This leads to an

  10. Simultaneous topographic and elemental chemical and magnetic contrast in scanning tunneling microscopy

    Science.gov (United States)

    Rose, Volker; Preissner, Curt A; Hla, Saw-Wai; Wang, Kangkang; Rosenmann, Daniel

    2014-09-30

    A method and system for performing simultaneous topographic and elemental chemical and magnetic contrast analysis in a scanning, tunneling microscope. The method and system also includes nanofabricated coaxial multilayer tips with a nanoscale conducting apex and a programmable in-situ nanomanipulator to fabricate these tips and also to rotate tips controllably.

  11. Scanning tunneling microscopy studies of thin foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Besenbacher, Flemming; Garnaes, Jorgen

    1990-01-01

    In this paper scanning tunneling microscopy (STM) measurements of x-ray mirrors are presented. The x-ray mirrors are 0.3 mm thick dip-lacquered aluminum foils coated with gold by evaporation, as well as state-of-the-art polished surfaces coated with gold, platinum, or iridium. The measurements...

  12. Preparation of Chemically Etched Tips for Ambient Instructional Scanning Tunneling Microscopy

    Science.gov (United States)

    Zaccardi, Margot J.; Winkelmann, Kurt; Olson, Joel A.

    2010-01-01

    A first-year laboratory experiment that utilizes concepts of electrochemical tip etching for scanning tunneling microscopy (STM) is described. This experiment can be used in conjunction with any STM experiment. Students electrochemically etch gold STM tips using a time-efficient method, which can then be used in an instructional grade STM that…

  13. Dynamics of decanethiol self-assembled monolayers on Au(111) studied by Scanning tunnelling microscopy

    NARCIS (Netherlands)

    Wu, Hairong; Sotthewes, Kai; Kumar, Avijit; Vancso, Gyula J.; Schön, Peter Manfred; Zandvliet, Henricus J.W.

    2013-01-01

    We investigated the dynamics of decanethiol self-assembled monolayers on Au(111) surfaces using time-resolved scanning tunneling microscopy at room temperature. The expected ordered phases (β, δ, χ*, and ) and a disordered phase (ε) were observed. Current–time traces with the feedback loop disabled

  14. STM in liquids. A scanning tunneling microscopy exploration of the liquid-solid interface.

    NARCIS (Netherlands)

    Hulsken, B.

    2008-01-01

    This thesis reports of a series of atomic scale studies of the liquid-solid interface, carried out with a home-built liquid-cell Scanning Tunnelling Microscope (STM). The home-built liquid-cell STM is described in detail, and numerical simulations are performed to show that surfaces immersed in the

  15. Supramolecular chemistry at the liquid/solid interface probed by scanning tunnelling microscopy

    NARCIS (Netherlands)

    Feyter, S. De; Uji-i, H.; Mamdouh, W.; Miura, A.; Zhang, J.; Jonkheijm, P.; Schenning, A.P.H.J.; Meijer, E.W.; Chen, Z.; Wurthner, F.; Schuurmans, N.; Esch, J. van; Feringa, B.L.; Dulcey, A.E.; Percec, V.; Schryver, F.C. De

    2006-01-01

    The liquid/solid interface provides an ideal environment to investigate self-assembly phenomena, and scanning tunnelling microscopy (STM) is one of the preferred methodologies to probe the structure and the properties of physisorbed monolayers on the nanoscale. Physisorbed monolayers are of

  16. Surface x-ray scattering and scanning tunneling microscopy studies at the Au(111) electrode

    International Nuclear Information System (INIS)

    Ocko, B.M.; Magnussen, O.M.; Wang, J.X.; Adzic, R.R.

    1993-01-01

    This chapter reviews Surface X-ray Scattering and Scanning Tunneling Microscopy results carried out at the Au(111) surface under electrochemical conditions. Results are presented for the reconstructed surface, and for bromide and thallium monolayers. These examples are used to illustrate the complementary nature of the techniques

  17. Simultaneous scanning tunneling microscopy and synchrotron X-ray measurements in a gas environment

    NARCIS (Netherlands)

    Mom, R.V.; Onderwaater, W.G.; Rost, M.J.; Jankowski, M.; Wenzel, S.; Jacobse, L.; Alkemade, P.F.A.; Vandalon, V.; van Spronsen, M.A.; van Weeren, M.; Crama, B.; van der Tuijn, P.; Felici, R.; Kessels, W.M.M.; Carlà, F.; Frenken, J.W.M.; Groot, I.M.N.

    2017-01-01

    A combined X-ray and scanning tunneling microscopy (STM) instrument is presented that enables the local detection of X-ray absorption on surfaces in a gas environment. To suppress the collection of ion currents generated in the gas phase, coaxially shielded STM tips were used. The conductive outer

  18. Cytochrome C Dynamics at Gold and Glassy Carbon Surfaces Monitored by in Situ Scanning Tunnel Microscopy

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per; Pedersen, Marianne Vind

    1995-01-01

    We have investigated the absorption of cytochrome c on gold and glassy carbon substrates by in situ scanning tunnel microscopy under potentiostatic control of both substrate and tip. Low ionic strength and potential ranges where no Faradaic current flows were used. Cyt c aggregates into flat...

  19. Magneto-optical Faraday effect probed in a scanning tunneling microscope

    NARCIS (Netherlands)

    Prins, M.W.J.; Wielen, van der M.C.M.M.; Abraham, D.L.; Kempen, van H.; Kesteren, van H.W.

    1994-01-01

    Semiconductor tips are used as local photodetectors in a scanning tunneling microscope. We demonstrate that this configuration is sensitive to small light intensity variations, as supported by a simple model. The principle is applied to the detection of Faraday ellipticity of a Pt/Co multilayer

  20. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement.

    Science.gov (United States)

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2015-05-01

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface.

  1. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua, E-mail: canhualiu@sjtu.edu.cn, E-mail: jfjia@sjtu.edu.cn; Jia, Jin-Feng, E-mail: canhualiu@sjtu.edu.cn, E-mail: jfjia@sjtu.edu.cn [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2015-05-15

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO{sub 3} surface.

  2. Note: Low-temperature scanning tunneling microscope with detachable scanner and reliable transfer mechanism for tip and sample exchange.

    Science.gov (United States)

    Ge, Weifeng; Wang, Jihao; Wang, Junting; Zhang, Jing; Hou, Yubin; Lu, Qingyou

    2017-12-01

    A homebuilt low-temperature scanning tunneling microscope (STM) featuring a detachable scanner based on a double slider design, along with a reliable transfer mechanism for tip and sample exchange, is present. The coarse motor is decoupled from the scanner, which prevents the motor instabilities including vibrations and drifts from entering the tip-sample loop and thus improves the performance of the STM. In addition, in situ exchange of tips and samples can be implemented easily and reliably using a winch-type transfer mechanism. Atomically resolved images on graphite are demonstrated to show the performance of the proposed STM.

  3. Experimental verification of the rotational type of chiral spin spiral structures by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Haze, Masahiro; Yoshida, Yasuo; Hasegawa, Yukio

    2017-10-16

    We report on experimental verification of the rotational type of chiral spin spirals in Mn thin films on a W(110) substrate using spin-polarized scanning tunneling microscopy (SP-STM) with a double-axis superconducting vector magnet. From SP-STM images using Fe-coated W tips magnetized to the out-of-plane and [001] directions, we found that both Mn mono- and double-layers exhibit cycloidal rotation whose spins rotate in the planes normal to the propagating directions. Our results agree with the theoretical prediction based on the symmetry of the system, supporting that the magnetic structures are driven by the interfacial Dzyaloshinskii-Moriya interaction.

  4. An image scanning device using radiating energy

    International Nuclear Information System (INIS)

    Jacob, Daniel.

    1976-01-01

    Said invention relates to an image scanning device using radiating energy. More particularly, it relates to a device for generating a scanning beam of rectangular cross section from a γ or X-ray source. Said invention can be applied to radiographic units of the 'microdose' type used by airline staffs and others for the fast efficient inspection of luggage and parcels in view of detecting hidden things [fr

  5. Scanning laser microscope for imaging nanostructured superconductors

    International Nuclear Information System (INIS)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-01-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  6. Scanning laser microscope for imaging nanostructured superconductors

    Science.gov (United States)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-10-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  7. Microwave Frequency Comb from a Semiconductor in a Scanning Tunneling Microscope.

    Science.gov (United States)

    Hagmann, Mark J; Yarotski, Dmitry A; Mousa, Marwan S

    2017-04-01

    Quasi-periodic excitation of the tunneling junction in a scanning tunneling microscope, by a mode-locked ultrafast laser, superimposes a regular sequence of 15 fs pulses on the DC tunneling current. In the frequency domain, this is a frequency comb with harmonics at integer multiples of the laser pulse repetition frequency. With a gold sample the 200th harmonic at 14.85 GHz has a signal-to-noise ratio of 25 dB, and the power at each harmonic varies inversely with the square of the frequency. Now we report the first measurements with a semiconductor where the laser photon energy must be less than the bandgap energy of the semiconductor; the microwave frequency comb must be measured within 200 μm of the tunneling junction; and the microwave power is 25 dB below that with a metal sample and falls off more rapidly at the higher harmonics. Our results suggest that the measured attenuation of the microwave harmonics is sensitive to the semiconductor spreading resistance within 1 nm of the tunneling junction. This approach may enable sub-nanometer carrier profiling of semiconductors without requiring the diamond nanoprobes in scanning spreading resistance microscopy.

  8. Luminescence of Quantum Dots by Coupling with Nonradiative Surface Plasmon Modes in a Scanning Tunneling Microscope

    International Nuclear Information System (INIS)

    Romero, M.J.; van de Lagemaat, J.

    2009-01-01

    The electronic coupling between quantum dots (QDs) and surface plasmons (SPs) is investigated by a luminescence spectroscopy based on scanning tunneling microscopy (STM). We show that tunneling luminescence from the dot is excited by coupling with the nonradiative plasmon mode oscillating at the metallic tunneling gap formed during the STM operation. This approach to the SP excitation reveals aspects of the SP-QD coupling not accessible to the more conventional optical excitation of SPs. In the STM, luminescence from the dot is observed when and only when the SP is in resonance with the fundamental transition of the dot. The tunneling luminescence spectrum also suggests that excited SP-QD hybrid states can participate in the excitation of QD luminescence. Not only the SP excitation regulates the QD luminescence but the presence of the dot at the tunneling gap imposes restrictions to the SP that can be excited in the STM, in which the SP cannot exceed the energy of the fundamental transition of the dot. The superior SP-QD coupling observed in the STM is due to the tunneling gap acting as a tunable plasmonic resonator in which the dot is fully immersed.

  9. NO PLIF imaging in the CUBRC 48-inch shock tunnel

    Science.gov (United States)

    Jiang, N.; Bruzzese, J.; Patton, R.; Sutton, J.; Yentsch, R.; Gaitonde, D. V.; Lempert, W. R.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.; Danehy, P. M.

    2012-12-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center's (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single ~10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs.

  10. Note: optical optimization for ultrasensitive photon mapping with submolecular resolution by scanning tunneling microscope induced luminescence.

    Science.gov (United States)

    Chen, L G; Zhang, C; Zhang, R; Zhang, X L; Dong, Z C

    2013-06-01

    We report the development of a custom scanning tunneling microscope equipped with photon collection and detection systems. The optical optimization includes the comprehensive design of aspherical lens for light collimation and condensing, the sophisticated piezo stages for in situ lens adjustment inside ultrahigh vacuum, and the fiber-free coupling of collected photons directly onto the ultrasensitive single-photon detectors. We also demonstrate submolecular photon mapping for the molecular islands of porphyrin on Ag(111) under small tunneling currents down to 10 pA and short exposure time down to 1.2 ms/pixel. A high quantum efficiency up to 10(-2) was also observed.

  11. Conductance of single atoms and molecules studied with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Neel, N; Kroeger, J; Limot, L; Berndt, R

    2007-01-01

    The conductance of single atoms and molecules is investigated with a low-temperature scanning tunnelling microscope. In a controlled and reproducible way, clean Ag(111) surfaces, individual silver atoms on Ag(111) as well as individual C 60 molecules adsorbed on Cu(100) are contacted with the tip of the microscope. Upon contact the conductance changes discontinuously in the case of the tip-surface junction while the tip-atom and tip-molecule junctions exhibit a continuous transition from the tunnelling to the contact regime

  12. Energy gap and surface structure of superconducting diamond films probed by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Nishizaki, Terukazu; Takano, Yoshihiko; Nagao, Masanori; Takenouchi, Tomohiro; Kawarada, Hiroshi; Kobayashi, Norio

    2007-01-01

    We have performed scanning tunneling microscopy/spectroscopy (STM/STS) experiments on (1 1 1)-oriented epitaxial films of heavily boron-doped diamond at T = 0.47 K. The STM topography shows two kinds of atomic structures: a hydrogenated 1 x 1 structure, C(1 1 1)1 x 1:H, and an amorphous structure. On the C(1 1 1)1 x 1:H region, the tunneling spectra show superconducting property with the energy gap Δ = 0.83 meV. The obtained gap ratio 2Δ/k B T c = 3.57 is consistent with the weak-coupling BCS theory

  13. Rock mass seismic imaging around the ONKALO tunnel, Olkiluoto 2007

    International Nuclear Information System (INIS)

    Cosma, C.; Cozma, M.; Balu, L.; Enescu, N.

    2008-11-01

    Posiva Oy prepares for disposal of spent nuclear fuel in bedrock focusing in Olkiluoto, Eurajoki. This is in accordance of the application filed in 1999, the Decision-in-Principle of the State Council in 2000, and ratification by the Parliament in 2001. Vibrometric Oy has performed a tunnel seismic survey in ONKALO access tunnel on a 100 m line in December 2007. Tunnel length (chainage) was 1720 - 1820 m (vertical depth 170 - 180 m). Measurement applied 120 source positions at 1 m spacing, and on the both ends at 4 m spacing. Electromechanical Vibsist-20 tool was used as the source. Hammer produced 15.36 s sweeps. Signal was recorded with 2-component geophone assemblies, installed in 400 mm long, 45 mm drillholes in the tunnel wall. Sweeps were recorded with Summit II seismograph and decoded to seismic traces. Also percussion drill rig, which is used in drilling the blasting holes in tunnel excavation, was tested from a 100-m distance as a seismic source. Signal is equally good as from actual seismic source, and may be applied later on for production. Obtained seismic results were processed with tomographic reconstruction of the first arrivals to P and S wave refraction tomograms, and to tomograms of Young's modulus and Shear Modulus. The obtained values correspond the typical levels known from Olkiluoto. There are indications of lower velocity near tunnel wall, but resolution is not adequate for further interpretation. Some variation of velocity is detected in the rock mass. Seismic data was also processed with normal reflection profile interpretation and migrated. As a result there was obtained reflection images to a 100-m distance from the tunnel. Several reflecting events were observed in the rock mass. Features making an angle of 30 deg or more with tunnel axis can be imaged from distances of tens of metres. Vertical fractures perpendicular to tunnel can be imaged only near the tunnel. Gently dipping features can be imaged below and above. Images are 2D, i

  14. Improved design for a low temperature scanning tunneling microscope with an in situ tip treatment stage.

    Science.gov (United States)

    Kim, J-J; Joo, S H; Lee, K S; Yoo, J H; Park, M S; Kwak, J S; Lee, Jinho

    2017-04-01

    The Low Temperature Scanning Tunneling Microscope (LT-STM) is an extremely valuable tool not only in surface science but also in condensed matter physics. For years, numerous new ideas have been adopted to perfect LT-STM performances-Ultra-Low Vibration (ULV) laboratory and the rigid STM head design are among them. Here, we present three improvements for the design of the ULV laboratory and the LT-STM: tip treatment stage, sample cleaving stage, and vibration isolation system. The improved tip treatment stage enables us to perform field emission for the purpose of tip treatment in situ without exchanging samples, while our enhanced sample cleaving stage allows us to cleave samples at low temperature in a vacuum without optical access by a simple pressing motion. Our newly designed vibration isolation system provides efficient space usage while maintaining vibration isolation capability. These improvements enhance the quality of spectroscopic imaging experiments that can last for many days and provide increased data yield, which we expect can be indispensable elements in future LT-STM designs.

  15. Ag/ZnO hybrid systems studied with scanning tunnelling microscopy-based luminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pascua, Leandro; Freund, Hans-Joachim [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Stavale, Fernando [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Centro Brasileiro de Pesquisas Físicas - CBPF/MCTI, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Nilius, Niklas, E-mail: niklas.nilius@uni-oldenburg.de [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany)

    2016-03-07

    Coupled metal/oxide systems are prepared by depositing and embedding Ag nanoparticles into crystalline ZnO films grown on Au(111) supports. The morphology and optical properties of the compounds are investigated by topographic imaging and luminescence spectroscopy performed in a scanning tunnelling microscope (STM). The luminescence of bare ZnO is governed by the band-recombination and a Zn-vacancy related peak. After Ag deposition, two additional maxima are detected that are assigned to the in-plane and out-of-plane plasmon in Ag nanoparticles and have energies below and slightly above the oxide band-gap, respectively. Upon coating the particles with additional ZnO, the out-of-plane plasmon redshifts and loses intensity, indicating strong coupling to the oxide electronic system, while the in-plane mode broadens but remains detectable. The original situation can be restored by gently heating the sample, which drives the silver back to the surface. However, the optical response of pristine ZnO is not recovered even after silver evaporation at high temperature. Small discrepancies are explained with changes in the ZnO defect landscape, e.g., due to silver incorporation. Our experiments demonstrate how energy-transfer processes can be investigated in well-defined metal/oxide systems by means of STM-based spectroscopic techniques.

  16. Ag/ZnO hybrid systems studied with scanning tunnelling microscopy-based luminescence spectroscopy

    International Nuclear Information System (INIS)

    Pascua, Leandro; Freund, Hans-Joachim; Stavale, Fernando; Nilius, Niklas

    2016-01-01

    Coupled metal/oxide systems are prepared by depositing and embedding Ag nanoparticles into crystalline ZnO films grown on Au(111) supports. The morphology and optical properties of the compounds are investigated by topographic imaging and luminescence spectroscopy performed in a scanning tunnelling microscope (STM). The luminescence of bare ZnO is governed by the band-recombination and a Zn-vacancy related peak. After Ag deposition, two additional maxima are detected that are assigned to the in-plane and out-of-plane plasmon in Ag nanoparticles and have energies below and slightly above the oxide band-gap, respectively. Upon coating the particles with additional ZnO, the out-of-plane plasmon redshifts and loses intensity, indicating strong coupling to the oxide electronic system, while the in-plane mode broadens but remains detectable. The original situation can be restored by gently heating the sample, which drives the silver back to the surface. However, the optical response of pristine ZnO is not recovered even after silver evaporation at high temperature. Small discrepancies are explained with changes in the ZnO defect landscape, e.g., due to silver incorporation. Our experiments demonstrate how energy-transfer processes can be investigated in well-defined metal/oxide systems by means of STM-based spectroscopic techniques.

  17. Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy.

    Science.gov (United States)

    Ciesielski, Artur; El Garah, Mohamed; Haar, Sébastien; Kovaříček, Petr; Lehn, Jean-Marie; Samorì, Paolo

    2014-11-01

    Dynamic covalent chemistry relies on the formation of reversible covalent bonds under thermodynamic control to generate dynamic combinatorial libraries. It provides access to numerous types of complex functional architectures, and thereby targets several technologically relevant applications, such as in drug discovery, (bio)sensing and dynamic materials. In liquid media it was proved that by taking advantage of the reversible nature of the bond formation it is possible to combine the error-correction capacity of supramolecular chemistry with the robustness of covalent bonding to generate adaptive systems. Here we show that double imine formation between 4-(hexadecyloxy)benzaldehyde and different α,ω-diamines as well as reversible bistransimination reactions can be achieved at the solid/liquid interface, as monitored on the submolecular scale by in situ scanning tunnelling microscopy imaging. Our modular approach enables the structurally controlled reversible incorporation of various molecular components to form sophisticated covalent architectures, which opens up perspectives towards responsive multicomponent two-dimensional materials and devices.

  18. Analysis of oxygen and hydrogen adsorption on Nb(100) surface by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    An, Bai; Wen, Mao; Fukuyama, Seiji; Yokogawa, Kiyoshi; Ichimura, Shingo; Yoshimura, Masamichi

    2006-01-01

    The surface structure of Nb(100) under the condition of cleaning, oxidation and hydrogen adsorption is observed by STM (scanning tunneling microscopy). The results obtained are followings; (1) (3 x 1)-O→(4 x 1)-O→c(2 x 2)-O→clean(1 x 1)structure was observed by atom level, and these atomic models of structures and STM images were verified by the first-principles calculations, (2) when the clean(1 x 1) structure exposed to hydrogen, dissociative adsorption of hydrogen was observed and Nb hydride cluster formed on the surface at room temperature. It was heated at about 450 - 670 K in UHV, the cluster decomposed into hydrogen and (1 x 1) structure with linear defect was formed. The c(2 x 2)-O structure by oxygen adsorption transformed into (1 x 1)-H structure with OH and Nb hydride cluster under hydrogen gas at room temperature. When it was heated in UHV at 640 K, OH desorbed from the surface and (1 x 1) structure with linear defect was generated. The surface of (3 x 1)-O structure was not changed by hydrogen. (S.Y.)

  19. Seamless stitching of tile scan microscope images.

    Science.gov (United States)

    Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R

    2015-06-01

    For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos. © 2015 The Authors Journal of Microscopy © 2015 Royal

  20. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    International Nuclear Information System (INIS)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-01-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations

  1. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    Energy Technology Data Exchange (ETDEWEB)

    Morawski, Ireneusz [Peter Grünberg Institut (PGI-3) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich (Germany); Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław (Poland); Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert [Peter Grünberg Institut (PGI-3) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2015-12-15

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  2. Tunneling in a self-consistent dynamic image potential

    International Nuclear Information System (INIS)

    Rudberg, B.G.R.; Jonson, M.

