WorldWideScience

Sample records for scanning transmission electron

  1. Monochromated scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Rechberger, W.; Kothleitner, G.; Hofer, F.

    2006-01-01

    Full text: Electron energy-loss spectroscopy (EELS) has developed into an established technique for chemical and structural analysis of thin specimens in the (scanning) transmission electron microscope (S)TEM. The energy resolution in EELS is largely limited by the stability of the high voltage supply, by the resolution of the spectrometer and by the energy spread of the source. To overcome this limitation a Wien filter monochromator was recently introduced with commercially available STEMs, offering the advantage to better resolve EELS fine structures, which contain valuable bonding information. The method of atomic resolution Z-contrast imaging within an STEM, utilizing a high-angle annular dark-field (HAADF) detector can perfectly complement the excellent energy resolution, since EELS spectra can be collected simultaneously. In combination with a monochromator microscope not only high spatial resolution images can be recorded but also high energy resolution EELS spectra are attainable. In this work we investigated the STEM performance of a 200 kV monochromated Tecnai F20 with a high resolution Gatan Imaging Filter (HR-GIF). (author)

  2. Elemental mapping in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Allen, L J; D'Alfonso, A J; Lugg, N R; Findlay, S D; LeBeau, J M; Stemmer, S

    2010-01-01

    We discuss atomic resolution chemical mapping in scanning transmission electron microscopy (STEM) based on core-loss electron energy loss spectroscopy (EELS) and also on energy dispersive X-ray (EDX) imaging. Chemical mapping using EELS can yield counterintuitive results which, however, can be understood using first principles calculations. Experimental chemical maps based on EDX bear out the thesis that such maps are always likely to be directly interpretable. This can be explained in terms of the local nature of the effective optical potential for ionization under those imaging conditions. This is followed by an excursion into the complementary technique of elemental mapping using energy-filtered transmission electron microscopy (EFTEM) in a conventional transmission electron microscope. We will then consider the widely used technique of Z-contrast or high-angle annular dark field (HAADF) imaging, which is based on phonon excitation, where it has recently been shown that intensity variations can be placed on an absolute scale by normalizing the measured intensities to the incident beam. Results, showing excellent agreement between theory and experiment to within a few percent, are shown for Z-contrast imaging from a sample of PbWO 4 .

  3. Cathodoluminescence in the scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kociak, M., E-mail: mathieu.kociak@u-psud.fr [Laboratoire de Physique des Solides, Université Paris-SudParis-Sud, CNRS-UMR 8502, Orsay 91405 (France); Zagonel, L.F. [“Gleb Wataghin” Institute of Physics University of Campinas - UNICAMP, 13083-859 Campinas, São Paulo (Brazil)

    2017-05-15

    Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications. - Highlights: • Reviews the field of STEM-CL. • Introduces the technical requirements and challenges for STEM-CL. • Introduces the different types of excitations probed by STEM-CL. • Gives comprehensive overview of the last fifteenth years in the field.

  4. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.

    2010-01-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM

  5. Scanning transmission low-energy electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Hovorka, Miloš; Konvalina, Ivo; Unčovský, M.; Frank, Luděk

    2011-01-01

    Roč. 55, č. 4 (2011), 2:1-6 ISSN 0018-8646 R&D Projects: GA AV ČR IAA100650902; GA MŠk ED0017/01/01 Institutional research plan: CEZ:AV0Z20650511 Keywords : TEM * STEM * SEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.723, year: 2011

  6. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    International Nuclear Information System (INIS)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-01-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy

  7. Angularly-selective transmission imaging in a scanning electron microscope.

    Science.gov (United States)

    Holm, Jason; Keller, Robert R

    2016-08-01

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.

  8. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    Science.gov (United States)

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  9. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    Science.gov (United States)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  10. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    Science.gov (United States)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Transmission/Scanning Transmission Electron Microscopy | Materials Science

    Science.gov (United States)

    crystallographic structure of a material. Amplitude-contrast images yield information about the chemistry and microstructure of a material and its defects. Phase-contrast imaging or high-resolution (HR) TEM imaging gives information about the microstructure of a material and its defects at an atomic resolution. With scanning

  12. Characterization of catalysts by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Targos, W.M.; Bradley, S.A.

    1989-01-01

    The dedicated scanning transmission electron microscope (STEM) is an integral tool for characterizing catalysts because of its unique ability to image and analyze nanosized volumes. This information is valuable in optimizing catalyst formulations and determining causes for reduced catalyst performance. For many commercial catalysts direct correlations between structural features of metal crystallites and catalytic performance are not attainable. When these instances occur, determination of elemental distribution may be the only information available. In this paper the authors discuss some of the techniques employed and limitations associated with characterizing commercial catalysts

  13. Aberration-corrected scanning transmission electron microscopy of semiconductors

    International Nuclear Information System (INIS)

    Krivanek, O L; Dellby, N; Murfitt, M F

    2011-01-01

    The scanning transmission electron microscope (STEM) has been able to image individual heavy atoms in a light matrix for some time. It is now able to do much more: it can resolve individual atoms as light as boron in monolayer materials; image atomic columns as light as hydrogen, identify the chemical type of individual isolated atoms from the intensity of their annular dark field (ADF) image and by electron energy loss spectroscopy (EELS); and map elemental composition at atomic resolution by EELS and energy-dispersive X-ray spectroscopy (EDXS). It can even map electronic states, also by EELS, at atomic resolution. The instrumentation developments that have made this level of performance possible are reviewed, and examples of applications to semiconductors and oxides are shown.

  14. Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope.

    Science.gov (United States)

    Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G

    2017-10-01

    A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels

    2010-01-18

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. © 2010 Microscopy Society of America.

  16. Visualization of bacterial polysaccharides by scanning transmission electron microscopy.

    Science.gov (United States)

    Wolanski, B S; McAleer, W J; Hilleman, M R

    1983-04-01

    Highly purified capsular polysaccharides of Neisseria meningitidis groups A, B, and C have been visualized by high resolution Scanning Transmission Electron Microscopy (STEM). Spheroidal macromolecules approximately 200 A in diameter are characteristic of the Meningococcus A and C polysaccharides whereas filaments that are 400-600 A in length are found in Meningococcus B polysaccharide preparations. Filaments are occasionally found associated with the spheroidal Meningococcus A and C polysaccharides and it is proposed that these structures are composed of a long (1-4 microns) filament or filaments that are arranged in spheroidal molecules or micelles of high molecular weight. The Meningococcus B polysaccharide, by contrast, is a short flexuous filament or strand of relatively low molecular weight. A relationship between morphology and antigenicity is proposed.

  17. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    Science.gov (United States)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  18. Scanning transmission electron microscopy: Albert Crewe's vision and beyond

    International Nuclear Information System (INIS)

    Krivanek, Ondrej L.; Chisholm, Matthew F.; Murfitt, Matthew F.; Dellby, Niklas

    2012-01-01

    Some four decades were needed to catch up with the vision that Albert Crewe and his group had for the scanning transmission electron microscope (STEM) in the nineteen sixties and seventies: attaining 0.5 Å resolution, and identifying single atoms spectroscopically. With these goals now attained, STEM developments are turning toward new directions, such as rapid atomic resolution imaging and exploring atomic bonding and electronic properties of samples at atomic resolution. The accomplishments and the future challenges are reviewed and illustrated with practical examples. -- Highlights: ► TV-rate STEM imaging of heavy atoms is demonstrated. ► DNA sequencing by STEM dark field imaging should be possible at a rate of 10 6 bases/s. ► Individual silicon atom impurities in graphene are imaged atom-by-atom. ► Single atoms of nitrogen and boron incorporated in graphene are imaged spectroscopically. ► Bonding of individual atoms can be probed by analyzing the fine structures of their EEL spectra.

  19. High-resolution imaging in the scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Pennycook, S.J.; Jesson, D.E.

    1992-03-01

    The high-resolution imaging of crystalline materials in the scanning transmission electron microscopy (STEM) is reviewed with particular emphasis on the conditions under which an incoherent image can be obtained. It is shown that a high-angle annular detector can be used to break the coherence of the imaging process, in the transverse plane through the geometry of the detector, or in three dimensions if multiphonon diffuse scattering is detected. In the latter case, each atom can be treated as a highly independent source of high-angle scattering. The most effective fast electron states are therefore tightly bound s-type Bloch states. Furthermore, they add constructively for each incident angle in the coherent STEM probe, so that s states are responsible for practically the entire image contrast. Dynamical effects are largely removed, and almost perfect incoherent imaging is achieved. s states are relatively insensitive to neighboring strings, so that incoherent imaging is maintained for superlattice and interfaces, and supercell calculations are unnecessary. With an optimum probe profile, the incoherent image represents a direct image of the crystal projection, with compositional sensitivity built in through the strong dependence of the scattering cross sections on atomic number Z

  20. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  1. Reference nano-dimensional metrology by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Dai, Gaoliang; Fluegge, Jens; Bosse, Harald; Heidelmann, Markus; Kübel, Christian; Prang, Robby

    2013-01-01

    Traceable and accurate reference dimensional metrology of nano-structures by scanning transmission electron microscopy (STEM) is introduced in the paper. Two methods, one based on the crystal lattice constant and the other based on the pitch of a feature pair, were applied to calibrate the TEM magnification. The threshold value, which was defined as the half-intensity of boundary materials, is suggested to extract the boundary position of features from the TEM image. Experimental investigations have demonstrated the high potential of the proposed methods. For instance, the standard deviation from ten repeated measurements of a line structure with a nominal 100 nm critical dimension (CD) reaches 1σ = 0.023 nm, about 0.02%. By intentionally introduced defocus and larger sample alignment errors, the investigation shows that these influences may reach 0.20 and 1.3 nm, respectively, indicating the importance of high-quality TEM measurements. Finally, a strategy for disseminating the destructive TEM results is introduced. Using this strategy, the CD of a reference material has been accurately determined. Its agreement over five independent TEM measurements is below 1.2 nm. (paper)

  2. Optical depth sectioning in the aberration-corrected scanning transmission and scanning confocal electron microscope

    International Nuclear Information System (INIS)

    Behan, G; Nellist, P D

    2008-01-01

    The use of spherical aberration correctors in the scanning transmission electron microscope (STEM) has the effect of reducing the depth of field of the microscope, making three-dimensional imaging of a specimen possible by optical sectioning. Depth resolution can be improved further by placing aberration correctors and lenses pre and post specimen to achieve an imaging mode known as scanning confocal electron microscopy (SCEM). We present the calculated incoherent point spread functions (PSF) and optical transfer functions (OTF) of a STEM and SCEM. The OTF for a STEM is shown to have a missing cone region which results in severe blurring along the optic axis, which can be especially severe for extended objects. We also present strategies for reconstruction of experimental data, such as three-dimensional deconvolution of the point spread function.

  3. Digital acquisition and processing of electron micrographs using a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Engel, A.; Christen, F.; Michel, B.

    1981-01-01

    A digital acquisition system that collects multichannel information from a scanning transmission electron microscope (STEM) and its application are described. The hardware comprises (i) single electron counting detectors, (ii) a digital scan generator, (iii) a digital multi-channel on-line processor, (iv) an interface to a minicomputer, and (v) a display system. Experimental results characterizing these components are presented, and their performance is discussed. The software includes assembler coded programs for dynamic file maintenance and fast acquisition of image data, a display driver, and FORTRAN coded application programs. The usefulness of digitized STEM is illustrated by a variety of biological applications. (orig.)

  4. Advances in imaging and electron physics the scanning transmission electron microscope

    CERN Document Server

    Hawkes, Peter W

    2009-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.  This particular volume presents several timely articles on the scanning transmission electron microscope. Updated with contributions from leading international scholars and industry experts Discusses hot topic areas and presents current and future research trends Provides an invaluable reference and guide for physicists, engineers and mathematicians.

  5. A simple way to obtain backscattered electron images in a scanning transmission electron microscope.

    Science.gov (United States)

    Tsuruta, Hiroki; Tanaka, Shigeyasu; Tanji, Takayoshi; Morita, Chiaki

    2014-08-01

    We have fabricated a simple detector for backscattered electrons (BSEs) and incorporated the detector into a scanning transmission electron microscope (STEM) sample holder. Our detector was made from a 4-mm(2) Si chip. The fabrication procedure was easy, and similar to a standard transmission electron microscopy (TEM) sample thinning process based on ion milling. A TEM grid containing particle objects was fixed to the detector with a silver paste. Observations were carried out using samples of Au and latex particles at 75 and 200 kV. Such a detector provides an easy way to obtain BSE images in an STEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cosgriff, Eireann C.; D' Alfonso, Adrian J.; Morgan, Andrew J.; Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Takeguchi, Masaki [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Quantum Dot Research Center, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

    2011-06-15

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. -- Research Highlights: {yields} The confocal probe image in a scanning confocal electron microscopy image reveals information about the thickness and height of the crystalline layer. {yields} The form of the contrast in a three-dimensional bright-field scanning confocal electron microscopy image can be explained in terms of the confocal probe image. {yields} Despite the complicated form of the contrast in bright-field scanning confocal electron microscopy, we see that depth information is transferred on a 10 nm scale.

  7. Path-separated electron interferometry in a scanning transmission electron microscope

    Science.gov (United States)

    Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.

    2018-05-01

    We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the  +1 diffraction order probe through amorphous carbon while passing the 0th and  ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.

  8. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope.

    Science.gov (United States)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2011-06-01

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography

    Science.gov (United States)

    Jesse, S.; Chi, M.; Belianinov, A.; Beekman, C.; Kalinin, S. V.; Borisevich, A. Y.; Lupini, A. R.

    2016-05-01

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called “big-data” methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. However, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy.

  10. Scanning and Transmission Electron Microscopy of High Temperature Materials

    Science.gov (United States)

    1994-01-01

    Software and hardware updates to further extend the capability of the electron microscope were carried out. A range of materials such as intermetallics, metal-matrix composites, ceramic-matrix composites, ceramics and intermetallic compounds, based on refractory elements were examined under this research. Crystal structure, size, shape and volume fraction distribution of various phases which constitute the microstructures were examined. Deformed materials were studied to understand the effect of interfacial microstructure on the deformation and fracture behavior of these materials. Specimens tested for a range of mechanical property requirements, such as stress rupture, creep, low cycle fatigue, high cycle fatigue, thermomechanical fatigue, etc. were examined. Microstructural and microchemical stability of these materials exposed to simulated operating environments were investigated. The EOIM Shuttle post-flight samples were also examined to understand the influence of low gravity processing on microstructure. In addition, fractographic analyses of Nb-Zr-W, titanium aluminide, molybdenum silicide and silicon carbide samples were carried out. Extensive characterization of sapphire fibers in the fiber-reinforced composites made by powder cloth processing was made. Finally, pressure infiltration casting of metal-matrix composites was carried out.

  11. Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope

    Science.gov (United States)

    de Jonge, Niels [Oak Ridge, TN

    2010-08-17

    A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.

  12. In situ transmission electron microscopy and scanning transmission electron microscopy studies of sintering of Ag and Pt nanoparticles

    International Nuclear Information System (INIS)

    Asoro, M.A.; Ferreira, P.J.; Kovar, D.

    2014-01-01

    Transmission electron microscopy and scanning transmission electron microscopy studies were conducted in situ on 2–5 nm Pt and 10–40 nm Ag nanoparticles to study mechanisms for sintering and to measure relevant sintering kinetics in nanoscale particles. Sintering between two separated particles was observed to initiate by either (1) diffusion of the particles on the sample support or (2) diffusion of atoms or small clusters of atoms to the neck region between the two particles. After particle contact, the rate of sintering was controlled by atomic surface diffusivity. The surface diffusivity was determined as a function of particle size and temperature from experimental measurements of the rate of neck growth of the particles. The surface diffusivities did not show a strong size effect for the range of particle sizes that were studied. The surface diffusivity for Pt nanoparticles exhibited the expected Arrhenius temperature dependence and did not appear to be sensitive to the presence of surface contaminants. In contrast, the surface diffusivity for Ag nanoparticles was affected by the presence of impurities such as carbon. The diffusivities for Ag nanoparticles were consistent with previous measurements of bulk surface diffusivities for Ag in the presence of C, but were significantly slower than those obtained from pristine Ag

  13. Dysprosium disilicide nanostructures on silicon(001) studied by scanning tunneling microscopy and transmission electron microscopy

    International Nuclear Information System (INIS)

    Ye Gangfeng; Nogami, Jun; Crimp, Martin A.

    2006-01-01

    The microstructure of self-assembled dysprosium silicide nanostructures on silicon(001) has been studied by scanning tunneling microscopy and transmission electron microscopy. The studies focused on nanostructures that involve multiple atomic layers of the silicide. Cross-sectional high resolution transmission electron microscopy images and fast Fourier transform analysis showed that both hexagonal and orthorhombic/tetragonal silicide phases were present. Both the magnitude and the anisotropy of lattice mismatch between the silicide and the substrate play roles in the morphology and epitaxial growth of the nanostructures formed

  14. Three-dimensional optical transfer functions in the aberration-corrected scanning transmission electron microscope.

    Science.gov (United States)

    Jones, L; Nellist, P D

    2014-05-01

    In the scanning transmission electron microscope, hardware aberration correctors can now correct for the positive spherical aberration of round electron lenses. These correctors make use of nonround optics such as hexapoles or octupoles, leading to the limiting aberrations often being of a nonround type. Here we explore the effect of a number of potential limiting aberrations on the imaging performance of the scanning transmission electron microscope through their resulting optical transfer functions. In particular, the response of the optical transfer function to changes in defocus are examined, given that this is the final aberration to be tuned just before image acquisition. The resulting three-dimensional optical transfer functions also allow an assessment of the performance of a system for focal-series experiments or optical sectioning applications. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  15. Advanced scanning transmission stereo electron microscopy of structural and functional engineering materials

    Czech Academy of Sciences Publication Activity Database

    Agudo Jácome, L.; Eggeler, G.; Dlouhý, Antonín

    2012-01-01

    Roč. 122, NOV (2012), s. 48-59 ISSN 0304-3991 R&D Projects: GA ČR GA202/09/2073 Institutional research plan: CEZ:AV0Z20410507 Keywords : stereoscopy * scanning transmission electron microscopy * single crystal Ni-base superalloys * Dislocation substructures * Foil thickness measurement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.470, year: 2012

  16. Observations of localised dielectric excitations, secondary events and ionisation damage by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Howie, A.

    1988-01-01

    In the scanning transmission electron microscope (STEM) a high intensity /approximately/0.5nm diameter, probe of 100 keV electrons is formed. This can be positioned to collect energy loss spectra from surfaces, interfaces, small spheres or other particles at controlled values of impact parameter or can be scanned across the object (usually a thin film) to produce high resolution images formed from a variety of signals - small angle or large angle (Z contrast) elastic scattering, inelastic scattering (both valence and core losses), secondary electron emission and x-ray or optical photon emission. The high spatial resolution achievable in a variety of simple structures raises many unsolved theoretical problems concerning the generation, propagation and decay of excitations in inhomogeneous media. These range from quite well posed problems in the mathematical physics of dielectric excitation to problems of plasmon propagation and rather more exotic and less well understood problems of radiation damage. 15 refs., 4 figs

  17. The Fresnel mode of Lorentz microscopy using a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Chapman, J.N.; Waddell, E.M.; Batson, P.E.; Ferrier, R.P.

    1979-01-01

    The most widely used method of investigating ferromagnetic films in the transmission electron microscope is the Fresnel or defocus mode of Lorentz microscopy. This may be implemented either in a fixed beam or a scanning instrument. Despite a rather inefficient utilization of electrons, several advantages accrue if the latter is used, and provided it is equipped with a field emission gun, low noise images may be obtained in acceptable recording times. To extract quantitative estimates of domain wall widths from such images it is necessary to measure accurately both instrumental and specimen parameters. Methods for this are discussed and an example of an analysis using a polycrystalline permalloy film is given. (Auth.)

  18. Spherical aberration correction in a scanning transmission electron microscope using a sculpted thin film.

    Science.gov (United States)

    Shiloh, Roy; Remez, Roei; Lu, Peng-Han; Jin, Lei; Lereah, Yossi; Tavabi, Amir H; Dunin-Borkowski, Rafal E; Arie, Ady

    2018-06-01

    Nearly eighty years ago, Scherzer showed that rotationally symmetric, charge-free, static electron lenses are limited by an unavoidable, positive spherical aberration. Following a long struggle, a major breakthrough in the spatial resolution of electron microscopes was reached two decades ago by abandoning the first of these conditions, with the successful development of multipole aberration correctors. Here, we use a refractive silicon nitride thin film to tackle the second of Scherzer's constraints and demonstrate an alternative method for correcting spherical aberration in a scanning transmission electron microscope. We reveal features in Si and Cu samples that cannot be resolved in an uncorrected microscope. Our thin film corrector can be implemented as an immediate low cost upgrade to existing electron microscopes without re-engineering of the electron column or complicated operation protocols and can be extended to the correction of additional aberrations. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope.

    Science.gov (United States)

    Johnston-Peck, Aaron C; DuChene, Joseph S; Roberts, Alan D; Wei, Wei David; Herzing, Andrew A

    2016-11-01

    Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO 2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. Published by Elsevier B.V.

  20. Novel low-dose imaging technique for characterizing atomic structures through scanning transmission electron microscope

    Science.gov (United States)

    Su, Chia-Ping; Syu, Wei-Jhe; Hsiao, Chien-Nan; Lai, Ping-Shan; Chen, Chien-Chun

    2017-08-01

    To investigate dislocations or heterostructures across interfaces is now of great interest to condensed matter and materials scientists. With the advances in aberration-corrected electron optics, the scanning transmission electron microscope has demonstrated its excellent capability of characterizing atomic structures within nanomaterials, and well-resolved atomic-resolution images can be obtained through long-exposure data acquisition. However, the sample drifting, carbon contamination, and radiation damage hinder further analysis, such as deriving three-dimensional (3D) structures from a series of images. In this study, a method for obtaining atomic-resolution images with significantly reduced exposure time was developed, using which an original high-resolution image with approximately one tenth the electron dose can be obtained by combining a fast-scan high-magnification image and a slow-scan low-magnification image. The feasibility of obtaining 3D atomic structures using the proposed approach was demonstrated through multislice simulation. Finally, the feasibility and accuracy of image restoration were experimentally verified. This general method cannot only apply to electron microscopy but also benefit to image radiation-sensitive materials using various light sources.

  1. Dynamics of annular bright field imaging in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Findlay, S.D.; Shibata, N.; Sawada, H.; Okunishi, E.; Kondo, Y.; Ikuhara, Y.

    2010-01-01

    We explore the dynamics of image formation in the so-called annular bright field mode in scanning transmission electron microscopy, whereby an annular detector is used with detector collection range lying within the cone of illumination, i.e. the bright field region. We show that this imaging mode allows us to reliably image both light and heavy columns over a range of thickness and defocus values, and we explain the contrast mechanisms involved. The role of probe and detector aperture sizes is considered, as is the sensitivity of the method to intercolumn spacing and local disorder.

  2. Ultrastructural alterations in ciliary cells exposed to ionizing radiation. A scanning and transmission electron microscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Baldetorp, L; Mecklenburg, C v; Haakansson, C H [Lund Univ. (Sweden). Hospital; Lund Univ. (Sweden). Dept. of Zoology)

    1977-01-01

    Early effects of ionizing radiation were investigated in an experimental in vitro system using the ciliary cells of the tracheal mucous membrane of the rabbit, irradiated at 30/sup 0/C and at more than 90% humidity. The changes in physiological activities of the ciliary cells caused by irradation were continously registered during the irradation. The specimens were examined immediately after irradiation electron microscopically. The morphological changes in irradiated material after 10-70 Gy are compared with normal material. After 40-70 Gy, scanning electron microscopy revealed the formation of vesicles on cilia, and club-like protrusions and adhesion of their tips. After 30-70 Gy, a swelling of mitochondrial membranes and cristae was apparent transmission electron microscopically. The membrane alterations caused by irradiation are assumed to disturb the permeability and flow of ATP from the mitochondria, which in turn leads to the recorded changes in the activity of the ciliated cells.

  3. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Hachtel, J A; Haglund, R F; Pantelides, S T; Marvinney, C; Mayo, D; Mouti, A; Lupini, A R; Chisholm, M F; Mu, R; Pennycook, S J

    2016-01-01

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications. (paper)

  4. Investigating the use of in situ liquid cell scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nguy, Amanda [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Engineering nanoparticles with desired shape-dependent properties is the key to many applications in nanotechnology. Although many synthetic procedures exist to produce anisotropic gold nanoparticles, the dynamics of growth are typically unknown or hypothetical. In the case of seed-mediated growth in the presence of DNA into anisotropic nanoparticles, it is not known exactly how DNA directs growth into specific morphologies. A series of preliminary experiments were carried out to contribute to the investigation of the possible mechanism of DNA-mediated growth of gold nanoprisms into gold nanostars using liquid cell scanning transmission electron microscopy (STEM). Imaging in the liquid phase was achieved through the use of a liquid cell platform and liquid cell holder that allow the sample to be contained within a “chip sandwich” between two electron transparent windows. Ex situ growth experiments were performed using Au-T30 NPrisms (30-base thymine oligonucleotide-coated gold nanoprisms) that are expected to grow into gold nanostars. Growth to form these nanostars were imaged using TEM (transmission electron microscopy) and liquid cell STEM (scanning transmission electron microscopy). An attempt to perform in situ growth experiments with the same Au-T30 nanoprisms revealed challenges in obtaining desired morphology results due to the environmental differences within the liquid cell compared to the ex situ environment. Different parameters in the experimental method were explored including fluid line set up, simultaneous and alternating reagent addition, and the effect of different liquid cell volumes to ensure adequate flow of reagents into the liquid cell. Lastly, the binding affinities were compared for T30 and A30 DNA incubated with gold nanoparticles using zeta potential measurements, absorption spectroscopy, and isothermal titration calorimetry (ITC). It was previously reported thymine bases have a lower binding affinity to gold surfaces than adenine

  5. Scanning electron microscopy and transmission electron microscopy study of hot-deformed gamma-TiAl-based alloy microstructure.

    Science.gov (United States)

    Chrapoński, J; Rodak, K

    2006-09-01

    The aim of this work was to assess the changes in the microstructure of hot-deformed specimens made of alloys containing 46-50 at.% Al, 2 at.% Cr and 2 at.% Nb (and alloying additions such as carbon and boron) with the aid of scanning electron microscopy and transmission electron microscopy techniques. After homogenization and heat treatment performed in order to make diverse lamellae thickness, the specimens were compressed at 1000 degrees C. Transmission electron microscopy examinations of specimens after the compression test revealed the presence of heavily deformed areas with a high density of dislocation. Deformation twins were also observed. Dynamically recrystallized grains were revealed. For alloys no. 2 and no. 3, the recovery and recrystallization processes were more extensive than for alloy no. 1.

  6. Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms.

    Science.gov (United States)

    Inada, H; Su, D; Egerton, R F; Konno, M; Wu, L; Ciston, J; Wall, J; Zhu, Y

    2011-06-01

    We report detailed investigation of high-resolution imaging using secondary electrons (SE) with a sub-nanometer probe in an aberration-corrected transmission electron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular dark-field (ADF) images both simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we studied the SE image intensity and contrast as functions of applied bias, atomic number, crystal tilt, and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. A possible mechanism for atomic-scale SE imaging is proposed. The ability to image both the surface and bulk of a sample at atomic-scale is unprecedented, and can have important applications in the field of electron microscopy and materials characterization. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Nanoscale Energy-Filtered Scanning Confocal Electron Microscopy Using a Double-Aberration-Corrected Transmission Electron Microscope

    International Nuclear Information System (INIS)

    Wang Peng; Behan, Gavin; Kirkland, Angus I.; Nellist, Peter D.; Takeguchi, Masaki; Hashimoto, Ayako; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2010-01-01

    We demonstrate that a transmission electron microscope fitted with two spherical-aberration correctors can be operated as an energy-filtered scanning confocal electron microscope. A method for establishing this mode is described and initial results showing 3D chemical mapping with nanoscale sensitivity to height and thickness changes in a carbon film are presented. Importantly, uncorrected chromatic aberration does not limit the depth resolution of this technique and moreover performs an energy-filtering role, which is explained in terms of a combined depth and energy-loss response function.

  8. In-situ environmental (scanning) transmission electron microscopy of catalysts at the atomic level

    International Nuclear Information System (INIS)

    Gai, P L; Boyes, E D

    2014-01-01

    Observing reacting single atoms on the solid catalyst surfaces under controlled reaction conditions is a key goal in understanding and controlling heterogeneous catalytic reactions. In-situ real time aberration corrected environmental (scanning) transmission electron microscopy (E(S)TEM permit the direct imaging of dynamic surface and sub-surface structures of reacting catalysts. In this paper in-situ AC ETEM and AC ESTEM studies under controlled reaction environments of oxide catalysts and supported metal nanocatalysts important in chemical industry are presented. They provide the direct evidence of dynamic processes at the oxide catalyst surface at the atomic scale and single atom dynamics in catalytic reactions. The ESTEM studies of single atom dynamics in controlled reaction environments show that nanoparticles act as reservoirs of ad-atoms. The results have important implications in catalysis and nanoparticle studies

  9. Large area strain analysis using scanning transmission electron microscopy across multiple images

    International Nuclear Information System (INIS)

    Oni, A. A.; Sang, X.; LeBeau, J. M.; Raju, S. V.; Saxena, S.; Dumpala, S.; Broderick, S.; Rajan, K.; Kumar, A.; Sinnott, S.

    2015-01-01

    Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show that it is possible to use strain reference areas elsewhere in the sample, thereby enabling reliable strain mapping across large areas. As a prototypical example, we determine the strain present within the microstructure of a Ni-based superalloy directly from atom column positions as well as geometric phase analysis. While maintaining atomic resolution, we quantify strain within nanoscale regions and demonstrate that large, unit-cell level strain fluctuations are present within the intermetallic phase

  10. Atomic-scale Ge diffusion in strained Si revealed by quantitative scanning transmission electron microscopy

    Science.gov (United States)

    Radtke, G.; Favre, L.; Couillard, M.; Amiard, G.; Berbezier, I.; Botton, G. A.

    2013-05-01

    Aberration-corrected scanning transmission electron microscopy is employed to investigate the local chemistry in the vicinity of a Si0.8Ge0.2/Si interface grown by molecular-beam epitaxy. Atomic-resolution high-angle annular dark field contrast reveals the presence of a nonuniform diffusion of Ge from the substrate into the strained Si thin film. On the basis of multislice calculations, a model is proposed to quantify the experimental contrast, showing that the Ge concentration in the thin film reaches about 4% at the interface and decreases monotonically on a typical length scale of 10 nm. Diffusion occurring during the growth process itself therefore appears as a major factor limiting the abruptness of interfaces in the Si-Ge system.

  11. Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Van Aert, S.; Verbeeck, J.; Erni, R.; Bals, S.; Luysberg, M.; Dyck, D. Van; Tendeloo, G. Van

    2009-01-01

    A model-based method is proposed to relatively quantify the chemical composition of atomic columns using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. The method is based on a quantification of the total intensity of the scattered electrons for the individual atomic columns using statistical parameter estimation theory. In order to apply this theory, a model is required describing the image contrast of the HAADF STEM images. Therefore, a simple, effective incoherent model has been assumed which takes the probe intensity profile into account. The scattered intensities can then be estimated by fitting this model to an experimental HAADF STEM image. These estimates are used as a performance measure to distinguish between different atomic column types and to identify the nature of unknown columns with good accuracy and precision using statistical hypothesis testing. The reliability of the method is supported by means of simulated HAADF STEM images as well as a combination of experimental images and electron energy-loss spectra. It is experimentally shown that statistically meaningful information on the composition of individual columns can be obtained even if the difference in averaged atomic number Z is only 3. Using this method, quantitative mapping at atomic resolution using HAADF STEM images only has become possible without the need of simultaneously recorded electron energy loss spectra.

  12. Understanding the structure of nanocatalysts with high resolution scanning/transmission electron microscopy

    International Nuclear Information System (INIS)

    Francis, L D; Rivas, J; José-Yacamán, M

    2014-01-01

    Nanomaterials including nanoparticles, nanowires and nanotubes play an important role in heterogeneous catalysis. Thanks to the rapid improvement of the electron microscopic techniques and with the advent of aberration corrected electron microscopy as well as theoretical methodologies, the potential effects induced by nanocatalysts are better understood than before by unravelling their atomic structure. A brief introduction to advanced electron microscopic techniques namely aberration corrected scanning transmission electron microscopy (Cs-STEM) is presented and subsequently two examples of nanocatalysts are considered in the present review. The first example will focus on the study of bimetallic/core-shell nanoalloys. In heterogeneous catalysis, catalysts containing two or more metals might show significantly different catalytic properties compared to the parent metals and thus are widely utilized in several catalytic reactions. Atom-by-atom insights of the nanoalloy based catalysts ex: Au-Pd will be described in the present review using a combination of advanced electron microscopic and spectroscopic techniques. A related example on the understanding of bimetallic clusters by HAADF-STEM will also be presented in addition to nanoparticles. In the second case understanding the structure of transition metal chalcogenide based nanocatalysts by HRTEM and aberration corrected STEM, for the case of MoS 2 will be discussed. MoS 2 -based catalysts serve as model catalysts and are employed in the hydrodesulphurisations (HDS) reactions in the removal of sulphur from gasoline and related petrochemical products. They have been studied in various forms including nanowires, nanotubes and nanoplates. Their structure, atomic insights and as a consequence elucidation of their corresponding catalytic activity are thus important

  13. Advanced scanning transmission stereo electron microscopy of structural and functional engineering materials

    Energy Technology Data Exchange (ETDEWEB)

    Agudo Jacome, L., E-mail: leonardo.agudo@bam.de [Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Eggeler, G., E-mail: gunther.eggeler@ruhr-uni-bochum.de [Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Dlouhy, A., E-mail: dlouhy@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, 616 62 Brno (Czech Republic)

    2012-11-15

    Stereo transmission electron microscopy (TEM) provides a 3D impression of the microstructure in a thin TEM foil. It allows to perform depth and TEM foil thickness measurements and to decide whether a microstructural feature lies inside of a thin foil or on its surface. It allows appreciating the true three-dimensional nature of dislocation configurations. In the present study we first review some basic elements of classical stereo TEM. We then show how the method can be extended by working in the scanning transmission electron microscope (STEM) mode of a modern analytical 200 kV TEM equipped with a field emission gun (FEG TEM) and a high angle annular dark field (HAADF) detector. We combine two micrographs of a stereo pair into one anaglyph. When viewed with special colored glasses the anaglyph provides a direct and realistic 3D impression of the microstructure. Three examples are provided which demonstrate the potential of this extended stereo TEM technique: a single crystal Ni-base superalloy, a 9% Chromium tempered martensite ferritic steel and a NiTi shape memory alloy. We consider the effect of camera length, show how foil thicknesses can be measured, and discuss the depth of focus and surface effects. -- Highlights: Black-Right-Pointing-Pointer The advanced STEM/HAADF diffraction contrast is extended to 3D stereo-imaging. Black-Right-Pointing-Pointer The advantages of the new technique over stereo-imaging in CTEM are demonstrated. Black-Right-Pointing-Pointer The new method allows foil thickness measurements in a broad range of conditions. Black-Right-Pointing-Pointer We show that features associated with ion milling surface damage can be beneficial for appreciating 3D features of the microstructure.

  14. Advanced scanning transmission stereo electron microscopy of structural and functional engineering materials

    International Nuclear Information System (INIS)

    Agudo Jácome, L.; Eggeler, G.; Dlouhý, A.

    2012-01-01

    Stereo transmission electron microscopy (TEM) provides a 3D impression of the microstructure in a thin TEM foil. It allows to perform depth and TEM foil thickness measurements and to decide whether a microstructural feature lies inside of a thin foil or on its surface. It allows appreciating the true three-dimensional nature of dislocation configurations. In the present study we first review some basic elements of classical stereo TEM. We then show how the method can be extended by working in the scanning transmission electron microscope (STEM) mode of a modern analytical 200 kV TEM equipped with a field emission gun (FEG TEM) and a high angle annular dark field (HAADF) detector. We combine two micrographs of a stereo pair into one anaglyph. When viewed with special colored glasses the anaglyph provides a direct and realistic 3D impression of the microstructure. Three examples are provided which demonstrate the potential of this extended stereo TEM technique: a single crystal Ni-base superalloy, a 9% Chromium tempered martensite ferritic steel and a NiTi shape memory alloy. We consider the effect of camera length, show how foil thicknesses can be measured, and discuss the depth of focus and surface effects. -- Highlights: ► The advanced STEM/HAADF diffraction contrast is extended to 3D stereo-imaging. ► The advantages of the new technique over stereo-imaging in CTEM are demonstrated. ► The new method allows foil thickness measurements in a broad range of conditions. ► We show that features associated with ion milling surface damage can be beneficial for appreciating 3D features of the microstructure.

  15. Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sannomiya, Takumi, E-mail: sannomiya@mtl.titech.ac.jp [Tokyo Institute of Technology, Ookayama, Tokyo (Japan); Sawada, Hidetaka; Nakamichi, Tomohiro; Hosokawa, Fumio [JEOL Limited, Akishima, Tokyo (Japan); Nakamura, Yoshio; Tanishiro, Yasumasa; Takayanagi, Kunio [Tokyo Institute of Technology, Ookayama, Tokyo (Japan)

    2013-12-15

    A generic method to determine the aberration center is established, which can be utilized for aberration calculation and axis alignment for aberration corrected electron microscopes. In this method, decentering induced secondary aberrations from inherent primary aberrations are minimized to find the appropriate axis center. The fitness function to find the optimal decentering vector for the axis was defined as a sum of decentering induced secondary aberrations with properly distributed weight values according to the aberration order. Since the appropriate decentering vector is determined from the aberration values calculated at an arbitrary center axis, only one aberration measurement is in principle required to find the center, resulting in /very fast center search. This approach was tested for the Ronchigram based aberration calculation method for aberration corrected scanning transmission electron microscopy. Both in simulation and in experiments, the center search was confirmed to work well although the convergence to find the best axis becomes slower with larger primary aberrations. Such aberration center determination is expected to fully automatize the aberration correction procedures, which used to require pre-alignment of experienced users. This approach is also applicable to automated aperture positioning. - Highlights: • A generic method to determine the aberration center is established for (S)TEM. • Decentering induced secondary aberrations are utilized to find the center. • The method is tested on Ronchigrams both in simulation and experiment. • Proper weighting of the aberration gives a good convergence. • Larger primary aberration results in a slower convergence.

  16. Identification of light elements in silicon nitride by aberration-corrected scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Idrobo, Juan C., E-mail: idrobojc@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Walkosz, Weronika [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Department of Physics, University of Illinois at Chicago, Chicago, IL 60607 (United States); Klie, Robert F.; Oeguet, Serdar [Department of Physics, University of Illinois at Chicago, Chicago, IL 60607 (United States)

    2012-12-15

    In silicon nitride structural ceramics, the overall mechanical and thermal properties are controlled by the atomic and electronic structures at the interface between the ceramic grains and the amorphous intergranular films (IGFs) formed by various sintering additives. In the last ten years the atomic arrangements of heavy elements (rare-earths) at the Si{sub 3}N{sub 4}/IGF interfaces have been resolved. However, the atomic position of light elements, without which it is not possible to obtain a complete description of the interfaces, has been lacking. This review article details the authors' efforts to identify the atomic arrangement of light elements such as nitrogen and oxygen at the Si{sub 3}N{sub 4}/SiO{sub 2} interface and in bulk Si{sub 3}N{sub 4} using aberration-corrected scanning transmission electron microscopy. -- Highlights: Black-Right-Pointing-Pointer Revealing the atomic structure of the {alpha}-Si{sub 3}N{sub 4}/SiO{sub 2} interface. Black-Right-Pointing-Pointer Identification and lattice location of oxygen impurities in bulk {alpha}-Si{sub 3}N{sub 4}. Black-Right-Pointing-Pointer Short range ordering of nitrogen and oxygen at the {beta}-Si{sub 3}N{sub 4}/SiO{sub 2} interface.

  17. Theoretical and experimental study of image formation in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Prunier epouse Mory, Claudie

    1985-01-01

    This thesis contains a theoretical and experimental study of image formation in a dedicated scanning transmission electron microscope (STEM). Using a detailed description of the different optical elements between the field emission source and the specimen, one calculates the shape and size of the primary probe of electrons impinging on the sample. This modelization enables to estimate the spatial resolution in the different imaging or microanalytical modes. The influence of the specimen and the role of the various detectors are taken into account to calculate the point spread function of the instrument in STEM imaging modes. An experimental study of the characteristic properties of phase contrast bright field micrographs and incoherent dark field ones is performed by comparison of digitally recorded images in similar conditions. Spatial resolution, contrast and signal/noise ratio are assessed by correlation methods, Fourier analysis and statistical considerations; one can deduce the optimum focusing conditions. Limits such as the point resolution on quasi-atomic metallic clusters are determined and an analysis of the capabilities of signal mixing concludes this work. Applications are offered in various domains such as the visualisation of small metallic particles, biomolecules and unstained biological sections. (author) [fr

  18. Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion

    International Nuclear Information System (INIS)

    Svensson, K.; Jompol, Y.; Olin, H.; Olsson, E.

    2003-01-01

    A scanning tunneling microscope (STM) with a compact, three-dimensional, inertial slider design is presented. Inertial sliding of the STM tip, in three dimensions, enables coarse motion and scanning using only one piezoelectric tube. Using the same electronics both for scanning and inertial sliding, step lengths of less than 5% of the piezo range were achieved. The compact design, less than 1 cm3 in volume, ensures a low mechanical noise level and enables us to fit the STM into the sample holder of a transmission electron microscope (TEM), while maintaining atomic scale resolution in both STM and TEM imaging

  19. Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides

    Science.gov (United States)

    Qing-Hua, Zhang; Dong-Dong, Xiao; Lin, Gu

    2016-06-01

    Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-T c SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides. Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).

  20. Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi

    2017-07-18

    The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can

  1. Ultrastructural instability of paired helical filaments from corticobasal degeneration as examined by scanning transmission electron microscopy.

    Science.gov (United States)

    Ksiezak-Reding, H.; Tracz, E.; Yang, L. S.; Dickson, D. W.; Simon, M.; Wall, J. S.

    1996-01-01

    Paired helical filaments (PHFs) accumulate in the brains of subjects affected with Alzheimer's disease (AD) and certain other neurodegenerative disorders, including corticobasal degeneration (CBD). Electron microscope studies have shown that PHFs from CBD differ from those of AD by being wider and having a longer periodicity of the helical twist. Moreover, PHFs from CBD have been shown to be primarily composed of two rather than three highly phosphorylated polypeptides of tau (PHF-tau), with these polypeptides expressing no exons 3 and 10. To further explore the relationship between the heterogeneity of PHF-tau and the appearance of abnormal filaments, the ultrastructure and physical parameters such as mass per unit length and dimensions were compared in filaments from CBD and AD using high resolution scanning transmission electron microscopy (STEM). Filament-enriched fractions were isolated as Sarcosyl-insoluble pellets and for STEM studies, samples were freeze-dried without prior fixation or staining. Ultrastructurally, PHFs from CBD were shown to be a heterogeneous population as double- and single-stranded filaments could be identified based on their width and physical mass per unit length expressed in kilodaltons (kd) per nanometer (nm). Less abundant, double-stranded filaments had a maximal width of 29 nm and a mass per unit length of 133 kd/nm, whereas three times more abundant single-stranded filaments were 15 nm wide and bad a mass per unit length of 62 kd/nm. Double-stranded filaments also displayed a distinct axial region of less dense mass, which appeared to divide the PHFs into two protofilament-like strands. Furthermore, these filaments were frequently observed to physically separate along the long axis into two single strands or to break longitudinally. In contrast, PHFs from AD were ultrastructurally stable and uniform both in their width (22 nm) and physical mass per unit length (104 kd/nm). The ultrastructural features indicate that filaments of

  2. Common Bias Readout for TES Array on Scanning Transmission Electron Microscope

    Science.gov (United States)

    Yamamoto, R.; Sakai, K.; Maehisa, K.; Nagayoshi, K.; Hayashi, T.; Muramatsu, H.; Nakashima, Y.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Hidaka, M.; Nagasawa, S.; Maehata, K.; Hara, T.

    2016-07-01

    A transition edge sensor (TES) microcalorimeter array as an X-ray sensor for a scanning transmission electron microscope system is being developed. The technical challenge of this system is a high count rate of ˜ 5000 counts/second/array. We adopted a 64 pixel array with a parallel readout. Common SQUID bias, and common TES bias are planned to reduce the number of wires and the resources of a room temperature circuit. The reduction rate of wires is 44 % when a 64 pixel array is read out by a common bias of 8 channels. The possible degradation of the energy resolution has been investigated by simulations and experiments. The bias fluctuation effects of a series connection are less than those of a parallel connection. Simple calculations expect that the fluctuations of the common SQUID bias and common TES bias in a series connection are 10^{-7} and 10^{-3}, respectively. We constructed 8 SQUIDs which are connected to 8 TES outputs and a room temperature circuit for common bias readout and evaluated experimentally. Our simulation of crosstalk indicates that at an X-ray event rate of 500 cps/pixel, crosstalk will broaden a monochromatic line by about 0.01 %, or about 1.5 eV at 15 keV. Thus, our design goal of 10 eV energy resolution across the 0.5-15 keV band should be achievable.

  3. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D., E-mail: marta.rossell@empa.ch

    2017-05-15

    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. - Highlights: • The heterogeneous integration of high-quality compound semiconductors remains a challenge. • Lattice defects cause severe degradation of the semiconductor device performances. • Aberration-corrected HAADF-STEM allows atomic-scale characterization of defects. • An overview of lattice defects found in cubic semiconductors is presented. • Theoretical modelling and calculations are needed to determine the defect properties.

  4. Anisotropic Shape Changes of Silica Nanoparticles Induced in Liquid with Scanning Transmission Electron Microscopy

    NARCIS (Netherlands)

    Zecevic, J.; Hermannsdorfer, Justus; Schuh, Tobias; de Jong, Krijn P.; de Jonge, Niels

    2017-01-01

    Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of

  5. Charging of carbon thin films in scanning and phase-plate transmission electron microscopy

    DEFF Research Database (Denmark)

    Hettler, Simon; Kano, Emi; Dries, Manuel

    2018-01-01

    A systematic study on charging of carbon thin films under intense electron-beam irradiation was performed in a transmission electron microscope to identify the underlying physics for the functionality of hole-free phase plates. Thin amorphous carbon films fabricated by different deposition techni...

  6. Detection of fatigue fracture in pearlitic flake graphite cast iron with the help of scanning and transmission electron microscopy

    International Nuclear Information System (INIS)

    Dunger, B.; Hunger, J.

    1976-01-01

    To prove the existence of the characteristic features of fatigue fracture in a pearlitic flake graphite cast iron, its fracture surface topography revealed by scanning electron microscopy has been compared with that of a pearlitic steel, the fractures having been caused by static tensile and by cyclic bending tests. The characteristic features of fatigue fracture were visible in the pearlitic matrix of the steel and of the flake graphite cast iron as well. These features differ characteristically from the lamellar structure of the pearlite, particularly after etching the surface area of the fractures. The graphite structures as viewed on the electron scanning and the electron transmission microscope are described. (orig.) [de

  7. Three-dimensional nanofabrication by electron-beam-induced deposition using 200-keV electrons in scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Liu, Z.Q.; Mitsuishi, K.; Furuya, K.

    2005-01-01

    Attempts were made to fabricate three-dimensional nanostructures on and out of a substrate by electron-beam-induced deposition in a 200-kV scanning transmission electron microscope. Structures with parallel wires over the substrate surface were difficult to fabricate due to the direct deposition of wires on both top and bottom surfaces of the substrate. Within the penetration depth of the incident electron beam, nanotweezers were fabricated by moving the electron beam beyond different substrate layers. Combining the deposition of self-supporting wires and self-standing tips, complicated three-dimensional doll-like, flag-like, and gate-like nanostructures that extend out of the substrate were successfully fabricated with one-step or multi-step scans of the electron beam. Effects of coarsening, nucleation, and distortion during electron-beam-induced deposition are discussed. (orig.)

  8. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles.

    Directory of Open Access Journals (Sweden)

    Julien Burlaud-Gaillard

    Full Text Available The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy. CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.

  9. Depth profiling: RBS versus energy-dispersive X-ray imaging using scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Markwitz, Andreas

    2000-01-01

    Rutherford backscattering spectrometry (RBS) is known to be one of the techniques ideal for analysis of thin films. Elemental concentrations of matrix components and impurities can be investigated as well as depth profiles of almost each element of the periodic table. Best of all, RBS has both a high sensitivity and a high depth resolution, and is a non-destructive analysis technique that does not require specific sample preparation. Solid-state samples are mounted without preparation inside a high-vacuum analysis chamber. However, depth-related interpretation of elemental depth profiles requires the material density of the specimen and stopping power values to be taken into consideration. In many cases, these parameters can be estimated with sufficient precision. However, the assumed density can be inaccurate for depth scales in the nanometer range. For example, in the case of Ge nanoclusters in 500 nm thick SiO 2 layers, uncertainty is related to the actual position of a very thin Ge nanocluster band. Energy-dispersive X-ray emission (EDX) spectroscopy, using a high-resolution scanning transmission electron microscope (STEM) can assist in removing this uncertainty. By preparing a thin section of the specimen, EDX can be used to identify the position of the Ge nanocluster band very precisely, by correlating the Ge profile with the depth profiles of silicon and oxygen. However, extraction of the concentration profiles from STEM-EDX spectra is in general not straightforward. Therefore, a combination of the two very different analysis techniques is often the best and only successful way to extract high-resolution concentration profiles

  10. Fine structure of the endolymphatic duct in the rat. A scanning and transmission electron microscopy study

    DEFF Research Database (Denmark)

    Qvortrup, K; Rostgaard, Jørgen; Bretlau, P

    1995-01-01

    To investigate the surface morphology of the endolymphatic duct epithelium, 8 rats were vascularly perfused with glutaraldehyde in a buffered and oxygenated blood substitute. Optimal preservation of the epithelium for scanning electron microscopy was attained by coating of the specimens with OsO4...

