WorldWideScience

Sample records for scanning probe microscopes

  1. Terahertz scanning probe microscope

    NARCIS (Netherlands)

    Klapwijk, T.M.

    2014-01-01

    The invention provides aterahertz scanning probe microscope setup comprising (i) a terahertz radiation source configured to generate terahertz radiation; (ii) a terahertz lens configured to receive at least part of the terahertz radiation from the terahertz radiation source; (iii) a cantilever unit

  2. Scanning microscopic four-point conductivity probes

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Hansen, Torben Mikael; Bøggild, Peter

    2002-01-01

    A method for fabricating microscopic four-point probes is presented. The method uses silicon-based microfabrication technology involving only two patterning steps. The last step in the fabrication process is an unmasked deposition of the conducting probe material, and it is thus possible to select...... the conducting material either for a silicon wafer or a single probe unit. Using shadow masking photolithography an electrode spacing (pitch) down to 1.1 mum was obtained, with cantilever separation down to 200 run. Characterisation measurements have shown the microscopic probes to be mechanically very flexible...... and robust. Repeated conductivity measurements on polythiophene films in the same surface area are reproduced within an accuracy of 3%. Automated nanoresolution position control allows scanning across millimetre sized areas, in order to create high spatial resolution maps of the in-plane conductivity....

  3. Hardware for digitally controlled scanned probe microscopes

    OpenAIRE

    Clark, S. M.; Baselt, D. R.; Spence, C. F.; Youngquist, M. G.; Baldeschwieler, J. D.

    1992-01-01

    The design and implementation of a flexible and modular digital control and data acquisition system for scanned probe microscopes (SPMs) is presented. The measured performance of the system shows it to be capable of 14-bit data acquisition at a 100-kHz rate and a full 18-bit output resolution resulting in less than 0.02-Å rms position noise while maintaining a scan range in excess of 1 µm in both the X and Y dimensions. This level of performance achieves the goal of making the noise of the mi...

  4. Scanning probe microscope dimensional metrology at NIST

    International Nuclear Information System (INIS)

    Kramar, John A; Dixson, Ronald; Orji, Ndubuisi G

    2011-01-01

    Scanning probe microscope (SPM) dimensional metrology efforts at the US National Institute of Standards and Technology (NIST) are reviewed in this paper. The main SPM instruments for realizing the International System of Units (SI) are the Molecular Measuring Machine, the calibrated atomic force microscope and the critical dimension atomic force microscope. These are optimized for long-distance measurements, three-dimensional measurements over conventional SPM distances and critical dimension or linewidth measurements, respectively. 10 mm distances have been measured with the relative standard uncertainty, u c , of 1.5 × 10 −5 ; step heights at the 100 nm scale have been measured with the relative u c of 2.5 × 10 −3 and sub-micrometer linewidths have been measured with u c = 0.8 nm

  5. Large Scale Scanning Probe Microscope "Making Shear Force Scanning visible."

    NARCIS (Netherlands)

    Bosma, E.; Offerhaus, Herman L.; van der Veen, Jan T.; van der Veen, J.T.; Segerink, Franciscus B.; Wessel, I.M.

    2010-01-01

    We describe a demonstration of a scanning probe microscope with shear-force tuning fork feedback. The tuning fork is several centimeters long, and the rigid fiber is replaced by a toothpick. By scaling this demonstration to visible dimensions the accessibility of shear-force scanning and tuning fork

  6. Scanning Probe Microscope-Based Fluid Dispensing

    Directory of Open Access Journals (Sweden)

    Murali Krishna Ghatkesar

    2014-10-01

    Full Text Available Advances in micro and nano fabrication technologies have enabled fabrication of smaller and more sensitive devices for applications not only in solid-state physics but also in medicine and biology. The demand for devices that can precisely transport material, specifically fluids are continuously increasing. Therefore, integration of various technologies with numerous functionalities in one single device is important. Scanning probe microscope (SPM is one such device that has evolved from atomic force microscope for imaging to a variety of microscopes by integrating different physical and chemical mechanisms. In this article, we review a particular class of SPM devices that are suited for fluid dispensing. We review their fabrication methods, fluid-pumping mechanisms, real-time monitoring of dispensing, physics of dispensing, and droplet characterization. Some of the examples where these probes have already been applied are also described. Finally, we conclude with an outlook and future scope for these devices where femtolitre or smaller volumes of liquid handling are needed.

  7. Metrological large range scanning probe microscope

    International Nuclear Information System (INIS)

    Dai Gaoliang; Pohlenz, Frank; Danzebrink, Hans-Ulrich; Xu Min; Hasche, Klaus; Wilkening, Guenter

    2004-01-01

    We describe a metrological large range scanning probe microscope (LR-SPM) with an Abbe error free design and direct interferometric position measurement capability, aimed at versatile traceable topographic measurements that require nanometer accuracy. A dual-stage positioning system was designed to achieve both a large measurement range and a high measurement speed. This dual-stage system consists of a commercially available stage, referred to as nanomeasuring machine (NMM), with a motion range of 25 mmx25 mmx5 mm along x, y, and z axes, and a compact z-axis piezoelectric positioning stage (compact z stage) with an extension range of 2 μm. The metrological LR-SPM described here senses the surface using a stationary fixed scanning force microscope (SFM) head working in contact mode. During operation, lateral scanning of the sample is performed solely by the NMM. Whereas the z motion, controlled by the SFM signal, is carried out by a combination of the NMM and the compact z stage. In this case the compact z stage, with its high mechanical resonance frequency (greater than 20 kHz), is responsible for the rapid motion while the NMM simultaneously makes slower movements over a larger motion range. To reduce the Abbe offset to a minimum the SFM tip is located at the intersection of three interferometer measurement beams orientated in x, y, and z directions. To improve real time performance two high-end digital signal processing (DSP) systems are used for NMM positioning and SFM servocontrol. Comprehensive DSP firmware and Windows XP-based software are implemented, providing a flexible and user-friendly interface. The instrument is able to perform large area imaging or profile scanning directly without stitching small scanned images. Several measurements on different samples such as flatness standards, nanostep height standards, roughness standards as well as sharp nanoedge samples and 1D gratings demonstrate the outstanding metrological capabilities of the instrument

  8. Novel scanning probe microscope instrumentation with applications in nanotechnology

    International Nuclear Information System (INIS)

    Humphry, M.J.

    2000-10-01

    A versatile scanning probe microscope controller has been constructed. Its suitability for the control of a range of different scanning probe microscope heads has been demonstrated. These include an ultra high vacuum scanning tunnelling microscope, with which atomic resolution images of Si surfaces was obtained, a custom-built atomic force microscope, and a custom-built photon emission scanning tunnelling microscope. The controller has been designed specifically to facilitate data acquisition during molecular manipulation experiments. Using the controller, the fullerene molecule C 60 has been successfully manipulated on Si(100)-2x1 surfaces and detailed data has been acquired during the manipulation process. Evidence for two distinct modes of manipulation have been observed. A repulsive mode with success rates up to 90% was found to occur with tunnel gap impedances below 2GΩ, while between 2GΩ and 8GΩ attractive manipulation events were observed, with a maximum success rate of ∼8%. It was also found that the step size between feedback updates had a significant effect on tip stability, and that dwell time of the STM tip at each data point had a critical effect on manipulation probability. A multi-function scanning probe microscope head has been developed capable of operation as a scanning tunnelling microscope and an atomic force microscope in vacuum and a magnetic field of 7T. The custom-built controller also presented here was used to control the head. A three-axis inertial sliding motor was developed for the head, capable of reproducible step sizes of <1000A. In addition, an optical fibre interferometer was constructed with a sensitivity of 0.2A/√Hz. Preliminary development of a magnetic resonance force microscope mode has also been performed, with initial results showing such a system to be feasible. (author)

  9. Modeling the hysteresis of a scanning probe microscope

    DEFF Research Database (Denmark)

    Dirscherl, Kai; Garnæs, Jørgen; Nielsen, L.

    2000-01-01

    Most scanning probe microscopes use piezoelectric actuators in open loop configurations. Therefore a major problem related to these instruments is the image distortion due to the hysteresis effect of the piezo. In order to eliminate the distortions, cost effective software control based on a model....... The structures were scanned for different scan ranges varying from 5 V peak to peak to 440 V peak to peak, so that 99% of the scanners' full motion range was covered. A least-squares fit of the experiments to the hysteresis model provided standard deviations per scan range of around 0.2%. This represents...

  10. Nanofabrication of magnetic scanned-probe microscope sensors

    CERN Document Server

    Chong, B K

    2001-01-01

    experiments were carried out under ambient conditions. The experiments required no extra preparation to be done to the specimen before imaging and measurements were carried out under ambient conditions. These probes offer the prospect of direct magnetic field measurement, non- invasiveness, very close proximity, possible local manipulation, better control over the tip- specimen interaction distance and topographic imaging. It is hoped that these magnetic microscope probes will be of great interest and general utility for academic and industrial magneticians. This thesis presents the development of novel magnetic sensor combined with Atomic Force Microscope probe (AFM) using conventional semiconductor processing techniques and Electron Beam Lithography (EBL). The fabrication of these magnetic sensors was performed on a common micromachined silicon substrate using a generic batch fabrication technique. Sub-micron Hall bar for Scanning Hall probe Microscopy (SHPM) and electromagnetic force coil magnet for Scanni...

  11. The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities

    Science.gov (United States)

    Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex

    2014-01-01

    A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…

  12. Optical and electrical characterization at the nanoscale with a transparent probe of a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Sychugov, Ilya; Omi, Hiroo; Murashita, Tooru; Kobayashi, Yoshihiro

    2009-01-01

    A new type of scanning probe microscope, combining features of the scanning tunnelling microscope, the scanning tunnelling luminescence microscope with a transparent probe and the aperture scanning near-field optical microscope, is described. Proof-of-concept experiments were performed under ultrahigh vacuum conditions at varying temperature on GaAs/AlAs heterostructures.

  13. Characterization of coating probe with Ti-DLC for electrical scanning probe microscope

    International Nuclear Information System (INIS)

    Shia Xiaolei; Guo Liqiu; Bai Yang; Qiao Lijie

    2011-01-01

    In electrical scanning probe microscope (ESPM) applications, the wear and conductivity of the probe are undoubtedly serious concerns since they affect the integrity of the measurements. This study investigates the characterization of Ti doped diamond-like-carbon (DLC) as coating material on a silicon cantilever for ESPM. We deposited a layer of Ti-DLC thin film on the surface of Si cantilever by magnetron sputtering. The morphology and composition of the Ti-DLC films were characterized by scanning electron microscopy and Raman spectroscopy, respectively. We also compared the wear resistance, electric conductivity and scanning image quality of the Ti-DLC-coated probes with those of commercially available conductive probes. The results showed that the electric conductivity and the scanning image quality of the Ti-DLC-coated probes were the same as the commercial conductive probes, while the wear resistance and service life was significantly better.

  14. Characterization of coating probe with Ti-DLC for electrical scanning probe microscope

    Energy Technology Data Exchange (ETDEWEB)

    Shia Xiaolei [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (Ministry of Education), University of Science and Technology Beijing, Beijing 100083 (China); Guo Liqiu, E-mail: glq@mater.ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (Ministry of Education), University of Science and Technology Beijing, Beijing 100083 (China); Bai Yang; Qiao Lijie [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (Ministry of Education), University of Science and Technology Beijing, Beijing 100083 (China)

    2011-06-01

    In electrical scanning probe microscope (ESPM) applications, the wear and conductivity of the probe are undoubtedly serious concerns since they affect the integrity of the measurements. This study investigates the characterization of Ti doped diamond-like-carbon (DLC) as coating material on a silicon cantilever for ESPM. We deposited a layer of Ti-DLC thin film on the surface of Si cantilever by magnetron sputtering. The morphology and composition of the Ti-DLC films were characterized by scanning electron microscopy and Raman spectroscopy, respectively. We also compared the wear resistance, electric conductivity and scanning image quality of the Ti-DLC-coated probes with those of commercially available conductive probes. The results showed that the electric conductivity and the scanning image quality of the Ti-DLC-coated probes were the same as the commercial conductive probes, while the wear resistance and service life was significantly better.

  15. An Evanescent Field Optical Microscope. Scanning probe Microscopy

    NARCIS (Netherlands)

    van Hulst, N.F.; Segerink, Franciscus B.; Bölger, B.; Bölger, B.; Wickramasinghe, H. Kumar

    1991-01-01

    An Evanescent Field Optical Microscope (EFOM) is presented, which employs frustrated total internal reflection on a highly localized scale by means of a sharp dielectric tip. The coupling of the evanescent field to the sub-micrometer probe as a function of probe-sample distance, angle of incidence

  16. High throughput, parallel scanning probe microscope for nanometrology and nanopatterning applications

    NARCIS (Netherlands)

    Sadeghian Marnani, H.; Paul, P.C.; Herfst, R.W.; Dekker, A.; Winters, J.; Maturova, K.

    2017-01-01

    Scanning Probe microscope (SPM) is an important nanoinstrument for several applications such as bioresearch, metrology, inspection and nanopatterning. Single SPM is associated with relatively slow rate of scanning and low throughput measurement, thus not being suitable for scanning large samples

  17. Improved controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben

    2013-01-01

    ) is monitored by an oxygen sensor. We present here some examples of its capabilities demonstrated by high temperature topography with simultaneously ac electrical conductance measurements during atmosphere changes, electrochemical impedance spectroscopy at various temperatures, and measurements of the surface......To locally access electrochemical active surfaces and interfaces in operando at the sub-micron scale at high temperatures in a reactive gas atmosphere is of great importance to understand the basic mechanisms in new functional materials, for instance, for energy technologies, such as solid oxide......, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2...

  18. Tip Enhanced Raman Scattering of Strained Silicon with Single and Multiple Probe Scanned Probe Microscopes.

    Science.gov (United States)

    Lewis, Aaron

    2007-03-01

    Raman spectroscopy is an effective tool for the identification and analysis of molecular components of complex materials. The spatial resolution of Raman spectroscopy is limited by the wavelength of the light. One approach to overcome this drawback is Surface Enhanced Raman Scattering (SERS). This technique uses nanometric interactions between metal structures and surfaces to effect enhancement of the Raman signals. An important mechanism for enhancement originates from an electrostatic lightning rod effect due to the excitation of localized surface plasmon resonances. This is accomplished in a scanned probe microscopy context by employing an ultra-sharp metalized tip that is brought into a focused laser spot on the sample surface thereby enhancing the Raman signal. In this technique also known as Tip Enhanced Raman Scattering (TERS) the electrical field is locally enhanced near the sharp metalized tip. Rastering the sample should then allow for Raman imaging with nanometric resolution. Within this context it will be shown that multiple probe scanned probe microscopes have considerable potential in such tip enhanced applications.

  19. Probing Access Resistance of Solid-state Nanopores with a Scanning Probe Microscope Tip.

    Science.gov (United States)

    Hyun, Changbae; Rollings, Ryan; Li, Jiali

    2012-02-06

    An apparatus that integrates solid-state nanopore ionic current measurement with a Scanning Probe Microscope has been developed. When a micrometer-scale scanning probe tip is near a voltage biased nanometer-scale pore (10-100 nm), the tip partially blocks the flow of ions to the pore and increases the pore access resistance. The apparatus records the current blockage caused by the probe tip and the location of the tip simultaneously. By measuring the current blockage map near a nanopore as a function of the tip position in 3D space in salt solution, we estimate the relative pore resistance increase due to the tip, ΔR/R(0), as a function of the tip location, nanopore geometry, and salt concentration. The amplitude of ΔR/R(0) also depends on the ratio of the pore length to its radius as Ohm's law predicts. When the tip is very close to the pore surface, ~10 nm, our experiments show that ΔR/R(0) depends on salt concentration as predicted by the Poisson and Nernst-Planck equations. Furthermore, our measurements show that ΔR/R(0) goes to zero when the tip is about five times the pore diameter away from the center of the pore entrance. The results in this work not only demonstrate a way to probe the access resistance of nanopores experimentally, they also provide a way to locate the nanopore in salt solution, and open the door to future nanopore experiments for detecting single biomolecules attached to a probe tip.

  20. Probing access resistance of solid-state nanopores with a scanning-probe microscope tip.

    Science.gov (United States)

    Hyun, Changbae; Rollings, Ryan; Li, Jiali

    2012-02-06

    An apparatus that integrates solid-state nanopore ionic current measurement with a scanning-probe microscope is developed. When a micrometer-scale scanning-probe tip is near a voltage-biased nanometer-scale pore (10–100 nm), the tip partially blocks the flow of ions to the pore and increases the pore access resistance. The apparatus records the current blockage caused by the probe tip and the location of the tip simultaneously. By measuring the current blockage map near a nanopore as a function of the tip position in 3D space in salt solution, the relative pore resistance increases due to the tip and ΔR/R0 is estimated as a function of the tip location, nanopore geometry, and salt concentration. The amplitude of ΔR/R0 also depends on the ratio of the pore length to its radius as Ohm's law predicts. When the tip is very close to the pore surface, ≈10 nm, experiments show that ΔR/R0 depends on salt concentration as predicted by the Poisson and Nernst–Planck equations. Furthermore, the measurements show that ΔR/R0 goes to zero when the tip is about five times the pore diameter away from the center of the pore entrance. The results in this work not only demonstrate a way to probe the access resistance of nanopores experimentally; they also provide a way to locate the nanopore in salt solution, and open the door to future nanopore experiments for detecting single biomolecules attached to a probe tip. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Impedance measurements on Au microelectrodes using controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Wu, Yuehua; Hansen, Karin Vels; Jacobsen, Torben

    2011-01-01

    High temperature impedance measurements on Au microelectrodes deposited on polished yttria stabilized zirconia (YSZ) pellets were demonstrated using a newly designed controlled atmosphere high temperature scanning probe microscope (CAHT-SPM). Probes based on Pt0.8Ir0.2 were fabricated and employed...

  2. Online correction of scanning probe microscopes with pixel accuracy

    DEFF Research Database (Denmark)

    Dirscherl, Kai

    2000-01-01

    of 10 nm and an opening angle of 30.0 °. Even atomic resolution can be achieved. The scan movement of the tip is not linear however. This is caused by the propelling device of the SPM for the scan motion - a piezoelectric ceramic. The two major non-linear responses o f the piezo to the applied control......-20% depending on the piezo material used and the scan range. The change in sensitivity is up to 20% as well, depending on the scan frequency. Current software controlled SPM are equipped with an algorithm that changes the shape of the control voltage online in a way to produce a linear piezo movement...

  3. Correlation-steered scanning for scanning probe microscopes to overcome thermal drift for ultra-long time scanning.

    Science.gov (United States)

    Zhang, Liansheng; Long, Qian; Liu, Yongbin; Zhang, Jie; Feng, Zhihua

    2016-07-01

    The thermal effect is one of the most important factors that influence the accuracy of nanoscale measurement and the surface topography of samples in scanning probe microscopes (SPMs). We propose a method called correlation-steered scanning, which is capable of overcoming three-dimensional thermal drifts in real time for ultra-long time scanned images. The image is scanned band by band with overlapping parts between adjacent bands. The vertical drift can be considered as linear and can thus be eliminated together with the tilt of the sample by applying the flattening method. Each band is artificially divided into several blocks for conveniently calculating lateral drifts on the basis of the overlapping area of adjacent bands through digital image correlation. The calculated lateral drifts are compensated to steer the scanning of the subsequent blocks, thus ensuring that all bands are parallel to one another. Experimental results proved that images scanned by the proposed method exhibited less distortions than those obtained from the traditional raster scanning method. The nanoscale measurement results based on the image obtained by the proposed method also showed high accuracy, with an error of less than 1.5%. By scanning as many bands as needed, the correlation-steered scanning method can obtain a highly precise SPM image of an ultra-large area. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Efficient electrochemical etching method to fabricate sharp metallic tips for scanning probe microscopes

    International Nuclear Information System (INIS)

    Kim, Pilkyu; Kim, Jun Ho; Jeong, Mun Seok; Ko, Do-Kyeong; Lee, Jongmin; Jeong, Sungho

    2006-01-01

    A new technique based on electrochemical etching for the fabrication of sharp metallic tips for scanning probe microscopes is introduced. In the proposed method, a small Teflon mass is attached to the end of an immersed tungsten wire using an aluminum tape, which leads to a significant enhancement of yield rate of sharp tungsten tips with an apex size below 100 nm to over 60%. The functionality of the tungsten tips fabricated by the proposed method is verified by measuring the topography of a standard sample using a shear-force scanning probe microscope

  5. Gwyscan: a library to support non-equidistant scanning probe microscope measurements

    Science.gov (United States)

    Klapetek, Petr; Yacoot, Andrew; Grolich, Petr; Valtr, Miroslav; Nečas, David

    2017-03-01

    We present a software library and related methodology for enabling easy integration of adaptive step (non-equidistant) scanning techniques into metrological scanning probe microscopes or scanning probe microscopes where individual x, y position data are recorded during measurements. Scanning with adaptive steps can reduce the amount of data collected in SPM measurements thereby leading to faster data acquisition, a smaller amount of data collection required for a specific analytical task and less sensitivity to mechanical and thermal drift. Implementation of adaptive scanning routines into a custom built microscope is not normally an easy task: regular data are much easier to handle for previewing (e.g. levelling) and storage. We present an environment to make implementation of adaptive scanning easier for an instrument developer, specifically taking into account data acquisition approaches that are used in high accuracy microscopes as those developed by National Metrology Institutes. This includes a library with algorithms written in C and LabVIEW for handling data storage, regular mesh preview generation and planning the scan path on basis of different assumptions. A set of modules for Gwyddion open source software for handling these data and for their further analysis is presented. Using this combination of data acquisition and processing tools one can implement adaptive scanning in a relatively easy way into an instrument that was previously measuring on a regular grid. The performance of the presented approach is shown and general non-equidistant data processing steps are discussed.

  6. Gwyscan: a library to support non-equidistant scanning probe microscope measurements

    International Nuclear Information System (INIS)

    Klapetek, Petr; Grolich, Petr; Valtr, Miroslav; Yacoot, Andrew; Nečas, David

    2017-01-01

    We present a software library and related methodology for enabling easy integration of adaptive step (non-equidistant) scanning techniques into metrological scanning probe microscopes or scanning probe microscopes where individual x , y position data are recorded during measurements. Scanning with adaptive steps can reduce the amount of data collected in SPM measurements thereby leading to faster data acquisition, a smaller amount of data collection required for a specific analytical task and less sensitivity to mechanical and thermal drift. Implementation of adaptive scanning routines into a custom built microscope is not normally an easy task: regular data are much easier to handle for previewing (e.g. levelling) and storage. We present an environment to make implementation of adaptive scanning easier for an instrument developer, specifically taking into account data acquisition approaches that are used in high accuracy microscopes as those developed by National Metrology Institutes. This includes a library with algorithms written in C and LabVIEW for handling data storage, regular mesh preview generation and planning the scan path on basis of different assumptions. A set of modules for Gwyddion open source software for handling these data and for their further analysis is presented. Using this combination of data acquisition and processing tools one can implement adaptive scanning in a relatively easy way into an instrument that was previously measuring on a regular grid. The performance of the presented approach is shown and general non-equidistant data processing steps are discussed. (paper)

  7. Observation of nanostructure by scanning near-field optical microscope with small sphere probe

    Directory of Open Access Journals (Sweden)

    Yasushi Oshikane, Toshihiko Kataoka, Mitsuru Okuda, Seiji Hara, Haruyuki Inoue and Motohiro Nakano

    2007-01-01

    Full Text Available Step and terrace structure has been observed in an area of 1 μm×1 μm on the cleaved surface of KCl–KBr solid-solution single crystal by scanning near-field optical microscope (SNOM with a small sphere probe of 500 nm diameter. Lateral spatial resolution of the SNOM system was estimated to be 20 nm from the observation of step width and the scanning-step interval. Vertical spatial resolution was estimated to be 5–2 nm from the observation of step height and noise level of photomultiplier tube (PMT. With applying a dielectric dipole radiation model to the probe surface, the reason why such a high spatial resolution was obtained in spite of the 500 nm sphere probe, was understood as the effect of the near-field term appeared in the radiation field equations.

  8. Meeting of the Australian Scanned Probe Microscope Society, University of Sydney, February 16-19, 1999: Introduction

    Science.gov (United States)

    Griffin, Brenden J.

    2000-03-01

    In February 1999, the second Scanned Probe Microscopy conference (SPM II) of the Australian Scanned Probe Microscope Society was held in Sydney, Australia, in conjunction with the fifth biennial symposium of the Australian Microbeam Analysis Society (AMAS V). This issue of Microscopy and Microanalysis presents selected full-length papers arising from that meeting.

  9. Novel control scheme for a high-speed metrological scanning probe microscope

    Science.gov (United States)

    Vorbringer-Dorozhovets, N.; Hausotte, T.; Manske, E.; Shen, J. C.; Jäger, G.

    2011-09-01

    Some time ago, an interferometer-based metrological scanning probe microscope (SPM) was developed at the Institute of Process Measurement and Sensor Technology of the Ilmenau University of Technology, Germany. The specialty of this SPM is the combined deflection detection system that comprises an interferometer and a beam deflection. Due to this system it is possible to simultaneously measure the displacement, bending and torsion of the probe (cantilever). The SPM is integrated into a nanopositioning and nanomeasuring machine (NPM machine) and allows measurements with a resolution of 0.1 nm over a range of 25 mm × 25 mm × 5 mm. Excellent results were achieved for measurements of calibrated step height and lateral standards and these results are comparable to the calibration values from the Physikalisch-Technische Bundesanstalt (PTB) (Dorozhovets N et al 2007 Proc. SPIE 6616 661624-1-7). The disadvantage was a low attainable scanning speed and accordingly large expenditure of time. Control dynamics and scanning speed are limited because of the high masses of the stage and corner mirror of the machine. For the vertical axis an additional high-speed piezoelectric drive is integrated in the SPM in order to increase the measuring dynamics. The movement of the piezoelectric drive is controlled and traceable measured by the interferometer. Hence, nonlinearity and hysteresis in the actuator do not affect the measurement. The outcome of this is an improvement of the bending control of the cantilever and much higher scan speeds of up to 200 µm s-1.

  10. Ultra-Compact Multitip Scanning Probe Microscope with an Outer Diameter of 50 mm

    Science.gov (United States)

    Cherepanov, Vasily; Zubkov, Evgeny; Junker, Hubertus; Korte, Stefan; Blab, Marcus; Coenen, Peter; Voigtländer, Bert

    We present a multitip scanning tunneling microscope (STM) where four independent STM units are integrated on a diameter of 50 mm. The coarse positioning of the tips is done under the control of an optical microscope or an SEM in vacuum. The heart of this STM is a new type of piezoelectric coarse approach called Koala Drive which can have a diameter greater than 2.5 mm and a length smaller than 10 mm. Alternating movements of springs move a central tube which holds the STM tip or AFM sensor. This new operating principle provides a smooth travel sequence and avoids shaking which is intrinsically present for nanopositioners based on inertial motion with saw tooth driving signals. Inserting the Koala Drive in a piezo tube for xyz-scanning integrates a complete STM inside a 4 mm outer diameter piezo tube of Koala Drive makes the scanning probe microscopy design ultra-compact and accordingly leads to a high mechanical stability. The drive is UHV, low temperature, and magnetic field compatible. The compactness of the Koala Drive allows building a four-tip STM as small as a single-tip STM with a drift of Koala Drive.

  11. Field programmable gate array based reconfigurable scanning probe/optical microscope.

    Science.gov (United States)

    Nowak, Derek B; Lawrence, A J; Dzegede, Zechariah K; Hiester, Justin C; Kim, Cliff; Sánchez, Erik J

    2011-10-01

    The increasing popularity of nanometrology and nanospectroscopy has pushed researchers to develop complex new analytical systems. This paper describes the development of a platform on which to build a microscopy tool that will allow for flexibility of customization to suit research needs. The novelty of the described system lies in its versatility of capabilities. So far, one version of this microscope has allowed for successful near-field and far-field fluorescence imaging with single molecule detection sensitivity. This system is easily adapted for reflection, polarization (Kerr magneto-optical (MO)), Raman, super-resolution techniques, and other novel scanning probe imaging and spectroscopic designs. While collecting a variety of forms of optical images, the system can simultaneously monitor topographic information of a sample with an integrated tuning fork based shear force system. The instrument has the ability to image at room temperature and atmospheric pressure or under liquid. The core of the design is a field programmable gate array (FPGA) data acquisition card and a single, low cost computer to control the microscope with analog control circuitry using off-the-shelf available components. A detailed description of electronics, mechanical requirements, and software algorithms as well as examples of some different forms of the microscope developed so far are discussed.

  12. Versatile variable temperature and magnetic field scanning probe microscope for advanced material research

    Science.gov (United States)

    Jung, Jin-Oh; Choi, Seokhwan; Lee, Yeonghoon; Kim, Jinwoo; Son, Donghyeon; Lee, Jhinhwan

    2017-10-01

    We have built a variable temperature scanning probe microscope (SPM) that covers 4.6 K-180 K and up to 7 T whose SPM head fits in a 52 mm bore magnet. It features a temperature-controlled sample stage thermally well isolated from the SPM body in good thermal contact with the liquid helium bath. It has a 7-sample-holder storage carousel at liquid helium temperature for systematic studies using multiple samples and field emission targets intended for spin-polarized spectroscopic-imaging scanning tunneling microscopy (STM) study on samples with various compositions and doping conditions. The system is equipped with a UHV sample preparation chamber and mounted on a two-stage vibration isolation system made of a heavy concrete block and a granite table on pneumatic vibration isolators. A quartz resonator (qPlus)-based non-contact atomic force microscope (AFM) sensor is used for simultaneous STM/AFM operation for research on samples with highly insulating properties such as strongly underdoped cuprates and strongly correlated electron systems.

  13. Novel control scheme for a high-speed metrological scanning probe microscope

    International Nuclear Information System (INIS)

    Vorbringer-Dorozhovets, N; Hausotte, T; Manske, E; Jäger, G; Shen, J C

    2011-01-01

    Some time ago, an interferometer-based metrological scanning probe microscope (SPM) was developed at the Institute of Process Measurement and Sensor Technology of the Ilmenau University of Technology, Germany. The specialty of this SPM is the combined deflection detection system that comprises an interferometer and a beam deflection. Due to this system it is possible to simultaneously measure the displacement, bending and torsion of the probe (cantilever). The SPM is integrated into a nanopositioning and nanomeasuring machine (NPM machine) and allows measurements with a resolution of 0.1 nm over a range of 25 mm × 25 mm × 5 mm. Excellent results were achieved for measurements of calibrated step height and lateral standards and these results are comparable to the calibration values from the Physikalisch-Technische Bundesanstalt (PTB) (Dorozhovets N et al 2007 Proc. SPIE 6616 661624–1–7). The disadvantage was a low attainable scanning speed and accordingly large expenditure of time. Control dynamics and scanning speed are limited because of the high masses of the stage and corner mirror of the machine. For the vertical axis an additional high-speed piezoelectric drive is integrated in the SPM in order to increase the measuring dynamics. The movement of the piezoelectric drive is controlled and traceable measured by the interferometer. Hence, nonlinearity and hysteresis in the actuator do not affect the measurement. The outcome of this is an improvement of the bending control of the cantilever and much higher scan speeds of up to 200 µm s −1

  14. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    Science.gov (United States)

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  15. Micro-four-point probes in a UHV scanning electron microscope for in-situ surface-conductivity measurements

    DEFF Research Database (Denmark)

    Shiraki, I.; Nagao, T.; Hasegawa, S.