    1991-01-01

    We have calculated the self-consistent effective potential for an electron tunneling through a square barrier while interacting with surface plasmons. This potential reduces to the classical image potential in the static limit. In the opposite limit, when the ''velocity'' of the tunneling electron is large, it reduces to the unperturbed square-barrier potential. For a wide variety of parameters the dynamic effects on the transmission coefficient T=|t 2 | can, for instance, be related to the Buettiker-Landauer traversal time for tunneling, given by τ BL =ℎ|d lnt/dV|

  3. Simultaneous scanning tunneling microscopy and synchrotron X-ray measurements in a gas environment.

    Science.gov (United States)

    Mom, Rik V; Onderwaater, Willem G; Rost, Marcel J; Jankowski, Maciej; Wenzel, Sabine; Jacobse, Leon; Alkemade, Paul F A; Vandalon, Vincent; van Spronsen, Matthijs A; van Weeren, Matthijs; Crama, Bert; van der Tuijn, Peter; Felici, Roberto; Kessels, Wilhelmus M M; Carlà, Francesco; Frenken, Joost W M; Groot, Irene M N

    2017-11-01

    A combined X-ray and scanning tunneling microscopy (STM) instrument is presented that enables the local detection of X-ray absorption on surfaces in a gas environment. To suppress the collection of ion currents generated in the gas phase, coaxially shielded STM tips were used. The conductive outer shield of the coaxial tips can be biased to deflect ions away from the tip core. When tunneling, the X-ray-induced current is separated from the regular, 'topographic' tunneling current using a novel high-speed separation scheme. We demonstrate the capabilities of the instrument by measuring the local X-ray-induced current on Au(1 1 1) in 800 mbar Ar. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fano Description of Single-Hydrocarbon Fluorescence Excited by a Scanning Tunneling Microscope.

    Science.gov (United States)

    Kröger, Jörg; Doppagne, Benjamin; Scheurer, Fabrice; Schull, Guillaume

    2018-06-13

    The detection of fluorescence with submolecular resolution enables the exploration of spatially varying photon yields and vibronic properties at the single-molecule level. By placing individual polycyclic aromatic hydrocarbon molecules into the plasmon cavity formed by the tip of a scanning tunneling microscope and a NaCl-covered Ag(111) surface, molecular light emission spectra are obtained that unravel vibrational progression. In addition, light spectra unveil a signature of the molecule even when the tunneling current is injected well separated from the molecular emitter. This signature exhibits a distance-dependent Fano profile that reflects the subtle interplay between inelastic tunneling electrons, the molecular exciton and localized plasmons in at-distance as well as on-molecule fluorescence. The presented findings open the path to luminescence of a different class of molecules than investigated before and contribute to the understanding of single-molecule luminescence at surfaces in a unified picture.

  5. In situ scanning tunnelling microscopy of redox molecules. Coherent electron transfer at large bias voltages

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Kuznetsov, A.M.; Ulstrup, Jens

    2003-01-01

    Theories of in situ scanning tunnelling microscopy (STM) of molecules with redox levels near the substrate and tip Fermi levels point to 'spectroscopic' current-overpotential features. Prominent features require a narrow 'probing tip', i.e. a small bias voltage, eV(bias), compared...... a broad tunnelling current-overpotential range at a constant (large) bias voltage of +0.2 V. The current is found to be constant over a 0.25 V overpotential range, which covers roughly the range where the oxidised and reduced redox levels are located within the energy tip. STM contrast and apparent...... of previous theoretical work on in situ STM of redox molecules, to large bias voltages, \\eV(bias)\\ > E-r. Large bias voltages give tunnelling contrasts independent of the overpotential over a broad range, as both the oxidised and reduced redox levels are located within the 'energy tip' between the substrate...

  6. Superconducting β-ZrNClx probed by scanning-tunnelling and break-junction spectroscopy

    International Nuclear Information System (INIS)

    Ekino, Toshikazu; Sugimoto, Akira; Gabovich, Alexander M.; Zheng, Zhanfeng; Yamanaka, Shoji

    2013-01-01

    Highlights: •STM/STS combined with break-junction tunnelling spectroscopy (BJTS) on β-ZrNCl. •STM image on the ab plane shows triangular atomic lattice spots with a period of 0.36 nm. •The gap peaks are widely distributed (Δ p–p = 9–28 meV)over the area of 100 nm 2 . •Average gap ratio 2Δ/k B T c ∼ 10 is confirmed by both STS and BJTS. -- Abstract: Superconducting layered compound β-ZrNCl x (x = 0.7) with the critical temperature T c = 13–14 K was investigated by means of scanning tunnelling microscopy/spectroscopy. The single-crystal domain facet of ∼100 μm 2 in the c-axis-oriented polycrystal was used as a probing surface. The STM image at 4.9 K shows triangular atomic lattice spots with the period of ∼0.36 nm, which agrees with the X-ray diffraction measurements. The STS measurements of the local conductance, dI/dV, exhibit broadened gap structures with a substantial distribution of the gap-edge values. Most frequently observed peak-to-peak value of ∼20 mV is remarkably similar to the superconducting gap edge of the isostructural β-HfNCl x with T c = 24 K. Temperature, T, dependence of the dI/dV shows that the gap structure disappears above T c ∼ 13 K. Fitting of the dI/dV curve by the broadened BCS density of states leads to the superconducting gap of 2Δ(4.9 K) = 11–13 meV. This is in accordance with our former break-junction data confirming the intrinsic character of the previously obtained extremely large gap to T c ratio 2Δ(0)/k B T c ≈ 10 (k B is the Boltzmann constant), thereby pointing to the unusual superconducting properties of this compound

  7. Demystifying autofluorescence with excitation scanning hyperspectral imaging

    Science.gov (United States)

    Deal, Joshua; Harris, Bradley; Martin, Will; Lall, Malvika; Lopez, Carmen; Rider, Paul; Boudreaux, Carole; Rich, Thomas; Leavesley, Silas J.

    2018-02-01

    Autofluorescence has historically been considered a nuisance in medical imaging. Many endogenous fluorophores, specifically, collagen, elastin, NADH, and FAD, are found throughout the human body. Diagnostically, these signals can be prohibitive since they can outcompete signals introduced for diagnostic purposes. Recent advances in hyperspectral imaging have allowed the acquisition of significantly more data in a shorter time period by scanning the excitation spectra of fluorophores. The reduced acquisition time and increased signal-to-noise ratio allow for separation of significantly more fluorophores than previously possible. Here, we propose to utilize excitation-scanning of autofluorescence to examine tissues and diagnose pathologies. Spectra of autofluorescent molecules were obtained using a custom inverted microscope (TE-2000, Nikon Instruments) with a Xe arc lamp and thin film tunable filter array (VersaChrome, Semrock, Inc.) Scans utilized excitation wavelengths from 360 nm to 550 nm in 5 nm increments. The resultant spectra were used to examine hyperspectral image stacks from various collaborative studies, including an atherosclerotic rat model and a colon cancer study. Hyperspectral images were analyzed with ENVI and custom Matlab scripts including linear spectral unmixing (LSU) and principal component analysis (PCA). Initial results suggest the ability to separate the signals of endogenous fluorophores and measure the relative concentrations of fluorophores among healthy and diseased states of similar tissues. These results suggest pathology-specific changes to endogenous fluorophores can be detected using excitationscanning hyperspectral imaging. Future work will expand the library of pure molecules and will examine more defined disease states.

  8. a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning

    Science.gov (United States)

    Li, J.; Wan, Y.; Gao, X.

    2012-07-01

    With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  9. A NEW APPROACH FOR SUBWAY TUNNEL DEFORMATION MONITORING: HIGH-RESOLUTION TERRESTRIAL LASER SCANNING

    Directory of Open Access Journals (Sweden)

    J. Li

    2012-07-01

    Full Text Available With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400. There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  10. Sample mounting and transfer for coupling an ultrahigh vacuum variable temperature beetle scanning tunneling microscope with conventional surface probes

    International Nuclear Information System (INIS)

    Nafisi, Kourosh; Ranau, Werner; Hemminger, John C.

    2001-01-01

    We present a new ultrahigh vacuum (UHV) chamber for surface analysis and microscopy at controlled, variable temperatures. The new instrument allows surface analysis with Auger electron spectroscopy, low energy electron diffraction, quadrupole mass spectrometer, argon ion sputtering gun, and a variable temperature scanning tunneling microscope (VT-STM). In this system, we introduce a novel procedure for transferring a sample off a conventional UHV manipulator and onto a scanning tunneling microscope in the conventional ''beetle'' geometry, without disconnecting the heating or thermocouple wires. The microscope, a modified version of the Besocke beetle microscope, is mounted on a 2.75 in. outer diameter UHV flange and is directly attached to the base of the chamber. The sample is attached to a tripod sample holder that is held by the main manipulator. Under UHV conditions the tripod sample holder can be removed from the main manipulator and placed onto the STM. The VT-STM has the capability of acquiring images between the temperature range of 180--500 K. The performance of the chamber is demonstrated here by producing an ordered array of island vacancy defects on a Pt(111) surface and obtaining STM images of these defects

  11. Atomic-scale structure of dislocations revealed by scanning tunneling microscopy and molecular dynamics

    DEFF Research Database (Denmark)

    Christiansen, Jesper; Morgenstern, K.; Schiøtz, Jakob

    2002-01-01

    The intersection between dislocations and a Ag(111) surface has been studied using an interplay of scanning tunneling microscopy (STM) and molecular dynamics. Whereas the STM provides atomically resolved information about the surface structure and Burgers vectors of the dislocations, the simulati......The intersection between dislocations and a Ag(111) surface has been studied using an interplay of scanning tunneling microscopy (STM) and molecular dynamics. Whereas the STM provides atomically resolved information about the surface structure and Burgers vectors of the dislocations......, the simulations can be used to determine dislocation structure and orientation in the near-surface region. In a similar way, the subsurface structure of other extended defects can be studied. The simulations show dislocations to reorient the partials in the surface region leading to an increased splitting width...

  12. Creation of stable molecular junctions with a custom-designed scanning tunneling microscope.

    Science.gov (United States)

    Lee, Woochul; Reddy, Pramod

    2011-12-02

    The scanning tunneling microscope break junction (STMBJ) technique is a powerful approach for creating single-molecule junctions and studying electrical transport in them. However, junctions created using the STMBJ technique are usually mechanically stable for relatively short times (scanning tunneling microscope that enables the creation of metal-single molecule-metal junctions that are mechanically stable for more than 1 minute at room temperature. This stability is achieved by a design that minimizes thermal drift as well as the effect of environmental perturbations. The utility of this instrument is demonstrated by performing transition voltage spectroscopy-at the single-molecule level-on Au-hexanedithiol-Au, Au-octanedithiol-Au and Au-decanedithiol-Au junctions.

  13. Creation of stable molecular junctions with a custom-designed scanning tunneling microscope

    International Nuclear Information System (INIS)

    Lee, Woochul; Reddy, Pramod

    2011-01-01

    The scanning tunneling microscope break junction (STMBJ) technique is a powerful approach for creating single-molecule junctions and studying electrical transport in them. However, junctions created using the STMBJ technique are usually mechanically stable for relatively short times (<1 s), impeding detailed studies of their charge transport characteristics. Here, we report a custom-designed scanning tunneling microscope that enables the creation of metal–single molecule–metal junctions that are mechanically stable for more than 1 minute at room temperature. This stability is achieved by a design that minimizes thermal drift as well as the effect of environmental perturbations. The utility of this instrument is demonstrated by performing transition voltage spectroscopy—at the single-molecule level—on Au–hexanedithiol–Au, Au–octanedithiol–Au and Au–decanedithiol–Au junctions.

  14. Scanning Tunneling Microscopy Analysis of a Pentacene/Graphene/SiC(0001) system

    Science.gov (United States)

    Yost, Andrew; Suzer, Ozgun; Smerdon, Joseph; Chien, Teyu; Guest, Jeffrey

    2014-03-01

    A complete understanding of the structure of molecular assemblies, as well as an understanding of donor-acceptor interactions is crucial in the development of emergent molecular electronics technologies such as organic photovoltaics. The pentacene (C22H14) is a good electron donor in Pentacene-C60 system, which is a model system of an organic photovoltaic cell.. Here we present scanning tunneling microscopy studies of the pentacene(Pn) molecule on Graphene(G) that is epitaxially grown on SiC(0001). In addition to the morphologies reported in literature, several new structures of Pn on on G/SiC(0001) were observed with different periodicity and registry both in monolayer and bilayer coverages of molecules on the surface. Preliminary scanning tunneling spectroscopy of the molecular system is also discussed; well-isolated states and a large HOMO-LUMO gap indicate the Pn is weakly coupled to the grapheme and underlying substrate.

  15. Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance.

    Science.gov (United States)

    Müllegger, Stefan; Tebi, Stefano; Das, Amal K; Schöfberger, Wolfgang; Faschinger, Felix; Koch, Reinhold

    2014-09-26

    We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.

  16. Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen R.; Petersen, Dirch Hjorth

    2014-01-01

    Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green's function formalism, and apply it to graphene. Sampling the local conduction properties at finite...... to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements. © 2014 American Physical Society....

  17. Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips.

    Science.gov (United States)

    Tewari, Sumit; Bastiaans, Koen M; Allan, Milan P; van Ruitenbeek, Jan M

    2017-01-01

    Scanning tunneling microscopes (STM) are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, procedures for controlling the atomic-scale shape of STM tips have not been rigorously justified. Here, we present a method for preparing tips in situ while ensuring the crystalline structure and a reproducibly prepared tip structure up to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes.

  18. Scanning tunneling spectroscopy on heavy-fermion systems; Rastertunnelspektroskopie an Schwere-Fermionen-Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Stefan

    2011-06-24

    in the framework of this thesis different heavy-fermion systems were studied by means of scanning tunneling microscopy and spectroscopy. In the experiment two main topics existed. On the one hand the heavy-fermion superconductivity in the compounds CeCu{sub 2}Si{sub 2}, CeCoIn{sub 5}, and on the other hand the Kondo effect in the Kondo-lattice system YbRh{sub 2}Si{sub 2}.

  19. Single-step electrochemical method for producing very sharp Au scanning tunneling microscopy tips

    International Nuclear Information System (INIS)

    Gingery, David; Buehlmann, Philippe

    2007-01-01

    A single-step electrochemical method for making sharp gold scanning tunneling microscopy tips is described. 3.0M NaCl in 1% perchloric acid is compared to several previously reported etchants. The addition of perchloric acid to sodium chloride solutions drastically shortens etching times and is shown by transmission electron microscopy to produce very sharp tips with a mean radius of curvature of 15 nm

  20. Measurements with an ultrafast scanning tunnelling microscope on photoexcited semiconductor layers

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    Summary form only given. We demonstrate the use of a ultrafast scanning tunnelling microscopes (USTM) for detecting laser-induced field transients on semiconductor layers. In principle, the instrument can detect transient field changes thus far observed as far-field THz radiation in the near......-field regime and resolve small signal sources. For photoexcited low temperature (LT) GaAs we can explain the signal by a diffusion current driven by the laser-induced carrier density gradient...

  1. Mapping atomic contact between pentacene and a Au surface using scanning tunneling spectroscopy.

    Science.gov (United States)

    Song, Young Jae; Lee, Kyuho; Kim, Seong Heon; Choi, Byoung-Young; Yu, Jaejun; Kuk, Young

    2010-03-10

    We mapped spatially varying intramolecular electronic structures on a pentacene-gold interface using scanning tunneling spectroscopy. Along with ab initio calculations based on density functional theory, we found that the directional nature of the d orbitals of Au atoms plays an important role in the interaction at the pentacene-gold contact. The gold-induced interface states are broadened and shifted by various pentacene-gold distances determined by the various registries of a pentacene molecule on a gold substrate.

  2. Atomic resolution scanning tunneling microscopy in a cryogen free dilution refrigerator at 15 mK

    International Nuclear Information System (INIS)

    Haan, A. M. J. den; Wijts, G. H. C. J.; Galli, F.; Oosterkamp, T. H.; Usenko, O.; Baarle, G. J. C. van; Zalm, D. J. van der

    2014-01-01

    Pulse tube refrigerators are becoming more common, because they are cost efficient and demand less handling than conventional (wet) refrigerators. However, a downside of a pulse tube system is the vibration level at the cold-head, which is in most designs several micrometers. We implemented vibration isolation techniques which significantly reduced vibration levels at the experiment. These optimizations were necessary for the vibration sensitive magnetic resonance force microscopy experiments at milli-kelvin temperatures for which the cryostat is intended. With these modifications we show atomic resolution scanning tunneling microscopy on graphite. This is promising for scanning probe microscopy applications at very low temperatures

  3. A study of surface diffusion with the scanning tunneling microscope from fluctuations of the tunneling current

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, Lozano [Iowa State Univ., Ames, IA (United States)

    1996-01-12

    The transport of atoms or molecules over surfaces has been an important area of study for several decades now, with its progress generally limited by the available experimental techniques to characterize the phenomena. A number of methods have been developed over the years to measure surface diffusion yet only very few systems have been characterized to this day mainly due to the physical limitations inherent in these available methods. Even the STM with its astonishing atomically-resolved images of the surface has been limited in terms of its capability to determine mass transport properties. This is because the STM is inherently a ``slow`` instrument, i.e., a finite time is needed for signal averaging in order to produce the image. A need exists for additional surface diffusion measurement techniques, ideally ones which are able to study varied systems and measure a wide range of diffusion rates. The STM (especially because of its highly local nature) presents itself as a promising tool to conduct dynamical studies if its poor time resolution during ``normal operation`` can somehow be overcome. The purpose of this dissertation is to introduce a new technique of using the STM to measure adatom mobility on surfaces -- one with a capacity to achieve excellent time resolution.

  4. A low-temperature scanning tunneling microscope capable of microscopy and spectroscopy in a Bitter magnet at up to 34 T.

    Science.gov (United States)

    Tao, W; Singh, S; Rossi, L; Gerritsen, J W; Hendriksen, B L M; Khajetoorians, A A; Christianen, P C M; Maan, J C; Zeitler, U; Bryant, B

    2017-09-01

    We present the design and performance of a cryogenic scanning tunneling microscope (STM) which operates inside a water-cooled Bitter magnet, which can attain a magnetic field of up to 38 T. Due to the high vibration environment generated by the magnet cooling water, a uniquely designed STM and a vibration damping system are required. The STM scan head is designed to be as compact and rigid as possible, to minimize the effect of vibrational noise as well as fit the size constraints of the Bitter magnet. The STM uses a differential screw mechanism for coarse tip-sample approach, and operates in helium exchange gas at cryogenic temperatures. The reliability and performance of the STM are demonstrated through topographic imaging and scanning tunneling spectroscopy on highly oriented pyrolytic graphite at T = 4.2 K and in magnetic fields up to 34 T.

  5. Scanning tunnelling microscope light emission: Finite temperature current noise and over cut-off emission.

    Science.gov (United States)

    Kalathingal, Vijith; Dawson, Paul; Mitra, J

    2017-06-14

    The spectral distribution of light emitted from a scanning tunnelling microscope junction not only bears its intrinsic plasmonic signature but is also imprinted with the characteristics of optical frequency fluc- tuations of the tunnel current. Experimental spectra from gold-gold tunnel junctions are presented that show a strong bias (V b ) dependence, curiously with emission at energies higher than the quantum cut-off (eV b ); a component that decays monotonically with increasing bias. The spectral evolution is explained by developing a theoretical model for the power spectral density of tunnel current fluctuations, incorporating finite temperature contribution through consideration of the quantum transport in the system. Notably, the observed decay of the over cut-off emission is found to be critically associated with, and well explained in terms of the variation in junction conductance with V b . The investigation highlights the scope of plasmon-mediated light emission as a unique probe of high frequency fluctuations in electronic systems that are fundamental to the electrical generation and control of plasmons.

  6. Near-Field Enhanced Photochemistry of Single Molecules in a Scanning Tunneling Microscope Junction.

    Science.gov (United States)

    Böckmann, Hannes; Gawinkowski, Sylwester; Waluk, Jacek; Raschke, Markus B; Wolf, Martin; Kumagai, Takashi

    2018-01-10

    Optical near-field excitation of metallic nanostructures can be used to enhance photochemical reactions. The enhancement under visible light illumination is of particular interest because it can facilitate the use of sunlight to promote photocatalytic chemical and energy conversion. However, few studies have yet addressed optical near-field induced chemistry, in particular at the single-molecule level. In this Letter, we report the near-field enhanced tautomerization of porphycene on a Cu(111) surface in a scanning tunneling microscope (STM) junction. The light-induced tautomerization is mediated by photogenerated carriers in the Cu substrate. It is revealed that the reaction cross section is significantly enhanced in the presence of a Au tip compared to the far-field induced process. The strong enhancement occurs in the red and near-infrared spectral range for Au tips, whereas a W tip shows a much weaker enhancement, suggesting that excitation of the localized plasmon resonance contributes to the process. Additionally, using the precise tip-surface distance control of the STM, the near-field enhanced tautomerization is examined in and out of the tunneling regime. Our results suggest that the enhancement is attributed to the increased carrier generation rate via decay of the excited near-field in the STM junction. Additionally, optically excited tunneling electrons also contribute to the process in the tunneling regime.

  7. Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy.

    Science.gov (United States)

    Wang, Tuo; Vaxenburg, Roman; Liu, Wenyong; Rupich, Sara M; Lifshitz, Efrat; Efros, Alexander L; Talapin, Dmitri V; Sibener, S J

    2015-01-27

    The electronic structure of single InSb quantum dots (QDs) with diameters between 3 and 7 nm was investigated using atomic force microscopy (AFM) and scanning tunneling spectroscopy (STS). In this size regime, InSb QDs show strong quantum confinement effects which lead to discrete energy levels on both valence and conduction band states. Decrease of the QD size increases the measured band gap and the spacing between energy levels. Multiplets of equally spaced resonance peaks are observed in the tunneling spectra. There, multiplets originate from degeneracy lifting induced by QD charging. The tunneling spectra of InSb QDs are qualitatively different from those observed in the STS of other III-V materials, for example, InAs QDs, with similar band gap energy. Theoretical calculations suggest the electron tunneling occurs through the states connected with L-valley of InSb QDs rather than through states of the Γ-valley. This observation calls for better understanding of the role of indirect valleys in strongly quantum-confined III-V nanomaterials.

  8. Scanning tunneling microscopy/scanning tunneling spectroscopy of the organic superconductors (TNTSF)2-PF6 and (TMTSF)2-ClO4

    International Nuclear Information System (INIS)

    Fainchtein, R.; Murphy, J.C.