  11. Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment.

    Science.gov (United States)

    Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline

    2017-12-01

    Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.

  12. Determination of the cork bark porosity through the gamma ray transmission technology and electronic scanning microscopy image analysis

    International Nuclear Information System (INIS)

    Moraes, Antonio M.C.; Moreira, Anderson C.; Appoloni, Carlos R.

    2007-01-01

    This work applies the gamma transmission techniques (GTR) and imaging by scanning electron microscopy (SEM) for determination of porosity in the sparkling wine bottle corks. The gamma transmission experimental apparatus consists of a micrometric table (ZX) of sample movement automated, a Am-241 source (59,53 keV, 100 mCi), lead collimators, sample-holder, Na I(Tl) detector and appropriated electronics. For the microscopic images an FEI (Quanta 200), electronic microscope with associated electronics was used, and the image analysis was performed with IMAGO software. The average porosity for 22 samples analysed by GTR was of φ=58 +- 4.6 percent. By the imaging technique the found average porosity was φ=60.0 +- 6.2 percent. (author)

  13. Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope

    International Nuclear Information System (INIS)

    Trimby, Patrick W.; Cao, Yang; Chen, Zibin; Han, Shuang; Hemker, Kevin J.; Lian, Jianshe; Liao, Xiaozhou; Rottmann, Paul; Samudrala, Saritha; Sun, Jingli; Wang, Jing Tao; Wheeler, John; Cairney, Julie M.

    2014-01-01

    Graphical abstract: -- Abstract: The recent development of transmission Kikuchi diffraction (TKD) in a scanning electron microscope enables fast, automated orientation mapping of electron transparent samples using standard electron backscatter diffraction (EBSD) hardware. TKD in a scanning electron microscope has significantly better spatial resolution than conventional EBSD, enabling routine characterization of nanocrystalline materials and allowing effective measurement of samples that have undergone severe plastic deformation. Combining TKD with energy dispersive X-ray spectroscopy (EDS) provides complementary chemical information, while a standard forescatter detector system below the EBSD detector can be used to generate dark field and oriented dark field images. Here we illustrate the application of this exciting new approach to a range of deformed, ultrafine grained and nanocrystalline samples, including duplex stainless steel, nanocrystalline copper and highly deformed titanium and nickel–cobalt. The results show that TKD combined with EDS is a highly effective and widely accessible tool for measuring key microstructural parameters at resolutions that are inaccessible using conventional EBSD

  14. Impact of Membrane-Induced Particle Immobilization on Seeded Growth Monitored by In Situ Liquid Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Weiner, Rebecca G; Chen, Dennis P; Unocic, Raymond R; Skrabalak, Sara E

    2016-05-01

    In situ liquid cell scanning transmission electron microscopy probes seeded growth in real time. The growth of Pd on Au nanocubes is monitored as a model system to compare growth within a liquid cell and traditional colloidal synthesis. Different growth patterns are observed due to seed immobilization and the highly reducing environment within the liquid cell. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Structural and functional changes in the intenstine of irradiated and hypothermic irradiated rats : a scanning and transmission electron microscopic study

    International Nuclear Information System (INIS)

    Chaudhuri, S.; Chaudhuri, Swapna; Roy, Bijon

    1982-01-01

    Severe destructive changes in the intestine of rats following whole body exposure to gamma rays (832 rads) were observed by light microscope, scanning and transmission electron microscope studies. Hypothermia (15deg C rectal temperature) induced prior to irradiation protected the intestinal mucosa from destruction. A simultaneous study showed that glucose absorption decreased significantly in irradiated rats, whereas it was increased in hypothermic irradiated animals. (author)

  16. Imaging of block copolymer vesicles in solvated state by wet scanning transmission electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Šlouf, Miroslav; Lapčíková, Monika; Štěpánek, M.

    2011-01-01

    Roč. 47, č. 6 (2011), s. 1273-1278 ISSN 0014-3057 R&D Projects: GA ČR GAP208/10/0353; GA AV ČR KAN200520704; GA AV ČR IAA400500703 Institutional research plan: CEZ:AV0Z40500505 Keywords : environmental scanning electron microscopy * self-assembly * amphiphilic block copolymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.739, year: 2011

  17. Strain fields around dislocation arrays in a Σ9 silicon bicrystal measured by scanning transmission electron microscopy

    Science.gov (United States)

    Couillard, Martin; Radtke, Guillaume; Botton, Gianluigi A.

    2013-04-01

    Strain fields around grain boundary dislocations are measured by applying geometric phase analysis on atomic resolution images obtained from multiple fast acquisitions in scanning transmission electron microscopy. Maps of lattice distortions in silicon introduced by an array of pure edge dislocations located at a Σ9(122) grain boundary are compared with the predictions from isotropic elastic theory, and the atomic structure of dislocation cores is deduced from images displaying all the atomic columns. For strain measurements, reducing the acquisition time is found to significantly decrease the effects of instabilities on the high-resolution images. Contributions from scanning artefacts are also diminished by summing multiple images following a cross-correlation alignment procedure. Combined with the sub-Ångström resolution obtained with an aberration corrector, and the stable dedicated microscope's environment, therapid acquisition method provides the measurements of atomic displacements with accuracy below 10 pm. Finally, the advantages of combining strain measurements with the collection of various analytical signals in a scanning transmission electron microscope are discussed.

  18. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution.

    Science.gov (United States)

    Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T

    2018-02-08

    Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text

  19. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens

    International Nuclear Information System (INIS)

    Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D.; Volz, Kerstin

    2017-01-01

    Highlights: • We present STEMsalabim, a modern implementation of the multislice algorithm for simulation of STEM images. • Our package is highly parallelizable on high-performance computing clusters, combining shared and distributed memory architectures. • With STEMsalabim, computationally and memory expensive STEM image simulations can be carried out within reasonable time. - Abstract: We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space.

  20. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens

    Energy Technology Data Exchange (ETDEWEB)

    Oelerich, Jan Oliver, E-mail: jan.oliver.oelerich@physik.uni-marburg.de; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D.; Volz, Kerstin

    2017-06-15

    Highlights: • We present STEMsalabim, a modern implementation of the multislice algorithm for simulation of STEM images. • Our package is highly parallelizable on high-performance computing clusters, combining shared and distributed memory architectures. • With STEMsalabim, computationally and memory expensive STEM image simulations can be carried out within reasonable time. - Abstract: We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space.

  1. EVALUATION OF THE ULTRASTRUCTURE OF THE SMALL INTESTINE OF HIV INFECTED CHILDREN BY TRANSMISSION AND SCANNING ELECTRONIC MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Christiane Araujo Chaves LEITE

    2013-03-01

    Full Text Available Objectives To describe HIV children's small intestinal ultrastructural findings. Methods Descriptive, observational study of small intestine biopsies performed between August 1994 and May 1995 at São Paulo, SP, Brazil. This material pertained to 11 HIV infected children and was stored in a laboratory in paraffin blocks. Scanning and transmission electronic microscopy were used to view those intestine samples and ultrastructural findings were described by analyzing digitalized photos of this material. Ethical Committee approval was obtained. Results In most samples scanning microscopy showed various degrees of shortening and decreasing number of microvilli and also completes effacements in some areas. Derangement of the enterocytes was seen frequently and sometimes cells well defined borders limits seemed to be loosened. In some areas a mucous-fibrin like membrane with variable thickness and extension appeared to partially or totally coat the epithelial surface. Fat drops were present in the intestinal lumen in various samples and a bacterium morphologically resembling bacilli was seen in two occasions. Scanning microscopy confirmed transmission microscopy microvilli findings and also showed little “tufts” of those structures. In addition, it showed an increased number of vacuoles and multivesicular bodies inside various enterocytes, an increased presence of intraepithelial lymphocytes, mitochondrial vacuolization and basement membrane enlargement in the majority of samples analyzed. However, some samples exhibited normal aspect. Conclusions Our study showed the common occurrence of various important intestinal ultrastructural alterations with variable degrees among HIV infected children, some of them in our knowledge not described before.

  2. Analysis of self-organized In(Ga)As quantum structures with the scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Sauerwald, Andres

    2008-01-01

    Aim of this thesis was to apply the analytical methods of the scanning transmission electron microscopy to the study of self-organized In(Ga)As quantum structures. With the imaging methods Z contrast and bright field (position resolutions in the subnanometer range) and especially with the possibilities of the quantitative chemical EELS analysis of the scanning transmission electron microscope (STEM) fundamental questions concerning morphology and chemical properties of self-organized quantum structures should be answered. By the high position resolution of the STEM among others essentail morphological and structural parameters in the growth behaviour of ''dot in a well'' (DWell) structures and of vertically correlated quantum dots (QDs) could be analyzed. For the optimization of DWell structures samples were studied, the nominal InAs-QD growth position was directedly varied within the embedding InGaAs quantum wells. The STEM offers in connection with the EELS method a large potential for the chemical analysis of quantum structures. Studied was a sample series of self-organized InGaAs/GaAs structures on GaAs substrate, the stress of which was changed by varying the Ga content of the INGaAs material between 2.4 % and 4.3 % [de

  3. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    Science.gov (United States)

    Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508

  4. Automated transmission-mode scanning electron microscopy (tSEM for large volume analysis at nanoscale resolution.

    Directory of Open Access Journals (Sweden)

    Masaaki Kuwajima

    Full Text Available Transmission-mode scanning electron microscopy (tSEM on a field emission SEM platform was developed for efficient and cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal, dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 µm(2 (65.54 µm per side at 2 nm pixel size, contrasting with image fields from a modern transmission electron microscope (TEM system, which were only 66.59 µm(2 (8.160 µm per side at the same pixel size. The tSEM produced outstanding images and had reduced distortion and drift relative to TEM. Automated stage and scan control in tSEM easily provided unattended serial section imaging and montaging. Lens and scan properties on both TEM and SEM platforms revealed no significant nonlinear distortions within a central field of ∼100 µm(2 and produced near-perfect image registration across serial sections using the computational elastic alignment tool in Fiji/TrakEM2 software, and reliable geometric measurements from RECONSTRUCT™ or Fiji/TrakEM2 software. Axial resolution limits the analysis of small structures contained within a section (∼45 nm. Since this new tSEM is non-destructive, objects within a section can be explored at finer axial resolution in TEM tomography with current methods. Future development of tSEM tomography promises thinner axial resolution producing nearly isotropic voxels and should provide within-section analyses of structures without changing platforms. Brain was the test system given our interest in synaptic connectivity and plasticity; however, the new tSEM system is readily applicable to other biological systems.

  5. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  6. Analytical electron microscope based on scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy to realize highly sensitive elemental imaging especially for light elements

    International Nuclear Information System (INIS)

    Koguchi, Masanari; Tsuneta, Ruriko; Anan, Yoshihiro; Nakamae, Koji

    2017-01-01

    An analytical electron microscope based on the scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy (STEM-WDX) to realize highly sensitive elemental imaging especially for light elements has been developed. In this study, a large-solid-angle multi-capillary x-rays lens with a focal length of 5 mm, long-time data acquisition (e.g. longer than 26 h), and a drift-free system made it possible to visualize boron-dopant images in a Si substrate at a detection limit of 0.2 atomic percent. (paper)

  7. The influence of Cs/Cc correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy

    International Nuclear Information System (INIS)

    Zaluzec, Nestor J.

    2015-01-01

    Aberration correction in scanning/transmission electron microscopy (S/TEM) owes much to the efforts of a small dedicated group of innovators. Leading that frontier has been Prof. Harald Rose. To date his leadership and dynamic personality has spearheaded our ability to leave behind many of the limitations imposed by spherical aberration (C s ) in high resolution phase contrast imaging. Following shortly behind, has been the development of chromatic aberration correction (C c ) which augments those accomplishments. In this paper we will review and summarize how the combination of C s /C c technology enhances our ability to conduct hyperspectral imaging and spectroscopy in today's and future computationally mediated experiments in both thin as well as realistic specimens in vacuo and during in-situ/environmental experiments

  8. Investigation of secondary hardening in Co–35Ni–20Cr–10Mo alloy using analytical scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Sorensen, D.; Li, B.Q.; Gerberich, W.W.; Mkhoyan, K.A.

    2014-01-01

    The mechanism of secondary hardening in MP35N (Co–35Ni–20Cr–10Mo) alloy due to exposures at elevated temperatures has been studied. It was observed that short exposure to elevated temperatures increased the ultimate tensile strength and yield stress while decreasing the elongation of MP35N wires. Upon aging at temperatures from 300 to 900 °C the elastic modulus increased although no changes in crystallographic orientation or microstructure were observed. The grain size and major texture components were unchanged following aging. Analytical scanning transmission electron microscope investigation showed that MP35N is hardened by preferential segregation of molybdenum to stacking faults and deformation twins. It also revealed that the concentration of molybdenum segregation was proportional to the amount of initial cold work before aging

  9. Morphology of gills of the seawater fish Cathorops spixii (Agassiz (Ariidae by scanning and transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Daura R. Eiras-Stofella

    2002-12-01

    Full Text Available Gills of the seawater fish Cathorops spixii (Agassiz, 1829 were submitted to routine processing for observation in scanning and transmission electron microscopy. The wrinkled surface of the gill filaments showed well-defined cellular ultrastructures. Microridges on cellular surface were projected over all gill structures, including respiratory lamellae. Chloride cells were usually at primary lamellae. Some rodlet cells were found. Mucous secretory cells were uncommon at all parts of the gill arches. The pharyngeal region of the gill arches showed a lot of taste buds but no spines. There were small and strong rakers. Such morphology is indicative of fishes that swallow small food but do not have filtering habits. At the ultrastructural level the gills of C. spixii presented the typical morphological pattern of Teleostei fishes.

  10. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    Science.gov (United States)

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2017-05-01

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of Al x Ga 1-x As, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Three-dimensional imaging of individual point defects using selective detection angles in annular dark field scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jared M.; Im, Soohyun; Windl, Wolfgang; Hwang, Jinwoo, E-mail: hwang.458@osu.edu

    2017-01-15

    We propose a new scanning transmission electron microscopy (STEM) technique that can realize the three-dimensional (3D) characterization of vacancies, lighter and heavier dopants with high precision. Using multislice STEM imaging and diffraction simulations of β-Ga{sub 2}O{sub 3} and SrTiO{sub 3}, we show that selecting a small range of low scattering angles can make the contrast of the defect-containing atomic columns substantially more depth-dependent. The origin of the depth-dependence is the de-channeling of electrons due to the existence of a point defect in the atomic column, which creates extra “ripples” at low scattering angles. The highest contrast of the point defect can be achieved when the de-channeling signal is captured using the 20–40 mrad detection angle range. The effect of sample thickness, crystal orientation, local strain, probe convergence angle, and experimental uncertainty to the depth-dependent contrast of the point defect will also be discussed. The proposed technique therefore opens new possibilities for highly precise 3D structural characterization of individual point defects in functional materials. - Highlights: • A new electron microscopy technique that can visualize 3D position of point defect is proposed. • The technique relies on the electron de-channeling signals at low scattering angles. • The technique enables precise determination of the depth of vacancies and lighter impurity atoms.

  12. Scanning and transmission electron microscopy investigation of multiwall carbon nanotube/nickel oxide nanocomposite thin films

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2011-12-01

    Full Text Available Owing to their unique electronic and optical properties, nanocomposite thin films are widely used for converting solar radiation therapy into other conventional energy forms, such as heat and electricity. Carbon nanotube-based composites which can...

  13. Exceptionally Slow Movement of Gold Nanoparticles at a Solid/Liquid Interface Investigated by Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Verch, Andreas; Pfaff, Marina; de Jonge, Niels

    2015-06-30

    Gold nanoparticles were observed to move at a liquid/solid interface 3 orders of magnitude slower than expected for the movement in a bulk liquid by Brownian motion. The nanoscale movement was studied with scanning transmission electron microscopy (STEM) using a liquid enclosure consisting of microchips with silicon nitride windows. The experiments involved a variation of the electron dose, the coating of the nanoparticles, the surface charge of the enclosing membrane, the viscosity, and the liquid thickness. The observed slow movement was not a result of hydrodynamic hindrance near a wall but instead explained by the presence of a layer of ordered liquid exhibiting a viscosity 5 orders of magnitude larger than a bulk liquid. The increased viscosity presumably led to a dramatic slowdown of the movement. The layer was formed as a result of the surface charge of the silicon nitride windows. The exceptionally slow motion is a crucial aspect of electron microscopy of specimens in liquid, enabling a direct observation of the movement and agglomeration of nanoscale objects in liquid.

  14. Theory of bright-field scanning transmission electron microscopy for tomography

    International Nuclear Information System (INIS)

    Levine, Zachary H.

    2005-01-01

    Radiation transport theory is applied to electron microscopy of samples composed of one or more materials. The theory, originally due to Goudsmit and Saunderson, assumes only elastic scattering and an amorphous medium dominated by atomic interactions. For samples composed of a single material, the theory yields reasonable parameter-free agreement with experimental data taken from the literature for the multiple scattering of 300-keV electrons through aluminum foils up to 25 μm thick. For thin films, the theory gives a validity condition for Beer's law. For thick films, a variant of Moliere's theory [V. G. Moliere, Z. Naturforschg. 3a, 78 (1948)] of multiple scattering leads to a form for the bright-field signal for foils in the multiple-scattering regime. The signal varies as [t ln(e 1-2γ t/τ)] -1 where t is the path length of the beam, τ is the mean free path for elastic scattering, and γ is Euler's constant. The Goudsmit-Saunderson solution interpolates numerically between these two limits. For samples with multiple materials, elemental sensitivity is developed through the angular dependence of the scattering. From the elastic scattering cross sections of the first 92 elements, a singular-value decomposition of a vector space spanned by the elastic scattering cross sections minus a delta function shows that there is a dominant common mode, with composition-dependent corrections of about 2%. A mathematically correct reconstruction procedure beyond 2% accuracy requires the acquisition of the bright-field signal as a function of the scattering angle. Tomographic reconstructions are carried out for three singular vectors of a sample problem with four elements Cr, Cu, Zr, and Te. The three reconstructions are presented jointly as a color image; all four elements are clearly identifiable throughout the image

  15. An in-situ analytical scanning and transmission electron microscopy investigation of structure-property relationships in electronic materials

    Science.gov (United States)

    Wagner, Andrew James

    As electronic and mechanical devices are scaled downward in size and upward in complexity, macroscopic principles no longer apply. Synthesis of three-dimensionally confined structures exhibit quantum confinement effects allowing, for example, silicon nanoparticles to luminesce. The reduction in size of classically brittle materials reveals a ductile-to-brittle transition. Such a transition, attributed to a reduction in defects, increases elasticity. In the case of silicon, elastic deformation can improve electronic carrier mobility by over 50%, a vital attribute of modern integrated circuits. The scalability of such principles and the changing atomistic processes which contribute to them presents a vitally important field of research. Beginning with the direct observation of dislocations and lattice planes in the 1950s, the transmission electron microscope has been a powerful tool in materials science. More recently, as nanoscale technologies have proliferated modern life, their unique ability to spatially resolve nano- and atomic-scale structures has become a critical component of materials research and characterization. Signals produced by an incident beam of high-energy electrons enables researchers to both image and chemically analyze materials at the atomic scale. Coherently and elastically-scattered electrons can be collected to produce atomic-scale images of a crystalline sample. New specimen stages have enabled routine investigation of samples heated up to 1000 °C and cooled to liquid nitrogen temperatures. MEMS-based transducers allow for sub-nm scale mechanical testing and ultrathin membranes allow study of liquids and gases. Investigation of a myriad of previously "unseeable" processes can now be observed within the TEM, and sometimes something new is found within the old. High-temperature annealing of pure a Si:H films leads to crystallization of the film. Such films provide higher carrier mobility compared to amorphous films, offering improved

  16. Acquisition parameters optimization of a transmission electron forward scatter diffraction system in a cold-field emission scanning electron microscope for nanomaterials characterization.

    Science.gov (United States)

    Brodusch, Nicolas; Demers, Hendrix; Trudeau, Michel; Gauvin, Raynald

    2013-01-01

    Transmission electron forward scatter diffraction (t-EFSD) is a new technique providing crystallographic information with high resolution on thin specimens by using a conventional electron backscatter diffraction (EBSD) system in a scanning electron microscope. In this study, the impact of tilt angle, working distance, and detector distance on the Kikuchi pattern quality were investigated in a cold-field emission scanning electron microscope (CFE-SEM). We demonstrated that t-EFSD is applicable for tilt angles ranging from -20° to -40°. Working distance (WD) should be optimized for each material by choosing the WD for which the EBSD camera screen illumination is the highest, as the number of detected electrons on the screen is directly dependent on the scattering angle. To take advantage of the best performances of the CFE-SEM, the EBSD camera should be close to the sample and oriented towards the bottom to increase forward scattered electron collection efficiency. However, specimen chamber cluttering and beam/mechanical drift are important limitations in the CFE-SEM used in this work. Finally, the importance of t-EFSD in materials science characterization was illustrated through three examples of phase identification and orientation mapping. © Wiley Periodicals, Inc.

  17. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.S., E-mail: jinsong-wu@northwestern.edu [Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Kim, A.M. [Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Bleher, R. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Myers, B.D. [Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Marvin, R.G. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Inada, H.; Nakamura, K. [Hitachi High-Technologies Corporation, Ibaraki 312-8504 (Japan); Zhang, X.F. [Hitachi High Technologies America, Inc., 5960 Inglewood Drive, Pleasanton, California 94588 (United States); Roth, E. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Li, S.Y. [Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208 (United States); and others

    2013-05-15

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. - Highlights: ► Applications of STEM in characterization of biological samples are demonstrated. ► Elemental analyses are performed by dual EDS and EELS. ► Both the surface and internal structure of cells can be studied simultaneously. ► The imaging contrast in low-dose cryo-STEM has been analyzed.

  18. Quantitative annular dark field scanning transmission electron microscopy for nanoparticle atom-counting: What are the limits?

    International Nuclear Information System (INIS)

    De Backer, A; De Wael, A; Gonnissen, J; Martinez, G T; Béché, A; Van Aert, S; MacArthur, K E; Jones, L; Nellist, P D

    2015-01-01

    Quantitative atomic resolution annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique for nanoparticle atom-counting. However, a lot of nanoparticles provide a severe characterisation challenge because of their limited size and beam sensitivity. Therefore, quantitative ADF STEM may greatly benefit from statistical detection theory in order to optimise the instrumental microscope settings such that the incoming electron dose can be kept as low as possible whilst still retaining single-atom precision. The principles of detection theory are used to quantify the probability of error for atom-counting. This enables us to decide between different image performance measures and to optimise the experimental detector settings for atom-counting in ADF STEM in an objective manner. To demonstrate this, ADF STEM imaging of an industrial catalyst has been conducted using the near-optimal detector settings. For this experiment, we discussed the limits for atomcounting diagnosed by combining a thorough statistical method and detailed image simulations. (paper)

  19. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Wu, J.S.; Kim, A.M.; Bleher, R.; Myers, B.D.; Marvin, R.G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. - Highlights: ► Applications of STEM in characterization of biological samples are demonstrated. ► Elemental analyses are performed by dual EDS and EELS. ► Both the surface and internal structure of cells can be studied simultaneously. ► The imaging contrast in low-dose cryo-STEM has been analyzed

  20. Scanning transmission electron microscopy analysis of Ge(O)/(graphitic carbon nitride) nanocomposite powder

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro [JEOL USA Inc., 11 Dearborn Road, Peabody, MA 01960 (United States); Sompetch, Kanganit [Department of Chemistry and Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sarakonsri, Thapanee, E-mail: tsarakonsri@gmail.com [Department of Chemistry and Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Shiojiri, Makoto [Kyoto Institute of Technology, Kyoto 606-8585 (Japan); School of Science and Engineering, University of Toyama, Toyama 930-8555 (Japan)

    2015-12-15

    Analytical electron microscopy has revealed the structure of particles that were synthesized by chemical reaction of GeO{sub 2} with NaBH{sub 4} in the basic solution including graphitic carbon nitride (g-C{sub 3}N{sub 4}) powders. The g-C{sub 3}N{sub 4} was arranged by recrystallization of melamine at 600 °C under N{sub 2} gas atmosphere. The samples were dried at 60 °C or 180 °C for 4 h. The g-C{sub 3}N{sub 4} was observed as lamellae of several ten nm or less in size and had an amorphous-like structure with a distorted lattice in an area as small as a few hundred pm in size. The reaction product was Ge(O) particles as fine as several nm in size and composed of Ge and O atoms. Most of the particles must be of GeO{sub 2−x} with the amorphous-like structure that has also a distorted lattice in an area of a few hundred pm in size. In the sample dried at 60 °C, the particles were found to be dispersed in a wide area on the g-C{sub 3}N{sub 4} lamella. It is hard to recognize those particles in TEM images. The particles in the sample dried at 180 °C became larger and were easily observed as isolated lumps. Hence, these powders can be regarded as GeO{sub 2}/g-C{sub 3}N{sub 4} or Ge/GeO{sub 2}/g-C{sub 3}N{sub 4} nanocomposites, and expected to be applicable to anode materials for high energy Li-ion batteries due to Ge catalysis effect, accordingly. - Graphical abstract: STEM analysis of Ge(O)/(graphitic carbon nitride) nanocomposite powder. - Highlights: • Graphitic (g)-C{sub 3}N{sub 4} powder was prepared at 600 °C by recrystallization of melamine. • Ge(O) was prepared by chemical reaction in a solution including the g-C{sub 3}N{sub 4} powders. • The products can be regarded as GeO{sub 2}/g-C{sub 3}N{sub 4} or Ge/GeO{sub 2}/g-C{sub 3}N{sub 4} nanocomposites. • GeO{sub 2} was amorphous several-nm particles and g-C{sub 3}N{sub 4} was amorphous lamella of several 10 nm in size. • We expect them to be applicable for high energy Li-ion battery anode

  1. In-situ Study of Dynamic Phenomena at Metal Nanosolder Interfaces Using Aberration Corrected Scanning Transmission Electron Microcopy.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ping

    2014-10-01

    Controlling metallic nanoparticle (NP) interactions plays a vital role in the development of new joining techniques (nanosolder) that bond at lower processing temperatures but remain viable at higher temperatures. The pr imary objective of this project is t o develop a fundamental understanding of the actual reaction processes, associated atomic mechanisms, and the resulting microstructure that occur during thermally - driven bond formation concerning metal - metal nano - scale (%3C50nm) interfaces. In this LDRD pr oject, we have studied metallic NPs interaction at the elevated temperatures by combining in - situ transmission electron microscopy (TEM ) using an aberration - corrected scanning transmission electron microscope (AC - STEM) and atomic - scale modeling such as m olecular dynamic (MD) simulations. Various metallic NPs such as Ag, Cu and Au are synthesized by chemical routines. Numerous in - situ e xperiments were carried out with focus of the research on study of Ag - Cu system. For the first time, using in - situ STEM he ating experiments , we directly observed t he formation of a 3 - dimensional (3 - D) epitaxial Cu - Ag core - shell nanoparticle during the thermal interaction of Cu and Ag NPs at elevated temperatures (150 - 300 o C). The reaction takes place at temperatures as low as 150 o C and was only observed when care was taken to circumvent the effects of electron beam irradiation during STEM imaging. Atomic - scale modeling verified that the Cu - Ag core - shell structure is energetically favored, and indicated that this phenomenon is a nano - scale effect related to the large surface - to - volume ratio of the NPs. The observation potentially can be used for developing new nanosolder technology that uses Ag shell as the "glue" that stic ks the particles of Cu together. The LDRD has led to several journal publications and numerous conference presentations, and a TA. In addition, we have developed new TEM characterization techniques and phase

  2. Structural characterization of annatto seeds (Bixa orellana) by transmission and scanning electron microscopy submitted to gamma radiation for dormancy break

    Energy Technology Data Exchange (ETDEWEB)

    Harder, Marcia N.C.; Nogueira, Neusa L.; Arthur, Valter; Rossi, Monica L.; Rodriguez, Adriana P.M. [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)]. E-mails: mnharder@cena.usp.br; nogueira@cena.usp.br; arthur@cena.usp.br; mnicalr@cena.usp.br; riana@cena.usp.br

    2007-07-01

    The annatto (Bixa orellana) is the only species of the Bixaceae family. From the seeds an important food colorant is obtained, bixin, for the industry and domestic use. More recently studies have focused more extensively in medicinal purpose of the species. Due to structural and physiologic characteristics, the seeds have low germination rate, around 30 %. The irradiation of seeds with gamma radiation can promote the increase and/or acceleration of germination, better plant development and productivity, among other aspects. The radiation doses used for this purpose should not cause genetic modifications in the organism, hence experimentation is needed to define the appropriate doses. Absence of research done annatto related to the use of the irradiation aiming at the increase of germination rates lead to the structural characterization of the annatto seeds submitted to gamma radiation through transmission (TEM) and scanning electron microscopy (SEM). The objective of this study was to verify the effect of radiation on the seeds structures during the process of dormancy break. Dry seeds and seeds immersed in distilled water for 24 hours were submitted to gamma radiation from source of Co{sup 60} type Gammacell-220 at CENA/USP, at doses 100 Gy. After irradiation the seeds were processed for TEM and SEM. Preliminary results, showed structural modifications in the seeds. (author)

  3. Analysis of the dopant distribution in Co-deposited organic thin films by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Paredes, Yolanda A.; Campos, Andrea P.C.; Achete, Carlos A.; Cremona, Marco

    2015-01-01

    Organic light-emitting diodes using phosphorescent dyes (PHOLEDs) have excellent performance, with internal quantum efficiencies approaching 100%. To maximize their performance, PHOLED devices use a conductive organic host material with a sufficiently dispersed phosphorescent guest to avoid concentration quenching. Fac-tris(2-phenylpyridine) iridium, [Ir(ppy)_3] is one of the most widely used green phosphorescent organic compounds. In this work, we used scanning transmission electron microscopy (STEM) equipped with HAADF (high-angle annular dark-field) and EDS (energy dispersive X-ray spectroscopy) detectors to analyze the distribution of the [Ir(ppy)_3] concentration in the host material. This analysis technique, employed for the first time in co-deposited organic thin films, can simultaneously obtain an image and its respective chemical information, allowing for definitive characterization of the distribution and morphology of [Ir(ppy)_3]. The technique was also used to analyze the effect of the vibration of the substrate during thermal co-deposition of the [Ir(ppy)_3] molecules into an organic matrix. - Highlights: • We present a methodology to analyze the dopant distribution in organic thin films. • The method combines HAADF-STEM imaging and EDS X-ray spectroscopy. • Ir(ppy)_3 dopant was co-deposited into Spiro2-CBP organic matrix. • The dopant was co-deposited with and without substrate vibration. • Images and chemical information of the dopant were simultaneously obtained.

  4. Escherichia coli pyruvate dehydrogenase complex: particle masses of the complex and component enzymes measured by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    CaJacob, C.A.; Frey, P.A.; Hainfeld, J.F.; Wall, J.S.; Yang, H.

    1985-01-01

    Particle masses of the Escherichia coli pyruvate dehydrogenase (PDH) complex and its component enzymes have been measured by scanning transmission electron microscopy (STEM). The particle mass of PDH complex measured by STEM is 5.28 X 10(6) with a standard deviation of 0.40 X 10(6). The masses of the component enzymes are 2.06 X 10(5) for the dimeric pyruvate dehydrogenase (E1), 1.15 X 10(5) for dimeric dihydrolipoyl dehydrogenase (E3), and 2.20 X 10(6) for dihydrolipoyl transacetylase (E2), the 24-subunit core enzyme. STEM measurements on PDH complex incubated with excess E3 or E1 failed to detect any additional binding of E3 but showed that the complex would bind additional E1 under forcing conditions. The additional E1 subunits were bound too weakly to represent binding sites in an isolated or isolable complex. The mass measurements by STEM are consistent with the subunit composition 24:24:12 when interpreted in the light of the flavin content of the complex and assuming 24 subunits in the core enzyme (E2)

  5. Analysis of the dopant distribution in Co-deposited organic thin films by scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Yolanda A. [Center of Nanotechnology and Nanoscience, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171-5-31B (Ecuador); Campos, Andrea P.C.; Achete, Carlos A. [DIMAT—INMETRO, Xerém, Duque de Caxias, RJ 25250-020 (Brazil); Cremona, Marco [DIMAT—INMETRO, Xerém, Duque de Caxias, RJ 25250-020 (Brazil); Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, PUC-Rio, Rio de Janeiro, RJ 22453-970 (Brazil)

    2015-12-01

    Organic light-emitting diodes using phosphorescent dyes (PHOLEDs) have excellent performance, with internal quantum efficiencies approaching 100%. To maximize their performance, PHOLED devices use a conductive organic host material with a sufficiently dispersed phosphorescent guest to avoid concentration quenching. Fac-tris(2-phenylpyridine) iridium, [Ir(ppy){sub 3}] is one of the most widely used green phosphorescent organic compounds. In this work, we used scanning transmission electron microscopy (STEM) equipped with HAADF (high-angle annular dark-field) and EDS (energy dispersive X-ray spectroscopy) detectors to analyze the distribution of the [Ir(ppy){sub 3}] concentration in the host material. This analysis technique, employed for the first time in co-deposited organic thin films, can simultaneously obtain an image and its respective chemical information, allowing for definitive characterization of the distribution and morphology of [Ir(ppy){sub 3}]. The technique was also used to analyze the effect of the vibration of the substrate during thermal co-deposition of the [Ir(ppy){sub 3}] molecules into an organic matrix. - Highlights: • We present a methodology to analyze the dopant distribution in organic thin films. • The method combines HAADF-STEM imaging and EDS X-ray spectroscopy. • Ir(ppy){sub 3} dopant was co-deposited into Spiro2-CBP organic matrix. • The dopant was co-deposited with and without substrate vibration. • Images and chemical information of the dopant were simultaneously obtained.

  6. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle

    Energy Technology Data Exchange (ETDEWEB)

    Woehl, Taylor, E-mail: tjwoehl@umd.edu; Keller, Robert

    2016-12-15

    An annular dark field (ADF) detector was placed beneath a specimen in a field emission scanning electron microscope operated at 30 kV to calibrate detector response to incident beam current, and to create transmission images of gold nanoparticles on silicon nitride (SiN) substrates of various thicknesses. Based on the linear response of the ADF detector diodes to beam current, we developed a method that allowed for direct determination of the percentage of that beam current forward scattered to the ADF detector from the sample, i.e. the transmitted electron (TE) yield. Collection angles for the ADF detector region were defined using a masking aperture above the detector and were systematically varied by changing the sample to detector distance. We found the contrast of the nanoparticles, relative to the SiN substrate, decreased monotonically with decreasing inner exclusion angle and increasing substrate thickness. We also performed Monte Carlo electron scattering simulations, which showed quantitative agreement with experimental contrast associated with the nanoparticles. Together, the experiments and Monte Carlo simulations revealed that the decrease in contrast with decreasing inner exclusion angle was due to a rapid increase in the TE yield of the low atomic number substrate. Nanoparticles imaged at low inner exclusion angles (<150 mrad) and on thick substrates (>50 nm) showed low image contrast in their centers surrounded by a bright high-contrast halo on their edges. This complex image contrast was predicted by Monte Carlo simulations, which we interpreted in terms of mixing of the nominally bright field (BF) and ADF electron signals. Our systematic investigation of inner exclusion angle and substrate thickness effects on ADF t-SEM imaging provides fundamental understanding of the contrast mechanisms for image formation, which in turn suggest practical limitations and optimal imaging conditions for different substrate thicknesses. - Highlights: • Developed a

  7. Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector.

    Science.gov (United States)

    Morishita, Shigeyuki; Ishikawa, Ryo; Kohno, Yuji; Sawada, Hidetaka; Shibata, Naoya; Ikuhara, Yuichi

    2018-02-01

    The achievement of a fine electron probe for high-resolution imaging in scanning transmission electron microscopy requires technological developments, especially in electron optics. For this purpose, we developed a microscope with a fifth-order aberration corrector that operates at 300 kV. The contrast flat region in an experimental Ronchigram, which indicates the aberration-free angle, was expanded to 70 mrad. By using a probe with convergence angle of 40 mrad in the scanning transmission electron microscope at 300 kV, we attained the spatial resolution of 40.5 pm, which is the projected interatomic distance between Ga-Ga atomic columns of GaN observed along [212] direction.

  8. Enhanced phase contrast transfer using ptychography combined with a pre-specimen phase plate in a scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Ercius, Peter [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Nellist, Peter D. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Ophus, Colin, E-mail: clophus@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-15

    The ability to image light elements in both crystalline and noncrystalline materials at near atomic resolution with an enhanced contrast is highly advantageous to understand the structure and properties of a wide range of beam sensitive materials including biological specimens and molecular hetero-structures. This requires the imaging system to have an efficient phase contrast transfer at both low and high spatial frequencies. In this work we introduce a new phase contrast imaging method in a scanning transmission electron microscope (STEM) using a pre-specimen phase plate in the probe forming aperture, combined with a fast pixelated detector to record diffraction patterns at every probe position, and phase reconstruction using ptychography. The phase plate significantly enhances the contrast transfer of low spatial frequency information, and ptychography maximizes the extraction of the phase information at all spatial frequencies. In addition, the STEM probe with the presence of the phase plate retains its atomic resolution, allowing simultaneous incoherent Z-contrast imaging to be obtained along with the ptychographic phase image. An experimental image of Au nanoparticles on a carbon support shows high contrast for both materials. Multislice image simulations of a DNA molecule shows the capability of imaging soft matter at low dose conditions, which implies potential applications of low dose imaging of a wide range of beam sensitive materials. - Highlights: • This work demonstrates a phase contrast imaging method by combining a pre-specimen phase plate with ptychogrpahy. • This method is shown to have a high phase contrast transfer efficiency at both low and high spatial frequencies. • Unlike CTEM which uses a heavy defocus to gain contrast, the phase plate gives a linear phase contrast at zero defocus aberrations. • Image simulations of DNA suggest this method is highly attractive for imaging beam sensitive materials at a low dose.

  9. A new method to detect and correct sample tilt in scanning transmission electron microscopy bright-field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.G. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Ishikawa, R.; Sánchez-Santolino, G. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Lugg, N.R., E-mail: shibata@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Ikuhara, Y. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Allen, L.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan)

    2017-02-15

    Important properties of functional materials, such as ferroelectric shifts and octahedral distortions, are associated with displacements of the positions of lighter atoms in the unit cell. Annular bright-field scanning transmission electron microscopy is a good experimental method for investigating such phenomena due to its ability to image light and heavy atoms simultaneously. To map atomic positions at the required accuracy precise angular alignment of the sample with the microscope optical axis is necessary, since misalignment (tilt) of the specimen contributes to errors in position measurements of lighter elements in annular bright-field imaging. In this paper it is shown that it is possible to detect tilt with the aid of images recorded using a central bright-field detector placed within the inner radius of the annular bright-field detector. For a probe focus near the middle of the specimen the central bright-field image becomes especially sensitive to tilt and we demonstrate experimentally that misalignment can be detected with a precision of less than a milliradian, as we also confirm in simulation. Coma in the probe, an aberration that can be misidentified as tilt of the specimen, is also investigated and it is shown how the effects of coma and tilt can be differentiated. The effects of tilt may be offset to a large extent by shifting the diffraction plane detector an amount equivalent to the specimen tilt and we provide an experimental proof of principle of this using a segmented detector system. - Highlights: • Octahedral distortions are associated with displacements of lighter atoms. • Annular bright-field imaging is sensitive to light and heavy atoms simultaneously. • Mistilt of the specimen leads to errors in position measurements of lighter elements. • It is possible to detect tilt using images taken by a central bright-field detector. • Tilt may be offset by shifting the diffraction plane detector by an equivalent amount.

  10. Puzzling Intergrowth in Cerium Nitridophosphate Unraveled by Joint Venture of Aberration-Corrected Scanning Transmission Electron Microscopy and Synchrotron Diffraction.

    Science.gov (United States)

    Kloß, Simon D; Neudert, Lukas; Döblinger, Markus; Nentwig, Markus; Oeckler, Oliver; Schnick, Wolfgang

    2017-09-13

    Thorough investigation of nitridophosphates has rapidly accelerated through development of new synthesis strategies. Here we used the recently developed high-pressure metathesis to prepare the first rare-earth metal nitridophosphate, Ce 4 Li 3 P 18 N 35 , with a high degree of condensation >1/2. Ce 4 Li 3 P 18 N 35 consists of an unprecedented hexagonal framework of PN 4 tetrahedra and exhibits blue luminescence peaking at 455 nm. Transmission electron microscopy (TEM) revealed two intergrown domains with slight structural and compositional variations. One domain type shows extremely weak superstructure phenomena revealed by atomic-resolution scanning TEM (STEM) and single-crystal diffraction using synchrotron radiation. The corresponding superstructure involves a modulated displacement of Ce atoms in channels of tetrahedra 6-rings. The displacement model was refined in a supercell as well as in an equivalent commensurate (3 + 2)-dimensional description in superspace group P6 3 (α, β, 0)0(-α - β, α, 0)0. In the second domain type, STEM revealed disordered vacancies of the same Ce atoms that were modulated in the first domain type, leading to sum formula Ce 4-0.5x Li 3 P 18 N 35-1.5x O 1.5x (x ≈ 0.72) of the average structure. The examination of these structural intricacies may indicate the detection limit of synchrotron diffraction and TEM. We discuss the occurrence of either Ce displacements or Ce vacancies that induce the incorporation of O as necessary stabilization of the crystal structure.

  11. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  12. Morphology and ultrastructure of the freshwater rotifer Brachionus bidentatus (Monogononta: Brachionidae) using scanning and transmission electron microscopy.

    Science.gov (United States)

    Guerrero-Jiménez, Gerardo; Zavala-Padilla, Guadalupe; Silva-Briano, Marcelo; Rico-Martínez, Roberto

    2013-12-01

    The study of sexual reproductive behavior supported by ultrastructural evidence is important in rotifers to describe differences among potential cryptic species. In this research, the morphology of the rotifer Brachionus bidentatus is described at the ultrastructural level, using electronic microscopy, together with a brief description and discussion of its sexual reproductive behavior. The characteristics of the (a) male, (b) the female, (c) the sexual egg or cyst, (d) the partenogenic egg, (e) the no-fecundated sexual egg (male egg), and (f) the trophi, were described. Another part of this research is dedicated to the ultrastructure of the sex cells of the male rotifer B. bidentatus. Samples were obtained from La Punta pond in Cosio, Aguascalientes, Mexico (22 degrees 08' N - 102 degrees 24' W), and a culture was maintained in the laboratory. Fifty organisms, from different stages of the rotifer Brachionus bidentatus, were fixed in Formol at 4% and then prepared; besides, for the trophi, 25 female rotifer Brachionus bidentatus were prepared for observation in a JEOL 5900 LV scanning electronic microscope. In addition, for the observation of male sex cells, 500 males of Brachionus bidentatus were isolated, fixed and observed in a JEOL 1010 transmission microscope. Females of B. bidentatus in laboratory cultures had a lifespan of five days (mean+one SD = 4.69 +/- 0.48; N=13), and produced 4.5 +/- 3.67 (N=6) parthenogenetic eggs during such lifespan. In the case of non-fertilized sexual eggs, they produced up to 18 eggs (mean+one SD = 13 +/- 4.93; N=7). Sexual females produced a single cyst on average (mean +/- one SD = I +/- 0; N=20). For the sexual cycle, the time of copulation between male and female ranged from 10 to 40 seconds (mean +/- one SD = 17.33 +/- 10.55, N=7). The spermatozoa are composed of a celular body and a flagellum, the size of the body is of 300 nm while the flagellum measures 1 700nm. The rods have a double membrane. Their mean length is almost

  13. Scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1970-05-15

    The JSM-11 scanning electron microscope at CRNL has been used extensively for topographical studies of oxidized metals, fracture surfaces, entomological and biological specimens. A non-dispersive X-ray attachment permits the microanalysis of the surface features. Techniques for the production of electron channeling patterns have been developed. (author)

  14. Scanning electron microscope

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The principle underlying the design of the scanning electron microscope (SEM), the design and functioning of SEM are described. Its applications in the areas of microcircuitry and materials science are outlined. The development of SEM in India is reviewed. (M.G.B.)

  15. Scanning and transmission electron microscopy of a craniopharyngioma: x-ray microanalytical study of the intratumoral mineralized deposits

    Energy Technology Data Exchange (ETDEWEB)

    Vilches, J.; Lopez, A.; Martinez, M.C.; Gomez, J.; Barbera, J.

    This paper discusses the value of scanning electron microscopy (SEM) and x-ray microanalysis in the classification of craniopharyngiomas. This neoplasm shows epithelial nest, cords of cuboid cells, foci of squamous metaplasia, and microcystic degeneration. SEM reveals that the epithelial cysts are lined with elongated cells that possess numerous microvilli and blebs and that some cysts are lined with polyhedral cells. The microvilli are interpreted as characteristic of the fast growing craniopharyngiomas. A microanalytical study of the calcified areas reveals the presence of magnesium, phosphorus, and calcium.

  16. Forensic Scanning Electron Microscope

    Science.gov (United States)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  17. Towards the low-dose characterization of beam sensitive nanostructures via implementation of sparse image acquisition in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Hwang, Sunghwan; Han, Chang Wan; Ortalan, Volkan; Venkatakrishnan, Singanallur V; Bouman, Charles A

    2017-01-01

    Scanning transmission electron microscopy (STEM) has been successfully utilized to investigate atomic structure and chemistry of materials with atomic resolution. However, STEM’s focused electron probe with a high current density causes the electron beam damages including radiolysis and knock-on damage when the focused probe is exposed onto the electron-beam sensitive materials. Therefore, it is highly desirable to decrease the electron dose used in STEM for the investigation of biological/organic molecules, soft materials and nanomaterials in general. With the recent emergence of novel sparse signal processing theories, such as compressive sensing and model-based iterative reconstruction, possibilities of operating STEM under a sparse acquisition scheme to reduce the electron dose have been opened up. In this paper, we report our recent approach to implement a sparse acquisition in STEM mode executed by a random sparse-scan and a signal processing algorithm called model-based iterative reconstruction (MBIR). In this method, a small portion, such as 5% of randomly chosen unit sampling areas (i.e. electron probe positions), which corresponds to pixels of a STEM image, within the region of interest (ROI) of the specimen are scanned with an electron probe to obtain a sparse image. Sparse images are then reconstructed using the MBIR inpainting algorithm to produce an image of the specimen at the original resolution that is consistent with an image obtained using conventional scanning methods. Experimental results for down to 5% sampling show consistency with the full STEM image acquired by the conventional scanning method. Although, practical limitations of the conventional STEM instruments, such as internal delays of the STEM control electronics and the continuous electron gun emission, currently hinder to achieve the full potential of the sparse acquisition STEM in realizing the low dose imaging condition required for the investigation of beam-sensitive materials

  18. Towards atomic scale engineering of rare-earth-doped SiAlON ceramics through aberration-corrected scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Yurdakul, Hilmi; Idrobo, Juan C.; Pennycook, Stephen J.; Turan, Servet

    2011-01-01

    Direct visualization of rare earths in α- and β-SiAlON unit-cells is performed through Z-contrast imaging technique in an aberration-corrected scanning transmission electron microscope. The preferential occupation of Yb and Ce atoms in different interstitial locations of β-SiAlON lattice is demonstrated, yielding higher solubility for Yb than Ce. The triangular-like host sites in α-SiAlON unit cell accommodate more Ce atoms than hexagonal sites in β-SiAlON. We think that our results will be applicable as guidelines for many kinds of rare-earth-doped materials.

  19. Fine structures and ion images on fresh frozen dried ultrathin sections by transmission electron and scanning ion microscopy

    International Nuclear Information System (INIS)

    Takaya, K.; Okabe, M.; Sawataishi, M.; Takashima, H.; Yoshida, T.

    2003-01-01

    Ion microscopy (IM) of air-dried or freeze-dried cryostat and semi-thin cryosections has provided ion images of elements and organic substances in wide areas of the tissue. For reproducible ion images by a shorter time of exposure to the primary ion beam, fresh frozen dried ultrathin sections were prepared by freezing the tissue in propane chilled with liquid nitrogen, cryocut at 60 nm, mounted on grids and silicon wafer pieces, and freeze-dried. Rat Cowper gland and sciatic nerve, bone marrow of the rat administered of lithium carbonate, tree frog and African toad spleen and buffy coat of atopic dermatitis patients were examined. Fine structures and ion images of the corresponding areas in the same or neighboring sections were observed by transmission electron microscopy (TEM) followed by sector type and time-of-flight type IM. Cells in the buffy coat contained larger amounts of potassium and magnesium while plasma had larger amounts of sodium and calcium. However, in the tissues, lithium, sodium, magnesium, calcium and potassium were distributed in the cell and calcium showed a granular appearance. A granular cell of the tree frog spleen contained sodium and potassium over the cell and magnesium and calcium were confined to granules

  20. Direct observation of dislocation dissociation and Suzuki segregation in a Mg–Zn–Y alloy by aberration-corrected scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Yang Zhiqing; Chisholm, Matthew F.; Duscher, Gerd; Ma Xiuliang; Pennycook, Stephen J.