    2000-01-01

    For in-situ measurements of surface conductivity in ultrahigh vacuum (UHV), we have installed micro-four-point probes (probe spacings down to 4 mum) in a UHV scanning electron microscope (SEM) combined with scanning reflection-high-energy electron diffraction (RHEED). With the aid of piezoactuators...... for precise positioning of the probes, local conductivity of selected surface domains of well-defined superstructures could be measured during SEM and RHEED observations. It was found that the surface sensitivity of the conductivity measurements was enhanced by reducing the probe spacing, enabling...

  16. An evaluation of a combined scanning probe and optical microscope for lunar regolith studies

    Science.gov (United States)

    Yang, S.; Pike, W. T.; Staufer, U.; Claus, D.; Rodenburg, J. M.

    2011-12-01

    The microscopic properties of the lunar regolith such as the shape, the surface texture and the size distribution are required for an understanding of both past surface processes and potential hazards for future human exploration [1]. To reveal the particle morphology at the sub micrometer scale, scanning-probe microscopy (SPM), first used on the 2008 Phoenix mission [1], is a proven approach; however, there are two main challenges for the measurement of lunar particles. Firstly, the SPM tip is liable to move particles during scanning, even when using the lower contact forces of the dynamic-mode imaging. Hence the particles need to be stabilised during imaging. Secondly, typically the AFM tip extends about 10 μm from its cantilever, so larger particles protruding more than this height above their substrates cannot be scanned completely. To immobilize particles and eliminate large particles during SPM scanning, micromachined Si substrates, which have been successfully applied in the Phoenix project for Mars investigation in 2008 [2], have been investigated for lunar analogue material. On these substrates micrometer pits are patterned and serve as traps to enhance the stability of the AFM scanning by grasping the particles. In addition, the diameter of pits can determine the size of dusts to be captured and reduce the adhesion for the larger dust and so eliminate the oversized particles. To extend the imaging range and assist in selecting scan areas for the SPM, we use a type of lensless optical imaging (LOM) which uses ptychographic diffractive imaging [3] to eliminate the restrictions and performance limitations of conventional focusing devices. As a reference, scanning electron microscopy (SEM) which minimizes particle-probe interactions and has the advantage of an extended depth of field, is employed to image the same particle fields at resolutions covering both the SPM and LOM. By comparing the differences and the similarities between SEM and LOM images, the

  17. Fast and reliable pre-approach for scanning probe microscopes based on tip-sample capacitance.

    Science.gov (United States)

    de Voogd, J M; van Spronsen, M A; Kalff, F E; Bryant, B; Ostojić, O; den Haan, A M J; Groot, I M N; Oosterkamp, T H; Otte, A F; Rost, M J

    2017-10-01

    Within the last three decades Scanning Probe Microscopy has been developed to a powerful tool for measuring surfaces and their properties on an atomic scale such that users can be found nowadays not only in academia but also in industry. This development is still pushed further by researchers, who continuously exploit new possibilities of this technique, as well as companies that focus mainly on the usability. However, although imaging has become significantly easier, the time required for a safe approach (without unwanted tip-sample contact) can be very time consuming, especially if the microscope is not equipped or suited for the observation of the tip-sample distance with an additional optical microscope. Here we show that the measurement of the absolute tip-sample capacitance provides an ideal solution for a fast and reliable pre-approach. The absolute tip-sample capacitance shows a generic behavior as a function of the distance, even though we measured it on several completely different setups. Insight into this behavior is gained via an analytical and computational analysis, from which two additional advantages arise: the capacitance measurement can be applied for observing, analyzing, and fine-tuning of the approach motor, as well as for the determination of the (effective) tip radius. The latter provides important information about the sharpness of the measured tip and can be used not only to characterize new (freshly etched) tips but also for the determination of the degradation after a tip-sample contact/crash. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen R.; Petersen, Dirch Hjorth

    2014-01-01

    Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green's function formalism, and apply it to graphene. Sampling the local conduction properties at finite...... to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements. © 2014 American Physical Society....

  19. Effects of stick-slip motions on Besocke-style scanners in scanning probe microscopes

    International Nuclear Information System (INIS)

    Zhang Hui; Zhang Shuyi; Fan Li

    2012-01-01

    In Besocke-style scanners, a theoretical model with stick-slip sliding boundary conditions is presented by Timoshenko beam theory combined with the harmonic-balance method. The flexural vibration characteristics of the piezo-tubes induced by the stick-slip motions of the ball on the rail are investigated. The results show that the flexural vibrations essentially depend on the ratio of the ball-rail lateral friction threshold to the product of the ball-rail lateral contact stiffness and the vibration amplitude of the ball. When the ratio changes from zero to one, the lateral friction applied to the ball induces complex flexural vibrations. The vibrations can be regulated by adjusting an input electric signal to change the vibration amplitude of the ball, or using an external electro-magnetic force to change the preload of the ball-rail interaction, or changing the radius of the ball. Thus, the adverse vibrations of Besocke-style scanner can be eliminated to improve the spatial resolution of the atomic structure in scanning probe microscopes. (paper)

  20. Wave Optical Calculation of Probe Size in Low Energy Scanning Electron Microscope

    Czech Academy of Sciences Publication Activity Database

    Radlička, Tomáš

    2015-01-01

    Roč. 21, S4 (2015), s. 212-217 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : scanning electron microscope * optical calculation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  1. The Scanning Optical Microscope.

    Science.gov (United States)

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  2. Scanning thermal probe microscope method for the determination of thermal diffusivity of nanocomposite thin films

    Science.gov (United States)

    Varandani, Deepak; Agarwal, Khushboo; Brugger, Juergen; Mehta, Bodh Raj

    2016-08-01

    A commercial scanning thermal microscope has been upgraded to facilitate its use in estimating the radial thermal diffusivity of thin films close to room temperature. The modified setup includes a microcontroller driven microhotplate coupled with a Bluetooth module for wireless control. The microcontroller board (Arduino Leonardo) is used to generate a bias of suitable voltage amplitude and pulse duration which is applied across the microhotplate contact pads. A corresponding heat pulse from the Pt heating element (1 mm2) embedded within the microhotplate is delivered to the lower surface of the thin film (25 mm2) deposited over it. The large difference in the dimensions of the heating source and the thin film surface causes heat to flow radially outwards on the top surface of the latter. The decay of this radial heat wave as it flows outwards is recorded by the scanning thermal microscope in terms of temperature-time (T-t) profiles at varying positions around the central heating zone. A fitting procedure is suggested to extract the thermal diffusivity value from the array of T-t profiles. The efficacy of the above setup has been established by evaluating the thermal diffusivities of Bi2Te3 and Bi2Te3:Si thin film samples. Further, with only minor alterations in design the capabilities of the above setup can be extended to estimate the axial thermal diffusivity and specific heat of thin films, as a function of temperature.

  3. Thermal drift study on different commercial scanning probe microscopes during the initial warming-up phase

    International Nuclear Information System (INIS)

    Marinello, F; Balcon, M; Savio, E; Schiavuta, P; Carmignato, S

    2011-01-01

    Scanning probe microscopy (SPM) allows surface topography imaging with the highest resolution, as a result of accurate actuation combined with the sharpness of tips. The scanning process is inherently slow and commonly suffers from instrumental drift. Drift evaluation and control is an important issue for quantitative metrology. Drift characterization is essential in order to establish an appropriate method for eliminating, compensating or correcting it, allowing the improvement of measurement quality and accuracy. Drift distortions are often regarded as temperature-dependent phenomena, associated with temperature gradients and transients that may occur both in the single components of the equipment and in the measuring volume. Commercial SPMs are designed and manufactured with different approaches, e.g. combining different scanners' architectures, with selected hardware, software and materials, in order to optimize specific instrument performances such as accuracy and scanning speed. Hence, different SPMs on the market have different drift depending on instrument design and materials. In this work, a set of experiments was conducted on different instruments operating under varying controlled environmental conditions, for drift estimation, with particular reference to the initial warming-up phase. The experimental procedure for drift evaluation was based on repeated measurements on a structured reference grating. Temperature was monitored using an infrared camera. Six different SPMs were compared based on the analysis of the evolution of horizontal and vertical drift over time, allowing correlation of the drift trend with instrument architecture

  4. An ultra-low temperature scanning Hall probe microscope for magnetic imaging below 40 mK

    OpenAIRE

    Karci Ozgur; Piatek Julian O.; Jorba Pau; Dede Munir; Ronnow Henrik M.; Oral Ahmet

    2014-01-01

    We describe the design of a low temperature scanning Hall probe microscope (SHPM) for a dilution refrigerator system. A detachable SHPM head with 25.4 mm OD and 200 mm length is integrated at the end of the mixing chamber base plate of the dilution refrigerator insert (Oxford Instruments, Kelvinox MX-400) by means of a dedicated docking station. It is also possible to use this detachable SHPM head with a variable temperature insert (VTI) for 2 K-300 K operations. A microfabricated 1 mu m size...

  5. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  6. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

    Directory of Open Access Journals (Sweden)

    Urs Gysin

    2015-12-01

    Full Text Available Background: The resolution in electrostatic force microscopy (EFM, a descendant of atomic force microscopy (AFM, has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip–sample interface for optically excited measurements such as local surface photo voltage detection.Results: We present Kelvin probe force microscopy (KPFM measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.

  7. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices.

    Science.gov (United States)

    Gysin, Urs; Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst

    2015-01-01

    The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip-sample interface for optically excited measurements such as local surface photo voltage detection. We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.

  8. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  9. The design of a novel tip enhanced near-field scanning probe microscope for ultra-high resolution optical imaging

    Science.gov (United States)

    Nowak, Derek Brant

    . Developed is a novel microscope design that employs two-photon non-linear excitation to allow the imaging of the fluorescence from almost any visible fluorophore at resolutions below 30 nm without changing filters or excitation wavelength. The ability of the microscope to image samples at atmospheric pressure, room temperature, and in solution makes it a very promising tool for the biological and materials science communities. The microscope demonstrates the ability to image topographical, optical, and electronic state information for single-molecule identification. A single computer, simple custom control circuits, field programmable gate array (FPGA) data acquisition, and a simplified custom optical system controls the microscope are thoroughly outlined and documented. This versatility enables the end user to custom-design experiments from confocal far-field single molecule imaging to high resolution scanning probe microscopy imaging. Presented are the current capabilities of the microscope, most importantly, high-resolution near-field images of J-aggregates with PIC dye. Single molecules of Rhodamine 6G dye and quantum dots imaged in the far-field are presented to demonstrate the sensitivity of the microscope. A comparison is made with the use of a mode-locked 50 fs pulsed laser source verses a continuous wave laser source on single molecules and J-aggregates in the near-field and far-field. Integration of an intensified CCD camera with a high-resolution monochromator allows for spectral information about the sample. The system will be disseminated as an open system design.

  10. Electrochemical and scanning probe microscopic characterization of spontaneously adsorbed organothiolate monolayers at gold

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Sze-Shun Season [Iowa State Univ., Ames, IA (United States)

    1999-12-10

    This dissertation presented several results which add to the general knowledge base regarding organothiolates monolayer spontaneously adsorbed at gold films. Common to the body of this work is the use of voltammetric reductive resorption and variants of scanning probe microscopy to gain insight into the nature of the monolayer formation process as well as the resulting interface. The most significant result from this work is the success of using friction force microscopy to discriminate the end group orientation of monolayer chemisorbed at smooth gold surfaces with micrometer resolution (Chapter 4). The ability to detect the differences in the orientational disposition is demonstrated by the use PDMS polymer stamp to microcontact print an adlayer of n-alkanethiolate of length n in a predefine pattern onto a gold surface, followed by the solution deposition of a n-alkanethiol of n ± 1 to fill in the areas on the gold surface intentionally not coated by the stamping process. These two-component monolayers can be discriminated by using friction force microscopy which detects differences in friction contributed by the differences in the orientation of the terminal groups at surfaces. This success has recently led to the detection of the orientation differences at nanometer scale. Although the substrates examined in this work consisted entirely of smooth gold films, the same test can be performed on other smooth substrates and monolayer materials.

  11. Hand Controlled Manipulation of Single Molecules via a Scanning Probe Microscope with a 3D Virtual Reality Interface.

    Science.gov (United States)

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2016-10-02

    Considering organic molecules as the functional building blocks of future nanoscale technology, the question of how to arrange and assemble such building blocks in a bottom-up approach is still open. The scanning probe microscope (SPM) could be a tool of choice; however, SPM-based manipulation was until recently limited to two dimensions (2D). Binding the SPM tip to a molecule at a well-defined position opens an opportunity of controlled manipulation in 3D space. Unfortunately, 3D manipulation is largely incompatible with the typical 2D-paradigm of viewing and generating SPM data on a computer. For intuitive and efficient manipulation we therefore couple a low-temperature non-contact atomic force/scanning tunneling microscope (LT NC-AFM/STM) to a motion capture system and fully immersive virtual reality goggles. This setup permits "hand controlled manipulation" (HCM), in which the SPM tip is moved according to the motion of the experimenter's hand, while the tip trajectories as well as the response of the SPM junction are visualized in 3D. HCM paves the way to the development of complex manipulation protocols, potentially leading to a better fundamental understanding of nanoscale interactions acting between molecules on surfaces. Here we describe the setup and the steps needed to achieve successful hand-controlled molecular manipulation within the virtual reality environment.

  12. Scanning transmission electron microscope

    NARCIS (Netherlands)

    Kruit, P.

    2006-01-01

    The invention relates to a scanning transmission electron microscope comprising an electron source, an electron accelerator and deflection means for directing electrons emitted by the electron source at an object to be examined, and in addition a detector for detecting electrons coming from the

  13. SPM: Scanning positron microscope

    Directory of Open Access Journals (Sweden)

    Marcel Dickmann

    2015-08-01

    Full Text Available The Munich scanning positron microscope, operated by the Universität der Bundeswehr München and the Technische Universität München, located at NEPOMUC, permits positron lifetime measurements with a lateral resolution in the µm range and within an energy range of 1 – 20 keV.

  14. Carbon-fiber tips for scanning probe microscopes and molecular electronics experiments

    NARCIS (Netherlands)

    Rubio-Bollinger, G.; Castellanos-Gomez, A.; Bilan, S.; Zotti, L.A.; Arroyo, C.R.; Agraït, N.; Cuevas, J.

    2012-01-01

    We fabricate and characterize carbon-fiber tips for their use in combined scanning tunneling and force microscopy based on piezoelectric quartz tuning fork force sensors. An electrochemical fabrication procedure to etch the tips is used to yield reproducible sub-100-nm apex. We also study electron

  15. An ultra-low temperature scanning Hall probe microscope for magnetic imaging below 40 mK

    Science.gov (United States)

    Karcı, Özgür; Piatek, Julian O.; Jorba, Pau; Dede, Münir; Rønnow, Henrik M.; Oral, Ahmet

    2014-10-01

    We describe the design of a low temperature scanning Hall probe microscope (SHPM) for a dilution refrigerator system. A detachable SHPM head with 25.4 mm OD and 200 mm length is integrated at the end of the mixing chamber base plate of the dilution refrigerator insert (Oxford Instruments, Kelvinox MX-400) by means of a dedicated docking station. It is also possible to use this detachable SHPM head with a variable temperature insert (VTI) for 2 K-300 K operations. A microfabricated 1μm size Hall sensor (GaAs/AlGaAs) with integrated scanning tunneling microscopy tip was used for magnetic imaging. The field sensitivity of the Hall sensor was better than 1 mG/√Hz at 1 kHz bandwidth at 4 K. Both the domain structure and topography of LiHoF4, which is a transverse-field Ising model ferromagnet which orders below TC = 1.53 K, were imaged simultaneously below 40 mK.

  16. Carbon-fiber tips for scanning probe microscopes and molecular electronics experiments.

    Science.gov (United States)

    Rubio-Bollinger, Gabino; Castellanos-Gomez, Andres; Bilan, Stefan; Zotti, Linda A; Arroyo, Carlos R; Agraït, Nicolás; Cuevas, Juan Carlos

    2012-05-15

    We fabricate and characterize carbon-fiber tips for their use in combined scanning tunneling and force microscopy based on piezoelectric quartz tuning fork force sensors. An electrochemical fabrication procedure to etch the tips is used to yield reproducible sub-100-nm apex. We also study electron transport through single-molecule junctions formed by a single octanethiol molecule bonded by the thiol anchoring group to a gold electrode and linked to a carbon tip by the methyl group. We observe the presence of conductance plateaus during the stretching of the molecular bridge, which is the signature of the formation of a molecular junction.

  17. Forensic Scanning Electron Microscope

    Science.gov (United States)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  18. Photon scanning tunneling microscope in combination with a force microscope

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Tack, R.G.; van Hulst, N.F.; Bölger, B.; Bölger, B.

    1994-01-01

    The simultaneous operation of a photon scanning tunneling microscope with an atomic force microscope is presented. The use of standard atomic force silicon nitride cantilevers as near-field optical probes offers the possibility to combine the two methods. Vertical forces and torsion are detected

  19. mK-Scanning Probe Microscope(mK-SPM) operating in a Cryogen-Free Dilution Refrigerator at 20mK

    Science.gov (United States)

    Dede, Munir; Karci, Ozgur; Snelling, Chris; Oral, Ahmet

    2012-02-01

    Dramatic increase in liquid helium price limits the usage of cryogenic equipment. Dry cryogen-free dilution refrigerators(DR) systems are promising platforms to run mK-Scanning Probe Microscopes(mK-SPM) systems with a number of operating modes: STM, AFM, MFM, EFM, SSRM, PFM, etc. We present the design of a mK-Scanning Probe Microscope (mK-SPM) operating in a cryogen-free DR. An Oxford Instrument cryogen-free DR(Triton DR200) with 200uW cooling power and 7mK base temperature is used for the experiments. A 1W Pulse Tube cryocooler is integrated into the DR. After wiring and attaching the microscope we achieved 20mK base temperature. Piezo driven Stick slip coarse approach mechanism is used to bring the sample in to close proximity of the sample. In these initial results we deliberately did not take any precautions to isolate the pumping lines, attached to the DR and the DR itself. The turbomolecular pump was attached directly to the top plate of the DR. We first tested our mK-SPM in Scanning Tunnelling Microscope (STM) mode as it is the most sensitive of the SPM techniques. An image, using a gold coated 6μm period calibration grating at 20mK, obtained under these rudimentary conditions.

  20. Optical method for distance and displacement measurements of the probe-sample separation in a scanning near-field optical microscope

    International Nuclear Information System (INIS)

    Santamaria, L.; Siller, H. R.; Garcia-Ortiz, C. E.; Cortes, R.; Coello, V.

    2016-01-01

    In this work, we present an alternative optical method to determine the probe-sample separation distance in a scanning near-field optical microscope. The experimental method is based in a Lloyd’s mirror interferometer and offers a measurement precision deviation of ∼100 nm using digital image processing and numerical analysis. The technique can also be strategically combined with the characterization of piezoelectric actuators and stability evaluation of the optical system. It also opens the possibility for the development of an automatic approximation control system valid for probe-sample distances from 5 to 500 μm.

  1. Optical method for distance and displacement measurements of the probe-sample separation in a scanning near-field optical microscope

    Energy Technology Data Exchange (ETDEWEB)

    Santamaria, L.; Siller, H. R. [Tecnológico de Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, N.L., 64849 (Mexico); Garcia-Ortiz, C. E., E-mail: cegarcia@cicese.mx [CONACYT Research Fellow – CICESE, Unidad Monterrey, Alianza Centro 504, Apodaca, NL, 66629 (Mexico); Cortes, R.; Coello, V. [CICESE, Unidad Monterrey, PIIT, Alianza Centro 504, Apodaca, NL, 66629 (Mexico)

    2016-04-15

    In this work, we present an alternative optical method to determine the probe-sample separation distance in a scanning near-field optical microscope. The experimental method is based in a Lloyd’s mirror interferometer and offers a measurement precision deviation of ∼100 nm using digital image processing and numerical analysis. The technique can also be strategically combined with the characterization of piezoelectric actuators and stability evaluation of the optical system. It also opens the possibility for the development of an automatic approximation control system valid for probe-sample distances from 5 to 500 μm.

  2. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization.

    Science.gov (United States)

    Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris

    2014-12-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  3. Anisotropic excitation of surface plasmon polaritons on a metal film by a scattering-type scanning near-field microscope with a non-rotationally-symmetric probe tip

    Directory of Open Access Journals (Sweden)

    Walla Frederik

    2018-01-01

    Full Text Available We investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM. The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.

  4. Shear force distance control in a scanning near-field optical microscope: in resonance excitation of the fiber probe versus out of resonance excitation

    International Nuclear Information System (INIS)

    Lapshin, D.A.; Letokhov, V.S.; Shubeita, G.T.; Sekatskii, S.K.; Dietler, G.

    2004-01-01

    The experimental results of the direct measurement of the absolute value of interaction force between the fiber probe of a scanning near-field optical microscope (SNOM) operated in shear force mode and a sample, which were performed using combined SNOM-atomic force microscope setup, are discussed for the out-of-resonance fiber probe excitation mode. We demonstrate that the value of the tapping component of the total force for this mode at typical dither amplitudes is of the order of 10 nN and thus is quite comparable with the value of this force for in resonance fiber probe excitation mode. It is also shown that for all modes this force component is essentially smaller than the usually neglected static attraction force, which is of the order of 200 nN. The true contact nature of the tip-sample interaction during the out of resonance mode is proven. From this, we conclude that such a detection mode is very promising for operation in liquids, where other modes encounter great difficulties

  5. Scanning probe microscopy

    International Nuclear Information System (INIS)

    Mainsbridge, B.

    1994-01-01

    In late 1959, Richard Feynman observed that manoeuvring atoms was something that could be done in principle but has not been done, 'because we are too big'. In 1982, the scanning tunnelling microscope (STM) was invented and is now a central tool for the construction of nanoscale devices in what was known as molecular engineering, and now, nanotechnology. The principles of the microscope are outlined and references are made to other scanning devices which have evolved from the original invention. The method of employment of the STM as a machine tool is described and references are made to current speculations on applications of the instrument in nanotechnology. A short bibliography on this topic is included. 27 refs., 7 figs

  6. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement

    Science.gov (United States)

    Hwang, Gwangseok; Chung, Jaehun; Kwon, Ohmyoung

    2014-11-01

    The application of conventional scanning thermal microscopy (SThM) is severely limited by three major problems: (i) distortion of the measured signal due to heat transfer through the air, (ii) the unknown and variable value of the tip-sample thermal contact resistance, and (iii) perturbation of the sample temperature due to the heat flux through the tip-sample thermal contact. Recently, we proposed null-point scanning thermal microscopy (NP SThM) as a way of overcoming these problems in principle by tracking the thermal equilibrium between the end of the SThM tip and the sample surface. However, in order to obtain high spatial resolution, which is the primary motivation for SThM, NP SThM requires an extremely sensitive SThM probe that can trace the vanishingly small heat flux through the tip-sample nano-thermal contact. Herein, we derive a relation between the spatial resolution and the design parameters of a SThM probe, optimize the thermal and electrical design, and develop a batch-fabrication process. We also quantitatively demonstrate significantly improved sensitivity, lower measurement noise, and higher spatial resolution of the fabricated SThM probes. By utilizing the exceptional performance of these fabricated probes, we show that NP SThM can be used to obtain a quantitative temperature profile with nanoscale resolution independent of the changing tip-sample thermal contact resistance and without perturbation of the sample temperature or distortion due to the heat transfer through the air.

  7. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.

    Science.gov (United States)

    Hwang, Gwangseok; Chung, Jaehun; Kwon, Ohmyoung

    2014-11-01

    The application of conventional scanning thermal microscopy (SThM) is severely limited by three major problems: (i) distortion of the measured signal due to heat transfer through the air, (ii) the unknown and variable value of the tip-sample thermal contact resistance, and (iii) perturbation of the sample temperature due to the heat flux through the tip-sample thermal contact. Recently, we proposed null-point scanning thermal microscopy (NP SThM) as a way of overcoming these problems in principle by tracking the thermal equilibrium between the end of the SThM tip and the sample surface. However, in order to obtain high spatial resolution, which is the primary motivation for SThM, NP SThM requires an extremely sensitive SThM probe that can trace the vanishingly small heat flux through the tip-sample nano-thermal contact. Herein, we derive a relation between the spatial resolution and the design parameters of a SThM probe, optimize the thermal and electrical design, and develop a batch-fabrication process. We also quantitatively demonstrate significantly improved sensitivity, lower measurement noise, and higher spatial resolution of the fabricated SThM probes. By utilizing the exceptional performance of these fabricated probes, we show that NP SThM can be used to obtain a quantitative temperature profile with nanoscale resolution independent of the changing tip-sample thermal contact resistance and without perturbation of the sample temperature or distortion due to the heat transfer through the air.

  8. Development of Scanning Ultrafast Electron Microscope Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Kimberlee Chiyoko [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Talin, Albert Alec [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michael, Joseph R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.

  9. Scanning Miniature Microscopes without Lenses

    Science.gov (United States)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the

  10. Development of a Micro-SPM (Scanning Probe Microscope by Post-Assembly of a MEMS-Stage and an Independent Cantilever

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2007-08-01

    Full Text Available The development of miniature scanning probe microscopes (SPM on the basis of the MEMS technique has gained more and more interest. Here a novel approach is presented to realize a micro-SPM, in which by means of post-assembly a conventional cantilever is mounted onto a MEMS positioning stage and used to detect the topography variation of the surface under test. Compared with other integrated micro-SPMs, the proposed micro-SPM can maintain the lateral resolution by simply renewing its cantilever in use, and therefore features low cost, practicability and longer lifetime. Preliminary experimental results are reported, which demonstrate that the proposed microSPM can be realized.

  11. Operation of a scanning near field optical microscope in reflection in combination with a scanning force microscope

    NARCIS (Netherlands)

    van Hulst, N.F.; Moers, M.H.P.; Moers, M.H.P.; Noordman, O.F.J.; Noordman, O.F.J.; Faulkner, T.; Segerink, Franciscus B.; van der Werf, Kees; de Grooth, B.G.; Bölger, B.; Bölger, B.

    1992-01-01

    Images obtained with a scanning near field optical microscope (SNOM) operating in reflection are presented. We have obtained the first results with a SiN tip as optical probe. The instrument is simultaneously operated as a scanning force microscope (SFM). Moreover, the instrument incorporates an

  12. Dual-MWCNT Probe Thermal Sensor Assembly and Evaluation Based on Nanorobotic Manipulation inside a Field-Emission-Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Zhan Yang

    2015-03-01

    Full Text Available We report a thermal sensor composed of two multiwalled carbon nano-tubes (MWCNTs inside a field-emission-scanning electron microscope. The sensor was assembled using a nanorobotic manipulation system, which was used to construct a probe tip in order to detect the local environment of a single cell. An atomic force microscopy (AFM cantilever was used as a substrate; the cantilever was composed of Si3N4 and both sides were covered with a gold layer. MWCNTs were individually assembled on both sides of the AFM cantilever by employing nanorobotic manipulation. Another AFM cantilever was subsequently used as an end effector to manipulate the MWCNTs to touch each other. Electron-beam-induced deposition (EBID was then used to bond the two MWCNTs. The MWCNT probe thermal sensor was evaluated inside a thermostated container in the temperature range from 25°C to 60°C. The experimental results show the positive characteristics of the temperature coefficient of resistance (TCR.

  13. Scanning optical microscope with long working distance objective

    Science.gov (United States)

    Cloutier, Sylvain G.

    2010-10-19

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  14. Fiber coupled ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    We report on a scanning tunneling microscope with a photoconductive gate in the tunneling current circuit. The tunneling tip is attached to a coplanar transmission line with an integrated photoconductive switch. The switch is illuminated through a fiber which is rigidly attached to the switch...... waveguide. The measurements show that the probe works as a transient voltage detector in contact and a capacitively coupled transient field detector in tunneling mode. We do not measure the transient voltage change in the ohmic tunneling current. In this sense, the spatial resolution for propagating...

  15. In situ voltammetric de-alloying of fuel cell catalyst electrode layer: A combined scanning electron microscope/electron probe micro-analysis study

    Science.gov (United States)

    Srivastava, Ratndeep; Mani, Prasanna; Strasser, Peter

    In situ voltammetric de-alloying, i.e. partial selective dissolution of less noble alloy components, is a recently proposed, effective strategy to prepare active electrocatalysts for the oxygen reduction reaction (ORR) [S. Koh, P. Strasser, J. Am. Chem. Soc. 129 (2007) 12624-12625; R. Srivastava, P. Mani, N. Hahn, P. Strasser, Angew. Chem. Int. Ed. 46 (2007) 8988-8991]. However, in situ de-alloying of bimetallics inside electrode layers of membrane-electrode-assemblies (MEAs) seems to defy the requirement of keeping the membrane free of cationic contaminants; yet, when followed by ion exchange, de-alloyed cathodes result in previously unachieved single cell activities of polymer electrolyte membrane fuel cell cathode layers of up to 0.4 A mg Pt -1 at 900 mV cell voltage. The effects of voltammetric Cu de-alloying on the MEA have never been studied before. In the present study, we therefore address this issue and report detailed scanning electron microscope (SEM) imaging of the morphology and electron probe micro-analysis (EPMA) mapping of a MEA at various stages of the de-alloying and ion-exchange process. We investigate the significant loss of Cu from the cathode particle catalyst after de-alloying, demonstrate how the membrane can be cleaned from Cu-ion contamination using ion exchange with protons from liquid inorganic acids, and show that Cu ion exchange does ultimately not affect the activated catalyst particles inside the cathode layer. We correlate the microscopic study of the MEA with its cyclic voltammetric response curves as well as the single cell polarization data.

  16. The resolution limit of scanning capacitance microscopes

    CERN Document Server

    Lany, S

    2003-01-01

    The contrast formation and the achievable lateral resolution of a scanning capacitance microscope have been simulated using the finite element method. On conducting surfaces, a resolution of about 2 nm is expected with probes with about 5-10 nm radius of curvature. At smaller radii, the resolution degrades due to the decrease of the local contribution to the integral capacitance sensed by the probe. The lateral resolution is less affected by the radius of the tip than by the tip-to-conducting base distance, though sharper tips produce higher contrast. With a tip radius of approximately 25 nm, resolution of features 5 nm in diameter has been achieved on gold-coated silicon.

  17. A Student-Built Scanning Tunneling Microscope

    Science.gov (United States)

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  18. Scanning vector Hall probe microscope

    Czech Academy of Sciences Publication Activity Database

    Fedor, J.; Cambel, V.; Gregušová, D.; Hanzelka, Pavel; Dérer, J.; Volko, J.

    2003-01-01

    Roč. 74, č. 12 (2003), s. 5105 - 5110 ISSN 0034-6748 Institutional research plan: CEZ:AV0Z2065902 Keywords : VHPM * Hall sensor * Helium cryostat Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.343, year: 2003 http://web. ebscohost .com/ehost/pdf?vid=8&hid=115&sid=a7c0555a-21f4-4932-b1c6-a308ac4dd50b%40sessionmgr2

  19. Nanobits: customizable scanning probe tips

    DEFF Research Database (Denmark)

    Kumar, Rajendra; Shaik, Hassan Uddin; Sardan Sukas, Özlem

    2009-01-01

    We present here a proof-of-principle study of scanning probe tips defined by planar nanolithography and integrated with AFM probes using nanomanipulation. The so-called 'nanobits' are 2-4 mu m long and 120-150 nm thin flakes of Si3N4 or SiO2, fabricated by electron beam lithography and standard...... or dislocation of the tips of the nanobit after several scans. This approach allows an unprecedented freedom in adapting the shape and size of scanning probe tips to the surface topology or to the specific application....... silicon processing. Using a microgripper they were detached from an array and fixed to a standard pyramidal AFM probe or alternatively inserted into a tipless cantilever equipped with a narrow slit. The nanobit-enhanced probes were used for imaging of deep trenches, without visible deformation, wear...