    1991-01-01

    This paper reports on direct observations of the organic superconductors (tetramethyltetraselenafulvalene) (TMTSF) 2 -PF 6 and (TMTSF) 2 -ClO 4 made in air at room temperature. The samples consisted of single crystals electrochemically grown. Images revealing the molecular structural arrangement along different crystallographic orientations will be presented as well as spectroscopic data related to the electronic density of states. The images reveal a structure made up of flat molecules that stack on top of one another to form columns and are responsible for the quasi-one-dimensional nature of the electrical conductivity. Although both materials have similar crystal structure the differences in the symmetry and orientation of the counter anions are not resolved. Tunneling spectroscopy data at room temperature shows no apparent difference in the electronic density of states of both materials

  9. Atomic-Scale Characterization and Manipulation of Freestanding Graphene Using Adapted Capabilities of a Scanning Tunneling Microscope

    Science.gov (United States)

    Barber, Steven

    Graphene was the first two-dimensional material ever discovered, and it exhibits many unusual phenomena important to both pure and applied physics. To ensure the purest electronic structure, or to study graphene's elastic properties, it is often suspended over holes or trenches in a substrate. The aim of the research presented in this dissertation was to develop methods for characterizing and manipulating freestanding graphene on the atomic scale using a scanning tunneling microscope (STM). Conventional microscopy and spectroscopy techniques must be carefully reconsidered to account for movement of the extremely flexible sample. First, the acquisition of atomic-scale images of freestanding graphene using the STM and the ability to pull the graphene perpendicular to its plane by applying an electrostatic force with the STM tip are demonstrated. The atomic-scale images contained surprisingly large corrugations due to the electrostatic attractive force varying in registry with the local density of states. Meanwhile, a large range of control over the graphene height at a point was obtained by varying the tip bias voltage, and the application to strain engineering of graphene's so-called pseudomagnetic field is examined. Next, the effect of the tunneling current was investigated. With increasing current, the graphene sample moves away from the tip rather than toward it. It was determined that this must be due to local heating by the electric current, causing the graphene to contract because it has a negative coefficient of thermal expansion. Finally, by imaging a very small area, the STM can monitor the height of one location over long time intervals. Results sometimes exhibit periodic behavior, with a frequency and amplitude that depend on the tunneling current. These fluctuations are interpreted as low-frequency flexural phonon modes within elasticity theory. All of these findings set the foundation for employing a STM in the study of freestanding graphene.

  10. Characterization and Properties of Oligothiophenes Using Scanning Tunneling Microscopy for Possible Use in Organic Electronics

    International Nuclear Information System (INIS)

    Bishara, E.M.El.

    2009-01-01

    A scanning tunneling microscopy study has been made on a group of alkyl-substituted oligothiophenes. The self-assembled monolayers of this type of semi-conducting oligomers on graphite were observed and characterized. To control the self-assembly, it is important to first understand the forces that drive the spontaneous ordering of molecules at interfaces. For the identification of the forces, several substituted oligothiophenes were examined: carboxylic acid groups, methyl ester carboxylic acid, and iodine atoms at one end and benzyl esters at the other end of the oligomers this is in addition to the non-functionalized oligothiophehens, Self-assembled monolayers of these molecules were then examined by STM. A detailed analysis of the driving forces and parameters controlling the formation of the self-assembled 2- D crystal monolayers was carried out by performing modeling of the experimental observations. The theoretical calculations gave us a conclusive insight into the intermolecular interactions, which lead to the observed conformation of molecules on the surface. An attempt to react two iodinated oligomers on the surface after the formation of the monolayer has been done; a topochemical reaction studies using UV/Vis light irradiation has been preceded. The targeted reaction was achieved. This can be considered as a great step towards the formation of nano-wires and other organic electronic devices. The applicability of the above method of force-driven self organisation in different patterns was examined as template for building donor-nano structures for electronic devices. It was necessary to examine the stability of the formed templates in air. The monolayers were left to dry and STM images were taken; C60 was then added to the monolayer, and the complexation of the C60 (as acceptor) with the formed monolayer template was examined.

  11. NO PLIF Imaging in the CUBRC 48 Inch Shock Tunnel

    Science.gov (United States)

    Jiang, N.; Bruzzese, J.; Patton, R.; Sutton J.; Lempert W.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.; hide

    2011-01-01

    Nitric Oxide Planar Laser-Induced Fluorescence (NO PLIF) imaging is demonstrated at a 10 kHz repetition rate in the Calspan-University at Buffalo Research Center s (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single approx.10-millisecond duration run of the ground test facility. This represents over an order of magnitude improvement in data rate from previous PLIF-based diagnostic approaches. Comparison with a preliminary CFD simulation shows good overall qualitative agreement between the prediction of the mean NO density field and the observed PLIF image intensity, averaged over forty individual images obtained during several facility runs.

  12. Facile synthesis and electron transport properties of NiO nanostructures investigated by scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Govind Mallick

    2017-08-01

    Full Text Available Due to their unique chemical, thermal, electronic and photonic properties, low -dimensional transition metal oxides, especially NiO, have attracted great deal of attention for potential applications in a wide range of technologies, such as, sensors, electrochromic coatings and self-healing materials. However, their synthesis involves multi-step complex procedures that in addition to being expensive, further introduce impurities. Here we present a low cost facile approach to synthesize uniform size NiO nanoparticles (NPs from hydrothermally grown Ni(OH2. Detailed transmission electron microscopic analysis reveal the average size of NiO NPs to be around 29 nm. The dimension of NiO NP is also corroborated by the small area scanning tunneling microscope (STM measurements. Further, we investigate electron transport characteristics of newly synthesized Ni(OH2 and NiO nanoparticles on p-type Si substrate using scanning tunneling microscopy. The conductivity of Ni(OH2 and NiO are determined to be 1.46x10-3 S/cm and 2.37x10-5 S/cm, respectively. The NiO NPs exhibit a lower voltage window (∼0.7 V electron tunneling than the parent Ni(OH2.

  13. Nanomanipulation and nanofabrication with multi-probe scanning tunneling microscope: from individual atoms to nanowires.

    Science.gov (United States)

    Qin, Shengyong; Kim, Tae-Hwan; Wang, Zhouhang; Li, An-Ping

    2012-06-01

    The wide variety of nanoscale structures and devices demands novel tools for handling, assembly, and fabrication at nanoscopic positioning precision. The manipulation tools should allow for in situ characterization and testing of fundamental building blocks, such as nanotubes and nanowires, as they are built into functional devices. In this paper, a bottom-up technique for nanomanipulation and nanofabrication is reported by using a 4-probe scanning tunneling microscope (STM) combined with a scanning electron microscope (SEM). The applications of this technique are demonstrated in a variety of nanosystems, from manipulating individual atoms to bending, cutting, breaking carbon nanofibers, and constructing nanodevices for electrical characterizations. The combination of the wide field of view of SEM, the atomic position resolution of STM, and the flexibility of multiple scanning probes is expected to be a valuable tool for rapid prototyping in the nanoscience and nanotechnology.

  14. New directions in point-contact spectroscopy based on scanning tunneling microscopy techniques (Review Article)

    International Nuclear Information System (INIS)

    Tartaglini, E.; Verhagen, T.G.A.; Galli, F.; Trouwborst, M.L.; Aarts, J.; Van-Ruitebbeek, J.M.; Muller, R.; Shiota, T.

    2013-01-01

    Igor Yanson showed 38 years ago for the first time a point-contact measurement where he probed the energy resolved spectroscopy of the electronic scattering inside the metal. Since this first measurement, the pointcontact spectroscopy (PCS) technique improved enormously. The application of the scanning probe microscopy (SPM) techniques in the late 1980s allowed achieving contacts with a diameter of a single atom. With the introduction of the mechanically controlled break junction technique, even spectroscopy on freely suspended chains of atoms could be performed. In this paper, we briefly review the current developments of PCS and show recent experiments in advanced scanning PCS based on SPM techniques. We describe some results obtained with both needle-anvil type of point contacts and scanning tunneling microscopy (STM). We also show our first attempt to lift up with a STM a chain of single gold atoms from a Au(110) surface.

  15. Scanning tunneling microscopy measurements of the spin Hall effect in tungsten films by using iron-coated tungsten tips

    Directory of Open Access Journals (Sweden)

    Ting Xie

    2018-05-01

    Full Text Available Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.

  16. Scanning tunneling microscopy measurements of the spin Hall effect in tungsten films by using iron-coated tungsten tips

    Science.gov (United States)

    Xie, Ting; Dreyer, Michael; Bowen, David; Hinkel, Dan; Butera, R. E.; Krafft, Charles; Mayergoyz, Isaak

    2018-05-01

    Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.

  17. A variable-temperature scanning tunneling microscope capable of single-molecule vibrational spectroscopy

    International Nuclear Information System (INIS)

    Stipe, B.C.; Rezaei, M.A.; Ho, W.

    1999-01-01

    The design and performance of a variable-temperature scanning tunneling microscope (STM) is presented. The microscope operates from 8 to 350 K in ultrahigh vacuum. The thermally compensated STM is suspended by springs from the cold tip of a continuous flow cryostat and is completely surrounded by two radiation shields. The design allows for in situ dosing and irradiation of the sample as well as for the exchange of samples and STM tips. With the STM feedback loop off, the drift of the tip-sample spacing is approximately 0.001 Angstrom/min at 8 K. It is demonstrated that the STM is well-suited for the study of atomic-scale chemistry over a wide temperature range, for atomic-scale manipulation, and for single-molecule inelastic electron tunneling spectroscopy (IETS). copyright 1999 American Institute of Physics

  18. Density-matrix approach for the electroluminescence of molecules in a scanning tunneling microscope.

    Science.gov (United States)

    Tian, Guangjun; Liu, Ji-Cai; Luo, Yi

    2011-04-29

    The electroluminescence (EL) of molecules confined inside a nanocavity in the scanning tunneling microscope possesses many intriguing but unexplained features. We present here a general theoretical approach based on the density-matrix formalism to describe the EL from molecules near a metal surface induced by both electron tunneling and localized surface plasmon excitations simultaneously. It reveals the underlying physical mechanism for the external bias dependent EL. The important role played by the localized surface plasmon on the EL is highlighted. Calculations for porphyrin derivatives have reproduced corresponding experimental spectra and nicely explained the observed unusual large variation of emission spectral profiles. This general theoretical approach can find many applications in the design of molecular electronic and photonic devices.

  19. Resonant-enhanced spectroscopy of molecular rotations with a scanning tunneling microscope.

    Science.gov (United States)

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2014-07-22

    We use rotational excitation spectroscopy with a scanning tunneling microscope to investigate the rotational properties of molecular hydrogen and its isotopes physisorbed on the surfaces of graphene and hexagonal boron nitride (h-BN), grown on Ni(111), Ru(0001), and Rh(111). The rotational excitation energies are in good agreement with ΔJ = 2 transitions of freely spinning p-H2 and o-D2 molecules. The variations of the spectral line shapes for H2 among the different surfaces can be traced back to a molecular resonance-mediated tunneling mechanism. Our data for H2/h-BN/Rh(111) suggest a local intrinsic gating on this surface due to lateral static dipoles. Spectra on a mixed monolayer of H2, HD, and D2 display all three J = 0 → 2 rotational transitions, irrespective of tip position, thus pointing to a multimolecule excitation, or molecular mobility in the physisorbed close-packed layer.

  20. Chiral Majorana fermion modes regulated by a scanning tunneling microscope tip

    Science.gov (United States)

    Zhou, Yan-Feng; Hou, Zhe; Zhang, Ying-Tao; Sun, Qing-Feng

    2018-03-01

    The Majorana fermion can be described by a real wave function with only two phases (zero and π ) which provide a controllable degree of freedom. We propose a strategy to regulate the phase of the chiral Majorana state by coupling with a scanning tunneling microscope tip in a system consisting of a quantum anomalous Hall insulator coupled with a superconductor. With the change in the chemical potential, the chiral Majorana state can be tuned alternately between zero and π , in which the perfect normal tunneling and perfect crossed Andreev reflection appear, respectively. The perfect crossed Andreev reflection, by which a Cooper pair can be split into two electrons going into different terminals completely, leads to a pumping current and distinct quantized resistances. These findings may provide a signature of Majorana fermions and pave a feasible avenue to regulate the phase of the Majorana state.

  1. MgB2 energy gap determination by scanning tunnelling spectroscopy

    International Nuclear Information System (INIS)

    Heitmann, T W; Bu, S D; Kim, D M; Choi, J H; Giencke, J; Eom, C B; Regan, K A; Rogado, N; Hayward, M A; He, T; Slusky, J S; Khalifah, P; Haas, M; Cava, R J; Larbalestier, D C; Rzchowski, M S

    2004-01-01

    We report scanning tunnelling spectroscopy (STS) measurements of the gap properties of both ceramic MgB 2 and c-axis oriented epitaxial MgB 2 thin films. Both show a temperature dependent zero bias conductance peak and evidence for two superconducting gaps. We report tunnelling spectroscopy of superconductor-insulator-superconductor (S-I-S) junctions formed in two ways in addition to normal metal-insulator-superconductor (N-I-S) junctions. We find a gap δ = 2.2-2.8 meV, with spectral features and temperature dependence that are consistent between S-I-S junction types. In addition, we observe evidence of a second, larger gap, δ 7.2 meV, consistent with a proposed two-band model

  2. Quantum nature of protons in water probed by scanning tunneling microscopy and spectroscopy

    Science.gov (United States)

    Guo, Jing; Lü, Jing-Tao; Feng, Yexin; Chen, Ji; Peng, Jinbo; Lin, Zeren; Meng, Xiangzhi; Wang, Zhichang; Li, Xin-Zheng; Wang, En-Ge; Jiang, Ying; Jing-Tao Lü Team; Xin-Zheng Li Team

    The complexity of hydrogen-bonding interaction largely arises from the quantum nature of light hydrogen nuclei, which has remained elusive for decades. Here we report the direct assessment of nuclear quantum effects on the strength of a single hydrogen bond formed at a water-salt interface, using tip-enhanced inelastic electron tunneling spectroscopy (IETS) based on a low-temperature scanning tunneling microscope (STM). The IETS signals are resonantly enhanced by gating the frontier orbitals of water via a chlorine-terminated STM tip, such that the hydrogen-bonding strength can be determined with unprecedentedly high accuracy from the redshift in the O-H stretching frequency of water. Isotopic substitution experiments combined with quantum simulations reveal that the anharmonic quantum fluctuations of hydrogen nuclei weaken the weak hydrogen bonds and strengthen the relatively strong ones. However, this trend can be completely reversed when the hydrogen bond is strongly coupled to the polar atomic sites of the surface.

  3. NO PLIF imaging in the CUBRC 48-inch shock tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, N.; Bruzzese, J.; Patton, R.; Sutton, J.; Yentsch, R.; Gaitonde, D.V.; Lempert, W.R. [The Ohio State University, Departments of Mechanical and Aerospace Engineering, Columbus, OH (United States); Miller, J.D.; Meyer, T.R. [Iowa State University, Department of Mechanical Engineering, Ames, IA (United States); Parker, R.; Wadham, T.; Holden, M. [CUBRC, Buffalo, NY (United States); Danehy, P.M. [NASA Langley Research Center, Hampton, VA (United States)

    2012-12-15

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center's (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single {proportional_to}10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs. (orig.)

  4. Scanning tunneling microscopy and spectroscopy on GaN and InGaN surfaces

    International Nuclear Information System (INIS)

    Krueger, David

    2009-01-01

    Optelectronic devices based on gallium nitride (GaN) and indium gallium nitride (InGaN) are in the focus of research since more than 20 years and still have great potential for optical applications. In the first part of this work non-polar surfaces of GaN are investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and scanning tunneling microscopy (STM). In SEM and AFM, the (1 anti 100)- and especially the (anti 2110)-plane are quite corrugated. For the first time, the (anti 2110)-plane of GaN is atomically resolved in STM. In the second part InGaN quantum dot layers are investigated by X-ray photoelectron spectroscopy (XPS), scanning tunneling spectroscopy (STS) and STM. The STMmeasurements show the dependency of surface morphology on growth conditions in the metalorganic vapour phase epitaxy (MOVPE). Nucleation, a new MOVPE-strategy, is based on phase separations on surfaces. It is shown that locally varying density of states and bandgaps can be detected by STS, that means bandgap histograms and 2D-bandgap-mapping. (orig.)

  5. Evaluation of processing methods for static radioisotope scan images

    International Nuclear Information System (INIS)

    Oakberg, J.A.

    1976-12-01

    Radioisotope scanning in the field of nuclear medicine provides a method for the mapping of a radioactive drug in the human body to produce maps (images) which prove useful in detecting abnormalities in vital organs. At best, radioisotope scanning methods produce images with poor counting statistics. One solution to improving the body scan images is using dedicated small computers with appropriate software to process the scan data. Eleven methods for processing image data are compared

  6. Atomic scale images of acceptors in III-V semiconductors. Band bending, tunneling paths and wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Loth, S.

    2007-10-26

    This thesis reports measurements of single dopant atoms in III-V semiconductors with low temperature Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS). It investigates the anisotropic spatial distribution of acceptor induced tunneling processes at the {l_brace}110{r_brace} cleavage planes. Two different tunneling processes are identified: conventional imaging of the squared acceptor wave function and resonant tunneling at the charged acceptor. A thorough analysis of the tip induced space charge layers identifies characteristic bias windows for each tunnel process. The symmetry of the host crystal's band structure determines the spatial distribution of the tunneling paths for both processes. Symmetry reducing effects at the surface are responsible for a pronounced asymmetry of the acceptor contrasts along the principal [001] axis. Uniaxial strain fields due to surface relaxation and spin orbit interaction of the tip induced electric field are discussed on the basis of band structure calculations. High-resolution STS studies of acceptor atoms in an operating p-i-n diode confirm that an electric field indeed changes the acceptor contrasts. In conclusion, the anisotropic contrasts of acceptors are created by the host crystal's band structure and concomitant symmetry reduction effects at the surface. (orig.)

  7. Transport properties of magnetic atom bridges controlled by a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Nakanishi, H.; Kishi, T.; Kasai, H.; Komori, F.; Okiji, A.

    2003-01-01

    We have investigated the transport and magnetic properties of the atom bridge made from magnetic materials, which is the atom-scale wire constructed between a scanning tunneling microscope (STM) tip and a solid surface, by the use of ab initio calculations. In the case of the twisted ladder structure atom bridge made of Fe, we have found that the magnetic state of the bridge changes from ferromagnetic to paramagnetic, as we compress the bridge in length. We report the spin dependent quantized conductance of the bridge. And we discuss the origin of a change in transport properties as we compress the bridge in length

  8. Atomic force microscope-assisted scanning tunneling spectroscopy under ambient conditions.

    Science.gov (United States)

    Vakhshouri, Amin; Hashimoto, Katsushi; Hirayama, Yoshiro

    2014-12-01

    We have developed a method of atomic force microscopy (AFM)-assisted scanning tunneling spectroscopy (STS) under ambient conditions. An AFM function is used for rapid access to a selected position prior to performing STS. The AFM feedback is further used to suppress vertical thermal drift of the tip-sample distance during spectroscopy, enabling flexible and stable spectroscopy measurements at room temperature. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Low temperature ultrahigh vacuum cross-sectional scanning tunneling microscope for luminescence measurements

    International Nuclear Information System (INIS)

    Khang, Yoonho; Park, Yeonjoon; Salmeron, Miquel; Weber, Eicke R.

    1999-01-01

    We have constructed a scanning tunneling microscope with simultaneous light collection capabilities in order to investigate the opto-electronic properties of semiconductors. The microscope has in situ sample cleavage mechanism for cross-sectional sample. In order to reach low temperature (4 K), we used a specially designed cryostat. The efficiency of light collection generated in the tip-surface junction was greatly improved by use of a small parabolic mirror with the tip located at its focal point. (c) 1999 American Institute of Physics

  10. Self-navigation of a scanning tunneling microscope tip toward a micron-sized graphene sample.

    Science.gov (United States)

    Li, Guohong; Luican, Adina; Andrei, Eva Y

    2011-07-01

    We demonstrate a simple capacitance-based method to quickly and efficiently locate micron-sized conductive samples, such as graphene flakes, on insulating substrates in a scanning tunneling microscope (STM). By using edge recognition, the method is designed to locate and to identify small features when the STM tip is far above the surface, allowing for crash-free search and navigation. The method can be implemented in any STM environment, even at low temperatures and in strong magnetic field, with minimal or no hardware modifications.

  11. Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips

    Directory of Open Access Journals (Sweden)

    Sumit Tewari

    2017-11-01

    Full Text Available Scanning tunneling microscopes (STM are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, procedures for controlling the atomic-scale shape of STM tips have not been rigorously justified. Here, we present a method for preparing tips in situ while ensuring the crystalline structure and a reproducibly prepared tip structure up to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes.

  12. Probing the atomic structure of metallic nanoclusters with the tip of a scanning tunneling microscope.

    Science.gov (United States)

    Schouteden, Koen; Lauwaet, Koen; Janssens, Ewald; Barcaro, Giovanni; Fortunelli, Alessandro; Van Haesendonck, Chris; Lievens, Peter

    2014-02-21

    Preformed Co clusters with an average diameter of 2.5 nm are produced in the gas phase and are deposited under controlled ultra-high vacuum conditions onto a thin insulating NaCl film on Au(111). Relying on a combined experimental and theoretical investigation, we demonstrate visualization of the three-dimensional atomic structure of the Co clusters by high-resolution scanning tunneling microscopy (STM) using a Cl functionalized STM tip that can be obtained on the NaCl surface. More generally, use of a functionalized STM tip may allow for systematic atomic structure determination with STM of nanoparticles that are deposited on metal surfaces.

  13. A functional renormalization group application to the scanning tunneling microscopy experiment

    Directory of Open Access Journals (Sweden)

    José Juan Ramos Cárdenas

    2015-12-01

    Full Text Available We present a study of a system composed of a scanning tunneling microscope (STM tip coupled to an absorbed impurity on a host surface using the functional renormalization group (FRG. We include the effect of the STM tip as a correction to the self-energy in addition to the usual contribution of the host surface in the wide band limit. We calculate the differential conductance curves at two different lateral distances from the quantum impurity and find good qualitative agreement with STM experiments where the differential conductance curves evolve from an antiresonance to a Lorentzian shape.

  14. Plasmon-mediated circularly polarized luminescence of GaAs in a scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Mühlenberend, Svenja; Gruyters, Markus; Berndt, Richard, E-mail: berndt@physik.uni-kiel.de [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel (Germany)

    2015-12-14

    The electroluminescence from p-type GaAs(110) in a scanning tunneling microscope has been investigated at 6 K. Unexpectedly, high degrees of circular polarization have often been observed with ferromagnetic Ni tips and also with paramagnetic W and Ag tips. The data are interpreted in terms of two distinct excitation mechanisms. Electron injection generates intense luminescence with low polarization. Plasmon-mediated generation of electron-hole pairs leads to less intense emission, which, however, is highly polarized for many tips.