    2013-01-01

    Crystal defects in a plastically deformed Mg–Zn–Y alloy have been studied on the atomic scale using aberration-corrected scanning transmission electron microscopy, providing important structural data for understanding the material’s deformation behavior and strengthening mechanisms. Atomic scale structures of deformation stacking faults resulting from dissociation of different types of dislocations have been characterized experimentally, and modeled. Suzuki segregation of Zn and Y along stacking faults formed through dislocation dissociation during plastic deformation at 300 °C is confirmed experimentally on the atomic level. The stacking fault energy of the Mg–Zn–Y alloy is evaluated to be in the range of 4.0–10.3 mJ m −2 . The newly formed nanometer-wide stacking faults with their Zn/Y segregation in Mg grains play an important role in the superior strength of this alloy at elevated temperatures.

  1. Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observation.

    Science.gov (United States)

    Straubinger, Rainer; Beyer, Andreas; Volz, Kerstin

    2016-06-01

    A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa.

  2. Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

    Science.gov (United States)

    Boyes, Edward D.; Gai, Pratibha L.

    2014-02-01

    Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"

  3. In situ observation of the impact of surface oxidation on the crystallization mechanism of GeTe phase-change thin films by scanning transmission electron microscopy

    Science.gov (United States)

    Berthier, R.; Bernier, N.; Cooper, D.; Sabbione, C.; Hippert, F.; Noé, P.

    2017-09-01

    The crystallization mechanisms of prototypical GeTe phase-change material thin films have been investigated by in situ scanning transmission electron microscopy annealing experiments. A novel sample preparation method has been developed to improve sample quality and stability during in situ annealing, enabling quantitative analysis and live recording of phase change events. Results show that for an uncapped 100 nm thick GeTe layer, exposure to air after fabrication leads to composition changes which promote heterogeneous nucleation at the oxidized surface. We also demonstrate that protecting the GeTe layer with a 10 nm SiN capping layer prevents nucleation at the surface and allows volume nucleation at a temperature 50 °C higher than the onset of crystallization in the oxidized sample. Our results have important implications regarding the integration of these materials in confined memory cells.

  4. Scanning and transmission electron microscopy of the tegument of Paranaella luquei Kohn, Baptista-Farias & Cohen, 2000 (Microcotylidae, Monogenea, parasite of a Brazilian catfish, Hypostomus regani

    Directory of Open Access Journals (Sweden)

    SC Cohen

    2001-05-01

    Full Text Available The surface topography and ultrastructure of the tegument of Paranaella luquei Kohn, Baptista-Farias & Cohen, 2000, a microcotylid monogenean parasite from the gills of Hypostomus regani (Ihering, 1905 (Loricariidae was studied by scanning (SEM and transmission electron microscopy (TEM. By SEM, it was observed that the tegument presents transversal ridges, forming folds in the ventral and dorsal surfaces and microvillous-like tegumental projections in the anterior and median regions of body. These projections were also observed by TEM. The tegument is made up of a syncytium delimited by apical and basal plasma membranes, containing inclusion bodies and mitochondria, connected to the nucleated region by means of cytoplasmatic processes. The tegumental cells present a well developed nucleus and cytoplasm containing inclusion bodies, similar to those found on the external layer, mitochondria, rough endoplasmatic reticulum and free ribossomes.

  5. The influence of C{sub s}/C{sub c} correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zaluzec, Nestor J., E-mail: zaluzec@microscopy.com

    2015-04-15

    Aberration correction in scanning/transmission electron microscopy (S/TEM) owes much to the efforts of a small dedicated group of innovators. Leading that frontier has been Prof. Harald Rose. To date his leadership and dynamic personality has spearheaded our ability to leave behind many of the limitations imposed by spherical aberration (C{sub s}) in high resolution phase contrast imaging. Following shortly behind, has been the development of chromatic aberration correction (C{sub c}) which augments those accomplishments. In this paper we will review and summarize how the combination of C{sub s}/C{sub c} technology enhances our ability to conduct hyperspectral imaging and spectroscopy in today's and future computationally mediated experiments in both thin as well as realistic specimens in vacuo and during in-situ/environmental experiments.

  6. Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy

    International Nuclear Information System (INIS)

    Pantzas, K; Voss, P L; Ougazzaden, A; Patriarche, G; Largeau, L; Mauguin, O; Troadec, D; Gautier, S; Moudakir, T; Suresh, S

    2012-01-01

    Using elastic scattering theory we show that a small set of energy dispersive x-ray spectroscopy (EDX) measurements is sufficient to experimentally evaluate the scattering function of electrons in high-angle annular dark field scanning transmission microscopy (HAADF-STEM). We then demonstrate how to use this function to transform qualitative HAADF-STEM images of InGaN layers into precise, quantitative chemical maps of the indium composition. The maps obtained in this way combine the resolution of HAADF-STEM and the chemical precision of EDX. We illustrate the potential of such chemical maps by using them to investigate nanometer-scale fluctuations in the indium composition and their impact on the growth of epitaxial InGaN layers. (paper)

  7. Cardiac Myocyte Diversity and a Fibroblast Network in the Junctional Region of the Zebrafish Heart Revealed by Transmission and Serial Block-Face Scanning Electron Microscopy

    KAUST Repository

    Lafontant, Pascal J.

    2013-08-23

    The zebrafish has emerged as an important model of heart development and regeneration. While the structural characteristics of the developing and adult zebrafish ventricle have been previously studied, little attention has been paid to the nature of the interface between the compact and spongy myocardium. Here we describe how these two distinct layers are structurally and functionally integrated. We demonstrate by transmission electron microscopy that this interface is complex and composed primarily of a junctional region occupied by collagen, as well as a population of fibroblasts that form a highly complex network. We also describe a continuum of uniquely flattened transitional cardiac myocytes that form a circumferential plate upon which the radially-oriented luminal trabeculae are anchored. In addition, we have uncovered within the transitional ring a subpopulation of markedly electron dense cardiac myocytes. At discrete intervals the transitional cardiac myocytes form contact bridges across the junctional space that are stabilized through localized desmosomes and fascia adherentes junctions with adjacent compact cardiac myocytes. Finally using serial block-face scanning electron microscopy, segmentation and volume reconstruction, we confirm the three-dimensional nature of the junctional region as well as the presence of the sheet-like fibroblast network. These ultrastructural studies demonstrate the previously unrecognized complexity with which the compact and spongy layers are structurally integrated, and provide a new basis for understanding development and regeneration in the zebrafish heart. © 2013 Lafontant et al.

  8. Cardiac myocyte diversity and a fibroblast network in the junctional region of the zebrafish heart revealed by transmission and serial block-face scanning electron microscopy.

    Science.gov (United States)

    Lafontant, Pascal J; Behzad, Ali R; Brown, Evelyn; Landry, Paul; Hu, Norman; Burns, Alan R

    2013-01-01

    The zebrafish has emerged as an important model of heart development and regeneration. While the structural characteristics of the developing and adult zebrafish ventricle have been previously studied, little attention has been paid to the nature of the interface between the compact and spongy myocardium. Here we describe how these two distinct layers are structurally and functionally integrated. We demonstrate by transmission electron microscopy that this interface is complex and composed primarily of a junctional region occupied by collagen, as well as a population of fibroblasts that form a highly complex network. We also describe a continuum of uniquely flattened transitional cardiac myocytes that form a circumferential plate upon which the radially-oriented luminal trabeculae are anchored. In addition, we have uncovered within the transitional ring a subpopulation of markedly electron dense cardiac myocytes. At discrete intervals the transitional cardiac myocytes form contact bridges across the junctional space that are stabilized through localized desmosomes and fascia adherentes junctions with adjacent compact cardiac myocytes. Finally using serial block-face scanning electron microscopy, segmentation and volume reconstruction, we confirm the three-dimensional nature of the junctional region as well as the presence of the sheet-like fibroblast network. These ultrastructural studies demonstrate the previously unrecognized complexity with which the compact and spongy layers are structurally integrated, and provide a new basis for understanding development and regeneration in the zebrafish heart.

  9. Evaluation of crystallographic strain, rotation and defects in functional oxides by the moiré effect in scanning transmission electron microscopy

    Science.gov (United States)

    Naden, A. B.; O'Shea, K. J.; MacLaren, D. A.

    2018-04-01

    Moiré patterns in scanning transmission electron microscopy (STEM) images of epitaxial perovskite oxides are used to assess strain and defect densities over fields of view extending over several hundred nanometers. The patterns arise from the geometric overlap of the rastered STEM electron beam and the samples’ crystal periodicities and we explore the emergence and application of these moiré fringes for rapid strain analysis. Using the epitaxial functional oxide perovskites BiFeO3 and Pr1-x Ca x MnO3, we discuss the impact of large degrees of strain on the quantification of STEM moiré patterns, identify defects in the fringe patterns and quantify strain and lattice rotation. Such a wide-area analysis of crystallographic strain and defects is crucial for developing structure-function relations of functional oxides and we find the STEM moiré technique to be an attractive means of structural assessment that can be readily applied to low dose studies of damage sensitive crystalline materials.

  10. Scanning transmission ion microscopy of polycarbonate nanocapillaries

    International Nuclear Information System (INIS)

    Gal, G.A.B.; Rajta, I.; Szilasi, S.Z.; Juhasz, Z.; Biri, S.; Csik, A.; Sulik, B.; Cserhati, Cs.

    2011-01-01

    Complete text of publication follows. Nanochanneled materials are of a great interest due to their peculiar properties and high potential impact for the fabrication of nanostructures and nanodevices. Polycarbonate membranes are produced by heavy ion irradiation followed by chemical etching of the ion tracks. The irradiation parameters determine the porosity (areal density of the capillaries) and angular spread, while the channel diameters and shapes depend on the chemical process parameters. Such polycarbonate (and other materials) membranes are commercially available from a few manufacturers. The primary use of the filters involves packaging and filtering applications. Moreover, they are used for collecting atmospheric aerosols for environmental research. The nanocapillaries formed in membranes are particularly suitable for ion and electron guiding studies of a recently discovered, but not yet completely understood capillary guiding phenomenon. This interesting guiding effect is very promising for patterning by parallel writing with ions and/or electrons through masks. In order to get a better understanding of this phenomenon, we need a better characterization of the capillaries themselves. This study is addressing the angular distribution of the nanochannels in the polycarbonate filters by using a nuclear microprobe facility and the method of scanning transmission ion microscopy (STIM). The STIM experiments in this work have been performed at ATOMKI. The proton energy was 2 MeV, the beam intensity was about 1000 protons s -1 , the beam spot size was about 1 x 1 μm, the scan size was 100 x 100 μm and the beam divergence was smaller than 0.07 deg. A scanning electron microscope (SEM, Hitachi S4300 CFE) was used to measure the capillary diameters and the membrane porosity. The sample thickness was determined by a profilometer (AMBIOS XP-I). We have investigated two different pieces of Millipore Isopore TM samples. A typical SEM image showed several overlapping

  11. Detailed characterisation of focused ion beam induced lateral damage on silicon carbide samples by electrical scanning probe microscopy and transmission electron microscopy

    Science.gov (United States)

    Stumpf, F.; Abu Quba, A. A.; Singer, P.; Rumler, M.; Cherkashin, N.; Schamm-Chardon, S.; Cours, R.; Rommel, M.

    2018-03-01

    The lateral damage induced by focused ion beam on silicon carbide was characterized using electrical scanning probe microscopy (SPM), namely, scanning spreading resistance microscopy and conductive atomic force microscopy (c-AFM). It is shown that the damage exceeds the purposely irradiated circles with a radius of 0.5 μm by several micrometres, up to 8 μm for the maximum applied ion dose of 1018 cm-2. Obtained SPM results are critically compared with earlier findings on silicon. For doses above the amorphization threshold, in both cases, three different areas can be distinguished. The purposely irradiated area exhibits resistances smaller than the non-affected substrate. A second region with strongly increasing resistance and a maximum saturation value surrounds it. The third region shows the transition from maximum resistance to the base resistance of the unaffected substrate. It correlates to the transition from amorphized to defect-rich to pristine crystalline substrate. Additionally, conventional transmission electron microscopy (TEM) and annular dark-field STEM were used to complement and explain the SPM results and get a further understanding of the defect spreading underneath the surface. Those measurements also show three different regions that correlate well with the regions observed from electrical SPM. TEM results further allow to explain observed differences in the electrical results for silicon and silicon carbide which are most prominent for ion doses above 3 × 1016 cm-2. Furthermore, the conventional approach to perform current-voltage measurements by c-AFM was critically reviewed and several improvements for measurement and analysis process were suggested that result in more reliable and impactful c-AFM data.

  12. A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes.

    Science.gov (United States)

    Mele, Luigi; Konings, Stan; Dona, Pleun; Evertz, Francis; Mitterbauer, Christoph; Faber, Pybe; Schampers, Ruud; Jinschek, Joerg R

    2016-04-01

    The introduction of scanning/transmission electron microscopes (S/TEM) with sub-Angstrom resolution as well as fast and sensitive detection solutions support direct observation of dynamic phenomena in-situ at the atomic scale. Thereby, in-situ specimen holders play a crucial role: accurate control of the applied in-situ stimulus on the nanostructure combined with the overall system stability to assure atomic resolution are paramount for a successful in-situ S/TEM experiment. For those reasons, MEMS-based TEM sample holders are becoming one of the preferred choices, also enabling a high precision in measurements of the in-situ parameter for more reproducible data. A newly developed MEMS-based microheater is presented in combination with the new NanoEx™-i/v TEM sample holder. The concept is built on a four-point probe temperature measurement approach allowing active, accurate local temperature control as well as calorimetry. In this paper, it is shown that it provides high temperature stability up to 1,300°C with a peak temperature of 1,500°C (also working accurately in gaseous environments), high temperature measurement accuracy (in-situ S/TEM imaging experiments, but also elemental mapping at elevated temperatures using energy-dispersive X-ray spectroscopy (EDS). Moreover, it has the unique capability to enable simultaneous heating and biasing experiments. © 2016 Wiley Periodicals, Inc.

  13. Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Martinez, G.T.; Rosenauer, A.; De Backer, A.; Verbeeck, J.; Van Aert, S.

    2014-01-01

    High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed. - Highlights: • A model-based method is extended from a relative toward an absolute quantification of chemical composition of single atomic columns from HAADF HRSTEM images. • The methodology combines statistical parameter estimation theory with frozen lattice multislice simulations to quantify chemical composition atomic column by atomic column. • Validity and limitations of this model-based method are explored and discussed. • Quantification results obtained for a complex structure show agreement with EDX refinement

  14. The structure of dodecagonal (Ta,V){sub 1.6}Te imaged by phase-contrast scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krumeich, F., E-mail: krumeich@inorg.chem.ethz.ch [Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland); Mueller, E.; Wepf, R.A. [Electron Microscopy ETH Zurich (EMEZ), Wolfgang-Pauli-Strasse 16, 8093 Zurich (Switzerland); Conrad, M.; Reich, C.; Harbrecht, B. [Department of Chemistry and Centre of Materials Science, Philipps-Universitaet, Hans-Meerwein-Strasse, 35032 Marburg (Germany); Nesper, R. [Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland)

    2012-10-15

    While HRTEM is the well-established method to characterize the structure of dodecagonal tantalum (vanadium) telluride quasicrystals and their periodic approximants, phase-contrast imaging performed on an aberration-corrected scanning transmission electron microscope (STEM) represents a favorable alternative. The (Ta,V){sub 151}Te{sub 74} clusters, the basic structural unit in all these phases, can be visualized with high resolution. A dependence of the image contrast on defocus and specimen thickness has been observed. In thin areas, the projected crystal potential is basically imaged with either dark or bright contrast at two defocus values close to Scherzer defocus as confirmed by image simulations utilizing the principle of reciprocity. Models for square-triangle tilings describing the arrangement of the basic clusters can be derived from such images. - Graphical abstract: PC-STEM image of a (Ta,V){sub 151}Te{sub 74} cluster. Highlights: Black-Right-Pointing-Pointer C{sub s}-corrected STEM is applied for the characterization of dodecagonal quasicrystals. Black-Right-Pointing-Pointer The projected potential of the structure is mirrored in the images. Black-Right-Pointing-Pointer Phase-contrast STEM imaging depends on defocus and thickness. Black-Right-Pointing-Pointer For simulations of phase-contrast STEM images, the reciprocity theorem is applicable.

  15. Dynamic Flaps Electronic Scan Antenna

    National Research Council Canada - National Science Library

    Gonzalez, Daniel

    2000-01-01

    A dynamic FLAPS(TM) electronic scan antenna was the focus of this research. The novelty S of this SBIR resides in the use of plasma as the main component of this dynamic X-Band phased S array antenna...

  16. Electronically-Scanned Pressure Sensors

    Science.gov (United States)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  17. A high-resolution analytical scanning transmission electron microscopy study of the early stages of spinodal decomposition in binary Fe–Cr

    International Nuclear Information System (INIS)

    Westraadt, J.E.; Olivier, E.J.; Neethling, J.H.; Hedström, P.; Odqvist, J.; Xu, X.; Steuwer, A.

    2015-01-01

    Spinodal decomposition (SD) is an important phenomenon in materials science and engineering. For example, it is considered to be responsible for the 475 °C embrittlement of stainless steels comprising the bcc (ferrite) or bct (martensite) phases. Structural characterization of the evolving minute nano-scale concentration fluctuations during SD in the Fe–Cr system is, however, a notable challenge, and has mainly been considered accessible via atom probe tomography (APT) and small-angle neutron scattering. The standard tool for nanostructure characterization, viz. transmission electron microscopy (TEM), has only been successfully applied to late stages of SD when embrittlement is already severe. However, we here demonstrate that the structural evolution in the early stages of SD in binary Fe–Cr, and alloys based on the binary, are accessible via analytical scanning TEM. An Fe–36 wt% Cr alloy aged at 500 °C for 1, 10 and 100 h is investigated using an aberration-corrected microscope and it is found that highly coherent and interconnected Cr-rich regions develop. The wavelength of decomposition is rather insensitive to the sample thickness and it is quantified to 2, 3 and 6 nm after ageing for 1, 10 and 100 h, which is in reasonable agreement with prior APT analysis. The concentration amplitude is more sensitive to the sample thickness and acquisition parameters but the TEM analysis is in good agreement with APT analysis for the longest ageing time. These findings open up for combinatorial TEM studies where both local crystallography and chemistry is required. - Highlights: • STEM-EELS analysis was successfully applied to resolve early stage SD in Fe–Cr. • Compositional wavelength measured with STEM-EELS compares well to previous ATP studies. • Compositional amplitude measured with STEM-EELS is a function of experimental parameters. • STEM-EELS allows for combinatorial studies of SD using complementary techniques.

  18. A high-resolution analytical scanning transmission electron microscopy study of the early stages of spinodal decomposition in binary Fe–Cr

    Energy Technology Data Exchange (ETDEWEB)

    Westraadt, J.E., E-mail: johan.westraadt@nmmu.ac.za [Centre for High Resolution TEM, Nelson Mandela Metropolitan University, University Way, Port Elizabeth 6031 (South Africa); Olivier, E.J.; Neethling, J.H. [Centre for High Resolution TEM, Nelson Mandela Metropolitan University, University Way, Port Elizabeth 6031 (South Africa); Hedström, P.; Odqvist, J.; Xu, X. [Dept. Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 10044 Stockholm (Sweden); Steuwer, A. [Nelson Mandela Metropolitan University, Gardham Av., Port Elizabeth 6031 (South Africa)

    2015-11-15

    Spinodal decomposition (SD) is an important phenomenon in materials science and engineering. For example, it is considered to be responsible for the 475 °C embrittlement of stainless steels comprising the bcc (ferrite) or bct (martensite) phases. Structural characterization of the evolving minute nano-scale concentration fluctuations during SD in the Fe–Cr system is, however, a notable challenge, and has mainly been considered accessible via atom probe tomography (APT) and small-angle neutron scattering. The standard tool for nanostructure characterization, viz. transmission electron microscopy (TEM), has only been successfully applied to late stages of SD when embrittlement is already severe. However, we here demonstrate that the structural evolution in the early stages of SD in binary Fe–Cr, and alloys based on the binary, are accessible via analytical scanning TEM. An Fe–36 wt% Cr alloy aged at 500 °C for 1, 10 and 100 h is investigated using an aberration-corrected microscope and it is found that highly coherent and interconnected Cr-rich regions develop. The wavelength of decomposition is rather insensitive to the sample thickness and it is quantified to 2, 3 and 6 nm after ageing for 1, 10 and 100 h, which is in reasonable agreement with prior APT analysis. The concentration amplitude is more sensitive to the sample thickness and acquisition parameters but the TEM analysis is in good agreement with APT analysis for the longest ageing time. These findings open up for combinatorial TEM studies where both local crystallography and chemistry is required. - Highlights: • STEM-EELS analysis was successfully applied to resolve early stage SD in Fe–Cr. • Compositional wavelength measured with STEM-EELS compares well to previous ATP studies. • Compositional amplitude measured with STEM-EELS is a function of experimental parameters. • STEM-EELS allows for combinatorial studies of SD using complementary techniques.

  19. Scanning and transmission electron microscopy study of the microstructural changes occurring in aluminium matrix composites reinforced with SiC particles during casting and welding: interface reactions

    Science.gov (United States)

    Urena; Gomez De Salazar JM; Gil; Escalera; Baldonedo

    1999-11-01

    Processing of aluminium matrix composites (AMCs), especially those constituted by a reactive system such as Al-SiC, presents great difficulties which limit their potential applications. The interface reactivity between SiC and molten Al generates an aluminium carbide which degrades the composite properties. Scanning and transmission electron microscopes equipped with energy-dispersive X-ray spectroscopes are essential tools for determining the structure and chemistry of the Al-SiC interfaces in AMCs and changes occurring during casting and arc welding. In the present work, an aluminium-copper alloy (AA2014) reinforced with three different percentages of SiC particles was subjected to controlled remelting tests, at temperatures in the range 750-900 degrees C for 10 and 30 min. Arc welding tests using a tungsten intert gas with power inputs in the range 850-2000 W were also carried out. The results of these studies showed that during remelting there is preferential SiC particle consumption with formation of Al4C3 by interface reaction between the solid SiC particle and the molten aluminium matrix. The formation of Al4C3 by the same mechanism has also been detected in molten pools of arc welded composites. However, in this case there was formation of an almost continuous layer of Al4C3, which protects the particle against further consumption, and formation of aciculate aluminium carbide on the top weld. Both are formed by fusion and dissolution of the SiC in molten aluminium followed by reaction and precipitation of the Al4C3 during cooling.

  20. Distribution patterns and morphology of sensilla on the antennae of Plutella xylostella (L.)-A scanning and transmission electron microscopic study.

    Science.gov (United States)

    Yan, Xi-Zhong; Deng, Cai-Ping; Xie, Jiao-Xin; Wu, Lan-Jun; Sun, Xue-Jun; Hao, Chi

    2017-12-01

    The antennal morphology, types of antennal sensilla, fine structures and distributions of the sensilla in Plutella xylostella L. (Lepidoptera: Plutellidae) were studied by scanning (SEM) and transmission (TEM) electron microscopy. The antenna, scape, pedicel and flagellum were all longer in males than in females. A total of seventeen types of sensilla were identified on the antennae: trichodea (two subtypes), basiconica, coeloconica (three subtypes), Böhm's bristles (two subtypes), styloconica (two subtypes), squamiformia, auricillica, furcatea (three subtypes), cupuliform organs and terminal sensory pegs. Their numbers and distributions were studied in both male and female, and we found some of the sensilla exhibited various degrees of sexual dimorphisms. Sensilla trichodea were the most abundant of all sensillum types whereas terminal peg was present only once per antenna. Sensilla trichodea in males were bigger (subtype I) and more abundant than in females, however, sensilla basiconica and squamiformia were significantly smaller and less abundant in males than in females. Sensilla styloconica II was only found in females. Seven common sensillum types were studied with TEM to reveal its fine internal structure providing morphological evidences of their sensory functions. Sensilla trichodea I, basiconica and coeloconica III have porous walls suggesting olfactory functions. Combined with the sexual dimorphism, sensilla trichodea male P. xylostella might be involved in detecting sexual pheromones and sensilla basiconica of female might respond to host plant volatiles. Whereas sensilla coeloconica (subtype I and II) and Böhm's bristles have nonporous walls suggesting non-olfactory functions. The study presented a thorough inventory of sensilla on the antennae and laid a solid foundation for future functional studies of these sensilla in this important economical pest. Copyright © 2017. Published by Elsevier Ltd.

  1. Quantitative transmission electron microscopy at atomic resolution

    International Nuclear Information System (INIS)

    Allen, L J; D'Alfonso, A J; Forbes, B D; Findlay, S D; LeBeau, J M; Stemmer, S

    2012-01-01

    In scanning transmission electron microscopy (STEM) it is possible to operate the microscope in bright-field mode under conditions which, by the quantum mechanical principle of reciprocity, are equivalent to those in conventional transmission electron microscopy (CTEM). The results of such an experiment will be presented which are in excellent quantitative agreement with theory for specimens up to 25 nm thick. This is at variance with the large contrast mismatch (typically between two and five) noted in equivalent CTEM experiments. The implications of this will be discussed.

  2. A fluorescence scanning electron microscope

    International Nuclear Information System (INIS)

    Kanemaru, Takaaki; Hirata, Kazuho; Takasu, Shin-ichi; Isobe, Shin-ichiro; Mizuki, Keiji; Mataka, Shuntaro; Nakamura, Kei-ichiro

    2009-01-01

    Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.

  3. Isotope analysis in the transmission electron microscope.

    Science.gov (United States)

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani

    2016-10-10

    The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  4. Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachydanio rerio : a consideration of the structural and functional relationships with respect to cryoprotectant penetration

    NARCIS (Netherlands)

    Rawson, DM; Zhang, T; Kalicharan, D; Jongebloed, WL

    The structure of the chorion and plasma membranes of gastrula-stage zebrafish Brachydanio rerio embryos were studied using field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). These studies confirm the outer chorion membrane complex to be 1.5-2.5 mu m in

  5. Transmission electron microscopy of bone

    NARCIS (Netherlands)

    Everts, Vincent; Niehof, Anneke; Tigchelaar-Gutter, Wikky; Beertsen, Wouter

    2012-01-01

    This chapter describes procedures to process mineralized tissues obtained from different sources for transmission electron microscopy (TEM). Methods for fixation, resin embedding, staining of semi-thin sections and ultrathin sections are presented. In addition, attention will be paid to processing

  6. Scanning electron microscopy of bone.

    Science.gov (United States)

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  7. Investigating the chemical and morphological evolution of GaAs capped InAs/InP quantum dots emitting at 1.5μm using aberration-corrected scanning transmission electron microscopy

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Semenova, Elizaveta; Yvind, Kresten

    2011-01-01

    The emission wavelength of InAs quantum dots grown on InP has been shown to shift to the technologically desirable 1.5μm with the deposition of 1–2 monolayers of GaAs on top of the quantum dots. Here, we use aberration-corrected scanning transmission electron microscopy to investigate morphological...... and compositional changes occurring to the quantum dots as a result of the deposition of 1.7 monolayers of GaAs on top of them, prior to complete overgrowth with InP. The results are compared with theoretical models describing the overgrowth process....

  8. System and method for compressive scanning electron microscopy

    Science.gov (United States)

    Reed, Bryan W

    2015-01-13

    A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.

  9. Scanning electron microscopy and micro-analyses

    International Nuclear Information System (INIS)

    Brisset, F.; Repoux, L.; Ruste, J.; Grillon, F.; Robaut, F.

    2008-01-01

    materials; 18b - metallation; 19 - biological samples - overview of preparation techniques; 20 - 3-D reconstruction of rough surfaces; 20a - 3-D imaging; 21 - SEM images: from numerical processing to quantitative analysis; 22 - STEM (scanning transmission electron microscopy); 23 - in-situ mechanical tests; 24 - SEM and X-ray microanalysis maintenance and control; 25 - quality assurance and standardization; 26 - SEM share in experimental techniques; 27 - introduction to FIB; 28 - introduction to TEM (transmission electron microscopy); 29 - X-ray microanalysis on thin samples; 30 - introduction to cathodoluminescence; 31 - introduction to Raman spectroscopy. (J.S.)

  10. Evidence of sharp and diffuse domain walls in BiFeO3 by means of unit-cell-wise strain and polarization maps obtained with high resolution scanning transmission electron microscopy.

    Science.gov (United States)

    Lubk, A; Rossell, M D; Seidel, J; He, Q; Yang, S Y; Chu, Y H; Ramesh, R; Hÿtch, M J; Snoeck, E

    2012-07-27

    Domain walls (DWs) substantially influence a large number of applications involving ferroelectric materials due to their limited mobility when shifted during polarization switching. The discovery of greatly enhanced conduction at BiFeO(3) DWs has highlighted yet another role of DWs as a local material state with unique properties. However, the lack of precise information on the local atomic structure is still hampering microscopical understanding of DW properties. Here, we examine the atomic structure of BiFeO(3) 109° DWs with pm precision by a combination of high-angle annular dark-field scanning transmission electron microscopy and a dedicated structural analysis. By measuring simultaneously local polarization and strain, we provide direct experimental proof for the straight DW structure predicted by ab initio calculations as well as the recently proposed theory of diffuse DWs, thus resolving a long-standing discrepancy between experimentally measured and theoretically predicted DW mobilities.

  11. Nanochannel alignment analysis by scanning transmission ion microscopy

    DEFF Research Database (Denmark)

    Rajta, I.; Gál, G.A.B.; Szilasi, S.Z.

    2010-01-01

    In this paper a study on the ion transmission ratio of a nanoporous alumina sample is presented. The sample was investigated by scanning transmission ion microscopy (STIM) with different beam sizes. The hexagonally close-packed AlO nanocapillary array, realized as a suspended membrane of 15 νm...

  12. The sinusoidal lining cells in "normal" human liver. A scanning electron microscopic investigation

    DEFF Research Database (Denmark)

    Horn, T; Henriksen, Jens Henrik Sahl; Christoffersen, P

    1986-01-01

    The scanning electron microscopic was used to study the fenestrations of human liver sinusoids. Thirteen biopsies, where light microscopy and transmission electron microscopy revealed normal sinusoidal architecture, were investigated. The number of fenestrae was calculated in acinar zone 3...

  13. Transmission and scanning electron microscopy study of the characteristics and morphology of pericytes and novel desmin-immunopositive perivascular cells before and after castration in rat anterior pituitary gland.

    Science.gov (United States)

    Jindatip, Depicha; Fujiwara, Ken; Kouki, Tom; Yashiro, Takashi

    2012-09-01

    Pericytes are perivascular cells associated with microcirculation. Typically, they are localized close to the capillary wall, underneath the basement membrane, and have sparse cytoplasm and poorly developed cell organelles. However, the specific properties of pericytes vary by organ and the conditions within organs. We recently demonstrated that pericytes in rat anterior pituitary gland produce type I and III collagens. The present study attempted to determine the morphological characteristics of these pituitary pericytes. Castrated rats were used as a model of hormonal and vascular changes in the gland. Pericytes, as determined by desmin immunohistochemistry, were more numerous and stained more intensely in castrated rats. Transmission electron microscopy revealed that pituitary pericytes displayed the typical characteristics of pericytes. In pituitary sections from castrated rats, the Golgi apparatus of pericytes was well developed and the rough endoplasmic reticulum was elongated. Additionally, scanning electron microscopy revealed four pericyte shapes: oval, elongate, triangular, and multiangular. As compared with normal rats, the proportion of oval pericytes was lower, and the proportions of the other three shapes were higher, in castrated rats. These results suggest that pericytes change their fine structure and cell shape in response to hormonal and vascular changes in the anterior pituitary gland. In addition, a novel type of perivascular cell was found by desmin immunoelectron microscopy. The morphological properties of these cells were dissimilar to those of pericytes. The cells were localized in the perivascular space, had no basement membrane, and contained dilated rough endoplasmic reticulum. This new cell type will require further study of its origin and characteristics.

  14. Analysis of self-organized In(Ga)As quantum structures with the scanning transmission electron microscope; Analyse selbstorganisierter In(Ga)As-Quantenstrukturen mit dem Raster-Transmissionselektronenmikroskop

    Energy Technology Data Exchange (ETDEWEB)

    Sauerwald, Andres

    2008-05-27

    Aim of this thesis was to apply the analytical methods of the scanning transmission electron microscopy to the study of self-organized In(Ga)As quantum structures. With the imaging methods Z contrast and bright field (position resolutions in the subnanometer range) and especially with the possibilities of the quantitative chemical EELS analysis of the scanning transmission electron microscope (STEM) fundamental questions concerning morphology and chemical properties of self-organized quantum structures should be answered. By the high position resolution of the STEM among others essentail morphological and structural parameters in the growth behaviour of 'dot in a well' (DWell) structures and of vertically correlated quantum dots (QDs) could be analyzed. For the optimization of DWell structures samples were studied, the nominal InAs-QD growth position was directedly varied within the embedding InGaAs quantum wells. The STEM offers in connection with the EELS method a large potential for the chemical analysis of quantum structures. Studied was a sample series of self-organized InGaAs/GaAs structures on GaAs substrate, the stress of which was changed by varying the Ga content of the INGaAs material between 2.4 % and 4.3 %. [German] Ziel dieser Arbeit war es, die analytischen Methoden der Raster-Transmissionselektronenmikroskopie zur Untersuchung selbstorganisierter In(Ga)As-Quantenstrukturen anzuwenden. Mit den abbildenden Methoden Z-Kontrast und Hellfeld (Ortsaufloesungen im Subnanometerbereich) und insbesondere mit den Moeglichkeiten der quantitativen chemischen EELS-Analyse des Raster-Transmissionselektronenmikroskops (RTEMs) sollten grundsaetzliche Fragestellungen hinsichtlich der Morphologie und der chemischen Eigenschaften selbstorganisierter Quantenstrukturen beantwortet werden. Durch die hohe Ortsaufloesung des RTEMs konnten u.a. essentielle morphologische und strukturelle Parameter im Wachstumsverhalten von 'Dot in a Well

  15. Characterization of nanomaterials with transmission electron microscopy

    KAUST Repository

    Anjum, Dalaver H.

    2016-08-01

    The field of nanotechnology is about research and development on materials whose at least one dimension is in the range of 1 to 100 nanometers. In recent years, the research activity for developing nano-materials has grown exponentially owing to the fact that they offer better solutions to the challenges faced by various fields such as energy, food, and environment. In this paper, the importance of transmission electron microscopy (TEM) based techniques is demonstrated for investigating the properties of nano-materials. Specifically the nano-materials that are investigated in this report include gold nano-particles (Au-NPs), silver atom-clusters (Ag-ACs), tantalum single-atoms (Ta-SAs), carbon materials functionalized with iron cobalt (Fe-Co) NPs and titania (TiO2) NPs, and platinum loaded Ceria (Pt-CeO2) Nano composite. TEM techniques that are employed to investigate nano-materials include aberration corrected bright-field TEM (BF-TEM), high-angle dark-field scanning TEM (HAADF-STEM), electron energy-loss spectroscopy (EELS), and BF-TEM electron tomography (ET). With the help presented of results in this report, it is proved herein that as many TEM techniques as available in a given instrument are essential for a comprehensive nano-scale analysis of nanomaterials.

  16. A transmission positron microscope and a scanning positron microscope being built at KEK, Japan

    International Nuclear Information System (INIS)

    Doyama, M.; Inoue, M.; Kogure, Y.; Kurihara, T.; Yagishita, A.; Shidara, T.; Nakahara, K.; Hayashi, Y.; Yoshiie, T.

    2001-01-01

    This paper reports the plans of positron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan improving used electron microscopes. The kinetic energies of positron produced by accelerators or by nuclear decays have not a unique value but show a spread over in a wide range. Positron beam will be guided near electron microscopes, a transmission electron microscope (JEM100S) and a scanning electron microscope (JSM25S). Positrons are slowed down by a tungsten foil, accelerated and focused on a nickel sheet. The monochromatic focused beam will be injected into an electron microscope. The focusing of positrons and electrons is achieved by magnetic system of the electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (orig.)

  17. Highlighting material structure with transmission electron diffraction correlation coefficient maps.

    Science.gov (United States)

    Kiss, Ákos K; Rauch, Edgar F; Lábár, János L

    2016-04-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Scanning transmission electron microscopy imaging and analysis

    CERN Document Server

    Pennycook, Stephen J

    2011-01-01

    Provides the first comprehensive treatment of the physics and applications of this mainstream technique for imaging and analysis at the atomic level Presents applications of STEM in condensed matter physics, materials science, catalysis, and nanoscience Suitable for graduate students learning microscopy, researchers wishing to utilize STEM, as well as for specialists in other areas of microscopy Edited and written by leading researchers and practitioners

  19. Electron Beam Scanning in Industrial Applications

    Science.gov (United States)

    Jongen, Yves; Herer, Arnold

    1996-05-01

    Scanned electron beams are used within many industries for applications such as sterilization of medical disposables, crosslinking of wire and cables insulating jackets, polymerization and degradation of resins and biomaterials, modification of semiconductors, coloration of gemstones and glasses, removal of oxides from coal plant flue gasses, and the curing of advanced composites and other molded forms. X-rays generated from scanned electron beams make yet other applications, such as food irradiation, viable. Typical accelerators for these applications range in beam energy from 0.5MeV to 10 MeV, with beam powers between 5 to 500kW and scanning widths between 20 and 300 cm. Since precise control of dose delivery is required in many of these applications, the integration of beam characteristics, product conveyance, and beam scanning mechanisms must be well understood and optimized. Fundamental issues and some case examples are presented.

  20. Transmission Electron Microscopy Physics of Image Formation

    CERN Document Server

    Kohl, Helmut

    2008-01-01

    Transmission Electron Microscopy: Physics of Image Formation presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fifth edition includes discussion of recent progress, especially in the area of aberration correction and energy filtering; moreover, the topics introduced in the fourth edition have been updated. Transmission Electron Microscopy: Physics of Image Formation is written f...

  1. Transmission electron microscope CCD camera

    Science.gov (United States)

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  2. Thermal diffuse scattering in transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, B.D.; D' Alfonso, A.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [School of Physics, Monash University, Victoria 3800 (Australia); Van Dyck, D. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); LeBeau, J.M. [North Carolina State University, Raleigh, NC 27695-7907 (United States); Stemmer, S. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States); Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2011-12-15

    In conventional transmission electron microscopy, thermal scattering significantly affects the image contrast. It has been suggested that not accounting for this correctly is the main cause of the Stobbs factor, the ubiquitous, large contrast mismatch found between theory and experiment. In the case where a hard aperture is applied, we show that previous conclusions drawn from work using bright field scanning transmission electron microscopy and invoking the principle of reciprocity are reliable in the presence of thermal scattering. In the aperture-free case it has been suggested that even the most sophisticated mathematical models for thermal diffuse scattering lack in their numerical implementation, specifically that there may be issues in sampling, including that of the contrast transfer function of the objective lens. We show that these concerns can be satisfactorily overcome with modest computing resources; thermal scattering can be modelled accurately enough for the purpose of making quantitative comparison between simulation and experiment. Spatial incoherence of the source is also investigated. Neglect or inadequate handling of thermal scattering in simulation can have an appreciable effect on the predicted contrast and can be a significant contribution to the Stobbs factor problem. -- Highlights: Black-Right-Pointing-Pointer We determine the numerical requirements for accurate simulation of TDS in CTEM. Black-Right-Pointing-Pointer TDS can be simulated to high precision using the Born-Oppenheimer model. Black-Right-Pointing-Pointer Such calculations establish the contribution of TDS to the Stobbs factor problem. Black-Right-Pointing-Pointer Treating spatial incoherence using envelope functions increases image contrast. Black-Right-Pointing-Pointer Rigorous treatment of spatial incoherence significantly reduces image contrast.

  3. Transmission electron microscope studies of extraterrestrial materials

    Science.gov (United States)

    Keller, Lindsay P.

    1995-01-01

    Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.

  4. Development of Scanning Ultrafast Electron Microscope Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Kimberlee Chiyoko [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Talin, Albert Alec [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michael, Joseph R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.

  5. Spin-polarized scanning electron microscopy

    International Nuclear Information System (INIS)

    Kohashi, Teruo

    2014-01-01

    Spin-Polarized Scanning Electron Microscopy (Spin SEM) is one way for observing magnetic domain structures taking advantage of the spin polarization of the secondary electrons emitted from a ferromagnetic sample. This principle brings us several excellent capabilities such as high-spatial resolution better than 10 nm, and analysis of magnetization direction in three dimensions. In this paper, the principle and the structure of the spin SEM is briefly introduced, and some examples of the spin SEM measurements are shown. (author)

  6. Simultaneous emission and transmission scanning in positron emission tomography

    International Nuclear Information System (INIS)

    Satoh, Tomohiko; Tanaka, Kazumi; Kitamura, Keishi; Amano, Masaharu; Miura, Shuichi

    2001-01-01

    Examination by PET (positron emission tomography) scanning, following the dosage of 2-deoxy- 18 F fluoro-D-glucose (FDG), is positively utilized for the diagnosis of cancers, rather than for the purpose of studies. This is because the examination by FDG-PET (PET scanning following the dosage of FDG) ensures higher efficiency in discrimination of cancers, than conventional CT and PET. The method of whole body scanning by PET scanning following the dosage of FDG is effectively utilized not only for discrimination cancers, but also for determining the degree of malignancy of tumors and evaluating the methods of treatment of cancers. In conventional methods for examining the degree of malignancy of tumors and evaluating the methods of cancer treatment, it is necessary to correct for the gamma-ray attenuation, which requires a longer time for examination, increasing the physical and psychological pains of the patients. We have installed the simultaneous emission and transmission scanning capability into the HEADTOME-V of the Shimadzu SET-2000W Series positron emission tomographic scanning instruments, to establish an instrument that permits FDG-PET whole body scanning in actual clinical fields, with minimized physical and psychological pains of patients concerned, yet ensuring an outstandingly high examination efficiency. This report also presents some data obtained by this newly developed instrument and those obtained in practical applications. (author)

  7. Study of Scanning Tunneling Microscope control electronics

    International Nuclear Information System (INIS)

    Oliva, A.J.; Pancarobo, M.; Denisenko, N.; Aguilar, M.; Rejon, V.; Pena, J.L.

    1994-01-01

    A theoretical study of Scanning Tunneling Microscope control electronics is made. The knowledge of its behaviour allows us to determine accurately the region where the unstable operation could effect the measurements, and also to set the optimal working parameters. Each feedback circuitry compound is discussed as well as their mutual interaction. Different working conditions analysis and results are presented. (Author) 12 refs

  8. Electron spin resonance scanning tunneling microscope

    International Nuclear Information System (INIS)

    Guo Yang; Li Jianmei; Lu Xinghua

    2015-01-01

    It is highly expected that the future informatics will be based on the spins of individual electrons. The development of elementary information unit will eventually leads to novel single-molecule or single-atom devices based on electron spins; the quantum computer in the future can be constructed with single electron spins as the basic quantum bits. However, it is still a great challenge in detection and manipulation of a single electron spin, as well as its coherence and entanglement. As an ideal experimental tool for such tasks, the development of electron spin resonance scanning tunneling microscope (ESR-STM) has attracted great attention for decades. This paper briefly introduces the basic concept of ESR-STM. The development history of this instrument and recent progresses are reviewed. The underlying mechanism is explored and summarized. The challenges and possible solutions are discussed. Finally, the prospect of future direction and applications are presented. (authors)

  9. Indigenous development of scanning electron microscope

    International Nuclear Information System (INIS)

    Ambastha, K.P.; Chaudhari, Y.V.; Pal, Suvadip; Tikaria, Amit; Pious, Lizy; Dubey, B.P.; Chadda, V.K.

    2009-01-01

    Scanning electron microscope (SEM) is a precision instrument and plays very important role in scientific studies. Bhabha Atomic Research Centre has taken up the job of development of SEM indigenously. Standard and commercially available components like computer, high voltage power supply, detectors etc. shall be procured from market. Focusing and scanning coils, vacuum chamber, specimen stage, control hardware and software etc. shall be developed at BARC with the help of Indian industry. Procurement, design and fabrication of various parts of SEM are in progress. (author)

  10. Design of a transmission electron positron microscope

    International Nuclear Information System (INIS)

    Doyama, Masao; Inoue, M.; Kogure, Y.; Hayashi, Y.; Yoshii, T.; Kurihara, T.; Tsuno, K.

    2003-01-01

    This paper reports the plans and design of positron-electron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan. A used electron microscope is altered. The kinetic energies of positrons produced by accelerators or by nuclear decays are not a unique value but show a spread over in a wide range. Positron beam is guided to a transmission electron microscope (JEM100SX). Positrons are moderated by a tungsten foil, are accelerated and are focused on a nickel sheet. The monochromatic focused beam is injected into an electron microscope. The focusing and aberration of positrons are the same as electrons in a magnetic system which are used in commercial electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (author)

  11. Scanning electron microscopy of semiconductor materials

    International Nuclear Information System (INIS)

    Bresse, J.F.; Dupuy, M.

    1978-01-01

    The use of scanning electron microscopy in semiconductors opens up a large field of use. The operating modes lending themselves to the study of semiconductors are the induced current, cathodoluminescence and the use of the potential contrast which can also be applied very effectively to the study of the devices (planar in particular). However, a thorough knowledge of the mechanisms of the penetration of electrons, generation and recombination of generated carriers in a semiconductor is necessary in order to attain a better understanding of the operating modes peculiar to semiconductors [fr

  12. Cryogenic Multichannel Pressure Sensor With Electronic Scanning

    Science.gov (United States)

    Hopson, Purnell, Jr.; Chapman, John J.; Kruse, Nancy M. H.

    1994-01-01

    Array of pressure sensors operates reliably and repeatably over wide temperature range, extending from normal boiling point of water down to boiling point of nitrogen. Sensors accurate and repeat to within 0.1 percent. Operate for 12 months without need for recalibration. Array scanned electronically, sensor readings multiplexed and sent to desktop computer for processing and storage. Used to measure distributions of pressure in research on boundary layers at high Reynolds numbers, achieved by low temperatures.

  13. Scanning electron microscopy of superficial white onychomycosis*

    Science.gov (United States)

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  14. Scanning electron microscopy of primary bone tumors

    International Nuclear Information System (INIS)

    Pool, R.R.; Kerner, B.

    1975-01-01

    Critical-point-drying of tumor tissue fixed in a glutaraldehyde-paraformaldehyde solution and viewed by scanning electron microscopy (SEM) provides a 3-dimensional view of tumor cells and their matrices. This report describes the SEM appearance of three primary bone tumors: a canine osteosarcoma of the distal radius, a feline chondrosarcoma of the proximal tibia and a canine fibrosarcoma of the proximal humerus. The ultrastructural morphology is compared with the histologic appearance of each tumor

  15. Transmission electron microscopy of amyloid fibrils.

    Science.gov (United States)

    Gras, Sally L; Waddington, Lynne J; Goldie, Kenneth N

    2011-01-01

    Transmission Electron Microscopy of negatively stained and cryo-prepared specimens allows amyloid fibrils to be visualised at high resolution in a dried or a hydrated state, and is an essential method for characterising the morphology of fibrils and pre-fibrillar species. We outline the key steps involved in the preparation and observation of samples using negative staining and cryo-electron preservation. We also discuss methods to measure fibril characteristics, such as fibril width, from electron micrographs.

  16. Atmospheric scanning electron microscope for correlative microscopy.

    Science.gov (United States)

    Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J

    2012-01-01

    The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Scanning transmission ion microscopy on Fudan SPM facility

    International Nuclear Information System (INIS)

    Li Yongqiang; Shen Hao; Zheng Yi; Li Xinyi; Liu Bo; Satoh Takahiro

    2011-01-01

    In this paper, we report a novel measurement system based on the development of Fudan Scanning Proton Microscopy (SPM) facility. By using Si-PIN diode(Hamamatsu S1223-01) detector, scanning transmission ion microscopy (STIM) measurement system has been set up. It can provide density and structural images with high probing efficiency and non-destruction by utilizing the energy loss of high energy (MeV) and focused ions penetrating through a thin sample. STIM measurement is able to map the density distribution of organic elements which mostly compose biology materials, such information can not be detected by using conventional Be-windowed Si (Li) X-ray detector in Particle Induced X-ray Emission (PIXE) technique. The spatial resolution capability of STIM is higher than PIXE technique at same accelerator status. As a result of STIM measurement, Paramecium attached on the top of Kapton tube was measured by STIM. (authors)

  18. A computer program for scanning transmission ion microscopy simulation

    International Nuclear Information System (INIS)

    Wu, R.; Shen, H.; Mi, Y.; Sun, M.D.; Yang, M.J.