  20. Scanning Electron Microscope Analysis System

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides the capability to examine surfaces microscopically with high resolution (5 nanometers), perform micro chemical analyses of these surfaces, and...

  1. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution.

    Science.gov (United States)

    Henn, T; Kiessling, T; Ossau, W; Molenkamp, L W; Biermann, K; Santos, P V

    2013-12-01

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast "white light" supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  2. Multibeam scanning electron microscope : Experimental results

    NARCIS (Netherlands)

    Mohammadi-Gheidari, A.; Hagen, C.W.; Kruit, P.

    2010-01-01

    The authors present the first results obtained with their multibeam scanning electron microscope. For the first time, they were able to image 196 (array of 14×14) focused beams of a multielectron beam source on a specimen using single beam scanning electron microscope (SEM) optics. The system

  3. Measuring voltage transients with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    We use an ultrafast scanning tunneling microscope to resolve propagating voltage transients in space and time. We demonstrate that the previously observed dependence of the transient signal amplitude on the tunneling resistance was only caused by the electrical sampling circuit. With a modified c......-gating photoconductive switch with a rigidly attached fiber, the probe is scanned without changing the probe characteristics. (C) 1997 American Institute of Physics.......We use an ultrafast scanning tunneling microscope to resolve propagating voltage transients in space and time. We demonstrate that the previously observed dependence of the transient signal amplitude on the tunneling resistance was only caused by the electrical sampling circuit. With a modified...... circuit, where the tunneling tip is directly connected to the current amplifier of the scanning tunneling microscope, this dependence is eliminated. Ail results can be explained with coupling through the geometrical capacitance of the tip-electrode junction. By illuminating the current...

  4. Confocal scanning microscope for nuclear photoemulsion

    International Nuclear Information System (INIS)

    Batusov, Yu.A.; Kovalev, Yu.S.; Soroko, L.M.

    2005-01-01

    The application of the confocal scanning microscope to the objects in the nuclear photoemulsion is described. An array of 27 microtomograms of single silver grain is shown. The cross sections of the same particle track of diameter 1 μm, detected by means of the confocal scanning microscope with open and annular apertures, are presented. It was shown that the confocal scanning microscope opens indeed new opportunities for the nuclear photoemulsion technique to get previously inaccessible information for physics of the short-living particles

  5. Cathodoluminescence in the scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kociak, M., E-mail: mathieu.kociak@u-psud.fr [Laboratoire de Physique des Solides, Université Paris-SudParis-Sud, CNRS-UMR 8502, Orsay 91405 (France); Zagonel, L.F. [“Gleb Wataghin” Institute of Physics University of Campinas - UNICAMP, 13083-859 Campinas, São Paulo (Brazil)

    2017-05-15

    Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications. - Highlights: • Reviews the field of STEM-CL. • Introduces the technical requirements and challenges for STEM-CL. • Introduces the different types of excitations probed by STEM-CL. • Gives comprehensive overview of the last fifteenth years in the field.

  6. Assessing Biological Samples with Scanning Probes

    Science.gov (United States)

    Engel, A.

    Scanning probe microscopes raster-scan an atomic scale sensor across an object. The scanning transmission electron microscope (STEM) uses an electron beam focused on a few Å, and measures the electron scattering power of the irradiated column of sample matter. Not only does the STEM create dark-filed images of superb clarity, but it also delivers the mass of single protein complexes within a range of 100 kDa to 100 MDa. The STEM appears to be the tool of choice to achieve high-throughput visual proteomics of single cells. In contrast, atomically sharp tips sample the object surface in the scanning tunneling microscope as well as the atomic force microscopes (AFM). Because the AFM can be operated on samples submerged in a physiological salt solution, biomacromolecules can be observed at work. Recent experiments provided new insights into the organization of different native biological membranes, and allowed molecular interaction forces, that determine protein folds and ligand binding, to be measured.

  7. Scanning Microscopes Using X Rays and Microchannels

    Science.gov (United States)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the

  8. Direct measurement of surface-state conductance by microscopic four-point probe method

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanikawa, T.

    2002-01-01

    For in situ measurements of local electrical conductivity of well defined crystal surfaces in ultrahigh vacuum, we have developed microscopic four-point probes with a probe spacing of several micrometres, installed in a scanning-electron - microscope/electron-diffraction chamber. The probe...

  9. ScanImage: Flexible software for operating laser scanning microscopes

    Science.gov (United States)

    Pologruto, Thomas A; Sabatini, Bernardo L; Svoboda, Karel

    2003-01-01

    Background Laser scanning microscopy is a powerful tool for analyzing the structure and function of biological specimens. Although numerous commercial laser scanning microscopes exist, some of the more interesting and challenging applications demand custom design. A major impediment to custom design is the difficulty of building custom data acquisition hardware and writing the complex software required to run the laser scanning microscope. Results We describe a simple, software-based approach to operating a laser scanning microscope without the need for custom data acquisition hardware. Data acquisition and control of laser scanning are achieved through standard data acquisition boards. The entire burden of signal integration and image processing is placed on the CPU of the computer. We quantitate the effectiveness of our data acquisition and signal conditioning algorithm under a variety of conditions. We implement our approach in an open source software package (ScanImage) and describe its functionality. Conclusions We present ScanImage, software to run a flexible laser scanning microscope that allows easy custom design. PMID:12801419

  10. Scanning tunneling microscope assembly, reactor, and system

    Science.gov (United States)

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  11. Excitation-scanning hyperspectral imaging microscope

    Science.gov (United States)

    Favreau, Peter F.; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2014-01-01

    Abstract. Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909

  12. Scanning Probe Microscopy at 650 °C in Air

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Jacobsen, Torben; Nørgaard, Anne-Mette

    2009-01-01

    The controlled atmosphere high temperature scanning probe microscope was designed to study the electrical properties of surfaces at elevated temperatures by using the probe as an electrode. The capability of a simultaneous acquisition of topographical and electrical data for the same surface area...

  13. Transient measurements with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    We use a photoconductively gated ultrafast scanning tunneling microscope to resolve laser-induced transients on transmission lines and photoconductors. The photoconductive switch on the tunneling probe is illuminated through a rigidly attached fiber. The use of the fiber enables us to scan across...... the transmission line while the change in delay time between pump beam (on the sample) and probe beam (on the probe) provides the temporal information. The investigated photoconductor sample is a low-temperature-grown GaAs layer placed on a sapphire substrate with a thin, semitransparent gold layer. In tunneling...... mode the probe is sensitive to laser-induced field changes in the semiconductor layer. Laser-induced transient signals of 2.2 ps widths are detected. As for the transmission lines, the signals can be explained by a capacitive coupling across the tunneling gap....

  14. Analytical scanning evanescent microwave microscope and control stage

    Science.gov (United States)

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  15. Microscopic and electronic structure of semimetallic Sb and Semiconducting AlSb fabricated by nanoscale electrodeposition: An in situ scanning probe investigation.

    Science.gov (United States)

    Mann, O; Aravinda, C L; Freyland, W

    2006-11-02

    The nanoscale electrocrystallization of pure Sb and the compound semiconductor AlSb on Au(111) has been studied by in situ scanning probe techniques (STM and STS) employing an ionic liquid electrolyte, {AlCl3-[C4mim]+Cl-} (1:1) containing SbCl3. The characteristic changes of the electronic structures with varying potentials have been probed for the first time by normalized differential conductance spectra, (dI/dU)/(I/U). In the underpotential deposition range of Sb the formation of two layers is observed. For the first monolayer a (square root 3 x square root 3)R30 degrees structure is determined from atomically resolved STM images. During the deposition and dissolution of the Sb monolayers characteristic wormlike or spinodal structures appear indicating surface alloying of antimony with the gold substrate. Under overpotential conditions two different Sb structures have been observed. If the deposition potential is continuously stepped to -0.1 V, Sb nanostripes form. On the other hand, randomly dispersed small clusters occur if the potential is jumped from 0.0 to -0.3 V vs Al/Al(III). Both modifications exhibit typical semimetallic behavior as shown by the STS spectra. At -1.1 V the cyclic voltammogram shows a clear reduction wave that is assigned to AlSb compound formation. Deposits in this potential range are characterized by a homogeneous distribution of clusters with diameters of approximately 20 nm. Conductance spectra of these clusters exhibit the main features of the electronic structure of the bulk semiconductor AlSb, with a band gap of 2.0 +/- 0.2 eV. Electrodeposition experiments on both sides of the compound deposition potential show a strong doping effect that is manifest in the corresponding conductance spectra.

  16. Theory for Spin Selective Andreev Re ection in Vortex Core of Topological Superconductor: Majorana Zero Modes on Spherical Surface and Application to Spin Polarized Scanning Tunneling Microscope Probe

    Science.gov (United States)

    Zhang, Fu-Chun; Hu, Lun-Hui; Li, Chuang; Xu, Dong-Hui; Zhou, Yi

    Majorana zero modes (MZMs) have been predicted to exist in the topological insulator (TI)/superconductor (SC) heterostructure. Recent spin polarized scanning tunneling microscope(STM) experiment has observed spin-polarization dependence of the zero bias differential tunneling conductance at the center of vortex core. Here we consider a helical electron system described by a Rashba spin orbit coupling Hamiltonian on a spherical surface with a s-wave superconducting pairing due to proximity effect. We examine in-gap excitations of a pair of vortices with one at the north pole and the other at the south pole. While the MZM is not a spin eigenstate, the spin wavefunction of the MZM at the center of the vortex core, r = 0, is parallel to the magnetic field, and the local Andreev reflection of the MZM is spin selective, namely occurs only when the STM tip has the spin polarization parallel to the magnetic field, similar to the case in 1-dimensional nanowire. The total local differential tunneling conductance consists of the normal term proportional to the local density of states and an additional term arising from the Andreev reflection. We apply our theory to examine the recently reported spin-polarized STM experiments and show good agreement with the experiments

  17. Polarized differential-phase laser scanning microscope

    International Nuclear Information System (INIS)

    Chou Chien; Lyu, C.-W.; Peng, L.-C.

    2001-01-01

    A polarized differential-phase laser scanning microscope, which combines a polarized optical heterodyne Mach-Zehnder interferometer and a differential amplifier to scan the topographic image of a surface, is proposed. In the experiment the differential amplifier, which acts as a PM-AM converter, in the experiment, converting phase modulation (PM) into amplitude modulation (AM). Then a novel, to our knowledge, phase demodulator was proposed and implemented for the differential-phase laser scanning microscope. An optical grating (1800 lp/mm) was imaged. The lateral and the depth resolutions of the imaging system were 0.5 μm and 1 nm, respectively. The detection accuracy, which was limited by the reflectivity variation of the test surface, is discussed

  18. Performance of the SRRC scanning photoelectron microscope

    CERN Document Server

    Hong, I H; Yin, G C; Wei, D H; Juang, J M; Dann, T E; Klauser, R; Chuang, T J; Chen, C T; Tsang, K L

    2001-01-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed.

  19. Performance of the SRRC scanning photoelectron microscope

    International Nuclear Information System (INIS)

    Hong, I.-H.; Lee, T.-H.; Yin, G.-C.; Wei, D.-H.; Juang, J.-M.; Dann, T.-E.; Klauser, R.; Chuang, T.J.; Chen, C.T.; Tsang, K.-L.

    2001-01-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed

  20. Seamless stitching of tile scan microscope images.

    Science.gov (United States)

    Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R

    2015-06-01

    For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos. © 2015 The Authors Journal of Microscopy © 2015 Royal

  1. Quantitative characterization of semiconductor structures with a scanning microwave microscope.

    Science.gov (United States)

    Korolyov, S A; Reznik, A N

    2018-02-01

    In this work, our earlier method for measuring resistance R sh of semiconductor films with a near-field scanning microwave microscope [A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016)] is studied in a 0.1 kΩ/sq microscope model in the form of a monopole or dipole antenna interacting with an arbitrary layered structure. The model fitting parameters are determined from the data yielded by calibration measurements on a system of etalon samples. The performance of the method was analyzed experimentally, using strip-probe and coaxial-probe microscopes in the frequency range of 1-3 GHz. For test structures, we used doped GaN films on the Al 2 O 3 substrate and also transistor structures based on the AlGaN/GaN heterojunction and AlGaAs/GaAs/InGaAs/GaAs/AlGaAs quantum well with a conducting channel. The obtained microwave microscope data were compared with the results of measurements by the van der Pauw method. At the first stage of the experiment, the calibration etalons were bulk homogeneous samples with different permittivity/conductivity values. In this case, satisfactory agreement between the microscope and the van der Pauw data was obtained with a strip probe on all tested samples in the entire range of R sh . With a coaxial probe, such accordance was observed only in high-ohmic samples with R sh > 1 kΩ/sq. The use of GaN film structures as a calibration system helped to increase the accuracy of the coaxial-probe-aided measurement of R sh to a level of ∼10%.

  2. Scanning electron microscope view of iron crystal

    Science.gov (United States)

    1972-01-01

    A scanning electron microscope photograph of iron crystals which grow in a small vug or cavity in a recrystallized breccia (fragmented rock) from the Apollo 15 Hadley-Apennino lunar landing site. The largest crystal is three microns across. Perfectly developed crystals such as these indicate slow formation from a hot vapor as the rock was cooling. The crystals are resting on an interlocking lattice of pyroxene (calsium-magnesium-iron silicate).

  3. Scanning Nanospin Ensemble Microscope for Nanoscale Magnetic and Thermal Imaging.

    Science.gov (United States)

    Tetienne, Jean-Philippe; Lombard, Alain; Simpson, David A; Ritchie, Cameron; Lu, Jianing; Mulvaney, Paul; Hollenberg, Lloyd C L

    2016-01-13

    Quantum sensors based on solid-state spins provide tremendous opportunities in a wide range of fields from basic physics and chemistry to biomedical imaging. However, integrating them into a scanning probe microscope to enable practical, nanoscale quantum imaging is a highly challenging task. Recently, the use of single spins in diamond in conjunction with atomic force microscopy techniques has allowed significant progress toward this goal, but generalization of this approach has so far been impeded by long acquisition times or by the absence of simultaneous topographic information. Here, we report on a scanning quantum probe microscope which solves both issues by employing a nanospin ensemble hosted in a nanodiamond. This approach provides up to an order of magnitude gain in acquisition time while preserving sub-100 nm spatial resolution both for the quantum sensor and topographic images. We demonstrate two applications of this microscope. We first image nanoscale clusters of maghemite particles through both spin resonance spectroscopy and spin relaxometry, under ambient conditions. Our images reveal fast magnetic field fluctuations in addition to a static component, indicating the presence of both superparamagnetic and ferromagnetic particles. We next demonstrate a new imaging modality where the nanospin ensemble is used as a thermometer. We use this technique to map the photoinduced heating generated by laser irradiation of a single gold nanoparticle in a fluid environment. This work paves the way toward new applications of quantum probe microscopy such as thermal/magnetic imaging of operating microelectronic devices and magnetic detection of ion channels in cell membranes.

  4. CHAMP (Camera, Handlens, and Microscope Probe)

    Science.gov (United States)

    Mungas, Greg S.; Boynton, John E.; Balzer, Mark A.; Beegle, Luther; Sobel, Harold R.; Fisher, Ted; Klein, Dan; Deans, Matthew; Lee, Pascal; Sepulveda, Cesar A.

    2005-01-01

    CHAMP (Camera, Handlens And Microscope Probe)is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As a robotic arm-mounted imager, CHAMP supports stereo imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision rangefinding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. CHAMP was originally developed through the Mars Instrument Development Program (MIDP) in support of robotic field investigations, but may also find application in new areas such as robotic in-orbit servicing and maintenance operations associated with spacecraft and human operations. We overview CHAMP'S instrument performance and basic design considerations below.

  5. CHAMP - Camera, Handlens, and Microscope Probe

    Science.gov (United States)

    Mungas, G. S.; Beegle, L. W.; Boynton, J.; Sepulveda, C. A.; Balzer, M. A.; Sobel, H. R.; Fisher, T. A.; Deans, M.; Lee, P.

    2005-01-01

    CHAMP (Camera, Handlens And Microscope Probe) is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As an arm-mounted imager, CHAMP supports stereo-imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision range-finding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. Currently designed with a filter wheel with 4 different filters, so that color and black and white images can be obtained over the entire Field-of-View, future designs will increase the number of filter positions to include 8 different filters. Finally, CHAMP incorporates controlled white and UV illumination so that images can be obtained regardless of sun position, and any potential fluorescent species can be identified so the most astrobiologically interesting samples can be identified.

  6. Optical characterication of probes for photon scanning tunnelling microscopy

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    The photon scanning tunnelling microscope is a well-established member of the family of scanning near-field optical microscopes used for optical imaging at the sub-wavelength scale. The quality of the probes, typically pointed uncoated optical fibres, used is however difficult to evaluate...... in a direct manner and has most often been inferred from the apparent quality of recorded optical images. Complicated near-field optical imaging characteristics, together with the possibility of topographically induced artefacts, however, has increased demands for a more reliable probe characterization...... technique. Here we present experimental results obtained for optical characterization of two different probes by imaging of a well-specified near-field intensity distribution at various spatial frequencies. In particular, we observe that a sharply pointed dielectric probe can be highly suitable for imaging...

  7. Small-size low-temperature scanning tunnel microscope

    International Nuclear Information System (INIS)

    Al'tfeder, I.B.; Khajkin, M.S.

    1989-01-01

    A small-size scanning tunnel microscope, designed for operation in transport helium-filled Dewar flasks is described. The microscope design contains a device moving the pin to the tested sample surface and a piezoelectric fine positioning device. High vibration protection of the microscope is provided by its suspension using silk threads. The small-size scanning tunnel microscope provides for atomic resolution

  8. Formation of double ring patterns on Co2MnSi Heusler alloy thin film by anodic oxidation under scanning probe microscope

    OpenAIRE

    Toutam, Vijaykumar; Pandey, Himanshu; Singh, Sandeep; Budhani, R. C.

    2013-01-01

    Double ring formation on Co2MnSi (CMS) films is observed at electrical breakdown voltage during local anodic oxidation (LAO) using atomic force microscope (AFM). Corona effect and segregation of cobalt in the vicinity of the rings is studied using magnetic force microscopy and energy dispersive spectroscopy. Double ring formation is attributed to the interaction of ablated material with the induced magnetic field during LAO. Steepness of forward bias transport characteristics from the unpertu...

  9. The Scanning TMR Microscope for Biosensor Applications

    Directory of Open Access Journals (Sweden)

    Kunal N. Vyas

    2015-04-01

    Full Text Available We present a novel tunnel magnetoresistance (TMR scanning microscopeset-up capable of quantitatively imaging the magnetic stray field patterns of micron-sizedelements in 3D. By incorporating an Anderson loop measurement circuit for impedancematching, we are able to detect magnetoresistance changes of as little as 0.006%/Oe. By 3Drastering a mounted TMR sensor over our magnetic barcodes, we are able to characterisethe complex domain structures by displaying the real component, the amplitude and thephase of the sensor’s impedance. The modular design, incorporating a TMR sensor withan optical microscope, renders this set-up a versatile platform for studying and imagingimmobilised magnetic carriers and barcodes currently employed in biosensor platforms,magnetotactic bacteria and other complex magnetic domain structures of micron-sizedentities. The quantitative nature of the instrument and its ability to produce vector maps ofmagnetic stray fields has the potential to provide significant advantages over other commonlyused scanning magnetometry techniques.

  10. The poor man's scanning force microscope

    International Nuclear Information System (INIS)

    Guerra-Vela, Claudio; Zypman, Fredy R.

    2002-01-01

    The Macroscope (Zypman F R and Guerra-Vela C 2001 Eur. J. Phys. 22 17-30), an educational large-scale version of a scanning force microscope's cantilever-tip system, is used in the presence of nonlinear forces. This paper presents quantitative experimental evidence confirming the validity of the beam model (BM) (Eppel S J, Todd B A and Zypman F R 2000 Materials Issues and Modeling for Device Nanofabrication ed L Merhari et al (Pittsburgh, PA: Materials Research Society) pp 584, 189) as a proper reconstruction algorithm. As a teaching laboratory experiment, the force measurements are first done directly with a variety of dynamometer-like setups. Subsequently, the measurements are performed indirectly with the Macroscope from the cantilever resonant frequency shifts and the BM algorithm. Two central results of this work lie in its ability to compare forces obtained by traditional algorithms with known forces, and to illustrate in a hands-on fashion the principles behind the working of a scanning force microscope. (author)

  11. Formation of double ring patterns on Co2MnSi Heusler alloy thin film by anodic oxidation under scanning probe microscope

    International Nuclear Information System (INIS)

    Toutam, Vijaykumar; Singh, Sandeep; Pandey, Himanshu; Budhani, R. C.

    2013-01-01

    Double ring formation on Co 2 MnSi (CMS) films is observed at electrical breakdown voltage during local anodic oxidation (LAO) using atomic force microscope (AFM). Corona effect and segregation of cobalt in the vicinity of the rings is studied using magnetic force microscopy and energy dispersive spectroscopy. Double ring formation is attributed to the interaction of ablated material with the induced magnetic field during LAO. Steepness of forward bias transport characteristics from the unperturbed region of the CMS film suggest a non equilibrium spin contribution. Such mesoscopic textures in magnetic films by AFM tip can be potentially used for memory storage applications.

  12. Formation of double ring patterns on Co2MnSi Heusler alloy thin film by anodic oxidation under scanning probe microscope

    Directory of Open Access Journals (Sweden)

    Vijaykumar Toutam

    2013-02-01

    Full Text Available Double ring formation on Co2MnSi (CMS films is observed at electrical breakdown voltage during local anodic oxidation (LAO using atomic force microscope (AFM. Corona effect and segregation of cobalt in the vicinity of the rings is studied using magnetic force microscopy and energy dispersive spectroscopy. Double ring formation is attributed to the interaction of ablated material with the induced magnetic field during LAO. Steepness of forward bias transport characteristics from the unperturbed region of the CMS film suggest a non equilibrium spin contribution. Such mesoscopic textures in magnetic films by AFM tip can be potentially used for memory storage applications.

  13. Formation of double ring patterns on Co2MnSi Heusler alloy thin film by anodic oxidation under scanning probe microscope

    Science.gov (United States)

    Toutam, Vijaykumar; Pandey, Himanshu; Singh, Sandeep; Budhani, R. C.

    2013-02-01

    Double ring formation on Co2MnSi (CMS) films is observed at electrical breakdown voltage during local anodic oxidation (LAO) using atomic force microscope (AFM). Corona effect and segregation of cobalt in the vicinity of the rings is studied using magnetic force microscopy and energy dispersive spectroscopy. Double ring formation is attributed to the interaction of ablated material with the induced magnetic field during LAO. Steepness of forward bias transport characteristics from the unperturbed region of the CMS film suggest a non equilibrium spin contribution. Such mesoscopic textures in magnetic films by AFM tip can be potentially used for memory storage applications.

  14. Formation of double ring patterns on Co{sub 2}MnSi Heusler alloy thin film by anodic oxidation under scanning probe microscope

    Energy Technology Data Exchange (ETDEWEB)

    Toutam, Vijaykumar; Singh, Sandeep [National Physical Laboratory, New Delhi - 110012 (India); Pandey, Himanshu [Condensed Matter - Low Dimensional Systems Laboratory, Department of Physics, Indian Institute of Technology, Kanpur - 208016 (India); Budhani, R. C. [National Physical Laboratory, New Delhi - 110012 (India); Condensed Matter - Low Dimensional Systems Laboratory, Department of Physics, Indian Institute of Technology, Kanpur - 208016 (India)

    2013-02-15

    Double ring formation on Co{sub 2}MnSi (CMS) films is observed at electrical breakdown voltage during local anodic oxidation (LAO) using atomic force microscope (AFM). Corona effect and segregation of cobalt in the vicinity of the rings is studied using magnetic force microscopy and energy dispersive spectroscopy. Double ring formation is attributed to the interaction of ablated material with the induced magnetic field during LAO. Steepness of forward bias transport characteristics from the unperturbed region of the CMS film suggest a non equilibrium spin contribution. Such mesoscopic textures in magnetic films by AFM tip can be potentially used for memory storage applications.

  15. Use of a scanning electron microscope for characterizing semiconductor devices

    International Nuclear Information System (INIS)

    Borel, J.; Bresse, J.F.; Carme, H.; Monnier, J.

    1974-01-01

    The electron beam from the scanning microscope had three different uses: 1) in induced mode for characterizing the substrate of a P + N junction by measuring the diffusion length and in controlling surface recombination velocities; 2) for controlling Si/SiO 2 interface degradation by measuring very low frequency capacitance and for evaluating the oxide quality by measuring μ/tau: application to the fast control of any device, in this case the evolution of the current of an avalanche photodiode; 3) in using the beam as a Castaing probe for determining features of the generation volume, Si thickness on Al 2 O 3 , or Si thickness [fr

  16. Dopant profiling with the scanning electron microscope

    CERN Document Server

    Elliott, S L

    2001-01-01

    This dissertation is a detailed study of dopant profiling with the scanning electron microscope (SEM) using secondary electrons. The technique has been applied to a wide variety of doped silicon, gallium arsenide and gallium nitride semiconductor test structures as well as a metal-oxide field effect transistor and several light emitting diodes. A concise set of guide-lines are provided for users of this technique, including the optimum SEM operating conditions that should be used for maximum contrast, an image manipulation procedure, and the resolution and sensitivity limits that can be expected. Dopant contrast observed with the SEM has been studied over the past few years by a number of researchers, and a theory for the contrast has evolved. This theory considers the patch fields outside the specimen to be the dominant factor determining the secondary electron intensity. In this dissertation the contrast mechanism has been further investigated by examining the contrast at different temperatures and after su...

  17. Cathodoluminescence in the scanning transmission electron microscope.

    Science.gov (United States)

    Kociak, M; Zagonel, L F

    2017-05-01

    Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Control circuit for a scanning tunneling microscope

    Science.gov (United States)

    Munoz, Raúl C.; Villagra, Paolo; Kremer, Germán; Moraga, Luis; Vidal, Guillermo

    1998-09-01

    We have successfully built and tested a circuit designed to control a piezoelectric tube scanner having the standard single inner-electrode quartered outer-electrode configuration, using digital-to-analog (D/A) converters commercially available. To avoid noise associated with the PC, the signals transmitted by the D/A channels to the control electronics are received by instrumentation amplifiers INA 105 at the control circuit, providing 86 dB common mode rejection, thereby over four orders of magnitude of immunity to common mode noise. To prevent ground loops in the communication between the control electronics and the analog-to-digital (A/D) converters, a novel approach was used. The signals sent by the control electronics to the A/D converters were transmitted via isolation amplifiers ISO 122 followed by a 10 kHz Sallen-Key low pass filter incorporated at each output of the control circuit, providing galvanic isolation between the control electronics and the PC, thereby eliminating ground loops. The control circuit was designed to allow analog as well as digital feedback, selectable via a toggle switch. The design also incorporates the possibility of using two independent external signals to modulate the polarization of the sample and two independent external signals to modulate the piezoelectric transducer drive along the Z direction. It also incorporates the possibility of electronically canceling the slope that might occur while scanning due to the sample being tilted along the X axis (fast scan direction) and/or along the Y axis (slow scan direction). The circuit was tested using two 12 bit A/D-D/A converters DAS 1602 to control the scanner of a scanning tunneling microscope, with a home-built scanning head, electrometer, and preamplifier. With the complete system in operation but in the absence of tunneling current, the electrometer exhibits a current noise under 3 pA rms and a response time of 30 μs to a step input current, a performance that compares well

  19. High Pressure Scanning Tunneling Microscopy Studies of Adsorbate Structure and Mobility during Catalytic Reactions. Novel Design of an Ultra High Pressure, High Temperature Scanning Tunneling Microscope System for Probing Catalytic Conversions

    International Nuclear Information System (INIS)

    Tang, David Chi-Wai

    2005-01-01

    The aim of the work presented therein is to take advantage of scanning tunneling microscope's (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 C). The design of a high pressure, high temperature scanning tunneling microscope system, that is capable of monitoring reactions in situ at conditions from UHV and ambient temperature up to 1 atm and 250 C, is briefly presented along with vibrational and thermal analysis, as this system serves as a template to improve upon during the design of the new ultra high pressure, high temperature STM. Using this existing high pressure scanning tunneling microscope we monitored the co-adsorption of hydrogen, ethylene and carbon dioxide on platinum (111) and rhodium (111) crystal faces in the mTorr pressure range at 300 K in equilibrium with the gas phase. During the catalytic hydrogenation of ethylene to ethane in the absence of CO the metal surfaces are covered by an adsorbate layer that is very mobile on the time scale of STM imaging. We found that the addition of CO poisons the hydrogenation reaction and induces ordered structures on the single crystal surfaces. Several ordered structures were observed upon CO addition to the surfaces pre-covered with hydrogen and ethylene: a rotated (√19 x √19)R23.4 o on Pt(111), and domains of c(4 x 2)-CO+C 2 H 3 , previously unobserved (4 x 2)-CO+3C 2 H 3 , and (2 x 2)-3CO on Rh(111). A mechanism for CO poisoning of ethylene hydrogenation on the metal single crystals was proposed, in which CO blocks surface metal sites and reduces adsorbate mobility to limit adsorption and reaction rate of ethylene and hydrogen. In order to observe heterogeneous catalytic reactions that occur well above ambient pressure and temperature that more closely

  20. Electrical conduction through surface superstructures measured by microscopic four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanabe, F.

    2003-01-01

    For in-situ measurements of the local electrical conductivity of well-defined crystal surfaces in ultra-high vacuum, we have developed two kinds of microscopic four-point probe methods. One involves a "four-tip STM prober," in which four independently driven tips of a scanning tunneling microscope...... (STM) are used for measurements of four-point probe conductivity. The probe spacing can be changed from 500 nm to 1 mm. The other method involves monolithic micro-four-point probes, fabricated on silicon chips, whose probe spacing is fixed around several mum. These probes are installed in scanning...... compared with the macroscopic four-point probe method. Then the conduction through the topmost atomic layers (surface-state conductivity) and the influence of atomic steps on conductivity can be directly measured....

  1. Nitrogen implantation with a scanning electron microscope.

    Science.gov (United States)

    Becker, S; Raatz, N; Jankuhn, St; John, R; Meijer, J

    2018-01-08

    Established techniques for ion implantation rely on technically advanced and costly machines like particle accelerators that only few research groups possess. We report here about a new and surprisingly simple ion implantation method that is based upon a widespread laboratory instrument: The scanning electron microscope. We show that it can be utilized to ionize atoms and molecules from the restgas by collisions with electrons of the beam and subsequently accelerate and implant them into an insulating sample by the effect of a potential building up at the sample surface. Our method is demonstrated by the implantation of nitrogen ions into diamond and their subsequent conversion to nitrogen vacancy centres which can be easily measured by fluorescence confocal microscopy. To provide evidence that the observed centres are truly generated in the way we describe, we supplied a 98% isotopically enriched 15 N gas to the chamber, whose natural abundance is very low. By employing the method of optically detected magnetic resonance, we were thus able to verify that the investigated centres are actually created from the 15 N isotopes. We also show that this method is compatible with lithography techniques using e-beam resist, as demonstrated by the implantation of lines using PMMA.