  15. A scanning tunneling microscope break junction method with continuous bias modulation.

    Science.gov (United States)

    Beall, Edward; Yin, Xing; Waldeck, David H; Wierzbinski, Emil

    2015-09-28

    Single molecule conductance measurements on 1,8-octanedithiol were performed using the scanning tunneling microscope break junction method with an externally controlled modulation of the bias voltage. Application of an AC voltage is shown to improve the signal to noise ratio of low current (low conductance) measurements as compared to the DC bias method. The experimental results show that the current response of the molecule(s) trapped in the junction and the solvent media to the bias modulation can be qualitatively different. A model RC circuit which accommodates both the molecule and the solvent is proposed to analyze the data and extract a conductance for the molecule.

  16. First-principles modelling of scanning tunneling microscopy using non-equilibrium Green's functions

    DEFF Research Database (Denmark)

    Lin, H.P.; Rauba, J.M.C.; Thygesen, Kristian Sommer

    2010-01-01

    The investigation of electron transport processes in nano-scale architectures plays a crucial role in the development of surface chemistry and nano-technology. Experimentally, an important driving force within this research area has been the concurrent refinements of scanning tunneling microscopy...... into account. As an illustrating example we apply the NEGF-STM method to the Si(001)(2x1):H surface with sub-surface P doping and discuss the results in comparison to the Bardeen and Tersoff-Hamann methods....

  17. Scanning tunneling microscopy of monoatomic gold chains on vicinal Si(335) surface: experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, M.; Kwapinski, T.; Jalochowski, M. [Institute of Physics and Nanotechnology Center, M. Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 1, 20-031 Lublin (Poland)

    2005-02-01

    We study electronic and topographic properties of the Si(335) surface, containing Au wires parallel to the steps. We use scanning tunneling microscopy (STM) supplemented by reflection of high energy electron diffraction (RHEED) technique. The STM data show the space and voltage dependent oscillations of the distance between STM tip and the surface which can be explained within one band tight binding Hubbard model. We calculate the STM current using nonequilibrium Keldysh Green function formalism. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Epitaxial clusters studied by synchrotron x-ray diffraction and scanning tunneling microscopy

    DEFF Research Database (Denmark)

    Nielsen, M.; Feidenhans'l, R.; Rasmussen, F.B.

    1998-01-01

    Nanoscale clusters are often formed during heteroepitaxial crystal growth. Misfit between the lattice parameter of the substrate and the adsorbate stimulates the formation of regular clusters with a characteristic size. The well-known "hut-clusters" formed during the growth of Ge on Si(001) are a...... similar to the "hut clusters". We demonstrate that X-ray diffraction in combination with scanning tunneling microscopy can be used to determine the fundamental properties of such clusters. (C) 1998 Elsevier Science B.V. All rights reserved....

  19. Real-Space Analysis of Scanning Tunneling Microscopy Topography Datasets Using Sparse Modeling Approach

    Science.gov (United States)

    Miyama, Masamichi J.; Hukushima, Koji

    2018-04-01

    A sparse modeling approach is proposed for analyzing scanning tunneling microscopy topography data, which contain numerous peaks originating from the electron density of surface atoms and/or impurities. The method, based on the relevance vector machine with L1 regularization and k-means clustering, enables separation of the peaks and peak center positioning with accuracy beyond the resolution of the measurement grid. The validity and efficiency of the proposed method are demonstrated using synthetic data in comparison with the conventional least-squares method. An application of the proposed method to experimental data of a metallic oxide thin-film clearly indicates the existence of defects and corresponding local lattice distortions.

  20. Observation and Manipulation of Polymers by Scanning Tunneling and Atomic Force Microscopy

    Science.gov (United States)

    1988-07-13

    Observation and Manipulation of Polymers by Scanning Tunneling and Atomic Force Microscooy 12. PERSONAL AUTHOR(S) M.M. Dovek, T.R. Albrecht, S.W.J. Kuan, C.A...COUNT FIELD GOP SU8 -GROUP 19. ABSTRACT (Continue on reverse if ncosay and kIti1I by block numbor) ~AM\\~ v~~\\~A Dhe properties of monolayer films of...organic materi s are importantl i--V~ ety of technologies. We have employed the STM and AFM t study’ LanD~ ..-odgett films of a varie ’ty of polymers

  1. Scanning tunneling spectroscopy of MoS2 monolayer in presence of ethanol gas

    Science.gov (United States)

    Hosseini, Seyed Ali; Iraji zad, Azam; Berahman, Masoud; Aghakhani Mahyari, Farzaneh; Shokouh, Seyed Hossein Hosseini

    2018-04-01

    Due to high surface to volume ratio and tunable band gap, two dimensional (2D) layered materials such as MoS2, is good candidate for gas sensing applications. This research mainly focuses on variation of Density of States (DOS) of MoS2 monolayes caused by ethanol adsorption. The nanosheets are synthesized by liquid exfoliation, and then using Scanning Tunneling Spectroscopy (STS) and Density Functional Theory (DFT), local electronic characteristic such as DOS and band gap in non-vacuum condition are analyzed. The results show that ethanol adsorption enhances DOS and deform orbitals near the valence and conduction bands that increase transport of carriers on the sheet.

  2. An atomic resolution scanning tunneling microscope that applies external tensile stress and strain in an ultrahigh vacuum

    International Nuclear Information System (INIS)

    Fujita, D; Kitahara, M; Onishi, K; Sagisaka, K

    2008-01-01

    We have developed an ultrahigh vacuum scanning tunneling microscope with an in situ external stress application capability in order to determine the effects of stress and strain on surface atomistic structures. It is necessary to understand these effects because controlling them will be a key technology that will very likely be used in future nanometer-scale fabrication processes. We used our microscope to demonstrate atomic resolution imaging under external tensile stress and strain on the surfaces of wafers of Si(111) and Si(001). We also successfully observed domain redistribution induced by applying uniaxial stress at an elevated temperature on the surface of a wafer of vicinal Si(100). We confirmed that domains for which an applied tensile stress is directed along the dimer bond become less stable and shrink. This suggests that it may be feasible to fabricate single domain surfaces in a process that controls surface stress and strain

  3. Electrical conduction of organic ultrathin films evaluated by an independently driven double-tip scanning tunneling microscope.

    Science.gov (United States)

    Takami, K; Tsuruta, S; Miyake, Y; Akai-Kasaya, M; Saito, A; Aono, M; Kuwahara, Y

    2011-11-02

    The electrical transport properties of organic thin films within the micrometer scale have been evaluated by a laboratory-built independently driven double-tip scanning tunneling microscope, operating under ambient conditions. The two tips were used as point contact electrodes, and current in the range from 0.1 pA to 100 nA flowing between the two tips through the material can be detected. We demonstrated two-dimensional contour mapping of the electrical resistance on a poly(3-octylthiophene) thin films as shown below. The obtained contour map clearly provided an image of two-dimensional electrical conductance between two point electrodes on the poly(3-octylthiophene) thin film. The conductivity of the thin film was estimated to be (1-8) × 10(-6) S cm(-1). Future prospects and the desired development of multiprobe STMs are also discussed.

  4. Surface structure of YBa2Cu3O7-x probed by reversed-bias scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Edwards, H.L.; Markert, J.T.; Lozanne, A.L.d.

    1994-01-01

    We report the results of scanning tunneling microscopy studies on high-quality single crystals of YBa 2 Cu 3 O 7-x (YBCO) which were cleaved along a basal plane in situ at 20 K prior to measurement. The initial results of a systematic study of the YBCO surface are presented. Reversed-bias images of the CuO chain layer reveal modulations 3.3±0.3|b|=1.3±0.1 nm in wavelength which change phase by 180 degree under bias polarity reversal along solid chains, and are invariant under bias polarity reversal at a point defect. Regions of sharp unit-cell-sized square corrugations with disordered islands are also observed. We interpret these new results in terms of our previous model [H. L. Edwards, J. T. Markert, and A. L. de Lozanne, Phys. Rev. Lett. 69, 2967 (1992)] of the cleaved YBCO surface

  5. Scanning Tunneling Microscopic Observation of Adatom-Mediated Motifs on Gold-Thiol Self-assembled Monolayers at High Coverage

    DEFF Research Database (Denmark)

    Wang, Yun; Chi, Qijin; Hush, Noel S.

    2009-01-01

    the structural motifs observed on surfaces at low coverage and on gold nanoparticles to the observed spectroscopic properties of high-coverage SAMs formed by methanethiol. However, the significant role attributed to intermolecular steric packing effects suggests a lack of generality for the adatom-mediated motif......Self-assembled monolayers (SAMs) formed by chemisorption of a branched-chain alkanethiol, 2-methyl-1-propanethiol, on Au(111) surfaces were studied by in situ scanning tunneling microscopy (STM) under electrochemical potential control and analyzed using extensive density functional theory (DFT...... two R−S−Au−S−R adatom-mediated motifs per surface cell, with steric-induced variations in the adsorbate alignment inducing the observed STM image contrasts. Observed pits covering 5.6 ± 0.5% of the SAM surface are consistent with this structure. These results provide the missing link from...

  6. Manipulation of polyatomic molecules with the scanning tunnelling microscope at room temperature: chlorobenzene adsorption and desorption from Si(111)-(7 x 7)

    International Nuclear Information System (INIS)

    Sloan, P A; Palmer, R E

    2006-01-01

    We report the imaging of chlorobenzene molecules chemisorbed on the Si(111)-(7 x 7) surface at room temperature with the scanning tunnelling microscope, and the desorption of the molecules by the tunnelling current. Detailed voltage-dependent imaging (at positive bias) allows the elucidation of the number and orientation of all the adsorbate configurations in the 7 x 7 unit cell. At negative bias the adsorbate was observed to affect the imaging properties of neighbouring half unit cells. The threshold voltage required for desorption of the chlorobenzene molecules was invariant to small changes in the tip-state, the adsorption site (corner adatom, middle adatom, faulted or unfaulted half of the unit cell) and the kind of doping of the substrate (n or p type)

  7. Calibration of tip and sample temperature of a scanning tunneling microscope using a superconductive sample

    Energy Technology Data Exchange (ETDEWEB)

    Stocker, Matthias; Pfeifer, Holger; Koslowski, Berndt, E-mail: berndt.koslowski@uni-ulm.de [Institute of Solid State Physics, University of Ulm, D-89069 Ulm (Germany)

    2014-05-15

    The temperature of the electrodes is a crucial parameter in virtually all tunneling experiments. The temperature not only controls the thermodynamic state of the electrodes but also causes thermal broadening, which limits the energy resolution. Unfortunately, the construction of many scanning tunneling microscopes inherits a weak thermal link between tip and sample in order to make one side movable. Such, the temperature of that electrode is badly defined. Here, the authors present a procedure to calibrate the tip temperature by very simple means. The authors use a superconducting sample (Nb) and a standard tip made from W. Due to the asymmetry in the density of states of the superconductor (SC)—normal metal (NM) tunneling junction, the SC temperature controls predominantly the density of states while the NM controls the thermal smearing. By numerically simulating the I-V curves and numerically optimizing the tip temperature and the SC gap width, the tip temperature can be accurately deduced if the sample temperature is known or measureable. In our case, the temperature dependence of the SC gap may serve as a temperature sensor, leading to an accurate NM temperature even if the SC temperature is unknown.

  8. Calibration of tip and sample temperature of a scanning tunneling microscope using a superconductive sample

    International Nuclear Information System (INIS)

    Stocker, Matthias; Pfeifer, Holger; Koslowski, Berndt

    2014-01-01

    The temperature of the electrodes is a crucial parameter in virtually all tunneling experiments. The temperature not only controls the thermodynamic state of the electrodes but also causes thermal broadening, which limits the energy resolution. Unfortunately, the construction of many scanning tunneling microscopes inherits a weak thermal link between tip and sample in order to make one side movable. Such, the temperature of that electrode is badly defined. Here, the authors present a procedure to calibrate the tip temperature by very simple means. The authors use a superconducting sample (Nb) and a standard tip made from W. Due to the asymmetry in the density of states of the superconductor (SC)—normal metal (NM) tunneling junction, the SC temperature controls predominantly the density of states while the NM controls the thermal smearing. By numerically simulating the I-V curves and numerically optimizing the tip temperature and the SC gap width, the tip temperature can be accurately deduced if the sample temperature is known or measureable. In our case, the temperature dependence of the SC gap may serve as a temperature sensor, leading to an accurate NM temperature even if the SC temperature is unknown

  9. Ultra compact multitip scanning tunneling microscope with a diameter of 50 mm.

    Science.gov (United States)

    Cherepanov, Vasily; Zubkov, Evgeny; Junker, Hubertus; Korte, Stefan; Blab, Marcus; Coenen, Peter; Voigtländer, Bert

    2012-03-01

    We present a multitip scanning tunneling microscope (STM) where four independent STM units are integrated on a diameter of 50 mm. The coarse positioning of the tips is done under the control of an optical microscope or scanning electron microscopy in vacuum. The heart of this STM is a new type of piezoelectric coarse approach called KoalaDrive. The compactness of the KoalaDrive allows building a four-tip STM as small as a single-tip STM with a drift of less than 0.2 nm/min at room temperature and lowest resonance frequencies of 2.5 kHz (xy) and 5.5 kHz (z). We present as examples of the performance of the multitip STM four point measurements of silicide nanowires and graphene.

  10. Scanning tunneling microscopy of the atomically smooth (001) surface of vanadium pentoxide V{sub 2}O{sub 5} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Kanevsky, V. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-01-15

    The (001) cleavage surface of vanadium pentoxide (V{sub 2}O{sub 5}) crystal has been studied by scanning tunneling spectroscopy (STM). It is shown that the surface is not reconstructed; the STM image allows geometric lattice parameters to be determined with high accuracy. The nanostructure formed on the (001) cleavage surface of crystal consists of atomically smooth steps with a height multiple of unit-cell parameter c = 4.37 Å. The V{sub 2}O{sub 5} crystal cleavages can be used as references in calibration of a scanning tunneling microscope under atmospheric conditions both along the (Ñ…, y) surface and normally to the sample surface (along the z axis). It is found that the terrace surface is not perfectly atomically smooth; its roughness is estimated to be ~0.5 Å. This circumstance may introduce an additional error into the microscope calibration along the z coordinate.

  11. Fabrication of Gate-tunable Graphene Devices for Scanning Tunneling Microscopy Studies with Coulomb Impurities

    Science.gov (United States)

    Jung, Han Sae; Tsai, Hsin-Zon; Wong, Dillon; Germany, Chad; Kahn, Salman; Kim, Youngkyou; Aikawa, Andrew S.; Desai, Dhruv K.; Rodgers, Griffin F.; Bradley, Aaron J.; Velasco, Jairo; Watanabe, Kenji; Taniguchi, Takashi; Wang, Feng; Zettl, Alex; Crommie, Michael F.

    2015-01-01

    Owing to its relativistic low-energy charge carriers, the interaction between graphene and various impurities leads to a wealth of new physics and degrees of freedom to control electronic devices. In particular, the behavior of graphene’s charge carriers in response to potentials from charged Coulomb impurities is predicted to differ significantly from that of most materials. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) can provide detailed information on both the spatial and energy dependence of graphene's electronic structure in the presence of a charged impurity. The design of a hybrid impurity-graphene device, fabricated using controlled deposition of impurities onto a back-gated graphene surface, has enabled several novel methods for controllably tuning graphene’s electronic properties.1-8 Electrostatic gating enables control of the charge carrier density in graphene and the ability to reversibly tune the charge2 and/or molecular5 states of an impurity. This paper outlines the process of fabricating a gate-tunable graphene device decorated with individual Coulomb impurities for combined STM/STS studies.2-5 These studies provide valuable insights into the underlying physics, as well as signposts for designing hybrid graphene devices. PMID:26273961

  12. Spin-polarized scanning tunneling microscopy and spectroscopy study of chromium on a Cr(001) surface.

    Science.gov (United States)

    Lagoute, J; Kawahara, S L; Chacon, C; Repain, V; Girard, Y; Rousset, S

    2011-02-02

    Several tens of chromium layers were deposited at 250 °C on a Cr(001) surface and investigated by spin-polarized scanning tunneling microscopy (SP-STM), Auger electron spectroscopy (AES) and scanning tunneling spectroscopy (STS). Chromium is found to grow with a mound-like morphology resulting from the stacking of several monolayers which do not uniformly cover the whole surface of the substrate. The terminal plane consists of an irregular array of Cr islands with lateral sizes smaller than 20 × 20 nm(2). Combined AES and STS measurements reveal the presence of a significant amount of segregants prior to and after deposition. A detailed investigation of the surface shows that it consists of two types of patches. Thanks to STS measurements, the two types of area have been identified as being either chromium pure or segregant rich. SP-STM experiments have evidenced that the antiferromagnetic layer coupling remains in the chromium mounds after deposition and is not significantly affected by the presence of the segregants.

  13. Scanning tunneling microscopy on iron-chalcogenide superconductor Fe(Se, Te) single crystal

    International Nuclear Information System (INIS)

    Ukita, R.; Sugimoto, A.; Ekino, T.

    2011-01-01

    We show scanning tunneling microscopy/spectroscopy (STM/STS) results of Fe(Se, Te). STM topography shows square arrangements of spots with the lattice spacing 0.37 nm. Te and Se atoms are randomly distributed in the STM topography. The STM topography of FeTe exhibits clusters of separated iron atoms. We have investigated the iron-chalcogenide superconductor Fe(Se, Te) using a low-temperature scanning tunneling microscopy/spectroscopy (STM/STS) technique. STM topography at 4.9 K shows clear regular square arrangements of spots with the lattice spacing ∼0.37 nm, from which what we observe are attributed to Se or Te atomic plane. In the topography, brighter and darker atomic spots are randomly distributed, which are most probably due to Te and Se atoms, respectively. For the FeTe compound, the topography exhibits clusters of the bright spots probably arising from separated iron atoms distributing over several Te lattice sites. The STS measurements clarify the existence of the large-size gap with 2Δ = 0.4-0.6 eV.

  14. Temperature Dependent Electron Transport Properties of Gold Nanoparticles and Composites: Scanning Tunneling Spectroscopy Investigations.

    Science.gov (United States)

    Patil, Sumati; Datar, Suwarna; Dharmadhikari, C V

    2018-03-01

    Scanning tunneling spectroscopy (STS) is used for investigating variations in electronic properties of gold nanoparticles (AuNPs) and its composite with urethane-methacrylate comb polymer (UMCP) as function of temperature. Films are prepared by drop casting AuNPs and UMCP in desired manner on silicon substrates. Samples are further analyzed for morphology under scanning electron microscopy (SEM) and atomic force microscopy (AFM). STS measurements performed in temperature range of 33 °C to 142 °C show systematic variation in current versus voltage (I-V) curves, exhibiting semiconducting to metallic transition/Schottky behavior for different samples, depending upon preparation method and as function of temperature. During current versus time (I-t) measurement for AuNPs, random telegraphic noise is observed at room temperature. Random switching of tunneling current between two discrete levels is observed for this sample. Power spectra derived from I-t show 1/f2 dependence. Statistical analysis of fluctuations shows exponential behavior with time width τ ≈ 7 ms. Local density of states (LDOS) plots derived from I-V curves of each sample show systematic shift in valance/conduction band edge towards/away from Fermi level, with respect to increase in temperature. Schottky emission is best fitted electron emission mechanism for all samples over certain range of bias voltage. Schottky plots are used to calculate barrier heights and temperature dependent measurements helped in measuring activation energies for electron transport in all samples.

  15. Manipulating individual dichlorotin phthalocyanine molecules on Cu(100) surface at room temperature by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Li, Chao; Xiang, Feifei; Wang, Zhongping; Liu, Xiaoqing; Jiang, Danfeng; Wang, Li; Wang, Guang; Zhang, Xueao; Chen, Wei

    2014-01-01

    Single molecule manipulations have been achieved on dichlorotin phthalocyanine(SnCl 2 Pc) molecules adsorbed on Cu (100) at room temperature. Scanning tunneling microscopy observations directly demonstrate that the individual SnCl 2 Pc molecules can be moved along the [100] direction on Cu(100) surface by employing a scanning tunneling microscope tip fixed at the special position of the molecules. The orientation of the molecule can be switched between two angles of ±28° with respect to the [011] surface direction in the same way. Dependences of the probability of molecular motion on the distances between the tip and the molecules reveal that the mechanism for such manipulation of a SnCl 2 Pc molecule is dominated by the repulsive interactions between the tip and the molecules. With the assistance of this manipulation process, a prototype molecular storage array with molecular orientation as information carrier and an artificial hydrogen bonded supramolecular structure have been constructed on the surface. (paper)

  16. Method for Surface Scanning in Medical Imaging and Related Apparatus

    DEFF Research Database (Denmark)

    2015-01-01

    A method and apparatus for surface scanning in medical imaging is provided. The surface scanning apparatus comprises an image source, a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and a first optical coupler for coupling an image from the image...

  17. Realization of a four-step molecular switch in scanning tunneling microscope manipulation of single chlorophyll-a molecules

    Science.gov (United States)

    Iancu, Violeta; Hla, Saw-Wai

    2006-01-01

    Single chlorophyll-a molecules, a vital resource for the sustenance of life on Earth, have been investigated by using scanning tunneling microscope manipulation and spectroscopy on a gold substrate at 4.6 K. Chlorophyll-a binds on Au(111) via its porphyrin unit while the phytyl-chain is elevated from the surface by the support of four CH3 groups. By injecting tunneling electrons from the scanning tunneling microscope tip, we are able to bend the phytyl-chain, which enables the switching of four molecular conformations in a controlled manner. Statistical analyses and structural calculations reveal that all reversible switching mechanisms are initiated by a single tunneling-electron energy-transfer process, which induces bond rotation within the phytyl-chain. PMID:16954201

  18. A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK

    International Nuclear Information System (INIS)

    Khotkevych, V. V.; Bending, S. J.; Milosevic, M. V.