    2005-01-01

    With the installation of the Scanning Proton Microprobe system at Fudan University, we are in the process of developing a three-dimension reconstruction technique based on scanning transmission ion microscopy-computed tomography (STIM-CT). As the first step, a related computer program of STIM simulation has been established. This program is written in the Visual C++[reg], using the technique of OOP (Object Oriented Programming) and it is a standard multiple-document Windows[reg] program. It can be run with all MS Windows[reg] operating systems. The operating mode is the menu mode, using a multiple process technique. The stopping power theory is based on the Bethe-Bloch formula. In order to simplify the calculation, the improved cylindrical coordinate model was introduced in the program instead of a usual spherical or cylindrical coordinate model. The simulated results of a sample at several rotation angles are presented

  19. Reciprocity relations in transmission electron microscopy: A rigorous derivation.

    Science.gov (United States)

    Krause, Florian F; Rosenauer, Andreas

    2017-01-01

    A concise derivation of the principle of reciprocity applied to realistic transmission electron microscopy setups is presented making use of the multislice formalism. The equivalence of images acquired in conventional and scanning mode is thereby rigorously shown. The conditions for the applicability of the found reciprocity relations is discussed. Furthermore the positions of apertures in relation to the corresponding lenses are considered, a subject which scarcely has been addressed in previous publications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Implantation annealing by scanning electron beam

    International Nuclear Information System (INIS)

    Jaussaud, C.; Biasse, B.; Cartier, A.M.; Bontemps, A.

    1983-11-01

    Samples of ion implanted silicon (BF 2 , 30keV, 10 15 ions x cm -2 ) have been annealed with a multiple scan electron beam, at temperatures ranging from 1000 to 1200 0 C. The curves of sheet resistance versus time show a minimum. Nuclear reaction measurements of the amount of boron remaining after annealing show that the increase in sheet resistance is due to a loss of boron. The increase in junction depths, measured by spreading resistance on bevels is between a few hundred A and 1000 A [fr

  1. Emission sources in scanning electron microscopy

    International Nuclear Information System (INIS)

    Malkusch, W.

    1990-01-01

    Since the beginning of the commercial scanning electron microscopy, there are two kinds of emission sources generally used for generation of the electron beam. The first group covers the cathodes heated directly and indirectly (tungsten hair-needle cathodes and lanthanum hexaboride single crystals, LaB 6 cathode). The other group is the field emission cathodes. The advantages of the thermal sources are their low vacuum requirement and their high beam current which is necessary for the application of microanalysis units. Disadvantages are the short life and the low resolution. Advantages of the field emission cathode unambiguously are the possibilities of the very high resolution, especially in the case of low acceleration voltages. Disadvantages are the necessary ultra-high vacuum and the low beam current. An alternative source is the thermally induced ZrO/W field emission cathode which works stably as compared to the cold field emission and does not need periodic flashing for emitter tip cleaning. (orig.) [de

  2. Scanning electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1985-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions, imaging modes, the interpretation of micrographs and the use of quantitative modes "in scanning electron microscopy (SEM). lt forms a counterpart to Transmission Electron Microscopy (Vol. 36 of this Springer Series in Optical Sciences) . The book evolved from lectures delivered at the University of Münster and from a German text entitled Raster-Elektronenmikroskopie (Springer-Verlag), published in collaboration with my colleague Gerhard Pfefferkorn. In the introductory chapter, the principles of the SEM and of electron­ specimen interactions are described, the most important imaging modes and their associated contrast are summarized, and general aspects of eiemental analysis by x-ray and Auger electron emission are discussed. The electron gun and electron optics are discussed in Chap. 2 in order to show how an electron probe of small diameter can be formed, how the elec­ tron beam can be blanked at high fre...

  3. Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases.

    Science.gov (United States)

    Stoll, Joshua D; Kolmakov, Andrei

    2012-12-21

    Due to its ultrahigh electron transmissivity in a wide electron energy range, molecular impermeability, high electrical conductivity and excellent mechanical stiffness, suspended graphene membranes appear to be a nearly ideal window material for in situ (in vivo) environmental electron microscopy of nano- and mesoscopic objects (including bio-medical samples) immersed in liquids and/or in dense gaseous media. In this paper, taking advantage of a small modification of the graphene transfer protocol onto metallic and SiN supporting orifices, reusable environmental cells with exchangeable graphene windows have been designed. Using colloidal gold nanoparticles (50 nm) dispersed in water as model objects for scanning electron microscopy in liquids as proof of concept, different conditions for imaging through the graphene membrane were tested. Limiting factors for electron microscopy in liquids, such as electron beam induced water radiolysis and damage of the graphene membrane at high electron doses, are discussed.

  4. Scanning probe methods applied to molecular electronics

    Energy Technology Data Exchange (ETDEWEB)

    Pavlicek, Niko

    2013-08-01

    Scanning probe methods on insulating films offer a rich toolbox to study electronic, structural and spin properties of individual molecules. This work discusses three issues in the field of molecular and organic electronics. An STM head to be operated in high magnetic fields has been designed and built up. The STM head is very compact and rigid relying on a robust coarse approach mechanism. This will facilitate investigations of the spin properties of individual molecules in the future. Combined STM/AFM studies revealed a reversible molecular switch based on two stable configurations of DBTH molecules on ultrathin NaCl films. AFM experiments visualize the molecular structure in both states. Our experiments allowed to unambiguously determine the pathway of the switch. Finally, tunneling into and out of the frontier molecular orbitals of pentacene molecules has been investigated on different insulating films. These experiments show that the local symmetry of initial and final electron wave function are decisive for the ratio between elastic and vibration-assisted tunneling. The results can be generalized to electron transport in organic materials.

  5. Transmission Electron Microscope Measures Lattice Parameters

    Science.gov (United States)

    Pike, William T.

    1996-01-01

    Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.

  6. Ponderomotive phase plate for transmission electron microscopes

    Science.gov (United States)

    Reed, Bryan W [Livermore, CA

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  7. Calculation of electron transmission through aluminium foil

    International Nuclear Information System (INIS)

    Abroyan, M.A.; Mel'ker, A.I.; Mikhajlin, A.I.; Sirotinkin, V.V.; Tokmakov, I.L.

    1987-01-01

    Calculated by Monte Carlo method energy and angular distributions of electrons transmitted through aluminium foil with 50 μm thickness are presented. 200-500 electron energy ranges and angles of electron incidence on foil from 0 to 40 deg C are considered. That allows to use results for more universal accelerator group, for example, for accelerators with scanning beam used in industry. The received values of angular and energy characteristics allow to increase essentially estimation accuracy of accelerator extraction devices and dose distribution on irradiating item

  8. Helium leak testing of scanning electron microscope

    International Nuclear Information System (INIS)

    Ahmad, Anis; Tripathi, S.K.; Mukherjee, D.

    2015-01-01

    Scanning Electron Microscope (SEM) is a specialized electron-optical device which is used for imaging of miniscule features on topography of material specimens. Conventional SEMs used finely focused high energy (about 30 KeV) electron beam probes of diameter of about 10nm for imaging of solid conducting specimens. Vacuum of the order of 10"-"5 Torr is prerequisite for conventional Tungsten filament type SEMs. One such SEM was received from one of our laboratory in BARC with a major leak owing to persisting poor vacuum condition despite continuous pumping for several hours. He-Leak Detection of the SEM was carried out at AFD using vacuum spray Technique and various potential leak joints numbering more than fifty were helium leak tested. The major leak was detected in the TMP damper bellow. The part was later replaced and the repeat helium leak testing of the system was carried out using vacuum spray technique. The vacuum in SEM is achieved is better than 10"-"5 torr and system is now working satisfactorily. (author)

  9. Transmission Electron Microscopy of Minerals and Rocks

    Science.gov (United States)

    McLaren, Alex C.

    1991-04-01

    Of the many techniques that have been applied to the study of crystal defects, none has contributed more to our understanding of their nature and influence on the physical and chemical properties of crystalline materials than transmission electron microscopy (TEM). TEM is now used extensively by an increasing number of earth scientists for direct observation of defect microstructures in minerals and rocks. Transmission Electron Microscopy of Rocks and Minerals is an introduction to the principles of the technique and is the only book to date on the subject written specifically for geologists and mineralogists. The first part of the book deals with the essential physics of the transmission electron microscope and presents the basic theoretical background required for the interpretation of images and electron diffraction patterns. The final chapters are concerned with specific applications of TEM in mineralogy and deal with such topics as planar defects, intergrowths, radiation-induced defects, dislocations and deformation-induced microstructures. The examples cover a wide range of rock-forming minerals from crustal rocks to those in the lower mantle, and also take into account the role of defects in important mineralogical and geological processes.

  10. A cryogenic multichannel electronically scanned pressure module

    Science.gov (United States)

    Shams, Qamar A.; Fox, Robert L.; Adcock, Edward E.; Kahng, Seun K.

    1992-01-01

    Consideration is given to a cryogenic multichannel electronically scanned pressure (ESP) module developed and tested over an extended temperature span from -184 to +50 C and a pressure range of 0 to 5 psig. The ESP module consists of 32 pressure sensor dice, four analog 8 differential-input multiplexers, and an amplifier circuit, all of which are packaged in a physical volume of 2 x 1 x 5/8 in with 32 pressure and two reference ports. Maximum nonrepeatability is measured at 0.21 percent of full-scale output. The ESP modules have performed consistently well over 15 times over the above temperature range and continue to work without any sign of degradation. These sensors are also immune to repeated thermal shock tests over a temperature change of 220 C/sec.

  11. Scanning electron microscopy of coal macerals

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.R.; White, A.; Deegan, M.D.

    1986-02-01

    Individual macerals separated from some United Kingdom coals of Carboniferous age and bituminous rank were examined by scanning electron microscopy. In each case a specific morphology characteristic of the macerals studied could be recognized. Collinite (a member of the vitrinite maceral group) was recognizable in all samples by its angular shape and characteristic fracture patterns, the particles (30-200 ..mu..m) frequently showing striated or laminated surface. Sporinite particles had no well defined shape and were associated with more detrital material than were the other macerals studied. This detritus was shown by conventional light microscopy to be the maceral micrinite. Fusinite was remarkable in having a chunky needle form, with lengths of up to 200 ..mu..m. 8 references.

  12. Head-facial hemangiomas studied with scanning electron microscopy.

    Science.gov (United States)

    Cavallotti, Carlo; Cavallotti, Chiara; Giovannetti, Filippo; Iannetti, Giorgio

    2009-11-01

    Hemangiomas of the head or face are a frequent vascular pathology, consisting in an embryonic dysplasia that involves the cranial-facial vascular network. Hemangiomas show clinical, morphological, developmental, and structural changes during their course. Morphological, structural, ultrastructural, and clinical characteristics of head-facial hemangiomas were studied in 28 patients admitted in our hospital. Nineteen of these patients underwent surgery for the removal of the hemangiomas, whereas 9 patients were not operated on. All the removed tissues were transferred in our laboratories for the morphological staining. Light microscopy, transmission electron microscopy, and scanning electron microscopy techniques were used for the observation of all microanatomical details. All patients were studied for a clinical diagnosis, and many were subjected to surgical therapy. The morphological results revealed numerous microanatomical characteristics of the hemangiomatous vessels. The observation by light microscopy shows the afferent and the efferent vessels for every microhemangioma. All the layers of the arterial wall are uneven. The lumen of the arteriole is entirely used by a blood clot. The observation by transmission electron microscopy shows that it was impossible to see the limits of the different layers (endothelium, medial layer, and adventitia) in the whole wall of the vessels. Moreover, both the muscular and elastic components are disarranged and replaced with connective tissue. The observation by scanning electron microscopy shows that the corrosion cast of the hemangioma offers 3 periods of filling: initially with partial filling of the arteriolar and of the whole cast, intermediate with the entire filling of the whole cast (including arteriole and venule), and a last period with a partial emptying of the arteriolar and whole cast while the venule remains totally injected with resin. Our morphological results can be useful to clinicians for a precise

  13. Transmission electron microscopy in micro-nanoelectronics

    CERN Document Server

    Claverie, Alain

    2013-01-01

    Today, the availability of bright and highly coherent electron sources and sensitive detectors has radically changed the type and quality of the information which can be obtained by transmission electron microscopy (TEM). TEMs are now present in large numbers not only in academia, but also in industrial research centers and fabs.This book presents in a simple and practical way the new quantitative techniques based on TEM which have recently been invented or developed to address most of the main challenging issues scientists and process engineers have to face to develop or optimize sem

  14. Transmission Electron Microscopy and Diffractometry of Materials

    CERN Document Server

    Fultz, Brent

    2013-01-01

    This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes la...

  15. Nitrogen implantation with a scanning electron microscope.

    Science.gov (United States)

    Becker, S; Raatz, N; Jankuhn, St; John, R; Meijer, J

    2018-01-08

    Established techniques for ion implantation rely on technically advanced and costly machines like particle accelerators that only few research groups possess. We report here about a new and surprisingly simple ion implantation method that is based upon a widespread laboratory instrument: The scanning electron microscope. We show that it can be utilized to ionize atoms and molecules from the restgas by collisions with electrons of the beam and subsequently accelerate and implant them into an insulating sample by the effect of a potential building up at the sample surface. Our method is demonstrated by the implantation of nitrogen ions into diamond and their subsequent conversion to nitrogen vacancy centres which can be easily measured by fluorescence confocal microscopy. To provide evidence that the observed centres are truly generated in the way we describe, we supplied a 98% isotopically enriched 15 N gas to the chamber, whose natural abundance is very low. By employing the method of optically detected magnetic resonance, we were thus able to verify that the investigated centres are actually created from the 15 N isotopes. We also show that this method is compatible with lithography techniques using e-beam resist, as demonstrated by the implantation of lines using PMMA.

  16. Nano-tomography of porous geological materials using focused ion beam-scanning electron microscopy

    NARCIS (Netherlands)

    Liu, Yang; King, Helen E.; van Huis, Marijn A.; Drury, Martyn R.; Plümper, Oliver

    2016-01-01

    Tomographic analysis using focused ion beam-scanning electron microscopy (FIB-SEM) provides three-dimensional information about solid materials with a resolution of a few nanometres and thus bridges the gap between X-ray and transmission electron microscopic tomography techniques. This contribution

  17. Large area fabrication of plasmonic nanoparticle grating structure by conventional scanning electron microscope

    International Nuclear Information System (INIS)

    Sudheer,; Tiwari, P.; Rai, V. N.; Srivastava, A. K.; Mukharjee, C.

    2015-01-01

    Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique

  18. New developments in transmission electron microscopy for nanotechnology

    International Nuclear Information System (INIS)

    Wang, Z.L.

    2003-01-01

    High-resolution transmission electron microscopy (HRTEM) is one of the most powerful tools used for characterizing nanomaterials, and it is indispensable for nanotechnology. This paper reviews some of the most recent developments in electron microscopy techniques for characterizing nanomaterials. The review covers the following areas: in-situ microscopy for studying dynamic shape transformation of nanocrystals; in-situ nanoscale property measurements on the mechanical, electrical and field emission properties of nanotubes/nanowires; environmental microscopy for direct observation of surface reactions; aberration-free angstrom-resolution imaging of light elements (such as oxygen and lithium); high-angle annular-dark-field scanning transmission electron microscopy (STEM); imaging of atom clusters with atomic resolution chemical information; electron holography of magnetic materials; and high-spatial resolution electron energy-loss spectroscopy (EELS) for nanoscale electronic and chemical analysis. It is demonstrated that the picometer-scale science provided by HRTEM is the foundation of nanometer-scale technology. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  19. Transmission Electron Microscopy of Itokawa Regolith Grains

    Science.gov (United States)

    Keller, Lindsay P.; Berger, E. L.

    2013-01-01

    Introduction: In a remarkable engineering achievement, the JAXA space agency successfully recovered the Hayabusa space-craft in June 2010, following a non-optimal encounter and sur-face sampling mission to asteroid 25143 Itokawa. These are the first direct samples ever obtained and returned from the surface of an asteroid. The Hayabusa samples thus present a special op-portunity to directly investigate the evolution of asteroidal sur-faces, from the development of the regolith to the study of the effects of space weathering. Here we report on our preliminary TEM measurements on two Itokawa samples. Methods: We were allocated particles RA-QD02-0125 and RA-QD02-0211. Both particles were embedded in low viscosity epoxy and thin sections were prepared using ultramicrotomy. High resolution images and electron diffraction data were ob-tained using a JEOL 2500SE 200 kV field-emission scanning-transmission electron microscope. Quantitative maps and anal-yses were obtained using a Thermo thin-window energy-dispersive x-ray (EDX) spectrometer. Results: Both particles are olivine-rich (Fo70) with µm-sized inclusions of FeS and have microstructurally complex rims. Par-ticle RA-QD02-0125 is rounded and has numerous sub-µm grains attached to its surface including FeS, albite, olivine, and rare melt droplets. Solar flare tracks have not been observed, but the particle is surrounded by a continuous 50 nm thick, stuctur-ally disordered rim that is compositionally similar to the core of the grain. One of the surface adhering grains is pyrrhotite show-ing a S-depleted rim (8-10 nm thick) with nanophase Fe metal grains (<5 nm) decorating the outermost surface. The pyrrhotite displays a complex superstructure in its core that is absent in the S-depleted rim. Particle RA-QD02-0211 contains solar flare particle tracks (2x109 cm-2) and shows a structurally disordered rim 100 nm thick. The track density corresponds to a surface exposure of 103-104 years based on the track production rate

  20. Statistical image reconstruction methods for simultaneous emission/transmission PET scans

    International Nuclear Information System (INIS)

    Erdogan, H.; Fessler, J.A.

    1996-01-01

    Transmission scans are necessary for estimating the attenuation correction factors (ACFs) to yield quantitatively accurate PET emission images. To reduce the total scan time, post-injection transmission scans have been proposed in which one can simultaneously acquire emission and transmission data using rod sources and sinogram windowing. However, since the post-injection transmission scans are corrupted by emission coincidences, accurate correction for attenuation becomes more challenging. Conventional methods (emission subtraction) for ACF computation from post-injection scans are suboptimal and require relatively long scan times. We introduce statistical methods based on penalized-likelihood objectives to compute ACFs and then use them to reconstruct lower noise PET emission images from simultaneous transmission/emission scans. Simulations show the efficacy of the proposed methods. These methods improve image quality and SNR of the estimates as compared to conventional methods

  1. The trajectories of secondary electrons in the scanning electron microscope.

    Science.gov (United States)

    Konvalina, Ivo; Müllerová, Ilona

    2006-01-01

    Three-dimensional simulations of the trajectories of secondary electrons (SE) in the scanning electron microscope have been performed for plenty of real configurations of the specimen chamber, including all its basic components. The primary purpose was to evaluate the collection efficiency of the Everhart-Thornley detector of SE and to reveal fundamental rules for tailoring the set-ups in which efficient signal acquisition can be expected. Intuitive realizations about the easiness of attracting the SEs towards the biased front grid of the detector have shown themselves likely as false, and all grounded objects in the chamber have been proven to influence the spatial distribution of the signal-extracting field. The role of the magnetic field penetrating from inside the objective lens is shown to play an ambiguous role regarding possible support for the signal collection.

  2. Highlighting material structure with transmission electron diffraction correlation coefficient maps

    International Nuclear Information System (INIS)

    Kiss, Ákos K.; Rauch, Edgar F.; Lábár, János L.

    2016-01-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. - Highlights: • We propose a novel technique to image the structure of polycrystalline TEM-samples. • Correlation coefficients maps highlights the evolution of the diffracting signal. • 3D views of grain boundaries are provided for nano-particles or polycrystals.

  3. Dental Wear: A Scanning Electron Microscope Study

    Directory of Open Access Journals (Sweden)

    Luca Levrini

    2014-01-01

    Full Text Available Dental wear can be differentiated into different types on the basis of morphological and etiological factors. The present research was carried out on twelve extracted human teeth with dental wear (three teeth showing each type of wear: erosion, attrition, abrasion, and abfraction studied by scanning electron microscopy (SEM. The study aimed, through analysis of the macro- and micromorphological features of the lesions (considering the enamel, dentin, enamel prisms, dentinal tubules, and pulp, to clarify the different clinical and diagnostic presentations of dental wear and their possible significance. Our results, which confirm current knowledge, provide a complete overview of the distinctive morphology of each lesion type. It is important to identify the type of dental wear lesion in order to recognize the contributing etiological factors and, consequently, identify other more complex, nondental disorders (such as gastroesophageal reflux, eating disorders. It is clear that each type of lesion has a specific morphology and mechanism, and further clinical studies are needed to clarify the etiological processes, particularly those underlying the onset of abfraction.

  4. Scanning electron microscopic studies on bone tumors

    International Nuclear Information System (INIS)

    Itoh, Motoya

    1978-01-01

    Surface morphological observations of benign and malinant bone tumors were made by the use of scanning electron microscopy. Tumor materials were obtained directly from patients of osteogenic sarcomas, chondrosarcomas, enchondromas, giant cell tumors and Paget's sarcoma. To compare with these human tumors, the following experimental materials were also observed: P 32 -induced rat osteogenic sarcomas with their pulmonary metastatic lesions, Sr 89 -induced transplantable mouse osteogenic sarcomas and osteoid tissues arising after artificial fractures in mice. One of the most outstanding findings was a lot of granular substances seen on cell surfaces and their intercellular spaces in osteoid or chondroid forming tissues. These substances were considered to do some parts in collaborating extracellular matrix formation. Protrusions on cell surface, such as mucrovilli were more or less fashioned by these granular substances. Additional experiments revealed these substances to be soluble in sodium cloride solution. Benign osteoid forming cells, such as osteoblasts and osteoblastic osteosarcoma cells had granular substances on their surfaces and their intercellular spaces. On the other hand, undifferentiated transplantable osteosarcoma which formed on osteoid or chondroid matrix had none of these granular substances. Consequently, the difference of surface morphology between osteosarcoma cells and osteoblasts was yet to be especially concluded. (author)

  5. Scanning transmission proton microscopy tomography of reconstruction cells from simulated data

    International Nuclear Information System (INIS)

    Zhang Conghua; Li Min; Hou Qing

    2011-01-01

    For scanning transmission proton microscopy tomography, to compare cell images of the proton stopping power and relative electron density, two cell phantoms are designed and simulated by code FLUKA. The cell images are reconstructed by the filtered back projection algorithm, and compared with their tomography imaging. The images of stopping power and relative electron density slightly vary with proton energies, but the internal images are of clear with high resolution. The organic glass image of relative electron density reveals the resolution power of proton tomography. Also, the simulation results reflect effects of the boundary enhancement, the weak artifacts, and the internal structure border extension by multiple scattering. So using proton tomography to analyze internal structure of a cell is a superior. (authors)

  6. Transmission electron microscopy of mercury metal

    KAUST Repository

    Anjum, Dalaver H.

    2016-03-28

    Summary: Transmission electron microcopy (TEM) analysis of liquid metals, especially mercury (Hg), is difficult to carry out because their specimen preparation poses a daunting task due to the unique surface properties of these metals. This paper reports a cryoTEM study on Hg using a novel specimen preparation technique. Hg metal is mixed with water using sonication and quenched in liquid ethane cryogen. This technique permits research into the morphological, phase and structural properties of Hg at nanoscale dimensions. © 2016 Royal Microscopical Society.

  7. Parallel and pipelined front-end for multi-element silicon detectors in scanning electron microscopy

    International Nuclear Information System (INIS)

    Boulin, C.; Epstein, A.

    1992-01-01

    This paper discusses a silicon quadrant detector (128 elements) implemented as an electron detector in a Scanning Transmission Electron Microscope. As the electron beam scans over the sample, electrons are counted during each pixel. The authors developed an ASIC for the multichannel counting system. The digital front-end carries out the readout of all elements, in four groups, and uses these data to compute linear combinations to generate up to eight simultaneous images. For the preprocessing the authors implemented a parallel and pipelined system. Dedicated software tools were developed to generate the programs for all the processors. These tools are transparently accessed by the user via a user friendly interface

  8. Quantitative biological measurement in Transmission Electron Tomography

    International Nuclear Information System (INIS)

    Mantell, Judith M; Verkade, Paul; Arkill, Kenton P

    2012-01-01

    It has been known for some time that biological sections shrink in the transmission electron microscope from exposure to the electron beam. This phenomenon is especially important in Electron Tomography (ET). The effect on shrinkage of parameters such as embedding medium or sample type is less well understood. In addition anisotropic area shrinkage has largely been ignored. The intention of this study is to explore the shrinkage on a number of samples ranging in thickness from 200 nm to 500 nm. A protocol was developed to determine the shrinkage in area and thickness using the gold fiducials used in electron tomography. In brief: Using low dose philosophy on the section, a focus area was used prior to a separate virgin study area for a series of known exposures on a tilted sample. The shrinkage was determined by measurements on the gold beads from both sides of the section as determined by a confirmatory tomogram. It was found that the shrinkage in area (approximately to 90-95% of the original) and the thickness (approximately 65% of the original at most) agreed with pervious authors, but that a lmost all the shrinkage was in the first minute and that although the direction of the in-plane shrinkage (in x and y) was sometimes uneven the end result was consistent. It was observed, in general, that thinner samples showed more percentage shrinkage than thicker ones. In conclusion, if direct quantitative measurements are required then the protocol described should be used for all areas studied.

  9. Quantitative biological measurement in Transmission Electron Tomography

    Science.gov (United States)

    Mantell, Judith M.; Verkade, Paul; Arkill, Kenton P.

    2012-07-01

    It has been known for some time that biological sections shrink in the transmission electron microscope from exposure to the electron beam. This phenomenon is especially important in Electron Tomography (ET). The effect on shrinkage of parameters such as embedding medium or sample type is less well understood. In addition anisotropic area shrinkage has largely been ignored. The intention of this study is to explore the shrinkage on a number of samples ranging in thickness from 200 nm to 500 nm. A protocol was developed to determine the shrinkage in area and thickness using the gold fiducials used in electron tomography. In brief: Using low dose philosophy on the section, a focus area was used prior to a separate virgin study area for a series of known exposures on a tilted sample. The shrinkage was determined by measurements on the gold beads from both sides of the section as determined by a confirmatory tomogram. It was found that the shrinkage in area (approximately to 90-95% of the original) and the thickness (approximately 65% of the original at most) agreed with pervious authors, but that a lmost all the shrinkage was in the first minute and that although the direction of the in-plane shrinkage (in x and y) was sometimes uneven the end result was consistent. It was observed, in general, that thinner samples showed more percentage shrinkage than thicker ones. In conclusion, if direct quantitative measurements are required then the protocol described should be used for all areas studied.

  10. Sample Preparation and Imaging of Exosomes by Transmission Electron Microscopy.

    Science.gov (United States)

    Jung, Min Kyo; Mun, Ji Young

    2018-01-04

    Exosomes are nano-sized extracellular vesicles secreted by body fluids and are known to represent the characteristics of cells that secrete them. The contents and morphology of the secreted vesicles reflect cell behavior or physiological status, for example cell growth, migration, cleavage, and death. The exosomes' role may depend highly on size, and the size of exosomes varies from 30 to 300 nm. The most widely used method for exosome imaging is negative staining, while other results are based on Cryo-Transmission Electron Microscopy, Scanning Electron Microscopy, and Atomic Force Microscopy. The typical exosome's morphology assessed through negative staining is a cup-shape, but further details are not yet clear. An exosome well-characterized through structural study is necessary particular in medical and pharmaceutical fields. Therefore, function-dependent morphology should be verified by electron microscopy techniques such as labeling a specific protein in the detailed structure of exosome. To observe detailed structure, ultrathin sectioned images and negative stained images of exosomes were compared. In this protocol, we suggest transmission electron microscopy for the imaging of exosomes including negative staining, whole mount immuno-staining, block preparation, thin section, and immuno-gold labelling.

  11. Scanning transmission ion micro-tomography (STIM-T) of biological specimens

    International Nuclear Information System (INIS)

    Schwertner, Michael; Sakellariou, Arthur; Reinert, Tilo; Butz, Tilman

    2006-01-01

    Computed tomography (CT) was applied to sets of Scanning Transmission Ion Microscopy (STIM) projections recorded at the LIPSION ion beam laboratory (Leipzig) in order to visualize the 3D-mass distribution in several specimens. Examples for a test structure (copper grid) and for biological specimens (cartilage cells, cygospore) are shown. Scanning Transmission Micro-Tomography (STIM-T) at a resolution of 260 nm was demonstrated for the first time. Sub-micron features of the Cu-grid specimen were verified by scanning electron microscopy. The ion energy loss measured during a STIM-T experiment is related to the mass density of the specimen. Typically, biological specimens can be analysed without staining. Only shock freezing and freeze-drying is required to preserve the ultra-structure of the specimen. The radiation damage to the specimen during the experiment can be neglected. This is an advantage compared to other techniques like X-ray micro-tomography. At present, the spatial resolution is limited by beam position fluctuations and specimen vibrations

  12. Electron optical characteristics of a concave electrostatic electron mirror for a scanning electron microscope

    International Nuclear Information System (INIS)

    Hamarat, R.T.; Witzani, J.; Hoerl, E.M.

    1984-08-01

    Numerical computer calculations are used to explore the design characteristics of a concave electrostatic electron mirror for a mirror attachment for a conventional scanning electron microscope or an instrument designed totally as a scanning electron mirror microscope. The electron paths of a number of set-ups are calculated and drawn graphically in order to find the optimum shape and dimensions of the mirror geometry. This optimum configuration turns out to be the transition configuration between two cases of electron path deflection, towards the optical axis of the system and away from it. (Author)

  13. Time-Resolved Scanning Electron Microscopy

    National Research Council Canada - National Science Library

    Weber, Peter M

    2006-01-01

    .... The pulsed electron beam is obtained by rapidly switching the electron emission of a field emission tip using the AC electric field arising from exposure to the intense electromagnetic radiation...

  14. Self-correcting electronically scanned pressure sensor

    Science.gov (United States)

    Gross, C. (Inventor)

    1983-01-01

    A multiple channel high data rate pressure sensing device is disclosed for use in wind tunnels, spacecraft, airborne, process control, automotive, etc., pressure measurements. Data rates in excess of 100,000 measurements per second are offered with inaccuracies from temperature shifts less than 0.25% (nominal) of full scale over a temperature span of 55 C. The device consists of thirty-two solid state sensors, signal multiplexing electronics to electronically address each sensor, and digital electronic circuitry to automatically correct the inherent thermal shift errors of the pressure sensors and their associated electronics.

  15. Technology scan for electronic toll collection.

    Science.gov (United States)

    2008-06-01

    The purpose of this project was to identify and assess available technologies and methodologies for electronic toll collection (ETC) and to develop recommendations for the best way(s) to implement toll collection in the Louisville metropolitan area. ...

  16. Applications of transmission electron microscopy in the materials and mineral sciences

    International Nuclear Information System (INIS)

    Murr, L.E.

    1975-01-01

    Unique capabilities of transmission electron microscopy in characterizing the structure and properties of metals, minerals, and other crystaline materials are illustrated and compared with observations in the scanning electron and field-ion microscopes. Contrast mechanisms involving both mass-thickness and diffraction processes are illustrated, and examples presented of applications of bright and dark-field techiques. Applications of the electron microscope in the investigation of metallurgical and mineralogical problems are outlined with representative examples [pt

  17. Addressing preservation of elastic contrast in energy-filtered transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.G.; D' Alfonso, A.J.; Forbes, B.D.; Allen, L.J., E-mail: lja@unimelb.edu.au

    2016-01-15

    Energy-filtered transmission electron microscopy (EFTEM) images with resolutions of the order of an Ångström can be obtained using modern microscopes corrected for chromatic aberration. However, the delocalized nature of the transition potentials for atomic ionization often confounds direct interpretation of EFTEM images, leading to what is known as “preservation of elastic contrast”. In this paper we demonstrate how more interpretable images might be obtained by scanning with a focused coherent probe and incoherently averaging the energy-filtered images over probe position. We dub this new imaging technique energy-filtered imaging scanning transmission electron microscopy (EFISTEM). We develop a theoretical framework for EFISTEM and show that it is in fact equivalent to precession EFTEM, where the plane wave illumination is precessed through a range of tilts spanning the same range of angles as the probe forming aperture in EFISTEM. It is demonstrated that EFISTEM delivers similar results to scanning transmission electron microscopy with an electron energy-loss spectrometer but has the advantage that it is immune to coherent aberrations and spatial incoherence of the probe and is also more resilient to scan distortions. - Highlights: • Interpretation of EFTEM images is complicated by preservation of elastic contrast. • More direct images obtained by scanning with a focused coherent probe and averaging. • This is equivalent to precession EFTEM through the solid angle defined by the probe. • Also yields similar results to energy-loss scanning transmission electron microscopy. • Scanning approach immune to probe aberrations and resilient to scan distortions.

  18. A Comparative Scanning Electron Microscopy Evaluation of Smear ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... scanning electron microscopy evaluation of smear layer removal with chitosan and .... this compound has considerably increased its concentration in rivers and .... of the images was done by three investigators who calibrated ...

  19. Scanning electron microscopic evaluation of root canal surfaces ...

    African Journals Online (AJOL)

    Scanning electron microscopic evaluation of root canal surfaces prepared with three rotary endodontic systems: Lightspeed, ProTaper and EndoWave. ... fracture with LightSpeed (LS), ProTaper (PT) and EndoWave (Ew) rotary instruments.

  20. Surface properties and microporosity of polyhydroxybutyrate under scanning electron microscopy

    International Nuclear Information System (INIS)

    Raouf, A.A.; Samsudin, A.R.; Samian, R.; Akool, K.; Abdullah, N.

    2004-01-01

    This study was designed to investigate the surface properties especially surface porosity of polyhydroxybutyrate (PHB) using scanning electron microscopy. PHB granules were sprinkled on the double-sided sticky tape attached on a SEM aluminium stub and sputtered with gold (10nm thickness) in a Polaron SC515 Coater, following which the samples were placed into the SEM specimen chamber for viewing and recording. Scanning electron micrographs with different magnification of PHB surface revealed multiple pores with different sizes. (Author)

  1. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    Science.gov (United States)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  2. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    Science.gov (United States)

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Shielded scanning electron microscope for radioactive samples

    International Nuclear Information System (INIS)

    Crouse, R.S.; Parsley, W.B.

    1977-01-01

    A small commercial SEM had been successfully shielded for examining radioactive materials transferred directly from a remote handling facility. Relatively minor mechanical modifications were required to achieve excellent operation. Two inches of steel provide adequate shielding for most samples encountered. However, samples reading 75 rad/hr γ have been examined by adding extra shielding in the form of tungsten sample holders and external lead shadow shields. Some degradation of secondary electron imaging was seen but was adequately compensated for by changing operating conditions

  4. Transmission of electrons through Al2O3 nanocapillaries

    DEFF Research Database (Denmark)

    Milosavljević, A.R.; Jureta, J.J.; Víkor, Gy.

    2012-01-01

    We investigate transmission of low-energy electrons (250 eV) through insulating AlO nanocapillaries (270 nm diameter and 15 μm length). Kinetic energy distribution of electrons transmitted through the nanocapillaries in the straightforward direction, time dependence of the transmission rate both...

  5. Observation of Magnetic Induction Distribution by Scanning Interference Electron Microscopy

    Science.gov (United States)

    Takahashi, Yoshio; Yajima, Yusuke; Ichikawa, Masakazu; Kuroda, Katsuhiro

    1994-09-01

    A scanning interference electron microscope (SIEM) capable of observing magnetic induction distribution with high sensitivity and spatial resolution has been developed. The SIEM uses a pair of fine coherent scanning probes and detects their relative phase change by magnetic induction, giving raster images of microscopic magnetic distributions. Its performance has been demonstrated by observing magnetic induction distributed near the edge of a recorded magnetic storage medium. Obtained images are compared with corresponding images taken in the scanning Lorentz electron microscope mode using the same microscope, and the differences between them are discussed.

  6. Simulation study of secondary electron images in scanning ion microscopy

    CERN Document Server

    Ohya, K

    2003-01-01

    The target atomic number, Z sub 2 , dependence of secondary electron yield is simulated by applying a Monte Carlo code for 17 species of metals bombarded by Ga ions and electrons in order to study the contrast difference between scanning ion microscopes (SIM) and scanning electron microscopes (SEM). In addition to the remarkable reversal of the Z sub 2 dependence between the Ga ion and electron bombardment, a fine structure, which is correlated to the density of the conduction band electrons in the metal, is calculated for both. The brightness changes of the secondary electron images in SIM and SEM are simulated using Au and Al surfaces adjacent to each other. The results indicate that the image contrast in SIM is much more sensitive to the material species and is clearer than that for SEM. The origin of the difference between SIM and SEM comes from the difference in the lateral distribution of secondary electrons excited within the escape depth.

  7. Electron beam effects in auger electron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Fontaine, J.M.; Duraud, J.P.; Le Gressus, C.

    1979-01-01

    Electron beam effects on Si(100) and 5% Fe/Cr alloy samples have been studied by measurements of the secondary electron yield delta, determination of the surface composition by Auger electron spectroscopy and imaging with scanning electron microscopy. Variations of delta as a function of the accelerating voltage Esub(p) (0.5 -9 Torr has no effect on technological samples covered with their reaction layers; the sensitivities to the beam depend rather on the earlier mechanical, thermal and chemical treatment of the surfaces. (author)

  8. Defect imaging and channeling studies using channeling scanning transmission ion microscopy

    NARCIS (Netherlands)

    King, PJC; Breese, MBH; Smulders, PJM; Wilshaw, PR; Grime, GW

    The technique of channeling scanning transmission ion microscopy (CSTIM) can be used to produce images of individual crystal defects (such as dislocations and stacking faults) using the scanned, focused ion beam from a nuclear microprobe. As well as offering a new method for studies of crystal

  9. Study of Hydrated Lime in Environmental Scanning Electron Microscopy

    Czech Academy of Sciences Publication Activity Database

    Tihlaříková, Eva; Neděla, Vilém; Rovnaníková, P.

    2013-01-01

    Roč. 19, S2 (2013), s. 1644-1645 ISSN 1431-9276 R&D Projects: GA ČR GAP102/10/1410; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Hydrated Lime * Environmental Scanning Electron Microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.757, year: 2013

  10. Characterization of Polycaprolactone Films Biodeterioration by Scanning Electron Microscopy

    Czech Academy of Sciences Publication Activity Database

    Hrubanová, Kamila; Voberková, S.; Hermanová, S.; Krzyžánek, Vladislav

    2014-01-01

    Roč. 20, S3 (2014), s. 1950-1951 ISSN 1431-9276 R&D Projects: GA MŠk EE.2.3.20.0103; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : polycaprolactone films * biodeterioration * scanning electron microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.877, year: 2014

  11. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1993-01-01

    "Transmission Electron Microscopy" presents the theory of image and contrastformation, and the analytical modes in transmission electron microscopy Theprinciples of particle and wave optics of electrons are described Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast Also analysed are the kinetical and dynamical theories of electron diffraction and their applications for crystal-structure determination and imaging of lattices and their defects X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods The third edition includes a brief discussionof Schottky emission guns, some clarification of minor details, and references to the recent literature

  12. Scanning Electron Microscopy with Samples in an Electric Field

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Hovorka, Miloš; Mikmeková, Šárka; Mikmeková, Eliška; Müllerová, Ilona; Pokorná, Zuzana

    2012-01-01

    Roč. 5, č. 12 (2012), s. 2731-2756 ISSN 1996-1944 R&D Projects: GA ČR GAP108/11/2270; GA TA ČR TE01020118; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : scanning electron microscopy * slow electrons * low energy SEM * low energy STEM * cathode lens Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.247, year: 2012

  13. Scanning tunnel microscope with large vision field compatible with a scanning electron microscope

    International Nuclear Information System (INIS)

    Volodin, A.P.; Stepanyan, G.A.; Khajkin, M.S.; Ehdel'man, V.S.

    1989-01-01

    A scanning tunnel microscope (STM) with the 20μm vision field and 1nm resolution, designed to be compatible with a scanning electron microscope (SEM), is described. The sample scanning area is chosen within the 3x10mm limits with a 0.1-1μm step. The STM needle is moved automatically toward the sample surface from the maximum distance of 10mm until the tunneling current appears. Bimorphous elements of the KP-1 piezocorrector are used in the STM design. The device is installed on a table of SEM object holders

  14. Thin dielectric film thickness determination by advanced transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, A.C.; Foran, B.; Kisielowski, C.; Muller, D.; Pennycook, S.; Principe, E.; Stemmer, S.

    2003-09-01

    High Resolution Transmission Electron Microscopy (HR-TEM) has been used as the ultimate method of thickness measurement for thin films. The appearance of phase contrast interference patterns in HR-TEM images has long been confused as the appearance of a crystal lattice by non-specialists. Relatively easy to interpret crystal lattice images are now directly observed with the introduction of annular dark field detectors for scanning TEM (STEM). With the recent development of reliable lattice image processing software that creates crystal structure images from phase contrast data, HR-TEM can also provide crystal lattice images. The resolution of both methods was steadily improved reaching now into the sub Angstrom region. Improvements in electron lens and image analysis software are increasing the spatial resolution of both methods. Optimum resolution for STEM requires that the probe beam be highly localized. In STEM, beam localization is enhanced by selection of the correct aperture. When STEM measurement is done using a highly localized probe beam, HR-TEM and STEM measurement of the thickness of silicon oxynitride films agree within experimental error. In this paper, the optimum conditions for HR-TEM and STEM measurement are discussed along with a method for repeatable film thickness determination. The impact of sample thickness is also discussed. The key result in this paper is the proposal of a reproducible method for film thickness determination.

  15. Correlative Analysis of Immunoreactivity in Confocal Laser-Scanning Microscopy and Scanning Electron Microscopy with Focused Ion Beam Milling

    Directory of Open Access Journals (Sweden)

    Takahiro eSonomura

    2013-02-01

    Full Text Available Three-dimensional reconstruction of ultrastructure of rat brain with minimal effort has recently been realized by scanning electron microscopy combined with focused ion beam milling (FIB-SEM. Because application of immunohistochemical staining to electron microscopy has a great advantage in that molecules of interest are specifically localized in ultrastructures, we here tried to apply immunocytochemistry to FIB-SEM and correlate immunoreactivity in confocal laser-scanning microcopy (CF-LSM with that in FIB-SEM. The dendrites of medium-sized spiny neurons in rat neostriatum were visualized with a recombinant viral vector, which labeled the infected neurons with membrane-targeted GFP in a Golgi stain-like fashion, and thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2. After detecting the sites of terminals apposed to the dendrites in CF-LSM, GFP and VGluT2 immunoreactivities were further developed for electron microscopy by the immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB methods, respectively. In the contrast-inverted FIB-SEM images, silver precipitation and DAB deposits were observed as fine dark grains and diffuse dense profiles, respectively, indicating that these immunoreactivities were easily recognizable as in the images of transmission electron microscopy. In the sites of interest, some appositions were revealed to display synaptic specialization of asymmetric type. The present method is thus useful in the three-dimensional analysis of immunocytochemically differentiated synaptic connection in the central neural circuit.

  16. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1997-01-01

    Transmission Electron Microscopy presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray micronanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fourth edition includes discussion of recent progress, especially in the area of Schottky emission guns, convergent-beam electron diffraction, electron tomography, holography and the high resolution of crystal lattices.

  17. Complex band structure and electronic transmission eigenchannels

    DEFF Research Database (Denmark)

    Jensen, Anders; Strange, Mikkel; Smidstrup, Soren

    2017-01-01

    and complex band structure, in this case individual eigenchannel transmissions and different complex bands. We present calculations of decay constants for the two most conductive states as determined by complex band structure and standard DFT Landauer transport calculations for one semi-conductor and two...

  18. Morphological changes in the tracheal epithelium of guinea pigs in conditions of "marginal" vitamin A deficiency. A light, scanning- and transmission-electron microscopic study under special breeding conditions appropriate to early vitamin A deficiency.

    Science.gov (United States)

    Stofft, E; Biesalski, H K; Zschaebitz, A; Weiser, H

    1992-01-01

    The aim of the study was to find out the influence of marginal vitamin A deficiency on morphological structures in the tracheobronchial epithelium in guinea pigs. The tracheobronchial epithelium of animals with vitamin A deficiency (n = 15) and control animals (n = 7), kept under optimal laboratory conditions, was evaluated by light and electron microscopy. The cellular ultrastructure was morphometrically analyzed. The height of the respiratory epithelium was slightly increased. The basal cells were arranged in a loose cell band of three to four layers. The quantity of cytofilaments in their cytoplasm was enhanced. Goblet cells were significantly reduced in vitamin A deficiency. There was also a significant decrease in their secretory granules. The number of ciliated cells was almost unchanged. They showed a significant reduction in mitochondria. The kinocilia often contained an atypical structure of the microtubules. Our findings confirm multiple ultrastructural dysplasias in early vitamin A deficiency which may lead to a disturbance of mucociliary clearance.

  19. In-situ reduction of promoted cobalt oxide supported on alumina by environmental transmission electron microscopy

    DEFF Research Database (Denmark)

    Dehghan, Roya; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2011-01-01

    the reactivity of the nanoparticles and the importance of controlling the gas composition and specimen temperature during this type of experiment. Similar behaviour was observed for a non-promoted catalyst. Imaging and analysis of the promoted sample before and after reduction indicated a uniform distribution...... resolution transmission electron microscopy and scanning transmission electron microscopy imaging. The cobalt particles were mainly face centred cubic while some hexagonal close packed particles were also found. Reoxidation of the sample upon cooling to room temperature, still under flowing H2, underlines...

  20. A new clustering algorithm for scanning electron microscope images

    Science.gov (United States)

    Yousef, Amr; Duraisamy, Prakash; Karim, Mohammad

    2016-04-01

    A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning it with a focused beam of electrons. The electrons interact with the sample atoms, producing various signals that are collected by detectors. The gathered signals contain information about the sample's surface topography and composition. The electron beam is generally scanned in a raster scan pattern, and the beam's position is combined with the detected signal to produce an image. The most common configuration for an SEM produces a single value per pixel, with the results usually rendered as grayscale images. The captured images may be produced with insufficient brightness, anomalous contrast, jagged edges, and poor quality due to low signal-to-noise ratio, grained topography and poor surface details. The segmentation of the SEM images is a tackling problems in the presence of the previously mentioned distortions. In this paper, we are stressing on the clustering of these type of images. In that sense, we evaluate the performance of the well-known unsupervised clustering and classification techniques such as connectivity based clustering (hierarchical clustering), centroid-based clustering, distribution-based clustering and density-based clustering. Furthermore, we propose a new spatial fuzzy clustering technique that works efficiently on this type of images and compare its results against these regular techniques in terms of clustering validation metrics.

  1. Characterization of nanomaterials with transmission electron microscopy

    KAUST Repository

    Anjum, Dalaver H.

    2016-01-01

    -Co) NPs and titania (TiO2) NPs, and platinum loaded Ceria (Pt-CeO2) Nano composite. TEM techniques that are employed to investigate nano-materials include aberration corrected bright-field TEM (BF-TEM), high-angle dark-field scanning TEM (HAADF

  2. Effective absorption correction for energy dispersive X-ray mapping in a scanning transmission electron microscope: analysing the local indium distribution in rough samples of InGaN alloy layers.

    Science.gov (United States)

    Wang, X; Chauvat, M-P; Ruterana, P; Walther, T

    2017-12-01

    We have applied our previous method of self-consistent k*-factors for absorption correction in energy-dispersive X-ray spectroscopy to quantify the indium content in X-ray maps of thick compound InGaN layers. The method allows us to quantify the indium concentration without measuring the sample thickness, density or beam current, and works even if there is a drastic local thickness change due to sample roughness or preferential thinning. The method is shown to select, point-by-point in a two-dimensional spectrum image or map, the k*-factor from the local Ga K/L intensity ratio that is most appropriate for the corresponding sample geometry, demonstrating it is not the sample thickness measured along the electron beam direction but the optical path length the X-rays have to travel through the sample that is relevant for the absorption correction. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  3. Participation of bone marrow stromal cells in hemopoietic recovery of rats irradiated and then parabiosed with a non-irradiated litter mate, 2. Scanning and transmission electron microscopic observations

    Energy Technology Data Exchange (ETDEWEB)

    Kagawa, Koichi; Hayashi, Keiki; Awai, Michiyasu

    1986-07-01

    A light microscopical study on the recovery process after lethal irradiation and parabiosis has been made. Electron microscopically, in the bone marrow of lethally irradiated rats, hemorrhage occurred due to detachment of sinus endothelial cells. Afterwards, reticulum cells with small intracytoplasmic lipid droplets appeared. On day 3, these cells were rapidly replaced by the reticulum cells with large lipid droplets, and resulted in fatty marrow within 7 days. Spindle-shaped fibroblastoid reticulum cells were also observed. In the bone marrow of lethally irradiated rats parabiosed with non-treated litter mates, hemopoiesis was initiated by adhesion of nucleated blood cells to intricated fine cytoplasmic pseudopods of fat-storage cells. On days 3 to 5, in parallel with progressive hemopoietic recovery, fibroblastoid and reticulum cells with large lipid droplets decreased whereas those with small droplets increased. On day 8, reticulum cells with lipid droplets were seldom seen, and hemopoietic distribution became the same as normal. These results suggested that bone marrow stromal cells, namely reticulum, fat-storage, and fibroblastoid cells share a common cellular origin, and also that they regain their structure and function when fat-storage cells were placed in contact with hemopoietic precursor cells.

  4. Scanning Tunneling Spectroscopy on Electron-Boson Interactions in Superconductors

    OpenAIRE

    Schackert, Michael Peter

    2014-01-01

    This thesis describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  5. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schackert, Michael Peter

    2014-07-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  6. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    CERN Document Server

    Schackert, Michael Peter

    2015-01-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  7. Composition quantification of electron-transparent samples by backscattered electron imaging in scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Müller, E., E-mail: erich.mueller@kit.edu; Gerthsen, D.