  2. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  3. Processing of Graphene combining Optical Detection and Scanning Probe Lithography

    Directory of Open Access Journals (Sweden)

    Zimmermann Sören

    2015-01-01

    Full Text Available This paper presents an experimental setup tailored for robotic processing of graphene with in-situ vision based control. A robust graphene detection approach is presented applying multiple image processing operations of the visual feedback provided by a high-resolution light microscope. Detected graphene flakes can be modified using a scanning probe based lithographical process that is directly linked to the in-situ optical images. The results of this process are discussed with respect to further application scenarios.

  4. Potential Applications of Scanning Probe Microscopy in Forensic Science

    International Nuclear Information System (INIS)

    Watson, G S; Watson, J A

    2007-01-01

    The forensic community utilises a myriad of techniques to investigate a wide range of materials, from paint flakes to DNA. The various microscopic techniques have provided some of the greatest contributions, e.g., FT-IR (Fourier-transform infrared) microspectroscopy utilised in copy toner discrimination, multi-layer automobile paint fragment examination, etc, SEM-EDA (scanning electron microscopy with energy dispersive analysis) used to investigate glass fragments, fibers, and explosives, and SEM in microsampling for elemental analysis, just to name a few. This study demonstrates the ability of the Scanning Probe Microscope (SPM) to analyse human fingerprints on surfaces utilising a step-and-scan feature, enabling analysis of a larger field-of-view. We also extend a line crossings study by incorporating height analysis and surface roughness measurements. The study demonstrates the potential for SPM techniques to be utilised for forensic analysis which could complement the more traditional methodologies used in such investigations

  5. Nanobits - exchangable and customisable scanning probe tips

    DEFF Research Database (Denmark)

    Yildiz, Izzet

    Invention of atomic force microscopy (AFM) pioneered a novel aspect for the surface metrology concept. A range of scanning probe methods have been developed over the years based on different sorts of tip-surface interaction: electrical, optical, thermal, force. Reproducible and fast fabrication...... miniaturisation requires the scanning probes to adapt into finer geometries to provide higher lateral resolution. To meet these needs critical dimension AFM (CD-AFM) and deep trench AFM (DT-AFM) were invented, which use different types of AFM tips: high-aspect-ratio tips for DT-AFM and CD tips for CD...... replacement could greatly increase the efficiency and adaptability of a CD system. In this PhD study, NanoBits – nano-sized customisable and exchangeable scanning probe tips – were developed to meet the demands of current AFM applications. Two different methods were followed for the fabrication of Nano...

  6. Direct measurement of surface-state conductance by microscopic four-point probe method

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanikawa, T.

    2002-01-01

    For in situ measurements of local electrical conductivity of well defined crystal surfaces in ultrahigh vacuum, we have developed microscopic four-point probes with a probe spacing of several micrometres, installed in a scanning-electron - microscope/electron-diffraction chamber. The probe...... is precisely positioned on targeted areas of the sample surface by using piezoactuators. This apparatus enables conductivity measurement with extremely high surface sensitivity, resulting in direct access to surface-state conductivity of the surface superstructures, and clarifying the influence of atomic steps...

  7. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  8. High Pressure Scanning Tunneling Microscopy Studies of AdsorbateStructure and Mobility during Catalytic Reactions: Novel Design of anUltra High Pressure, High Temperature Scanning Tunneling MicroscopeSystem for Probing Catalytic Conversions

    Energy Technology Data Exchange (ETDEWEB)

    Tang, David Chi-Wai [Univ. of California, Berkeley, CA (United States)

    2005-05-16

    The aim of the work presented therein is to take advantage of scanning tunneling microscope’s (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 °C).

  9. High-resolution Kelvin probe microscopy in corrosion science: Scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP)

    International Nuclear Information System (INIS)

    Rohwerder, Michael; Turcu, Florin

    2007-01-01

    With the introduction of a Kelvin probe mode to atomic force microscopy, the so called scanning Kelvin probe force microscopy (SKPFM), the Kelvin probe technique finds application in a steadily increasing number of different fields, from corrosion science to microelectronics and biosciences. For many of these applications, high resolution is required as the relevant information lies in the sub-microscopic distribution of work functions or potentials, which explains the increasing interest in SKPFM. However, compared to the standard scanning Kelvin probe (SKP) technique SKPFM is prone to much more artefacts, which are often not taken into account in the interpretation of the results, as is also the case with the real physical nature of the measured data. A critical discussion of possible artefacts and on the interpretation of the data is presented in this paper, with the main focus on application in corrosion science

  10. A Scanning Electron Microscope Examination of Heligmosomum costellatum

    OpenAIRE

    YILDIZ, Kader

    2014-01-01

    The morphology of Heligmosomum costellatum, a nematode of field mice (Microtus epiraticus), was described by scanning electron microscope. The scanning electron microscopic view of this nematode revealed that the anterior end was surrounded by 2 cephalic vesicles. The 2 copulatory spicules of the male were enveloped in membrane and the male bursa was large. The female posterior end was characterized by a caudal spine. The body of this parasite had transverse ridges.

  11. Fabrication of an all-metal atomic force microscope probe

    DEFF Research Database (Denmark)

    Rasmussen, Jan Pihl; Tang, Peter Torben; Hansen, Ole

    1997-01-01

    This paper presents a method for fabrication of an all-metal atomic force microscope probe (tip, cantilever and support) for optical read-out, using a combination of silicon micro-machining and electroforming. The paper describes the entire fabrication process for a nickel AFM-probe. In addition...

  12. The Scanning Electron Microscope and the Archaeologist

    Science.gov (United States)

    Ponting, Matthew

    2004-01-01

    Images from scanning electron microscopy are now quite common and they can be of great value in archaeology. Techniques such as secondary electron imaging, backscattered electron imaging and energy-dispersive x-ray analysis can reveal information such as the presence of weevils in grain in Roman Britain, the composition of Roman coins and the…

  13. A SCANNING ELECTRON MICROSCOPIC STUDY OF HYPERCEMENTOSIS

    OpenAIRE

    Pinheiro, Beth?nia Camargo; Pinheiro, Tiago Novaes; Capelozza, Ana L?cia Alvarez; Consolaro, Alberto

    2008-01-01

    The purpose of this study was to evaluate morphological characteristics of teeth with hypercementosis that are relevant to endodontic practice. Twenty-eight extracted teeth with hypercementosis had their root apexes analyzed by scanning electron microscopy (SEM). The teeth were divided according to tooth groups and type of hypercementosis. The following aspects were examined under SEM: the contour and regularity of the root surface; presence of resorption; presence and number of apical forami...

  14. A transmission positron microscope and a scanning positron microscope being built at KEK, Japan

    International Nuclear Information System (INIS)

    Doyama, M.; Inoue, M.; Kogure, Y.; Kurihara, T.; Yagishita, A.; Shidara, T.; Nakahara, K.; Hayashi, Y.; Yoshiie, T.

    2001-01-01

    This paper reports the plans of positron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan improving used electron microscopes. The kinetic energies of positron produced by accelerators or by nuclear decays have not a unique value but show a spread over in a wide range. Positron beam will be guided near electron microscopes, a transmission electron microscope (JEM100S) and a scanning electron microscope (JSM25S). Positrons are slowed down by a tungsten foil, accelerated and focused on a nickel sheet. The monochromatic focused beam will be injected into an electron microscope. The focusing of positrons and electrons is achieved by magnetic system of the electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (orig.)

  15. Aligned ion implementation using scanning probes

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, A.

    2006-12-12

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail. (orig.)

  16. Fast scanning mode and its realization in a scanning acoustic microscope

    International Nuclear Information System (INIS)

    Ju Bingfeng; Bai Xiaolong; Chen Jian

    2012-01-01

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

  17. A scanning electron microscopic study of hypercementosis

    Directory of Open Access Journals (Sweden)

    Bethânia Camargo Pinheiro

    2008-12-01

    Full Text Available The purpose of this study was to evaluate morphological characteristics of teeth with hypercementosis that are relevant to endodontic practice. Twenty-eight extracted teeth with hypercementosis had their root apexes analyzed by scanning electron microscopy (SEM. The teeth were divided according to tooth groups and type of hypercementosis. The following aspects were examined under SEM: the contour and regularity of the root surface; presence of resorption; presence and number of apical foramina, and the diameter of the main foramen. The progression of club shape hypercementosis was directly associated with the presence of foramina and apical foramen obstruction. Cases of focal hypercementosis presented foramina on the surface, even when sidelong located in the root. Circular cementum hyperplasia form was present in 2 out of 3 residual roots, which was the highest proportion among the tooth types. The detection of a large number of foramina in the apical third of teeth with hypercementosis or even the possible existence of apical foramen obliteration contributes to understand the difficulties faced during endodontic treatment of these cases.

  18. A scanning electron microscopic study of hypercementosis.

    Science.gov (United States)

    Pinheiro, Bethânia Camargo; Pinheiro, Tiago Novaes; Capelozza, Ana Lúcia Alvarez; Consolaro, Alberto

    2008-01-01

    The purpose of this study was to evaluate morphological characteristics of teeth with hypercementosis that are relevant to endodontic practice. Twenty-eight extracted teeth with hypercementosis had their root apexes analyzed by scanning electron microscopy (SEM). The teeth were divided according to tooth groups and type of hypercementosis. The following aspects were examined under SEM: the contour and regularity of the root surface; presence of resorption; presence and number of apical foramina, and the diameter of the main foramen. The progression of club shape hypercementosis was directly associated with the presence of foramina and apical foramen obstruction. Cases of focal hypercementosis presented foramina on the surface, even when sidelong located in the root. Circular cementum hyperplasia form was present in 2 out of 3 residual roots, which was the highest proportion among the tooth types. The detection of a large number of foramina in the apical third of teeth with hypercementosis or even the possible existence of apical foramen obliteration contributes to understand the difficulties faced during endodontic treatment of these cases.

  19. Dental Wear: A Scanning Electron Microscope Study

    Directory of Open Access Journals (Sweden)

    Luca Levrini

    2014-01-01

    Full Text Available Dental wear can be differentiated into different types on the basis of morphological and etiological factors. The present research was carried out on twelve extracted human teeth with dental wear (three teeth showing each type of wear: erosion, attrition, abrasion, and abfraction studied by scanning electron microscopy (SEM. The study aimed, through analysis of the macro- and micromorphological features of the lesions (considering the enamel, dentin, enamel prisms, dentinal tubules, and pulp, to clarify the different clinical and diagnostic presentations of dental wear and their possible significance. Our results, which confirm current knowledge, provide a complete overview of the distinctive morphology of each lesion type. It is important to identify the type of dental wear lesion in order to recognize the contributing etiological factors and, consequently, identify other more complex, nondental disorders (such as gastroesophageal reflux, eating disorders. It is clear that each type of lesion has a specific morphology and mechanism, and further clinical studies are needed to clarify the etiological processes, particularly those underlying the onset of abfraction.

  20. Scanning electron microscopic studies on bone tumors

    International Nuclear Information System (INIS)

    Itoh, Motoya

    1978-01-01

    Surface morphological observations of benign and malinant bone tumors were made by the use of scanning electron microscopy. Tumor materials were obtained directly from patients of osteogenic sarcomas, chondrosarcomas, enchondromas, giant cell tumors and Paget's sarcoma. To compare with these human tumors, the following experimental materials were also observed: P 32 -induced rat osteogenic sarcomas with their pulmonary metastatic lesions, Sr 89 -induced transplantable mouse osteogenic sarcomas and osteoid tissues arising after artificial fractures in mice. One of the most outstanding findings was a lot of granular substances seen on cell surfaces and their intercellular spaces in osteoid or chondroid forming tissues. These substances were considered to do some parts in collaborating extracellular matrix formation. Protrusions on cell surface, such as mucrovilli were more or less fashioned by these granular substances. Additional experiments revealed these substances to be soluble in sodium cloride solution. Benign osteoid forming cells, such as osteoblasts and osteoblastic osteosarcoma cells had granular substances on their surfaces and their intercellular spaces. On the other hand, undifferentiated transplantable osteosarcoma which formed on osteoid or chondroid matrix had none of these granular substances. Consequently, the difference of surface morphology between osteosarcoma cells and osteoblasts was yet to be especially concluded. (author)

  1. Full information acquisition in scanning probe microscopy and spectroscopy

    Science.gov (United States)

    Jesse, Stephen; Belianinov, Alex; Kalinin, Sergei V.; Somnath, Suhas

    2017-04-04

    Apparatus and methods are described for scanning probe microscopy and spectroscopy based on acquisition of full probe response. The full probe response contains valuable information about the probe-sample interaction that is lost in traditional scanning probe microscopy and spectroscopy methods. The full probe response is analyzed post data acquisition using fast Fourier transform and adaptive filtering, as well as multivariate analysis. The full response data is further compressed to retain only statistically significant components before being permanently stored.

  2. Influence of mechanical noise inside a scanning electron microscope.

    Science.gov (United States)

    de Faria, Marcelo Gaudenzi; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe

    2015-04-01

    The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to the identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.

  3. Influence of mechanical noise inside a scanning electron microscope

    International Nuclear Information System (INIS)

    Gaudenzi de Faria, Marcelo; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe

    2015-01-01

    The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to the identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks

  4. Design and operation of an inexpensive far-field laser scanning microscope suitable for use in an undergraduate laboratory course

    Science.gov (United States)

    Pallone, Arthur; Hawk, Eric

    2013-03-01

    Scanning microscope applications span the science disciplines yet their costs limit their use at educational institutions. The basic concepts of scanning microscopy are simple. The microscope probe - whether it produces a photon, electron or ion beam - moves relative to the surface of the sample object. The beam interacts with the sample to produce a detected signal that depends on the desired property to be measured at the probe location on the sample. The microscope transforms the signal for output in a form desired by the user. Undergraduate students can easily construct a far-field laser scanning microscope that illustrates each of these principles from parts available at local electronics and hardware stores and use the microscope to explore properties of devices such as light dependent resistors and biological samples such as leaves. Students can record, analyze and interpret results using a computer and free software.

  5. Shape Descriptors for Scanning Probe Recognition Microscopy

    Science.gov (United States)

    Chen, Qian; Ayres, Virginia; Udpa, Lalita

    2003-03-01

    Direct investigation of, and interaction with, biological objects at the macromolecular level will provide insight into multiple physical regulatory processes. Scanning probe microscopy (SPM) techniques have the potential to provide a direct interaction with living specimens at the macromolecular scale. A key enabling capability is to replace the current x-y raster scan with site-specific direct investigation. In the present research we will discuss the site-specific recognition techniques that are appropriate for tubular and globular biological features. The SPM image will be input to an image segmentation and boundary detection algorithm to extract closed boundaries of features in the image. The boundary information will be parameterized using Fourier descriptors, which are rotation invariant descriptors to be used for recognizing the segmented shape.

  6. Performance of automatic scanning microscope for nuclear emulsion experiments

    Science.gov (United States)

    Güler, A. Murat; Altınok, Özgür

    2015-12-01

    The impressive improvements in scanning technology and methods let nuclear emulsion to be used as a target in recent large experiments. We report the performance of an automatic scanning microscope for nuclear emulsion experiments. After successful calibration and alignment of the system, we have reached 99% tracking efficiency for the minimum ionizing tracks that penetrating through the emulsions films. The automatic scanning system is successfully used for the scanning of emulsion films in the OPERA experiment and plan to use for the next generation of nuclear emulsion experiments.

  7. A compact scanning soft X-ray microscope

    International Nuclear Information System (INIS)

    Trail, J.A.

    1989-01-01

    Soft x-ray microscopes operating at wavelengths between 2.3 nm and 4.4 nm are capable of imaging wet biological cells with a resolution many times that of a visible light microscope. Several such soft x-ray microscopes have been constructed. However, with the exception of contact microscopes, all use synchrotrons as the source of soft x-ray radiation and Fresnel zone plates as the focusing optics. These synchrotron based microscopes are very successful but have the disadvantage of limited access. This dissertation reviews the construction and performance of a compact scanning soft x-ray microscope whose size and accessibility is comparable to that of an electron microscope. The microscope uses a high-brightness laser-produced plasma as the soft x-ray source and normal incidence multilayer-coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 14 nm, has a spatial resolution of 0.5 μm, and has a soft x-ray photon flux through the focus of 10 4 -10 5 s -1 when operated with only 170 mW of average laser power. The complete system, including the laser, fits on a single 4' x 8' optical table. The significant components of the compact microscope are the laser-produced plasma (LPP) source, the multilayer coatings, and the Schwarzschild objective. These components are reviewed, both with regard to their particular use in the current microscope and with regard to extending the microscope performance to higher resolution, higher speed, and operation at shorter wavelengths. Measurements of soft x-ray emission and debris emission from our present LPP source are presented and considerations given for an optimal LPP source. The LPP source was also used as a broadband soft x-ray source for measurement of normal incidence multilayer mirror reflectance in the 10-25 nm spectral region

  8. Closed-Loop Autofocus Scheme for Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Cui Le

    2015-01-01

    Full Text Available In this paper, we present a full scale autofocus approach for scanning electron microscope (SEM. The optimal focus (in-focus position of the microscope is achieved by maximizing the image sharpness using a vision-based closed-loop control scheme. An iterative optimization algorithm has been designed using the sharpness score derived from image gradient information. The proposed method has been implemented and validated using a tungsten gun SEM at various experimental conditions like varying raster scan speed, magnification at real-time. We demonstrate that the proposed autofocus technique is accurate, robust and fast.

  9. Line-scanning tomographic optical microscope with isotropic transfer function

    International Nuclear Information System (INIS)

    Gajdátsy, Gábor; Dudás, László; Erdélyi, Miklós; Szabó, Gábor

    2010-01-01

    An imaging method and optical system, referred to as a line-scanning tomographic optical microscope (LSTOM) using a combination of line-scanning technique and CT reconstruction principle, is proposed and studied theoretically and experimentally. In our implementation a narrow focus line is scanned over the sample and the reflected light is measured in a confocal arrangement. One such scan is equivalent to a transverse projection in tomography. Repeating the scanning procedure in several directions, a number of transverse projections are recorded from which the image can be obtained using conventional CT reconstruction algorithms. The resolution of the image is independent of the spatial dimensions and structure of the applied detector; furthermore, the transfer function of the system is isotropic. The imaging performance of the implemented confocal LSTOM was compared with a point-scanning confocal microscope, based on recorded images. These images demonstrate that the resolution of the confocal LSTOM exceeds (by 15%) the resolution limit of a point-scanning confocal microscope

  10. Atomic force microscope caliper for critical dimension measurements of micro and nanostructures through sidewall scanning.

    Science.gov (United States)

    Xie, Hui; Hussain, Danish; Yang, Feng; Sun, Lining

    2015-11-01

    A novel atomic force microscope (AFM) dual-probe caliper for critical dimension (CD) metrology has been developed. The caliper is equipped with two facing tilted optical fiber probes (OFPs) wherein each can be used independently to scan either sidewall of micro and nanostructures. The OFP tip with length up to 500 μm (aspect ratio 10:1, apex diameter ⩾10 nm) has unique features of scanning deep trenches and imaging sidewalls of relatively high steps with exclusive profiling possibilities. The caliper arms-OFPs can be accurately aligned with a well calibrated opening distance. The line width, line edge roughness, line width roughness, groove width and CD angles can be measured through serial scan of adjacent or opposite sidewalls with each probe. Capabilities of the presented AFM caliper have been validated through experimental CD measurement results of comb microstructures and AFM calibration grating TGZ3. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Study of Perylenetetracarboxylic Acid Dimethylimide Films by Cyclic Thermal Desorption and Scanning Probe Microscopy

    Science.gov (United States)

    Pochtennyi, A. E.; Lappo, A. N.; Il'yushonok, I. P.

    2018-02-01

    Some results of studying the direct-current (DC) conductivity of perylenetetracarboxylic acid dimethylimide films by cyclic oxygen thermal desorption are presented. The microscopic parameters of hopping electron transport over localized impurity and intrinsic states were determined. The bandgap width and the sign of major current carriers were determined by scanning probe microscopy methods (atomic force microscopy, scanning probe spectroscopy, and photoassisted Kelvin probe force microscopy). The possibility of the application of photoassisted scanning tunneling microscopy for the nanoscale phase analysis of photoconductive films is discussed.

  12. Undulator based scanning microscope at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Rarback, H.; Shu, D.; Ade, H.; Jacobsen, C.; Kirz, J.; McNulty, I.; Rosser, R.

    1986-01-01

    A second generation scanning soft x-ray microscope is under construction, designed to utilize the dramatic increase in source bightness available at the soft x-ray undulator. The new instrument is expected to reduce image acquisition time by a factor of about 100, and to improve resolution, stability, and reproducibility

  13. Single-atom contacts with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Kroeger, J; Neel, N; Sperl, A; Wang, Y F; Berndt, R

    2009-01-01

    The tip of a cryogenic scanning tunnelling microscope is used to controllably contact single atoms adsorbed on metal surfaces. The transition between tunnelling and contact is gradual for silver, while contact to adsorbed gold atoms is abrupt. The single-atom junctions are stable and enable spectroscopic measurements of, e.g., the Abrikosov-Suhl resonance of single Kondo impurities.

  14. New Scanning Electron Microscope Used for Cryogenic Tensile Testing

    CERN Multimedia

    Maximilien Brice

    2013-01-01

    At CERN engineering department's installation for cryogenic tensile testing, the new scanning electron microscope (SEM) allows for detailed optical observations to be carried out. Using the SEM, surface coatings and tensile properties of materials can investigated in order to better understand how they behave under different conditions.

  15. Modular Scanning Confocal Microscope with Digital Image Processing.

    Science.gov (United States)

    Ye, Xianjun; McCluskey, Matthew D

    2016-01-01

    In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.

  16. Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope

    Energy Technology Data Exchange (ETDEWEB)

    Imtiaz, Atif [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Wallis, Thomas M.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel, E-mail: kabos@boulder.nist.gov [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Weber, Joel C. [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Coakley, Kevin J. [Information Technology Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2014-06-30

    We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S{sub 11}{sup ′}, which is the derivative of the RF reflection coefficient S{sub 11} with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S{sub 11}{sup ′}  effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S{sub 11}{sup ′} images.

  17. Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope

    Science.gov (United States)

    Imtiaz, Atif; Wallis, Thomas M.; Weber, Joel C.; Coakley, Kevin J.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel

    2014-06-01

    We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S11', which is the derivative of the RF reflection coefficient S11 with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S11' effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S11' images.

  18. Fully low voltage and large area searching scanning tunneling microscope

    International Nuclear Information System (INIS)

    Pang, Zongqiang; Wang, Jihui; Lu, Qingyou

    2009-01-01

    We present a novel scanning tunneling microscope (STM), which allows the tip to travel a large distance (millimeters) on the sample and take images (to find microscopic targets) anywhere it reaches without losing atomic resolution. This broad range searching capability, together with the coarse approach and scan motion, is all done with only one single piezoelectric tube scanner as well as with only low voltages (<15 V). Simple structure, low interference and high precision are thus achieved. To this end, a pillar and a tube scanner are mounted in parallel on a base with one ball glued on the pillar top and two balls glued on the scanner top. These three balls form a narrow triangle, which supports a triangular slider piece. By inertial stepping, the scanner can move the slider toward the pillar (coarse approach) or rotate the slider about the pillar (travel along sample surface). Since all the stepping motions are driven by the scanner's lateral bending which is large per unit voltage, high voltages are unnecessary. The technology is also applicable to scanning force microscopes (SFM) such as atomic force microscopes (AFM), etc

  19. Development of a scanning tunneling microscope combined with a synchrotron radiation light source

    International Nuclear Information System (INIS)

    Hasegawa, Yukio; Okuda, Taichi; Eguchi, Toyoaki; Matsushima, Takeshi; Harasawa, Ayumi; Akiyama, Kotone; Kinoshita, Toyohiko

    2005-01-01

    We have developed a scanning tunneling microscope (STM) combined with a synchrotron-radiation light source (SR-STM) aiming at elemental analysis in a spatial resolution of STM. Using SR-STM atomically resolved STM images under the irradiation and also X-ray adsorption spectra clearly showing an adsorption edge of a substrate were successfully obtained by detecting photo-emitted electrons with the STM tip. In order to focus the probing area of the photo-induced current, a glass-coated metal tip sharpened with focused ion beam was used as a probe. The present situation and prospects of the instrument are discussed in this review. (author)

  20. Compact scanning tunneling microscope for spin polarization measurements.

    Science.gov (United States)

    Kim, Seong Heon; de Lozanne, Alex

    2012-10-01

    We present a design for a scanning tunneling microscope that operates in ultrahigh vacuum down to liquid helium temperatures in magnetic fields up to 8 T. The main design philosophy is to keep everything compact in order to minimize the consumption of cryogens for initial cool-down and for extended operation. In order to achieve this, new ideas were implemented in the design of the microscope body, dewars, vacuum chamber, manipulators, support frame, and vibration isolation. After a brief description of these designs, the results of initial tests are presented.

  1. Near-field optical microscopy with a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Barbara, A.; Lopez-Rios, T.; Quemerais, P.

    2005-01-01

    A homemade apertureless near-field optical microscope using a scanning tunneling microscope (STM) is described. The experimental set-up simultaneously provides optical and topographic images of the sample. Technical details and features of the set-up are presented, together with results demonstrating the sub-wavelength resolution achieved as well as its sensitivity to dielectric contrasts. We show that the use of a STM permits to precisely control very small distances between the tip and the sample which is a great advantage to excite localized optical resonances between the tip and the surface

  2. Quasi in situ scanning force microscope with an automatic operated reaction chamber.

    Science.gov (United States)

    Hund, Markus; Olszowka, Violetta; Fischer, Franz; Krejtschi, Heinz

    2011-11-01

    We describe the design and performance of a quasi in situ scanning force microscope with an automatic operated reaction chamber. The design provides a repetitive hermetically sealed sample environment for successive processing. The reaction chamber is based on a combination of a flexure-guided cover, a piezo-positioning system and a force applicator system. An axial force seals the cover against the reactor enabling flow-through applications at low pressure, ambient pressure, or elevated pressure. The position stability of the sample relative to the probe is characterized and a full automated operation of the instrument is explored by the alignment of an ABC terblock copolymer thin film undergoing solvent vapor annealing in the presence of a high electric field. Due to the high electric field strength and the sharp scanning force microscope tip it is impossible to perform in situ scanning in the presence of the electric field. © 2011 American Institute of Physics

  3. Measuring diffusion of lipid-like probes in artificial and natural membranes by raster image correlation spectroscopy (RICS): use of a commercial laser-scanning microscope with analog detection.

    Science.gov (United States)

    Gielen, Ellen; Smisdom, Nick; vandeVen, Martin; De Clercq, Ben; Gratton, Enrico; Digman, Michelle; Rigo, Jean-Michel; Hofkens, Johan; Engelborghs, Yves; Ameloot, Marcel

    2009-05-05

    The heterogeneity in composition and interaction within the cellular membrane translates into a wide range of diffusion coefficients of its constituents. Therefore, several complementary microfluorimetric techniques such as fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP) and single-particle tracking (SPT) have to be applied to explore the dynamics of membrane components. The recently introduced raster image correlation spectroscopy (RICS) offers a much wider dynamic range than each of these methods separately and allows for spatial mapping of the dynamic properties. RICS is implemented on a confocal laser-scanning microscope (CLSM), and the wide dynamic range is achieved by exploiting the inherent time information carried by the scanning laser beam in the generation of the confocal images. The original introduction of RICS used two-photon excitation and photon counting detection. However, most CLSM systems are based on one-photon excitation with analog detection. Here we report on the performance of such a commercial CLSM (Zeiss LSM 510 META) in the study of the diffusion of the fluorescent lipid analog 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indodicarbocyanine perchlorate (DiI-C(18)(5)) both in giant unilamellar vesicles and in the plasma membrane of living oligodendrocytes, i.e., the myelin-producing cells of the central nervous system. It is shown that RICS on a commercial CLSM with analog detection allows for reliable results in the study of membrane diffusion by removal of unwanted correlations introduced by the analog detection system. The results obtained compare well with those collected by FRAP and FCS.

  4. A carbon nanofibre scanning probe assembled using an electrothermal microgripper

    DEFF Research Database (Denmark)

    Carlson, Kenneth; Dyvelkov, Karin Nordström; Eicchorn, V.

    2007-01-01

    nanofibre from a fixed position on a substrate to the tip of an atomic force microscope cantilever, inside a scanning electron microscope. Scanning of high aspect ratio trenches using the nanofibre supertip shows a significantly better performance than that with standard pyramidal silicon tips. Based...

  5. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    Science.gov (United States)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The Development of a Scanning Soft X-Ray Microscope.

    Science.gov (United States)

    Rarback, Harvey Miles

    We have developed a scanning soft X-ray microscope, which can be used to image natural biological specimens at high resolution and with less damage than electron microscopy. The microscope focuses a monochromatic beam of synchrotron radiation to a nearly diffraction limited spot with the aid of a high resolution Fresnel zone plate, specially fabricated for us at the IBM Watson Research Center. The specimen at one atmosphere is mechanically scanned through the spot and the transmitted radiation is efficiently detected with a flow proportional counter. A computer forms a realtime transmission image of the specimen which is displayed on a color monitor. Our first generation optics have produced images of natural wet specimens at a resolution of 300 nm.

  7. Planarization Profile Measurement Using A Confocal Scanning Laser Microscope

    Science.gov (United States)

    Smith, Ian R.; Bennett, Simon D.; Lindow, James T.; Monahan, Kevin

    1986-08-01

    The use of planarizing layers to improve the performance of photolithography for micron and submicron devices is being actively explored by a number of semiconductor companies. The usefulness of the procedure depends critically upon the degree to which residual surface undulations can be controlled. This paper describes how a confocal scanning optical microscope may be used to measure surface profiles of planarizing layers and discusses the factors which influence the accuracy of measurement. Experimental measurements, using a SiScan-I system, of resist and P.S.G. planarizing layers are presented, demonstrating a sensitivity to surface height changes of 50 nm. The technique may be improved upon by careful design of the microscope and selection of the imaging wavelength. These factors are discussed.

  8. Cathodoluminescence studies of phosphors in a scanning electron microscope

    International Nuclear Information System (INIS)

    Harris, Paul; Den Engelsen, Daniel; Ireland, Terry; Fern, George; Silver, Jack

    2015-01-01

    Cathodoluminescence studies are reported of phosphors in a field emission scanning electron microscope (FESEM). A number of phosphor materials have been studied and exhibited a pronounced comet-like structure at high scan rates, because the particle continued to emit light after the beam had moved onto subsequent pixels. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. This technique provides a simple and convenient way to study the decay times of individual particles. (paper)

  9. Scanning tunneling microscope stimulated oxidation of silicon (100) surfaces

    Science.gov (United States)

    Fay, P.; Brockenbrough, R. T.; Abeln, G.; Scott, P.; Agarwala, S.; Adesida, I.; Lyding, J. W.

    1994-06-01

    The chemical modification of n- and p-type hydrogen-passivated Si(100) surfaces by a scanning tunneling microscope (STM) is reported. The modified areas have been examined with STM, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Comparison of these characterization techniques indicates the features are both chemical and topographic in nature and are the result of local oxidation of the substrate. In addition, pattern transfer for the defined regions has been demonstrated with both thermal oxidation and HBr reactive-ion etching.