    2008-01-01

    We present the design, construction, and performance of a low-temperature scanning Hall probe microscope with submicron lateral resolution and a large scanning range. The detachable microscope head is mounted on the cold flange of a commercial 3 He-refrigerator (Oxford Instruments, Heliox VT-50) and operates between room temperature and 300 mK. It is fitted with a three-axis slip-stick nanopositioner that enables precise in situ adjustment of the probe location within a 6x6x7 mm 3 space. The local magnetic induction at the sample surface is mapped with an easily changeable microfabricated Hall probe [typically GsAs/AlGaAs or AlGaAs/InGaAs/GaAs Hall sensors with integrated scanning tunnel microscopy (STM) tunneling tips] and can achieve minimum detectable fields ≥10 mG/Hz 1/2 . The Hall probe is brought into very close proximity to the sample surface by sensing and controlling tunnel currents at the integrated STM tip. The instrument is capable of simultaneous tunneling and Hall signal acquisition in surface-tracking mode. We illustrate the potential of the system with images of superconducting vortices at the surface of a Nb thin film down to 372 mK, and also of labyrinth magnetic-domain patterns of an yttrium iron garnet film captured at room temperature.

  19. A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect

    Directory of Open Access Journals (Sweden)

    Ting Xie

    2017-12-01

    Full Text Available A scanning tunneling microscopy based potentiometry technique for the measurements of the local surface electric potential is presented. A voltage compensation circuit based on this potentiometry technique is developed and employed to maintain a desired tunneling voltage independent of the bias current flow through the film. The application of this potentiometry technique to the local sensing of the spin Hall effect is outlined and some experimental results are reported.

  20. Scanned Image Projection System Employing Intermediate Image Plane

    Science.gov (United States)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  1. Fundamental studies of superconductors using scanning magnetic imaging

    Science.gov (United States)

    Kirtley, J. R.

    2010-12-01

    In this review I discuss the application of scanning magnetic imaging to fundamental studies of superconductors, concentrating on three scanning magnetic microscopies—scanning SQUID microscopy (SSM), scanning Hall bar microscopy (SHM) and magnetic force microscopy (MFM). I briefly discuss the history, sensitivity, spatial resolution, invasiveness and potential future developments of each technique. I then discuss a selection of applications of these microscopies. I start with static imaging of magnetic flux: an SSM study provides deeper understanding of vortex trapping in narrow strips, which are used to reduce noise in superconducting circuitry. Studies of vortex trapping in wire lattices, clusters and arrays of rings and nanoholes show fascinating ordering effects. The cuprate high-Tc superconductors are shown to have predominantly d-wave pairing symmetry by magnetic imaging of the half-integer flux quantum effect. Arrays of superconducting rings act as a physical analog for the Ising spin model, with the half-integer flux quantum effect helping to eliminate one source of disorder in antiferromagnetic arrangements of the ring moments. Tests of the interlayer tunneling model show that the condensation energy available from this mechanism cannot account for the high critical temperatures observed in the cuprates. The strong divergence in the magnetic fields of Pearl vortices allows them to be imaged using SSM, even for penetration depths of a millimeter. Unusual vortex arrangements occur in samples comparable in size to the coherence length. Spontaneous magnetization is not observed in Sr2RuO4, which is believed to have px ± ipy pairing symmetry, although effects hundreds of times bigger than the sensitivity limits had been predicted. However, unusual flux trapping is observed in this superconductor. Finally, unusual flux arrangements are also observed in magnetic superconductors. I then turn to vortex dynamics: imaging of vortices in rings of highly underdoped

  2. Fundamental studies of superconductors using scanning magnetic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, J R [Center for Probing the Nanoscale, Stanford University, Stanford, CA (United States)

    2010-12-01

    In this review I discuss the application of scanning magnetic imaging to fundamental studies of superconductors, concentrating on three scanning magnetic microscopies-scanning SQUID microscopy (SSM), scanning Hall bar microscopy (SHM) and magnetic force microscopy (MFM). I briefly discuss the history, sensitivity, spatial resolution, invasiveness and potential future developments of each technique. I then discuss a selection of applications of these microscopies. I start with static imaging of magnetic flux: an SSM study provides deeper understanding of vortex trapping in narrow strips, which are used to reduce noise in superconducting circuitry. Studies of vortex trapping in wire lattices, clusters and arrays of rings and nanoholes show fascinating ordering effects. The cuprate high-T{sub c} superconductors are shown to have predominantly d-wave pairing symmetry by magnetic imaging of the half-integer flux quantum effect. Arrays of superconducting rings act as a physical analog for the Ising spin model, with the half-integer flux quantum effect helping to eliminate one source of disorder in antiferromagnetic arrangements of the ring moments. Tests of the interlayer tunneling model show that the condensation energy available from this mechanism cannot account for the high critical temperatures observed in the cuprates. The strong divergence in the magnetic fields of Pearl vortices allows them to be imaged using SSM, even for penetration depths of a millimeter. Unusual vortex arrangements occur in samples comparable in size to the coherence length. Spontaneous magnetization is not observed in Sr{sub 2}RuO{sub 4}, which is believed to have p{sub x} {+-} ip{sub y} pairing symmetry, although effects hundreds of times bigger than the sensitivity limits had been predicted. However, unusual flux trapping is observed in this superconductor. Finally, unusual flux arrangements are also observed in magnetic superconductors. I then turn to vortex dynamics: imaging of vortices

  3. Surface species formed by the adsorption and dissociation of water molecules on Ru(0001) surface containing a small coverage of carbon atoms studied by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dept of Materials Science and Engineering UCB; Dept of Applied Science and Technology, UCB; Institut de Ciencia de Materials de Barcelona, Barcelona, Spain; Instituto de Ciencia de Materiales de Madrid, Madrid, Spain; Department of Mechanical Engineering, Yale University; Salmeron, Miquel; Shimizu, Tomoko K.; Mugarza, Aitor; Cerda, Jorge I.; Heyde, Markus; Qi, Yabing; Schwarz, Udo D.; Ogletree, D. Frank; Salmeron, Miquel

    2008-04-26

    The adsorption and dissociation of water on a Ru(0001) surface containing a small amount ({le} 3 %) of carbon impurities was studied by scanning tunneling microscopy (STM). Various surface species are formed depending on the temperature. These include molecular H{sub 2}O, H{sub 2}O-C complexes, H, O, OH and CH. Clusters of either pure H{sub 2}O or mixed H{sub 2}O-OH species are also formed. Each of these species produces a characteristic contrast in the STM images and can be identified by experiment and by ab initio total energy calculations coupled with STM image simulations. Manipulation of individual species via excitation of vibrational modes with the tunneling electrons has been used as supporting evidence.

  4. 3D laser scanning techniques applying to tunnel documentation and geological mapping at Aespoe hard rock laboratory, Sweden

    International Nuclear Information System (INIS)

    Feng, Q.; Wang, G.; Roeshoff, K.

    2008-01-01

    3D terrestrial laser scanning is nowadays one of the most attractive methods to applying for 3D mapping and documentation of rock faces and tunnels, and shows the most potential to improve the data quality and provide some good solutions in rock engineering projects. In this paper, the state-of-the-art methods are described for different possibility to tunnel documentation and geological mapping based on 3D laser scanning data. Some results are presented from the case study performed at the Hard Rock Laboratory, Aespoe run by SKB, Swedish Nuclear Fuel and Waste Management Co. Comparing to traditional methods, 3D laser scanning techniques can not only provide us with a rapid and 3D digital way for tunnel documentation, but also create a potential chance to achieve high quality data, which might be beneficial to different rock engineering project procedures, including field data acquisition, data processing, data retrieving and management, and also modeling and design. (authors)

  5. Direct observation of X-ray induced atomic motion using scanning tunneling microscope combined with synchrotron radiation.

    Science.gov (United States)

    Saito, Akira; Tanaka, Takehiro; Takagi, Yasumasa; Hosokawa, Hiromasa; Notsu, Hiroshi; Ohzeki, Gozo; Tanaka, Yoshihito; Kohmura, Yoshiki; Akai-Kasaya, Megumi; Ishikawa, Tetsuya; Kuwahara, Yuji; Kikuta, Seishi; Aono, Masakazu

    2011-04-01

    X-ray induced atomic motion on a Ge(111)-c(2 x 8) clean surface at room temperature was directly observed with atomic resolution using a synchrotron radiation (SR)-based scanning tunneling microscope (STM) system under ultra high vacuum condition. The atomic motion was visualized as a tracking image by developing a method to merge the STM images before and after X-ray irradiation. Using the tracking image, the atomic mobility was found to be strongly affected by defects on the surface, but was not dependent on the incident X-ray energy, although it was clearly dependent on the photon density. The atomic motion can be attributed to surface diffusion, which might not be due to core-excitation accompanied with electronic transition, but a thermal effect by X-ray irradiation. The crystal surface structure was possible to break even at a lower photon density than the conventionally known barrier. These results can alert X-ray studies in the near future about sample damage during measurements, while suggesting the possibility of new applications. Also the obtained results show a new availability of the in-situ SR-STM system.

  6. Thermally processed titanium oxides film on Si(0 0 1) surface studied with scanning tunneling microscopy/spectroscopy

    International Nuclear Information System (INIS)

    Aoki, T.; Shudo, K.; Sato, K.; Ohno, S.; Tanaka, M.

    2010-01-01

    Thermal structural changes of TiO x films built on a Si(0 0 1) surface were investigated at the nanometer scale with scanning tunneling microscopy. Electronic properties of individual clusters were classified by means of scanning tunneling spectroscopy. The differential conductance (dI/dV) near the Fermi energy showed that nano-clusters were transformed from semiconducting Ti-silicates into metallic Ti-silicides after heating to 970 K. Peaks of normalized differential conductance (dI/dV/(I/V)) of the clusters shifted after heating to about 1070 K, indicating exclusion of oxygen from the clusters.

  7. Dehydrogenation of aromatic molecules under a scanning tunneling microscope: pathways and inelastic spectroscopy simulations.

    Science.gov (United States)

    Lesnard, Hervé; Bocquet, Marie-Laure; Lorente, Nicolas

    2007-04-11

    We have performed a theoretical study on the dehydrogenation of benzene and pyridine molecules on Cu(100) induced by a scanning tunneling microscope (STM). Density functional theory calculations have been used to characterize benzene, pyridine, and different dehydrogenation products. The adiabatic pathways for single and double dehydrogenation have been evaluated with the nudge elastic band method. After identification of the transition states, the analysis of the electronic structure along the reaction pathway yields interesting information on the electronic process that leads to H-scission. The adiabatic barriers show that the formation of double dehydrogenated fragments is difficult and probably beyond reach under the actual experimental conditions. However, nonadiabatic processes cannot be ruled out. Hence, in order to identify the final dehydrogenation products, the inelastic spectra are simulated and compared with the experimental ones. We can then assign phenyl (C6H5) and alpha-pyridil (alpha-C5H4N) as the STM-induced dehydrogenation products of benzene and pyridine, respectively. Our simulations permit us to understand why phenyl, pyridine, and alpha-pyridil present tunneling-active C-H stretch modes in opposition to benzene.

  8. Probing odd-triplet contributions to the long-ranged proximity effect by scanning tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diesch, Simon; Machon, Peter; Belzig, Wolfgang; Scheer, Elke [Universitaet Konstanz, Konstanz (Germany); Suergers, Christoph; Beckmann, Detlef [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-07-01

    In conventional superconductors, electrons are bound in singlet Cooper pairs, i.e. with opposite spin. More recently, experiments on superconductor-ferromagnet-systems have shown Cooper pairs tunneling through ferromagnetic layers, indicating Cooper pairs of equal spin, thus corresponding to a long-range triplet proximity effect. Most experimental evidence for triplet superconductivity comes from observations of the thickness dependence of the Josephson current through a ferromagnetic barrier, but there is an increasing interest in obtaining direct spectroscopic evidence. This project aims at analyzing the electronic density of states of a thin diffusive normal metal layer (Ag) coupled to a superconductor (Al) across a ferromagnetic insulator (EuS) using a scanning tunneling microscope in spectroscopy mode at 280 mK. For this purpose, we fabricated EuS films of different thicknesses and acquired spectroscopic data at different magnetic fields. We observe significant broadening of the superconductive energy gap and a variety of sub-gap structures including zero-bias conductance peaks induced by the presence of the ferromagnet.

  9. Modeling of Electronic Transport in Scanning Tunneling Microscope Tip-Carbon Nanotube Systems

    Science.gov (United States)

    Yamada, Toshishige; Kwak, Dochan (Technical Monitor)

    2000-01-01

    A model is proposed for two observed current-voltage (I-V) patterns in a recent experiment with a scanning tunneling microscope tip and a carbon nanotube. We claim that there are two mechanical contact modes for a tip (metal) -nanotube (semiconductor) junction (1) with or (2) without a tiny vacuum gap (0.1 - 0.2 nm). With the tip grounded, the tunneling case in (1) would produce large dI/dV with V > 0, small dI/dV with V < 0, and I = 0 near V = 0 for an either n- or p-nanotube; the Schottky mechanism in (2) would result in I does not equal 0 only with V < 0 for an n-nanotube, and the bias polarities would be reversed for a p-nanotube. The two observed I-V patterns are thus entirely explained by a tip-nanotube contact of the two types, where the nanotube must be n-type.

  10. Dynamics of a nanoscale Josephson junction probed by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ast, Christian R.; Jaeck, Berthold; Eltschka, Matthias; Etzkorn, Markus [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Kern, Klaus [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Institut de Physique de la Matiere Condensee, EPFL, Lausanne (Switzerland)

    2015-07-01

    The Josephson effect is an intriguing phenomenon as it presents an interplay of different energy scales, such as the Josephson energy ε{sub J} (critical current), charging energy ε{sub C}, and temperature T. Using a scanning tunneling microscope (STM) operating at a base temperature of 15 mK, we create a nanoscale superconductor-vacuum-superconductor tunnel junction in an extremely underdamped regime (Q>>10). We observe extremely small retrapping currents also owing to strongly reduced ohmic losses in the well-developed superconducting gaps. While formally operating in the zero temperature limit, i.e. the temperature T is smaller than the Josephson plasma frequency ω{sub J} (k{sub B}T<<ℎω{sub J}=√(8ε{sub J}ε{sub C})), experimentally other phenomena, such as stray photons, may perturb the Josephson junction, leading to an effectively higher temperature. The dynamics of the Josephson junction can be addressed experimentally by looking at characteristic parameters, such as the switching current and the retrapping current. We discuss the dynamics of the Josephson junction in the context of reaching the zero temperature limit.

  11. Scanning Tunnelling Spectroscopic Studies of Dirac Fermions in Graphene and Topological Insulators

    Directory of Open Access Journals (Sweden)

    wang K.-L.

    2012-03-01

    Full Text Available We report novel properties derived from scanning tunnelling spectroscopic (STS studies of Dirac fermions in graphene and the surface state (SS of a strong topological insulator (STI, Bi2Se3. For mono-layer graphene grown on Cu by chemical vapour deposition (CVD, strain-induced scalar and gauge potentials are manifested by the charging effects and the tunnelling conductance peaks at quantized energies, respectively. Additionally, spontaneous time-reversal symmetry breaking is evidenced by the alternating anti-localization and localization spectra associated with the zero-mode of two sublattices while global time-reversal symmetry is preserved under the presence of pseudo-magnetic fields. For Bi2Se3 epitaxial films grown on Si(111 by molecular beam epitaxy (MBE, spatially localized unitary impurity resonances with sensitive dependence on the energy difference between the Fermi level and the Dirac point are observed for samples thicker than 6 quintuple layers (QL. These findings are characteristic of the SS of a STI and are direct manifestation of strong topological protection against impurities. For samples thinner than 6-QL, STS studies reveal the openup of an energy gap in the SS due to overlaps of wave functions between the surface and interface layers. Additionally, spin-preserving quasiparticle interference wave-vectors are observed, which are consistent with the Rashba-like spin-orbit splitting.

  12. Temperature dependence of the superconducting proximity effect quantified by scanning tunneling spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Stępniak

    2015-01-01

    Full Text Available Here, we present the first systematic study on the temperature dependence of the extension of the superconducting proximity effect in a 1–2 atomic layer thin metallic film, surrounding a superconducting Pb island. Scanning tunneling microscopy/spectroscopy (STM/STS measurements reveal the spatial variation of the local density of state on the film from 0.38 up to 1.8 K. In this temperature range the superconductivity of the island is almost unaffected and shows a constant gap of a 1.20 ± 0.03 meV. Using a superconducting Nb-tip a constant value of the proximity length of 17 ± 3 nm at 0.38 and 1.8 K is found. In contrast, experiments with a normal conductive W-tip indicate an apparent decrease of the proximity length with increasing temperature. This result is ascribed to the thermal broadening of the occupation of states of the tip, and it does not reflect an intrinsic temperature dependence of the proximity length. Our tunneling spectroscopy experiments shed fresh light on the fundamental issue of the temperature dependence of the proximity effect for atomic monolayers, where the intrinsic temperature dependence of the proximity effect is comparably weak.

  13. Josephson scanning tunneling microscopy -- a local and direct probe of the superconducting order parameter

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Hikari; Dynes, Robert; Barber Jr., Richard. P.; Ono, S.; Ando, Y.

    2009-09-01

    Direct measurements of the superconducting superfluid on the surface of vacuum-cleaved Bi2Sr2CaCu2O8+delta (BSCCO) samples are reported. These measurements are accomplished via Josephson tunneling into the sample using a novel scanning tunneling microscope (STM) equipped with a superconducting tip. The spatial resolution of the STM of lateral distances less than the superconducting coherence length allows it to reveal local inhomogeneities in the pair wavefunction of the BSCCO. Instrument performance is demonstrated first with Josephson measurements of Pb films followed by the layered superconductor NbSe2. The relevant measurement parameter, the Josephson ICRN product, is discussed within the context of both BCS superconductors and the high transition temperature superconductors. The local relationship between the ICRN product and the quasiparticle density of states (DOS) gap are presented within the context of phase diagrams for BSCCO. Excessive current densities can be produced with these measurements and have been found to alter the local DOS in the BSCCO. Systematic studies of this effect were performed to determine the practical measurement limits for these experiments. Alternative methods for preparation of the BSCCO surface are also discussed.

  14. Scanning tunneling spectroscopy of the surface states of Dirac fermions in thermoelectrics based on bismuth telluride

    Science.gov (United States)

    Lukyanova, L. N.; Makarenko, I. V.; Usov, O. A.; Dementev, P. A.

    2018-05-01

    The morphology of the interlayer van der Waals surface and differential tunneling conductance in p-Bi2‑xSbxTe3‑ySey solid solutions were studied by scanning tunneling microscopy and spectroscopy in dependence on compositions. The topological characteristics of the Dirac fermion surface states were determined. It was shown that the thermoelectric power factor and the material parameter enhance with the shift of the Dirac point to the top of the valence band with the increasing of atomic substitution in these thermoelectrics. A correlation between topological characteristics, power factor and material parameters was found. A growth contribution of the surface states is determined by an increase of the Fermi velocity for large atomic substitutions of Bi at x > 1.5 and small substitutions in the Te sublattice (y = 0.06). In compositions with smaller substitutions at x = (1–1.3) and y = (0.06–0.09), similar effect of the surface states is determined by raising the surface concentration of charge carriers.

  15. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope.

    Science.gov (United States)

    Celotta, Robert J; Balakirsky, Stephen B; Fein, Aaron P; Hess, Frank M; Rutter, Gregory M; Stroscio, Joseph A

    2014-12-01

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.

  16. Nanoscale control of reversible chemical reaction between fullerene C60 molecules using scanning tunneling microscope.

    Science.gov (United States)

    Nakaya, Masato; Kuwahara, Yuji; Aono, Masakazu; Nakayama, Tomonobu

    2011-04-01

    The nanoscale control of reversible chemical reactions, the polymerization and depolymerization between C60 molecules, has been investigated. Using a scanning tunneling microscope (STM), the polymerization and depolymerization can be controlled at designated positions in ultrathin films of C60 molecules. One of the two chemical reactions can be selectively induced by controlling the sample bias voltage (V(s)); the application of negative and positive values of V(s) results in polymerization and depolymerization, respectively. The selectivity between the two chemical reactions becomes extremely high when the thickness of the C60 film increases to more than three molecular layers. We conclude that STM-induced negative and positive electrostatic ionization are responsible for the control of the polymerization and depolymerization, respectively.

  17. Determining the phonon energy of highly oriented pyrolytic graphite by scanning tunneling microscope light emission spectroscopy

    Science.gov (United States)

    Uehara, Yoichi; Michimata, Junichi; Watanabe, Shota; Katano, Satoshi; Inaoka, Takeshi

    2018-03-01

    We have investigated the scanning tunneling microscope (STM) light emission spectra of isolated single Ag nanoparticles lying on highly oriented pyrolytic graphite (HOPG). The STM light emission spectra exhibited two types of spectral structures (step-like and periodic). Comparisons of the observed structures and theoretical predictions indicate that the phonon energy of the ZO mode of HOPG [M. Mohr et al., Phys. Rev. B 76, 035439 (2007)] can be determined from the energy difference between the cutoff of STM light emission and the step in the former structure, and from the period of the latter structure. Since the role of the Ag nanoparticles does not depend on the substrate materials, this method will enable the phonon energies of various materials to be measured by STM light emission spectroscopy. The spatial resolution is comparable to the lateral size of the individual Ag nanoparticles (that is, a few nm).

  18. Circularly polarized light emission in scanning tunneling microscopy of magnetic systems

    International Nuclear Information System (INIS)

    Apell, S.P.; Penn, D.R.; Johansson, P.

    2000-01-01

    Light is produced when a scanning tunneling microscope is used to probe a metal surface. Recent experiments on cobalt utilizing a tungsten tip found that the light is circularly polarized; the sense of circular polarization depends on the direction of the sample magnetization, and the degree of polarization is of order 10%. This raises the possibility of constructing a magnetic microscope with very good spatial resolution. We present a theory of this effect for iron and cobalt and find a degree of polarization of order 0.1%. This is in disagreement with the experiments on cobalt as well as previous theoretical work which found order of magnitude agreement with the experimental results. However, a recent experiment on iron showed 0.0±2%. We predict that the use of a silver tip would increase the degree of circular polarization for a range of photon energies

  19. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Celotta, Robert J., E-mail: robert.celotta@nist.gov, E-mail: joseph.stroscio@nist.gov; Hess, Frank M.; Rutter, Gregory M.; Stroscio, Joseph A., E-mail: robert.celotta@nist.gov, E-mail: joseph.stroscio@nist.gov [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Balakirsky, Stephen B. [Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Georgia Tech Research Institute, Atlanta, Georgia 30332 (United States); Fein, Aaron P. [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-12-15

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.