    2017-02-15

    The contrast of backscattered electron (BSE) images in scanning electron microscopy (SEM) depends on material parameters which can be exploited for composition quantification if some information on the material system is available. As an example, the In-concentration in thin In{sub x}Ga{sub 1−x}As layers embedded in a GaAs matrix is analyzed in this work. The spatial resolution of the technique is improved by using thin electron-transparent specimens instead of bulk samples. Although the BSEs are detected in a comparably small angular range by an annular semiconductor detector, the image intensity can be evaluated to determine the composition and local thickness of the specimen. The measured intensities are calibrated within one single image to eliminate the influence of the detection and amplification system. Quantification is performed by comparison of experimental and calculated data. Instead of using time-consuming Monte-Carlo simulations, an analytical model is applied for BSE-intensity calculations which considers single electron scattering and electron diffusion. - Highlights: • Sample thickness and composition are quantified by backscattered electron imaging. • A thin sample is used to achieve spatial resolution of few nanometers. • Calculations are carried out with a time-saving electron diffusion model. • Small differences in atomic number and density detected at low electron energies.

  8. Multi-channel electronically scanned cryogenic pressure sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Kruse, Nancy M. H. (Inventor)

    1995-01-01

    A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multielement array. These dies are bonded at specific sites on a glass, prepatterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

  9. [Scanning electron microscope study of chemically disinfected endodontic files].

    Science.gov (United States)

    Navarro, G; Mateos, M; Navarro, J L; Canalda, C

    1991-01-01

    Forty stainless steel endodontic files were observed at scanning electron microscopy after being subjected to ten disinfection cycles of 10 minutes each one, immersed in different chemical disinfectants. Corrosion was not observed on the surface of the files in circumstances that this study was made.

  10. Assessment of root surfaces of apicected teeth: A scanning electron ...

    African Journals Online (AJOL)

    Objectives: The aim of this study was to determine the apical surface characteristics and presence of dental cracks in single‑rooted premolars, resected 3.0 mm from the root apex, using the Er: YAG laser, tungsten carbide bur, and diamond‑coated tip, by scanning electron microscopy (SEM). Experimental design: Thirty ...

  11. New Scanning Electron Microscope Used for Cryogenic Tensile Testing

    CERN Multimedia

    Maximilien Brice

    2013-01-01

    At CERN engineering department's installation for cryogenic tensile testing, the new scanning electron microscope (SEM) allows for detailed optical observations to be carried out. Using the SEM, surface coatings and tensile properties of materials can investigated in order to better understand how they behave under different conditions.

  12. A Small Crack Length Evaluation Technique by Electronic Scanning

    International Nuclear Information System (INIS)

    Cho, Yong Sang; Kim, Jae Hoon

    2009-01-01

    The results of crack evaluation by conventional UT(Ultrasonic Test)is highly depend on the inspector's experience or knowledge of ultrasound. Phased array UT system and its application methods for small crack length evaluation will be a good alternative method which overcome present UT weakness. This study was aimed at checking the accuracy of crack length evaluation method by electronic scanning and discuss about characteristics of electronic scanning for crack length evaluation. Especially ultrasonic phased array with electronic scan technique was used in carrying out both sizing and detect ability of crack as its length changes. The response of ultrasonic phased array was analyzed to obtain the special method of determining crack length without moving the transducer and detectability of crack minimal length and depth from the material. A method of crack length determining by electronic scanning for the small crack is very real method which has it's accuracy and verify the effectiveness of method compared to a conventional crack length determination

  13. Improved coating and fixation methods for scanning electron microscope autoradiography

    International Nuclear Information System (INIS)

    Weiss, R.L.

    1984-01-01

    A simple apparatus for emulsion coating is described. The apparatus is inexpensive and easily assembled in a standard glass shop. Emulsion coating for scanning electron microscope autoradiography with this apparatus consistently yields uniform layers. When used in conjunction with newly described fixation methods, this new approach produces reliable autoradiographs of undamaged specimens

  14. A Comparative Scanning Electron Microscopy Evaluation of Smear ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... The aim of the present study was to compare the efficacy of chitosan and MTAD for the smear layer removal from the root canal through a scanning electron microscope (SEM). Thirty teeth were randomly divided into three groups according to the final irrigants: 0.2% chitosan, MTAD, saline (control group).

  15. A Comparative Scanning Electron Microscopy Evaluation of Smear ...

    African Journals Online (AJOL)

    The aim of the present study was to compare the efficacy of chitosan and MTAD for the smear layer removal from the root canal through a scanning electron microscope (SEM). Thirty teeth were randomly divided into three groups according to the final irrigants: 0.2% chitosan, MTAD, saline (control group). After the ...

  16. Scanning electron microscope facility for examination of radioactive materials

    International Nuclear Information System (INIS)

    Gibson, J.R.; Braski, D.N.

    1985-02-01

    An AMRAY model 1200B scanning electron microscope was modified to permit remote examination of radioactive specimens. Features of the modification include pneumatic vibration isolation of the column, motorized stage controls, improvements for monitoring vacuum, and a system for changing filaments without entering the hot cell

  17. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    The distribution of arsenic (As) and cadmium (Cd) in himematsutake was analyzed using scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX). The atomic percentage of the metals was confirmed by inductively coupled plasma-mass spectrometer (ICP-MS). Results show that the accumulation of ...

  18. Accurate Virus Quantitation Using a Scanning Transmission Electron Microscopy (STEM) Detector in a Scanning Electron Microscope

    Science.gov (United States)

    2017-06-29

    and then dispensed into a waste container. Three rinse cycles were performed by aspirating and immediately dispensing 40µl of deionized (dI) water ...aspirating 40µl of dI water followed by dispensing into a waste container. The capsule was removed from the pipette, lid opened, and allowed to air dry...sample distribution and different purification steps to decrease sedimentation that interfered with imaging and counting 14,15. In 1950, scientists

  19. Very low energy scanning electron microscopy in nanotechnology

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Hovorka, Miloš; Mika, Filip; Mikmeková, Eliška; Mikmeková, Šárka; Pokorná, Zuzana; Frank, Luděk

    2012-01-01

    Roč. 9, 8/9 (2012), s. 695-716 ISSN 1475-7435 R&D Projects: GA MŠk OE08012; GA MŠk ED0017/01/01; GA AV ČR IAA100650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : scanning electron microscopy * very low energy electrons * cathode lens * grain contrast * strain contrast * imaging of participates * dopant contrast * very low energy STEM * graphene Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.087, year: 2012

  20. METHOD FOR OBSERVATION OF DEEMBEDDED SECTIONS OF FISH GONAD BY SCANNING ELECTRON MICROSCOPY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This article reports a method for examining the intracellular structure of fish gonads using a scanning electron microscope(SEM). The specimen preparation procedure is similar to that for transmission electron microscopy wherein samples cut into semi-thin sections are fixed and embedded in plastic. The embedment matrix was removed by solvents. Risen-free specimens could be observed by SEM. The morphology of matured sperms in the gonad was very clear, and the oocyte internal structures appeared in three-dimensional images. Spheroidal nucleoli and yolk vesicles and several bundles of filaments adhered on the nucleoli could be viewed by SEM for the first time.

  1. Scanning electron microscope - some aspects of the instrument and its applications

    International Nuclear Information System (INIS)

    Thatte, M.R.

    1976-01-01

    Development of the science of microscopy leading to three different types of microscopes - the optical, the conventional transmission electron microscope (CTEM) and the scanning electron microscope(SEM) has been discussed. Special advantages of the SEM in the solution of problems in industrial laboratories are mentioned. A brief reference to the latest instruments announced by Siemens AG shows the modern trends in the technique. A close similarity in image building between SEM and television is indicated. Operational anatomy of the SEM is reviewed. (author)

  2. The Titan Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal; Jinschek, Jörg R.

    2009-01-01

    University of Denmark (DTU) provides a unique combination of techniques for studying materials of interest to the catalytic as well as the electronics and other communities [5]. DTU’s ETEM is based on the FEI Titan platform providing ultrahigh microscope stability pushing the imaging resolution into the sub...

  3. Exploring the environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Wagner, Jakob B.; Cavalca, Filippo; Damsgaard, Christian D.

    2012-01-01

    of the opportunities that the environmental TEM (ETEM) offers when combined with other in situ techniques will be explored, directly in the microscope, by combining electron-based and photon-based techniques and phenomena. In addition, application of adjacent setups using sophisticated transfer methods...

  4. Visualization of magnetic dipolar interaction based on scanning transmission X-ray microscopy

    International Nuclear Information System (INIS)

    Ohtori, Hiroyuki; Iwano, Kaoru; Takeichi, Yasuo; Ono, Kanta; Mitsumata, Chiharu; Yano, Masao; Kato, Akira; Miyamoto, Noritaka; Shoji, Tetsuya; Manabe, Akira

    2014-01-01

    Using scanning transmission X-ray microscopy (STXM), in this report we visualized the magnetic dipolar interactions in nanocrystalline Nd-Fe-B magnets and imaged their magnetization distributions at various applied fields. We calculated the magnetic dipolar interaction by analyzing the interaction between the magnetization at each point and those at the other points on the STXM image.

  5. Closed-Loop Autofocus Scheme for Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Cui Le

    2015-01-01

    Full Text Available In this paper, we present a full scale autofocus approach for scanning electron microscope (SEM. The optimal focus (in-focus position of the microscope is achieved by maximizing the image sharpness using a vision-based closed-loop control scheme. An iterative optimization algorithm has been designed using the sharpness score derived from image gradient information. The proposed method has been implemented and validated using a tungsten gun SEM at various experimental conditions like varying raster scan speed, magnification at real-time. We demonstrate that the proposed autofocus technique is accurate, robust and fast.

  6. The endolymphatic sac: a scanning and transmission electron microscopy study

    DEFF Research Database (Denmark)

    Qvortrup, Klaus; Bretlau, Poul

    2002-01-01

    A recent investigation has suggested that the chief cells of the endolymphatic sac produce an endogenous inhibitor of sodium resorption in the kidneys, tentatively named saccin. In the current study, the ultrastructure of the endolymphatic sac and in particular the chief cells are described...... to demonstrate that this organ fulfils the morphological criteria of a potential endocrine gland. Accordingly, the chief cells are shown to exhibit all the organelles and characteristics of cells that simultaneously synthesize, secrete, absorb and digest proteins....

  7. Long distance electron transmission in marine sediment

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Nielsen, Lars Peter

    processes leads to formation of electrical fields, which modifies ion transport. The local proton producing and proton consuming half reactions induces pH extremes that accelerate dissolution of iron sul-phides and calcium carbonates in anoxic layers and promotes the formation of Mg-calcite and iron oxides......Geochemical observations in marine sediment have recently shown that electric currents may intimately couple spatially separated biogeochemical processes like oxygen reduction at the sediment surface and hydrogen sul-phide oxidation in anoxic layers centimeters below 1. Further experimental studies...... suggest that the electron conductance is mediated by microorgan-isms. The spatial separation of electron and proton donors and acceptors has major impacts on element cycling by redox processes, pH balances, mineral dissolution/precipitations, and electromigration of ions. The sepa-ration of redox...

  8. Stereoscopic and photometric surface reconstruction in scanning electron microscopy

    International Nuclear Information System (INIS)

    Scherer, S.

    2000-01-01

    The scanning electron microscope (SEM) is one of the most important devices to examine microscopic structures as it offers images of a high contrast range with a large depth of focus. Nevertheless, three-dimensional measurements, as desired in fracture mechanics, have previously not been accomplished. This work presents a system for automatic, robust and dense surface reconstruction in scanning electron microscopy combining new approaches in shape from stereo and shape from photometric stereo. The basic theoretical assumption for a known adaptive window algorithm is shown not to hold in scanning electron microscopy. A constraint derived from this observation yields a new, simplified, hence faster calculation of the adaptive window. The correlation measure itself is obtained by a new ordinal measure coefficient. Shape from photometric stereo in the SEM is formulated by relating the image formation process with conventional photography. An iterative photometric ratio reconstruction is invented based on photometric ratios of backscatter electron images. The performance of the proposed system is evaluated using ground truth data obtained by three alternative shape recovery devices. Most experiments showed relative height accuracy within the tolerances of the alternative devices. (author)

  9. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    Science.gov (United States)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  10. Permanent magnet finger-size scanning electron microscope columns

    Energy Technology Data Exchange (ETDEWEB)

    Nelliyan, K., E-mail: elenk@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Khursheed, A. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-07-21

    This paper presents permanent magnet scanning electron microscope (SEM) designs for both tungsten and field emission guns. Each column makes use of permanent magnet technology and operates at a fixed primary beam voltage. A prototype column operating at a beam voltage of 15 kV was made and tested inside the specimen chamber of a conventional SEM. A small electrostatic stigmator unit and dedicated scanning coils were integrated into the column. The scan coils were wound directly around the objective lens iron core in order to reduce its size. Preliminary experimental images of a test grid specimen were obtained through the prototype finger-size column, demonstrating that it is in principle feasible.

  11. Permanent magnet finger-size scanning electron microscope columns

    International Nuclear Information System (INIS)

    Nelliyan, K.; Khursheed, A.

    2011-01-01

    This paper presents permanent magnet scanning electron microscope (SEM) designs for both tungsten and field emission guns. Each column makes use of permanent magnet technology and operates at a fixed primary beam voltage. A prototype column operating at a beam voltage of 15 kV was made and tested inside the specimen chamber of a conventional SEM. A small electrostatic stigmator unit and dedicated scanning coils were integrated into the column. The scan coils were wound directly around the objective lens iron core in order to reduce its size. Preliminary experimental images of a test grid specimen were obtained through the prototype finger-size column, demonstrating that it is in principle feasible.

  12. Examination of living fungal spores by scanning electron microscopy

    International Nuclear Information System (INIS)

    Read, N.D.; Lord, K.M.

    1991-01-01

    Ascospores of Sordaria macrospora germinated and produced hyphae exhibiting normal growth and differentiation after examination by scanning electron microscopy and following numerous, different preparative protocols. Seventy-nine to ninety-nine percent of the ascospores retained normal viability after being observed in the fully frozen-hydrated, partially freeze-dried, and vacuum-dried states at accelerating voltages of 5 and 40 keV. Hyphae did not survive these treatments. From these observations it is concluded that ascospores of S. macrospora can remain in a state of suspended animation while being observed in the scanning electron microscope. The ascospores also survived, but with reduced viability: 6 h in glutaraldehyde and formaldehyde, 6 h in OsO4, or 2 h in glutaraldehyde and formaldehyde followed by 2 h in OsO 4 . However, the ascospores did not germinate after dehydration in ethanol. (author)

  13. Role of scanning electron microscope )SEM) in metal failure analysis

    International Nuclear Information System (INIS)

    Shaiful Rizam Shamsudin; Hafizal Yazid; Mohd Harun; Siti Selina Abd Hamid; Nadira Kamarudin; Zaiton Selamat; Mohd Shariff Sattar; Muhamad Jalil

    2005-01-01

    Scanning electron microscope (SEM) is a scientific instrument that uses a beam of highly energetic electrons to examine the surface and phase distribution of specimens on a micro scale through the live imaging of secondary electrons (SE) and back-scattered electrons (BSE) images. One of the main activities of SEM Laboratory at MINT is for failure analysis on metal part and components. The capability of SEM is excellent for determining the root cause of metal failures such as ductility or brittleness, stress corrosion, fatigue and other types of failures. Most of our customers that request for failure analysis are from local petrochemical plants, manufacturers of automotive components, pipeline maintenance personnel and engineers who involved in the development of metal parts and component. This paper intends to discuss some of the technical concepts in failure analysis associated with SEM. (Author)

  14. Practical Use of Scanning Low Energy Electron Microscope (SLEEM)

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Mikmeková, Eliška; Mikmeková, Šárka; Konvalina, Ivo; Frank, Luděk

    2016-01-01

    Roč. 22, S3 (2016), s. 1650-1651 ISSN 1431-9276 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : scanning low energy * SLEEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.891, year: 2016

  15. Transmission electron microscopy and diffractometry of materials

    CERN Document Server

    Fultz, Brent

    2001-01-01

    This book teaches graduate students the concepts of trans- mission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materi- als. It emphasizes themes common to both techniques, such as scattering from atoms and the formation and analysis of dif- fraction patterns. It also describes unique aspects of each technique, especially imaging and spectroscopy in the TEM. The textbook thoroughly develops both introductory and ad- vanced-level material, using over 400 accompanying illustra- tions. Problems are provided at the end of each chapter to reinforce key concepts. Simple citatioins of rules are avoi- ded as much as possible, and both practical and theoretical issues are explained in detail. The book can be used as both an introductory and advanced-level graduate text since sec- tions/chapters are sorted according to difficulty and grou- ped for use in quarter and semester courses on TEM and XRD.

  16. Advanced radiographic scanning, enhancement and electronic data storage

    International Nuclear Information System (INIS)

    Savoie, C.; Rivest, D.

    2003-01-01

    It is a well-known fact that radiographs deteriorate with time. Substantial cost is attributed to cataloguing and storage. To eliminate deterioration issues and save time retrieving radiographs, laser scanning techniques were developed in conjunction with viewing and enhancement software. This will allow radiographs to be successfully scanned and stored electronically for future reference. Todays radiographic laser scanners are capable Qf capturing images with an optical density of up to 4.1 at 256 grey levels and resolutions up to 4096 pixels per line. An industrial software interface was developed for the nondestructive testing industry so that, certain parameters such as scan resolution, number of scans, file format and location to be saved could be adjusted as needed. Once the radiographs have been scanned, the tiff images are stored, or retrieved into Radiance software (developed by Rivest Technologies Inc.), which will help to properly interpret the radiographs. Radiance was developed to allow the user to quickly view the radiographs correctness or enhance its defects for comparison and future evaluation. Radiance also allows the user to zoom, measure and annotate areas of interest. Physical cost associated with cataloguing, storing and retrieving radiographs can be eliminated. You can now successfully retrieve and view your radiographs from CD media or dedicated hard drive at will. For continuous searches and/or field access, dedicated hard drives controlled by a server would be the media of choice. All scanned radiographs will be archived to CD media (CD-R). Laser scanning with a proper acquisition interface and easy to use viewing software will permit a qualified user to identify areas of interest and share this information with his/her colleagues via e-mail or web data access. (author)

  17. Simulation of loss electron in vacuum magnetically insulated transmission lines

    International Nuclear Information System (INIS)

    Zhang Pengfei; Li Yongdong; Liu Chunliang; Wang Hongguang; Guo Fan; Yang Hailiang; Qiu Aici; Su Zhaofeng; Sun Jianfeng; Sun Jiang; Gao Yi

    2011-01-01

    In the beginning of magnetic insulated period, loss electron in coaxial vacuum magnetically insulated transmission line (MITL) strikes anode and the bremsstrahlung photons are generated in the mean time. Based on the self-limited flow model, velocity in direction of energy transport, energy spectrum and angular distribution of loss electron are simulated by PIC code, energy spectrum of bremsstrahlung photons as well calculated though Monte Carlo method. Computational results show that the velocity of loss electron is less than 2.998 x 108 m/s, the angular excursion of electron is not much in a board extent of energy spectrum. These results show an indirect diagnosis of vacuum insulted transmission line working status based on loss electron bremsstrahlung. (authors)

  18. Healthy and diseased striated muscle studied by analytical scanning electron microscopy with special reference to fibre type

    International Nuclear Information System (INIS)

    Wroblewski, R.

    1982-01-01

    X-ray microanalytical investigations of striated muscles in the scanning electron microscope are reviewed. The main part of the studies was performed on cryosections cut with a conventional cryostat operating at -20 degrees C to -40 degrees C. The preparation procedure including different types of attachment of the sections to the specimen holder is described in detail. The elemental changes in muscle are related to the muscle fibre type as demonstrated by histochemical methods or to histochemically demonstrated inclusions in diseased muscles. This is of great importance, because muscle disorders are often characterised by selective involvement of different muscle fibre types. The preparation methods of muscle for analytical scanning electron microscopy and the obtained results are compared with studies performed on thin cryo and epoxy sections, analysed in the transmission and scanning-transmission electron microscope. It is evident that X-ray microanalysis performed on thick cryosections provide a quick survey of the elemental composition of whole cells, and should be followed in interesting cases by close examination on the organelle level studied in thin cryosections in the transmission and scanning-transmission electron microscope

  19. Analysis on electronic control unit of continuously variable transmission

    Science.gov (United States)

    Cao, Shuanggui

    Continuously variable transmission system can ensure that the engine work along the line of best fuel economy, improve fuel economy, save fuel and reduce harmful gas emissions. At the same time, continuously variable transmission allows the vehicle speed is more smooth and improves the ride comfort. Although the CVT technology has made great development, but there are many shortcomings in the CVT. The CVT system of ordinary vehicles now is still low efficiency, poor starting performance, low transmission power, and is not ideal controlling, high cost and other issues. Therefore, many scholars began to study some new type of continuously variable transmission. The transmission system with electronic systems control can achieve automatic control of power transmission, give full play to the characteristics of the engine to achieve optimal control of powertrain, so the vehicle is always traveling around the best condition. Electronic control unit is composed of the core processor, input and output circuit module and other auxiliary circuit module. Input module collects and process many signals sent by sensor and , such as throttle angle, brake signals, engine speed signal, speed signal of input and output shaft of transmission, manual shift signals, mode selection signals, gear position signal and the speed ratio signal, so as to provide its corresponding processing for the controller core.

  20. Response function and optimum configuration of semiconductor backscattered-electron detectors for scanning electron microscopes

    International Nuclear Information System (INIS)

    Rau, E. I.; Orlikovskiy, N. A.; Ivanova, E. S.

    2012-01-01

    A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1–50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.

  1. Processing scarce biological samples for light and transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    P Taupin

    2008-06-01

    Full Text Available Light microscopy (LM and transmission electron microscopy (TEM aim at understanding the relationship structure-function. With advances in biology, isolation and purification of scarce populations of cells or subcellular structures may not lead to enough biological material, for processing for LM and TEM. A protocol for preparation of scarce biological samples is presented. It is based on pre-embedding the biological samples, suspensions or pellets, in bovine serum albumin (BSA and bis-acrylamide (BA, cross-linked and polymerized. This preparation provides a simple and reproducible technique to process biological materials, present in limited quantities that can not be amplified, for light and transmission electron microscopy.

  2. Development of the Atomic-Resolution Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Gai, Pratibha L.; Boyes, Edward D.; Yoshida, Kenta

    2016-01-01

    The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures is descr......The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures...... is used to study steels, graphene, nanowires, etc. In this chapter, the experimental setup of the microscope column and its peripherals are described....

  3. Catalysts under Controlled Atmospheres in the Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    of resolution. Using suitably clean gases, modified pumping schemes, and short pathways through dense gas regions, these issues are now circumvented. Here we provide an account of best practice using environmental transmission electron microscopy on catalytic systems illustrated using select examples from......Over time, there has been an increasing interest in observing catalysts in their operating environment at high spatial resolution and ultimately to determine the structure of a catalytically active surface. One tool with the potential to do exactly this in direct space is the transmission electron...

  4. Simulation and Characterization of a Miniaturized Scanning Electron Microscope

    Science.gov (United States)

    Gaskin, Jessica A.; Jerman, Gregory A.; Medley, Stephanie; Gregory, Don; Abbott, Terry O.; Sampson, Allen R.

    2011-01-01

    A miniaturized Scanning Electron Microscope (mSEM) for in-situ lunar investigations is being developed at NASA Marshall Space Flight Center with colleagues from the University of Alabama in Huntsville (UAH), Advanced Research Systems (ARS), the University of Tennessee in Knoxville (UTK) and Case Western Reserve University (CWRU). This effort focuses on the characterization of individual components of the mSEM and simulation of the complete system. SEMs can provide information on the size, shape, morphology and chemical composition of lunar regolith. Understanding these basic properties will allow us to better estimate the challenges associated with In-Situ Resource Utilization and to improve our basic science knowledge of the lunar surface (either precluding the need for sample return or allowing differentiation of unique samples to be returned to Earth.) The main components of the mSEM prototype includes: a cold field emission electron gun (CFEG), focusing lens, deflection/scanning system and backscatter electron detector. Of these, the electron gun development is of particular importance as it dictates much of the design of the remaining components. A CFEG was chosen for use with the lunar mSEM as its emission does not depend on heating of the tungsten emitter (lower power), it offers a long operation lifetime, is orders of magnitude brighter than tungsten hairpin guns, has a small source size and exhibits low beam energy spread.

  5. In situ laser processing in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Nicholas A.; Magel, Gregory A.; Hartfield, Cheryl D.; Moore, Thomas M.; Fowlkes, Jason D.; Rack, Philip D. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2012-07-15

    Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 {mu}m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm{sup 2}. Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiO{sub x}.

  6. Fifty years old, and still going strong: Transmission electron optical studies of materials

    International Nuclear Information System (INIS)

    Brown, L.M.

    2008-01-01

    Highlights in the history of transmission electron microscopy and scanning transmission electron microscopy include the introduction of diffraction contrast, resolution of periodic lattices by phase contrast and incoherent imaging via the high-angle annular dark-field detector. Convergent-beam electron diffraction and analytical electron microscopy, especially the application of energy-dispersive X-ray and electron energy-loss spectrometry, have provided structural and chemical information in addition to strain contrast from lattice defects. From the outset, novel specimen stages and improvements to aid the operator enhanced the electron-optical engineering provided by the instrument makers. The spatial resolution achieved was mainly determined by the way the instrument was used, and not by the basic resolution limit set by the electron optics. However, the application of computer controlled correction of spherical (and higher order) aberration has resulted in a new generation of instruments capable of sub-Angstrom point-to-point resolution. This improved performance, combined with electron energy-loss spectrometry, promises genuine three-dimensional determination of atomic and electronic structure: an indispensable weapon in the battle to fabricate and control useful nanostructures. The uncertainty principle now fundamentally restricts some of the observations one can make, but much more technical development over the next decades must occur before one can say that the techniques of electron-optical imaging of material structure have reached their fundamental limitations. One can expect remarkable progress over the next few years

  7. Electron magnetic chiral dichroism in CrO2 thin films using monochromatic probe illumination in a transmission electron microscope

    International Nuclear Information System (INIS)

    Loukya, B.; Zhang, X.; Gupta, A.; Datta, R.

    2012-01-01

    Electron magnetic chiral dichroism (EMCD) has been studied in CrO 2 thin films (with (100) and (110) growth orientations on TiO 2 substrates) using a gun monochromator in an aberration corrected transmission electron microscope operating at 300 kV. Excellent signal-to-noise ratio is obtained at spatial resolution ∼10 nm using a monochromatic probe as compared to conventional parallel illumination, large area convergent beam electron diffraction and scanning transmission electron microscopy techniques of EMCD. Relatively rapid exposure using mono probe illumination enables collection of EMCD spectra in total of 8–9 min in energy filtered imaging mode for a given Cr L 2,3 energy scan (energy range ∼35 eV). We compared the EMCD signal obtained by extracting the Cr L 2,3 spectra under three beam diffraction geometry of two different reciprocal vectors (namely g=110 and 200) and found that the g=200 vector enables acquisition of excellent EMCD signal from relatively thicker specimen area due to the associated larger extinction distance. Orbital to spin moment ratio has been calculated using EMCD sum rules for 3d elements and dichroic spectral features associated with CrO 2 are compared and discussed with XMCD theoretical spectra. - Highlights: ► Electron magnetic circular dichroism (EMCD) of CrO 2 thin film with two different orientations. ► Improved EMCD signal with Gun monochromator illumination. ► Improved EMCD signal with higher g vector.

  8. Study of the niobium dehydrogenation process by transmission electron microscopy

    International Nuclear Information System (INIS)

    Bulhoes, I.A.M.; Akune, K.

    1983-01-01

    The evolution of the micro-structure of Nb-H, during the dehydrogenation process through thermal treatment, has been studied by Transmission Electron Microscopy. The results are used in order to interpret the variation of the line resolution of Electron Channeling Pattern (ECP) of Nb-H as a function of isochronous annealing temperature. It is concluded that the improvement of the ECP line resolution is enhanced of β hydrate in Nb. (Author) [pt

  9. In-air scanning transmission ion microscopy of cultured cancer cells

    International Nuclear Information System (INIS)

    Ortega, R.; Deves, G.; Moretto, Ph.

    2001-01-01

    Scanning transmission ion microscopy (STIM) imaging of living cultured cells has been carried out using a proton external-beam with the nuclear microprobe of Bordeaux-Gradignan. STIM could be performed in air atmosphere after passage of a focused proton beam through a 150 nm thick silicon nitride window. Energy loss STIM images were obtained with a spatial resolution in the micrometer range and enabled the identification of sub-cellular ultrastructures

  10. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  11. Three-Dimensional Orientation Mapping in the Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Liu, Haihua; Schmidt, Søren; Poulsen, Henning Friis

    2011-01-01

    resolution of 200 nanometers (nm). We describe here a nondestructive technique that enables 3D orientation mapping in the transmission electron microscope of mono- and multiphase nanocrystalline materials with a spatial resolution reaching 1 nm. We demonstrate the technique by an experimental study...

  12. Ion source for thinning of specimen in transmission electron microscopy

    International Nuclear Information System (INIS)

    Hammer, K.; Rothe, R.

    1983-01-01

    Thinning of specimen for transmission electron microscopy is carried out by means of sputtering. Construction, design, and operation parameters of an ion source are presented. Because the plasma is produced by means of hollow cathode glow discharges, no special focusing system is used

  13. In situ Electrical measurements in Transmission Electron Microscopy

    NARCIS (Netherlands)

    Rudneva, M.

    2013-01-01

    In the present thesis the combination of real-time electricalmeasurements on nano-sampleswith simultaneous examination by transmission electron microscope (TEM) is discussed. Application of an electrical current may lead to changes in the samples thus the possibility to correlate such changes with

  14. Vacuum Analysis of Scanning Horn of Electron Beam Machine

    International Nuclear Information System (INIS)

    Suprapto; Sukidi; Sukaryono; Setyo Atmojo; Djasiman

    2003-01-01

    Vacuum analysis of scanning horn of electron beam machine (EBM) has been carried out. In EBM, electron beam produced by the electron gun is accelerated by the accelerating tube toward the target via scanning horn and window. To avoid the disturbance of electron beam trajectory in side the EBM, it is necessary to evacuate the EBM. In designing and constructing the scanning horn, vacuum analysis must be carried out to find the ultimate vacuum grade based on the analysis as well as on the test resulted by the vacuum pump. The ultimate vacuum grade is important and affecting the electron trajectory from electron gun to the target. The yield of the vacuum analysis show that the load gas to be evacuated were the outgassing, permeation and leakages where each value were 5.96487x10 -6 Torr liter/sec, 6.32083x10 -7 Torr liter/sec, and 1.3116234x10 -4 Torr liter/sec respectively, so that the total gas load was 1.377587x10 -4 Torr liter/sec. The total conductivity according to test result was 15.769 liter/sec, while the effective pumping rate and maximum vacuum obtained by RD 150 pump were 14.269 Torr liter/sec and 9.65x10 -6 Torr respectively, The vacuum steady state indicated by the test result was 3.5x10 -5 Torr. The pressure of 3.5x10 -5 Torr showed by the test is close to the capability of vacuum pump that is 2x10 -5 Torr. The vacuum test indicated a good result and that there was no leakage along the welding joint. In the latter of installation it considered to be has a pressure of 5x10 -6 Torr, because the aluminum gasket will be used to seal the window flanges and will be evacuated by turbomolecular pump with pumping rate of 500 liter/sec and ultimate vacuum of -10 Torr. (author)

  15. Analysis of archaeological materials through Scanning electron microscopy

    International Nuclear Information System (INIS)

    Camacho, A.; Tenorio C, D.; Elizalde, S.; Mandujano, C.; Cassiano, G.

    2005-01-01

    With the purpose to know the uses and the chemical composition of some cultural objects in the pre hispanic epoch this work presents several types of analysis for identifying them by means of the Scanning electron microscopy and its techniques as the Functional analysis of artifacts based on the 'tracks of use' analysis, also the X-ray spectroscopy and the X-ray dispersive energy (EDS) are mentioned, all of them allowing a major approach to the pre hispanic culture in Mexico. (Author)

  16. Fracture characteristics of uranium alloys by scanning electron microscopy

    International Nuclear Information System (INIS)

    Koger, J.W.; Bennett, R.K. Jr.

    1976-10-01

    The fracture characteristics of uranium alloys were determined by scanning electron microscopy. The fracture mode of stress-corrosion cracking (SCC) of uranium-7.5 weight percent niobium-2.5 weight percent zirconium (Mulberry) alloy, uranium--niobium alloys, and uranium--molybdenum alloys in aqueous chloride solutions is intergranular. The SCC fracture surface of the Mulberry alloy is characterized by very clean and smooth grain facets. The tensile-overload fracture surfaces of these alloys are characteristically ductile dimple. Hydrogen-embrittlement failures of the uranium alloys are brittle and the fracture mode is transgranular. Fracture surfaces of the uranium-0.75 weight percent titanium alloys are quasi cleavage

  17. Characteristics of different frequency ranges in scanning electron microscope images

    International Nuclear Information System (INIS)

    Sim, K. S.; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S.

    2015-01-01

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement

  18. Characteristics of different frequency ranges in scanning electron microscope images

    Energy Technology Data Exchange (ETDEWEB)

    Sim, K. S., E-mail: kssim@mmu.edu.my; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S. [Faculty of Engineering and Technology, Multimedia University, 75450 Melaka (Malaysia)

    2015-07-22

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.

  19. [Scanning electron microscopy of heat-damaged bone tissue].

    Science.gov (United States)

    Harsanyl, L

    1977-02-01

    Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.

  20. Foucault imaging by using non-dedicated transmission electron microscope

    International Nuclear Information System (INIS)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-01-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  1. Foucault imaging by using non-dedicated transmission electron microscope

    Science.gov (United States)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-08-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  2. Foucault imaging by using non-dedicated transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Yoshifumi [Science and Medical Systems Business Group, Hitachi High-Technologies Corp., Ichige, Hitachinaka, Ibaraki 312-8504 (Japan); Matsumoto, Hiroaki [Corporate Manufacturing Strategy Group, Hitachi High-Technologies Corp., Ishikawa-cho, Hitachinaka, Ibaraki 312-1991 (Japan); Harada, Ken [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-08-27

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  3. Measurement of suprathermal electron confinement by cyclotron transmission

    International Nuclear Information System (INIS)

    Kirkwood, R.; Hutchinson, I.H.; Luckhardt, S.C.; Porkolab, M.; Squire, J.P.

    1990-01-01

    The confinement time of suprathermal electrons is determined experimentally from the distribution function determined via wave transmission measurements. Measurements of the lowest moment of the distribution perpendicular to the B field as a function of the parallel electron momentum as well as the global input power allow the suprathermal electron confinement time (τ se ) to be calculated during lower-hybrid and inductive current drive. Finite particle confinement is found to be the dominant energy loss term for the suprathermals and improves with plasma current and density

  4. Electronic structure classifications using scanning tunneling microscopy conductance imaging

    International Nuclear Information System (INIS)

    Horn, K.M.; Swartzentruber, B.S.; Osbourn, G.C.; Bouchard, A.; Bartholomew, J.W.

    1998-01-01

    The electronic structure of atomic surfaces is imaged by applying multivariate image classification techniques to multibias conductance data measured using scanning tunneling microscopy. Image pixels are grouped into classes according to shared conductance characteristics. The image pixels, when color coded by class, produce an image that chemically distinguishes surface electronic features over the entire area of a multibias conductance image. Such open-quotes classedclose quotes images reveal surface features not always evident in a topograph. This article describes the experimental technique used to record multibias conductance images, how image pixels are grouped in a mathematical, classification space, how a computed grouping algorithm can be employed to group pixels with similar conductance characteristics in any number of dimensions, and finally how the quality of the resulting classed images can be evaluated using a computed, combinatorial analysis of the full dimensional space in which the classification is performed. copyright 1998 American Institute of Physics

  5. Resizing metal-coated nanopores using a scanning electron microscope.

    Science.gov (United States)

    Chansin, Guillaume A T; Hong, Jongin; Dusting, Jonathan; deMello, Andrew J; Albrecht, Tim; Edel, Joshua B

    2011-10-04

    Electron beam-induced shrinkage provides a convenient way of resizing solid-state nanopores in Si(3) N(4) membranes. Here, a scanning electron microscope (SEM) has been used to resize a range of different focussed ion beam-milled nanopores in Al-coated Si(3) N(4) membranes. Energy-dispersive X-ray spectra and SEM images acquired during resizing highlight that a time-variant carbon deposition process is the dominant mechanism of pore shrinkage, although granular structures on the membrane surface in the vicinity of the pores suggest that competing processes may occur. Shrinkage is observed on the Al side of the pore as well as on the Si(3) N(4) side, while the shrinkage rate is observed to be dependent on a variety of factors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nanostructured PLD-grown gadolinia doped ceria: Chemical and structural characterization by transmission electron microscopy techniques

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Wang, Hsiang-Jen; Heiroth, Sebastian

    2011-01-01

    The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss spec......, indicate apparent variation of the ceria valence state across and along the film. No element segregation to the grain boundaries is detected. These results are discussed in the context of solid oxide fuel cell applications.......The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss...... spectroscopy and energy dispersive X-ray spectroscopy. A dense, columnar and structurally inhomogeneous CGO10 film, i.e. exhibiting grain size refinement across the film thickness, is obtained in the deposition process. The cerium M4,5 edges, used to monitor the local electronic structure of the grains...

  7. Electronic Biometric Transmission Specification. Version 1.2

    Science.gov (United States)

    2006-11-08

    Prescribed by ANSI Std Z39-18 Electronic Biometric Transmission Specification DIN: DOD_BTF_TS_EBTS_ Nov06_01.02.00 i Revision History Revision...contains: • the ORI • a Greenwich Mean (a.k.a. Zulu or UTC) date/time stamp • a code for the software used at the point of collection/transmission...long names and would generally include the tribe name. Subfield 1 Item 1 Character Type AS Characters 1 to 50 Special Characters: Any 7-bit non

  8. Morphological classification of bioaerosols from composting using scanning electron microscopy

    International Nuclear Information System (INIS)

    Tamer Vestlund, A.; Al-Ashaab, R.; Tyrrel, S.F.; Longhurst, P.J.; Pollard, S.J.T.; Drew, G.H.

    2014-01-01

    Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samples were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors

  9. Scanning Electron Microscopic Hair Shaft Analysis in Ectodermal Dysplasia Syndromes.

    Science.gov (United States)

    Hirano-Ali, Stefanie A; Reed, Ashley M; Rowan, Brandon J; Sorrells, Timothy; Williams, Judith V; Pariser, David M; Hood, Antoinette F; Salkey, Kimberly

    2015-01-01

    The objective of the current study was to catalog hair shaft abnormalities in individuals with ectodermal dysplasia (ED) syndromes using scanning electron microscopy (SEM) and to compare the findings with those in unaffected controls. This is the second of a two-part study, the first of which used light microscopy as the modality and was previously published. Scanning electron microscopy was performed in a blinded manner on hair shafts from 65 subjects with seven types of ED syndromes and 41 unaffected control subjects. Assessment was performed along the length of the shaft and in cross section. Hair donations were collected at the 28th Annual National Family Conference held by the National Foundation for Ectodermal Dysplasia. Control subjects were recruited from a private dermatology practice and an academic children's hospital outpatient dermatology clinic. SEM identified various pathologic hair shaft abnormalities in each type of ED and in control patients. When hairs with all types of ED were grouped together and compared with those of control patients, the difference in the presence of small diameter and shallow and deep grooves was statistically significant (p < 0.05). When the EDs were separated according to subtype, statistically significant findings were also seen. SEM is a possible adjuvant tool in the diagnosis of ED syndromes. There are significant differences, with high specificity, between the hairs of individuals with ED and those of control subjects and between subtypes. © 2015 Wiley Periodicals, Inc.

  10. Scanning electron microscope autoradiography of critical point dried biological samples

    International Nuclear Information System (INIS)

    Weiss, R.L.

    1980-01-01

    A technique has been developed for the localization of isotopes in the scanning electron microscope. Autoradiographic studies have been performed using a model system and a unicellular biflagellate alga. One requirement of this technique is that all manipulations be carried out on samples that are maintained in a liquid state. Observations of a source of radiation ( 125 I-ferritin) show that the nuclear emulsion used to detect radiation is active under these conditions. Efficiency measurement performed using 125 I-ferritin indicate that 125 I-SEM autoradiography is an efficient process that exhibits a 'dose dependent' response. Two types of labeling methods were used with cells, surface labeling with 125 I and internal labeling with 3 H. Silver grains appeared on labeled cells after autoradiography, removal of residual gelatin and critical point drying. The location of grains was examined on a flagellated green alga (Chlamydomonas reinhardi) capable of undergoing cell fusion. Fusion experiments using labeled and unlabeled cells indicate that 1. Labeling is specific for incorporated radioactivity; 2. Cell surface structure is preserved in SEM autoradiographs and 3. The technique appears to produce reliable autoradiographs. Thus scanning electron microscope autoradiography should provide a new and useful experimental approach

  11. Morphological classification of bioaerosols from composting using scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tamer Vestlund, A. [Institute for Energy and Resource Technology, Environmental Science and Technology Department, School of Applied Sciences, Cranfield University, Building 40, Bedfordshire MK43 0AL (United Kingdom); FIRA International Ltd., Maxwell Road, Stevenage, Herts SG1 2EW (United Kingdom); Al-Ashaab, R.; Tyrrel, S.F.; Longhurst, P.J.; Pollard, S.J.T. [Institute for Energy and Resource Technology, Environmental Science and Technology Department, School of Applied Sciences, Cranfield University, Building 40, Bedfordshire MK43 0AL (United Kingdom); Drew, G.H., E-mail: g.h.drew@cranfield.ac.uk [Institute for Energy and Resource Technology, Environmental Science and Technology Department, School of Applied Sciences, Cranfield University, Building 40, Bedfordshire MK43 0AL (United Kingdom)

    2014-07-15

    Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samples were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.

  12. Simultaneous correlative scanning electron and high-NA fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Nalan Liv

    Full Text Available Correlative light and electron microscopy (CLEM is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown.

  13. Field Emission Scanning Electron Microscope (FESEM) Facility in BTI

    International Nuclear Information System (INIS)

    Cik Rohaida Che Hak; Foo, C.T.; Nor Azillah Fatimah Othman

    2015-01-01

    Field Emission Scanning Electron Microscope (FE-SEM) provides ultra-high resolution imaging at low accelerating voltages and small working distances. The GeminisSEM 500, a new FESEM imaging facility will be installed soon in MTEC, BTI. It provides resolution of the images is as low as 0.6 nm at 15 kV and 1.2 nm at 1 kV, allowing examination of the top surface of nano powders, nano film and nano fiber in the wide range of applications such as mineralogy, ceramics, polymer, metallurgy, electronic devices, chemistry, physics and life sciences. This system is equipped with several detectors to detect various signals such as secondary electrons (SE) detector for topographic information and back-scattered electrons (BSE) detector for materials composition contrast. Energy dispersive x-ray spectroscopy (EDS) with detector energy resolution of < 129 eV and detection limit in the range of 1000-3000 ppm coupled with FE-SEM is used to determine the chemical composition of micro-features including boron (B) to uranium (U). Wavelength dispersive x-ray spectroscopy (WDS) which has detector resolution of 2-20 eV and detection limit of 30-300 ppm coupled with FE-SEM is used to detect elements that cannot be resolved with EDS. The ultra-high resolution imaging combined with the high sensitivity WDS helps to resolve the thorium and rare earth elemental analysis. (author)

  14. Transmission Electron Microscopy of a CMSX-4 Ni-Base Superalloy Produced by Selective Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Alireza B. Parsa

    2016-10-01

    Full Text Available In this work, the microstructures of superalloy specimens produced using selective electron beam melting additive manufacturing were characterized. The materials were produced using a CMSX-4 powder. Two selective electron beam melting processing strategies, which result in higher and lower effective cooling rates, are described. Orientation imaging microscopy, scanning transmission electron microscopy and conventional high resolution transmission electron microscopy are used to investigate the microstructures. Our results suggest that selective electron beam melting processing results in near equilibrium microstructures, as far as γ′ volume fractions, the formation of small amounts of TCP phases and the partitioning behavior of the alloy elements are concerned. As expected, higher cooling rates result in smaller dendrite spacings, which are two orders of magnitude smaller than observed during conventional single crystal casting. During processing, columnar grains grow in <100> directions, which are rotated with respect to each other. There are coarse γ/γ′ microstructures in high angle boundary regions. Dislocation networks form low angle boundaries. A striking feature of the as processed selective electron beam melting specimens is their high dislocation density. From a fundamental point of view, this opens new possibilities for the investigation of elementary dislocation processes which accompany solidification.

  15. Facile synthesis and electron transport properties of NiO nanostructures investigated by scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Govind Mallick

    2017-08-01

    Full Text Available Due to their unique chemical, thermal, electronic and photonic properties, low -dimensional transition metal oxides, especially NiO, have attracted great deal of attention for potential applications in a wide range of technologies, such as, sensors, electrochromic coatings and self-healing materials. However, their synthesis involves multi-step complex procedures that in addition to being expensive, further introduce impurities. Here we present a low cost facile approach to synthesize uniform size NiO nanoparticles (NPs from hydrothermally grown Ni(OH2. Detailed transmission electron microscopic analysis reveal the average size of NiO NPs to be around 29 nm. The dimension of NiO NP is also corroborated by the small area scanning tunneling microscope (STM measurements. Further, we investigate electron transport characteristics of newly synthesized Ni(OH2 and NiO nanoparticles on p-type Si substrate using scanning tunneling microscopy. The conductivity of Ni(OH2 and NiO are determined to be 1.46x10-3 S/cm and 2.37x10-5 S/cm, respectively. The NiO NPs exhibit a lower voltage window (∼0.7 V electron tunneling than the parent Ni(OH2.

  16. In SITU Transmission Electron Microscopy on Operating Electrochemical CELLS

    DEFF Research Database (Denmark)

    Gualandris, Fabrizio; Simonsen, Søren Bredmose; Mogensen, Mogens Bjerg

    2016-01-01

    Solid oxide cells (SOC) have the potential of playing a significant role in the future efficient energy system scenario. In order to become widely commercially available, an improved performance and durability of the cells has to be achieved [1]. Conventional scanning and transmission SEM and TEM...... have been often used for ex-situ post mortem characterization of SOFCs and SOECs [2,3]. However, in order to get fundamental insight of the microstructural development of SOFC/SOEC during operation conditions in situ studies are necessary [4]....

  17. Enzymatic hydrolysis of Amaranth flour - differential scanning calorimetry and scanning electron microscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Barba de la Rosa, A.P.; Paredes-Lopez, O.; Carabez-Trejo, A.; Ordorica-Falomir, C. (Instituto Politecnico Nacional, Irapuato (Mexico). Centro de Investigacion y de Estudios Avanzados)

    1989-11-01

    High-protein amaranth flour (HPAF) and carbohydrate rich fraction (CRF) were produced from raw flour in a single-step process using a heat-stable alpha-amylase preparation. Protein content of flour increased from 15 to about 30 or 39% at liquefaction temperatures of 70 or 90{sup 0}C, respectively and 30 min hydrolysis time. CRF exhibited 14-22 DE. Enzymatic action at 70{sup 0}C increased endotherm temperature and gelatinization enthalpy of HPAF, in relation to gelatinized flour, as assessed by differential scanning calorimetry (DSC). Hydrolysis at 90{sup 0}C did not affect significantly (P > 0.05) DSC peak temperature. It is suggested that these changes in DSC performance might result from differences in amount and type of low-molecular weight carbohydrates and residual starch. Scanning electron microscopy (SEM) demonstrated that hydrolysis temperature changed substantially the structural appearance of flour particles. HPAF and CRF might find applications as dry milk extender and sweetener, respectively. (orig.).

  18. Mechanisms of biliary stent clogging: confocal laser scanning and scanning electron microscopy.

    Science.gov (United States)

    van Berkel, A M; van Marle, J; Groen, A K; Bruno, M J

    2005-08-01

    Endoscopic insertion of plastic biliary endoprostheses is a well-established treatment for obstructive jaundice. The major limitation of this technique is late stent occlusion. In order to compare events involved in biliary stent clogging and identify the distribution of bacteria in unblocked stents, confocal laser scanning (CLS) and scanning electron microscopy (SEM) were carried out on two different stent materials - polyethylene (PE) and hydrophilic polymer-coated polyurethane (HCPC). Ten consecutive patients with postoperative benign biliary strictures were included in the study. Two 10-Fr stents 9 cm in length, one made of PE and the other of HCPC, were inserted. The stents were electively exchanged after 3 months and examined using CLS and SEM. No differences were seen between the two types of stent. The inner stent surface was covered with a uniform amorphous layer. On top of this layer, a biofilm of living and dead bacteria was found, which in most cases was unstructured. The lumen was filled with free-floating colonies of bacteria and crystals, surrounded by mobile laminar structures of mucus. An open network of large dietary fibers was seen in all of the stents. The same clogging events occurred in both PE and HCPC stents. The most remarkable observation was the identification of networks of large dietary fibers, resulting from duodenal reflux, acting as a filter. The build-up of this intraluminal framework of dietary fibers appears to be a major factor contributing to the multifactorial process of stent clogging.