  10. Fibre-top atomic force microscope probe with optical near-field detection capabilities.

    Science.gov (United States)

    Tiribilli, B; Margheri, G; Baschieri, P; Menozzi, C; Chavan, D; Iannuzzi, D

    2011-04-01

    We present a fibre-top probe fabricated by carving a tipped cantilever on an optical fibre, with the tip machined in correspondence of the fibre core. When approached to an optical prism illuminated under total internal reflection conditions, the tip of the cantilever detects the optical tunnelling signal, while the light coupled from the opposite end of the fibre measures the deflection of the cantilever. Our results suggest that fibre-top technology can be used for the development of a new generation of hybrid probes that can combine atomic force microscopy with scanning near field optical microscopy. © 2010 The Authors Journal of Microscopy © 2010 Royal Microscopical Society.

  11. Distinction of nuclear spin states with the scanning tunneling microscope.

    Science.gov (United States)

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2013-10-25

    We demonstrate rotational excitation spectroscopy with the scanning tunneling microscope for physisorbed H(2) and its isotopes HD and D(2). The observed excitation energies are very close to the gas phase values and show the expected scaling with the moment of inertia. Since these energies are characteristic for the molecular nuclear spin states we are able to identify the para and ortho species of hydrogen and deuterium, respectively. We thereby demonstrate nuclear spin sensitivity with unprecedented spatial resolution.

  12. GFP fluorescence imaging with laser confocal scanning microscope

    Science.gov (United States)

    Yu, Yanhua; Xing, Da; Shi, Qiaojuan; Zhou, Junchu

    1999-09-01

    With gene marking technique, green fluorescent protein (GFP) and nodule bacteria gene has been linked together to form a single fusion gene expression vector. Then the vector is transferred into the nodule bacteria and the astragalus sinicus is invaded by the vector. With laser confocal scanning microscope, some important morphological information in plant nitrogen fixation research about the invading of nodule bacteria and the formation process of root nodule has been obtained through the 3D imaging of GFP reporting fluorescence.

  13. Scanning Probe Optical Tweezers: a new tool to study DNA-protein interactions

    NARCIS (Netherlands)

    Huisstede, J.H.G.

    2006-01-01

    The main goal of the work described in this thesis is to construct a microscope in which OT and scanning probe microscopy (SPM) are combined, to be able to localize proteins while simultaneously controlling the tension within the DNA molecule. This apparatus enables the study of the effect of

  14. Integration of a high-NA light microscope in a scanning electron microscope.

    Science.gov (United States)

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  15. A new clustering algorithm for scanning electron microscope images

    Science.gov (United States)

    Yousef, Amr; Duraisamy, Prakash; Karim, Mohammad

    2016-04-01

    A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning it with a focused beam of electrons. The electrons interact with the sample atoms, producing various signals that are collected by detectors. The gathered signals contain information about the sample's surface topography and composition. The electron beam is generally scanned in a raster scan pattern, and the beam's position is combined with the detected signal to produce an image. The most common configuration for an SEM produces a single value per pixel, with the results usually rendered as grayscale images. The captured images may be produced with insufficient brightness, anomalous contrast, jagged edges, and poor quality due to low signal-to-noise ratio, grained topography and poor surface details. The segmentation of the SEM images is a tackling problems in the presence of the previously mentioned distortions. In this paper, we are stressing on the clustering of these type of images. In that sense, we evaluate the performance of the well-known unsupervised clustering and classification techniques such as connectivity based clustering (hierarchical clustering), centroid-based clustering, distribution-based clustering and density-based clustering. Furthermore, we propose a new spatial fuzzy clustering technique that works efficiently on this type of images and compare its results against these regular techniques in terms of clustering validation metrics.

  16. Improve performance of scanning probe microscopy by balancing tuning fork prongs

    International Nuclear Information System (INIS)

    Ng, Boon Ping; Zhang Ying; Wei Kok, Shaw; Chai Soh, Yeng

    2009-01-01

    This paper presents an approach for improving the Q-factor of tuning fork probe used in scanning probe microscopes. The improvement is achieved by balancing the fork prongs with extra mass attachment. An analytical model is proposed to characterize the Q-factor of a tuning fork probe with respect to the attachment of extra mass on the tuning fork prongs, and based on the model, the Q-factors of the unbalanced and balanced tuning fork probes are derived and compared. Experimental results showed that the model fits well the experimental data and the approach can improve the Q-factor by more than a factor of three. The effectiveness of the approach is further demonstrated by applying the balanced probe on an atomic force microscope to obtain improved topographic images.

  17. RTSPM: real-time Linux control software for scanning probe microscopy.

    Science.gov (United States)

    Chandrasekhar, V; Mehta, M M

    2013-01-01

    Real time computer control is an essential feature of scanning probe microscopes, which have become important tools for the characterization and investigation of nanometer scale samples. Most commercial (and some open-source) scanning probe data acquisition software uses digital signal processors to handle the real time data processing and control, which adds to the expense and complexity of the control software. We describe here scan control software that uses a single computer and a data acquisition card to acquire scan data. The computer runs an open-source real time Linux kernel, which permits fast acquisition and control while maintaining a responsive graphical user interface. Images from a simulated tuning-fork based microscope as well as a standard topographical sample are also presented, showing some of the capabilities of the software.

  18. Phase zone plate based scanning x-ray microscope

    International Nuclear Information System (INIS)

    Legnini, D.; Yun, W.; Lai, B.; Chrzas, J.

    1992-01-01

    A scanning microscope capable of investigating materials in the x-ray region from 5-25 keV with a spatial resolution on the order of 1 μm has been constructed and experimentally demonstrated. A phase zone plate is used as a focusing element concentrating photons at a series of diffraction orders spaced along the optical axis. A sample is positioned at one of these focal planes and raster scanned across the small focal spot for imaging or micro-analysis. Use and characterization of the microscope requires precise alignment of the zone plate and its optical axis along the x-ray beam direction. Also needed are accurate, reproducible positioning of an order selection aperture and sample. Operation at different focal orders involves large translations of sample and aperture along the optical axis as well as adjustment of the aperture to sample distance. A motion control, data acquisition, and display system has been developed to meet these requirements of sample and detector positioning. Design considerations and results obtained from use of the microscope for imaging at first through fourth order focal planes are discussed

  19. In situ surface reduction of a NiO-YSZ-alumina composite using scanning probe microscopy

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Jacobsen, Torben; Thydén, Karl Tor Sune

    2014-01-01

    In situ surface reductions of NiO-YSZ-Al2O3 composites into Ni-YSZ-Al2O3 cermets were carried out at 312–525 °C in a controlled atmosphere high-temperature scanning probe microscope (CAHT-SPM) in dry and humidified 9 % H2 in N2. The reduction of NiO was followed by contact mode scanning of topogr...

  20. Restoration of images from the scanning-tunneling microscope

    Science.gov (United States)

    Kokaram, A. C.; Persad, N.; Lasenby, J.; Fitzgerald, W. J.; McKinnon, A.; Welland, M.

    1995-08-01

    During the acquisition of an image from any probe microscope instrument, various noise sources cause distortion in the observed image. It is often the case that impulsive disturbances cause bright groups of pixels to replace the actual image data in these locations. Furthermore, the images from a probe microscope show some amount of blurring caused both by the instrument function and the material properties. In almost all image-processing applications it is important to remove any impulsive distortion that may be present before deblurring can be attempted. We give a technique for detecting these impulses and reconstructing the image. This technique is superior to the standard global application of median filters for the case considered. The reconstruction is limited only to the affected regions and therefore results in a much sharper and more meaningful image. With the assumption of Gaussian blur it is then possible to propose several different deblurring methodologies. We present a novel Wiener-filter deblurring implementation and compare it to both maximum-entropy and Richardson-Lucy deblurring.

  1. Adaptive noise Wiener filter for scanning electron microscope imaging system.

    Science.gov (United States)

    Sim, K S; Teh, V; Nia, M E

    2016-01-01

    Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments. © Wiley Periodicals, Inc.

  2. Local dynamic range compensation for scanning electron microscope imaging system.

    Science.gov (United States)

    Sim, K S; Huang, Y H

    2015-01-01

    This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. © Wiley Periodicals, Inc.

  3. Dynamic-scanning-electron-microscope study of friction and wear

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1974-01-01

    A friction and wear apparatus was built into a real time scanning electron microscope (SEM). The apparatus and SEM comprise a system which provides the capability of performing dynamic friction and wear experiments in situ. When the system is used in conjunction with dispersive X-ray analysis, a wide range of information on the wearing process can be obtained. The type of wear and variation with speed, load, and time can be investigated. The source, size, and distribution of wear particles can be determined and metallic transferal observed. Some typical results obtained with aluminum, copper, and iron specimens are given.

  4. Microcircuit failure analysis using the SEM. [Scanning Electron Microscopes

    Science.gov (United States)

    Nicolas, D. P.

    1974-01-01

    The scanning electron microscope adds a new dimension to the knowledge that can be obtained from a failed microcircuit. When used with conventional techniques, SEM assists and clarifies the analysis, but it does not replace light microscopy. The most advantageous features for microcircuit analysis are long working distances and great depth of field. Manufacturer related failure modes of microcircuits are metallization defects, poor bonding, surface and particle contamination, and design and fabrication faults. User related failure modes are caused by abuse, such as overstress. The Physics of Failure Procedure followed by the Astrionics Laboratory in failure analysis is described, which is designed to obtain maximum information available from each step.

  5. A fast iterative technique for restoring scanning electron microscope images

    Energy Technology Data Exchange (ETDEWEB)

    Nakahira, Kenji, E-mail: kenji.nakahira.kp@hitachi.com; Miyamoto, Atsushi; Honda, Toshifumi

    2014-12-21

    This paper proposes a fast new technique for restoring scanning electron microscope images to improve their sharpness. The images with our approach are sharpened by deconvolution with the point spread function modeled as the intensity distribution of the electron beam at the specimen's surface. We propose an iterative technique that employs a modified cost function based on the Richardson–Lucy method to achieve faster processing. The empirical results indicate significant improvements in image quality. The proposed approach speeds up deconvolution by about 10–50 times faster than that with the conventional Richardson–Lucy method.

  6. Electric field effects in scanning tunneling microscope imaging

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Quaade, Ulrich; Grey, Francois

    1998-01-01

    We present a high-voltage extension of the Tersoff-Hamann theory of scanning tunneling microscope (STM) images, which includes the effect of the electric field between the tip and the sample. The theoretical model is based on first-principles electronic structure calculations and has no adjustable...... parameters. We use the method to calculate theoretical STM images of the monohydrate Si(100)-H(2x1) surface with missing hydrogen defects at -2V and find an enhanced corrugation due to the electric field, in good agreement with experimental images....

  7. Analysis of Scanned Probe Images for Magnetic Focusing in Graphene

    Science.gov (United States)

    Bhandari, Sagar; Lee, Gil-Ho; Kim, Philip; Westervelt, Robert M.

    2017-07-01

    We have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN-graphene-hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons. The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.

  8. Probing microscopic mechanical properties of hard tissues with Brillouin spectroscopy

    Science.gov (United States)

    Meng, Zhaokai; Yakovlev, Vladislav V.

    2015-02-01

    Mechanical properties of hard tissues play an important role in understanding underlying biological structures, as well as assessing the quality of artificial bone replacement materials. In this study, we employed Brillouin spectroscopy as a non-invasive approach to probe the microscopic elasticity of hard tissues, such as bones. Brillouin spectra were collected using a background free virtually imaged phased array spectrometer. As a reference, Raman spectra were also acquired for each imaging point. Experimental results reveal a positive correlation between the local concentration of the mineral content and the corresponding tissue stiffness, assessed through a Brillouin shift.

  9. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2017-01-01

    Full Text Available A new scan-head structure for the scanning tunneling microscope (STM is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan. They are fixed at one end (called common end. A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  10. Scanning diamond NV center probes compatible with conventional AFM technology

    Science.gov (United States)

    Zhou, Tony X.; Stöhr, Rainer J.; Yacoby, Amir

    2017-10-01

    Scanning probe microscopy using nitrogen vacancy (NV) centers in diamond has become a versatile tool with applications in physics, chemistry, life sciences, and earth and planetary sciences. However, the fabrication of diamond scanning probes with high photon collection efficiency, NV centers with long coherence times, and integrated radio frequency (RF) remains challenging due to the small physical dimensions of the probes and the complexity of the fabrication techniques. In this work, we present a simple and robust method to reliably fabricate probes that can be integrated with conventional quartz tuning fork based sensors as well as commercial silicon AFM cantilevers. An integrated RF micro-antenna for NV center spin manipulation is directly fabricated onto the probe making the design versatile and compatible with virtually all AFM instruments. This integration marks a complete sensor package for NV center-based magnetometry and opens up this scanning probe technique to the broader scientific community.

  11. Development of a Hybrid Atomic Force Microscopic Measurement System Combined with White Light Scanning Interferometry

    Directory of Open Access Journals (Sweden)

    Xiaotang Hu

    2011-12-01

    Full Text Available A hybrid atomic force microscopic (AFM measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system’s dynamic response, the frequency modulation (FM mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system’s good measurement performance and feasibility of the hybrid measurement method.

  12. Manipulation of nanoparticles of different shapes inside a scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Boris Polyakov

    2014-02-01

    Full Text Available In this work polyhedron-like gold and sphere-like silver nanoparticles (NPs were manipulated on an oxidized Si substrate to study the dependence of the static friction and the contact area on the particle geometry. Measurements were performed inside a scanning electron microscope (SEM that was equipped with a high-precision XYZ-nanomanipulator. To register the occurring forces a quartz tuning fork (QTF with a glued sharp probe was used. Contact areas and static friction forces were calculated by using different models and compared with the experimentally measured force. The effect of NP morphology on the nanoscale friction is discussed.

  13. Microsphere-based super-resolution scanning optical microscope.

    Science.gov (United States)

    Huszka, Gergely; Yang, Hui; Gijs, Martin A M

    2017-06-26

    High-refractive index dielectric microspheres positioned within the field of view of a microscope objective in a dielectric medium can focus the light into a so-called photonic nanojet. A sample placed in such nanojet can be imaged by the objective with super-resolution, i.e. with a resolution beyond the classical diffraction limit. However, when imaging nanostructures on a substrate, the propagation distance of a light wave in the dielectric medium in between the substrate and the microsphere must be small enough to reveal the sample's nanometric features. Therefore, only the central part of an image obtained through a microsphere shows super-resolution details, which are typically ∼100 nm using white light (peak at λ = 600 nm). We have performed finite element simulations of the role of this critical distance in the super-resolution effect. Super-resolution imaging of a sample placed beneath the microsphere is only possible within a very restricted central area of ∼10 μm 2 , where the separation distance between the substrate and the microsphere surface is very small (∼1 μm). To generate super-resolution images over larger areas of the sample, we have fixed a microsphere on a frame attached to the microscope objective, which is automatically scanned over the sample in a step-by-step fashion. This generates a set of image tiles, which are subsequently stitched into a single super-resolution image (with resolution of λ/4-λ/5) of a sample area of up to ∼10 4 μm 2 . Scanning a standard optical microscope objective with microsphere therefore enables super-resolution microscopy over the complete field-of-view of the objective.

  14. Histological evaluation of thyroid lesions using a scanning acoustic microscope

    Directory of Open Access Journals (Sweden)

    Miura K

    2014-02-01

    Full Text Available Katsutoshi Miura,1 Hiroyuki Mineta2 1Department of Health Science, Pathology, and Anatomy, 2Department of Otorhinolaryngology, Hamamatsu University School of Medicine, Hamamatsu, Japan Purpose: A scanning acoustic microscope (SAM uses an ultrasound to image an object by plotting the speed-of-sound (SOS through tissues on screen. Because hard tissues result in great SOS, SAM can provide data on the tissue elasticity. This paper investigated the utility of SAM in evaluating thyroid lesions. Methods: Formalin-fixed, paraffin sections were scanned with a 120 MHz transducer. SOS through each area was calculated and plotted on the screen to provide histological images, and SOS of each lesion was compared and statistically analyzed. Results: High-concentrated colloids, red blood cells, and collagen fibers showed great SOS, while low-concentrated colloids, parathyroids, lymph follicles, and epithelial tissues including carcinomas demonstrated lower SOS. SAM clearly discriminated structure of thyroid components corresponding to low magnification of light microscopy. Thyroid tumors were classified into three groups by average SOS: the fast group consisted of follicular adenomas/carcinomas and malignant lymphomas; the slow group contained poorly differentiated/undifferentiated carcinomas; and the intermediate group comprised papillary/medullary carcinomas. Fragmented colloids, irregular-shaped follicles, and desmoplastic reactions were observed in the invasive area of surrounding carcinomas. Conclusion: The SAM imaging method had the following benefits: 1 precise images were acquired in a few minutes without special staining; 2 structural irregularity and desmoplastic reactions, which indicated malignancy, were detected; 3 images reflected tissue elasticity, which was statistically comparable among lesions by SOS; 4 follicular functional activity was predictable by converting colloid concentration to SOS; and 5 tumor classification was predictable by SOS

  15. A versatile atomic force microscope integrated with a scanning electron microscope.

    Science.gov (United States)

    Kreith, J; Strunz, T; Fantner, E J; Fantner, G E; Cordill, M J

    2017-05-01

    A versatile atomic force microscope (AFM), which can be installed in a scanning electron microscope (SEM), is introduced. The flexible design of the instrument enables correlated analysis for different experimental configurations, such as AFM imaging directly after nanoindentation in vacuum. In order to demonstrate the capabilities of the specially designed AFM installed inside a SEM, slip steps emanating around nanoindents in single crystalline brass were examined. This example showcases how the combination of AFM and SEM imaging can be utilized for quantitative dislocation analysis through the measurement of the slip step heights without the hindrance of oxide formation. Finally, an in situ nanoindentation technique is introduced, illustrating the use of AFM imaging during indentation experiments to examine plastic deformation occurring under the indenter tip. The mechanical indentation data are correlated to the SEM and AFM images to estimate the number of dislocations emitted to the surface.

  16. Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope

    Science.gov (United States)

    Burgess, Jacob A. J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-09-01

    Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.

  17. Optical depth sectioning in the aberration-corrected scanning transmission and scanning confocal electron microscope

    International Nuclear Information System (INIS)

    Behan, G; Nellist, P D

    2008-01-01

    The use of spherical aberration correctors in the scanning transmission electron microscope (STEM) has the effect of reducing the depth of field of the microscope, making three-dimensional imaging of a specimen possible by optical sectioning. Depth resolution can be improved further by placing aberration correctors and lenses pre and post specimen to achieve an imaging mode known as scanning confocal electron microscopy (SCEM). We present the calculated incoherent point spread functions (PSF) and optical transfer functions (OTF) of a STEM and SCEM. The OTF for a STEM is shown to have a missing cone region which results in severe blurring along the optic axis, which can be especially severe for extended objects. We also present strategies for reconstruction of experimental data, such as three-dimensional deconvolution of the point spread function.

  18. Resizing metal-coated nanopores using a scanning electron microscope.

    Science.gov (United States)

    Chansin, Guillaume A T; Hong, Jongin; Dusting, Jonathan; deMello, Andrew J; Albrecht, Tim; Edel, Joshua B

    2011-10-04

    Electron beam-induced shrinkage provides a convenient way of resizing solid-state nanopores in Si(3) N(4) membranes. Here, a scanning electron microscope (SEM) has been used to resize a range of different focussed ion beam-milled nanopores in Al-coated Si(3) N(4) membranes. Energy-dispersive X-ray spectra and SEM images acquired during resizing highlight that a time-variant carbon deposition process is the dominant mechanism of pore shrinkage, although granular structures on the membrane surface in the vicinity of the pores suggest that competing processes may occur. Shrinkage is observed on the Al side of the pore as well as on the Si(3) N(4) side, while the shrinkage rate is observed to be dependent on a variety of factors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The trajectories of secondary electrons in the scanning electron microscope.

    Science.gov (United States)

    Konvalina, Ivo; Müllerová, Ilona

    2006-01-01

    Three-dimensional simulations of the trajectories of secondary electrons (SE) in the scanning electron microscope have been performed for plenty of real configurations of the specimen chamber, including all its basic components. The primary purpose was to evaluate the collection efficiency of the Everhart-Thornley detector of SE and to reveal fundamental rules for tailoring the set-ups in which efficient signal acquisition can be expected. Intuitive realizations about the easiness of attracting the SEs towards the biased front grid of the detector have shown themselves likely as false, and all grounded objects in the chamber have been proven to influence the spatial distribution of the signal-extracting field. The role of the magnetic field penetrating from inside the objective lens is shown to play an ambiguous role regarding possible support for the signal collection.

  20. Contained scanning electron microscope facility for examining radioactive materials

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1986-03-01

    At the Savannah River Laboratory (SRL) radioactive solids are characterized with a scanning electron microscope (SEM) contained in a glove box. The system includes a research-grade Cambridge S-250 SEM, a Tracor Northern TN-5500 x-ray and image analyzer, and a Microspec wavelength-dispersive x-ray analyzer. The containment facility has a glove box train for mounting and coating samples, and for housing the SEM column, x-ray detectors, and vacuum pumps. The control consoles of the instruments are located outside the glove boxes. This facility has been actively used since October 1983 for high alpha-activity materials such as plutonium metal and plutonium oxide powders. Radioactive defense waste glasses and contaminated equipment have also been examined. During this period the facility had no safety-related incidents, and personnel radiation exposures were maintained at less than 100 mrems

  1. A scanning electron microscopic investigation of ceramic orthodontic brackets

    International Nuclear Information System (INIS)

    McDonald, F.; Toms, A.P.

    1990-01-01

    Ceramic brackets were introduced to overcome the esthetic disadvantages of stainless steel brackets. The clinical impression of these brackets is very favorable. However, the sliding mechanics used in the Straightwire (A Company, San Diego, CA, USA) system appear to produce slower tooth movements with ceramic compared to stainless steel brackets. To determine whether this was due to any obvious mechanical problem in the bracket slot, Transcend (Unitek Corporation/3M, Monrovia, CA, USA) ceramic brackets were examined by a scanning electron microscope and compared to stainless steel brackets.Consistently, large surface defects were found in the ceramic bracket slots that were not present in the metal bracket slots. These irregularities could obviously hinder the sliding mechanics of the bracket slot-archwire system and create a greater demand on anchorage. Conversely, the fitting surface of the Transcend ceramic bracket showed extremely smooth surface characteristics, and it would seem advisable for the manufacturers to incorporate this surface within the bracket slot. (author)

  2. Role of scanning electron microscope )SEM) in metal failure analysis

    International Nuclear Information System (INIS)

    Shaiful Rizam Shamsudin; Hafizal Yazid; Mohd Harun; Siti Selina Abd Hamid; Nadira Kamarudin; Zaiton Selamat; Mohd Shariff Sattar; Muhamad Jalil

    2005-01-01

    Scanning electron microscope (SEM) is a scientific instrument that uses a beam of highly energetic electrons to examine the surface and phase distribution of specimens on a micro scale through the live imaging of secondary electrons (SE) and back-scattered electrons (BSE) images. One of the main activities of SEM Laboratory at MINT is for failure analysis on metal part and components. The capability of SEM is excellent for determining the root cause of metal failures such as ductility or brittleness, stress corrosion, fatigue and other types of failures. Most of our customers that request for failure analysis are from local petrochemical plants, manufacturers of automotive components, pipeline maintenance personnel and engineers who involved in the development of metal parts and component. This paper intends to discuss some of the technical concepts in failure analysis associated with SEM. (Author)

  3. In situ ion etching in a scanning electron microscope

    International Nuclear Information System (INIS)

    Dhariwal, R.S.; Fitch, R.K.

    1977-01-01

    A facility for ion etching in a scanning electron microscope is described which incorporates a new type of electrostatic ion source and viewing of the specimen is possible within about 30 sec after terminating the ion bombardment. Artefacts produced during etching have been studied and cone formation has been followed during its growth. The instrument has provided useful structural information on metals, alloys, and sinters. However, although insulating materials, such as plastics, glass and resins, have been successfully etched, interpretation of the resultant micrographs is more difficult. Ion etching of soft biological tissues, such as the rat duodenum was found to be of considerable interest. The observed structural features arise from the selective intake of the heavy fixation elements by different parts of the tissue. Hard biological materials, such as dental tissues and restorative materials, have also been studied and the prismatic structure of the enamel and the form and distribution of the dentinal tubules have been revealed. (author)

  4. Spinning Carbon Nanotube Nanothread under a Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Mark Schulz

    2011-08-01

    Full Text Available Nanothread with a diameter as small as one hundred nanometers was manufactured under a scanning electron microscope. Made directly from carbon nanotubes, and inheriting their superior electrical and mechanical properties, nanothread may be the world’s smallest man-made fiber. The smallest thread that can be spun using a bench-top spinning machine is about 5 microns in diameter. Nanothread is a new material building block that can be used at the nanoscale or plied to form yarn for applications at the micro and macro scales. Preliminary electrical and mechanical properties of nanothread were measured. The resistivity of nanothread is less than 10−5 Ω∙m. The strength of nanothread is greater than 0.5 GPa. This strength was obtained from measurements using special glue that cures in an electron microscope. The glue weakened the thread, thus further work is needed to obtain more accurate measurements. Nanothread will have broad applications in enabling electrical components, circuits, sensors, and tiny machines. Yarn can be used for various macroscale applications including lightweight antennas, composites, and cables.

  5. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope.

    Science.gov (United States)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2011-06-01

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Quadratic electromechanical strain in silicon investigated by scanning probe microscopy

    Science.gov (United States)

    Yu, Junxi; Esfahani, Ehsan Nasr; Zhu, Qingfeng; Shan, Dongliang; Jia, Tingting; Xie, Shuhong; Li, Jiangyu

    2018-04-01

    Piezoresponse force microscopy (PFM) is a powerful tool widely used to characterize piezoelectricity and ferroelectricity at the nanoscale. However, it is necessary to distinguish microscopic mechanisms between piezoelectricity and non-piezoelectric contributions measured by PFM. In this work, we systematically investigate the first and second harmonic apparent piezoresponses of a silicon wafer in both vertical and lateral modes, and we show that it exhibits an apparent electromechanical response that is quadratic to the applied electric field, possibly arising from ionic electrochemical dipoles induced by the charged probe. As a result, the electromechanical response measured is dominated by the second harmonic response in the vertical mode, and its polarity can be switched by the DC voltage with the evolving coercive field and maximum amplitude, in sharp contrast to typical ferroelectric materials we used as control. The ionic activity in silicon is also confirmed by the scanning thermo-ionic microscopy measurement, and the work points toward a set of methods to distinguish true piezoelectricity from the apparent ones.

  7. Waveguide analysis of heat-drawn and chemically etched probe tips for scanning near-field optical microscopy.

    Science.gov (United States)

    Moar, Peter N; Love, John D; Ladouceur, François; Cahill, Laurence W

    2006-09-01

    We analyze two basic aspects of a scanning near-field optical microscope (SNOM) probe's operation: (i) spot-size evolution of the electric field along the probe with and without a metal layer, and (ii) a modal analysis of the SNOM probe, particularly in close proximity to the aperture. A slab waveguide model is utilized to minimize the analytical complexity, yet provides useful quantitative results--including losses associated with the metal coating--which can then be used as design rules.

  8. A compact combined ultrahigh vacuum scanning tunnelling microscope (UHV STM) and near-field optical microscope

    International Nuclear Information System (INIS)

    Woolley, R A J; Hayton, J A; Cavill, S; Ma, Jin; Beton, P H; Moriarty, P

    2008-01-01

    We have designed and constructed a hybrid scanning near-field optical microscope (SNOM)–scanning tunnelling microscope (STM) instrument which operates under ultrahigh vacuum (UHV) conditions. Indium tin oxide (ITO)-coated fibre-optic tips capable of high quality STM imaging and tunnelling spectroscopy are fabricated using a simple and reliable method which foregoes the electroless plating strategy previously employed by other groups. The fabrication process is reproducible, producing robust tips which may be exchanged under UHV conditions. We show that controlled contact with metal surfaces considerably enhances the STM imaging capabilities of fibre-optic tips. Light collection (from the cleaved back face of the ITO-coated fibre-optic tip) and optical alignment are facilitated by a simple two-lens arrangement where the in-vacuum collimation/collection lens may be adjusted using a slip-stick motor. A second in-air lens focuses the light (which emerges from the UHV system as a parallel beam) onto a cooled CCD spectrograph or photomultiplier tube. The application of the instrument to combined optical and electronic spectroscopy of Au and GaAs surfaces is discussed

  9. QUANTIFICATION OF BIOFILMS IN MULTI-SPECTRAL DIGITAL1 VOLUMES FROM CONFOCAL LASER-SCANNING MICROSCOPES

    Directory of Open Access Journals (Sweden)

    Karsten Rodenacker

    2011-05-01

    Full Text Available Populations of bacteria in sludge flocs and biofilm marked by fluorescence marked with fluorescent probes are digitised with a confocal laser scanning microscope. These data are used to analyse the microbial community structure, to obtain information on the localisation of specific bacterial groups and to examine gene expression. This information is urgently required for an in-depth understanding of the function and, more generally, the microbial ecology of biofilms. Methods derived from quantitative image analysis are applied to digitised data from confocal laser scanning microscopes to obtain quantitative descriptions of volumetric, topological (and topographical properties of different compartments of the components under research. In addition to free-moving flocs, also biofilms attached to a substratum in an experimental environment are analysed. Growth form as well as interaction of components are quantitatively described. Classical measurements of volume and intensity (shape, distribution and distance dependent interaction measurements using methods from mathematical morphology are performed. Mainly image (volume processing methods are outlined. Segmented volumes are globally and individually (in terms of 3Dconnected components measured and used for distance mapping transform as well as for estimation of geodesic distances from the substrate. All transformations are applied on the 3D data set. Resulting distance distributions are quantified and related to information on the identity and activity of the probe-identified bacteria.

  10. Micro-scanning error correction technique for an optical micro-scanning thermal microscope imaging system

    Science.gov (United States)

    Gao, Mei-Jing; Tan, Ai-Ling; Yang, Ming; Xu, Jie; Zu, Zhen-Long; Wang, Jing-Yuan

    2018-01-01

    With optical micro-scanning technology, the spatial resolution of the thermal microscope imaging system can be increased without reducing the size of the detector unit or increasing the detector dimensions. Due to optical micro-scanning error, the four low-resolution images collected by micro-scanning thermal micro- scope imaging system are not standard down-sampled images. The reconstructed image quality is degraded by the direct image interpolation with error, which influences the performance of the system. Therefore, the technique to reduce the system micro-scanning error need to be studied. Based on micro-scanning technology and combined with new edge directed interpolation(NEDI) algorithm, an error correction technique for the micro-scanning instrument is proposed. Simulations and experiments show that the proposed technique can reduce the optical micro-scanning error, improve the imaging effect of the system and improve the systems spatial resolution. It can be applied to other electro-optical imaging systems to improve their resolution.

  11. Development of a shear-force scanning near-field cathodoluminescence microscope for characterization of nanostructures' optical properties.