  20. Scanning tunneling microscope observation of the phosphatidylserine domains in the phosphatidylcholine monolayer.

    Science.gov (United States)

    Matsunaga, Soichiro; Yamada, Taro; Kobayashi, Toshihide; Kawai, Maki

    2015-05-19

    A mixed monolayer of 1,2-dihexanoyl-sn-glycero-3-phospho-l-serine (DHPS) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) on an 1-octanethiol-modified gold substrate was visualized on the nanometer scale using in situ scanning tunneling microscopy (STM) in aqueous solution. DHPS clusters were evident as spotty domains. STM enabled us to distinguish DHPS molecules from DHPC molecules depending on their electronic structures. The signal of the DHPS domains was abolished by neutralization with Ca(2+). The addition of the PS + Ca(2+)-binding protein of annexin V to the Ca(2+)-treated monolayer gave a number of spots corresponding to a single annexin V molecule.

  1. Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene.

    Science.gov (United States)

    Settnes, Mikkel; Power, Stephen R; Petersen, Dirch H; Jauho, Antti-Pekka

    2014-03-07

    Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green's function formalism, and apply it to graphene. Sampling the local conduction properties at finite length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. Spectral signatures in the Fourier transforms of real space conductance maps include characteristics that can be related to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements.

  2. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Celotta, Robert J.; Hess, Frank M.; Rutter, Gregory M.; Stroscio, Joseph A.; Balakirsky, Stephen B.; Fein, Aaron P.

    2014-01-01

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach

  3. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hao, E-mail: hc000211@ohio.edu [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Preissner, Curt; Freeland, John W. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rosenmann, Daniel [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Kersell, Heath; Hla, Saw-Wai [Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rose, Volker, E-mail: vrose@anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2016-01-28

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  4. Scanning tunneling microscopy studies of organic monolayers adsorbed on the rhodium(111) crystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Cernota, Paul Davis [Univ. of California, Berkeley, CA (United States)

    1999-08-01

    Scanning Tunneling Microscopy studies were carried out on ordered overlayers on the (111) surface of rhodium. These adsorbates include carbon monoxide (CO), cyclohexane, cyclohexene, 1,4-cyclohexadiene, para-xylene, and meta-xylene. Coadsorbate systems included: CO with ethylidyne, CO with para- and meta-xylene, and para-xylene with meta-xylene. In the case of CO, the structure of the low coverage (2x2) overlayer has been observed. The symmetry of the unit cell in this layer suggests that the CO is adsorbed in the 3-fold hollow sites. There were also two higher coverage surface structures with (√7x√7) unit cells. One of these is composed of trimers of CO and has three CO molecules in each unit cell. The other structure has an additional CO molecule, making a total of four. This extra CO sits on a top site.

  5. Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope

    Science.gov (United States)

    Burgess, Jacob A. J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-09-01

    Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.

  6. InAs/GaAs(001) molecular beam epitaxial growth in a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Bastiman, F; Cullis, A G; Hopkinson, M

    2010-01-01

    The growth on InAs on GaAs(001) has attracted great interest and investigation over the past few decades primarily due to the opto-electronic properties of the self-assembled quantum dot (QD) arrays formed. Scanning tunnelling microscopy (STM) has been extensively employed to investigate the complicated and spontaneous mechanism of QD growth via molecular beam epitaxy (MBE). Classically, combined MBE-STM requires quenching the sample after growth and transferring it to an arsenic-free high vacuum chamber which houses the STM system. However, without access to the phenomenon as a dynamic process a basic understanding remains elusive. In order to access surface dynamics, MBE and STM must be combined into a single element. The system herein discussed allows the operation of MBE sources in an STM system relating to InAs/GaAs(001) surfaces.

  7. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  8. Joule heating and spin-transfer torque investigated on the atomic scale using a spin-polarized scanning tunneling microscope.

    Science.gov (United States)

    Krause, S; Herzog, G; Schlenhoff, A; Sonntag, A; Wiesendanger, R

    2011-10-28

    The influence of a high spin-polarized tunnel current onto the switching behavior of a superparamagnetic nanoisland on a nonmagnetic substrate is investigated by means of spin-polarized scanning tunneling microscopy. A detailed lifetime analysis allows for a quantification of the effective temperature rise of the nanoisland and the modification of the activation energy barrier for magnetization reversal, thereby using the nanoisland as a local thermometer and spin-transfer torque analyzer. Both the Joule heating and spin-transfer torque are found to scale linearly with the tunnel current. The results are compared to experiments performed on lithographically fabricated magneto-tunnel junctions, revealing a very high spin-transfer torque switching efficiency in our experiments.

  9. Fabrication of nanometer flat areas onto YBa2Cu3O7-x thin film surfaces by scanning tunneling microscope

    International Nuclear Information System (INIS)

    Virtanen, J.A.; Suketu, P.; Huth, G.C.; Cho, Z.H.

    1991-01-01

    A scanning tunneling microscope was used to mechanically ''mill'' nanometer flat areas of up to 1600 μm 2 on high temperature superconducting (HTS) films of YBa 2 Cu 3 O 7-x which were originally formed by laser ablation. Flatness to a standard deviation of 2 nm in height was found to be characteristic of milled areas. It was subsequently possible to mill trenches and ditches onto these flat areas. Scanning tunneling measurements of the exposed layered structure of the milled HTS surface are also reported. Surface modifications are also possible by the application of voltage pulse to the tunneling tip. The combination of electrical pulses and milling offer a possibility of mixed electromechanical patterning of the film

  10. Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy.

    Science.gov (United States)

    Hill, Heather M; Rigosi, Albert F; Rim, Kwang Taeg; Flynn, George W; Heinz, Tony F

    2016-08-10

    Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), we examine the electronic structure of transition metal dichalcogenide heterostructures (TMDCHs) composed of monolayers of MoS2 and WS2. STS data are obtained for heterostructures of varying stacking configuration as well as the individual monolayers. Analysis of the tunneling spectra includes the influence of finite sample temperature, yield information about the quasi-particle bandgaps, and the band alignment of MoS2 and WS2. We report the band gaps of MoS2 (2.16 ± 0.04 eV) and WS2 (2.38 ± 0.06 eV) in the materials as measured on the heterostructure regions and the general type II band alignment for the heterostructure, which shows an interfacial band gap of 1.45 ± 0.06 eV.

  11. Scanning tunneling microscope investigation of (100) and (001) faces of YBa2Cu3O7/sub -//sub δ/

    International Nuclear Information System (INIS)

    Niedermann, P.; Scheel, H.J.; Sadowski, W.

    1989-01-01

    Thin as-grown side faces, and edge and corner regions of crystals of the tetragonal precursor phase of the high-temperature superconductor YBa 2 Cu 3 O 7 /sub -//sub δ/ were studied by scanning tunneling microscopy under scanning electron microscope control of tip positioning. From observed changes in slope of the (100) surface, in particular near the (100)/(001) edges, it was concluded that the (100) and (001) faces have different growth mechanisms

  12. Scanning tunneling spectroscopic studies of superconducting NbN single crystal thin films at 4.2 K

    International Nuclear Information System (INIS)

    Kashiwaya, S.; Koyanagi, M.; Matsuda, M.; Shoji, A.; Shibata, H.

    1991-01-01

    This paper reports on a Low Temperature Scanning Tunneling Microscope (LTSTM) constructed to study the microscopic properties of superconductors. It has atomic resolution from room temperature to 4.2 K. Conductance spectra obtained between a Pt tip and a NbN thin film agreed well with theoretical curves based on the BCS theory

  13. Vectorial mapping of noncollinear antiferromagnetic structure of semiconducting FeSe surface with spin-polarized scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K. F.; Yang, Fang; Song, Y. R. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Xiaole [Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Xianfeng [The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Canhua; Qian, Dong; Gao, C. L., E-mail: clgao@sjtu.edu.cn; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China); Luo, Weidong, E-mail: wdluo@sjtu.edu.cn [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China)

    2016-02-08

    Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations.

  14. Core-state manipulation of single Fe impurities in GaAs with a scanning tunneling microscope

    NARCIS (Netherlands)

    Bocquel, J.; Kortan, V.R.; Sahin, C.; Campion, R.P.; Gallagher, B.L.; Flatte, M.E.; Koenraad, P.M.

    2013-01-01

    We demonstrate that a scanning tunneling microscope tip can be used to manipulate the tightly bound core (d-electron) state of single Fe ions embedded in GaAs. Increasing tip-sample voltage removes one d electron from the core of a single Fe, changing the dopant from the (Fe2+)(-) ionized acceptor

  15. Spectrally resolved luminescence from an InGaAs quantum well induced by an ambient scanning tunneling microscope

    NARCIS (Netherlands)

    Kemerink, M.; Gerritsen, J.W.; Koenraad, P.M.; Kempen, van H.; Wolter, J.H.

    1999-01-01

    Spectrally resolved scanning tunneling microscope-induced luminescence has been obtained under ambient conditions, i.e., at room temperature, in air, by passivating the sample surface with sulfur. This passivation turned out to be essential to suppress the local anodic oxidation induced by the

  16. Vectorial mapping of noncollinear antiferromagnetic structure of semiconducting FeSe surface with spin-polarized scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Zhang, K. F.; Yang, Fang; Song, Y. R.; Zhang, Xiaole; Chen, Xianfeng; Liu, Canhua; Qian, Dong; Gao, C. L.; Jia, Jin-Feng; Luo, Weidong

    2016-01-01

    Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations

  17. Low conductive support for thermal insulation of a sample holder of a variable temperature scanning tunneling microscope

    Czech Academy of Sciences Publication Activity Database

    Hanzelka, Pavel; Vonka, J.; Musilová, Věra

    2013-01-01

    Roč. 84, č. 8 (2013), 085103:1-6 ISSN 0034-6748 R&D Projects: GA MŠk ED0017/01/01; GA TA ČR TE01020233 Institutional support: RVO:68081731 Keywords : Thermal conductiviy * Scanning tunneling microscope Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.584, year: 2013

  18. Scanning tunneling microscopy I general principles and applications to clean and absorbate-covered surfaces

    CERN Document Server

    Wiesendanger, Roland

    1994-01-01

    Since the first edition of "Scanning 'funneling Microscopy I" has been pub­ lished, considerable progress has been made in the application of STM to the various classes of materials treated in this volume, most notably in the field of adsorbates and molecular systems. An update of the most recent develop­ ments will be given in an additional Chapter 9. The editors would like to thank all the contributors who have supplied up­ dating material, and those who have provided us with suggestions for further improvements. We also thank Springer-Verlag for the decision to publish this second edition in paperback, thereby making this book affordable for an even wider circle of readers. Hamburg, July 1994 R. Wiesendanger Preface to the First Edition Since its invention in 1981 by G. Binnig, H. Rohrer and coworkers at the IBM Zurich Research Laboratory, scanning tunneling microscopy (STM) has devel­ oped into an invaluable surface analytical technique allowing the investigation of real-space surface structures at th...

  19. "We Actually Saw Atoms with Our Own Eyes": Conceptions and Convictions in Using the Scanning Tunneling Microscope in Junior High School

    Science.gov (United States)

    Margel, Hannah; Eylon, Bat-Sheva; Scherz, Zahava

    2004-01-01

    The feasibility and the potential contribution of the scanning tunneling microscopy (STM) in junior high school (JHS) as an instructional tool for learning the particulate nature of matter is described. The use and power of new technologies can probably be demonstrated by the scanning tunneling microscopy (STM).

  20. Tibial tunnel and pretibial cysts following ACL graft reconstruction: MR imaging diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Ghazikhanian, Varand [Brigham and Women' s Hospital, Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); Beltran, Javier [Maimonides Medical Center, Brooklyn, NY (United States); Nikac, Violeta [Maimonides Medical Center, Department of Radiology, Brooklyn, NY (United States); Bencardino, Jenny T. [NYU Hospital for Joint Diseases, New York, NY (United States); Feldman, Marina

    2012-11-15

    Tunnel cyst formation is a rare complication after anterior cruciate ligament reconstruction, usually occurring 1-5 years post-operatively, which may occasionally be symptomatic. There are multiple proposed theories regarding the etiology of tunnel cysts. Theories include necrosis, foreign-body reaction, lack of complete graft osteo-integration, and intravasation of articular fluid. It is important to know if the tunnel cysts are communicating or not communicating with the joint, as surgical management may be different. Imaging characteristics on magnetic resonance images (MRI) include tibial tunnel widening, multilocular or unilocular cyst formation in the graft or tibial tunnel, with possible extension into the pretibial space, intercondylar notch, and/or popliteal fossa. The MR imaging differential diagnosis of tibial tunnel cysts includes infection, foreign-body granuloma, or tibial screw extrusion. Importantly, to the best of our knowledge, graft failure or instability has not been reported in association with tibial tunnel cysts. (orig.)

  1. Superconductivity and electronic structure in single-layer FeSe on SrTiO{sub 3} probed by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jandke, Jasmin; Dressner, Jonas; Wulfhekel, Wulf [Physikalisches Institut, Karlsruhe Institute of Technology (Germany); Yang, Fang; Gao, Chunlei [Fudan Universitaet, Shanghai (China)

    2016-07-01

    We use high-resolution scanning tunneling spectroscopy (STS) to study single-layer FeSe on Nb-doped SrTiO{sub 3} (001). Features of bosonic excitations were observed in the measured quasiparticle density of states. Furthermore, using STS, quasiparticle interference (QPI) imaging was performed in order to map the multiband electronic structure of FeSe. Compared to previous measurements, an additional feature is visible in our measured QPI maps on a single-layer FeSe/SrTiO{sub 3}. The origin of this feature will be discussed.

  2. New insights into nano-magnetism by spin-polarized scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Dirk, E-mail: sander@mpi-halle.de [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale (Germany); Oka, Hirofumi; Corbetta, Marco; Stepanyuk, Valeri; Kirschner, Jürgen [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale (Germany)

    2013-08-15

    Highlights: ► We measure the magnetization reversal of individual nm small Co island by spin-STM. ► We identify an inhomogeneous magnetic anisotropy within a single Co island. ► The magnetic anisotropy near the rim is negligible as compared to 0.148 meV/atom at the island center. ► A crossover of the magnetization reversal from an exchange-spring behavior to domain wall formation is suggested. ► The impact of the observed spatial variation of the spin-dependent electronic properties on reversal is discussed. -- Abstract: We study the magnetization reversal and the position dependence of the spin-dependent electronic properties of nm small bilayer Co islands on Cu(1 1 1) by spin-polarized scanning tunneling microscopy in magnetic fields at low temperatures of 8 K. The analysis of the energy barrier of magnetization reversal from measurements of the switching field suggests a crossover of the magnetization reversal mode with increasing island size around 7500 atoms from exchange-spring behavior to domain wall formation. The quantitative analysis of the island size dependence of the energy barrier indicates an inhomogeneous magnetic anisotropy of the island. The island rim is magnetically soft, whereas the center shows a pronounced effective anisotropy of 0.148 meV/atom. We speculate that this inhomogeneity of the magnetic anisotropy might be a consequence of the spatial dependence of the spin-dependent electronic properties. We measure a spin-polarization and a tunnel magneto resistance ratio of opposite sign at the rim as compared to the island center.

  3. New insights into nano-magnetism by spin-polarized scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Sander, Dirk; Oka, Hirofumi; Corbetta, Marco; Stepanyuk, Valeri; Kirschner, Jürgen

    2013-01-01

    Highlights: ► We measure the magnetization reversal of individual nm small Co island by spin-STM. ► We identify an inhomogeneous magnetic anisotropy within a single Co island. ► The magnetic anisotropy near the rim is negligible as compared to 0.148 meV/atom at the island center. ► A crossover of the magnetization reversal from an exchange-spring behavior to domain wall formation is suggested. ► The impact of the observed spatial variation of the spin-dependent electronic properties on reversal is discussed. -- Abstract: We study the magnetization reversal and the position dependence of the spin-dependent electronic properties of nm small bilayer Co islands on Cu(1 1 1) by spin-polarized scanning tunneling microscopy in magnetic fields at low temperatures of 8 K. The analysis of the energy barrier of magnetization reversal from measurements of the switching field suggests a crossover of the magnetization reversal mode with increasing island size around 7500 atoms from exchange-spring behavior to domain wall formation. The quantitative analysis of the island size dependence of the energy barrier indicates an inhomogeneous magnetic anisotropy of the island. The island rim is magnetically soft, whereas the center shows a pronounced effective anisotropy of 0.148 meV/atom. We speculate that this inhomogeneity of the magnetic anisotropy might be a consequence of the spatial dependence of the spin-dependent electronic properties. We measure a spin-polarization and a tunnel magneto resistance ratio of opposite sign at the rim as compared to the island center

  4. Quantum I/f noise in infrared detectors and scanning tunneling microscopes

    Science.gov (United States)

    Truong, Amanda Marie

    Noise is, by definition, any random and persistent disturbance, which interferes with the clarity of a signal. Modern electronic devices are designed to limit noise, and in most cases the classical forms of noise have been eliminated or greatly reduced through careful design. However, there is a fundamental, quite unavoidable type of noise, called quantum l/f noise, which occurs at low frequencies and is a fundamental consequence of the discrete nature of the charge carriers themselves. This quantum l/f noise is present in any physical cross section or process rate, such as carrier mobility, diffusion rates and scattering processes. Although quantum l/f noise has been observed for nearly a century, there has been much debate over its origin and formulation. But as modern electronic devices require greater levels of performance and detection, the l/f noise phenomenon has moved to the forefront, becoming the subject of intense research. Here, for the first time, the quantum l/f fluctuations present in both the dark current of the Quantum Well Intersubband Photodetector and the tunneling current of the Scanning Tunneling Microscope are investigated. Using the quantum l/f theory, the quantum l/f noise occurring in each of these devices is formulated. The theoretical noise results are then compared with the experimental findings of various authors with very good agreement. This important work provides a foundation for understanding quantum l/f noise and its causes in the QWIP and STM devices, and could ultimately lead to improved technology and noise reduction in these devices and others.

  5. The Kondo effect of an adatom in graphene and its scanning tunneling spectroscopy

    International Nuclear Information System (INIS)

    Li Lin; Ni Yangyang; Zhong Yin; Fang Tiefeng; Luo Honggang

    2013-01-01

    We study the Kondo effect of a single magnetic adatom on the surface of graphene. The unique linear dispersion relation near the Dirac points in graphene makes it easier for the magnetic atom to form a local magnetic moment, which simply means that the Kondo resonance can be observed in a wider parameter region than in the metallic host. Our study indicates that the Kondo resonance, whenever the chemical potential is tuned away from the Dirac points, can indeed occur ranging from the Kondo regime, to the mixed valence, even to the empty orbital regime defined in the conventional metal host. While the Kondo resonance appears as a sharp peak in the Kondo regime, it has a peak-dip structure and/or an anti-resonance in the mixed valence and empty orbital regimes, which result from the Fano resonance due to the significant background due to dramatic broadening of the impurity level in graphene. We also study the scanning tunneling microscopy (STM) spectra of the adatom and they show obvious particle–hole asymmetry when the chemical potential is tuned by the gate voltages applied to the graphene. Finally, we explore the influence of the direct tunneling channel between the STM tip and the graphene on the Kondo resonance and find that the lineshape of the Kondo resonance is unaffected, which can be attributed to an unusually large asymmetry factor in graphene. Our study indicates that graphene is an ideal platform to systematically study Kondo physics and these results are useful to further stimulate relevant experimental studies on the system. (paper)

  6. The Origin of the Superstructure in Bi2Sr2CaCu2O8+dgr as Revealed by Scanning Tunneling Microscopy.

    Science.gov (United States)

    Kirk, M D; Nogami, J; Baski, A A; Mitzi, D B; Kapitulnik, A; Geballe, T H; Quate, C F

    1988-12-23

    Real-space images with atomic resolution of the BiO plane of Bi(2)Sr(2)CaCu(2)O(8+delta) were obtained with a scanning tunneling microscope. Single-crystal samples were cleaved and imaged under ultrahigh vacuum conditions at room temperature. The images clearly show the one-dimensional incommensurate superstructure along the b-axis that is common to this phase. High-resolution images show the position of the Bi atoms, revealing the structural nature of the superlattice. A missing row of Bi atoms occurs either every nine or ten atomic sites in both (110) directions, accounting for the measured incommensurate periodicity of the superstructure. A model is proposed that includes missing rows of atoms, as well as displacements of the atomic positions along both the a- and c-axis directions.

  7. The origin of the superstructure in Bi2Sr2CaCu2O(8+delta) as revealed by scanning tunneling microscopy

    Science.gov (United States)

    Kirk, M. D.; Nogami, J.; Baski, A. A.; Mitzi, D. B.; Kapitulnik, A.

    1988-12-01

    Real-space images with atomic resolution of the BiO plane of Bi2Sr2CaCu2O(8+delta) were obtained with a scanning tunneling microscope. Single-crystal samples were cleaved and imaged under ultrahigh vacuum conditions at room temperature. The images clearly show the one-dimensional incommensurate superstructure along the b-axis that is common to this phase. High-resolution images show the position of the Bi atoms, revelaing the structural nature of the superlattice. A missing row of Bi atoms occurs either every nine or ten atomic sites in both 110-line directions, accounting for the measured incommensurate periodicity of the superstructure. A model is proposed that includes missing rows of atoms, as well as displacements of the atomic positions along both the a- and c-axis directions.

  8. Transverse scan-field imaging apparatus

    International Nuclear Information System (INIS)

    Lyons, F.T.