  19. Electron transmission through a periodically driven graphene magnetic barrier

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, R., E-mail: rbiswas.pkc@gmail.com [Department of Physics, P. K. College, Contai, Purba Medinipur, West Bengal – 721401 (India); Maiti, S. [Ajodhya Hills G.S.A.T High School, Ajodhya, Purulia, West Bengal – 723152 (India); Mukhopadhyay, S. [Purulia Zilla School, Dulmi Nadiha, Purulia, West Bengal – 723102 (India); Sinha, C. [Department of Physics, P. K. College, Contai, Purba Medinipur, West Bengal – 721401 (India); Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur – 700032 (India)

    2017-05-10

    Electronic transport through graphene magnetic barriers is studied theoretically in presence of an external time harmonic scalar potential in the framework of non-perturbative Landau–Floquet Formalism. The oscillating field mostly suppresses the transmission for rectangular magnetic barrier structure and exhibits the Fano resonance for multiphoton processes due to the presence of bound state inside the barrier. While, for a pair of delta function barriers of larger separation, the oscillating potential suppresses the usual Fabry–Perot oscillations in the transmission and a new type of asymmetric Fano resonance is noted for smaller separation, occurring due to extended states between the barriers. - Highlights: • Tunnelling of the Dirac Fermions through oscillating pure magnetic barriers is reported for the first time. • The high energy transmission through a graphene magnetic barrier is suppressed by the application of time periodic modulation. • Suppression of the Fabry Perot transmission is noted due to the application of an external time harmonic potential. • Two kinds of the Fano resonances are noted in transmission through a pair of modulated δ-function magnetic barriers.

  20. Transmission of high-power electron beams through small apertures

    International Nuclear Information System (INIS)

    Tschalär, C.; Alarcon, R.; Balascuta, S.; Benson, S.V.; Bertozzi, W.; Boyce, J.R.; Cowan, R.; Douglas, D.; Evtushenko, P.; Fisher, P.; Ihloff, E.; Kalantarians, N.; Kelleher, A.; Legg, R.; Milner, R.G.; Neil, G.R.; Ou, L.; Schmookler, B.; Tennant, C.; Williams, G.P.

    2013-01-01

    Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the energy-recovery linac at the Jefferson Laboratory's FEL facility through a set of small apertures in a 127 mm long aluminum block. Beam transmission losses of 3 p.p.m. through a 2 mm diameter aperture were maintained during a 7 h continuous run

  1. Cross-sectional transmission electron microscopy of semiconductors

    International Nuclear Information System (INIS)

    Sadana, D.K.

    1982-10-01

    A method to prepare cross-sectional (X) semiconductor specimens for transmission electron microscopy (TEM) has been described. The power and utility of XTEM has been demonstrated. It has been shown that accuracy and interpretation of indirect structural-defects profiling techniques, namely, MeV He + channeling and secondary ion mass spectrometry (SIMS) can be greatly enhanced by comparing their results with those obtained by XTEM from the same set of samples

  2. Multistage linear electron acceleration using pulsed transmission lines

    International Nuclear Information System (INIS)

    Miller, R.B.; Prestwich, K.R.; Poukey, J.W.; Epstein, B.G.; Freeman, J.R.; Sharpe, A.W.; Tucker, W.K.; Shope, S.L.

    1981-01-01

    A four-stage linear electron accelerator is described which uses pulsed radial transmission lines as the basic accelerating units. An annular electron beam produced by a foilless diode is guided through the accelerator by a strong axial magnetic field. Synchronous firing of the injector and the acccelerating modules is accomplished with self-breaking oil switches. The device has accelerated beam currents of 25 kA to kinetic energies of 9 MV, with 90% current transport efficiency. The average accelerating gradient is 3 MV/m

  3. Pulsed Power for a Dynamic Transmission Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

    2009-06-25

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

  4. Pulsed Power for a Dynamic Transmission Electron Microscope

    International Nuclear Information System (INIS)

    DeHope, W.J.; Browning, N.; Campbell, G.; Cook, E.; King, W.; Lagrange, T.; Reed, B.; Stuart, B.; Shuttlesworth, R.; Pyke, B.

    2009-01-01

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM

  5. Compact scanning transmission x-ray microscope at the photon factory

    International Nuclear Information System (INIS)

    Takeichi, Yasuo; Inami, Nobuhito; Ono, Kanta; Suga, Hiroki; Takahashi, Yoshio

    2016-01-01

    We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ∼10 7 photons/s was focused to a diameter of ∼40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250–1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences

  6. Tailoring of electron flow current in magnetically insulated transmission lines

    Directory of Open Access Journals (Sweden)

    J. P. Martin

    2009-03-01

    Full Text Available It is desirable to optimize (minimizing both the inductance and electron flow the magnetically insulated vacuum sections of low impedance pulsed-power drivers. The goal of low inductance is understandable from basic efficiency arguments. The goal of low electron flow results from two observations: (1 flowing electrons generally do not deliver energy to (or even reach most loads, and thus constitute a loss mechanism; (2 energetic electrons deposited in a small area can cause anode damage and anode plasma formation. Low inductance and low electron flow are competing goals; an optimized system requires a balance of the two. While magnetically insulated systems are generally forgiving, there are times when optimization is crucial. For example, in large pulsed-power drivers used to energize high energy density physics loads, the electron flow as a fraction of total current is small, but that flow often reaches the anode in relatively small regions. If the anode temperature becomes high enough to desorb gas, the resulting plasma initiates a gap closure process that can impact system performance. Magnetic-pressure driven (z pinches and material equation of state loads behave like a fixed inductor for much of the drive pulse. It is clear that neither fixed gap nor constant-impedance transmission lines are optimal for driving inductive loads. This work shows a technique for developing the optimal impedance profile for the magnetically insulated section of a high-current driver. Particle-in-cell calculations are used to validate the impedance profiles developed in a radial disk magnetically insulated transmission line geometry. The input parameters are the spacing and location of the minimum gap, the effective load inductance, and the desired electron flow profile. The radial electron flow profiles from these simulations are in good agreement with theoretical predictions when driven at relatively high voltage (i.e., V≥2  MV.

  7. Scanning electron microscope cathodoluminescence imaging of subgrain boundaries, twins and planar deformation features in quartz

    Science.gov (United States)

    Hamers, M. F.; Pennock, G. M.; Drury, M. R.

    2017-04-01

    The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.

  8. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

    2011-08-04

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

  9. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1984-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions and image interpretation in transmission electron mic­ roscopy. The book evolved from lectures delivered at the University of Munster and is a revised version of the first part of my earlier book Elek­ tronenmikroskopische Untersuchungs- und Priiparationsmethoden, omitting the part which describes specimen-preparation methods. In the introductory chapter, the different types of electron microscope are compared, the various electron-specimen interactions and their applications are summarized and the most important aspects of high-resolution, analytical and high-voltage electron microscopy are discussed. The optics of electron lenses is discussed in Chapter 2 in order to bring out electron-lens properties that are important for an understanding of the function of an electron microscope. In Chapter 3, the wave optics of elec­ trons and the phase shifts by electrostatic and magnetic fields are introduced; Fresne...

  10. Trichomes of Cannabis sativa as viewed with scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ledbetter, M C; Krikorian, A D

    1975-06-01

    Direct examination of fresh, unfixed and uncoated specimens from vegetative and floral parts of Cannabis sativa with the scanning electron microscope enables one to obtain a faithful representation of their surface morphology. The presence of two major types of trichomes has been confirmed: a glandular type comprising or terminating in a globoid structure, and a conically-shaped nonglandular type. Moreover, three or possibly four distinct glandular types can be distinguished: sessile globoid, small-stalked and large-stalked globoid, and a peltate type. The nonglandular trichomes can be distinguished by the nature of their surfaces: those with a warty surface, and those which are relatively smooth. The range of size and distribution, and the special features of all these types of trichomes are also provided.

  11. Conditioning of mealybug (Hemiptera: Pseudococcidae) by Scanning Electron Microscopy

    International Nuclear Information System (INIS)

    Palma-Jimenez, Melissa; Blanco-Meneses, Monica

    2015-01-01

    The cleaning and correct observation of the mealybug specimens was determined by the conditioning methodology. The research was done in the Laboratorio del Centro de Investigacion en Estructuras Microscopicas (CIEMIC) of the Universidad de Costa Rica during the year 2012. A gradual improvement for the observation of the ultrastructures through the Scanning Electron Microscope was evidenced by the implementation of four types of methodologies. Each process was described in detail. The incorporation of 10% xylene (in some cases have been viable using ethanol at 95-100% ) was allowed to remove the wax from the body of the insect, to avoid this the collapse and to observe specific ultrastructures of the individual, they were the best results. The methodology used has reduced the time and costs in future taxonomic research of mealybug. (author) [es

  12. Optimization of permanganic etching of polyethylenes for scanning electron microscopy

    International Nuclear Information System (INIS)

    Naylor, K.L.; Phillips, P.J.

    1983-01-01

    The permanganic etching technique has been studied as a function of time, temperature, and concentration for a series of polyethylenes. Kinetic studies show that a film of reaction products builds up on the surface, impeding further etching, an effect which is greatest for the lowest-crystallinity polymers. SEM studies combined with EDS show that the film contains sulfur, potassium and some manganese. An artifact is produced by the etching process which is impossible to remove by washing procedures if certain limits of time, temperature, and concentration are exceeded. For lower-crystallinity polyethylenes multiple etching and washing steps were required for optimal resolution. Plastic deformation during specimen preparation, whether from scratches or freeze fracturing, enhances artifact formation. When appropriate procedures are used, virtually artifact-free surfaces can be produced allowing a combination of permanganic etching and scanning electron microscopy to give a rapid method for detailed morphological characterization of bulk specimens

  13. Scanning electron microscopy of cells from periapical lesions.

    Science.gov (United States)

    Farber, P A

    1975-09-01

    Examination of lymphocytes from peripheral blood with the scanning electron microscope (SEM) has shown differences between B cells and T cells on the basis of their surface architecture. This study was initiated to determine whether the cellular components of periapical lesions could be identified with the use of similar criteria. Cells were dispersed from lesions by aspiration of fragments of tissue through syringe needles of decreasing diameters. The liberated cells were filtered on silver-coated Flotronic membranes and examined under the SEM. Lymphocytes, macrophages, epithelial cells, and mast cells were observed in granulomas and cysts. Most of the lymphocytes had smooth surfaces similar to that of T cells; others had villous projections similar to that of B cells. Epithelial nests were seen in the cyst linings while the cyst fluid was rich in lymphocytes. These findings suggest that SEM examination of periapical lesions can be a useful adjunct in studying cellular composition and possible immunological reactions in these tissues.

  14. In situ ion etching in a scanning electron microscope

    International Nuclear Information System (INIS)

    Dhariwal, R.S.; Fitch, R.K.

    1977-01-01

    A facility for ion etching in a scanning electron microscope is described which incorporates a new type of electrostatic ion source and viewing of the specimen is possible within about 30 sec after terminating the ion bombardment. Artefacts produced during etching have been studied and cone formation has been followed during its growth. The instrument has provided useful structural information on metals, alloys, and sinters. However, although insulating materials, such as plastics, glass and resins, have been successfully etched, interpretation of the resultant micrographs is more difficult. Ion etching of soft biological tissues, such as the rat duodenum was found to be of considerable interest. The observed structural features arise from the selective intake of the heavy fixation elements by different parts of the tissue. Hard biological materials, such as dental tissues and restorative materials, have also been studied and the prismatic structure of the enamel and the form and distribution of the dentinal tubules have been revealed. (author)

  15. A scanning electron microscopic investigation of ceramic orthodontic brackets

    International Nuclear Information System (INIS)

    McDonald, F.; Toms, A.P.

    1990-01-01

    Ceramic brackets were introduced to overcome the esthetic disadvantages of stainless steel brackets. The clinical impression of these brackets is very favorable. However, the sliding mechanics used in the Straightwire (A Company, San Diego, CA, USA) system appear to produce slower tooth movements with ceramic compared to stainless steel brackets. To determine whether this was due to any obvious mechanical problem in the bracket slot, Transcend (Unitek Corporation/3M, Monrovia, CA, USA) ceramic brackets were examined by a scanning electron microscope and compared to stainless steel brackets.Consistently, large surface defects were found in the ceramic bracket slots that were not present in the metal bracket slots. These irregularities could obviously hinder the sliding mechanics of the bracket slot-archwire system and create a greater demand on anchorage. Conversely, the fitting surface of the Transcend ceramic bracket showed extremely smooth surface characteristics, and it would seem advisable for the manufacturers to incorporate this surface within the bracket slot. (author)

  16. Contained scanning electron microscope facility for examining radioactive materials

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1986-03-01

    At the Savannah River Laboratory (SRL) radioactive solids are characterized with a scanning electron microscope (SEM) contained in a glove box. The system includes a research-grade Cambridge S-250 SEM, a Tracor Northern TN-5500 x-ray and image analyzer, and a Microspec wavelength-dispersive x-ray analyzer. The containment facility has a glove box train for mounting and coating samples, and for housing the SEM column, x-ray detectors, and vacuum pumps. The control consoles of the instruments are located outside the glove boxes. This facility has been actively used since October 1983 for high alpha-activity materials such as plutonium metal and plutonium oxide powders. Radioactive defense waste glasses and contaminated equipment have also been examined. During this period the facility had no safety-related incidents, and personnel radiation exposures were maintained at less than 100 mrems

  17. Development of a secondary electron energy analyzer for a transmission electron microscope.

    Science.gov (United States)

    Magara, Hideyuki; Tomita, Takeshi; Kondo, Yukihito; Sato, Takafumi; Akase, Zentaro; Shindo, Daisuke

    2018-04-01

    A secondary electron (SE) energy analyzer was developed for a transmission electron microscope. The analyzer comprises a microchannel plate (MCP) for detecting electrons, a coil for collecting SEs emitted from the specimen, a tube for reducing the number of backscattered electrons incident on the MCP, and a retarding mesh for selecting the energy of SEs incident on the MCP. The detection of the SEs associated with charging phenomena around a charged specimen was attempted by performing electron holography and SE spectroscopy using the energy analyzer. The results suggest that it is possible to obtain the energy spectra of SEs using the analyzer and the charging states of a specimen by electron holography simultaneously.

  18. Automated rapid particle investigation using scanning electron microscopy

    Science.gov (United States)

    Wilkins, Jerod Laurence

    The chemical composition of fly ash particles has been known to vary significantly depending on a number of factors. Current bulk methods of investigation including X-Ray Fluorescence and X-Ray Diffraction are thought to be inadequate in determining the performance of fly ash in concrete. It is the goal of this research to develop a method of Automated Rapid Particle Investigation that will not look at fly ash as a bulk material but as individual particles. By examining each particle individually scientists and engineers will have the ability to study the variation in chemical composition by comparing the chemistry present in each particle. The method of investigation developed by this research provides a practical technique that will allow the automated chemical analysis of hundreds, or even thousands, of fly ash particles in a matter of minutes upon completion of sample preparation and automated scanning electron microscope (ASEM) scanning. This research does not examine the significance of the chemical compounds discovered; rather, only the investigation methodology is discussed. Further research will be done to examine the importance of the chemistry discovered with this automated rapid particle investigation technique.

  19. Scanning transmission x-ray microscope for materials science spectromicroscopy at the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, T.; Seal, S.; Shin, H. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The brightness of the Advanced Light Source will be exploited by several new instruments for materials science spectromicroscopy over the next year or so. The first of these to become operational is a scanning transmission x-ray microscope with which near edge x-ray absorption spectra (NEXAFS) can be measured on spatial features of sub-micron size. Here the authors describe the instrument as it is presently implemented, its capabilities, some studies made to date and the developments to come. The Scanning Transmission X-ray Microscope makes use of a zone plate lens to produce a small x-ray spot with which to perform absorption spectroscopy through thin samples. The x-ray beam from ALS undulator beamline 7.0 emerges into the microscope vessel through a silicon nitride vacuum window 160nm thick and 300{mu}m square. The vessel is filled with helium at atmospheric pressure. The zone plate lens is illuminated 1mm downstream from the vacuum window and forms an image in first order of a pinhole which is 3m upstream in the beamline. An order sorting aperture passes the first order converging light and blocks the unfocused zero order. The sample is at the focus a few mm downstream of the zone plate and mounted from a scanning piezo stage which rasters in x and y so that an image is formed, pixel by pixel, by an intensity detector behind the sample. Absorption spectra are measured point-by-point as the photon energy is scanned by rotating the diffraction grating in the monochromator and changing the undulator gap.

  20. Scanning electron microscopy of Strongylus spp. in zebra.

    Science.gov (United States)

    Els, H J; Malan, F S; Scialdo-Krecek, R C

    1983-12-01

    The external ultrastructure of the anterior and posterior extremities of the nematodes, Strongylus asini , Strongylus vulgaris, Strongylus equinus and Strongylus edentatus, was studied with scanning electron microscopy (SEM). Fresh specimens of S. asini were collected from the caecum, ventral colon and vena portae of Equus burchelli and Equus zebra hartmannae ; S. vulgaris from the caecum, colon and arteria ileocolica of E. burchelli ; S. equinus from the ventral colon of E. z. hartmannae and S. edentatus from the caecum and ventral colon of both zebras , during surveys of parasites in zebras in the Etosha Game Reserve, South West Africa/Namibia, and the Kruger National Park, Republic of South Africa. The worms were cleaned, fixed and mounted by standard methods and photographed in a JEOL JSM - 35C scanning electron microscope (SEM) operating at 12kV . The SEM showed the following differences: the tips of the external leaf-crowns varied and were fine and delicate in S. asini , coarse and broad in S. vulgaris and, in S. equinus and S. edentatus, closely adherent, separating into single elements for half their length. The excretory pores showed only slight variation, and the morphology of the copulatory bursae did not differ from those seen with light microscopy. The genital cones differed markedly: S. asini had a ventral triangular projection and laterally 2 finger-like projections: in S. vulgaris there were numerous bosses on the lateral and ventral aspects of the cone; in S. equinus 2 finger-like processes projected laterocaudally ; and in S. edentatus 2 pairs of papilla-like processes projected laterally on the ventral aspects, and a pair of rounded projections and a pair of hair-like structures adorned the dorsal aspects.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Dopant profiling based on scanning electron and helium ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Augustus K.W., E-mail: kwac2@cam.ac.uk [Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Boden, Stuart A. [University of Southampton, Electronics and Computer Science, Highfield, Southampton SO17 1BJ (United Kingdom)

    2016-02-15

    In this paper, we evaluate and compare doping contrast generated inside the scanning electron microscope (SEM) and scanning helium ion microscope (SHIM). Specialised energy-filtering techniques are often required to produce strong doping contrast to map donor distributions using the secondary electron (SE) signal in the SEM. However, strong doping contrast can be obtained from n-type regions in the SHIM, even without energy-filtering. This SHIM technique is more sensitive than the SEM to donor density changes above its sensitivity threshold, i.e. of the order of 10{sup 16} or 10{sup 17} donors cm{sup −3} respectively on specimens with or without a p–n junction; its sensitivity limit is well above 2×10{sup 17} acceptors cm{sup −3} on specimens with or without a p–n junction. Good correlation is found between the widths and slopes of experimentally measured doping contrast profiles of thin p-layers and the calculated widths and slopes of the potential energy distributions across these layers, at a depth of 1 to 3 nm and 5 to 10 nm below the surface in the SHIM and the SEM respectively. This is consistent with the mean escape depth of SEs in silicon being about 1.8 nm and 7 nm in the SHIM and SEM respectively, and we conclude that short escape depth, low energy SE signals are most suitable for donor profiling. - Highlights: • Strong doping contrast from n-type regions in the SHIM without energy-filtering. • Sensitivity limits are established of the SHIM and SEM techniques. • We discuss the impact of SHIM imaging conditions on quantitative dopant profiling. • Doping contrast stems from different surface layer thicknesses in the SHIM and SEM.

  2. Cathodoluminescence of semiconductors in the scanning electron microscope

    International Nuclear Information System (INIS)

    Noriegas, Javier Piqueras de

    2008-01-01

    Full text: Cathodoluminescence (CL) in the scanning electron microscope (SEM) is a nondestructive technique, useful for characterization of optical and electronic properties of semiconductors, with spatial resolution. The contrast in the images of CL is related to the presence of crystalline defects, precipitates or impurities and provides information on their spatial distribution. CL spectra allows to study local energy position of localized electronic states. The application of the CL is extended to semiconductor very different characteristics, such as bulk material, heterostructures, nanocrystalline film, porous semiconductor, nanocrystals, nanowires and other nano-and microstructures. In the case of wafers, provides information on the homogeneity of their electronic characteristics, density of dislocations, grain sub frontiers, distribution of impurities and so on. while on the study of heterostructures CL images can determine, for example, the presence of misfit dislocations at the interface between different sheets, below the outer surface of the sample. In the study of other low dimensional structures, such as nanocrystalline films, nanoparticles and nano-and microstructures are observed elongated in some cases quantum confinement effects from the CL spectra. Moreover, larger structures, the order of hundreds of nanometers, with forms of wires, tubes or strips, is that in many semiconductor materials, mainly oxides, the behavior of luminescence is different from bulk material. The microstructures have a different structure of defects and a greater influence of the surface, which in some cases leads to a higher emission efficiency and a different spectral distribution. The presentation describes the principle of the CL technique and examples of its application in the characterization of a wide range of both semiconductor materials of different composition, and of different sizes ranging from nanostructures to bulk samples

  3. Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

    KAUST Repository

    Ali, Haider; Yang, Xinbo; Weber, Klaus; Schoenfeld, Winston V.; Davis, Kristopher O.

    2017-01-01

    In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21

  4. Molecular tips for scanning tunneling microscopy: intermolecular electron tunneling for single-molecule recognition and electronics.

    Science.gov (United States)

    Nishino, Tomoaki

    2014-01-01

    This paper reviews the development of molecular tips for scanning tunneling microscopy (STM). Molecular tips offer many advantages: first is their ability to perform chemically selective imaging because of chemical interactions between the sample and the molecular tip, thus improving a major drawback of conventional STM. Rational design of the molecular tip allows sophisticated chemical recognition; e.g., chiral recognition and selective visualization of atomic defects in carbon nanotubes. Another advantage is that they provide a unique method to quantify electron transfer between single molecules. Understanding such electron transfer is mandatory for the realization of molecular electronics.

  5. Spinning Carbon Nanotube Nanothread under a Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Mark Schulz

    2011-08-01

    Full Text Available Nanothread with a diameter as small as one hundred nanometers was manufactured under a scanning electron microscope. Made directly from carbon nanotubes, and inheriting their superior electrical and mechanical properties, nanothread may be the world’s smallest man-made fiber. The smallest thread that can be spun using a bench-top spinning machine is about 5 microns in diameter. Nanothread is a new material building block that can be used at the nanoscale or plied to form yarn for applications at the micro and macro scales. Preliminary electrical and mechanical properties of nanothread were measured. The resistivity of nanothread is less than 10−5 Ω∙m. The strength of nanothread is greater than 0.5 GPa. This strength was obtained from measurements using special glue that cures in an electron microscope. The glue weakened the thread, thus further work is needed to obtain more accurate measurements. Nanothread will have broad applications in enabling electrical components, circuits, sensors, and tiny machines. Yarn can be used for various macroscale applications including lightweight antennas, composites, and cables.

  6. In situ Transmission Electron Microscopy of catalyst sintering

    DEFF Research Database (Denmark)

    DeLaRiva, Andrew T.; Hansen, Thomas Willum; Challa, Sivakumar R.

    2013-01-01

    Recent advancements in the field of electron microscopy, such as aberration correctors, have now been integrated into Environmental Transmission Electron Microscopes (TEMs), making it possible to study the behavior of supported metal catalysts under operating conditions at atomic resolution. Here......, we focus on in situ electron microscopy studies of catalysts that shed light on the mechanistic aspects of catalyst sintering. Catalyst sintering is an important mechanism for activity loss, especially for catalysts that operate at elevated temperatures. Literature from the past decade is reviewed...... along with our recent in situ TEM studies on the sintering of Ni/MgAl2O4 catalysts. These results suggest that the rapid loss of catalyst activity in the earliest stages of catalyst sintering could result from Ostwald ripening rather than through particle migration and coalescence. The smallest...

  7. Characterization of gaseous species in scanning atmospheric rf plasma with transmission infrared spectroscopy

    International Nuclear Information System (INIS)

    Kim, Seong H.; Kim, Jeong Hoon; Kang, Bang-Kwon

    2008-01-01

    A scanning atmospheric radio-frequency (rf) plasma was analyzed with transmission infrared (IR) spectroscopy. The IR analyses were made for the plasmas used for hydrophobic coating deposition and superhydrophobic coating deposition processes. Since the rf plasma was generated in a small open space with a high gas flow rate in ambient air, the density of gas-phase molecules was very high and the plasma-generated reactive species seemed to undergo various reactions in the gas phase. So, the transmission IR spectra of the scanning atmospheric rf plasma were dominated by gas-phase reaction products, rather than plasma-generated intermediate species. In the CH 4 /He plasma used for hydrophobic coating deposition, C 2 H 6 , C 2 H 2 , and a small amount of C 2 H 4 as well as CO were detected in transmission IR. The intensities of these peaks increased as the rf power increased. The CO formation is due to the activation of oxygen and water in the air. In the CF 4 /H 2 /He plasma used for deposition of superhydrophobic coatings, C 2 F 6 , CF 3 H, COF 2 , and HF were mainly detected. When the H 2 /CF 4 ratio was ∼0.5, the consumption of CF 4 was the highest. As the H 2 /CF 4 ratio increased higher, the C 2 F 6 production was suppressed while the CF 3 H peak grew and the formation of CH 4 were detected. In both CH 4 /He and CF 4 /H 2 /He plasma systems, the undissociated feed gas molecules seem to be highly excited vibrationally and rotationally. The information on plasma-generated reactive species and their reactions was deduced from the distribution of these gas-phase reaction products

  8. Optimization of Beam Transmission of PAL-PNF Electron Linac

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kim, S. K.; Kim, E. A. [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2012-05-15

    The PNF (Pohang Neutron Facility) electron Linac is providing converted neutrons and photons from electron beams to users for nuclear physics experiments and high energy gamma-ray exposures. This linac is capable of producing 100 MeV electron beams with a beam current of pulsed 100 mA. The pulse length is 2 {mu}s and the pulse repetition rate is typically 30 Hz. This linac consists of two SLAC-type S-band accelerating columns and the thermionic RF gun. They are powered by one klystron and the matching pulse modulator. The electron beams emitted from the RF gun are bunched as they pass through the alpha magnet and are injected into the accelerating column thereafter. In this paper, we discuss procedures and results of the beam transmission optimization with technical details of the accelerator system. We also briefly discuss the future upgrade plan to obtain short-pulse or electron beams for neutron TOF experiments by adopting a triode type thermionic DC electron gun

  9. Development of spin-polarized transmission electron microscope

    International Nuclear Information System (INIS)

    Kuwahara, M; Saitoh, K; Tanaka, N; Takeda, Y; Ujihara, T; Asano, H; Nakanishi, T

    2011-01-01

    In order to study spin related phenomena in nano-size materials, spin-polarized electron source (PES) has been employed for the incident beam in transmission electron microscope (TEM). The PES has been designed and constructed with optimizing for spin-polarized TEM. The illuminating system of TEM is also designed to focus the spin-polarized electron beam emitted from a semiconductor photocathode with a negative electron affinity (NEA) surface. The beam energy is set to below 40 keV which is lower energy type as a TEM, because the spin interaction with condensed matters is very small corresponding with a Coulomb interaction. The polarized electron gun has realized in an extra high vacuum (XHV) condition and high field gradient of 4 MV/m on a surface of photocathode. Furthermore, it demonstrated that 40-keV polarized electron beam was operated with a sub-milli second pulse mode by using the backside excitation type photocathode. This high performance PES will make it possible to observe dynamically a magnetic field images with high contrast and highspeed temporal imaging in TEM.

  10. Sample preparation methods for scanning electron microscopy of homogenized Al-Mg-Si billets: A comparative study

    International Nuclear Information System (INIS)

    Österreicher, Johannes Albert; Kumar, Manoj; Schiffl, Andreas; Schwarz, Sabine; Hillebrand, Daniel; Bourret, Gilles Remi

    2016-01-01

    Characterization of Mg-Si precipitates is crucial for optimizing the homogenization heat treatment of Al-Mg-Si alloys. Although sample preparation is key for high quality scanning electron microscopy imaging, most common methods lead to dealloying of Mg-Si precipitates. In this article we systematically evaluate different sample preparation methods: mechanical polishing, etching with various reagents, and electropolishing using different electrolytes. We demonstrate that the use of a nitric acid and methanol electrolyte for electropolishing a homogenized Al-Mg-Si alloy prevents the dissolution of Mg-Si precipitates, resulting in micrographs of higher quality. This preparation method is investigated in depth and the obtained scanning electron microscopy images are compared with transmission electron micrographs: the shape and size of Mg-Si precipitates appear very similar in either method. The scanning electron micrographs allow proper identification and measurement of the Mg-Si phases including needles with lengths of roughly 200 nm. These needles are β″ precipitates as confirmed by high resolution transmission electron microscopy. - Highlights: •Secondary precipitation in homogenized 6xxx Al alloys is crucial for extrudability. •Existing sample preparation methods for SEM are improvable. •Electropolishing with nitric acid/methanol yields superior quality in SEM. •The obtained micrographs are compared to TEM micrographs.

  11. Sample preparation methods for scanning electron microscopy of homogenized Al-Mg-Si billets: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Österreicher, Johannes Albert; Kumar, Manoj [LKR Light Metals Technologies Ranshofen, Austrian Institute of Technology, Postfach 26, 5282 Ranshofen (Austria); Schiffl, Andreas [Hammerer Aluminium Industries Extrusion GmbH, Lamprechtshausener Straße 69, 5282 Ranshofen (Austria); Schwarz, Sabine [University Service Centre for Transmission Electron Microscopy, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Wien (Austria); Hillebrand, Daniel [Hammerer Aluminium Industries Extrusion GmbH, Lamprechtshausener Straße 69, 5282 Ranshofen (Austria); Bourret, Gilles Remi, E-mail: gilles.bourret@sbg.ac.at [Department of Materials Science and Physics, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg (Austria)

    2016-12-15

    Characterization of Mg-Si precipitates is crucial for optimizing the homogenization heat treatment of Al-Mg-Si alloys. Although sample preparation is key for high quality scanning electron microscopy imaging, most common methods lead to dealloying of Mg-Si precipitates. In this article we systematically evaluate different sample preparation methods: mechanical polishing, etching with various reagents, and electropolishing using different electrolytes. We demonstrate that the use of a nitric acid and methanol electrolyte for electropolishing a homogenized Al-Mg-Si alloy prevents the dissolution of Mg-Si precipitates, resulting in micrographs of higher quality. This preparation method is investigated in depth and the obtained scanning electron microscopy images are compared with transmission electron micrographs: the shape and size of Mg-Si precipitates appear very similar in either method. The scanning electron micrographs allow proper identification and measurement of the Mg-Si phases including needles with lengths of roughly 200 nm. These needles are β″ precipitates as confirmed by high resolution transmission electron microscopy. - Highlights: •Secondary precipitation in homogenized 6xxx Al alloys is crucial for extrudability. •Existing sample preparation methods for SEM are improvable. •Electropolishing with nitric acid/methanol yields superior quality in SEM. •The obtained micrographs are compared to TEM micrographs.

  12. Structural Fingerprinting of Nanocrystals in the Transmission Electron Microscope

    Science.gov (United States)

    Rouvimov, Sergei; Plachinda, Pavel; Moeck, Peter

    2010-03-01

    Three novel strategies for the structurally identification of nanocrystals in a transmission electron microscope are presented. Either a single high-resolution transmission electron microscopy image [1] or a single precession electron diffractogram (PED) [2] may be employed. PEDs from fine-grained crystal powders may also be utilized. Automation of the former two strategies is in progress and shall lead to statistically significant results on ensembles of nanocrystals. Open-access databases such as the Crystallography Open Database which provides more than 81,500 crystal structure data sets [3] or its mainly inorganic and educational subsets [4] may be utilized. [1] http://www.scientificjournals.org/journals 2007/j/of/dissertation.htm [2] P. Moeck and S. Rouvimov, in: {Drugs and the Pharmaceutical Sciences}, Vol. 191, 2009, 270-313 [3] http://cod.ibt.lt, http://www.crystallography.net, http://cod.ensicaen.fr, http://nanocrystallography.org, http://nanocrystallography.net, http://journals.iucr.org/j/issues/2009/04/00/kk5039/kk5039.pdf [4] http://nanocrystallography.research.pdx.edu/CIF-searchable

  13. Progress and applications of in situ transmission electron microscopy

    International Nuclear Information System (INIS)

    Wang Rongming; Liu Jialong; Song Yuanjun

    2015-01-01

    Recent progress in the application of in situ transmission electron microscopy (TEM) is briefly reviewed. It is emphasized that the development of advanced in situ TEM techniques makes it possible to investigate the evolution of materials under heat, strain, magnetic field, electric field or chemical reaction environments on the atomic scale. The mechanism of the microstructure evolution under various conditions and the relationship between the atomic structures and their properties can be obtained, which is beneficial for the design of new materials with tailored properties. The clarification of the structure-property relationship will help to develop new materials and solve related basic problems in the field of condensed matter physics. (authors)

  14. Fabrication and electric measurements of nanostructures inside transmission electron microscope.

    Science.gov (United States)

    Chen, Qing; Peng, Lian-Mao

    2011-06-01

    Using manipulation holders specially designed for transmission electron microscope (TEM), nanostructures can be characterized, measured, modified and even fabricated in-situ. In-situ TEM techniques not only enable real-time study of structure-property relationships of materials at atomic scale, but also provide the ability to control and manipulate materials and structures at nanoscale. This review highlights in-situ electric measurements and in-situ fabrication and structure modification using manipulation holder inside TEM. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Transmission electron microscopic study of reduced Ca2UO5

    International Nuclear Information System (INIS)

    Krasevec, V.; Prodan, A.; Holc, J.; Kolar, D.

    1983-01-01

    Structural changes of Ca 2 UO 5 during reduction in hydrogen were studied by transmission electron microscopy. It was shown that monoclinic Ca 2 UO 5 changes into triclinic Ca 4 U 2 O 9 . They are related, respectively, to the fluorite and the bixbyite (C-M 2 O 3 ) structures, so that the product is a superstructure of the latter. Reduction occurs along the (100)/sub t/ planes originating from the (006)/sub m/ planes of the parent structure by diminishing the coordination number of the Ca cation from 7 to 6. 5 figures

  16. Transmission electron microscopy investigation of Bi-2223/Ag tapes

    DEFF Research Database (Denmark)

    Andersen, L.G.; Bals, S.; Tendeloo, G. Van

    2001-01-01

    during the tape processing, (3) a study of the grain boundaries on an atomic scale, including intergrowth investigations. Tapes with different process parameters have been compared with respect to the microstructure. A fully processed tape has on the average 50% thicker Bi-2223 grains than a tape after......The microstructure of (Bi,Pb)(2)Sr2Ca2CuOx (Bi-2223) tapes has been investigated by means of transmission electron microscopy (TEM) and high-resolution TEM. The emphasis has been placed on: (1) an examination of the grain morphology and size, (2) grain and colony boundary angles, which are formed...

  17. Correction of bubble size distributions from transmission electron microscopy observations

    International Nuclear Information System (INIS)

    Kirkegaard, P.; Eldrup, M.; Horsewell, A.; Skov Pedersen, J.

    1996-01-01

    Observations by transmission electron microscopy of a high density of gas bubbles in a metal matrix yield a distorted size distribution due to bubble overlap and bubble escape from the surface. A model is described that reconstructs 3-dimensional bubble size distributions from 2-dimensional projections on taking these effects into account. Mathematically, the reconstruction is an ill-posed inverse problem, which is solved by regularization technique. Extensive Monte Carlo simulations support the validity of our model. (au) 1 tab., 32 ills., 32 refs

  18. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy

    Science.gov (United States)

    Sindern, Sven; Meyer, F. Michael

    2016-09-01

    Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become

  19. Scanning electron microscopy of the neuropathology of murine cerebral malaria

    Directory of Open Access Journals (Sweden)

    Brenneis Christian

    2006-11-01

    Full Text Available Abstract Background The mechanisms leading to death and functional impairments due to cerebral malaria (CM are yet not fully understood. Most of the knowledge about the pathomechanisms of CM originates from studies in animal models. Though extensive histopathological studies of the murine brain during CM are existing, alterations have not been visualized by scanning electron microscopy (SEM so far. The present study investigates the neuropathological features of murine CM by applying SEM. Methods C57BL/6J mice were infected with Plasmodium berghei ANKA blood stages. When typical symptoms of CM developed perfused brains were processed for SEM or light microscopy, respectively. Results Ultrastructural hallmarks were disruption of vessel walls, parenchymal haemorrhage, leukocyte sequestration to the endothelium, and diapedesis of macrophages and lymphocytes into the Virchow-Robin space. Villous appearance of observed lymphocytes were indicative of activated state. Cerebral oedema was evidenced by enlargement of perivascular spaces. Conclusion The results of the present study corroborate the current understanding of CM pathophysiology, further support the prominent role of the local immune system in the neuropathology of CM and might expose new perspectives for further interventional studies.

  20. Scanning electron microscopy and roughness study of dental composite degradation.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; Cortez, Louise Ribeiro; Zarur, Raquel de Oliveira; Martin, Airton Abrahão

    2012-04-01

    Our aim was to test the hypothesis that the use of mouthwashes, consumption of soft drinks, as well as the type of light curing unit (LCU), would change the surface roughness (Ra) and morphology of a nanofilled composite resin (Z350® 3M ESPE). Samples (80) were divided into eight groups: Halogen LCU, group 1, saliva (control); group 2, Pepsi Twist®; group 3, Listerine®; group 4, Colgate Plax®; LED LCU, group 5, saliva; group 6, Pepsi Twist®; group 7, Listerine®; group 8, Colgate Plax®. Ra values were measured at baseline, and after 7 and 14 days. One specimen of each group was prepared for scanning electron microscopy analysis after 14 days. The data were subjected to multifactor analysis of variance at a 95% confidence followed by Tukey's honestly significant difference post-hoc test. All the treatments resulted in morphological changes in composite resin surface, and the most significant change was in Pepsi Twist® groups. The samples of G6 had the greatest increase in Ra. The immersion of nanofilled resin in mouthwashes with alcohol and soft drink increases the surface roughness. Polymerization by halogen LCU (reduced light intensity) associated with alcohol contained mouthwash resulted in significant roughness on the composite.

  1. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    International Nuclear Information System (INIS)

    Lunov, O.; Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A.; Deyneka, I. G.; Meshkovskii, I. K.; Syková, E.; Kubinová, Š.

    2015-01-01

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy

  2. An overview on bioaerosols viewed by scanning electron microscopy

    International Nuclear Information System (INIS)

    Wittmaack, K.; Wehnes, H.; Heinzmann, U.; Agerer, R.

    2005-01-01

    Bioaerosols suspended in ambient air were collected with single-stage impactors at a semiurban site in southern Germany during late summer and early autumn. Sampling was mostly carried out at a nozzle velocity of 35 m/s, corresponding to a minimum aerodynamic diameter (cut-off diameter) of aerosol particles of 0.8 μm. The collected particles, sampled for short periods (∼15 min) to avoid pile-up, were characterized by scanning electron microscopy (SEM). The observed bioaerosols include brochosomes, fungal spores, hyphae, insect scales, hairs of plants and, less commonly, bacteria and epicuticular wax. Brochosomes, which serve as a highly water repellent body coating of leafhoppers, are hollow spheroids with diameters around 400 nm, resembling C 60 or footballs (soccer balls). They are usually airborne not as individuals but in the form of large clusters containing up to 10,000 individual species or even more. Various types of spores and scales were observed, but assignment turned out be difficult due to the large number of fungi and insects from which they may have originated. Pollens were observed only once. The absence these presumably elastic particles suggests that they are frequently lost, at the comparatively high velocities, due to bounce-off from the nonadhesive impaction surfaces

  3. In situ fatigue loading stage inside scanning electron microscope

    Science.gov (United States)

    Telesman, Jack; Kantzos, Peter; Brewer, David

    1988-01-01

    A fatigue loading stage inside a scanning electron microscopy (SEM) was developed. The stage allows dynamic and static high-magnification and high-resolution viewing of the fatigue crack initiation and crack propagation processes. The loading stage is controlled by a closed-loop servohydraulic system. Maximum load is 1000 lb (4450 N) with test frequencies ranging up to 30 Hz. The stage accommodates specimens up to 2 inches (50 mm) in length and tolerates substantial specimen translation to view the propagating crack. At room temperature, acceptable working resolution is obtainable for magnifications ranging up to 10,000X. The system is equipped with a high-temperature setup designed for temperatures up to 2000 F (1100 C). The signal can be videotaped for further analysis of the pertinent fatigue damage mechanisms. The design allows for quick and easy interchange and conversion of the SEM from a loading stage configuration to its normal operational configuration and vice versa. Tests are performed entirely in the in-situ mode. In contrast to other designs, the NASA design has greatly extended the life of the loading stage by not exposing the bellows to cyclic loading. The loading stage was used to investigate the fatigue crack growth mechanisms in the (100)-oriented PWA 1480 single-crystal, nickel-based supperalloy. The high-magnification observations revealed the details of the crack growth processes.

  4. Contact detection for nanomanipulation in a scanning electron microscope.

    Science.gov (United States)

    Ru, Changhai; To, Steve

    2012-07-01

    Nanomanipulation systems require accurate knowledge of the end-effector position in all three spatial coordinates, XYZ, for reliable manipulation of nanostructures. Although the images acquired by a scanning electron microscope (SEM) provide high resolution XY information, the lack of depth information in the Z-direction makes 3D nanomanipulation time-consuming. Existing approaches for contact detection of end-effectors inside SEM typically utilize fragile touch sensors that are difficult to integrate into a nanomanipulation system. This paper presents a method for determining the contact between an end-effector and a target surface during nanomanipulation inside SEM, purely based on the processing of SEM images. A depth-from-focus method is used in the fast approach of the end-effector to the substrate, followed by fine contact detection. Experimental results demonstrate that the contact detection approach is capable of achieving an accuracy of 21.5 nm at 50,000× magnification while inducing little end-effector damage. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. An overview on bioaerosols viewed by scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wittmaack, K. [GSF-National Research Centre for Environment and Health, Institute of Radiation Protection, 85758 Neuherberg (Germany)]. E-mail: wittmaack@gsf.de; Wehnes, H. [GSF-National Research Centre for Environment and Health, Institute of Pathology, 85758 Neuherberg (Germany); Heinzmann, U. [GSF-National Research Centre for Environment and Health, Institute of Pathology, 85758 Neuherberg (Germany); Agerer, R. [Ludwig-Maximilians University Munich, Department Biology, Biodiversity Research: Mycology, Menzinger Stasse 67, 80638 Munich (Germany)

    2005-06-15

    Bioaerosols suspended in ambient air were collected with single-stage impactors at a semiurban site in southern Germany during late summer and early autumn. Sampling was mostly carried out at a nozzle velocity of 35 m/s, corresponding to a minimum aerodynamic diameter (cut-off diameter) of aerosol particles of 0.8 {mu}m. The collected particles, sampled for short periods ({approx}15 min) to avoid pile-up, were characterized by scanning electron microscopy (SEM). The observed bioaerosols include brochosomes, fungal spores, hyphae, insect scales, hairs of plants and, less commonly, bacteria and epicuticular wax. Brochosomes, which serve as a highly water repellent body coating of leafhoppers, are hollow spheroids with diameters around 400 nm, resembling C{sub 60} or footballs (soccer balls). They are usually airborne not as individuals but in the form of large clusters containing up to 10,000 individual species or even more. Various types of spores and scales were observed, but assignment turned out be difficult due to the large number of fungi and insects from which they may have originated. Pollens were observed only once. The absence these presumably elastic particles suggests that they are frequently lost, at the comparatively high velocities, due to bounce-off from the nonadhesive impaction surfaces.

  6. Contact detection for nanomanipulation in a scanning electron microscope

    International Nuclear Information System (INIS)

    Ru, Changhai; To, Steve

    2012-01-01

    Nanomanipulation systems require accurate knowledge of the end-effector position in all three spatial coordinates, XYZ, for reliable manipulation of nanostructures. Although the images acquired by a scanning electron microscope (SEM) provide high resolution XY information, the lack of depth information in the Z-direction makes 3D nanomanipulation time-consuming. Existing approaches for contact detection of end-effectors inside SEM typically utilize fragile touch sensors that are difficult to integrate into a nanomanipulation system. This paper presents a method for determining the contact between an end-effector and a target surface during nanomanipulation inside SEM, purely based on the processing of SEM images. A depth-from-focus method is used in the fast approach of the end-effector to the substrate, followed by fine contact detection. Experimental results demonstrate that the contact detection approach is capable of achieving an accuracy of 21.5 nm at 50,000× magnification while inducing little end-effector damage. -- Highlights: ► We presents a simple method for obtaining the depth information in SEM-based nanomanipulation. ► Detecting contact between an end-effector and a target surface using SEM as a vision sensor. ► Additional touch/force sensors or specialized hardware need not be added. ► Achieved high repeatability and accuracy. ► Complete automatic contact detection within typically 60 s.

  7. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Junaid ASLAM

    2014-06-01

    Full Text Available Catharanthus roseus (L. G. Don is an important medicinal plant as it contains several anti-cancerous compounds, like vinblastine and vincristine. Plant tissue culture technology (organogenesis and embryogenesis has currently been used in fast mass propagating raw materials for secondary metabolite synthesis. In this present communication, scanning electron microscopic (SEM study of somatic embryos was conducted and discussed. The embryogenic callus was first induced from hypocotyls of in vitro germinated seeds on which somatic embryos, differentiated in numbers, particularly on 2,4-D (1.0 mg/L Murashige and Skoog (MS was medium. To understand more about the regeneration method and in vitro formed embryos SEM was performed. The SEM study revealed normal somatic embryo origin and development from globular to heart-, torpedo- and then into cotyledonary-stage of embryos. At early stage, the embryos were clustered together in a callus mass and could not easily be detached from the parental tissue. The embryos were often long cylindrical structure with or without typical notch at the tip. Secondary embryos were also formed on primary embryo structure. The advanced cotyledonary embryos showed prominent roots and shoot axis, which germinated into plantlets. The morphology, structure and other details of somatic embryos at various stages were presented.

  8. Contact detection for nanomanipulation in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ru, Changhai, E-mail: rchhai@gmail.com [Automation College, Harbin Engineering University, Harbin 150001 (China); Robotics and Microsystems Center, Soochow University, Jiangsu 215021 (China); To, Steve, E-mail: Steve.to@utoronto.ca [Department of Mechanical and Industry Engineering, University of Toronto, Ontario, Canada M5S3G8 (Canada)

    2012-07-15

    Nanomanipulation systems require accurate knowledge of the end-effector position in all three spatial coordinates, XYZ, for reliable manipulation of nanostructures. Although the images acquired by a scanning electron microscope (SEM) provide high resolution XY information, the lack of depth information in the Z-direction makes 3D nanomanipulation time-consuming. Existing approaches for contact detection of end-effectors inside SEM typically utilize fragile touch sensors that are difficult to integrate into a nanomanipulation system. This paper presents a method for determining the contact between an end-effector and a target surface during nanomanipulation inside SEM, purely based on the processing of SEM images. A depth-from-focus method is used in the fast approach of the end-effector to the substrate, followed by fine contact detection. Experimental results demonstrate that the contact detection approach is capable of achieving an accuracy of 21.5 nm at 50,000 Multiplication-Sign magnification while inducing little end-effector damage. -- Highlights: Black-Right-Pointing-Pointer We presents a simple method for obtaining the depth information in SEM-based nanomanipulation. Black-Right-Pointing-Pointer Detecting contact between an end-effector and a target surface using SEM as a vision sensor. Black-Right-Pointing-Pointer Additional touch/force sensors or specialized hardware need not be added. Black-Right-Pointing-Pointer Achieved high repeatability and accuracy. Black-Right-Pointing-Pointer Complete automatic contact detection within typically 60 s.

  9. Specific surface area evaluation method by using scanning electron microscopy

    International Nuclear Information System (INIS)

    Petrescu, Camelia; Petrescu, Cristian; Axinte, Adrian

    2000-01-01

    Ceramics are among the most interesting materials for a large category of applications, including both industry and health. Among the characteristic of the ceramic materials, the specific surface area is often difficult to evaluate.The paper presents a method of evaluation for the specific surface area of two ceramic powders by means of scanning electron microscopy measurements and an original method of computing the specific surface area.Cumulative curves are used to calculate the specific surface area under assumption that the values of particles diameters follow a normal logarithmic distribution. For two powder types, X7R and NPO the results are the following: - for the density ρ (g/cm 2 ), 5.5 and 6.0, respectively; - for the average diameter D bar (μm), 0.51 and 0.53, respectively; - for σ, 1.465 and 1.385, respectively; - for specific surface area (m 2 /g), 1.248 and 1.330, respectively. The obtained results are in good agreement with the values measured by conventional methods. (authors)

  10. Use of a scanning electron microscope for examining radioactive materials

    International Nuclear Information System (INIS)

    Kauffmann, Yves; Prouve, Michel.