    Science.gov (United States)

    Bercu, N B; Troyon, M; Molinari, M

    2016-09-01

    An original scanning near-field cathodoluminescence microscope for nanostructure characterization has been developed and successfully tested. By using a bimorph piezoelectric stack both as actuator and detector, the developed setup constitutes a real improvement compared to previously reported SEM-based solutions. The technique combines a scanning probe and a scanning electron microscope in order to simultaneously offer near-field cathodoluminescence and topographic images of the sample. Share-force topography and cathodoluminescence measurements on GaN, SiC and ZnO nanostructures using the developed setup are presented showing a nanometric resolution in both topography and cathodoluminescence images with increased sensitivity compared to classical luminescence techniques. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  12. Image-based autonomous micromanipulation system for arrangement of spheres in a scanning electron microscope

    International Nuclear Information System (INIS)

    Kasaya, Takeshi; Miyazaki, Hideki T.; Saito, Shigeki; Koyano, Koichi; Yamaura, Tomio; Sato, Tomomasa

    2004-01-01

    The micromanipulation technique in a scanning electron microscope (SEM) has been attracting interest as a technique to produce microstructures such as three-dimensional photonic crystals or advanced high-density electronic circuits. However, it is difficult to fabricate a large-scale structure or to conduct a systematic experiment using numbers of structures, as long as we rely on manually operated micromanipulation. In this study, we constructed an automatic system which arranges 10-μm-sized microspheres into a given two-dimensional pattern in a SEM. The spheres are picked up by touching with the center of the planar tip of a probe (needle), and placed on the substrate by moving the contact point to the edge of the tip and inclining the probe. The positions of the probe and the spheres are visually recognized from the SEM image from above and the optical microscope image from the side. The generalized Hough transform, which can robustly detect arbitrary shape from the edge fragments, is employed for the image recognition. Contact force information obtained by a force sensor with a resolution of 14 μN is also utilized for the control. Completely automatic rearrangement of randomly sprinkled metal spheres with a diameter of 30 μm into arbitrary patterns was successfully demonstrated. Autonomous micromanipulation technique under the observation of a SEM would contribute not merely to laboratories but also to the opto-electronics industry

  13. A landmark-based method for the geometrical 3D calibration of scanning microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, M.

    2007-04-27

    This thesis presents a new strategy and a spatial method for the geometric calibration of 3D measurement devices at the micro-range, based on spatial reference structures with nanometersized landmarks (nanomarkers). The new method was successfully applied for the 3D calibration of scanning probe microscopes (SPM) and confocal laser scanning microscopes (CLSM). Moreover, the spatial method was also used for the photogrammetric self-calibration of scanning electron microscopes (SEM). In order to implement the calibration strategy to all scanning microscopes used, the landmark-based principle of reference points often applied at land survey or at close-range applications has been transferred to the nano- and micro-range in the form of nanomarker. In order to function as a support to the nanomarkers, slope-shaped step pyramids have been developed and fabricated by focused ion beam (FIB) induced metal deposition. These FIB produced 3D microstructures have been sized to embrace most of the measurement volume of the scanning microscopes. Additionally, their special design allows the homogenous distribution of the nanomarkers. The nanomarkers were applied onto the support and the plateaus of the slope-step pyramids by FIB etching (milling) as landmarks with as little as several hundreds of nanometers in diameter. The nanomarkers are either of point-, or ring-shaped design. They are optimized so that they can be spatially measured by SPM and CLSM, and, imaged and photogrammetrically analyzed on the basis of SEM data. The centre of the each nanomarker serves as reference point in the measurement data or images. By applying image processing routines, the image (2D) or object (3D) coordinates of each nanomarker has been determined with subpixel accuracy. The correlative analysis of the SPM, CLSM and photogrammetric SEM measurement data after 3D calibration resulted in mean residues in the measured coordinates of as little as 13 nm. Without the coupling factors the mean

  14. Standard practice for scanning electron microscope beam Size characterization

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This practice provides a reproducible means by which one aspect of the performance of a scanning electron microscope (SEM) may be characterized. The resolution of an SEM depends on many factors, some of which are electron beam voltage and current, lens aberrations, contrast in the specimen, and operator-instrument-material interaction. However, the resolution for any set of conditions is limited by the size of the electron beam. This size can be quantified through the measurement of an effective apparent edge sharpness for a number of materials, two of which are suggested. This practice requires an SEM with the capability to perform line-scan traces, for example, Y-deflection waveform generation, for the suggested materials. The range of SEM magnification at which this practice is of utility is from 1000 to 50 000 × . Higher magnifications may be attempted, but difficulty in making precise measurements can be expected. 1.2 This standard does not purport to address all of the safety concerns, if any, ass...

  15. Simulation and Characterization of a Miniaturized Scanning Electron Microscope

    Science.gov (United States)

    Gaskin, Jessica A.; Jerman, Gregory A.; Medley, Stephanie; Gregory, Don; Abbott, Terry O.; Sampson, Allen R.

    2011-01-01

    A miniaturized Scanning Electron Microscope (mSEM) for in-situ lunar investigations is being developed at NASA Marshall Space Flight Center with colleagues from the University of Alabama in Huntsville (UAH), Advanced Research Systems (ARS), the University of Tennessee in Knoxville (UTK) and Case Western Reserve University (CWRU). This effort focuses on the characterization of individual components of the mSEM and simulation of the complete system. SEMs can provide information on the size, shape, morphology and chemical composition of lunar regolith. Understanding these basic properties will allow us to better estimate the challenges associated with In-Situ Resource Utilization and to improve our basic science knowledge of the lunar surface (either precluding the need for sample return or allowing differentiation of unique samples to be returned to Earth.) The main components of the mSEM prototype includes: a cold field emission electron gun (CFEG), focusing lens, deflection/scanning system and backscatter electron detector. Of these, the electron gun development is of particular importance as it dictates much of the design of the remaining components. A CFEG was chosen for use with the lunar mSEM as its emission does not depend on heating of the tungsten emitter (lower power), it offers a long operation lifetime, is orders of magnitude brighter than tungsten hairpin guns, has a small source size and exhibits low beam energy spread.

  16. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    Science.gov (United States)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  17. Two-probe atomic-force microscope manipulator and its applications.

    Science.gov (United States)

    Zhukov, A A; Stolyarov, V S; Kononenko, O V

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  18. High-resolution imaging in the scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Pennycook, S.J.; Jesson, D.E.

    1992-03-01

    The high-resolution imaging of crystalline materials in the scanning transmission electron microscopy (STEM) is reviewed with particular emphasis on the conditions under which an incoherent image can be obtained. It is shown that a high-angle annular detector can be used to break the coherence of the imaging process, in the transverse plane through the geometry of the detector, or in three dimensions if multiphonon diffuse scattering is detected. In the latter case, each atom can be treated as a highly independent source of high-angle scattering. The most effective fast electron states are therefore tightly bound s-type Bloch states. Furthermore, they add constructively for each incident angle in the coherent STEM probe, so that s states are responsible for practically the entire image contrast. Dynamical effects are largely removed, and almost perfect incoherent imaging is achieved. s states are relatively insensitive to neighboring strings, so that incoherent imaging is maintained for superlattice and interfaces, and supercell calculations are unnecessary. With an optimum probe profile, the incoherent image represents a direct image of the crystal projection, with compositional sensitivity built in through the strong dependence of the scattering cross sections on atomic number Z

  19. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    Science.gov (United States)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  20. Atom-probe field-ion-microscope mass spectrometer

    International Nuclear Information System (INIS)

    Nishikawa, Osamu

    1983-01-01

    The titled analyzer, called simply atom-probe, has been developed by combining a field ion microscope (FIM) and a mass spectrometer, and is divided into the time-of-flight type, magnetic sector type, and quadrupole type depending on the types of mass spectrometers. In this paper, the author first describes on the principle and construction of a high resolution, time-of-flight atom-probe developed and fabricated in his laboratory. The feature of the atom-probe lies in the analysis of atoms and molecules in hyper-fine structure region one by one utilizing the high resolution of FIM. It also has the advantages of directly determining the composition by a ratio of the numbers of respective ions because of a constant detection sensitivity regardless of mass numbers, of the resolution as high as single atom layer in depth direction, and of detecting the positional relationship among detected ions by the order of detection in a sample. To determine the composition in a hyperfine structure region, the limited small number of atoms and molecules in the region must be identified distinctly one by one. In the analyzed result of Ni-silicide formed by heating Si evaporated on a Ni tip at 1000 K for 5 minutes, each isotope was not only clearly separated, but also their abundance ratio was very close to the natural abundance ratio. The second half of the paper reports on the analysis of TiC promising for a cold cathode material, adsorption of CO and alcohol, and the composition and structure of silicides, as a few application examples. (Wakatsuki, Y.)

  1. Scanning probe microscopy in material science and biology

    International Nuclear Information System (INIS)

    Cricenti, A; Colonna, S; Girasole, M; Gori, P; Ronci, F; Longo, G; Dinarelli, S; Luce, M; Rinaldi, M; Ortenzi, M

    2011-01-01

    A review of the activity of scanning probe microscopy at our Institute is presented, going from instrumentation to software development of scanning tunnelling microscopy, atomic force microscopy and scanning near-field optical microscopy (SNOM). Some of the most important experiments in material science and biology performed by our group through the years with these SPM techniques will be presented. Finally, infrared applications by coupling a SNOM with a free electron laser will also be presented.

  2. Scanning-electron-microscope used in real-time study of friction and wear

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Small friction and wear apparatus built directly into scanning-electron-microscope provides both dynamic observation and microscopic view of wear process. Friction and wear tests conducted using this system have indicated that considerable information can readily be gained.

  3. Computer-Controlled 3D Laser Scanning Microscope Based On Optical Disk Technology.

    Science.gov (United States)

    Schweizer, P.; Neveux, L.; Chiaramello, M.; Monteil, P.; Ostrowsky, D. B...

    1987-08-01

    We describe RASCALS* (RAster SCAn Laser System) a 2D and 3D scanning laser microscope and outline it's performance. This system, based on optical disk technology and a PC compatible computer offers an interesting cost/performance ratio compared to existing laser scanning microscopes.

  4. Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Birkelund, Karen

    1997-01-01

    Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium...

  5. Resolution enhancement of pump-probe microscope with an inverse-annular filter

    Science.gov (United States)

    Kobayashi, Takayoshi; Kawasumi, Koshi; Miyazaki, Jun; Nakata, Kazuaki

    2018-03-01

    Optical pump-probe microscopy can provide images by detecting changes in probe light intensity induced by stimulated emission, photoinduced absorbance change, or photothermal-induced refractive index change in either transmission or reflection mode. Photothermal microscopy, which is one type of optical pump-probe microscopy, has intrinsically super resolution capability due to the bilinear dependence of signal intensity of pump and probe. We introduce new techniques for further resolution enhancement and fast imaging in photothermal microscope. First, we introduce a new pupil filter, an inverse-annular pupil filter in a pump-probe photothermal microscope, which provides resolution enhancement in three dimensions. The resolutions are proved to be improved in lateral and axial directions by imaging experiment using 20-nm gold nanoparticles. The improvement in X (perpendicular to the common pump and probe polarization direction), Y (parallel to the polarization direction), and Z (axial direction) are by 15 ± 6, 8 ± 8, and 21 ± 2% from the resolution without a pupil filter. The resolution enhancement is even better than the calculation using vector field, which predicts the corresponding enhancement of 11, 8, and 6%. The discussion is made to explain the unexpected results. We also demonstrate the photothermal imaging of thick biological samples (cells from rabbit intestine and kidney) stained with hematoxylin and eosin dye with the inverse-annular filter. Second, a fast, high-sensitivity photothermal microscope is developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope using a Galvano mirror. We confirm a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrates simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 µs. The

  6. Resolution enhancement of pump-probe microscope with an inverse-annular filter

    Science.gov (United States)

    Kobayashi, Takayoshi; Kawasumi, Koshi; Miyazaki, Jun; Nakata, Kazuaki

    2018-04-01

    Optical pump-probe microscopy can provide images by detecting changes in probe light intensity induced by stimulated emission, photoinduced absorbance change, or photothermal-induced refractive index change in either transmission or reflection mode. Photothermal microscopy, which is one type of optical pump-probe microscopy, has intrinsically super resolution capability due to the bilinear dependence of signal intensity of pump and probe. We introduce new techniques for further resolution enhancement and fast imaging in photothermal microscope. First, we introduce a new pupil filter, an inverse-annular pupil filter in a pump-probe photothermal microscope, which provides resolution enhancement in three dimensions. The resolutions are proved to be improved in lateral and axial directions by imaging experiment using 20-nm gold nanoparticles. The improvement in X (perpendicular to the common pump and probe polarization direction), Y (parallel to the polarization direction), and Z (axial direction) are by 15 ± 6, 8 ± 8, and 21 ± 2% from the resolution without a pupil filter. The resolution enhancement is even better than the calculation using vector field, which predicts the corresponding enhancement of 11, 8, and 6%. The discussion is made to explain the unexpected results. We also demonstrate the photothermal imaging of thick biological samples (cells from rabbit intestine and kidney) stained with hematoxylin and eosin dye with the inverse-annular filter. Second, a fast, high-sensitivity photothermal microscope is developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope using a Galvano mirror. We confirm a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrates simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 µs. The

  7. Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications

    NARCIS (Netherlands)

    de Luca, G. M. R.; Desclos, E.; Breedijk, R. M. P.; Dolz-Edo, L.; Smits, G. J.; Bielefeld, P.; Picavet, L.; Fitzsimons, C. P.; Hoebe, R.; Manders, E. M. M.

    2017-01-01

    The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The

  8. Contact detection for nanomanipulation in a scanning electron microscope.

    Science.gov (United States)

    Ru, Changhai; To, Steve

    2012-07-01

    Nanomanipulation systems require accurate knowledge of the end-effector position in all three spatial coordinates, XYZ, for reliable manipulation of nanostructures. Although the images acquired by a scanning electron microscope (SEM) provide high resolution XY information, the lack of depth information in the Z-direction makes 3D nanomanipulation time-consuming. Existing approaches for contact detection of end-effectors inside SEM typically utilize fragile touch sensors that are difficult to integrate into a nanomanipulation system. This paper presents a method for determining the contact between an end-effector and a target surface during nanomanipulation inside SEM, purely based on the processing of SEM images. A depth-from-focus method is used in the fast approach of the end-effector to the substrate, followed by fine contact detection. Experimental results demonstrate that the contact detection approach is capable of achieving an accuracy of 21.5 nm at 50,000× magnification while inducing little end-effector damage. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Micrometer positron beam characterization at the Scanning Positron Microscope Interface

    Science.gov (United States)

    Mitteneder, J.; Dickmann, M.; Kögel, G.; Egger, W.; Sperr, P.; Dollinger, G.

    2017-01-01

    For the investigation of inhomogeneous defect distributions the Scanning Positron Microscope (SPM) of the Universität der Bundeswehr München provides a pulsed positron beam with a diameter of about 1 µm and a time resolution of 250 ps (FWHM). To increase the count-rate the SPM is currently transferred to the intense positron source NEPOMUC. To connect the SPM to the NEPOMUC source a special interface was build, which transforms the NEPOMUC beam to the requirements of the SPM. In this contribution we will give an overview of the SPM interface, and its performance. The beam is characterized at the finale stage of the interface, the positron elevator, where the potential energy of the beam is increased, without altering other beam parameters. From our measurements we are able to predict the performance of the SPM at NEPOMUC. In future position resolved measurements will be possible with an improved spatial resolution of about 0.3 µm and an event rate of about 3.7 kHz.

  10. Collection of secondary electrons in scanning electron microscopes.

    Science.gov (United States)

    Müllerová, I; Konvalina, I

    2009-12-01

    Collection of the secondary electrons in the scanning electron microscope was simulated and the results have been experimentally verified for two types of the objective lens and three detection systems. The aberration coefficients of both objective lenses as well as maximum axial magnetic fields in the specimen region are presented. Compared are a standard side-attached secondary electron detector, in which only weak electrostatic and nearly no magnetic field influence the signal trajectories in the specimen vicinity, and the side-attached (lower) and upper detectors in an immersion system with weak electrostatic but strong magnetic field penetrating towards the specimen. The collection efficiency was calculated for all three detection systems and several working distances. The ability of detectors to attract secondary electron trajectories for various initial azimuthal and polar angles was calculated, too. According to expectations, the lower detector of an immersion system collects no secondary electrons I and II emitted from the specimen and only backscattered electrons and secondary electrons III form the final image. The upper detector of the immersion system exhibits nearly 100% collection efficiency decreasing, however, with the working distance, but the topographical contrast is regrettably suppressed in its image. The collection efficiency of the standard detector is low for short working distances but increases with the same, preserving strong topographical contrast.

  11. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Junaid ASLAM

    2014-06-01

    Full Text Available Catharanthus roseus (L. G. Don is an important medicinal plant as it contains several anti-cancerous compounds, like vinblastine and vincristine. Plant tissue culture technology (organogenesis and embryogenesis has currently been used in fast mass propagating raw materials for secondary metabolite synthesis. In this present communication, scanning electron microscopic (SEM study of somatic embryos was conducted and discussed. The embryogenic callus was first induced from hypocotyls of in vitro germinated seeds on which somatic embryos, differentiated in numbers, particularly on 2,4-D (1.0 mg/L Murashige and Skoog (MS was medium. To understand more about the regeneration method and in vitro formed embryos SEM was performed. The SEM study revealed normal somatic embryo origin and development from globular to heart-, torpedo- and then into cotyledonary-stage of embryos. At early stage, the embryos were clustered together in a callus mass and could not easily be detached from the parental tissue. The embryos were often long cylindrical structure with or without typical notch at the tip. Secondary embryos were also formed on primary embryo structure. The advanced cotyledonary embryos showed prominent roots and shoot axis, which germinated into plantlets. The morphology, structure and other details of somatic embryos at various stages were presented.

  12. A carbon nanofibre scanning probe assembled using an electrothermal microgripper

    International Nuclear Information System (INIS)

    Carlson, K; Andersen, K N; Eichorn, V; Petersen, D H; Moelhave, K; Bu, I Y Y; Teo, K B K; Milne, W I; Fatikow, S; Boeggild, P

    2007-01-01

    Functional devices can be directly assembled using microgrippers with an in situ electron microscope. Two simple and compact silicon microgripper designs are investigated here. These are operated by electrothermal actuation, and are used to transfer a catalytically grown multi-walled carbon nanofibre from a fixed position on a substrate to the tip of an atomic force microscope cantilever, inside a scanning electron microscope. Scanning of high aspect ratio trenches using the nanofibre supertip shows a significantly better performance than that with standard pyramidal silicon tips. Based on manipulation experiments as well as a simple analysis, we show that shear pulling (lateral movement of the gripper) is far more effective than tensile pulling (vertical movement of gripper) for the mechanical removal of carbon nanotubes from a substrate

  13. Instrumental Developments for In-situ Breakdown Experiments inside a Scanning Electron Microscope

    CERN Document Server

    Muranaka, T; Leifer, K; Ziemann, V

    2011-01-01

    Electrical discharges in accelerating structures are one of the key issues limiting the performance of future high energy accelerators such as the Compact Linear Collider (CLIC). Fundamental understanding of breakdown phenomena is an indispensable part of the CLIC feasibility study. The present work concerns the experimental study of breakdown using Scanning Electron Microscopes (SEMs). A SEM gives us the opportunity to achieve high electrical gradients of 1\\,kV/$\\mu$m which corresponds to 1\\,GV/m by exciting a probe needle with a high voltage power supply and controlling the positioning of the needle with a linear piezo motor. The gap between the needle tip and the surface is controlled with sub-micron precision. A second electron microscope equipped with a Focused Ion Beam (FIB) is used to create surface corrugations and to sharpen the probe needle to a tip radius of about 50\\,nm. Moreover it is used to prepare cross sections of a voltage breakdown area in order to study the geometrical surface damages as w...

  14. Electron beam detection of a Nanotube Scanning Force Microscope.

    Science.gov (United States)

    Siria, Alessandro; Niguès, Antoine

    2017-09-14

    Atomic Force Microscopy (AFM) allows to probe matter at atomic scale by measuring the perturbation of a nanomechanical oscillator induced by near-field interaction forces. The quest to improve sensitivity and resolution of AFM forced the introduction of a new class of resonators with dimensions at the nanometer scale. In this context, nanotubes are the ultimate mechanical oscillators because of their one dimensional nature, small mass and almost perfect crystallinity. Coupled to the possibility of functionalisation, these properties make them the perfect candidates as ultra sensitive, on-demand force sensors. However their dimensions make the measurement of the mechanical properties a challenging task in particular when working in cavity free geometry at ambient temperature. By using a focused electron beam, we show that the mechanical response of nanotubes can be quantitatively measured while approaching to a surface sample. By coupling electron beam detection of individual nanotubes with a custom AFM we image the surface topography of a sample by continuously measuring the mechanical properties of the nanoresonators. The combination of very small size and mass together with the high resolution of the electron beam detection method offers unprecedented opportunities for the development of a new class of nanotube-based scanning force microscopy.

  15. Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope.

    Science.gov (United States)

    Polyakov, Boris; Dorogin, Leonid M; Vlassov, Sergei; Kink, Ilmar; Romanov, Alexey E; Lohmus, Rynno

    2012-11-01

    A novel method for in situ measurement of the static and kinetic friction is developed and demonstrated for zinc oxide nanowires (NWs) on oxidised silicon wafers. The experiments are performed inside a scanning electron microscope (SEM) equipped with a nanomanipulator with an atomic force microscope tip as a probe. NWs are pushed by the tip from one end until complete displacement is achieved, while NW bending is monitored by the SEM. The elastic bending profile of a NW during the manipulation process is used to calculate the static and kinetic friction forces. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Open Source Scanning Probe Microscopy Control Software Package Gxsm

    Energy Technology Data Exchange (ETDEWEB)

    Zahl P.; Wagner, T.; Moller, R.; Klust, A.

    2009-08-10

    Gxsm is a full featured and modern scanning probe microscopy (SPM) software. It can be used for powerful multidimensional image/data processing, analysis, and visualization. Connected toan instrument, it is operating many different avors of SPM, e.g., scanning tunneling microscopy(STM) and atomic force microscopy (AFM) or in general two-dimensional multi channel data acquisition instruments. The Gxsm core can handle different data types, e.g., integer and oating point numbers. An easily extendable plug-in architecture provides many image analysis and manipulation functions. A digital signal processor (DSP) subsystem runs the feedback loop, generates the scanning signals and acquires the data during SPM measurements. The programmable Gxsm vector probe engine performs virtually any thinkable spectroscopy and manipulation task, such as scanning tunneling spectroscopy (STS) or tip formation. The Gxsm software is released under the GNU general public license (GPL) and can be obtained via the Internet.

  17. A scanning photoelectron microscope (SPEM) at the National Synchrotron Light Source (NSLS)

    International Nuclear Information System (INIS)

    Ade, H.; Kirz, J.; Hulbert, S.; Johnson, E.; Anderson, E.; Kern, D.; Brookhaven National Lab., Upton, NY; Lawrence Berkeley Lab., CA; International Business Machines Corp., Yorktown Heights, NY

    1989-01-01

    We are in the process of developing and commissioning a scanning photoelectron microscope (SPEM) at the X1A beamline of the National Synchrotron Light Source (NSLS). It is designed to make use of the Soft X-ray Undulator (SXU) at the NSLS. This high brightness source illuminates a Fresnel zone plate, which forms a focused probe, ≤ 0.2μm in size, on the specimen surface. A grating monochromator selects the photon energy in the 400-800 eV range with an energy resolution of better than 1 eV. The expected flux in the focus is in the 5 x 10 7 - 10 9 photons/s range. A single pass Cylindrical Mirror Analyzer (CMA) is used to record photoemission spectra, or to form an image within a fixed electron energy bandwidth as the specimen is mechanically scanned. As a first test, a 1000 mesh Au grid was successfully imaged with a resolution of about 1μm and the CMA tuned to the Au 4 f photoelectron peak. Once it is commissioned, a program is planned which will utilize the microscope to study beam sensitive systems, such as thin oxide/sub-oxide films of alumina and silica, and ultimately various adsorbates on these films. 14 refs., 4 figs

  18. Autofocus on moving object in scanning electron microscope.

    Science.gov (United States)

    Kudryavtsev, Andrey V; Dembélé, Sounkalo; Piat, Nadine

    2017-11-01

    The sharpness of the images coming from a Scanning Electron Microscope (SEM) is a very important property for many computer vision applications at micro- and nanoscale. It represents how much object details are distinctive in the images: the object may be perceived sharp or blurred. Image sharpness highly depends on the value of focal distance, or working distance in the case of the SEM. Autofocus is the technique allowing to automatically adjust the working distance to maximize the sharpness. Most of the existing algorithms allows working only with a static object which is enough for the tasks of visualization, manual microanalysis or microcharacterization. These applications work with a low frame rate, less than 1 Hz, that guarantees a low level of noise. However, static autofocus can not be used for samples performing continuous 3D motion, which is the case of robotic applications where it is required to carry out a continuous 3D position measurement, e.g., nano-assembly or nanomanipulation. Moreover, in addition to constantly keeping object in focus while it is moving, it is required to perform the operation at high frame rate. The approach offering both these possibilities is presented in this paper and is referred as dynamic autofocus. The presented solution is based on stochastic optimization techniques. It allows tracking the maximum of the sharpness of the images without sweep and without training. It works under uncertainty conditions: presence of noise in images, unknown maximal sharpness and unknown 3D motion of the specimen. The experiments, that were performed with noisy images at high frame rate (5 Hz), were conducted on a Carl Zeiss Auriga 60 FE-SEM. They prove the robustness of the algorithm with respect to the variation of optimization parameters, object speed and magnification. Moreover, it is invariant to the object structure and its variation in time. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1996-01-01

    Scanning Tunneling Microscopy III provides a unique introduction to the theoretical foundations of scanning tunneling microscopy and related scanning probe methods. The different theoretical concepts developed in the past are outlined, and the implications of the theoretical results for the interpretation of experimental data are discussed in detail. Therefore, this book serves as a most useful guide for experimentalists as well as for theoreticians working in the filed of local probe methods. In this second edition the text has been updated and new methods are discussed.

  20. Microscopic understanding of spin current probed by shot noise

    Science.gov (United States)

    Arakawa, Tomonori

    The spin currents is one of key issue in the spintronics field and the generation and detection of those have been intensively studied by using various materials. The analysis of experiments, however, relies on phenomenological parameters such as spin relaxation length and spin flip time. The microscopic nature of the spin current such as energy distribution and energy relaxation mechanism, has not yet well understood. To establish a better microscopic understanding of spin currents, I focused on the shot noise measurement which is well established technique in the field of mesoscopic physics [Y. M. Blanter and M. B üttiker, Phys. Rep. 336, 1 (2000).]. Although there are many theoretically works about shot noise in the presence of spin currents, for example detection of spin accumulation [J. Meair, P. Stano, and P. Jacquod, Phys. Rev. B 84 (2011).], estimation of spin flip currents, and so on, these predictions have never been experimentally confirmed. In this context, we reported the first experimental detention of shot noise in the presence of the spin accumulation in a (Ga,Mn)As/tunnel barrier/n-GaAs based lateral spin valve device [T. Arakawa et al., Phys. Rev. Lett. 114, 016601 (2015).]. Together with this result, we found however that the effective temperature of the spin current drastically increases due to the spin injection process. This heating of electron system could be a big problem to realize future spin current devices by using quantum coherence, because the effective temperature rise directly related to the destruction of the coherence of the spin current. Therefore, then we focused on the mechanism of this heating and the energy relaxation in a diffusive channel. By measuring current noise and the DC offset voltage in the usual non-local spin valve signal as a function of the spin diffusion channel length, we clarified that the electron-electron interaction length, which is the characteristic length for the relaxation of the electron system, is

  1. Critical-Dimension Measurement using Multi-Angle-Scanning Method in Atomic Force Microscope

    Science.gov (United States)

    Murayama, Ken; Gonda, Satoshi; Koyanagi, Hajime; Terasawa, Tsuneo; Hosaka, Sumio

    2006-07-01

    We have developed a new critical dimension (CD) measurement technique using atomic force microscope (AFM) which can measure width-dimensions and examine sidewall-shapes of fine patterns on a wafer. The technique employs a flared-type tip in combination with digital probing and multi-angle scanning mechanism that allows the tip to trace the sidewalls on both sides of a feature (or trench) by making physical contacts with the sidewall surface. First, by using finite element method (FEM) we analyzed deformation of the tip and cantilever to compensate errors caused by the deformation. To verify our compensation method we measured quartz reference patterns either with perpendicular sidewalls or undercuts. In this paper we will describe the applications and usefulness of this multi-angle operation and show some measurement results of ArF resist patterns with 200 nm width and 400 nm depth that were obtained with a flared tip of 120 nm diameter.

  2. Surface chemical reactions probed with scanning force microscopy

    NARCIS (Netherlands)

    Werts, M.P L; van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this letter we report the study of surface chemical reactions with scanning force microscopy (SFM) with chemical specificity. Using chemically modified SFM probes, we can determine the local surface reaction conversion during a chemical surface modification. The adhesion forces between a

  3. Design and performance of a beetle-type double-tip scanning tunneling microscope

    International Nuclear Information System (INIS)

    Jaschinsky, Philipp; Coenen, Peter; Pirug, Gerhard; Voigtlaender, Bert

    2006-01-01

    A combination of a double-tip scanning tunneling microscope with a scanning electron microscope in ultrahigh vacuum environment is presented. The compact beetle-type design made it possible to integrate two independently driven scanning tunneling microscopes in a small space. Moreover, an additional level for coarse movement allows the decoupling of the translation and approach of the tunneling tip. The position of the two tips can be controlled from the millimeter scale down to 50 nm with the help of an add-on electron microscope. The instrument is capable of atomic resolution imaging with each tip

  4. Using the scanning electron microscope on the production line to assure quality semiconductors

    Science.gov (United States)

    Adolphsen, J. W.; Anstead, R. J.

    1972-01-01

    The use of the scanning electron microscope to detect metallization defects introduced during batch processing of semiconductor devices is discussed. A method of determining metallization integrity was developed which culminates in a procurement specification using the scanning microscope on the production line as a quality control tool. Batch process control of the metallization operation is monitored early in the manufacturing cycle.

  5. Scanning differential polarization microscope: Its use to image linear and circular differential scattering

    International Nuclear Information System (INIS)

    Mickols, W.; Maestre, M.F.

    1988-01-01

    A differential polarization microscope that couples the sensitivity of single-beam measurement of circular dichroism and circular differential scattering with the simultaneous measurement of linear dichroism and linear differential scattering has been developed. The microscope uses a scanning microscope stage and single-point illumination to give the very shallow depth of field found in confocal microscopy. This microscope can operate in the confocal mode as well as in the near confocal condition that can allow one to program the coherence and spatial resolution of the microscope. This microscope has been used to study the change in the structure of chromatin during the development of sperm in Drosophila

  6. Development of X-ray excitable luminescent probes for scanning X-ray microscopy

    International Nuclear Information System (INIS)

    Moronne, M.M.

    1999-01-01

    Transmission soft X-ray microscopy is now capable of achieving resolutions that are typically 5 times better than the best-visible light microscopes. With expected improvements in zone plate optics, an additional factor of two may be realized within the next few years. Despite the high resolution now available with X-ray microscopes and the high X-ray contrast provided by biological molecules in the soft X-ray region (λ=2-5 nm), molecular probes for localizing specific biological targets have been lacking. To circumvent this problem, X-ray excitable molecular probes are needed that can target unique biological features. In this paper we report our initial results on the development of lanthanide-based fluorescent probes for biological labeling. Using scanning luminescence X-ray microscopy (SLXM, Jacobsen et al., J. Microscopy 172 (1993) 121-129), we show that lanthanide organo-polychelate complexes are sufficiently bright and radiation resistant to be the basis of a new class of X-ray excitable molecular probes capable of providing at least a fivefold improvement in resolution over visible light microscopy. Lanthanide probes, able to bind 80-100 metal ions per molecule, were found to give strong luminescent signals with X-ray doses exceeding 10 8 Gy, and were used to label actin stress fibers and in vitro preparations of polymerized tubulin. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Muon spin rotation and other microscopic probes of spin-glass dynamics

    International Nuclear Information System (INIS)

    MacLaughlin, D.E.