    1978-01-01

    A description is given of an array of opposed pairs of radiation detectors which could be used in tomography or scintiscanning. The opposed detectors scan in opposite tangential directions in a pre-programmed fashion. The associated control system receives the detector outputs into a buffer store and also provides an address for each element of information detected. The addresses are such that information from one buffer store is read into the RAM of a central processing unit in the opposite direction to that from the store associated with the opposite detector, thus effectively reversing the scan direction of one detector of each pair. Also described are the detectors themselves with focussed collimators, the scan drive mechanism, and the method of calculating radioactive emission intensity at discrete points throughout the scan-field. (author)

  9. Quantitative impedance characterization of sub-10 nm scale capacitors and tunnel junctions with an interferometric scanning microwave microscope

    International Nuclear Information System (INIS)

    Wang, Fei; Clément, Nicolas; Ducatteau, Damien; Troadec, David; Legrand, Bernard; Dambrine, Gilles; Théron, Didier; Tanbakuchi, Hassan

    2014-01-01

    We present a method to characterize sub-10 nm capacitors and tunnel junctions by interferometric scanning microwave microscopy (iSMM) at 7.8 GHz. At such device scaling, the small water meniscus surrounding the iSMM tip should be reduced by proper tip tuning. Quantitative impedance characterization of attofarad range capacitors is achieved using an ‘on-chip’ calibration kit facing thousands of nanodevices. Nanoscale capacitors and tunnel barriers were detected through variations in the amplitude and phase of the reflected microwave signal, respectively. This study promises quantitative impedance characterization of a wide range of emerging functional nanoscale devices. (paper)

  10. Spin-polarized scanning tunneling spectroscopy of self-organized nanoscale Co islands on Au(111) surfaces.

    Science.gov (United States)

    Schouteden, K; Muzychenko, D A; Van Haesendonck, C

    2008-07-01

    Magnetic monolayer and bilayer Co islands of only a few nanometer in size were grown by atomic deposition on atomically flat Au(111) films. The islands were studied in situ by scanning tunneling microscopy (STM) and spectroscopy at low temperatures. Spin-resolved tunneling spectroscopy, using an STM tip with a magnetic coating, revealed that the Co islands exhibit a net magnetization perpendicular to the substrate surface due to the presence of spin-polarized d-states. A random distribution of islands with either upward or downward pointing magnetization was observed, without any specific correlation of magnetization orientation with island size or island height.

  11. Controlling molecular condensation/diffusion of copper phthalocyanine by local electric field induced with scanning tunneling microscope tip

    Science.gov (United States)

    Nagaoka, Katsumi; Yaginuma, Shin; Nakayama, Tomonobu

    2018-02-01

    We have discovered the condensation/diffusion phenomena of copper phthalocyanine (CuPc) molecules controlled with a pulsed electric field induced by the scanning tunneling microscope tip. This behavior is not explained by the conventional induced dipole model. In order to understand the mechanism, we have measured the electronic structure of the molecule by tunneling spectroscopy and also performed theoretical calculations on molecular orbitals. These data clearly indicate that the molecule is positively charged owing to charge transfer to the substrate, and that hydrogen bonding exists between CuPc molecules, which makes the molecular island stable.

  12. Dual scan CT image recovery from truncated projections

    Science.gov (United States)

    Sarkar, Shubhabrata; Wahi, Pankaj; Munshi, Prabhat

    2017-12-01

    There are computerized tomography (CT) scanners available commercially for imaging small objects and they are often categorized as mini-CT X-ray machines. One major limitation of these machines is their inability to scan large objects with good image quality because of the truncation of projection data. An algorithm is proposed in this work which enables such machines to scan large objects while maintaining the quality of the recovered image.

  13. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  14. Well-ordered structure of methylene blue monolayers on Au(111) surface: electrochemical scanning tunneling microscopy studies.

    Science.gov (United States)

    Song, Yonghai; Wang, Li

    2009-02-01

    Well-ordered structure of methylene blue (MB) monolayers on Au(111) surface has been successfully obtained by controlling the substrate potential. Electrochemical scanning tunneling microscopy (ECSTM) examined the monolayers of MB on Au(111) in 0.1 M HClO(4) and showed long-range ordered, interweaved arrays of MB with quadratic symmetry on the substrate in the potential range of double-layer charging. High-resolution ECSTM image further revealed the details of the MB monolayers structure of c(5 x 5 radical 3)rect and the flat-lying orientation of ad-molecules. The dependence of molecular organization on the substrate potential and the formation mechanism of well-ordered structure on Au(111) surface were investigated in detail. The obtained well-ordered structure at the interface between a metal and an aqueous electrolyte might possibly be used as high-density device for signal memory and templates for the advanced nanopatterning of surfaces. (c) 2008 Wiley-Liss, Inc.

  15. In situ scanning tunneling microscopy study of Ca-modified rutile TiO2(110 in bulk water

    Directory of Open Access Journals (Sweden)

    Giulia Serrano

    2015-02-01

    Full Text Available Despite the rising technological interest in the use of calcium-modified TiO2 surfaces in biomedical implants, the Ca/TiO2 interface has not been studied in an aqueous environment. This investigation is the first report on the use of in situ scanning tunneling microscopy (STM to study calcium-modified rutile TiO2(110 surfaces immersed in high purity water. The TiO2 surface was prepared under ultrahigh vacuum (UHV with repeated sputtering/annealing cycles. Low energy electron diffraction (LEED analysis shows a pattern typical for the surface segregation of calcium, which is present as an impurity on the TiO2 bulk. In situ STM images of the surface in bulk water exhibit one-dimensional rows of segregated calcium regularly aligned with the [001] crystal direction. The in situ-characterized morphology and structure of this Ca-modified TiO2 surface are discussed and compared with UHV-STM results from the literature. Prolonged immersion (two days in the liquid leads to degradation of the overlayer, resulting in a disordered surface. X-ray photoelectron spectroscopy, performed after immersion in water, confirms the presence of calcium.

  16. Proximity Effect between Two Superconductors Spatially Resolved by Scanning Tunneling Spectroscopy

    Directory of Open Access Journals (Sweden)

    V. Cherkez

    2014-03-01

    Full Text Available We present a combined experimental and theoretical study of the proximity effect in an atomic-scale controlled junction between two different superconductors. Elaborated on a Si(111 surface, the junction comprises a Pb nanocrystal with an energy gap Δ_{1}=1.2  meV, connected to a crystalline atomic monolayer of lead with Δ_{2}=0.23  meV. Using in situ scanning tunneling spectroscopy, we probe the local density of states of this hybrid system both in space and in energy, at temperatures below and above the critical temperature of the superconducting monolayer. Direct and inverse proximity effects are revealed with high resolution. Our observations are precisely explained with the help of a self-consistent solution of the Usadel equations. In particular, our results demonstrate that in the vicinity of the Pb islands, the Pb monolayer locally develops a finite proximity-induced superconducting order parameter, well above its own bulk critical temperature. This leads to a giant proximity effect where the superconducting correlations penetrate inside the monolayer a distance much larger than in a nonsuperconducting metal.

  17. Oxidation of graphene on Ru(0 0 0 1) studied by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Liao, Q.; Zhang, H.J.; Wu, K.; Li, H.Y.; Bao, S.N.; He, P.

    2010-01-01

    The oxidation of graphene layer on Ru(0 0 0 1) has been investigated by means of scanning tunneling microscopy. Graphene overlayer can be formed by decomposing ethyne on Ru(0 0 0 1) at a temperature of about 1000 K. The lattice mismatch between the graphene overlayer and the substrate causes a moire pattern with a superstructure in a periodicity of about 30 A. The oxidation of graphene/Ru(0 0 0 1) was performed by exposure the sample to O 2 gas at 823 K. The results showed that, at the initial stage, the oxygen intercalation between the graphene and the Ru(0 0 0 1) substrate takes place at step edges, and extends on the lower steps. The oxygen intercalation decouples the graphene layer from the Ru(0 0 0 1) substrate. More oxygen intercalation yields wrinkled bumps on the graphene surface. The oxidation of graphene, or the removal of carbon atoms can be attributed to a process of the combination of the carbon atoms with atomic oxygen to form volatile reaction products. Finally, the Ru(0 0 0 1)-(2 x 1)O phase was observed after the graphene layer is fully removed by oxidation.

  18. Topological superconductivity in metallic nanowires fabricated with a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Rodrigo, J G; Crespo, V; Suderow, H; Vieira, S; Guinea, F

    2013-01-01

    We report on several low-temperature experiments supporting the presence of Majorana fermions in superconducting lead nanowires fabricated with a scanning tunneling microscope (STM). These nanowires are the connecting bridges between the STM tip and the sample resulting from indentation–retraction processes. We show here that by a controlled tuning of the nanowire region, in which superconductivity is confined by applied magnetic fields, the conductance curves obtained in these situations are indicative of topological superconductivity and Majorana fermions. The most prominent feature of this behavior is the emergence of a zero bias peak in the conductance curves, superimposed on a background characteristic of the conductance between a normal metal and a superconductor in the Andreev regime. The zero bias peak emerges in some nanowires when a magnetic field larger than the lead bulk critical field is applied. This field drives one of the electrodes into the normal state while the other, the tip, remains superconducting on its apex. Meanwhile a topological superconducting state appears in the connecting nanowire of nanometric size. (paper)

  19. Development of in situ two-coil mutual inductance technique in a multifunctional scanning tunneling microscope.

    Science.gov (United States)

    Duan, Ming-Chao; Liu, Zhi-Long; Ge, Jian-Feng; Tang, Zhi-Jun; Wang, Guan-Yong; Wang, Zi-Xin; Guan, Dandan; Li, Yao-Yi; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2017-07-01

    Superconducting thin films have been a focal point for intensive research efforts since their reduced dimension allows for a wide variety of quantum phenomena. Many of these films, fabricated in UHV chambers, are highly vulnerable to air exposure, making it difficult to measure intrinsic superconducting properties such as zero resistance and perfect diamagnetism with ex situ experimental techniques. Previously, we developed a multifunctional scanning tunneling microscope (MSTM) containing in situ four-point probe (4PP) electrical transport measurement capability in addition to the usual STM capabilities [Ge et al., Rev. Sci. Instrum. 86, 053903 (2015)]. Here we improve this MSTM via development of both transmission and reflection two-coil mutual inductance techniques for in situ measurement of the diamagnetic response of a superconductor. This addition does not alter the original STM and 4PP functions of the MSTM. We demonstrate the performance of the two-coil mutual inductance setup on a 10-nm-thick NbN thin film grown on a Nb-doped SrTiO 3 (111) substrate.

  20. Scanning tunneling microscope-quartz crystal microbalance study of temperature gradients at an asperity contact.

    Science.gov (United States)

    Pan, L; Krim, J

    2013-01-01

    Investigations of atomic-scale friction frequently involve setups where a tip and substrate are initially at different temperatures. The temperature of the sliding interface upon contact has thus become a topic of interest. A method for detecting initial tip-sample temperature differences at an asperity contact is described, which consists of a scanning tunneling microscope (STM) tip in contact with the surface electrode of a quartz crystal microbalance (QCM). The technique makes use of the fact that a QCM is extremely sensitive to abrupt changes in temperature. In order to demonstrate the technique's capabilities, QCM frequency shifts were recorded for varying initial tip-substrate temperature differences as an STM tip was brought into and out of contact. The results are interpreted within the context of a recent model for thermal heat conduction at an asperity contact, and it is concluded that the transient frequency response is attributable to small changes in temperature close to the region of contact rather than a change in the overall temperature of the QCM itself. For the assumed model parameters, the results moreover reveal substantial temperature discontinuities at the boundary between the tip and the sample, for example, on the order of 10-15 °C for initial temperature differences of 20 °C.

  1. Compact very low temperature scanning tunneling microscope with mechanically driven horizontal linear positioning stage.

    Science.gov (United States)

    Suderow, H; Guillamon, I; Vieira, S

    2011-03-01

    We describe a scanning tunneling microscope for operation in a dilution refrigerator with a sample stage which can be moved macroscopically in a range up to a cm and with an accuracy down to the tens of nm. The position of the tip over the sample as set at room temperature does not change more than a few micrometers when cooling down. This feature is particularly interesting for work on micrometer sized samples. Nanostructures can be also localized and studied, provided they are repeated over micrometer sized areas. The same stage can be used to approach a hard single crystalline sample to a knife and cleave it, or break it, in situ. In situ positioning is demonstrated with measurements at 0.1 K in nanofabricated samples. Atomic resolution down to 0.1 K and in magnetic fields of 8 T is demonstrated in NbSe(2). No heat dissipation nor an increase in mechanical noise has been observed at 0.1 K when operating the slider.

  2. Compact low temperature scanning tunneling microscope with in-situ sample preparation capability

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jungdae [Department of Physics, The University of Texas, Austin, Texas 78712 (United States); Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Nam, Hyoungdo; Schroeder, Allan; Shih, Chih-Kang, E-mail: shih@physics.utexas.edu [Department of Physics, The University of Texas, Austin, Texas 78712 (United States); Qin, Shengyong [Department of Physics, The University of Texas, Austin, Texas 78712 (United States); Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Kim, Sang-ui [Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Eom, Daejin [Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of)

    2015-09-15

    We report on the design of a compact low temperature scanning tunneling microscope (STM) having in-situ sample preparation capability. The in-situ sample preparation chamber was designed to be compact allowing quick transfer of samples to the STM stage, which is ideal for preparing temperature sensitive samples such as ultra-thin metal films on semiconductor substrates. Conventional spring suspensions on the STM head often cause mechanical issues. To address this problem, we developed a simple vibration damper consisting of welded metal bellows and rubber pads. In addition, we developed a novel technique to ensure an ultra-high-vacuum (UHV) seal between the copper and stainless steel, which provides excellent reliability for cryostats operating in UHV. The performance of the STM was tested from 2 K to 77 K by using epitaxial thin Pb films on Si. Very high mechanical stability was achieved with clear atomic resolution even when using cryostats operating at 77 K. At 2 K, a clean superconducting gap was observed, and the spectrum was easily fit using the BCS density of states with negligible broadening.

  3. Compact low temperature scanning tunneling microscope with in-situ sample preparation capability.

    Science.gov (United States)

    Kim, Jungdae; Nam, Hyoungdo; Qin, Shengyong; Kim, Sang-ui; Schroeder, Allan; Eom, Daejin; Shih, Chih-Kang

    2015-09-01

    We report on the design of a compact low temperature scanning tunneling microscope (STM) having in-situ sample preparation capability. The in-situ sample preparation chamber was designed to be compact allowing quick transfer of samples to the STM stage, which is ideal for preparing temperature sensitive samples such as ultra-thin metal films on semiconductor substrates. Conventional spring suspensions on the STM head often cause mechanical issues. To address this problem, we developed a simple vibration damper consisting of welded metal bellows and rubber pads. In addition, we developed a novel technique to ensure an ultra-high-vacuum (UHV) seal between the copper and stainless steel, which provides excellent reliability for cryostats operating in UHV. The performance of the STM was tested from 2 K to 77 K by using epitaxial thin Pb films on Si. Very high mechanical stability was achieved with clear atomic resolution even when using cryostats operating at 77 K. At 2 K, a clean superconducting gap was observed, and the spectrum was easily fit using the BCS density of states with negligible broadening.

  4. An extended model of electrons: experimental evidence from high-resolution scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Hofer, Werner A

    2012-01-01

    In a recent paper we introduced a model of extended electrons, which is fully compatible with quantum mechanics in the formulation of Schrödinger. However, it contradicts the current interpretation of electrons as point-particles. Here, we show by a statistical analysis of high-resolution scanning tunneling microscopy (STM) experiments, that the interpretation of electrons as point particles and, consequently, the interpretation of the density of electron charge as a statistical quantity will lead to a conflict with the Heisenberg uncertainty principle. Given the precision in these experiments we find that the uncertainty principle would be violated by close to two orders of magnitude, if this interpretation were correct. We are thus forced to conclude that the density of electron charge is a physically real, i.e. in principle precisely measurable quantity, as derived in a recent paper. Experimental evidence to the contrary, in particular high-energy scattering experiments, is briefly discussed. The finding is expected to have wide implications in condensed matter physics, chemistry, and biology, scientific disciplines which are based on the properties and interactions of electrons.

  5. Spin-polarized scanning tunneling microscopy with quantitative insights into magnetic probes.

    Science.gov (United States)

    Phark, Soo-Hyon; Sander, Dirk

    2017-01-01

    Spin-polarized scanning tunneling microscopy and spectroscopy (spin-STM/S) have been successfully applied to magnetic characterizations of individual nanostructures. Spin-STM/S is often performed in magnetic fields of up to some Tesla, which may strongly influence the tip state. In spite of the pivotal role of the tip in spin-STM/S, the contribution of the tip to the differential conductance d I /d V signal in an external field has rarely been investigated in detail. In this review, an advanced analysis of spin-STM/S data measured on magnetic nanoislands, which relies on a quantitative magnetic characterization of tips, is discussed. Taking advantage of the uniaxial out-of-plane magnetic anisotropy of Co bilayer nanoisland on Cu(111), in-field spin-STM on this system has enabled a quantitative determination, and thereby, a categorization of the magnetic states of the tips. The resulting in-depth and conclusive analysis of magnetic characterization of the tip opens new venues for a clear-cut sub-nanometer scale spin ordering and spin-dependent electronic structure of the non-collinear magnetic state in bilayer high Fe nanoislands on Cu(111).

  6. Self-Organized Graphene Nanoribbons on SiC(0001) Studied with Scanning Tunneling Microscopy

    Science.gov (United States)

    Torrance, David; Zhang, Baiqian; Hoang, Tien; First, Phillip

    2012-02-01

    Graphene nanoribbons grown directly on nanofacets of SiC(0001) offer an attractive union of top-down and bottom-up fabrication techniques. Nanoribbons have been shown to form on the facets of templated silicon carbide substrates,ootnotetextSprinkle et al., Nat. Nanotech. 5, 727 (2010). but also appear spontaneously along step-bunches on vicinal SiC(0001) miscut slightly towards . These self-organized graphene nanoribbons were characterized with low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES) in ultra-high vacuum. Our measurements indicate that the graphene forms a continuous ``buffer layer'' across the SiC(0001) terraces during nanoribbon formation, with the zigzag edge of the buffer layer aligned parallel to the step-bunched nanofacets. Scanning tunneling microscopy/spectroscopy (STM/STS) was used to characterize the topography and electrical characteristics of the graphene nanoribbons. These measurements indicate that the graphene nanoribbons are highly-crystalline with predominantly zigzag edges.

  7. Scanning tunneling microscopy/spectroscopy of picene thin films formed on Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yasuo, E-mail: yyoshida@issp.u-tokyo.ac.jp; Yokosuka, Takuya; Hasegawa, Yukio, E-mail: hasegawa@issp.u-tokyo.ac.jp [The Institute of Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan); Yang, Hung-Hsiang [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Huang, Hsu-Sheng; Guan, Shu-You; Su, Wei-Bin; Chang, Chia-Seng [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Yanagisawa, Susumu [Department of Physics and Earth Science Department, University of the Ryukyus, 1 Nishihara, Okinawa 903-0213 (Japan); Lin, Minn-Tsong [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Hoffmann, Germar [The Institute of Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan); Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-09-21

    Using ultrahigh-vacuum low-temperature scanning tunneling microscopy and spectroscopy combined with first principles density functional theory calculations, we have investigated structural and electronic properties of pristine and potassium (K)-deposited picene thin films formed in situ on a Ag(111) substrate. At low coverages, the molecules are uniformly distributed with the long axis aligned along the [112{sup ¯}] direction of the substrate. At higher coverages, ordered structures composed of monolayer molecules are observed, one of which is a monolayer with tilted and flat-lying molecules resembling a (11{sup ¯}0) plane of the bulk crystalline picene. Between the molecules and the substrate, the van der Waals interaction is dominant with negligible hybridization between their electronic states; a conclusion that contrasts with the chemisorption exhibited by pentacene molecules on the same substrate. We also observed a monolayer picene thin film in which all molecules were standing to form an intermolecular π stacking. Two-dimensional delocalized electronic states are found on the K-deposited π stacking structure.

  8. Scanning tunneling microscopy study of the possible topological surface states in BiTeCl

    International Nuclear Information System (INIS)

    Yan, Y J; Ren, M Q; Liu, X; Huang, Z C; Jiang, J; Fan, Q; Miao, J; Xie, B P; Zhang, T; Feng, D L; Xiang, F; Wang, X

    2015-01-01

    Recently, the non-centrosymmetric bismuth tellurohalides such as BiTeCl are being studied as possible candidates for topological insulators. While some photoemission studies showed that BiTeCl is an inversion asymmetric topological insulator, others showed that it is a normal semiconductor with Rashba splitting. Meanwhile, first-principle calculations have failed to confirm the existence of topological surface states in BiTeCl so far. Therefore, the topological nature of BiTeCl requires further investigation. Here we report a low-temperature scanning tunneling microscopy study on the surface states of BiTeCl single crystals. On the tellurium (Te) -terminated surfaces with relatively low defect density, evidence for topological surface states is observed in the quasi-particle interference patterns, both in the anisotropy of the scattering vectors and the fast decay of the interference near the step edges. Meanwhile, on the samples with much higher defect densities, we observed surface states that behave differently. Our results may help to resolve the current controversy on the topological nature of BiTeCl. (paper)

  9. Electron dynamics of Cs covered Cu(111). A scanning tunneling spectroscopy inverstigation at low temperatures

    International Nuclear Information System (INIS)

    Hofe, T. von

    2005-01-01

    During this Ph.D. a scanning tunneling microscope operating in ultra-high vacuum and at low temperatures was assembled and modified to allow operation at variable temperatures. Also, an additional vibration isolation stage was conceived and mounted. Measurements were performed on Cu(111)-Cs for different coverages. For a coverage of Θ=0:05 ML, the layer shows a commensurate (√(19) x √(19)R23.4 ) structure which may be stabilized by surface-state mediated adatom interactions. For higher coverages, the layer is incommensurate and rotated with respect to the substrate, where the angle of rotation depends on the coverage. At the saturation coverage Θ=0:25 ML, the layer, although commensurate, reveals many defects. The binding energy of the quantum well state (QWS) confined to the Cs layer decreases with increasing coverage as has been observed before for other systems. The lifetime of the QWS decreases with increasing binding energy. The comparatively short lifetime for Cu(111)-p(2 x 2)Cs led to the introduction of Brillouin Zone Backfolding as a new lifetime-limiting process. Acquisition of dispersion relations of the QWS for different coverages revealed that the effective mass of the excitations increases with decreasing binding energy. (Orig.)

  10. Magnetoresistance of oblique angle deposited multilayered Co/Cu nanocolumns measured by a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Morrow, P; Tang, X-T; Parker, T C; Shima, M; Wang, G-C

    2008-01-01

    In this work we present the first magnetoresistance measurements on multilayered vertical Co(∼6 nm)/Cu(∼6 nm) and slanted Co(x nm)/Cu(x nm) (with x∼6, 11, and 16 nm) nanocolumns grown by oblique angle vapour deposition. The measurements are performed at room temperature on the as-deposited nanocolumn samples using a scanning tunnelling microscope to establish electronic contact with a small number of nanocolumns while an electromagnet generates a time varying (0.1 Hz) magnetic field in the plane of the substrate. The samples show a giant magnetoresistance (GMR) response ranging from 0.2 to 2%, with the higher GMR values observed for the thinner layers. For the slanted nanocolumns, we observed anisotropy in the GMR with respect to the relative orientation (parallel or perpendicular) between the incident vapour flux and the magnetic field applied in the substrate plane. We explain the anisotropy by noting that the column axis is the magnetic easy axis, so the magnetization reversal occurs more easily when the magnetic field is applied along the incident flux direction (i.e., nearly along the column axis) than when the field is applied perpendicular to the incident flux direction

  11. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Wu, S. W.; Ho, W.