    1981-05-01

    The LAMA laboratory of the Grenoble Nuclear Research Center participates in studies carried out by research teams on fuels. Post-irradiation studies are performed on irradiated pins for research and development and safety programs. A scanning electron microscope was acquired for this purpose. This microscope had to fulfill certain criteria: it had to be sufficiently compact for it to be housed in a lead enclosure; it had to be capable of being adapted to operate with remote handling control. The modifications made to this microscope are briefly described together with the ancillary equipment of the cell. In parallel with these operations, an interconnection was realized enabling materials to be transferred between the various sampling and sample preparation cells and the microscope cell with a small transfer cask. After two years operating experience the microscope performance has been assessed satisfactory. The specific radioactivity of the samples themselves cannot be incriminated as the only cause of loss in resolution at magnifications greater than x 10,000 [fr

  11. Electronically Steerable Antennas with Panoramic Scan Field of View, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Electronically steerable antennas are key to effective radio transmission at millimeter-wave frequencies. To enable communication with rovers, robots, EVA...

  12. Ultra low-K shrinkage behavior when under electron beam in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lorut, F.; Imbert, G. [ST Microelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Roggero, A. [Centre National d' Etudes Spatiales, 18 Avenue Edouard Belin, 31400 Toulouse (France)

    2013-08-28

    In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, with a densification of the layer and a loss of carbon and hydrogen elements being observed.

  13. Secondary electron spectroscopy and Auger microscopy at high spatial resolution. Application to scanning electron microscopy

    International Nuclear Information System (INIS)

    Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene

    1979-01-01

    Secondary electron spectroscopy (SES), Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS) are combined with ultra high vacuum scanning microscopy (SEM) for surface analysis at high spatial resolution. Reliability tests for the optical column for the vacuum and for the spectrometer are discussed. Furthermore the sensitivity threshold in AES which is compatible with a non destructive surface analysis at high spatial resolution is evaluated. This combination of all spectroscopies is used in the study of the beam damage correlated with the well known secondary electron image (SEI) darkening still observed in ultra high vacuum. The darkening is explained as a bulk decontamination of the sample rather than as a surface contamination from the residual vacuum gas [fr

  14. Simulations and measurements in scanning electron microscopes at low electron energy

    Czech Academy of Sciences Publication Activity Database

    Walker, C.; Frank, Luděk; Müllerová, Ilona

    2016-01-01

    Roč. 38, č. 6 (2016), s. 802-818 ISSN 0161-0457 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 EU Projects: European Commission(XE) 606988 - SIMDALEE2 Institutional support: RVO:68081731 Keywords : Monte Carlo modeling * scanned probe * computer simulation * electron-solid interactions * surface analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.345, year: 2016

  15. In situ transmission electron microscopy for magnetic nanostructures

    DEFF Research Database (Denmark)

    Ngo, Duc-The; Kuhn, Luise Theil

    2016-01-01

    Nanomagnetism is a subject of great interest because of both application and fundamental aspects in which understanding of the physical and electromagnetic structure of magnetic nanostructures is essential to explore the magnetic properties. Transmission electron microscopy (TEM) is a powerful tool...... that allows understanding of both physical structure and micromagnetic structure of the thin samples at nanoscale. Among TEM techniques, in situ TEM is the state-of-the-art approach for imaging such structures in dynamic experiments, reconstructing a real-time nanoscale picture of the properties......-structure correlation. This paper aims at reviewing and discussing in situ TEM magnetic imaging studies, including Lorentz microscopy and electron holography in TEM, applied to the research of magnetic nanostructures....

  16. Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Brisson, Alain R

    2017-01-01

    Extracellular vesicles (EVs) are cell-derived vesicles that are present in blood and other body fluids. EVs raise major interest for their diverse physiopathological roles and their potential biomedical applications. However, the characterization and quantification of EVs constitute major challenges, mainly due to their small size and the lack of methods adapted for their study. Electron microscopy has made significant contributions to the EV field since their initial discovery. Here, we describe the use of two transmission electron microscopy (TEM) techniques for imaging and quantifying EVs. Cryo-TEM combined with receptor-specific gold labeling is applied to reveal the morphology, size, and phenotype of EVs, while their enumeration is achieved after high-speed sedimentation on EM grids.

  17. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    Energy Technology Data Exchange (ETDEWEB)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  18. Instrumentation for in situ flow electrochemical Scanning Transmission X-ray Microscopy (STXM)

    Science.gov (United States)

    Prabu, Vinod; Obst, Martin; Hosseinkhannazer, Hooman; Reynolds, Matthew; Rosendahl, Scott; Wang, Jian; Hitchcock, Adam P.

    2018-06-01

    We report the design and performance of a 3-electrode device for real time in situ scanning transmission X-ray microscopy studies of electrochemical processes under both static (sealed, non-flow) conditions and with a continuous flow of electrolytes. The device was made using a combination of silicon microfabrication and 3D printing technologies. The performance is illustrated by results of a study of copper deposition and stripping at a gold working electrode. X-ray absorption spectromicroscopy at the Cu 2p edge was used to follow the evolution as a function of potential and time of the spatial distributions of Cu(0) and Cu(i) species electro-deposited from an aqueous solution of copper sulphate. The results are interpreted in terms of competing mechanisms for the reduction of Cu(ii).

  19. Design and performance of a compact scanning transmission X-ray microscope at the Photon Factory

    Energy Technology Data Exchange (ETDEWEB)

    Takeichi, Y., E-mail: yasuo.takeichi@kek.jp; Mase, K.; Ono, K. [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Department of Materials Structure Science, SOKENDAI (The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba 305-0801 (Japan); Inami, N. [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Suga, H. [Department of Earth and Planetary Systems Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Miyamoto, C. [Department of Earth and Planetary Systems Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033 (Japan); Ueno, T. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Takahashi, Y. [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Department of Earth and Planetary Systems Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Department of Earth and Planetary Systems Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033 (Japan)

    2016-01-15

    We present a new compact instrument designed for scanning transmission X-ray microscopy. It has piezo-driven linear stages, making it small and light. Optical components from the virtual source point to the detector are located on a single optical table, resulting in a portable instrument that can be operated at a general-purpose spectroscopy beamline without requiring any major reconstruction. Careful consideration has been given to solving the vibration problem common to high-resolution microscopy, so as not to affect the spatial resolution determined by the Fresnel zone plate. Results on bacteriogenic iron oxides, single particle aerosols, and rare-earth permanent magnets are presented as examples of its performance under diverse applications.

  20. Special raster scanning for reduction of charging effects in scanning electron microscopy.

    Science.gov (United States)

    Suzuki, Kazuhiko; Oho, Eisaku

    2014-01-01

    A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.

  1. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    Science.gov (United States)

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Reconstruction and visualization of nanoparticle composites by transmission electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.Y. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Canada T6G 2G7 (Canada); Lockwood, R. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada); Malac, M., E-mail: marek.malac@nrc-cnrc.gc.ca [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Canada T6G 2G7 (Canada); Furukawa, H. [SYSTEM IN FRONTIER INC., 2-8-3, Shinsuzuharu bldg. 4F, Akebono-cho, Tachikawa-shi, Tokyo 190-0012 (Japan); Li, P.; Meldrum, A. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada)

    2012-02-15

    This paper examines the limits of transmission electron tomography reconstruction methods for a nanocomposite object composed of many closely packed nanoparticles. Two commonly used reconstruction methods in TEM tomography were examined and compared, and the sources of various artefacts were explored. Common visualization methods were investigated, and the resulting 'interpretation artefacts' ( i.e., deviations from 'actual' particle sizes and shapes arising from the visualization) were determined. Setting a known or estimated nanoparticle volume fraction as a criterion for thresholding does not in fact give a good visualization. Unexpected effects associated with common built-in image filtering methods were also found. Ultimately, this work set out to establish the common problems and pitfalls associated with electron beam tomographic reconstruction and visualization of samples consisting of closely spaced nanoparticles. -- Highlights: Black-Right-Pointing-Pointer Electron tomography limits were explored by both experiment and simulation. Black-Right-Pointing-Pointer Reliable quantitative volumetry using electron tomography is not presently feasible. Black-Right-Pointing-Pointer Volume rendering appears to be better choice for visualization of composite samples.

  3. Novel edge treatment method for improving the transmission reconstruction quality in Tomographic Gamma Scanning.

    Science.gov (United States)

    Han, Miaomiao; Guo, Zhirong; Liu, Haifeng; Li, Qinghua

    2018-05-01

    Tomographic Gamma Scanning (TGS) is a method used for the nondestructive assay of radioactive wastes. In TGS, the actual irregular edge voxels are regarded as regular cubic voxels in the traditional treatment method. In this study, in order to improve the performance of TGS, a novel edge treatment method is proposed that considers the actual shapes of these voxels. The two different edge voxel treatment methods were compared by computing the pixel-level relative errors and normalized mean square errors (NMSEs) between the reconstructed transmission images and the ideal images. Both methods were coupled with two different interative algorithms comprising Algebraic Reconstruction Technique (ART) with a non-negativity constraint and Maximum Likelihood Expectation Maximization (MLEM). The results demonstrated that the traditional method for edge voxel treatment can introduce significant error and that the real irregular edge voxel treatment method can improve the performance of TGS by obtaining better transmission reconstruction images. With the real irregular edge voxel treatment method, MLEM algorithm and ART algorithm can be comparable when assaying homogenous matrices, but MLEM algorithm is superior to ART algorithm when assaying heterogeneous matrices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    International Nuclear Information System (INIS)

    Späth, Andreas; Raabe, Jörg; Fink, Rainer H.

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed

  5. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Späth, Andreas [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Raabe, Jörg [Paul Scherrer Institut, 5232 Villigen (Switzerland); Fink, Rainer H., E-mail: rainer.fink@fau.de [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany)

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed.

  6. Electron microscopy of intermediate filaments: teaming up with atomic force and confocal laser scanning microscopy.

    Science.gov (United States)

    Kreplak, Laurent; Richter, Karsten; Aebi, Ueli; Herrmann, Harald

    2008-01-01

    Intermediate filaments (IFs) were originally discovered and defined by electron microscopy in myoblasts. In the following it was demonstrated and confirmed that they constitute, in addition to microtubules and microfilaments, a third independent, general filament system in the cytoplasm of most metazoan cells. In contrast to the other two systems, IFs are present in cells in two principally distinct cytoskeletal forms: (i) extended and free-running filament arrays in the cytoplasm that are integrated into the cytoskeleton by associated proteins of the plakin type; and (ii) a membrane- and chromatin-bound thin 'lamina' of a more or less regular network of interconnected filaments made from nuclear IF proteins, the lamins, which differ in several important structural aspects from cytoplasmic IF proteins. In man, more than 65 genes code for distinct IF proteins that are expressed during embryogenesis in various routes of differentiation in a tightly controlled manner. IF proteins exhibit rather limited sequence identity implying that the different types of IFs have distinct biochemical properties. Hence, to characterize the structural properties of the various IFs, in vitro assembly regimes have been developed in combination with different visualization methods such as transmission electron microscopy of fixed and negatively stained samples as well as methods that do not use staining such as scanning transmission electron microscopy (STEM) and cryoelectron microscopy as well as atomic force microscopy. Moreover, with the generation of both IF-type specific antibodies and chimeras of fluorescent proteins and IF proteins, it has become possible to investigate the subcellular organization of IFs by correlative fluorescence and electron microscopic methods. The combination of these powerful methods should help to further develop our understanding of nuclear architecture, in particular how nuclear subcompartments are organized and in which way lamins are involved.

  7. Characterization of strained semiconductor structures using transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oezdoel, Vasfi Burak

    2011-08-15

    Today's state-of-the-art semiconductor electronic devices utilize the charge transport within very small volumes of the active device regions. The structural, chemical and optical material properties in these small dimensions can critically affect the performance of these devices. The present thesis is focused on the nanometer scale characterization of the strain state in semiconductor structures using transmission electron microscopy (TEM). Although high-resolution TEM has shown to provide the required accuracy at the nanometer scale, optimization of imaging conditions is necessary for accurate strain measurements. An alternative HRTEM method based on strain mapping on complex-valued exit face wave functions is developed to reduce the artifacts arising from objective lens aberrations. However, a much larger field of view is crucial for mapping strain in the active regions of complex structures like latest generation metal-oxide-semiconductor field-effect transistors (MOSFETs). To overcome this, a complementary approach based on electron holography is proposed. The technique relies on the reconstruction of the phase shifts in the diffracted electron beams from a focal series of dark-field images using recently developed exit-face wave function reconstruction algorithm. Combining high spatial resolution, better than 1 nm, with a field of view of about 1 {mu}m in each dimension, simultaneous strain measurements on the array of MOSFETs are possible. Owing to the much lower electron doses used in holography experiments when compared to conventional quantitative methods, the proposed approach allows to map compositional distribution in electron beam sensitive materials such as InGaN heterostructures without alteration of the original morphology and chemical composition. Moreover, dark-field holography experiments can be performed on thicker specimens than the ones required for high-resolution TEM, which in turn reduces the thin foil relaxation. (orig.)

  8. Nano-structured thin films : a Lorentz transmission electron microscopy and electron holography study

    NARCIS (Netherlands)

    Hosson, J.Th.M. de; Raedt, H.A. De; Zhong, ZY; Saka, H; Kim, TH; Holm, EA; Han, YF; Xie, XS

    2005-01-01

    This paper aims at applying advanced transmission electron microscopy (TEM) to functional materials, such as ultra-soft magnetic films for high-frequency inductors, to reveal the structure-property relationship. The ultimate goal is to delineate a more quantitative way to obtain information of the

  9. Neural Network for Nanoscience Scanning Electron Microscope Image Recognition.

    Science.gov (United States)

    Modarres, Mohammad Hadi; Aversa, Rossella; Cozzini, Stefano; Ciancio, Regina; Leto, Angelo; Brandino, Giuseppe Piero

    2017-10-16

    In this paper we applied transfer learning techniques for image recognition, automatic categorization, and labeling of nanoscience images obtained by scanning electron microscope (SEM). Roughly 20,000 SEM images were manually classified into 10 categories to form a labeled training set, which can be used as a reference set for future applications of deep learning enhanced algorithms in the nanoscience domain. The categories chosen spanned the range of 0-Dimensional (0D) objects such as particles, 1D nanowires and fibres, 2D films and coated surfaces, and 3D patterned surfaces such as pillars. The training set was used to retrain on the SEM dataset and to compare many convolutional neural network models (Inception-v3, Inception-v4, ResNet). We obtained compatible results by performing a feature extraction of the different models on the same dataset. We performed additional analysis of the classifier on a second test set to further investigate the results both on particular cases and from a statistical point of view. Our algorithm was able to successfully classify around 90% of a test dataset consisting of SEM images, while reduced accuracy was found in the case of images at the boundary between two categories or containing elements of multiple categories. In these cases, the image classification did not identify a predominant category with a high score. We used the statistical outcomes from testing to deploy a semi-automatic workflow able to classify and label images generated by the SEM. Finally, a separate training was performed to determine the volume fraction of coherently aligned nanowires in SEM images. The results were compared with what was obtained using the Local Gradient Orientation method. This example demonstrates the versatility and the potential of transfer learning to address specific tasks of interest in nanoscience applications.

  10. Switching behaviour of individual Ag-TCNQ nanowires: an in situ transmission electron microscopy study

    Science.gov (United States)

    Ran, Ke; Rösner, Benedikt; Butz, Benjamin; Fink, Rainer H.; Spiecker, Erdmann

    2016-10-01

    The organic semiconductor silver-tetracyanoquinodimethane (Ag-TCNQ) exhibits electrical switching and memory characteristics. Employing a scanning tunnelling microscopy setup inside a transmission electron microscope, the switching behaviour of individual Ag-TCNQ nanowires (NWs) is investigated in detail. For a large number of NWs, the switching between a high (OFF) and a low (ON) resistance state was successfully stimulated by negative bias sweeps. Fitting the experimental I-V curves with a Schottky emission function makes the switching features prominent and thus enables a direct evaluation of the switching process. A memory cycle including writing, reading and erasing features is demonstrated at an individual NW. Moreover, electronic failure mechanisms due to Joule heating are discussed. These findings have a significant impact on our understanding of the switching behaviour of Ag-TCNQ.

  11. [Accuracy of attenuation coefficient obtained by 137Cs single-transmission scanning in PET: comparison with conventional germanium line source].

    Science.gov (United States)

    Matsumoto, Keiichi; Kitamura, Keishi; Mizuta, Tetsuro; Shimizu, Keiji; Murase, Kenya; Senda, Michio

    2006-02-20

    Transmission scanning can be successfully performed with a Cs-137 single-photon-emitting point source for three-dimensional PET imaging. This method was effective for postinjection transmission scanning because of differences in physical energy. However, scatter contamination in the transmission data lowers measured attenuation coefficients. The purpose of this study was to investigate the accuracy of the influence of object scattering by measuring the attenuation coefficients on the transmission images. We also compared the results with the conventional germanium line source method. Two different types of PET scanner, the SET-3000 G/X (Shimadzu Corp.) and ECAT EXACT HR(+) (Siemens/CTI) , were used. For the transmission scanning, the SET-3000 G/X and ECAT HR(+) were the Cs-137 point source and Ge-68/Ga-68 line source, respectively. With the SET-3000 G/X, we performed transmission measurement at two energy gate settings, the standard 600-800 keV as well as 500-800 keV. The energy gate setting of the ECAT HR(+) was 350-650 keV. The effects of scattering in a uniform phantom with different cross-sectional areas ranging from 201 cm(2) to 314 cm(2) to 628 cm(2) (apposition of the two 20 cm diameter phantoms) and 943 cm(2) (stacking of the three 20 cm diameter phantoms) were acquired without emission activity. First, we evaluated the attenuation coefficients of the two different types of transmission scanning using region of interest (ROI) analysis. In addition, we evaluated the attenuation coefficients with and without segmentation for Cs-137 transmission images using the same analysis. The segmentation method was a histogram-based soft-tissue segmentation process that can also be applied to reconstructed transmission images. In the Cs-137 experiment, the maximum underestimation was 3% without segmentation, which was reduced to less than 1% with segmentation at the center of the largest phantom. In the Ge-68/Ga-68 experiment, the difference in mean attenuation

  12. Accuracy of attenuation coefficient obtained by 137Cs single-transmission scanning in PET. Comparison with conventional germanium line source

    International Nuclear Information System (INIS)

    Matsumoto, Keiichi; Shimizu, Keiji; Senda, Michio; Kitamura, Keishi; Mizuta, Tetsuro; Murase, Kenya

    2006-01-01

    Transmission scanning can be successfully performed with a Cs-137 single-photon-emitting point source for three-dimensional PET imaging. This method was effective for postinjection transmission scanning because of differences in physical energy. However, scatter contamination in the transmission data lowers measured attenuation coefficients. The purpose of this study was to investigate the accuracy of the influence of object scattering by measuring the attenuation coefficients on the transmission images. We also compared the results with the conventional germanium line source method. Two different types of PET scanner, the SET-3000 G/X (Shimadzu Corp.) and ECAT EXACT HR + (Siemens/CTI), were used. For the transmission scanning, the SET-3000 G/X and ECAT HR + were the Cs-137 point source and Ge-68/Ga-68 line source, respectively. With the SET-3000 G/X, we performed transmission measurement at two energy gate settings, the standard 600-800 keV as well as 500-800 keV. The energy gate setting of the ECAT HR 2 + was 350-650 keV. The effects of scattering in a uniform phantom with different cross-sectional areas ranging from 201 cm 2 to 314 cm 2 to 628 cm 2 (apposition of the two 20 cm diameter phantoms) and 943 cm 2 (stacking of the three 20 cm diameter phantoms) were acquired without emission activity. First, we evaluated the attenuation coefficients of the two different types of transmission scanning using region of interest (ROI) analysis. In addition, we evaluated the attenuation coefficients with and without segmentation for Cs-137 transmission images using the same analysis. The segmentation method was a histogram-based soft-tissue segmentation process that can also be applied to reconstructed transmission images. In the Cs-137 experiment, the maximum underestimation was 3% without segmentation, which was reduced to less than 1% with segmentation at the center of the largest phantom. In the Ge-68/Ga-68 experiment, the difference in mean attenuation coefficients

  13. Electron Source Brightness and Illumination Semi-Angle Distribution Measurement in a Transmission Electron Microscope.

    Science.gov (United States)

    Börrnert, Felix; Renner, Julian; Kaiser, Ute

    2018-05-21

    The electron source brightness is an important parameter in an electron microscope. Reliable and easy brightness measurement routes are not easily found. A determination method for the illumination semi-angle distribution in transmission electron microscopy is even less well documented. Herein, we report a simple measurement route for both entities and demonstrate it on a state-of-the-art instrument. The reduced axial brightness of the FEI X-FEG with a monochromator was determined to be larger than 108 A/(m2 sr V).

  14. Transmission electron microscopy in molecular structural biology: A historical survey.

    Science.gov (United States)

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Iterative reconstruction of magnetic induction using Lorentz transmission electron tomography

    International Nuclear Information System (INIS)

    Phatak, C.; Gürsoy, D.

    2015-01-01

    Intense ongoing research on complex nanomagnetic structures requires a fundamental understanding of the 3D magnetization and the stray fields around the nano-objects. 3D visualization of such fields offers the best way to achieve this. Lorentz transmission electron microscopy provides a suitable combination of high resolution and ability to quantitatively visualize the magnetization vectors using phase retrieval methods. In this paper, we present a formalism to represent the magnetic phase shift of electrons as a Radon transform of the magnetic induction of the sample. Using this formalism, we then present the application of common tomographic methods particularly the iterative methods, to reconstruct the 3D components of the vector field. We present an analysis of the effect of missing wedge and the limited angular sampling as well as reconstruction of complex 3D magnetization in a nanowire using simulations. - Highlights: • We present a formalism to represent electron-optical magnetic phase shift as a Radon transform of the 3D magnetic induction of the nano-object. • We have analyzed four different tomographic reconstruction methods for vectorial data reconstruction. • Reconstruction methods were tested for varying experimental limitations such as limited tilt range and limited angular sampling. • The analysis showed that Gridrec and SIRT methods performed better with lower errors than other reconstruction methods

  16. Investigation of superthermal asymmetric electron distributions using electron cyclotron wave transmission in tokamaks

    International Nuclear Information System (INIS)

    Giruzzi, G.; Fidone, I.; Marcha, M.J.

    1991-01-01

    The asymmetric electron distribution generated during lower hybrid current drive has been computed using a 3-D Fokker-Planck code. The superthermal tail and the resulting current are generally a combination of two components streaming in opposite toroidal directions. An appropriate diagnostic method for experimental investigation of the two superthermal populations is wave transmission of two equivalent rays with equal and opposite values of the refractive index. These equivalent rays can be realized by launching the waves from symmetric positions with respect ot the equatorial plane at equal and opposite angles in the toroidal direction. Using an appropriate ray tracing code, the damping of the two rays is computed and it is shown that it results from electrons with opposite parallel velocities. The differential transmission is then a measure of the overall asymmetry of the electron momentum distribution. (author). 12 refs, 8 figs

  17. Secondary Electron Emission Materials for Transmission Dynodes in Novel Photomultipliers: A Review

    Directory of Open Access Journals (Sweden)

    Shu Xia Tao

    2016-12-01

    Full Text Available Secondary electron emission materials are reviewed with the aim of providing guidelines for the future development of novel transmission dynodes. Materials with reflection secondary electron yield higher than three and transmission secondary electron yield higher than one are tabulated for easy reference. Generations of transmission dynodes are listed in the order of the invention time with a special focus on the most recent atomic-layer-deposition synthesized transmission dynodes. Based on the knowledge gained from the survey of secondary election emission materials with high secondary electron yield, an outlook of possible improvements upon the state-of-the-art transmission dynodes is provided.

  18. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    Science.gov (United States)

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  19. Development of a scanning transmission x-ray microscope for the beamline P04 at PETRA III DESY

    International Nuclear Information System (INIS)

    Andrianov, Konstantin; Ewald, Johannes; Nisius, Thomas; Wilhein, Thomas; Lühl, Lars; Malzer, Wolfgang; Kanngießer, Birgit

    2016-01-01

    We present a scanning transmission x-ray microscope (STXM) built on top of our existing modular platform for high resolution imaging experiments. This platform consists of up to three separate vacuum chambers and custom designed piezo stages. These piezo stages are able to move precisely in x-, y- and z-direction, this makes it possible to adjust the components for different imaging modes. During recent experiments the endstation was operated mainly as a transmission x-ray microscope (TXM) [1, 2

  20. The effect, identification and correction of misalignment between PET transmission and emission scans on brain PET imaging

    International Nuclear Information System (INIS)

    Zhang Xiangsong; He Zuoxiang; Tang Anwu; Qiao Suixian

    2004-01-01

    Objectives: To study the effect of misalignment between PET transmission and emission scans of brain on brain PET imaging, and the Methods to identify and correct it. Methods: 18F-FDG PET imaging was performed on 8 volunteers. The emission images were reconstructed with attenuation correction after some translations and rotations in the x-axis and transverse plane were given, 1 mm and 1 degree each step, respectively. The 3-D volume fusion of PET emission and transmission scans was used to identify the suspected misalignment on 10 18F-FDG PET brain imaging. Three Methods were used to correct the misalignment. First, to quantitate the amount of the misalignment by 3-D volume registration of PET emission and transmission scans, the emission images were reconstructed with corrected translations and rotations in x-direction and transverse plane. Second, the emission images were reconstructed with mathematic calculation of brain attenuation. Third, 18F-FDG PET brain imaging was redone with careful application of laser alignment. Results: The translations greater than 3 mm in x-direction and the rotations greater than 8 degrees in transverse plane could lead to visible artifacts, which were presented with decreasing radioactivity uptake in the cortex of half cerebrum and in the frontal cortex at the side in the translating or rotating direction, respectively. The 3-D volume fusion of PET emission and transmission scans could identify and quantitate the amount of misalignment between PET emission and transmission scans of brain. The PET emission images reconstructed with corrected misalignment and mathematic calculation of brain attenuation were consistent with redone PET brain imaging. Conclusions: The misalignment between PET transmission and emission scans of brain can lead to visible artifacts. The 3-D volume fusion of PET emission and transmission scans can identify and quantitate the amount of the misalignment. The visible artifacts caused by the misalignment can be

  1. Transmission electron microscopy characterization of photocatalysts for water splitting

    DEFF Research Database (Denmark)

    Cavalca, Filippo; Laursen, Anders Bo; Dahl, Søren

    , it is necessary to understand the fundamentals of their reaction mechanisms, chemical behavior, structure and morphology before, during and after reaction using in situ investigations. Here, we focus on the in situ characterization of photocatalysts [1] in an environmental transmission electron microscope (ETEM......) [2]. Such fundamental insight can be used for further material optimization with respect to performance and stability [3]. In this work, we combine conventional TEM analysis of photocatalysts with environmental TEM (ETEM) and photoactivation using light. A novel type of TEM specimen holder...... that enables in situ illumination is developed to study light-induced phenomena in photoactive materials at the nanoscale under working conditions. Our experiments are aimed at exposing a specimen to light and detecting resulting microstructural and chemical changes using in situ TEM techniques...

  2. Transmission electron microscopy analysis of hydroxyapatite nanocrystals from cattle bones

    International Nuclear Information System (INIS)

    Patel, Sangeeta; Wei, Shanghai; Han, Jie; Gao, Wei

    2015-01-01

    In this present study, hydroxyapatite which was obtained from cattle bones has been heat treated at temperature 400 °C and 600 °C. The microstructure after the treatment has been studied in detail using Transmission electron microscopy (TEM) and X-ray diffraction techniques. The TEM results indicate that natural bone consists of collagen and hydroxyapatite nano-crystals which are needle shaped. The heat treatment influences the crystallinity and growth of these hydroxyapatite nano-crystals known as ‘crystal maturation’ or ‘crystal ageing’. - Highlights: • Hydroxyapatite is obtained from cattle bones. • Material has been characterised using XRD and TEM. • Crystal growth and orientation has been studied in detail.

  3. Transmission electron microscope sample holder with optical features

    Science.gov (United States)

    Milas, Mirko [Port Jefferson, NY; Zhu, Yimei [Stony Brook, NY; Rameau, Jonathan David [Coram, NY

    2012-03-27

    A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

  4. Transmission electron microscope cells for use with liquid samples

    Science.gov (United States)

    Khalid, Waqas; Alivisatos, Paul A.; Zettl, Alexander K.

    2016-08-09

    This disclosure provides systems, methods, and devices related to transmission electron microscopy cells for use with liquids. In one aspect a device includes a substrate, a first graphene layer, and a second graphene layer. The substrate has a first surface and a second surface. The first surface defines a first channel, a second channel, and an outlet channel. The first channel and the second channel are joined to the outlet channel. The outlet channel defines a viewport region forming a though hole in the substrate. The first graphene layer overlays the first surface of the substrate, including an interior area of the first channel, the second channel, and the outlet channel. The second graphene layer overlays the first surface of the substrate, including open regions defined by the first channel, the second channel, and the outlet channel.

  5. Transmission electron microscopy analysis of hydroxyapatite nanocrystals from cattle bones

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Sangeeta, E-mail: spt658@aucklanduni.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Wei, Shanghai [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Han, Jie [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL (United States); Gao, Wei [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand)

    2015-11-15

    In this present study, hydroxyapatite which was obtained from cattle bones has been heat treated at temperature 400 °C and 600 °C. The microstructure after the treatment has been studied in detail using Transmission electron microscopy (TEM) and X-ray diffraction techniques. The TEM results indicate that natural bone consists of collagen and hydroxyapatite nano-crystals which are needle shaped. The heat treatment influences the crystallinity and growth of these hydroxyapatite nano-crystals known as ‘crystal maturation’ or ‘crystal ageing’. - Highlights: • Hydroxyapatite is obtained from cattle bones. • Material has been characterised using XRD and TEM. • Crystal growth and orientation has been studied in detail.

  6. Fabrication and electric measurements of nanostructures inside transmission electron microscope

    International Nuclear Information System (INIS)

    Chen, Qing; Peng, Lian-Mao

    2011-01-01

    Using manipulation holders specially designed for transmission electron microscope (TEM), nanostructures can be characterized, measured, modified and even fabricated in-situ. In-situ TEM techniques not only enable real-time study of structure-property relationships of materials at atomic scale, but also provide the ability to control and manipulate materials and structures at nanoscale. This review highlights in-situ electric measurements and in-situ fabrication and structure modification using manipulation holder inside TEM. -- Research highlights: → We review in-situ works using manipulation holder in TEM. → In-situ electric measurements, fabrication and structure modification are focused. → We discuss important issues that should be considered for reliable results. → In-situ TEM is becoming a very powerful tool for many research fields.

  7. Study of electron transmission through thin metallic films by the electron moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Babikova, Yu.F.; Vakar, O.M.; Gruzin, O.M.; Petrikin, Yu.V.

    1983-01-01

    Results of the experimental study of the transmission of conversion electrons through aluminium, iron, tin and gold films are presented. Absorption of resonance electrons of the Moessbauer nuclide 57 Fe, formed during target irradiation with γ-quanta of 57 Co source in chromium matrix has been studied. It is asserted that absorption of conversion electrons in films of different elements is similar; at that, like in the case of β-particles, the law of absorption of resonance electrons, emitted from the flat layer, is exponential For conversion electrons of the Moessbauer nuclide 57 Fe the absorption coefficient is (0.025+-0.002) cm 2 /μg, which in the case of iron absorbing film corresponds to (20.0+-1.0)x10 4 cm -1

  8. Remote control scanning electron microscope with Web operation

    International Nuclear Information System (INIS)

    Yamada, A.; Hirahara, O.; Date, M.; Lozbin, V.; Tsuchida, T.; Sugano, N.

    2002-01-01

    Full text: Recently, SEM (Scanning Electron Microscope) and the other observation instruments are coming to use a LAN (Local Area Network) to save the image in the database. We developed a remote control system in which SEM image and Control interface is indicated on the WEB Browser. In this system, SEM can be controlled by an external (client) PC installed in a general WEB Browser (Internet Explorer). Accordingly, operation interface can be indicated on the WEB browser. A JSM-6700F is connected to a LAN, and so a client PC can control the microscope. The JSM-6700F has two lines to the LAN for image transfer and communication with the SEM control. In order to transfer the image, the image size squeezes from 1280 x 1024-pixels (SEM image size) to 640x480-pixels for quick transfer. The image signal (640 x 480-pixels) is connected to the video server only, and then the image transfers to the client PC via LAN. The SEM control communicates with client PC for external command. On the other hand, the SEM control interface and the image are indicated on WEB Browser (Internet explorer). The SEM control interface is composed of the SEM image area and the SEM control part. The SEM image indicates the 640x480-pixels live image. This live image is being used as a high resolution live image transfer in the image transfer technology which a network is used for at present. If it is LAN beyond 10 base, this indication of an image can be transferred fully. When it is connected in the small line of the capacity, the refresh speed of the image becomes slow because of image data doesn't finish transferring it. In such a case, image size can be changed smaller by the LAN conditions. When a high quality image is necessary, the image of 1280 x 1024-pixels is saved on a SEM (server) side by choosing the image save button. At the same time, the file kept in SEM (server) is transferred to the client PC automatically, so that we can display a high quality image on the client PC side. The

  9. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rhodes, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schemer-Kohrn, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guzman, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-01

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  10. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rhodes, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schemer-Kohrn, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guzman, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-30

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  11. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy. Rev. 1

    International Nuclear Information System (INIS)

    Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.; Schemer-Kohrn, Alan L.; Guzman, Anthony D.; Lavender, Curt A.

    2016-01-01

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  12. Use of multimedia messaging system (MMS) by junior doctors for scan image transmission in neurosurgery.

    Science.gov (United States)

    Ling, Ji Min; Lim, Kim Zhuan; Ng, Wai Hoe

    2012-02-01

    Multimedia Messaging Service (MMS) is used by neurosurgical residents to transmit scan images to the attending neurosurgeon in conjunction with telephone consultation. This service has been well received by the attending neurosurgeons, who felt that after viewing scan images on their phones, they felt increased confidence in clinical decision making and that it reduced the need for recall to the hospital. The use of MMS can be extended to junior doctors making referrals from regional hospitals with no neurosurgical cover. This study aims to validate the competency of non-neurosurgically trained junior doctors in selecting optimal images to transmit via MMS to the attending neurosurgeon on call. Ten junior doctors with no formal neurosurgical training and five neurosurgical residents were interviewed. They were shown the full complement of images together with relevant clinical history and assessment. They were then asked to make the radiological diagnosis and then select two images for MMS transmission to the attending neurosurgeon that they thought would best aid the neurosurgeon in clinical decision making. The attending neurosurgeon was asked to comment, on each image, whether his management plan would differ if he was shown the entire series of the images. All the images chosen are deemed appropriate, and the decision made based on the MMS images would be similar if the entire series of images were available to the neurosurgeon. However, 7 of 10 junior doctors were unable to read magnetic resonance images of lumbar spine. There was no significant difference in the images chosen by the neurosurgical residents and the junior doctors. It is feasible and safe for junior doctors to utilize MMS to transmit computed tomographic images to a neurosurgeon while making an urgent referral. The images selected are representative of the disease pathology and facilitate clinical decision making. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. The propagation of high power CW scanning electron beam in air

    International Nuclear Information System (INIS)

    Korenev, Sergey; Korenev, Ivan

    2002-01-01

    The question of propagation of high power electron beam in air presents the scientific and applied interests. The high power (80 kW) CW electron accelerator 'Rhodotron' with kinetic energy of electrons 5 and 10 MeV was used in the experiments. The experimental results for propagation of scanning electron beams in air are presented and discussed

  14. Development of wave length-dispersive soft x-ray emission spectrometers for transmission electron microscopes - an introduction of valence electron spectroscopy for transmission electron microscopy

    International Nuclear Information System (INIS)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu 1-x Zn x alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Mα-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of π- and σ-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. (author)

  15. Transmission electron microscopy a textbook for materials science

    CERN Document Server

    Williams, David B

    1996-01-01

    Electron microscopy has revolutionized our understanding the extraordinary intellectual demands required of the mi­ of materials by completing the processing-structure-prop­ croscopist in order to do the job properly: crystallography, erties links down to atomistic levels. It now is even possible diffraction, image contrast, inelastic scattering events, and to tailor the microstructure (and meso structure ) of materials spectroscopy. Remember, these used to be fields in them­ to achieve specific sets of properties; the extraordinary abili­ selves. Today, one has to understand the fundamentals ties of modem transmission electron microscopy-TEM­ of all of these areas before one can hope to tackle signifi­ instruments to provide almost all of the structural, phase, cant problems in materials science. TEM is a technique of and crystallographic data allow us to accomplish this feat. characterizing materials down to the atomic limits. It must Therefore, it is obvious that any curriculum in modem mate­ be use...

  16. Contribution of scanning Auger microscopy to electron beam damage study

    International Nuclear Information System (INIS)

    Fontaine, J.M.

    1983-04-01

    Electron bombardment can produce surface modifications of the analysed sample. The electron beam effects on solid surfaces which have been discussed in the published literature can be classified into the following four categories: (1) heating and its consequent effects, (2) charge accumulation in insulators and its consequent effects, (3) electron stimulated adsorption (ESA), and (4) electron stimulated desorption and/or decomposition (ESD). In order to understand the physico-chemical processes which take place under electron irradiation in an Al-O system, we have carried out experiments in which, effects, such as heating, charging and gas contamination, were absent. Our results point out the role of an enhanced surface diffusion of oxygen during electron bombardment of an Al (111) sample. The importance of this phenomenon and the contribution of near-elastic scattering of the primary electrons (5 keV) to the increase of the oxidation degree observed on Al (111) are discussed, compared to the generally studied effects

  17. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A. P., E-mail: aph@mcmaster.ca; Lee, V.; Wu, J.; Cooper, G. [Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1 (Canada); West, M. M.; Berejnov, V. [Faculty of Health Sciences Electron Microscopy, McMaster University, Hamilton, ON L8N 3Z5 (Canada); Soboleva, T.; Susac, D.; Stumper, J. [Automotive Fuel Cell Cooperation Corp., Burnaby BC V5J 5J8 (Canada)

    2016-01-28

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  18. Scanning transmission X-ray microscopy as a speciation tool for natural organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, J.; Plaschke, M.; Denecke, M.A. [Inst. fuer Nukleare Entsorgung, Forschungszentrum Karlsruhe, Karlsruhe (Germany)

    2004-07-01

    A molecular-scale understanding of the basic processes affecting stability and transport behavior of actinide cations, complexes or hydroxide ('eigencolloid') species is prerequisite to performance assessment of nuclear waste disposal in geological formations. Depending on their functional group chemistry and macromolecular structure, naturally occurring organic molecules (NOM) possess a high tendency towards actinide complexation reactions. However, the compositional and structural heterogeneity of NOM and mixed aggregates with inorganic phases makes speciation by spectromicroscopy techniques highly desirable. The applicability of Scanning Transmission X-ray Microscopy (STXM) as a speciation tool for the characterization of NOM is demonstrated for a multifunctional natural organic acid (chlorogenic acid), Eu(III)-loaded humic acid (HA) aggregates and Eu(III)-oxo/hydroxide/HA hetero-aggregates. It is shown that in situ probing of HA functional group chemistry down to a spatial resolution < 100 nm (i.e., less than femto-liter sampled volumes) is feasible, at the same time revealing morphological details on NOM aggregates and NOM/mineral associations. (orig.)

  19. An environmental sample chamber for reliable scanning transmission x-ray microscopy measurements under water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Stephen T.; Nigge, Pascal; Prakash, Shruti; Gilles, Mary K. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Laskin, Alexander; Wang, Bingbing [William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Tyliszczak, Tolek [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Leone, Stephen R. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry and Department of Physics, University of California, Berkeley, California 94720 (United States)

    2013-07-15

    We have designed, fabricated, and tested a compact gas-phase reactor for performing in situ soft x-ray scanning transmission x-ray microscopy (STXM) measurements. The reactor mounts directly to the existing sample holder used in the majority of STXM instruments around the world and installs with minimal instrument reconfiguration. The reactor accommodates many gas atmospheres, but was designed specifically to address the needs of measurements under water vapor. An on-board sensor measures the relative humidity and temperature inside the reactor, minimizing uncertainties associated with measuring these quantities outside the instrument. The reactor reduces x-ray absorption from the process gas by over 85% compared to analogous experiments with the entire STXM instrument filled with process gas. Reduced absorption by the process gas allows data collection at full instrumental resolution, minimizes radiation dose to the sample, and results in much more stable imaging conditions. The reactor is in use at the STXM instruments at beamlines 11.0.2 and 5.3.2.2 at the Advanced Light Source.

  20. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    International Nuclear Information System (INIS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; Cooper, G.; West, M. M.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined

  1. Transmission Electron Microscopy of Magnetite Plaquettes in Orgueil

    Science.gov (United States)

    Chan, Q. H. S.; Han, J.; Zolensky, M.

    2016-01-01

    Magnetite sometimes takes the form of a plaquette - barrel-shaped stack of magnetite disks - in carbonaceous chondrites (CC) that show evidence of aqueous alteration. The asymmetric nature of the plaquettes caused Pizzarello and Groy to propose magnetite plaquettes as a naturally asymmetric mineral that can indroduce symmetry-breaking in organic molecules. Our previous synchrotron X-ray computed microtomography (SXRCT) and electron backscatter diffraction (EBSD) analyses of the magnetite plaquettes in fifteen CCs indicate that magnetite plaquettes are composed of nearly parallel discs, and the crystallographic orientations of the discs change around a rotational axis normal to the discs surfaces. In order to further investigate the nanostructures of magnetite plaquettes, we made two focused ion beam (FIB) sections of nine magnetite plaquettes from a thin section of CI Orgueil for transmission electron microscope (TEM) analysis. The X-ray spectrum imaging shows that the magnetite discs are purely iron oxide Fe3O4 (42.9 at% Fe and 57.1 at% O), which suggest that the plaquettes are of aqueous origin as it is difficult to form pure magnetite as a nebular condensate. The selected area electron diffraction (SAED) patterns acquired across the plaquettes show that the magnetite discs are single crystals. SEM and EBSD analyses suggest that the planar surfaces of the magnetite discs belong to the {100} planes of the cubic inverse spinel structure, which are supported by our TEM observations. Kerridge et al. suggested that the epitaxial relationship between magnetite plaquette and carbonate determines the magnetite face. However, according to our TEM observation, the association of magnetite with porous networks of phyllosilicate indicates that the epitaxial relationship with carbonate is not essential to the formation of magnetite plaquettes. It was difficult to determine the preferred rotational orientation of the plaquettes due to the symmetry of the cubic structure

  2. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales.

    Science.gov (United States)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A L David; Belcher, Warwick J; Dastoor, Paul C

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  3. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Science.gov (United States)

    Burke, Kerry B.; Stapleton, Andrew J.; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A. L. David; Belcher, Warwick J.; Dastoor, Paul C.

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  4. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    International Nuclear Information System (INIS)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C; Kilcoyne, A L David

    2011-01-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N ' -(4-butylphenyl)-bis-N, N ' -phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  5. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Kilcoyne, A L David, E-mail: Paul.Dastoor@newcastle.edu.au [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N{sup '}-(4-butylphenyl)-bis-N, N{sup '}-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  6. Charge state mapping of mixed valent iron and manganese mineral particles using Scanning Transmission X-ray Microscopy (STXM)

    International Nuclear Information System (INIS)

    Pecher, K.; Nealson, K.; Kneedler, E.; Rothe, J.; Meigs, G.; Warwick, T.; Tonner, B.

    2000-01-01

    The interfaces between solid mineral particles and water play a crucial role in partitioning and chemical transformation of many inorganic as well as organic pollutants in environmental systems. Among environmentally significant minerals, mixed-valent oxides and hydroxides of iron (e.g. magnetite, green rusts) and manganese (hausmanite, birnessite) have been recognized as particularly strong sorbents for metal ions. In addition, minerals containing Fe(II) have recently been proven to be powerful reductants for a wide range of pollutants. Chemical properties of these minerals strongly depend on the distribution and availability of reactive sites and little is known quantitatively about the nature of these sites. We have investigated the bulk distribution of charge states of manganese (Mn (II, III, IV)) and iron (Fe(II, III)) in single particles of natural manganese nodules and synthetic green rusts using Scanning Transmission X-ray SpectroMicroscopy (STXM). Pixel resolved spectra (XANES) extracted from stacks of images taken at different wave lengths across the metal absorption edge were fitted to total electron yield (TEY) spectra of single valent reference compounds. Two dimensional maps of bulk charge state distributions clearly reveal domains of different oxidation states within single particles of Mn-nodules and green rust precipitates. Changes of oxidation states of iron were followed as a result of reductive transformation of an environmental contaminant (CCl 4 ) using green rust as the only reductant

  7. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    Science.gov (United States)

    Zhang, Daliang; Zhu, Yihan; Liu, Lingmei; Ying, Xiangrong; Hsiung, Chia-En; Sougrat, Rachid; Li, Kun; Han, Yu

    2018-02-01

    High-resolution imaging of electron beam–sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  8. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    KAUST Repository

    Zhang, Daliang

    2018-01-18

    High-resolution imaging of electron beam-sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  9. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode.

    Science.gov (United States)

    Bücker, K; Picher, M; Crégut, O; LaGrange, T; Reed, B W; Park, S T; Masiel, D J; Banhart, F

    2016-12-01

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Hygroscopic analysis of individual Beijing haze aerosol particles by environmental scanning electron microscopy

    Science.gov (United States)

    Bai, Zhangpeng; Ji, Yuan; Pi, Yiqun; Yang, Kaixiang; Wang, Li; Zhang, Yinqi; Zhai, Yadi; Yan, Zhengguang; Han, Xiaodong

    2018-01-01

    Investigating the hygroscopic behavior of haze aerosol particles is essential for understanding their physicochemical properties and their impacts on regional weather and visibility. An environmental scanning electron microscope equipped with a home-made transmission-scattering electron imaging setup and an energy dispersive spectrometer was used for in-situ observations of pure water-soluble (WS) salts and Beijing haze particles. This imaging setup showed obvious advantages for improving the resolution and acquiring internal information of mixed particles in hydrated environments. We measured the deliquescence relative humidity of pure NaCl, NH4NO3, and (NH4)2SO4 by deliquescence-crystallization processes with an accuracy of up to 0.3% RH. The mixed haze particles showed hygroscopic activation like water uptake and morphological changes when they included WS components such as nitrates, sulfates, halides, ammoniums, and alkali metal salts. In addition, the hygroscopic behavior provides complementary information for analyzing possible phases in mixed haze particles.

  11. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    Science.gov (United States)

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  12. Nano-Tomography of Porous Geological Materials Using Focused Ion Beam-Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-10-01

    Full Text Available Tomographic analysis using focused ion beam-scanning electron microscopy (FIB-SEM provides three-dimensional information about solid materials with a resolution of a few nanometres and thus bridges the gap between X-ray and transmission electron microscopic tomography techniques. This contribution serves as an introduction and overview of FIB-SEM tomography applied to porous materials. Using two different porous Earth materials, a diatomite specimen, and an experimentally produced amorphous silica layer on olivine, we discuss the experimental setup of FIB-SEM tomography. We then focus on image processing procedures, including image alignment, correction, and segmentation to finally result in a three-dimensional, quantified pore network representation of the two example materials. To each image processing step we consider potential issues, such as imaging the back of pore walls, and the generation of image artefacts through the application of processing algorithms. We conclude that there is no single image processing recipe; processing steps need to be decided on a case-by-case study.

  13. Collaborative Research and Development. Delivery Order 0006: Transmission Electron Microscope Image Modeling and Semiconductor Heterointerface Characterization

    National Research Council Canada - National Science Library

    Mahalingam, Krishnamurthy

    2006-01-01

    .... Transmission electron microscope (TEM) characterization studies were performed on a variety of novel III-V semiconductor heterostructures being developed for advanced optoelectronic device applications...

  14. Sample preparation technique for transmission electron microscopy anodized Al-Li-SiC metal matrix composite

    International Nuclear Information System (INIS)

    Shahid, M.; Thomson, G.E.

    1997-01-01

    Along with improved mechanical properties, metal matrix composites (MMC) have a disadvantage of enhanced corrosion susceptibility in aggressive environments. Recent studies on corrosion behaviour of an Al-alloy 8090/SiC MMC, revealed considerably high corrosion rates of the MMC in near neutral solutions containing chloride ions. Anodizing is one of the potential surface treatment for the MMC to provide protective coating against corrosion. The surface and cross section of the anodized MMC can easily be observed using scanning electron microscope. The anodizing behaviour of the MMC can be understood further if the anodized cross section in examined under transmission electron microscope (TEM). However, it is relatively difficult to prepare small (3 mm diameter) electron transparent specimens of the MMC supporting an anodic film. In the present study a technique has been developed for preparing thin electron transparent specimens of the anodized MMC. This technique employed conventional ion beam thinning process but the preparation of small discs was a problem. A MMMC consisting of Al-alloy 8090 with 20 % (by weight) SiC particulate with an average size of 5 Mu m, was anodized and observed in TEM after preparing the samples using the above mentioned techniques. (author)

  15. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    Science.gov (United States)

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  16. AIMgSil Alloy Characterization Using Transmission Electron Microscope (TEM)

    International Nuclear Information System (INIS)

    Masrukan; Elman, P.