    1980-01-01

    A number of different microscopic probe techniques have been employed to investigate the onset of the spin-glass state in dilute magnetic alloys. Among these are Moessbauer-effect spectroscopy, neutron scattering, ESR of the impurity spins, host NMR and, most recently, muon spin rotation and depolarization. Spin probes yield information on the microscopic static and dynamic behavior of the impurity spins, and give insight into both the spin freezing process and the nature of low-lying excitations in the ordered state. Microscopic probe experiments in spin glasses are surveyed, and the unique advantages of muon studies are emphasized

  8. Development of scanning μ-RHEED microscope and imaging of polycrystal grain structure for VLSI technology

    International Nuclear Information System (INIS)

    Tsubouchi, Kazuo; Masu, Kazuya; Tanaka, Masanori

    1990-01-01

    A new type of scanning μ-RHEED (reflection high energy electron diffraction) microscope has been developed. Scanning μ-RHEED images are observed using the intensities of the specific diffraction spots in the RHEED pattern. We can observe the grain boundaries and determine the crystallographic orientation of each grain in poly Si and Cu thin films. Our scanning μ-RHEED microscope is suitable for evaluation of micrograin structure in VLSI materials. (author)

  9. Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope.

    Science.gov (United States)

    Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G

    2017-10-01

    A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    Science.gov (United States)

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-03-28

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  11. Sub-wavelength imaging by depolarization in a reflection near-field optical microscope using an uncoated fiber probe

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Hvam, Jørn Märcher

    1998-01-01

    We present a reflection scanning near-field optical microscope utilizing counter-directional light propagation in an uncoated fiber probe, cross-polarized detection and shear-force feedback. Topographical and near-field optical imaging with a scanning speed of up to 10 mu m/s and a lateral...... resolution better than 40 nm are demonstrated with a latex projection test sample. Determination of the optical resolution as well as correlation between topographical and near-field optical images are discussed. (C) 1998 Elsevier Science B.V....

  12. Automated Assessment of Keratocyte Density in Stromal Images from the ConfoScan 4 Confocal Microscope

    Science.gov (United States)

    Bourne, William M.; Patel, Sanjay V.

    2010-01-01

    Purpose. To develop a program to determine cell densities in images from the ConfoScan 4 (Nidek, Inc., Freemont, CA) confocal microscope and compare the densities with those determined in images obtained by the Tandem Scanning confocal microscope (Tandem Scanning Corp., Reston, VA). Methods. A program was developed that used image-processing routines to identify stromal cell nuclei in images from the ConfoScan 4 confocal microscope. Cell selection parameters were set to match cell densities from the program with those determined manually in 15 normal corneas of 15 volunteers. The program was tested on scans from 16 other normal volunteers and 17 volunteers 3 years after LASIK. Cell densities were compared to densities determined by manual assessment and to those in scans by the Tandem Scanning confocal microscope in the same corneas. Results. The difference in cell density between the automatic and manual assessment was −539 ± 3005 cells/mm3 (mean ± SD, P = 0.11) in the 16 test corneas. Densities estimated from the ConfoScan 4 agreed with those from the Tandem Scanning confocal microscope in all regions of the stroma except in the anterior 10%, where the ConfoScan 4 indicated a 30% lower density. Conclusions. Differences in anterior stromal cell density between the ConfoScan 4 and the Tandem Scanning confocal microscope can be explained by the different optical designs. The lower spatial resolution of the ConfoScan 4 limits its ability to resolve thin layers. The adaptation of our earlier cell-counting program to the ConfoScan 4 provides a timesaving, objective, and reproducible means of determining stromal cell densities in images from the ConfoScan 4. PMID:19892869

  13. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    Science.gov (United States)

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  14. Band excitation method applicable to scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  15. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum.

    Science.gov (United States)

    Schaefer-Nolte, E; Reinhard, F; Ternes, M; Wrachtrup, J; Kern, K

    2014-01-01

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines a tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.

  16. Systematic analyses of vibration noise of a vibration isolation system for high-resolution scanning tunneling microscopes.

    Science.gov (United States)

    Iwaya, Katsuya; Shimizu, Ryota; Hashizume, Tomihiro; Hitosugi, Taro

    2011-08-01

    We designed and constructed an effective vibration isolation system for stable scanning tunneling microscopy measurements using a separate foundation and two vibration isolation stages (i.e., a combination of passive and active vibration isolation dampers). Systematic analyses of vibration data along the horizontal and vertical directions are present, including the vibration transfer functions of each stage and the overall vibration isolation system. To demonstrate the performance of the system, tunneling current noise measurements are conducted with and without the vibration isolation. Combining passive and active vibration isolation dampers successfully removes most of the vibration noise in the tunneling current up to 100 Hz. These comprehensive vibration noise data, along with details of the entire system, can be used to establish a clear guideline for building an effective vibration isolation system for various scanning probe microscopes and electron microscopes.

  17. Integrated microfluidic linking chip for scanning probe nanolithography

    Science.gov (United States)

    Ryu, Kee Suk; Wang, Xuefeng; Shaikh, Kashan; Bullen, David; Goluch, Edgar; Zou, Jun; Liu, Chang; Mirkin, Chad A.

    2004-07-01

    This letter reports an architecture for a microfluidic chip that dresses (inks) multiple nanolithography tips in a high-density array in a parallel and multiplexed fashion. The microfluidic chip consists of multiple precision patterned thin-film poly(dimethylsiloxane) (PDMS) patches serving as porous inking pads. Inking chemicals are supplied from loading reservoirs to the inking pads through microfluidic channels. The gas-permeable thin PDMS membranes allow ink molecules to diffuse through while preventing bulk liquid from overflowing or evaporating. The inking chip provides high-density inking, easy loading of inks, and reduced evaporation losses. We present the fabrication process and inking of scanning probe contact printing probes and commercial nitride probes.

  18. Numerical restoration of surface vortices in Nb films measured by a scanning SQUID microscope

    Science.gov (United States)

    Ito, Atsuki; Thanh Huy, Ho; Dang, Vu The; Miyoshi, Hiroki; Hayashi, Masahiko; Ishida, Takekazu

    2017-07-01

    In the present work, we investigated a vortex profile appeared on a pure Nb film (500 nm in thickness, 10 mm x 10 mm) by using a scanning SQUID microscope. We found that the local magnetic distribution thus observed is broadened compared to a true vortex profile in the superconducting film. We therefore applied the numerical method to improve a spatial resolution of the scanning SQUID microscope. The method is based on the inverse Biot-Savart law and the Fourier transformation to recover a real-space image. We found that the numerical analyses give a smaller vortex than the raw vortex profile observed by the scanning microscope.

  19. Inducing superconductivity at a nanoscale: photodoping with a near-field scanning optical microscope.

    Science.gov (United States)

    Decca, R S; Drew, H D; Maiorov, B; Guimpel, J; Osquiguil, E J

    1999-01-01

    The local modification of an insulating GdBa2Cu3O6.5 thin film, made superconducting by illumination with a near-field scanning optical microscope (NSOM), is reported. A 100-nm aperture NSOM probe acts as a sub-wavelength light source of wavelength lambda(exc) = 480-650 nm, locally generating photocarriers in an otherwise insulating GdBa2-Cu3O6.5 thin film. Of the photogenerated electron-hole pairs, electrons are trapped in the crystallographic lattice, defining an electrostatic confining potential to enable the holes to move. Reflectance measurements at lambda = 1.55 microm at room temperature show that photocarriers can be induced and constrained to move on a approximately 200 nm scale for all investigated lambda(exc). Photogenerated wires present a superconducting critical temperature Tc= 12 K with a critical current density Jc = 10(4) A cm(-2). Exploiting the flexibility provided by photodoping through a NSOM probe, a junction was written by photodoping a wire with a narrow (approximately 50 nm) under-illuminated gap. The strong magnetic field modulation of the critical current provides a clear signature of the existence of a Josephson effect in the junction.

  20. Invited review article: A 10 mK scanning probe microscopy facility.

    Science.gov (United States)

    Song, Young Jae; Otte, Alexander F; Shvarts, Vladimir; Zhao, Zuyu; Kuk, Young; Blankenship, Steven R; Band, Alan; Hess, Frank M; Stroscio, Joseph A

    2010-12-01

    We describe the design, development and performance of a scanning probe microscopy (SPM) facility operating at a base temperature of 10 mK in magnetic fields up to 15 T. The microscope is cooled by a custom designed, fully ultra-high vacuum (UHV) compatible dilution refrigerator (DR) and is capable of in situ tip and sample exchange. Subpicometer stability at the tip-sample junction is achieved through three independent vibration isolation stages and careful design of the dilution refrigerator. The system can be connected to, or disconnected from, a network of interconnected auxiliary UHV chambers, which include growth chambers for metal and semiconductor samples, a field-ion microscope for tip characterization, and a fully independent additional quick access low temperature scanning tunneling microscope (STM) and atomic force microscope (AFM) system. To characterize the system, we present the cooling performance of the DR, vibrational, tunneling current, and tip-sample displacement noise measurements. In addition, we show the spectral resolution capabilities with tunneling spectroscopy results obtained on an epitaxial graphene sample resolving the quantum Landau levels in a magnetic field, including the sublevels corresponding to the lifting of the electron spin and valley degeneracies.

  1. New scanning technique for the optical vortex microscope.

    Science.gov (United States)

    Augustyniak, Ireneusz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Drobczyński, Sławomir

    2012-04-01

    In the optical vortex microscopy the focused Gaussian beam with optical vortex scans a sample. An optical vortex can be introduced into a laser beam with the use of a special optical element--a vortex lens. When moving the vortex lens, the optical vortex changes its position inside the spot formed by a focused laser beam. This effect can be used as a new precise scanning technique. In this paper, we study the optical vortex behavior at the sample plane. We also estimate if the new scanning technique results in observable effects that could be used for a phase object detection.

  2. Microscopic appearance analysis of raw material used for the production of sintered UO2 by scanning electron microscope

    International Nuclear Information System (INIS)

    Liu feiming

    1992-01-01

    The paper describes the microscopic appearance of UO 2 , U 3 O 8 , ADU and AUC powders used for the production of sintered UO 2 slug of nuclear fuel component of PWR. The characteristic analysis of the microscopic appearance observed by scanning electron microscope shows that the quality and finished product rate of sintered UO 2 depend on the appearance characteristic of the active Uo 2 powder, such as grade size and its distribution, spherulitized extent, surface condition and heap model etc.. The addition of U 3 O 8 to the UO 2 powder improves significantly the quality and the finished product rate. The mechanism of this effect is discussed on the basis of the microscopic appearance characteristic for two kinds of powder

  3. Near-field optical microscope using a silicon-nitride probe

    NARCIS (Netherlands)

    van Hulst, N.F.; Moers, M.H.P.; Moers, M.H.P.; Noordman, O.F.J.; Noordman, O.F.J.; Tack, R.G.; Segerink, Franciscus B.; Bölger, B.; Bölger, B.

    1993-01-01

    Operation of an alternative near-field optical microscope is presented. The microscope uses a microfabricated silicon- nitride probe with integrated cantilever, as originally developed for force microscopy. The cantilever allows routine close contact near-field imaging o­n arbitrary surfaces without

  4. The sinusoidal lining cells in "normal" human liver. A scanning electron microscopic investigation

    DEFF Research Database (Denmark)

    Horn, T; Henriksen, Jens Henrik Sahl; Christoffersen, P

    1986-01-01

    The scanning electron microscopic was used to study the fenestrations of human liver sinusoids. Thirteen biopsies, where light microscopy and transmission electron microscopy revealed normal sinusoidal architecture, were investigated. The number of fenestrae was calculated in acinar zone 3...

  5. Large area fabrication of plasmonic nanoparticle grating structure by conventional scanning electron microscope

    International Nuclear Information System (INIS)

    Sudheer,; Tiwari, P.; Rai, V. N.; Srivastava, A. K.; Mukharjee, C.

    2015-01-01

    Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique

  6. Fabrication of Cantilevered Tip-on-Aperture Probe for Enhancing Resolution of Scanning Near-Field Optical Microscopy System

    Science.gov (United States)

    Chang, Won-Seok; Jeong, Mun Seok; Kim, Dae-Chul; Kim, Jeongyong

    2007-08-01

    The scanning near-field optical microscopy (SNOM) system achieves a resolution beyond the diffraction limit of the conventional optical microscopy system by subwavelength aperture probe scanning. The problem is that the light throughput decreases very markedly with decreasing aperture diameter. Apertureless scanning near-field optical microscopes obtain a much better resolution by concentrating light field near the tip apex. However, far-field illumination by a focused laser beam generates a large background scattering signal. Both disadvantages are overcome using the tip-on-aperture (TOA) approach presented in previous works. In this study, the fabrication of a cantilevered tip for SNOM and scanning force microscopy (SFM) has been described. The nano-probes are batch-fabricated on a silicon wafer. The Si3N4 has excellent optical transparent characteristics, higher Young’s modulus and yield strength so that it should provide a better probe for SNOM and SFM. For this purpose, a Si3N4 thin film was deposited using low-pressure chemical vapor deposition (LPCVD). To form the aperture and TOA in the probe, we applied focused ion beam (FIB) machining at the end of the sharpened tip. For verification of the efficiency of the micromachined TOA probes, numerical analysis using the finite-difference time domain (FDTD) analysis and experimental measurement using an inverted microscope based the SNOM system were performed.

  7. Graphene quantum dots probed by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morgenstern, Markus; Freitag, Nils; Nent, Alexander; Nemes-Incze, Peter; Liebmann, Marcus [II. Institute of Physics B and JARA-FIT, RWTH Aachen University, Aachen (Germany)

    2017-11-15

    Scanning tunneling spectroscopy results probing the electronic properties of graphene quantum dots are reviewed. After a short summary of the study of squared wave functions of graphene quantum dots on metal substrates, we firstly present data where the Landau level gaps caused by a perpendicular magnetic field are used to electrostatically confine electrons in monolayer graphene, which are probed by the Coulomb staircase revealing the consecutive charging of a quantum dot. It turns out that these quantum dots exhibit much more regular charging sequences than lithographically confined ones. Namely, the consistent grouping of charging peaks into quadruplets, both, in the electron and hole branch, portrays a regular orbital splitting of about 10meV. At low hole occupation numbers, the charging peaks are, partly, additionally grouped into doublets. The spatially varying energy separation of the doublets indicates a modulation of the valley splitting by the underlying BN substrate. We outline that this property might be used to eventually tune the valley splitting coherently. Afterwards, we describe graphene quantum dots with multiple contacts produced without lithographic resist, namely by local anodic oxidation. Such quantum dots target the goal to probe magnetotransport properties during the imaging of the corresponding wave functions by scanning tunneling spectroscopy. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Nanoscale scanning probe ferromagnetic resonance imaging using localized modes.

    Science.gov (United States)

    Lee, Inhee; Obukhov, Yuri; Xiang, Gang; Hauser, Adam; Yang, Fengyuan; Banerjee, Palash; Pelekhov, Denis V; Hammel, P Chris

    2010-08-12

    The discovery of new phenomena in layered and nanostructured magnetic devices is driving rapid growth in nanomagnetics research. Resulting applications such as giant magnetoresistive field sensors and spin torque devices are fuelling advances in information and communications technology, magnetoelectronic sensing and biomedicine. There is an urgent need for high-resolution magnetic-imaging tools capable of characterizing these complex, often buried, nanoscale structures. Conventional ferromagnetic resonance (FMR) provides quantitative information about ferromagnetic materials and interacting multicomponent magnetic structures with spectroscopic precision and can distinguish components of complex bulk samples through their distinctive spectroscopic features. However, it lacks the sensitivity to probe nanoscale volumes and has no imaging capabilities. Here we demonstrate FMR imaging through spin-wave localization. Although the strong interactions in a ferromagnet favour the excitation of extended collective modes, we show that the intense, spatially confined magnetic field of the micromagnetic probe tip used in FMR force microscopy can be used to localize the FMR mode immediately beneath the probe. We demonstrate FMR modes localized within volumes having 200 nm lateral dimensions, and improvements of the approach may allow these dimensions to be decreased to tens of nanometres. Our study shows that this approach is capable of providing the microscopic detail required for the characterization of ferromagnets used in fields ranging from spintronics to biomagnetism. This method is applicable to buried and surface magnets, and, being a resonance technique, measures local internal fields and other magnetic properties with spectroscopic precision.

  9. [Scanning electron microscope study of chemically disinfected endodontic files].

    Science.gov (United States)

    Navarro, G; Mateos, M; Navarro, J L; Canalda, C

    1991-01-01

    Forty stainless steel endodontic files were observed at scanning electron microscopy after being subjected to ten disinfection cycles of 10 minutes each one, immersed in different chemical disinfectants. Corrosion was not observed on the surface of the files in circumstances that this study was made.

  10. Design of a scanning gate microscope for mesoscopic electron systems in a cryogen-free dilution refrigerator.

    Science.gov (United States)

    Pelliccione, M; Sciambi, A; Bartel, J; Keller, A J; Goldhaber-Gordon, D

    2013-03-01

    We report on our design of a scanning gate microscope housed in a cryogen-free dilution refrigerator with a base temperature of 15 mK. The recent increase in efficiency of pulse tube cryocoolers has made cryogen-free systems popular in recent years. However, this new style of cryostat presents challenges for performing scanning probe measurements, mainly as a result of the vibrations introduced by the cryocooler. We demonstrate scanning with root-mean-square vibrations of 0.8 nm at 3 K and 2.1 nm at 15 mK in a 1 kHz bandwidth with our design. Using Coulomb blockade thermometry on a GaAs/AlGaAs gate-defined quantum dot, we demonstrate an electron temperature of 45 mK.

  11. Quantifying touch-feel perception on automotive interiors by a multi-function tribological probe microscope

    International Nuclear Information System (INIS)

    Liu, X; Chan, M K; Hennessey, B; Ruebenach, T; Alay, G

    2005-01-01

    In this paper we will report the preliminary study of people's subjective feelings on stroking surfaces of different materials and the measured properties of these surfaces, in order to understand exactly what properties matter and to what extent the different factors weight the human perception. Ten specimens with materials ranging from natural wood, leather to engineered plastics and metal were selected for this study. These specimens were first tested by a group of untrained people for describing their subjective feel sensation in terms of smoothrough, soft-hard, slippery-grippy, warm-cold and overall judgement of like and dislike for the sample being touched. Then the same specimens were measured for their surface properties by various techniques. In particular, the multi-function measurement has been carried out on each of specimens by a novel tribological probe microscope (TPM). The TPM is capable of measuring four functions in a single scan to provide area mappings of topography, friction, Young's modulus and hardness. As the TPM mapping is based on a point-by-point scanning so values of the four measured functions are linked in space and in time, therefore cross correlation between functions can be established. Although the TPM measured area is small compared to fingertip, the results show that the perception is influenced by nano- and microscale structure of surfaces

  12. Whispering-gallery acoustic sensing: Characterization of mesoscopic films and scanning probe microscopy applications

    Science.gov (United States)

    La Rosa, Andres H.; Li, Nan; Fernandez, Rodolfo; Wang, Xiaohua; Nordstrom, Richard; Padigi, S. K.

    2011-09-01

    Full understanding of the physics underlying the striking changes in viscoelasticity, relaxation time, and phase transitions that mesoscopic fluid-like films undergo at solid-liquid interfaces, or under confinement between two sliding solid boundaries, constitutes one of the major challenges in condensed matter physics. Their role in the imaging process of solid substrates by scanning probe microscopy (SPM) is also currently controversial. Aiming at improving the reliability and versatility of instrumentation dedicated to characterize mesoscopic films, a noninvasive whispering-gallery acoustic sensing (WGAS) technique is introduced; its application as feedback control in SPM is also demonstrated. To illustrate its working principle and potential merits, WGAS has been integrated into a SPM that uses a sharp tip attached to an electrically driven 32-kHz piezoelectric tuning fork (TF), the latter also tighten to the operating microscope's frame. Such TF-based SPMs typically monitor the TF's state of motion by electrical means, hence subjected to the effects caused by the inherent capacitance of the device (i.e., electrical resonance differing from the probe's mechanical resonance). Instead, the novelty of WGAS resides in exploiting the already existent microscope's frame as an acoustic cavity (its few centimeter-sized perimeter closely matching the operating acoustic wavelength) where standing-waves (generated by the nanometer-sized oscillations of the TF's tines) are sensitively detected by an acoustic transducer (the latter judiciously placed around the microscope's frame perimeter for attaining maximum detection). This way, WGAS is able to remote monitoring, via acoustic means, the nanometer-sized amplitude motion of the TF's tines. (This remote-detection method resembles the ability to hear faint, but still clear, levels of sound at the galleries of a cathedral, despite the extraordinary distance location of the sound source.) In applications aiming at

  13. Postirradiation changes in rat brain. Observations in light- and scanning microscope

    International Nuclear Information System (INIS)

    Kiczka-Wojczuk, J.; Sosnierz, M.; Bialas, B.; Wazna-Bogunska, C.

    1977-01-01

    Irradiation changes in central nervous system of the rat were evaluated. Fifty rats irradiated by a single dose of 1000 R were used. A special attention was paid to changes in ventricular ependyma. The changes observed in scanning microscope consisted of loss of cilia, swelling of ependymal cells and changes in their nuclear profiles. The changes presented in light microscope were typical for postirradiation damage of the brain. The authors express the opinion that scanning microscope offers a valuable, complementary tool for routine neuropathological investigations. (author)

  14. Apoptosis study of the macrophage via near-field scanning optical microscope

    International Nuclear Information System (INIS)

    Wang, D-C; Chen, K-Y; Chen, G-Y; Chen, S-H; Wun, S-J

    2008-01-01

    The cell apoptosis phenomenon was studied by traditional optical microscope with much lower resolution and also observed by Atomic Force Microscope (AFM) with nano-resolution recently. They both detect the cell apoptosis through the change of cell topography. In this study, the cell apoptosis was investigated via Near-Field Scanning Optical Microscope (NSOM). The cell topography, with nano-scaled resolution, and its optical characteristics were observed by NSOM at the same measurement scanning. The macrophage was chosen as the cell investigated. To understand the cell apoptosis process is the goal set for the research. The apoptosis process was related to the variations of the optical characteristics of the cell

  15. Practical Use of Scanning Low Energy Electron Microscope (SLEEM)

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Mikmeková, Eliška; Mikmeková, Šárka; Konvalina, Ivo; Frank, Luděk

    2016-01-01

    Roč. 22, S3 (2016), s. 1650-1651 ISSN 1431-9276 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : scanning low energy * SLEEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.891, year: 2016

  16. Impedimentric and microscopic probes of the integrities of ...

    African Journals Online (AJOL)

    Electrical and structural integrities of Self-assembled Monolayers (SAMs) of some organosulphur-metal complexes, formed on polycrystalline gold disc electrode, were probed, using Electrochemical Impedance Spectroscopy (EIS) and Atomic Force Microscopy (AFM) respectively. Values of relevant circuit elements in the ...

  17. Localized charge imaging with scanning Kelvin probe microscopy.

    Science.gov (United States)

    Orihuela, M F; Somoza, A M; Colchero, J; Ortuño, M; Palacios-Lidón, E

    2017-01-13

    In this work, we propose an intuitive and easily implementable approach to model and interpret scanning Kelvin probe microscopy images of insulating samples with localized charges. The method, based on the image charges method, has been validated by a systematic comparison of its predictions with experimental measurements performed on charge domains of different sizes, injected in polymethyl methacrylate discontinuous films. The agreement between predictions and experimental lateral profiles, as well as with spectroscopy tip-sample distance curves, supports its consistency. The proposed procedure allows obtaining quantitative information such as total charge and the size of a charge domain and allows estimating the most adequate measurement parameters.

  18. Compact scanning transmission x-ray microscope at the photon factory

    International Nuclear Information System (INIS)

    Takeichi, Yasuo; Inami, Nobuhito; Ono, Kanta; Suga, Hiroki; Takahashi, Yoshio

    2016-01-01

    We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ∼10 7 photons/s was focused to a diameter of ∼40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250–1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences

  19. Experimental Route to Scanning Probe Hot Electron Nanoscopy (HENs) Applied to 2D Material

    KAUST Repository

    Giugni, Andrea

    2017-06-09

    This paper presents details on a new experimental apparatus implementing the hot electron nanoscopy (HENs) technique introduced for advanced spectroscopies on structure and chemistry in few molecules and interface problems. A detailed description of the architecture used for the laser excitation of surface plasmons at an atomic force microscope (AFM) tip is provided. The photogenerated current from the tip to the sample is detected during the AFM scan. The technique is applied to innovative semiconductors for applications in electronics: 2D MoS2 single crystal and a p-type SnO layer. Results are supported by complementary scanning Kelvin probe microscopy, traditional conductive AFM, and Raman measurements. New features highlighted by HEN technique reveal details of local complexity in MoS2 and polycrystalline structure of SnO at nanometric scale otherwise undetected. The technique set in this paper is promising for future studies in nanojunctions and innovative multilayered materials, with new insight on interfaces.

  20. Miniature active damping stage for scanning probe applications in ultra high vacuum.

    Science.gov (United States)

    Assig, Maximilian; Koch, Andreas; Stiepany, Wolfgang; Strasser, Carola; Ast, Alexandra; Kern, Klaus; Ast, Christian R

    2012-03-01

    Scanning probe microscope (SPM) experiments demand a low vibration level to minimize the external influence on the measured signal. We present a miniature six-degree of freedom active damping stage based on a Gough-Stewart platform (hexapod) which is positioned in ultra high vacuum as close to the SPM as possible. In this way, vibrations originating from the experimental setup can be effectively reduced providing a quiet environment for the SPM. In addition, the hexapod provides a rigid reference point, which facilitates wiring as well as sample transfer. We outline the main working principle and show that for scanning tunneling microscopy (STM) measurements of a Si(111) 7 × 7 surface, the hexapod significantly improves the stability and quality of the topographic images.

  1. Angularly-selective transmission imaging in a scanning electron microscope.

    Science.gov (United States)

    Holm, Jason; Keller, Robert R

    2016-08-01

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.

  2. Scanning electron microscopic study of apical and intracanal resorption.

    Science.gov (United States)

    Delzangles, B

    1989-07-01

    Apical radicular and intracanal surfaces of extracted teeth with apical lesions were examined by means of scanning electron microscopy. The distribution of apical and intracanal resorption areas varied with the presence of a granuloma or a cyst. Teeth bearing granulomas showed an apical resorption centered on the main foramina whereas the hard tissue underlying a cyst showed little or no resorption. Intracanal resorption was always marked in the apical third and more scattered in the middle and cervical third. The resorption disrupted the anatomical structures.

  3. Field modeling and ray-tracing of a miniature scanning electron microscope beam column.

    Science.gov (United States)

    Loyd, Jody S; Gregory, Don A; Gaskin, Jessica A

    2017-08-01

    A miniature scanning electron microscope (SEM) focusing column design is introduced and its potential performance assessed through an estimation of parameters that affect the probe radius, to include source size, spherical and chromatic aberration, diffraction and space charge broadening. The focusing column, a critical component of any SEM capable of operating on the lunar surface, was developed by the NASA Marshall Space Flight Center and Advanced Research Systems. The ray-trace analysis presented uses a model of the electrostatic field (within the focusing column) that is first calculated using the boundary element method (BEM). This method provides flexibility in modeling the complex electrode shapes of practical electron lens systems. A Fourier series solution of the lens field is then derived within a cylindrical domain whose boundary potential is provided by the BEM. Used in this way, the Fourier series solution is an accuracy enhancement to the BEM solution, allowing sufficient precision to assess geometric aberrations through direct ray-tracing. Two modes of operation with distinct lens field solutions are described. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Scanning tunnelling microscope light emission: Finite temperature current noise and over cut-off emission.

    Science.gov (United States)

    Kalathingal, Vijith; Dawson, Paul; Mitra, J

    2017-06-14

    The spectral distribution of light emitted from a scanning tunnelling microscope junction not only bears its intrinsic plasmonic signature but is also imprinted with the characteristics of optical frequency fluc- tuations of the tunnel current. Experimental spectra from gold-gold tunnel junctions are presented that show a strong bias (V b ) dependence, curiously with emission at energies higher than the quantum cut-off (eV b ); a component that decays monotonically with increasing bias. The spectral evolution is explained by developing a theoretical model for the power spectral density of tunnel current fluctuations, incorporating finite temperature contribution through consideration of the quantum transport in the system. Notably, the observed decay of the over cut-off emission is found to be critically associated with, and well explained in terms of the variation in junction conductance with V b . The investigation highlights the scope of plasmon-mediated light emission as a unique probe of high frequency fluctuations in electronic systems that are fundamental to the electrical generation and control of plasmons.

  5. IN-SITU EXPERIMENTS OF VACUUM DISCHARGE USING SCANNING ELECTRON MICROSCOPES

    CERN Document Server

    Muranaka, T; Leifer, K; Ziemann, V

    2011-01-01

    The fundamental understanding of vacuum discharge mechanisms and induced surface damage is indispensable for the CLIC feasibility study. We have been conducting dc sparc experiments inside a Scanning Electron Microscope (SEM) at Uppsala university in order to investigate localized breakdown phenomena. By using a SEM, we achieve the resolution of the electron probe in the few-nm range, which is of great advantage as the surface roughness of the polished accelerating structures is in the same scale. The high accelerating field of 1 GV/m is realized by biasing an electrode with 1 kV set above the sample with a gap of sub μm. Furthermore, a second SEM equipped with a Focused Ion Beam (FIB) is used to modify the topography of sample surfaces thus the geometrical dependence of field emissions and vacuum discharges can be studied. The FIB can be used for the surface damage analysis as well. We have demonstrated subsurface damage observations by using FIB to sputter a rectangular recess into the sample in the breakd...

  6. A novel phase-sensitive scanning near-field optical microscope

    International Nuclear Information System (INIS)

    Wu Xiao-Yu; Lin Sun; Tan Qiao-Feng; Wang Jia

    2015-01-01

    Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field optical microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization. (paper)

  7. Construction of a four tip scanning tunneling microscope/scanning electron microscope combination and conductivity measurements of silicide nanowires; Aufbau einer Vierspitzen-Rastertunnelmikroskop/Rasterelektronenmikroskop-Kombination und Leitfaehigkeitsmessungen an Silizid Nanodraehten

    Energy Technology Data Exchange (ETDEWEB)

    Zubkov, Evgeniy

    2013-09-01

    In this work the combination of a four-tip scanning tunneling microscope with a scanning electron microscope is presented. By means of this apparatus it is possible to perform the conductivity measurements on the in-situ prepared nanostructures in ultra-high vacuum. With the aid of a scanning electron microscope (SEM), it becomes possible to position the tunneling tips of the four-tip scanning tunneling microscope (STM), so that an arrangement for a four-point probe measurement on nanostructures can be obtained. The STM head was built according to the novel coaxial Beetle concept. This concept allows on the one hand, a very compact arrangement of the components of the STM and on the other hand, the new-built STM head has a good mechanical stability, in order to achieve atomic resolution with all four STM units. The atomic resolution of the STM units was confirmed by scanning a Si(111)-7 x 7 surface. The thermal drift during the STM operation, as well as the resonant frequencies of the mechanical structure of the STM head, were determined. The scanning electron microscope allows the precise and safe navigation of the tunneling tips on the sample surface. Multi tip spectroscopy with up to four STM units can be performed synchronously. To demonstrate the capabilities of the new-built apparatus the conductivity measurements were carried out on metallic yttrium silicide nanowires. The nanowires were prepared by the in-situ deposition of yttrium on a heated Si(110) sample surface. Current-voltage curves were recorded on the nanowires and on the wetting layer in-between. The curves indicate an existence of the Schottky barrier between the yttrium silicide nanowires and the silicon bulk. By means of the two-tip measurements with a gate, the insulating property of the Schottky barrier has been confirmed. Using this Schottky barrier, it is possible to limit the current to the nanowire and to prevent it from flowing through the silicon bulk. A four-tip resistance measurement

  8. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    Science.gov (United States)

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-03-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.