    2010-01-01

    The junction of a scanning tunneling microscope (STM) operating in the tunneling regime was irradiated with femtosecond laser pulses. A photoexcited hot electron in the STM tip resonantly tunnels into an excited state of a single molecule on the surface, converting it from the neutral to the anion. The electron-transfer rate depends quadratically on the incident laser power, suggesting a two-photon excitation process. This nonlinear optical process is further confirmed by the polarization measurement. Spatial dependence of the electron-transfer rate exhibits atomic-scale variations. A two-pulse correlation experiment reveals the ultrafast dynamic nature of photoinduced charging process in the STM junction. Results from these experiments are important for understanding photoinduced interfacial charge transfer in many nanoscale inorganic-organic structures.

  12. Ultrafast photoinduced carrier dynamics in GaNAs probed using femtosecond time-resolved scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Terada, Yasuhiko; Aoyama, Masahiro; Kondo, Hiroyuki; Taninaka, Atsushi; Takeuchi, Osamu; Shigekawa, Hidemi

    2007-01-01

    The combination of scanning tunnelling microscopy (STM) with optical excitation using ultrashort laser pulses enables us, in principle, to simultaneously obtain ultimate spatial and temporal resolutions. We have developed the shaken-pulse-pair-excited STM (SPPX-STM) and succeeded in detecting a weak time-resolved tunnelling current signal from a low-temperature-grown GaNAs sample. To clarify the underlying physics in SPPX-STM measurements, we performed optical pump-probe reflectivity measurements with a wavelength-changeable ultrashort-pulse laser. By comparing the results obtained from the two methods with an analysis based on the nonlinear relationship between the photocarrier density and tunnelling current, we obtained a comprehensive explanation that the photocarrier dynamics is reflected in the SPPX-STM signal through the surface photovoltage effect

  13. Electron and Cooper-pair transport across a single magnetic molecule explored with a scanning tunneling microscope

    Science.gov (United States)

    Brand, J.; Gozdzik, S.; Néel, N.; Lado, J. L.; Fernández-Rossier, J.; Kröger, J.

    2018-05-01

    A scanning tunneling microscope is used to explore the evolution of electron and Cooper-pair transport across single Mn-phthalocyanine molecules adsorbed on Pb(111) from tunneling to contact ranges. Normal-metal as well as superconducting tips give rise to a gradual transition of the Bardeen-Cooper-Schrieffer energy gap in the tunneling range into a zero-energy resonance close to and at contact. Supporting transport calculations show that in the normal-metal-superconductor junctions this resonance reflects the merging of in-gap Yu-Shiba-Rusinov states as well as the onset of Andreev reflection. For the superconductor-superconductor contacts, the zero-energy resonance is rationalized in terms of a finite Josephson current that is carried by phase-dependent Andreev and Yu-Shiba-Rusinov levels.

  14. Local atomic order of a metallic glass made visible by scanning tunneling microscopy

    Science.gov (United States)

    Luo, Yuansu; Samwer, Konrad

    2018-06-01

    Exploring the atomic level structure in amorphous materials by STM becomes extremely difficult due to the localized electronic states. Here we carried out STM studies on a quasi-low-dimensional film of metallic glass Zr65Cu27.5Al7.5 which is ‘ultrathin’ compared with the localization length and/or the length scale of short range order. The local electronic structure must appear more inherent, having states at E f available for tip-sample tunneling current. To enhance imaging contrasts between long-range and short-range orders, the highly oriented pyrolytic graphite was chosen as substrate, so that the structural heterogeneity arising from competition between the glass former ability and the epitaxy can be ascertained. A chemical order predicted for this system was observed in atomic ordered regimes (1–2 monolayers), accompanied with a superstructure with the period Zr–Cu(Al)–Zr along three hexagonal axes. The result implies a chemical short range order in disordered regimes, where polyhedral clusters are dominant with the solute atom Cu(Al) in the center. An attempt for the structural modelling was made based on high resolution STM images, giving icosahedral order on the surface and different Voronoi clusters in 3D space.

  15. Novel optical scanning cryptography using Fresnel telescope imaging.

    Science.gov (United States)

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren

    2015-07-13

    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.

  16. Characteristics of different frequency ranges in scanning electron microscope images

    International Nuclear Information System (INIS)

    Sim, K. S.; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S.

    2015-01-01

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement

  17. Characteristics of different frequency ranges in scanning electron microscope images

    Energy Technology Data Exchange (ETDEWEB)

    Sim, K. S., E-mail: kssim@mmu.edu.my; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S. [Faculty of Engineering and Technology, Multimedia University, 75450 Melaka (Malaysia)

    2015-07-22

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.

  18. Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.

    Science.gov (United States)

    Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth

    2018-01-01

    H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  19. Internal scanning method as unique imaging method of optical vortex scanning microscope

    Science.gov (United States)

    Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2018-06-01

    The internal scanning method is specific for the optical vortex microscope. It allows to move the vortex point inside the focused vortex beam with nanometer resolution while the whole beam stays in place. Thus the sample illuminated by the focused vortex beam can be scanned just by the vortex point. We show that this method enables high resolution imaging. The paper presents the preliminary experimental results obtained with the first basic image recovery procedure. A prospect of developing more powerful tools for topography recovery with the optical vortex scanning microscope is discussed shortly.

  20. Automated image quality assessment for chest CT scans.

    Science.gov (United States)

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  1. Nano-scale patterning on sulfur terminated GaAs (0 0 1) surface by scanning tunneling microscope

    International Nuclear Information System (INIS)

    Yagishita, Yuki; Toda, Yusuke; Hirai, Masakazu; Fujishiro, Hiroki Inomata

    2004-01-01

    We perform nano-scale patterning on a sulfur (S) terminated GaAs (0 0 1) surface by a scanning tunneling microscope (STM) in ultra-high vacuum (UHV). A multi-layer of S deposited by using (NH 4 ) 2 S x solution is changed to a mono-layer after annealing at 560 deg. C for 15 h, which terminates the GaAs (0 0 1) surface. Groove structures with about 0.23 nm in depth and about 5 nm in width are patterned successfully on the S-terminated surface. We investigate dependences of both depth and width of the patterned groove on the tunneling current and the scanning speed of tip. It is observed that topmost S atoms are extracted together with first-layer Ga atoms, because of the larger binding energy of S-Ga bond

  2. Design and properties of a cryogenic dip-stick scanning tunneling microscope with capacitive coarse approach control.

    Science.gov (United States)

    Schlegel, R; Hänke, T; Baumann, D; Kaiser, M; Nag, P K; Voigtländer, R; Lindackers, D; Büchner, B; Hess, C

    2014-01-01

    We present the design, setup, and operation of a new dip-stick scanning tunneling microscope. Its special design allows measurements in the temperature range from 4.7 K up to room temperature, where cryogenic vacuum conditions are maintained during the measurement. The system fits into every (4)He vessel with a bore of 50 mm, e.g., a transport dewar or a magnet bath cryostat. The microscope is equipped with a cleaving mechanism for cleaving single crystals in the whole temperature range and under cryogenic vacuum conditions. For the tip approach, a capacitive automated coarse approach is implemented. We present test measurements on the charge density wave system 2H-NbSe2 and the superconductor LiFeAs which demonstrate scanning tunneling microscopy and spectroscopy data acquisition with high stability, high spatial resolution at variable temperatures and in high magnetic fields.

  3. The nucleation and growth of uranium on the basal plane of graphite studied by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Tench, R.J.

    1992-11-01

    For the first time, nanometer scale uranium clusters were created on the basal plane of highly oriented pyrolytic graphite by laser ablation under ultra-high vacuum conditions. The physical and chemical properties of these clusters were investigated by scanning tunneling microscopy (STM) as well as standard surface science techniques. Auger electron and X-ray photoelectron spectroscopies found the uranium deposit to be free of contamination and showed that no carbide had formed with the underlying graphite. Clusters with sizes ranging from 42 Angstrom 2 to 630 Angstrom 2 were observed upon initial room temperature deposition. Surface diffusion of uranium was observed after annealing the substrate above 800 K, as evidenced by the decreased number density and the increased size of the clusters. Preferential depletion of clusters on terraces near step edges as a result of annealing was observed. The activation energy for diffusion deduced from these measurements was found to be 15 Kcal/mole. Novel formation of ordered uranium thin films was observed for coverages greater than two monolayers after annealing above 900 K. These ordered films displayed islands with hexagonally faceted edges rising in uniform step heights characteristic of the unit cell of the P-phase of uranium. In addition, atomic resolution STM images of these ordered films indicated the formation of the β-phase of uranium. The chemical properties of these surfaces were investigated and it was shown that these uranium films had a reduced oxidation rate in air as compared to bulk metal and that STM imaging in air induced a polarity-dependent enhancement of the oxidation rate

  4. Retrospective study of renal images on whole bone scanning

    International Nuclear Information System (INIS)

    Yanagisawa, Munetoshi; Machida, Toyohei; Miki, Makoto; Ohishi, Yukihiko; Ueda, Masataka

    1978-01-01

    One hundred and twenty-seven cases were surveyed by sup(99m)Tc-pyrophosphate at Jikei hospital. Renal images on whole-bone scanning were observed in all cases; 75% of all renal images were normal and 25% were abnormal. Thirteen percent of these abnormal images were symmetric and 87% were asymmetric. Four of the symmetric renal images were bilaterally bad. Three of the four bilaterally bad renal images involved prostate carcinomas with general metastases and the last involved serious bilateral hydronephrosis. The reason for the high percentage of asymmetric renal images was that the materials involved many urogenital cases. Asymmetric renal images other than the urogenital cases, were recognised in 8% of all cases. This percentage is consistent with Hattner's report. Unilateral abnormal renal images involved 8 hydronephrosis cases, 2 unilateral nonfunctioning kidneys and one malrotation kidney. Among the hydronephrosis cases, serious cases gave low uptake and mild cases gave high uptake. The reason for this phenomenon was, presumably, that there were differences in renal uptake, renal excretion and renal pelvic accumulation. In nine cases, one kidney was not visualized on whole-bone scanning, 8 of them involved nephrectomy and the remainining one unilateral nonfunctioning kidney. Six cases presented locally abnormal renal images on whole-bone scanning, three of them suffered renal cell carcinomas and the rest renal solitary cyst. Eighty-eight percent of the abnormal renal images agreed with IVP findings. The renal images of whole-bone scanning faithfully reflected the original renal lesion. Two cases of renal carcinoma and renal solitary cyst recognized on whole-bone scanning are presented, to indicate the usefulness of renal images on whole-bone scanning. (auth.)

  5. Electroluminescence of a polythiophene molecular wire suspended between a metallic surface and the tip of a scanning tunneling microscope.

    Science.gov (United States)

    Reecht, Gaël; Scheurer, Fabrice; Speisser, Virginie; Dappe, Yannick J; Mathevet, Fabrice; Schull, Guillaume

    2014-01-31

    The electroluminescence of a polythiophene wire suspended between a metallic surface and the tip of a scanning tunneling microscope is reported. Under positive sample voltage, the spectral and voltage dependencies of the emitted light are consistent with the fluorescence of the wire junction mediated by localized plasmons. This emission is strongly attenuated for the opposite polarity. Both emission mechanism and polarity dependence are similar to what occurs in organic light emitting diodes (OLED) but at the level of a single molecular wire.

  6. Demonstrating the utility of boron based precursor molecules for selective area deposition in a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Perkins, F.K.; Onellion, M.; Lee, S.; Bowben, T.A.

    1992-01-01

    The scanning tunneling microscope (STM) can be used to selectively deposit material from a gaseous precursor compound. Ultrasmall (less than a 100 nm across) spatial dimensions for selective area deposition may be achieved by this means. In this paper the authors outline a scheme foreselecting and designing main group cluster compounds and organometallics for this type of selective area deposition using nido-decaborane(14) as an example

  7. Spin-Polarized Scanning Tunneling Microscope for Atomic-Scale Studies of Spin Transport, Spin Relaxation, and Magnetism in Graphene

    Science.gov (United States)

    2017-11-09

    Polarized Scanning Tunneling Microscope for Atomic-Scale Studies of Spin Transport, Spin Relaxation, and Magnetism in Graphene Report Term: 0-Other Email ...Principal: Y Name: Jay A Gupta Email : gupta.208@osu.edu Name: Roland K Kawakami Email : kawakami.15@osu.edu RPPR Final Report as of 13-Nov-2017...studies on films and devices. Optimization of the Cr tip will be the next important step to establish this technique. We are writing up these early

  8. A preprocessor for geotomographic imaging of irregular geometric scans

    International Nuclear Information System (INIS)

    Middleton, N.T.; Harman, M.T.

    1992-01-01

    Conventional tomographic image reconstruction algorithms that use algebraic methods are best suited to rectangular geometries. Although this is satisfactory for many rectangular cross-hole and in-seam geotomographic scans, difficulties arise in cases where the scanning geometry is nonrectangular. This paper describes a preprocessing algorithm that deals with nonrectangular geometries when merged with a conventional image reconstruction algorithm. The performance of the preprocessing algorithm is demonstrated with some simulation results

  9. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    Directory of Open Access Journals (Sweden)

    Yunhai Zhang

    2013-01-01

    Full Text Available We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments.

  10. High Pressure Scanning Tunneling Microscopy Studies of Adsorbate Structure and Mobility during Catalytic Reactions. Novel Design of an Ultra High Pressure, High Temperature Scanning Tunneling Microscope System for Probing Catalytic Conversions

    International Nuclear Information System (INIS)

    Tang, David Chi-Wai

    2005-01-01

    The aim of the work presented therein is to take advantage of scanning tunneling microscope's (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 C). The design of a high pressure, high temperature scanning tunneling microscope system, that is capable of monitoring reactions in situ at conditions from UHV and ambient temperature up to 1 atm and 250 C, is briefly presented along with vibrational and thermal analysis, as this system serves as a template to improve upon during the design of the new ultra high pressure, high temperature STM. Using this existing high pressure scanning tunneling microscope we monitored the co-adsorption of hydrogen, ethylene and carbon dioxide on platinum (111) and rhodium (111) crystal faces in the mTorr pressure range at 300 K in equilibrium with the gas phase. During the catalytic hydrogenation of ethylene to ethane in the absence of CO the metal surfaces are covered by an adsorbate layer that is very mobile on the time scale of STM imaging. We found that the addition of CO poisons the hydrogenation reaction and induces ordered structures on the single crystal surfaces. Several ordered structures were observed upon CO addition to the surfaces pre-covered with hydrogen and ethylene: a rotated (√19 x √19)R23.4 o on Pt(111), and domains of c(4 x 2)-CO+C 2 H 3 , previously unobserved (4 x 2)-CO+3C 2 H 3 , and (2 x 2)-3CO on Rh(111). A mechanism for CO poisoning of ethylene hydrogenation on the metal single crystals was proposed, in which CO blocks surface metal sites and reduces adsorbate mobility to limit adsorption and reaction rate of ethylene and hydrogen. In order to observe heterogeneous catalytic reactions that occur well above ambient pressure and temperature that more closely

  11. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope.

    Science.gov (United States)

    Fang, Yurui; Zhang, Zhenglong; Sun, Mengtao

    2016-03-01

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10(-7) Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.

  12. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yurui [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603-146, Beijing 100190 (China); Bionanophotonics, Department of Applied Physics, Chalmers University of Technology, Göteborg, SE 41296 (Sweden); Zhang, Zhenglong [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603-146, Beijing 100190 (China); School of Physics and Information Technology, Shaanxi Normal University, 710062 Xi’an (China); Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany); Sun, Mengtao, E-mail: mtsun@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603-146, Beijing 100190 (China)

    2016-03-15

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10{sup −7} Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.

  13. The value of filtered planar images in pediatric DMSA scans

    International Nuclear Information System (INIS)

    Mohammed, A.M.; Naddaf, S.Y.; Elgazzar, A.H.; Al-Abdul Salam, A.A.; Omar, A.A.

    2006-01-01

    The study was designed to demonstrate the value of filtered planar images in paediatric DMSA scanning. One hundred and seventy three patients ranged in age from 15 days to 12 years (mean: 4.3 years) with urinary tract infection (UTI) and clinical and/or laboratory suspicion of acute pyelonephritis (APN) were retrospectively studied. Planar images were filtered using Butterworth filter. The scan findings were reported as positive, negative or equivocal for cortical defects. Each scan was read in a double-blind fashion by two nuclear medicine physicians to evaluate inter-observer variations. Each kidney was divided into three zones, upper, middle and lower, and each zone was graded as positive, negative or equivocal for the presence of renal defects. Renal cortical defects were found in 66 patients (91 kidneys and 186 zones) with filtered images, 58 patients (81 kidneys and 175 zones) with planar images, and 69 patients (87 kidneys and 180 zones) with SPECT images. McNemar's test revealed statistically significant difference between filtered and planar images (p=0.038 for patients, 0.021 for kidneys and 0.034 for number of zones). Inter-observer agreement was 0.877 for filtered images, 0.915 for planar images and 0.915 for SPECT images. It was concluded that filtered planar images of renal cortex are comparable to SPECT images and can be used effectively in place of SPECT, when required, to shorten imaging time and eliminate motion artifacts, especially in the paediatric population. (author)

  14. Scanning transmission electron microscopy imaging and analysis

    CERN Document Server

    Pennycook, Stephen J

    2011-01-01

    Provides the first comprehensive treatment of the physics and applications of this mainstream technique for imaging and analysis at the atomic level Presents applications of STEM in condensed matter physics, materials science, catalysis, and nanoscience Suitable for graduate students learning microscopy, researchers wishing to utilize STEM, as well as for specialists in other areas of microscopy Edited and written by leading researchers and practitioners

  15. A compact sub-Kelvin ultrahigh vacuum scanning tunneling microscope with high energy resolution and high stability.

    Science.gov (United States)

    Zhang, L; Miyamachi, T; Tomanić, T; Dehm, R; Wulfhekel, W

    2011-10-01

    We designed a scanning tunneling microscope working at sub-Kelvin temperatures in ultrahigh vacuum (UHV) in order to study the magnetic properties on the nanoscale. An entirely homebuilt three-stage cryostat is used to cool down the microscope head. The first stage is cooled with liquid nitrogen, the second stage with liquid (4)He. The third stage uses a closed-cycle Joule-Thomson refrigerator of a cooling power of 1 mW. A base temperature of 930 mK at the microscope head was achieved using expansion of (4)He, which can be reduced to ≈400 mK when using (3)He. The cryostat has a low liquid helium consumption of only 38 ml/h and standing times of up to 280 h. The fast cooling down of the samples (3 h) guarantees high sample throughput. Test experiments with a superconducting tip show a high energy resolution of 0.3 meV when performing scanning tunneling spectroscopy. The vertical stability of the tunnel junction is well below 1 pm (peak to peak) and the electric noise floor of tunneling current is about 6fA/√Hz. Atomic resolution with a tunneling current of 1 pA and 1 mV was achieved on Au(111). The lateral drift of the microscope at stable temperature is below 20 pm/h. A superconducting spilt-coil magnet allows to apply an out-of-plane magnetic field of up to 3 T at the sample surface. The flux vortices of a Nb(110) sample were clearly resolved in a map of differential conductance at 1.1 K and a magnetic field of 0.21 T. The setup is designed for in situ preparation of tip and samples under UHV condition.

  16. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R., E-mail: smitha2@ohio.edu [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States)

    2014-04-15

    breaking vacuum, and convenient visual access to the sample and tip inside a superconducting magnet cryostat. A sample/tip handling system is optimized for both the molecular beam epitaxy growth system and the scanning tunneling microscope system. The sample/tip handing system enables in situ STM studies on epitaxially grown samples, and tip exchange in the superconducting magnet cryostat. The hybrid molecular beam epitaxy and low temperature scanning tunneling microscopy system is capable of growing semiconductor-based hetero-structures with controlled accuracy down to a single atomic-layer and imaging them down to atomic resolution.

  17. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy.

    Science.gov (United States)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R

    2014-04-01

    breaking vacuum, and convenient visual access to the sample and tip inside a superconducting magnet cryostat. A sample/tip handling system is optimized for both the molecular beam epitaxy growth system and the scanning tunneling microscope system. The sample/tip handing system enables in situ STM studies on epitaxially grown samples, and tip exchange in the superconducting magnet cryostat. The hybrid molecular beam epitaxy and low temperature scanning tunneling microscopy system is capable of growing semiconductor-based hetero-structures with controlled accuracy down to a single atomic-layer and imaging them down to atomic resolution.

  18. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-01-01

    breaking vacuum, and convenient visual access to the sample and tip inside a superconducting magnet cryostat. A sample/tip handling system is optimized for both the molecular beam epitaxy growth system and the scanning tunneling microscope system. The sample/tip handing system enables in situ STM studies on epitaxially grown samples, and tip exchange in the superconducting magnet cryostat. The hybrid molecular beam epitaxy and low temperature scanning tunneling microscopy system is capable of growing semiconductor-based hetero-structures with controlled accuracy down to a single atomic-layer and imaging them down to atomic resolution

  19. Translate rotate scanning method for X-ray imaging

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Kwog Cheong Tam.

    1990-01-01

    Rapid x-ray inspection of objects larger than an x-ray detector array is based on a translate rotate scanning motion of the object related to the fan beam source and detector. The scan for computerized tomography imaging is accomplished by rotating the object through 360 degrees at two or more positions relative to the source and detector array, in moving to another position the object is rotated and the object or source and detector are translated. A partial set of x-ray data is acquired at every position which are combined to obtain a full data set for complete image reconstruction. X-ray data for digital radiography imaging is acquired by scanning the object vertically at a first position at one view angle, rotating and translating the object relative to the source and detector to a second position, scanning vertically, and so on to cover the object field of view, and combining the partial data sets. (author)

  20. Spin-filter scanning tunneling microscopy : a novel technique for the analysis of spin polarization on magnetic surfaces and spintronic devices

    NARCIS (Netherlands)

    Vera Marun, I.J.

    2010-01-01

    This thesis deals with the development of a versatile technique to measure spin polarization with atomic resolution. A microscopy technique that can measure electronic spin polarization is relevant for characterization of magnetic nanostructures and spintronic devices. Scanning tunneling microscopy