    1996-01-01

    The aging alloy of AIMgSil containing Mg 2 Si of 1.29 % has been done with the following steps: e.q (a) part of the specimen was heated at 400 o C during 3 hours, and (b) the other part was done with solution treatment at 550 o C followed by quenching. After quenching a part of the specimen was aged at room temperature and other specimen was aged at 160 o C during 16 hours. After the specimen had been heated, then it was shaped into thin foil to be examined by Transmission Electron Microscope. The result showed that the heating at temperature of 400 o C during 3 hours created a second phase (i.e.Mg 2 Si) was like stick shape with the hexagonal structure at [0111] orientation and matrix [001], and the hardness was 31 HB. The aging of specimen at room temperature gave result a GP zone which was like the needles shape in the dislocation area of the face center cubic structure at [111] orientation and [111] matrix. The hardness obtained was 64 HB. In the other hand the aging process at temperature of 160 o C within 16 hours have resulted the precipitate which was greater than that of the former needle shaped as the face center cubic structure without dislocation at matrix with [111] orientation and [114] matrix. The hardness at this condition was 94 HB

  17. Visualizing aquatic bacteria by light and transmission electron microscopy.

    Science.gov (United States)

    Silva, Thiago P; Noyma, Natália P; Duque, Thabata L A; Gamalier, Juliana P; Vidal, Luciana O; Lobão, Lúcia M; Chiarini-Garcia, Hélio; Roland, Fábio; Melo, Rossana C N

    2014-01-01

    The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.

  18. Observations of silicon carbide by high resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Smith, D.J.; Jepps, N.W.; Page, T.F.

    1978-01-01

    High resolution transmission electron microscopy techniques, principally involving direct lattice imaging, have been used as part of a study of the crystallography and phase transformation mechanics of silicon carbide polytypes. In particular, the 3C (cubic) and 6H (hexagonal) polytypes have been examined together with partially transformed structural mixtures. Although direct observation of two-dimensional atomic structures was not possible at an operating voltage of 100 kV, considerable microstructural information has been obtained by careful choice of the experimental conditions. In particular, tilted beam observations of the 0.25 nm lattice fringes have been made in the 3C polytype for two different brace 111 brace plane arrays in order to study the dimensions and coherency of finely-twinned regions together with brace 0006 brace and brace 1 0 bar1 2 brace lattice images in the 6H polytype which allow the detailed stacking operations to be resolved. Lower resolution lattice images formed with axial illumination have also been used to study the nature of the 3C → 6H transformation and results are presented showing that the transformation interface may originate with fine twinning of the 3C structure followed by growth of the resultant 6H regions. Observations have been made of the detailed stepped structure of this interface together with the stacking fault distribution in the resultant 6H material. (author)

  19. Transmission electron microscopy of weakly deformed alkali halide crystals

    International Nuclear Information System (INIS)

    Strunk, H.

    1976-01-01

    Transmission electron microscopy (TEM) is applied to the investigation of the dislocation arrangement of [001]-orientated alkali halide crystals (orientation four quadruple slip) deformed into stage I of the work-hardenig curve. The investigations pertain mainly to NaCl - (0.1-1) mole-% NaBr crystals, because these exhibit a relatively long stage I. The time available for observing the specimens is limited by the ionization radiation damage occuring in the microscope. An optimum reduction of the damage rate is achieved by a combination of several experimental techniques that are briefly outlined. The crystals deform essentially in single glide. According to the observations, stage I deformation of pure and weakly alloyed NaCl crystals is characterized by the glide of screw dislocations, which bow out between jogs and drag dislocation dipoles behind them. In crystals with >= 0.5 mole-% NaBr this process is not observed to occur. This is attributed to the increased importance of solid solution hardening. (orig.) [de

  20. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles.

    Science.gov (United States)

    Nilsson, Hans J; Tyliszczak, Tolek; Wilson, Richard E; Werme, Lars; Shuh, David K

    2005-09-01

    A descriptive account is given of our most recent research on the actinide dioxides with the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 soft X-ray scanning transmission X-ray microscope (STXM) at the Lawrence Berkeley National Laboratory (LBNL). The ALS-MES STXM permits near-edge X-ray absorption fine structure (NEXAFS) and imaging with 30-nm spatial resolution. The first STXM spectromicroscopy NEXAFS spectra at the actinide 4d5/2 edges of the imaged transuranic particles, NpO2 and PuO2, have been obtained. Radiation damage induced by the STXM was observed in the investigation of a mixed oxidation state particle (Np(V,VI)) and was minimized during collection of the actual spectra at the 4d5/2 edge of the Np(V,VI) solid. A plutonium elemental map was obtained from an irregular PuO2 particle with the dimensions of 650 x 650 nm. The Pu 4d5/2 NEXAFS spectra were collected at several different locations from the PuO2 particle and were identical. A representative oxygen K-edge spectrum from UO2 was collected and resembles the oxygen K-edge from the bulk material. The unique and current performance of the ALS-MES STXM at extremely low energies (ca. 100 eV) that may permit the successful measurement of the actinide 5d edge is documented. Finally, the potential of STXM as a tool for actinide investigations is briefly discussed.

  1. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bücker, K.; Picher, M.; Crégut, O. [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France); LaGrange, T. [Interdisciplinary Centre for Electron Microscopy, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Reed, B.W.; Park, S.T.; Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 5653 Stoneridge Drive 117, Pleasanton, CA 94588 (United States); Banhart, F., E-mail: florian.banhart@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France)

    2016-12-15

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. - Highlights: • A detailed characterization of electron

  2. Local thermal conductivity of polycrystalline AlN ceramics measured by scanning thermal microscopy and complementary scanning electron microscopy techniques

    International Nuclear Information System (INIS)

    Zhang Yue-Fei; Wang Li; Wei Bin; Ji Yuan; Han Xiao-Dong; Zhang Ze; Heiderhoff, R.; Geinzer, A. K.; Balk, L. J.

    2012-01-01

    The local thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based techniques at room temperature. The quantitative thermal conductivity for the AlN sample is gained by using a SThM with a spatial resolution of sub-micrometer scale through using the 3ω method. A thermal conductivity of 308 W/m·K within grains corresponding to that of high-purity single crystal AlN is obtained. The slight differences in thermal conduction between the adjacent grains are found to result from crystallographic misorientations, as demonstrated in the electron backscattered diffraction. A much lower thermal conductivity at the grain boundary is due to impurities and defects enriched in these sites, as indicated by energy dispersive X-ray spectroscopy. (condensed matter: structural, mechanical, and thermal properties)

  3. Direct observations of the MOF (UiO-66) structure by transmission electron microscopy

    KAUST Repository

    Zhu, Liangkui; Zhang, Daliang; Xue, Ming; Li, Huan; Qiu, Shilun

    2013-01-01

    As a demonstration of ab initio structure characterizations of nano metal organic framework (MOF) crystals by high resolution transmission electron microscopy (HRTEM) and electron diffraction tomography methods, a Zr-MOF (UiO-66) structure

  4. Local texture measurements with the scanning electron microscope

    International Nuclear Information System (INIS)

    Gottstein, G.; Engler, O.

    1993-01-01

    Techniques for convenient measurement of the crystallographic orientation of small volumes in bulk samples by electron diffraction in the SEM are discussed. They make use of Selected Area Electron Channelling Patterns (SAECP) and Electron Back Scattering Patterns (EBSP). The principle of pattern formation as well as measuring and evaluation procedure are introduced. The methods offer a viable procedure for obtaining information on the spatial arrangement of orientations, i.e. on orientation topography. Thus, they provide a new level of information on crystallographic texture. An application of the techniques for local texture measurements is demonstrated by an example, namely for investigation of considering the recrystallization behaviour of binary Al-1.3% Mn with large precipitates. Finally, further developments of the EBSP technique are addressed. (orig.)

  5. Tunable electronic transmission gaps in a graphene superlattice

    International Nuclear Information System (INIS)

    Lu Weitao; Wang Shunjin; Li Wen; Wang Yonglong; Jiang Hua

    2012-01-01

    The transmission in graphene superlattices with adjustable barrier height is investigated using transfer-matrix method. It is found that one could control the angular range of transmission by changing the ratio of incidence energy and barrier height. The transmission as a function of incidence energy has more than one gaps, due to the appearance of evanescent waves in different barriers. Accordingly, more than one conductivity minimums are induced. The transmission gaps could be controlled by adjusting the incidence angle, the barrier height, and the barrier number, which gives the possibility to construct an energy-dependent wavevector filter.

  6. New Environmental Scanning Electron Microscopy and Observation of Live Nature

    Czech Academy of Sciences Publication Activity Database

    Neděla, Vilém; Tihlaříková, Eva; Shiojiri, M.

    2013-01-01

    Roč. 6, 1-2 (2013), s. 1-5 ISSN 2228-9038 R&D Projects: GA ČR GAP102/10/1410; GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : ESEM * detection systems * methodology * live samples Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  7. Ultrastructure of Proechinophthirus zumpti (Anoplura, Echinophthiriidae by scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Dolores del Carmen Castro

    2002-09-01

    Full Text Available The ultrastructure of Proechinophthirus zumpti Werneck, 1955, mainly the external chorionic features of the egg, is described through electronic microscopy techniques. This species was first cited in Argentina, infesting Arctocephalus australis (Zimmermann, 1873. The morphological adaptations of adults and nymphs are described in both species of Proechinophthirus parasitic on Otariidae: P. fluctus (Ferris, 1916 and P. zumpti.

  8. Examination of Graphene in a Scanning Low Energy Electron Microscope

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Mikmeková, Eliška; Frank, Luděk

    2015-01-01

    Roč. 21, S3 (2015), s. 29-30 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : graphene * LEEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  9. Design of Pixellated CMOS Photon Detector for Secondary Electron Detection in the Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Joon Huang Chuah

    2011-01-01

    Full Text Available This paper presents a novel method of detecting secondary electrons generated in the scanning electron microscope (SEM. The method suggests that the photomultiplier tube (PMT, traditionally used in the Everhart-Thornley (ET detector, is to be replaced with a configurable multipixel solid-state photon detector offering the advantages of smaller dimension, lower supply voltage and power requirements, and potentially cheaper product cost. The design of the proposed detector has been implemented using a standard 0.35 μm CMOS technology with optical enhancement. This microchip comprises main circuit constituents of an array of photodiodes connecting to respective noise-optimised transimpedance amplifiers (TIAs, a selector-combiner (SC circuit, and a postamplifier (PA. The design possesses the capability of detecting photons with low input optical power in the range of 1 nW with 100 μm × 100 μm sized photodiodes and achieves a total amplification of 180 dBΩ at the output.

  10. Dynamic Low-Vacuum Scanning Electron Microscope Freeze Drying Observation for Fresh Water Algae

    International Nuclear Information System (INIS)

    Mohsen, H.T.; Ghaly, W.A.; Zahran, N.F.; Helal, A.I.

    2010-01-01

    A new perpetration method for serving in dynamic examinations of the fresh water algae is developed in connection with the Low-Vacuum Scanning Electron Microscope (LV-SEM) freeze drying technique. Specimens are collected from fresh water of Ismailia channel then transferred directly to freeze by liquid nitrogen and dried in the chamber of the scanning electron microscope in the low vacuum mode. Scanning electron micrographs revealed that the drying method presented the microstructure of algae. Dehydration in a graded ethanol series is not necessary in the new method. Dried algae specimen is observed in SEM high vacuum mode after conductive coating at higher resolution. Low-vacuum SEM freeze drying technique is a simple, time-saving and reproducible method for scanning electron microscopy that is applicable to various aquatic microorganisms covered with soft tissues.

  11. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by Scanning Electron Microscopy

    NARCIS (Netherlands)

    Hartsuiker, Liesbeth; van Es, Peter; Petersen, Wilhelmina; van Leeuwen, Ton; Terstappen, Leonardus Wendelinus Mathias Marie; Otto, Cornelis

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  12. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by scanning electron microscopy

    NARCIS (Netherlands)

    Hartsuiker, L.; van Es, P.; Petersen, W.; van Leeuwen, T. G.; Terstappen, L. W. M. M.; Otto, C.

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  13. Formation of hot spots in a superconductor observed by low-temperature scanning electron microscopy

    International Nuclear Information System (INIS)

    Eichele, R.; Seifert, H.; Huebener, R.P.

    1981-01-01

    Low-temperature scanning electron microscopy can be used for the direct observation of hot spots in a superconductor. Experiments performed at 2.10 K with tim films demonstrating the method are reported

  14. 3-d chemical imaging using angle-scan nanotomography in a soft X-ray scanning transmission X-ray microscope

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A.P.; Johansson, G.A. [McMaster, BIMR, Hamilton (Canada); Mitchell, G.E. [Dow Chemical, Analytical Science, Midland, MI (United States); Keefe, M.H. [Dow Chemical, Dow Latex, Midland, MI (United States); Tyliszcak, T. [LBNL, Advanced Light Source, Berkeley, CA (United States)

    2008-08-15

    Three-dimensional chemical mapping using angle scan nanotomography in a soft X-ray scanning transmission X-ray microscope (STXM) has been used to investigate the spatial distributions of a low density polyacrylate polyelectrolyte ionomer inside submicron sized polystyrene microspheres. Acquisition of tomograms at multiple photon energies provides true, quantifiable 3-d chemical sensitivity. Both pre-O 1s and C 1s results are shown. The study reveals aspects of the 3-d distribution of the polyelectrolyte that were inferred indirectly or had not been known prior to this study. The potential and challenges for extension of the technique to studies of other polymeric and to biological systems is discussed. (orig.)

  15. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    Science.gov (United States)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  16. Evaluation of the bleached human enamel by Scanning Electron Microscopy

    DEFF Research Database (Denmark)

    Miranda, Carolina Baptista; Pagani, Clovis; Benetti, Ana Raquel

    2005-01-01

    Since bleaching has become a popular procedure, the effect of peroxides on dental hard tissues is of great interest in research. Purpose: The aim of this in vitro study was to perform a qualitative analysis of the human enamel after the application of in-office bleaching agents, using Scanning......: 2h); G3- four 2-hour exposures to 35% carbamide peroxide (total exposure: 8h); G4- two applications of 35% hydrogen peroxide, which was light-activated with halogen lamp at 700mW/cm² during 7min and remained in contact with enamel for 20min (total exposure: 40min). All bleaching treatments adopted...... analysis performing gold sputter coating under vacuum and were examined using 15kV at 500x and 2000x magnification. Results: Morphological alterations on the enamel surface were similarly detected after bleaching with either 35% carbamide peroxide or 35% hydrogen peroxide. Surface porosities were...

  17. Interstitial cells of Cajal and Auerbach's plexus. A scanning electron microscopical study of guinea-pig small intestine

    DEFF Research Database (Denmark)

    Jessen, Harry; Thuneberg, Lars

    1991-01-01

    Anatomy, interstitial cells of Cajal, myenteric plexus, small intestine, guinea-pig, scanning electron microscopy......Anatomy, interstitial cells of Cajal, myenteric plexus, small intestine, guinea-pig, scanning electron microscopy...

  18. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    Science.gov (United States)

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-03-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.

  19. Effects of lattice fluctuations on electronic transmission in metal/conjugated-oligomer/metal structures

    International Nuclear Information System (INIS)

    Yu, Z.G.; Smith, D.L.; Saxena, A.; Bishop, A.R.

    1997-01-01

    The electronic transmission across metal/conjugated-oligomer/metal structures in the presence of lattice fluctuations is studied for short oligomer chains. The lattice fluctuations are approximated by static white noise disorder. Resonant transmission occurs when the energy of an incoming electron coincides with a discrete electronic level of the oligomer. The corresponding transmission peak diminishes in intensity with increasing disorder strength. Because of disorder there is an enhancement of the electronic transmission for energies that lie within the electronic gap of the oligomer. If fluctuations are sufficiently strong, a transmission peak within the gap is found at the midgap energy E=0 for degenerate conjugated oligomers (e.g., trans-polyacetylene) and E≠0 for AB-type degenerate oligomers. These results can be interpreted in terms of soliton-antisoliton states created by lattice fluctuations. copyright 1997 The American Physical Society

  20. Construction of a four tip scanning tunneling microscope/scanning electron microscope combination and conductivity measurements of silicide nanowires

    International Nuclear Information System (INIS)

    Zubkov, Evgeniy

    2013-01-01

    In this work the combination of a four-tip scanning tunneling microscope with a scanning electron microscope is presented. By means of this apparatus it is possible to perform the conductivity measurements on the in-situ prepared nanostructures in ultra-high vacuum. With the aid of a scanning electron microscope (SEM), it becomes possible to position the tunneling tips of the four-tip scanning tunneling microscope (STM), so that an arrangement for a four-point probe measurement on nanostructures can be obtained. The STM head was built according to the novel coaxial Beetle concept. This concept allows on the one hand, a very compact arrangement of the components of the STM and on the other hand, the new-built STM head has a good mechanical stability, in order to achieve atomic resolution with all four STM units. The atomic resolution of the STM units was confirmed by scanning a Si(111)-7 x 7 surface. The thermal drift during the STM operation, as well as the resonant frequencies of the mechanical structure of the STM head, were determined. The scanning electron microscope allows the precise and safe navigation of the tunneling tips on the sample surface. Multi tip spectroscopy with up to four STM units can be performed synchronously. To demonstrate the capabilities of the new-built apparatus the conductivity measurements were carried out on metallic yttrium silicide nanowires. The nanowires were prepared by the in-situ deposition of yttrium on a heated Si(110) sample surface. Current-voltage curves were recorded on the nanowires and on the wetting layer in-between. The curves indicate an existence of the Schottky barrier between the yttrium silicide nanowires and the silicon bulk. By means of the two-tip measurements with a gate, the insulating property of the Schottky barrier has been confirmed. Using this Schottky barrier, it is possible to limit the current to the nanowire and to prevent it from flowing through the silicon bulk. A four-tip resistance measurement

  1. Modeling a Miniaturized Scanning Electron Microscope Focusing Column - Lessons Learned in Electron Optics Simulation

    Science.gov (United States)

    Loyd, Jody; Gregory, Don; Gaskin, Jessica

    2016-01-01

    This presentation discusses work done to assess the design of a focusing column in a miniaturized Scanning Electron Microscope (SEM) developed at the NASA Marshall Space Flight Center (MSFC) for use in-situ on the Moon-in particular for mineralogical analysis. The MSFC beam column design uses purely electrostatic fields for focusing, because of the severe constraints on mass and electrical power consumption imposed by the goals of lunar exploration and of spaceflight in general. The resolution of an SEM ultimately depends on the size of the focused spot of the scanning beam probe, for which the stated goal here is a diameter of 10 nanometers. Optical aberrations are the main challenge to this performance goal, because they blur the ideal geometrical optical image of the electron source, effectively widening the ideal spot size of the beam probe. In the present work the optical aberrations of the mini SEM focusing column were assessed using direct tracing of non-paraxial rays, as opposed to mathematical estimates of aberrations based on paraxial ray-traces. The geometrical ray-tracing employed here is completely analogous to ray-tracing as conventionally understood in the realm of photon optics, with the major difference being that in electron optics the lens is simply a smoothly varying electric field in vacuum, formed by precisely machined electrodes. Ray-tracing in this context, therefore, relies upon a model of the electrostatic field inside the focusing column to provide the mathematical description of the "lens" being traced. This work relied fundamentally on the boundary element method (BEM) for this electric field model. In carrying out this research the authors discovered that higher accuracy in the field model was essential if aberrations were to be reliably assessed using direct ray-tracing. This led to some work in testing alternative techniques for modeling the electrostatic field. Ultimately, the necessary accuracy was attained using a BEM

  2. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.

    Science.gov (United States)

    Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng

    2012-06-18

    By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate transmission is less than 2 dB for all 16 channels.

  3. Subcellular localisation of radionuclides by transmission electronic microscopy in aquatic and terrestrial organisms

    Energy Technology Data Exchange (ETDEWEB)

    Floriani, M.; Grasset, G.; Simon, O.; Morlon, H.; Laroche, L. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)

    2004-07-01

    The global framework of this study is to go further in the understanding of the involved mechanisms of uranium and selenium internalisation at the subcellular level and of their toxicity towards several aquatic and terrestrial organisms. In this context, the applications and performances of a Scanning Transmission Electron Microscope (TEM/STEM) equipped with CCD camera and Energy-Dispersive- X-Ray (EDAX) analysis are reported. The principal merit of this equipment is the clear expression of element distribution with nanometer resolution. The sample for TEM analysis were prepared in ultrathin sections of 70-140 nm (thickness) and those for EDAX in sections of 200-500 nm. This method offers the possibility of a direct correlation between histological image and distribution map of trace elements. For each sample, following TEM analysis, EDAX spectra or EDAX mapping were also recorded to confirm the identity of the electron dense material in the scanned sections. Demonstration of the usefulness of this method to understand the bioaccumulation mechanisms and to study the effect of the pollutant uptake at the subcellular level was performed for target organs of a metal (U) and a metalloid (Se) in various biological models: a higher rooted plant (Phaseolus vulgaris)) and a freshwater invertebrate (Orconectes Limosus) and a unicellular green alga (Chlamydomonas reinhardtii)). TEM-EDAX analysis revealed the presence of U-deposits in gills and digestive gland in crayfish, and in vacuoles or in the cytoplasm of different rooted cells bean. In the alga, the accumulation of Se was found in electron-dense granules within cytoplasm associated with ultrastructural changes and starch accumulation. (author)

  4. Subcellular localisation of radionuclides by transmission electronic microscopy in aquatic and terrestrial organisms

    International Nuclear Information System (INIS)

    Floriani, M.; Grasset, G.; Simon, O.; Morlon, H.; Laroche, L.

    2004-01-01

    The global framework of this study is to go further in the understanding of the involved mechanisms of uranium and selenium internalisation at the subcellular level and of their toxicity towards several aquatic and terrestrial organisms. In this context, the applications and performances of a Scanning Transmission Electron Microscope (TEM/STEM) equipped with CCD camera and Energy-Dispersive- X-Ray (EDAX) analysis are reported. The principal merit of this equipment is the clear expression of element distribution with nanometer resolution. The sample for TEM analysis were prepared in ultrathin sections of 70-140 nm (thickness) and those for EDAX in sections of 200-500 nm. This method offers the possibility of a direct correlation between histological image and distribution map of trace elements. For each sample, following TEM analysis, EDAX spectra or EDAX mapping were also recorded to confirm the identity of the electron dense material in the scanned sections. Demonstration of the usefulness of this method to understand the bioaccumulation mechanisms and to study the effect of the pollutant uptake at the subcellular level was performed for target organs of a metal (U) and a metalloid (Se) in various biological models: a higher rooted plant (Phaseolus vulgaris)) and a freshwater invertebrate (Orconectes Limosus) and a unicellular green alga (Chlamydomonas reinhardtii)). TEM-EDAX analysis revealed the presence of U-deposits in gills and digestive gland in crayfish, and in vacuoles or in the cytoplasm of different rooted cells bean. In the alga, the accumulation of Se was found in electron-dense granules within cytoplasm associated with ultrastructural changes and starch accumulation. (author)

  5. Probing Nanoscale Electronic and Magnetic Interaction with Scanning Tunneling Spectroscopy

    DEFF Research Database (Denmark)

    Bork, Jakob

    tunneling microscope (STM). Especially at low temperatures the Kondo resonance is used to probe magnetic interaction with ferromagnetic islands and between two atoms. The latter showing a crossover between Kondo screened atoms and antiferromagnetically coupled atoms close to the quantum critical point....... This is related to research in correlated electron materials such as studies of phase transitions in heavy fermion compounds and magnetic interaction in spintronic research. The capping of cobalt islands on Cu(111) with silver is investigated with STM and photoemission spectroscopy. It is shown that at low...

  6. Revealing the synergetic effects in Ni nanoparticle-carbon nanotube hybrids by scanning transmission X-ray microscopy and their application in the hydrolysis of ammonia borane.

    Science.gov (United States)

    Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong

    2015-06-07

    The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.

  7. Boundary scan test of Belle II pixel detector electronics

    Energy Technology Data Exchange (ETDEWEB)

    Leitl, Philipp [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany)

    2015-07-01

    For the upgrade of the Vertex Detector at the Belle II experiment, DEPFET sensors will be used. These sensors need Application-Specific Integrated Circuits (ASICs) for control, readout and data processing. Because of high demands for a low material budget in the sensitive area, there is only little space left for these ASICs. Using state-of-the-art technologies like Ball Grid Array (BGA) chips, which are flip-chip mounted, the requirement of 14 ASICs on each of the 40 half ladders can be fulfilled. However, this highly integrated on-sensor ASIC solution results in a lack of physical access to the electrical connections, which is a problem for traditional testing methods. To overcome these limitations, the JTAG standard IEEE 1149.1 is used to check if the circuit is in working condition. This method provides electrical access to the boundary scan cells implemented in the ASICs. Therefore it is possible to perform connectivity tests and verify if the production of the circuit was successful.

  8. Low-energy electron transmission through high aspect ratio Al O nanocapillaries

    DEFF Research Database (Denmark)

    Milosavljević, A.R.; Jureta, J.; Víkor, G.

    2009-01-01

    Electron transmission through insulating AlO nanocapillaries of different diameters (40 and 270 nm) and 15 μm length has been investigated for low-energy electrons (2-120 V). The total intensity of transmitted current weakly depends on the incident electron energy and tilt angle defined with resp......Electron transmission through insulating AlO nanocapillaries of different diameters (40 and 270 nm) and 15 μm length has been investigated for low-energy electrons (2-120 V). The total intensity of transmitted current weakly depends on the incident electron energy and tilt angle defined...

  9. Recent applications of scanning electron microscopy; Neueste Anwendungen der Rasterelektronenmikroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Sten; Moverare, Johan; Peng, Ru [Linkoeping Univ. (Sweden). Dept. of Management and Engineering

    2013-07-01

    A few examples were shown of how to use SEM to study phenomena that are not normally visible and possible to identify by introducing a known phenomenon called Electron Channeling. The channeling is best utilized in a FEG SEM not because of the in lens detection system but due to the fact that the highly coherent high electron density probe is creating a high contrast image with a resolution that is high enough to image crystal defects on a dislocation level. The fact that diffraction phenomena are involved in channeling is also of great importance for the contrast formation. The technique allows the user to choose to either just take a picture or decide if the image should be based on careful determination of the Bragg condition. The biggest advantage with channeling in addition the good contrast produced is the possibility to literally combine it with other techniques like EBSD. In fact, it is also possible to use thin foils to combine ECCI, EBSD, EDS and STEM in a modern FEG SEM. The development of a eucentric specimen stage of the same class as a TEM stage would allow even more advanced microscopy in SEM. (orig.)

  10. Design for an aberration corrected scanning electron microscope using miniature electron mirrors.

    Science.gov (United States)

    Dohi, Hideto; Kruit, Pieter

    2018-06-01

    Resolution of scanning electron microscopes (SEMs) is determined by aberrations of the objective lens. It is well known that both spherical and chromatic aberrations can be compensated by placing a 90-degree bending magnet and an electron mirror in the beam path before the objective lens. Nevertheless, this approach has not led to wide use of these aberration correctors, partly because aberrations of the bending magnet can be a serious problem. A mirror corrector with two mirrors placed perpendicularly to the optic axis of an SEM and facing each other is proposed. As a result, only small-angle magnetic deflection is necessary to guide the electron beam around the top mirror to the bottom mirror and around the bottom mirror to the objective lens. The deflection angle, in the order of 50 mrad, is sufficiently small to avoid deflection aberrations. In addition, lateral dispersion at the sample plane can be avoided by making the deflection fields symmetric. Such a corrector system is only possible if the incoming beam can pass the top mirror at a distance in the order of millimeters, without being disturbed by the electric fields of electrodes of the mirror. It is proposed that condition can be satisfied with micro-scale electron optical elements fabricated by using MEMS technology. In the proposed corrector system, the micro-mirrors have to provide the exact negative spherical and chromatic aberrations for correcting the aberration of the objective lens. This exact tuning is accomplished by variable magnification between the micro-mirrors and the objective lens using an additional transfer lens. Extensive optical calculations are reported. Aberrations of the micro-mirrors were analyzed by numerical calculation. Dispersion and aberrations of the deflectors were calculated by using an analytical field model. Combination aberrations caused by the off-axis position of dispersive rays in the mirrors and objective lens were also analyzed. It is concluded that the proposed

  11. A scanning Auger electron spectrometer for internal surface analysis of Large Electron Positron 2 superconducting radio-frequency cavities

    Science.gov (United States)

    Benvenuti, C.; Cosso, R.; Genest, J.; Hauer, M.; Lacarrère, D.; Rijllart, A.; Saban, R.

    1996-08-01

    A computer-controlled surface analysis instrument, incorporating static Auger electron spectroscopy, scanning Auger mapping, and secondary electron imaging, has been designed and built at CERN to study and characterize the inner surface of superconducting radio-frequency cavities to be installed in the Large Electron Positron collider. A detailed description of the instrument, including the analytical head, the control system, and the vacuum system is presented. Some recent results obtained from the cavities provide examples of the instrument's capabilities.

  12. The role of electron irradiation history in liquid cell transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Trevor H.; Mehta, Hardeep S.; Park, Chiwoo; Kelly, Ryan T.; Shokuhfar, Tolou; Evans, James E.

    2018-04-20

    In situ liquid cell transmission electron microscopy (LC-TEM) allows dynamic nanoscale characterization of systems in a hydrated state. Although powerful, this technique remains impaired by issues of repeatability that limit experimental fidelity and hinder the identification and control of some variables underlying observed dynamics. We detail new LC- TEM devices that improve experimental reproducibility by expanding available imaging area and providing a platform for investigating electron flux history on the sample. Irradiation history is an important factor influencing LC-TEM results that has, to this point, been largely qualitatively and not quantitatively described. We use these devices to highlight the role of cumulative electron flux history on samples from both nanoparticle growth and biological imaging experiments and demonstrate capture of time zero, low-dose images on beam-sensitive samples. In particular, the ability to capture pristine images of biological samples, where the acquired image is the first time that the cell experiences significant electron flux, allowed us to determine that nanoparticle movement compared to the cell membrane was a function of cell damage and therefore an artifact rather than visualizing cell dynamics in action. These results highlight just a subset of the new science that is accessible with LC-TEM through the new multiwindow devices with patterned focusing aides.

  13. Wave Optical Calculation of Probe Size in Low Energy Scanning Electron Microscope

    Czech Academy of Sciences Publication Activity Database

    Radlička, Tomáš

    2015-01-01

    Roč. 21, S4 (2015), s. 212-217 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : scanning electron microscope * optical calculation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  14. Use of scanning electron microscopy and microanalysis to determine chloride content of concrete and raw materials.

    Science.gov (United States)

    2013-02-01

    Standard sample sets of cement and mortar formulations with known levels of Cl as well as concrete samples subject to Cl diffusion were all prepared for and analyzed with scanning electron microscopy (SEM) and electron microprobe (EPMA). Using x-ray ...

  15. Thin-film thickness measurement using x-ray peak ratioing in the scanning electron microscope

    International Nuclear Information System (INIS)

    Elliott, N.E.; Anderson, W.E.; Archuleta, T.A.; Stupin, D.M.

    1981-01-01

    The procedure used to measure laser target film thickness using a scanning electron microscope is summarized. This method is generally applicable to any coating on any substrate as long as the electron energy is sufficient to penetrate the coating and the substrate produces an x-ray signal which can pass back through the coating and be detected

  16. A study of internal oxidation in carburized steels by glow discharge optical emission spectroscopy and scanning electron microscopy

    CERN Document Server

    An, X; Rainforth, W M; Chen, L

    2003-01-01

    The internal oxidation of Cr-Mn carburizing steel was studied. Internal oxidation was induced using a commercial carburizing process. Sputter erosion coupled with glow discharge optical emission spectroscopy (GDOES) was used to determine the depth profile elemental distribution within the internal oxidation layer (<10 mu m). In addition, scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) studies were carried out on selected sputter eroded surfaces. Oxide type was identified primarily by transmission electron microscopy (TEM). The carburized surface was found to consist of a continuous oxide layer, followed by a complex internal oxidation layer, where Cr and Mn oxides were found to populate grain boundaries in a globular form in the near surface region. At greater depths (5-10 mu m), Si oxides formed as a grain boundary network. The internal oxides (mainly complex oxides) grew quickly during the initial stages of the carburizing process (2 h, 800 deg. C+3 h, 930 deg. C). G...

  17. Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    The oxidation of nickel particles was studied in situ in an environmental transmission electron microscope in 3.2 mbar of O2 between ambient temperature and 600°C. Several different transmission electron microscopy imaging techniques, electron diffraction and electron energy-loss spectroscopy were...... diffusion of Ni2+ along NiO grain boundaries, self-diffusion of Ni2+ ions and vacancies, growth of NiO grains and nucleation of voids at Ni/NiO interfaces. We also observed the formation of transverse cracks in a growing NiO film in situ in the electron microscope....

  18. Nanoporous metal film: An energy-dependent transmission device for electron waves

    International Nuclear Information System (INIS)

    Grech, S.; Degiovanni, A.; Lapena, L.; Morin, R.

    2011-01-01

    We measure electron transmission through free-standing ultrathin nanoporous gold films, using the coherent electron beam emitted by sharp field emission tips in a low energy electron projection microscope setup. Transmission coefficient versus electron wavelength plots show periodic oscillations between 75 and 850 eV. These oscillations result from the energy dependence of interference between paths through the gold and paths through the nanometer-sized pores of the film. We reveal that these films constitute high transmittance quantum devices acting on electron waves through a wavelength-dependent complex transmittance defined by the porosity and the thickness of the film.

  19. Inexpensive read-out for coincident electron spectroscopy with a transmission electron microscope at nanometer scale using micro channel plates and multistrip anodes

    International Nuclear Information System (INIS)

    Hollander, R.W.; Bom, V.R.; Van Eijk, C.W.E.; Faber, J.S.; Hoevers, H.; Kruit, P.

    1994-01-01

    The elemental composition of a sample at nanometer scale is determined by measurement of the characteristic energy of Auger electrons, emitted in coincidence with incoming primary electrons from a microbeam in a scanning transmission electron microscope (STEM). Single electrons are detected with position sensitive detectors, consisting of MicroChannel Plates (MCP) and MultiStrip Anodes (MSA), one for the energy of the Auger electrons (Auger-detector) and one for the energy loss of primary electrons (EELS-detector). The MSAs are sensed with LeCroy 2735DC preamplifiers. The fast readout is based on LeCroy's PCOS III system. On the detection of a coincidence (Event) energy data of Auger and EELS are combined with timing data to an Event word. Event words are stored in list mode in a VME memory module. Blocks of Event words are scanned by transputers in VME and two-dimensional energy histograms are filled using the timing information to obtain a maximal true/accidental ratio. The resulting histograms are stored on disk of a PC-386, which also controls data taking. The system is designed to handle 10 5 Events per second, 90% of which are accidental. In the histograms the ''true'' to ''accidental'' ratio will be 5. The dead time is 15%. ((orig.))

  20. Self-assembly of silicon nanowires studied by advanced transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Marta Agati

    2017-02-01

    Full Text Available Scanning transmission electron microscopy (STEM was successfully applied to the analysis of silicon nanowires (SiNWs that were self-assembled during an inductively coupled plasma (ICP process. The ICP-synthesized SiNWs were found to present a Si–SiO2 core–shell structure and length varying from ≈100 nm to 2–3 μm. The shorter SiNWs (maximum length ≈300 nm were generally found to possess a nanoparticle at their tip. STEM energy dispersive X-ray (EDX spectroscopy combined with electron tomography performed on these nanostructures revealed that they contain iron, clearly demonstrating that the short ICP-synthesized SiNWs grew via an iron-catalyzed vapor–liquid–solid (VLS mechanism within the plasma reactor. Both the STEM tomography and STEM-EDX analysis contributed to gain further insight into the self-assembly process. In the long-term, this approach might be used to optimize the synthesis of VLS-grown SiNWs via ICP as a competitive technique to the well-established bottom-up approaches used for the production of thin SiNWs.

  1. Scanning tunnelling microscope imaging of nanoscale electron density gradients on the surface of GaAs

    International Nuclear Information System (INIS)

    Hamilton, B; Jacobs, J; Missous, M

    2003-01-01

    This paper is concerned with the scanning tunnelling microscope tunnelling conditions needed to produce constant current images dominated either by surface topology or by electronic effects. A model experimental structure was produced by cleaving a GaAs multiδ-doped layer in UHV and so projecting a spatially varying electron gas density onto the (110) surface. This cross sectional electron density varies on a nanometre scale in the [100] growth direction. The electronic structure and tunnelling properties of this system were modelled, and the tunnelling conditions favouring sensitivity to the surface electron gas density determined

  2. NiO/YSZ Reduction for SOFC/SOEC Studied In Situ by Environmental Transmission Electron Microscopy

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Agersted, Karsten; Hansen, Karin Vels

    2014-01-01

    SOFCs/SOECs are typically composed of ceramic materials, which are highly complex at the nano-scale. Scanning and transmission electron microscopy (SEM and TEM) are routinely applied for studying these nano-scaled structures post mortem, but only few SOFC/SOEC studies have applied environmental T...... and constant temperature ramping rate of 1°C/min. The NiO observed in the first image at 320°C is dense. From the lower left corner a front of porous Ni is progressing until full reduction at 340°C. [Formula]...

  3. Characterisation of 3D-GaN/InGaN nanostructured Light Emitting Diodes by Transmission Electron Microscopy

    International Nuclear Information System (INIS)

    Griffiths, I J; Cherns, D; Wang, X; Waag, A; Wehmann, H-H

    2013-01-01

    Transmission and scanning electron microscopy have been used to characterise GaN/InGaN 3D nanostructures grown on patterned GaN/sapphire substrates by MOVPE. It has been found that the growth of well ordered arrays of such nanostructures, containing multiple quantum wells on non-polar side-facets, can be achieved with a low density of defects. Growth changes and surface morphology play a major role in the nucleation of any defects present. The nanostructure morphology has been investigated and non-uniform growth on adjacent facets studied

  4. Characterisation of 3D-GaN/InGaN nanostructured Light Emitting Diodes by Transmission Electron Microscopy

    Science.gov (United States)

    Griffiths, I. J.; Cherns, D.; Wang, X.; Waag, A.; Wehmann, H.-H.

    2013-11-01

    Transmission and scanning electron microscopy have been used to characterise GaN/InGaN 3D nanostructures grown on patterned GaN/sapphire substrates by MOVPE. It has been found that the growth of well ordered arrays of such nanostructures, containing multiple quantum wells on non-polar side-facets, can be achieved with a low density of defects. Growth changes and surface morphology play a major role in the nucleation of any defects present. The nanostructure morphology has been investigated and non-uniform growth on adjacent facets studied.

  5. Improvement of the repeatability of parallel transmission at 7T using interleaved acquisition in the calibration scan.

    Science.gov (United States)

    Kameda, Hiroyuki; Kudo, Kohsuke; Matsuda, Tsuyoshi; Harada, Taisuke; Iwadate, Yuji; Uwano, Ikuko; Yamashita, Fumio; Yoshioka, Kunihiro; Sasaki, Makoto; Shirato, Hiroki

    2017-12-04

    Respiration-induced phase shift affects B 0 /B 1 + mapping repeatability in parallel transmission (pTx) calibration for 7T brain MRI, but is improved by breath-holding (BH). However, BH cannot be applied during long scans. To examine whether interleaved acquisition during calibration scanning could improve pTx repeatability and image homogeneity. Prospective. Nine healthy subjects. 7T MRI with a two-channel RF transmission system was used. Calibration scanning for B 0 /B 1 + mapping was performed under sequential acquisition/free-breathing (Seq-FB), Seq-BH, and interleaved acquisition/FB (Int-FB) conditions. The B 0 map was calculated with two echo times, and the B 1 + map was obtained using the Bloch-Siegert method. Actual flip-angle imaging (AFI) and gradient echo (GRE) imaging were performed using pTx and quadrature-Tx (qTx). All scans were acquired in five sessions. Repeatability was evaluated using intersession standard deviation (SD) or coefficient of variance (CV), and in-plane homogeneity was evaluated using in-plane CV. A paired t-test with Bonferroni correction for multiple comparisons was used. The intersession CV/SDs for the B 0 /B 1 + maps were significantly smaller in Int-FB than in Seq-FB (Bonferroni-corrected P FB, Seq-BH, and qTx than in Seq-FB (Bonferroni-corrected P FB, Int-FB, and Seq-BH were significantly smaller than in qTx (Bonferroni-corrected P < 0.01 for all). Using interleaved acquisition during calibration scans of pTx for 7T brain MRI improved the repeatability of B 0 /B 1 + mapping, AFI, and GRE images, without BH. 1 Technical Efficacy Stage 1 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Automated grain mapping using wide angle convergent beam electron diffraction in transmission electron microscope for nanomaterials.

    Science.gov (United States)

    Kumar, Vineet

    2011-12-01

    The grain size statistics, commonly derived from the grain map of a material sample, are important microstructure characteristics that greatly influence its properties. The grain map for nanomaterials is usually obtained manually by visual inspection of the transmission electron microscope (TEM) micrographs because automated methods do not perform satisfactorily. While the visual inspection method provides reliable results, it is a labor intensive process and is often prone to human errors. In this article, an automated grain mapping method is developed using TEM diffraction patterns. The presented method uses wide angle convergent beam diffraction in the TEM. The automated technique was applied on a platinum thin film sample to obtain the grain map and subsequently derive grain size statistics from it. The grain size statistics obtained with the automated method were found in good agreement with the visual inspection method.

  7. Electron energy loss spectroscopy microanalysis and imaging in the transmission electron microscope: example of biological applications

    International Nuclear Information System (INIS)

    Diociaiuti, Marco

    2005-01-01

    This paper reports original results obtained in our laboratory over the past few years in the application of both electron energy loss spectroscopy (EELS) and electron spectroscopy imaging (ESI) to biological samples, performed in two transmission electron microscopes (TEM) equipped with high-resolution electron filters and spectrometers: a Gatan model 607 single magnetic sector double focusing EEL serial spectrometer attached to a Philips 430 TEM and a Zeiss EM902 Energy Filtering TEM. The primary interest was on the possibility offered by the combined application of these spectroscopic techniques with those offered by the TEM. In particular, the electron beam focusing available in a TEM allowed us to perform EELS and ESI on very small sample volumes, where high-resolution imaging and electron diffraction techniques can provide important structural information. I show that ESI was able to improve TEM performance, due to the reduced chromatic aberration and the possibility of avoiding the sample staining procedure. Finally, the analysis of the oscillating extended energy loss fine structure (EXELFS) beyond the ionization edges characterizing the EELS spectra allowed me, in a manner very similar to the extended X-ray absorption fine structure (EXAFS) analysis of the X-ray absorption spectra, to obtain short-range structural information for such light elements of biological interest as O or Fe. The Philips EM430 (250-300 keV) TEM was used to perform EELS microanalysis on Ca, P, O, Fe, Al and Si. The assessment of the detection limits of this method was obtained working with well-characterized samples containing Ca and P, and mimicking the actual cellular matrix. I applied EELS microanalysis to Ca detection in bone tissue during the mineralization process and to P detection in the cellular membrane of erythrocytes treated with an anti-tumoral drug, demonstrating that the cellular membrane is a drug target. I applied EELS microanalysis and selected area electron

  8. Design of electron wave filters in monolayer graphene by tunable transmission gap

    OpenAIRE

    Chen, Xi; Tao, Jia-Wei

    2009-01-01

    We have investigated the transmission in monolayer graphene barrier at nonzero angle of incidence. Taking the influence of parallel wave vector into account, the transmission as the function of incidence energy has a gap due to the evanescent waves in two cases of Klein tunneling and classical motion. The modulation of the transmission gap by the incidence angle, the height, and width of potential barrier may lead to potential applications in graphene-based electronic devices.

  9. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Bäcke, Olof, E-mail: obacke@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Lindqvist, Camilla; Diaz de Zerio Mendaza, Amaia [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Gustafsson, Stefan [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Wang, Ergang; Andersson, Mats R.; Müller, Christian [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Kristiansen, Per Magnus [Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Science and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen (Switzerland); Olsson, Eva, E-mail: eva.olsson@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden)

    2017-05-15

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV–vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000 kGy. - Highlights: • Thermal stability of a polymer: fullerne blend is increased using electron irradiation. • Using in-situ transmission electron microscopy the nanostructure is studied. • Electron irradiation stops phase separation between the polymer and fullerene. • Electron irradiation quenches the formation and nucleation of fullerene crystals.

  10. Revealing the 1 nm/s Extensibility of Nanoscale Amorphous Carbon in a Scanning Electron Microscope

    DEFF Research Database (Denmark)

    Zhang, Wei

    2013-01-01

    In an ultra-high vacuum scanning electron microscope, the edged branches of amorphous carbon film (∼10 nm thickness) can be continuously extended with an eye-identifying speed (on the order of ∼1 nm/s) under electron beam. Such unusual mobility of amorphous carbon may be associated with deformation...... promoted by the electric field, which resulted from an inner secondary electron potential difference from the main trunk of carbon film to the tip end of branches under electron beam. This result demonstrates importance of applying electrical effects to modify properties of carbon materials. It may have...... positive implications to explore some amorphous carbon as electron field emission device. SCANNING 35: 261-264, 2013. © 2012 Wiley Periodicals, Inc....

  11. Full surface examination of small spheres with a computer controlled scanning electron microscope

    International Nuclear Information System (INIS)

    Ward, C.M.; Willenborg, D.L.; Montgomery, K.L.

    1979-01-01

    This report discusses a computer automated stage and Scanning Electron Microscopy (SEM) system for detecting defects in glass spheres for inertial confinement laser fusion experiments. This system detects submicron defects and permits inclusion of acceptable spheres in targets after examination. The stage used to examine and manipulate the spheres through 4π steradians is described. Primary image recording is made on a roster scanning video disc. The need for SEM stability and methods of achieving it are discussed

  12. Examination of mycological samples by means of the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1973-04-01

    Full Text Available Three species of Siphomycetes: Rhizopus arhizus, Rhizopus equinus and Rhizopus nigricans, as well as a Septomycete: Emericella nidulans, have been examined by means of a scanning electron microscope. Among the difjerent Rhizopus, this technique showed differences in the appearance of the sporangia. In Emericella nidulans, scanning microscopy enábled one to ascertain that the "Hull cells" were completely hollow and also demonstrated the ornemented aspect of the ascospores.

  13. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    Science.gov (United States)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  14. Aberration corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal; Dunin-Borkowski, Rafal E.

    2010-01-01

    The latest generation of environmental transmission electron microscopes incorporates aberration correctors and monochromators, allowing studies of chemical reactions and growth processes with improved spatial resolution and spectral sensitivity. Here, we describe the performance of such an instr...

  15. Transmission Electron Microscopy Study of Individual Carbon Nanotube Breakdown Caused by Joule Heating in Air

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Gudnason, S.B.; Pedersen, Anders Tegtmeier

    2006-01-01

    We present repeated structural and electrical measurements on individual multiwalled carbon nanotubes, alternating between electrical measurements under ambient conditions and transmission electron microscopy (TEM). The multiwalled carbon nanotubes made by chemical vapor deposition were manipulated...

  16. INVIVO DEGRADATION OF PROCESSED DERMAL SHEEP COLLAGEN EVALUATED WITH TRANSMISSION ELECTRON-MICROSCOPY

    NARCIS (Netherlands)

    VANWACHEM, PB; VANLUYN, MJA; NIEUWENHUIS, P; KOERTEN, HK; DAMINK, LO; TENHOOPEN, H; FEIJEN, J

    The in vivo degradation of hexamethylenediisocyanate-tanned dermal sheep collagen was studied with transmission electron microscopy. Discs of hexamethylenediisocyanate-tanned dermal sheep collagen were subcutaneously implanted in rats. Both an intra- and an extracellular route of degradation could

  17. In vivo degradation of processed dermal sheep collagen evaluated with transmission electron microscopy

    NARCIS (Netherlands)

    van Wachem, P.B.; van Luyn, M.J.A.; Nieuwenhuis, P.; Koerten, H.K.; Olde damink, L.H.H.; Olde-Damink, L.; ten Hoopen, Hermina W.M.; Feijen, Jan

    1991-01-01

    The in vivo degradation of hexamethylenediisocyanate-tanned dermal sheep collagen was studied with transmission electron microscopy. Discs of hexamethylenediisocyanate-tanned dermal sheep collagen were subcutaneously implanted in rats. Both an intra- and an extracellular route of degradation could

  18. Cryo-transmission electron microscopy of Ag nanoparticles grown on an ionic liquid substrate

    KAUST Repository

    Anjum, Dalaver H.; Stiger, Rebecca M.; Finley, James J.; Conway, James F.

    2010-01-01

    We report a novel method of growing silver nanostructures by cathodic sputtering onto an ionic liquid (IL) and our visualization by transmission cryo-electron microscopy to avoid beam-induced motion of the nanoparticles. By freezing the IL

  19. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  20. Surface morphology of the endolymphatic duct in the rat. A scanning electron microscopy study

    DEFF Research Database (Denmark)

    Qvortrup, K; Rostgaard, Jørgen; Bretlau, P

    1995-01-01

    microscopy was attained by coating of the specimens with osmium tetroxide and thiocarbohydrazide followed by a continuous dehydration procedure. This technique permitted, for the first time, an investigation of the surface morphology of the epithelial cells in the endolymphatic duct. Three types of cells......Following intracardiac vascular perfusion fixation of 8 rats with glutaraldehyde in a buffered and oxygenated blood substitute, the vestibular aqueduct and endolymphatic duct were opened by microsurgery of the resulting 16 temporal bones. Optimum preservation of the epithelium for scanning electron...... were identified with the scanning electron microscope. A polygonal and oblong epithelial cell was observed in the largest number throughout the duct, and in the juxtasaccular half of the duct, two additional types of epithelial cells were observed. The scanning electron microscopic observations...