  9. In situ fatigue loading stage inside scanning electron microscope

    Science.gov (United States)

    Telesman, Jack; Kantzos, Peter; Brewer, David

    1988-01-01

    A fatigue loading stage inside a scanning electron microscopy (SEM) was developed. The stage allows dynamic and static high-magnification and high-resolution viewing of the fatigue crack initiation and crack propagation processes. The loading stage is controlled by a closed-loop servohydraulic system. Maximum load is 1000 lb (4450 N) with test frequencies ranging up to 30 Hz. The stage accommodates specimens up to 2 inches (50 mm) in length and tolerates substantial specimen translation to view the propagating crack. At room temperature, acceptable working resolution is obtainable for magnifications ranging up to 10,000X. The system is equipped with a high-temperature setup designed for temperatures up to 2000 F (1100 C). The signal can be videotaped for further analysis of the pertinent fatigue damage mechanisms. The design allows for quick and easy interchange and conversion of the SEM from a loading stage configuration to its normal operational configuration and vice versa. Tests are performed entirely in the in-situ mode. In contrast to other designs, the NASA design has greatly extended the life of the loading stage by not exposing the bellows to cyclic loading. The loading stage was used to investigate the fatigue crack growth mechanisms in the (100)-oriented PWA 1480 single-crystal, nickel-based supperalloy. The high-magnification observations revealed the details of the crack growth processes.

  10. Scanning and transmission electron microscope study of pellicle morphogenesis.

    Science.gov (United States)

    Lie, T

    1977-05-01

    The morphology of pellicle formation was studied using correlated transmission and scanning electron microscopy. Pellicle developed on hydroxyapatite/epoxy resin splints attached to the buccal surfaces of molars and premolars in six young individuals. Splint segments were removed at intervals of 2, 4, 6, 12, 24, and 48 h. Measurements of pellicle thickness revealed that during the first 12 h considerably more material formed on the apatite surfaces than on the epoxy resin areas of the splints. This difference was equalized in 24- and 48-h specimens. Three types of pellicles could be distinguished on the basis of morphologic criteria. A globular pellicle, characterized by a consistent presence of globules of varying size and configuration, seemed to predominate in most subjects. These globules could not be mistaken for bacteria due to their dimensions, contour, and lack of cell walls. A fibrillar pellicle consisted of 3- to 7-nm-wide fibrils and frequently included some finely globular particles. A granular pellicle displayed a relatively even surface contour and did not exhibit globular or fibrillar structures. In contrast to the two other types, the granular pellicle contained distinct laminations. Apparently, the varying morphology of the early pellicle is a reflection of its complex chemical composition.

  11. Probing surfaces with single-polymer atomic force microscope experiments.

    Science.gov (United States)

    Friedsam, C; Gaub, H E; Netz, R R

    2006-03-01

    In the past 15 years atomic force microscope (AFM) based force spectroscopy has become a versatile tool to study inter- and intramolecular interactions of single polymer molecules. Irreversible coupling of polymer molecules between the tip of an AFM cantilever and the substrate allows one to study the stretching response up to the high force regime of several nN. For polymers that glide or slip laterally over the surface with negligible friction, on the other hand, the measured force profiles exhibit plateaus which allow one to extract the polymer adsorption energies. Long-term stable polymer coatings of the AFM tips allow for the possibility of repeating desorption experiments from solid supports with individual molecules many times, yielding good sampling statistics and thus reliable estimates for adsorption energies. In combination with recent advances in theoretical modeling, a detailed picture of the conformational statistics, backbone elasticity, and the adsorption characteristics of single polymer molecules is obtained.

  12. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Heyde, Markus; Salmeron, Miquel; Altman, Eric I.; Schwarz, Udo D.

    2008-02-27

    The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.

  13. Upgrade of a Scanning Confocal Microscope to a Single-Beam Path STED Microscope.

    Directory of Open Access Journals (Sweden)

    André Klauss

    Full Text Available By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as "easy-STED", achieving lateral resolution < λ/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate that creates the STED-doughnut light distribution in the focal plane, while leaving the excitation beam unaltered when implemented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent beads as reference were achieved with the wavelength combination of 635 nm excitation and 766 nm depletion. To evaluate the STED performance in biological systems, we compared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by labeling F-actin filaments in vitro as well as through immunofluorescence recordings of microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvolution approach and showed that images obtained from time-gated pulsed STED microscopy may benefit concerning the signal-to-background ratio, from the joint deconvolution of sub-images with different spatial information which were extracted from offline time gating.

  14. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    Science.gov (United States)

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  15. Development of Near-Field Microwave Microscope with the Functionality of Scanning Tunneling Spectroscopy

    Science.gov (United States)

    Machida, Tadashi; Gaifullin, Marat B.; Ooi, Shuuich; Kato, Takuya; Sakata, Hideaki; Hirata, Kazuto

    2010-11-01

    We describe the details of an original near-field scanning microwave microscope, developed for simultaneous measurements of local density-of-states (LDOS) and local ohmic losses (LOL). Improving microwave detection systems, we have succeeded in distinguishing the LDOS and LOL even between two low resistance materials; gold and highly orientated pyrolitic graphite. The experimental data indicate that our microscope holds a capability to investigate both LDOS and LOL in nanoscale.

  16. Response function and optimum configuration of semiconductor backscattered-electron detectors for scanning electron microscopes

    International Nuclear Information System (INIS)

    Rau, E. I.; Orlikovskiy, N. A.; Ivanova, E. S.

    2012-01-01

    A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1–50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.

  17. Analysis at the atomic level: The atom probe field-ion microscope

    International Nuclear Information System (INIS)

    Miller, M.K.

    1987-01-01

    The atom probe field-ion microscope (APFIM) is a unique analytical instrument that can analyze metals and semiconducting materials on the atomic scale. In recent years, the atom probe has developed into one of the most powerful instruments available for routine microstructural and microchemical analysis of materials. The types of investigations that have been performed have encompassed many diverse metallurgical subjects including phase transformations, segregation, diffusion, catalysis, and radiation damage. 3 refs., 3 figs

  18. A new apparatus for electron tomography in the scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Morandi, V., E-mail: morandi@bo.imm.cnr.it; Maccagnani, P.; Masini, L.; Migliori, A.; Ortolani, L.; Pezza, A. [CNR-IMM Sezione di Bologna, via Gobetti 101, 40129 Bologna (Italy); Del Marro, M.; Pallocca, G.; Vinciguerra, P. [ASSING S.P.A., via E. Amaldi 14, 00016 Monterotondo (Rome) (Italy); Rossi, M.; Ferroni, M. [Dip.to di Scienze di Base e Applicate per l’Ingegneria and Centro di Ricerca per le Nanotecnologie Applicate all’Ingegneria (CNIS), Università degli Studi di Roma “Sapienza”, Via A. Scarpa, 00161 Rome (Italy); Sberveglieri, G. [SENSOR Lab, Dip.to di Ingegneria dell’Informazione, Università degli Studi di Brescia and CNR-INO, Via Valotti 9, 25123 Brescia (Italy); Vittori-Antisari, M. [Unità Tecnica Tecnologie dei Materiali, ENEA Centro Ricerche Casaccia, Via Anguillarese 301, 00123 S. Maria di Galeria (Rome) (Italy)

    2015-06-23

    The three-dimensional reconstruction of a microscopic specimen has been obtained by applying the tomographic algorithm to a set of images acquired in a Scanning Electron Microscope. This result was achieved starting from a series of projections obtained by stepwise rotating the sample under the beam raster. The Scanning Electron Microscope was operated in the scanning-transmission imaging mode, where the intensity of the transmitted electron beam is a monotonic function of the local mass-density and thickness of the specimen. The detection strategy has been implemented and tailored in order to maintain the projection requirement over the large tilt range, as required by the tomographic workflow. A Si-based electron detector and an eucentric-rotation specimen holder have been specifically developed for the purpose.

  19. Investigation of a magnetic flux-guide for a HTS scanning superconducting quantum interference device microscope

    International Nuclear Information System (INIS)

    Baek, B; Moon, S H; Lee, Su-Young; Lee, S M; Kye, J I; Lee, H J; Khim, Z G

    2004-01-01

    A magnetic flux-guide in the form of a sharp needle is known to enhance the spatial resolution of the scanning SQUID microscope. We investigated the properties of a soft ferromagnetic tip as a flux-guide by measuring the local field of the tip end. The effects of the flux-guide, such as the transmission of a magnetic signal, length dependence, and nonlinear distortion, were observed. We also present the design and construction of a HTS scanning SQUID microscope with a flux-guide and a planar gradiometer. The gradiometer with a flux-guide is an appropriate solution for improving the performance of the scanning SQUID microscope with a flux-guide as regards the prevention of external field noise without magnetic shields

  20. Single atom image observation by means of scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Komoda, Tsutomu; Todokoro, Hideo; Nomura, Setsuo

    1977-01-01

    In a scanning transmission electron microscope, electrons emitted from the ion source are finely focused to a spot on a specimen, and scanned with the deflection coil. The electrons transmitted through the specimen are detected by the scintillate, and converted to image signals with the photomultiplier, and the image is obtained on the cathode ray tube. The Hitachi scanning transmission electron microscope employs a field emission type electron gun, thus it can focus the electron beam to 0.3 nm diameter. In the microscope, elastically scattered electrons are captured by a doughnut shaped detector, while the electrons transmitted through the specimen without colliding with atoms and the non-elastically scattered electrons which has lost a part of their energy due to the ionization or excitation of atoms are detected by the energy analyzer installed at the bottom of the microscope. Though single atom image observation requires the fixation of the atoms to be marked on a support, the problem is how to discriminate the aimed atoms from the atoms of the support. The most sensitive method is the dark-field method which uses the difference of elastically scattered electron intensity as the signal. Thorium and iodine atom images have been successfully observed as the trials to prove the feasibility of observation of heavy atoms with the scanning transmission electron microscope. (Wakatsuki, Y.)

  1. Scanning electron microscope - some aspects of the instrument and its applications

    International Nuclear Information System (INIS)

    Thatte, M.R.

    1976-01-01

    Development of the science of microscopy leading to three different types of microscopes - the optical, the conventional transmission electron microscope (CTEM) and the scanning electron microscope(SEM) has been discussed. Special advantages of the SEM in the solution of problems in industrial laboratories are mentioned. A brief reference to the latest instruments announced by Siemens AG shows the modern trends in the technique. A close similarity in image building between SEM and television is indicated. Operational anatomy of the SEM is reviewed. (author)

  2. The 2-ID-B intermediate-energy scanning X-ray microscope at the APS

    International Nuclear Information System (INIS)

    McNulty, I.; Paterson, D.; Arko, J.; Erdmann, M.; Goetze, K.; Ilinski, P.; Mooney, T.; Vogt, S.; Xu, S.; Frigo, S.P.; Stampfl, A.P.J.; Wang, Y.

    2002-01-01

    The intermediate-energy scanning x-ray microscope at beamline 2-ID-B at the Advanced Photon Source is a dedicated instrument for materials and biological research. The microscope uses a zone plate lens to focus coherent 1-4 keV x-rays to a 60 nm focal spot of 10 9 photons/s onto the sample. It records simultaneous transmission and energy-resolved fluorescence images. We have used the microscope for nano-tomography of chips and micro-spectroscopy of cells. (authors)

  3. Integrated Confocal and Scanning Probe Microscopy for Biomedical Research

    Directory of Open Access Journals (Sweden)

    B.J. Haupt

    2006-01-01

    Full Text Available Atomic force microscopy (AFM continues to be developed, not only in design, but also in application. The new focus of using AFM is changing from pure material to biomedical studies. More frequently, it is being used in combination with other optical imaging methods, such as confocal laser scanning microscopy (CLSM and fluorescent imaging, to provide a more comprehensive understanding of biological systems. To date, AFM has been used increasingly as a precise micromanipulator, probing and altering the mechanobiological characteristics of living cells and tissues, in order to examine specific, receptor-ligand interactions, material properties, and cell behavior. In this review, we discuss the development of this new hybrid AFM, current research, and potential applications in diagnosis and the detection of disease.

  4. Probing Nanoscale Electronic and Magnetic Interaction with Scanning Tunneling Spectroscopy

    DEFF Research Database (Denmark)

    Bork, Jakob

    This thesis is concerned with fundamental research into electronic and magnetic interaction on the nanoscale. From small metallic and magnetic islands and layers to single atoms. The research revolves around magnetic interaction probed through the spectroscopic capabilities of the scanning....... This is related to research in correlated electron materials such as studies of phase transitions in heavy fermion compounds and magnetic interaction in spintronic research. The capping of cobalt islands on Cu(111) with silver is investigated with STM and photoemission spectroscopy. It is shown that at low...... coverage the silver preferably nucleates on top of the bilayer high cobalt islands compared to directly on the Cu(111) substrate. Furthermore, the silver forms a combination of a reconstruction and a Moire pattern which is investigated with low-energy electron diraction and spectroscopic STM mapping at 6...

  5. Development of an improved Kelvin probe force microscope for accurate local potential measurements on biased electronic devices.

    Science.gov (United States)

    Bercu, N B; Giraudet, L; Simonetti, O; Molinari, M

    2017-09-01

    An improved setup for accurate near-field surface potential measurements and characterisation of biased electronic devices using the Kelvin Probe method has been developed. Using an external voltage source synchronised with the raster-scan of the KPFM-AM, this setup allows to avoid potential measurement errors of the conventional Kelvin Probe Force Microscopy in the case of in situ measurements on biased electronic devices. This improved KPFM-AM setup has been tested on silicon-based devices and organic semiconductor-based devices such as organic field effect transistors (OFETs), showing differences up to 25% compared to the standard KPFM-AM lift-mode measurement method. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  6. Scanning Hall Probe Microscopy of Magnetic Vortices inVery Underdoped yttrium-barium-copper-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Guikema, Janice Wynn; /SLAC, SSRL

    2005-12-02

    Since their discovery by Bednorz and Mueller (1986), high-temperature cuprate superconductors have been the subject of intense experimental research and theoretical work. Despite this large-scale effort, agreement on the mechanism of high-T{sub c} has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density n{sub s}/m*. For this dissertation I implemented a scanning Hall probe microscope and used it to study magnetic vortices in newly available single crystals of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} (Liang et al. 1998, 2002). These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth {lambda}{sub ab}), and revealed an intriguing phenomenon of ''split'' vortices. Scanning Hall probe microscopy is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-{Phi}{sub 0} (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail scanning Hall probe (and SQUID) microscopy studies of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} crystals with T{sub c} {le} 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher (2000, 2001b). We searched for predicted hc/e vortices (Wynn et al. 2001) and a vortex memory effect (Bonn et al. 2001) with null results, placing upper bounds on the vison energy inconsistent with

  7. Examination of mycological samples by means of the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1973-04-01

    Full Text Available Three species of Siphomycetes: Rhizopus arhizus, Rhizopus equinus and Rhizopus nigricans, as well as a Septomycete: Emericella nidulans, have been examined by means of a scanning electron microscope. Among the difjerent Rhizopus, this technique showed differences in the appearance of the sporangia. In Emericella nidulans, scanning microscopy enábled one to ascertain that the "Hull cells" were completely hollow and also demonstrated the ornemented aspect of the ascospores.

  8. Scanning Probe Microscopy for Atomic-scale Silicon Device Fabrication

    Science.gov (United States)

    Simmons, Michelle

    2005-03-01

    Over the past three decades the driving force behind the expansion of the microelectronics industry has been the ability to pack ever more features onto a silicon chip, achieved by continually miniaturising the size of the individual components. However, after 2015 there is no known technological route to reduce device sizes below 10nm. In this talk we demonstrate a complete fabrication strategy towards atomic-scale device fabrication in silicon using a combination of scanning tunneling microscopy and high purity crystal growth. In particular we overcome one of the major obstacles to making functional semiconductor devices with an STM -- connecting macroscopic leads to the device once it is removed from the vacuum environment [1]. We demonstrate key steps of the fabrication process, including the ability to place individual phosphorus atoms in silicon at precise locations [2] and encapsulate them in epitaxial silicon with minimal diffusion and segregation of the dopants [3]. We present magnetoresistance data showing the cross-over from 2D to 1D transport in nano-scale quantum wires and arrays. Finally we discuss the implications of these results for the construction of more sophisticated atomic-scale devices in silicon such as a silicon based quantum computer. [1] F.J. Ruess, L. Oberbeck, M.Y. Simmons, K.E.J. Goh, A.R. Hamilton, T. Hallam, N.J. Curson and R.G. Clark, ``Fabrication of quantum wires using scanning probe microscopy'', Nano Letters 4, 1969 (2004). [2] S. R. Schofield, N. J. Curson, M. Y. Simmons, F. J. Ruess, T. Hallam, L. Oberbeck and R. G.Clark, ``Atomically precise placement of single dopants in silicon'', Physical Review Letters 91, 136104 (2003). [3] L. Oberbeck, N. J. Curson, T. Hallam, M. Y. Simmons and R.G. Clark, ``Measurement of phosphorus segregation in silicon at the atomic-scale using scanning tunneling microscopy'', Appl. Phys. Lett. 83, 1359 (2004).

  9. INVESTIGATION OF NANO- AND MICROSTRUCTURE OF BIOMATERIALS FOR REGENERATIVE MEDICINE BY METHOD OF SCANNING PROBE NANOTOMOGRAPHY

    Directory of Open Access Journals (Sweden)

    A. E. Efimov

    2014-01-01

    Full Text Available Aim. To perform a study of three-dimensional micro- and nanostructure of porous biocompatible scaffolds and quantitative analysis of nanoscale porosity parameters.Materials and methods. Three-dimensional porous scaffolds made from spidroin rS1/9 (recombinant analog of spider dragline protein were produced by salt leaching technique. Dimensions of macropores in produced three-imensional scaffolds were in range from 200 to 400 microns. The study of three-dimensional structure of scaffolds was carried out by scanning probe nanotomography technique with the use of experimental setup combining ultramicrotome and scanning probe microscope. Results. Three-dimensional nanotomographical reconstruction of scaffold macropore wall structure is obtained. The formation of three-dimensional network of interconnected pores and channels with characteristic dimensions in range from 20 to 700 nm in the volume of macropore walls of studied scaffolds is observed. Mean pore diameter is 150 nm. Volume porosity of macropore walls is 22% while volume fraction of pores interconnected in large pore clusters is about 20% of all pore volume.Conclusion. Obtained as a result of the study quantitative characteristics of porous micro- and nanostructure of scaffolds show signifi cant degree of nanoscale porosity and percolation of macropore walls what correlates with reported high effi ciency of tissue regeneration on such scaffolds implanted in vivo. Use of scanning probe nanotomography technique for analysis of characteristics and topology of micro- and nanopore systems enables to improve effi ciency of development of novel biocompatible and biodegradable materials with predicted morphological, physical, chemical and biological characteristics.

  10. Monolithically Integrated, Mechanically Resilient Carbon-Based Probes for Scanning Probe Microscopy

    Science.gov (United States)

    Kaul, Anupama B.; Megerian, Krikor G.; Jennings, Andrew T.; Greer, Julia R.

    2010-01-01

    Scanning probe microscopy (SPM) is an important tool for performing measurements at the nanoscale in imaging bacteria or proteins in biology, as well as in the electronics industry. An essential element of SPM is a sharp, stable tip that possesses a small radius of curvature to enhance spatial resolution. Existing techniques for forming such tips are not ideal. High-aspect-ratio, monolithically integrated, as-grown carbon nanofibers (CNFs) have been formed that show promise for SPM applications by overcoming the limitations present in wet chemical and separate substrate etching processes.

  11. Moiré method for nanometer instability investigation of scanning hard x-ray microscopes.

    Science.gov (United States)

    Vogt, Ulrich; Köhler, Daniel; Dickmann, Jannis; Rahomäki, Jussi; Parfeniukas, Karolis; Kubsky, Stefan; Alves, Filipe; Langlois, Florent; Engblom, Christer; Stankevič, Tomaš

    2017-05-29

    We present a Moiré method that can be used to investigate positional instabilities in a scanning hard x-ray microscope with nanometer precision. The development of diffraction-limited storage rings offering highly-brilliant synchrotron radiation and improvements of nanofocusing x-ray optics paves the way towards 3D nanotomography with 10 nm resolution or below. However, this trend demands improved designs of x-ray microscope instruments which should offer few-nm beam stabilities with respect to the sample. Our technique can measure the position of optics and sample stage relative to each other in the two directions perpendicular to the beam propagation in a scanning x-ray microscope using simple optical components and visible light. The usefulness of the method was proven by measuring short and long term instabilities of a zone-plate-optics-based prototype microscope. We think it can become an important tool for the characterization of scanning x-ray microscopes, especially prior to experiments with an actual x-ray beam.

  12. Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector.

    Science.gov (United States)

    Morishita, Shigeyuki; Ishikawa, Ryo; Kohno, Yuji; Sawada, Hidetaka; Shibata, Naoya; Ikuhara, Yuichi

    2018-02-01

    The achievement of a fine electron probe for high-resolution imaging in scanning transmission electron microscopy requires technological developments, especially in electron optics. For this purpose, we developed a microscope with a fifth-order aberration corrector that operates at 300 kV. The contrast flat region in an experimental Ronchigram, which indicates the aberration-free angle, was expanded to 70 mrad. By using a probe with convergence angle of 40 mrad in the scanning transmission electron microscope at 300 kV, we attained the spatial resolution of 40.5 pm, which is the projected interatomic distance between Ga-Ga atomic columns of GaN observed along [212] direction.

  13. Imaging systems in the Delft Multi-Beam Scanning Electron Microscope 1

    NARCIS (Netherlands)

    Ren, Y.

    2017-01-01

    The goal of this Ph.D. research is to develop imaging systems for the multiple beam scanning electron microscope (MBSEM) built in Delft University of Technology. This thesis includes two imaging systems, transmission electron (TE) imaging system, and secondary electron (SE) imaging system. The major

  14. Transmission electron imaging in the Delft multibeam scanning electron microscope 1

    NARCIS (Netherlands)

    Ren, Y.; Kruit, P.

    2016-01-01

    Our group is developing a multibeam scanning electron microscope (SEM) with 196 beams in order to increase the throughput of SEM. Three imaging systems using, respectively, transmission electron detection, secondary electron detection, and backscatter electron detection are designed in order to

  15. Parallel electron-beam-induced deposition using a multi-beam scanning electron microscope

    NARCIS (Netherlands)

    Post, P.C.; Mohammadi-Gheidari, A.; Hagen, C.W.; Kruit, P.

    2011-01-01

    Lithography techniques based on electron-beam-induced processes are inherently slow compared to light lithography techniques. The authors demonstrate here that the throughput can be enhanced by a factor of 196 by using a scanning electron microscope equipped with a multibeam electron source. Using

  16. Scanning electron microscope view of iron crystal growing on pyroxene crystal

    Science.gov (United States)

    1972-01-01

    A scanning electron microscope photograph of a four-micron size iron crystal growing on a pyroxene crystal (calcium-magnesium-iron silicate) from the Apollo 15 Hadley-Apennino lunar landing site. The well developed crystal faces indicate that the crystal was formed from a hot vapor as the rock was cooling.

  17. Practical application of HgI2 detectors to a space-flight scanning electron microscope

    Science.gov (United States)

    Bradley, J. G.; Conley, J. M.; Albee, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.

    1989-01-01

    Mercuric iodide X-ray detectors have been undergoing tests in a prototype scanning electron microscope system being developed for unmanned space flight. The detector program addresses the issues of geometric configuration in the SEM, compact packaging that includes separate thermoelectric coolers for the detector and FET, X-ray transparent hermetic encapsulation and electrical contacts, and a clean vacuum environment.

  18. Thin-film thickness measurement using x-ray peak ratioing in the scanning electron microscope

    International Nuclear Information System (INIS)

    Elliott, N.E.; Anderson, W.E.; Archuleta, T.A.; Stupin, D.M.

    1981-01-01

    The procedure used to measure laser target film thickness using a scanning electron microscope is summarized. This method is generally applicable to any coating on any substrate as long as the electron energy is sufficient to penetrate the coating and the substrate produces an x-ray signal which can pass back through the coating and be detected

  19. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    International Nuclear Information System (INIS)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-01

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data

  20. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    Science.gov (United States)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-01

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke's tabulated data.

  1. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao [Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573 (Japan)

    2016-01-28

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.

  2. Quasi interference of perpendicularly polarized guided modes observed with a photon scanning tunneling microscope

    NARCIS (Netherlands)

    Balistreri, M.L.M.; Driessen, A.; Korterik, Jeroen P.; Kuipers, L.; van Hulst, N.F.

    2000-01-01

    The simultaneous detection of TE- as well as TM-polarized light with a photon scanning tunneling microscope leads to a quasi- interference pattern of these mutually perpendicular polarized fields. This interference pattern has been observed in the optical field distribution as a function of both

  3. Poly(diacetylene) Monolayers Studied with a Fluorescence Scanning Near-Field Optical Microscope

    NARCIS (Netherlands)

    Moers, Marco H.P.; Moers, M.H.P.; Gaub, Hermann E.; van Hulst, N.F.

    1994-01-01

    A novel and powerful method to study the optical properties of thin lipid films which a resolution superior to confocal microscopy is presented. With a scanning near-field optical microscope, fluorescence images of a Langmuir-Blodgett film of diethylene glycol diamine pentacosadiynoic amide are

  4. Measurements with an ultrafast scanning tunnelling microscope on photoexcited semiconductor layers

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    Summary form only given. We demonstrate the use of a ultrafast scanning tunnelling microscopes (USTM) for detecting laser-induced field transients on semiconductor layers. In principle, the instrument can detect transient field changes thus far observed as far-field THz radiation in the near...

  5. [Scanning electron microscope study of dentin treated with sodium N-monochloro-DL2-aminobutyrate (NMAB)].

    Science.gov (United States)

    González Bahillo, J; Segade, L A; Gándara Rey, J; Macedo de Carvalho Capelas, M

    1989-02-01

    This paper report a scanning electron microscope study of the dentinal surface after treatment with sodium N-monochloro-DL2-aminobutyrate (NMAB). The carious cavity shows a rugous and irregular surface. There are detaching plates of the dentin dissolved by the NMAB. At high magnification the compact dentin and the detaching plates show a acid-etched surface.

  6. Revealing the 1 nm/s Extensibility of Nanoscale Amorphous Carbon in a Scanning Electron Microscope

    DEFF Research Database (Denmark)

    Zhang, Wei

    2013-01-01

    In an ultra-high vacuum scanning electron microscope, the edged branches of amorphous carbon film (∼10 nm thickness) can be continuously extended with an eye-identifying speed (on the order of ∼1 nm/s) under electron beam. Such unusual mobility of amorphous carbon may be associated with deformation...

  7. Current status of the Scanning X-ray Microscope at the ESRF

    International Nuclear Information System (INIS)

    Barrett, Ray; Kaulich, Burkhard; Salome, Murielle; Susini, Jean

    2000-01-01

    A short description of the Scanning X-ray Microscope of the ESRF ID21 X-ray microscopy beamline is given and the consequences of the relatively wide operating energy range discussed. The current capabilities of the instrument are demonstrated through images and spectra recorded from a variety of pilot experiments, including X-ray fluorescence imaging, microdiffraction and XANES measurements

  8. Observation of a Ag protrusion on a Ag2S island using a scanning tunneling microscope

    Directory of Open Access Journals (Sweden)

    Takeo Ohno

    2015-01-01

    Full Text Available A silver sulfide (Ag2S island as an ionic conductor in resistive switching memories was formed and a protrusion of silver from the Ag2S formed by an electrochemical reaction was observed using a scanning tunneling microscope.

  9. A simple, ultrahigh vacuum compatible scanning tunneling microscope for use at variable temperatures

    NARCIS (Netherlands)

    Mugele, Friedrich Gunther; Kloos, Ch.; Leiderer, P.; Moller, R.

    1996-01-01

    We present the construction of a very compact scanning tunneling microscope (STM) which can be operated at temperatures between 4 and 350 K. The tip and a tiny tip holder are the only movable parts, whereas the sample and the piezoscanner are rigidly attached to the body of the STM. This leads to an

  10. A novel cryogenic scanning laser microscope tested on Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Holm, Jesper; Mygind, Jesper

    1995-01-01

    A novel cryogenic scanning laser microscope with a spatial resolution of less than 5 µm has been designed for on-chip in situ investigations of the working properties of normal and superconducting circuits and devices. The instrument relies on the detection of the electrical response of the circuit...... to a very localized heating induced by irradiation with 675 nm wavelength light from a semiconductor laser. The hot spot is moved by a specially designed piezoelectric scanner sweeping the tip of a single-mode optical fiber a few µm above the circuit. Depending on the scanner design the scanning area can...... be as large as 50×500 µm2 at 4.2 K. The microscope can be operated in the temperature range 2–300 K using a standard temperature controller. The central microscope body is mounted inside the vacuum can of a dip-stick-type cryoprobe. A damped spring system is used to reduce interference from extraneous...

  11. Three-dimensional optical transfer functions in the aberration-corrected scanning transmission electron microscope.

    Science.gov (United States)

    Jones, L; Nellist, P D

    2014-05-01

    In the scanning transmission electron microscope, hardware aberration correctors can now correct for the positive spherical aberration of round electron lenses. These correctors make use of nonround optics such as hexapoles or octupoles, leading to the limiting aberrations often being of a nonround type. Here we explore the effect of a number of potential limiting aberrations on the imaging performance of the scanning transmission electron microscope through their resulting optical transfer functions. In particular, the response of the optical transfer function to changes in defocus are examined, given that this is the final aberration to be tuned just before image acquisition. The resulting three-dimensional optical transfer functions also allow an assessment of the performance of a system for focal-series experiments or optical sectioning applications. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  12. Spherical aberration correction in a scanning transmission electron microscope using a sculpted thin film.

    Science.gov (United States)

    Shiloh, Roy; Remez, Roei; Lu, Peng-Han; Jin, Lei; Lereah, Yossi; Tavabi, Amir H; Dunin-Borkowski, Rafal E; Arie, Ady

    2018-03-27

    Nearly eighty years ago, Scherzer showed that rotationally symmetric, charge-free, static electron lenses are limited by an unavoidable, positive spherical aberration. Following a long struggle, a major breakthrough in the spatial resolution of electron microscopes was reached two decades ago by abandoning the first of these conditions, with the successful development of multipole aberration correctors. Here, we use a refractive silicon nitride thin film to tackle the second of Scherzer's constraints and demonstrate an alternative method for correcting spherical aberration in a scanning transmission electron microscope. We reveal features in Si and Cu samples that cannot be resolved in an uncorrected microscope. Our thin film corrector can be implemented as an immediate low cost upgrade to existing electron microscopes without re-engineering of the electron column or complicated operation protocols and can be extended to the correction of additional aberrations. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. First images from the Stanford tabletop scanning soft x-ray microscope

    International Nuclear Information System (INIS)

    Trail, J.A.; Byer, R.L.

    1988-01-01

    The authors have constructed a scanning soft x-ray microscope which uses a laser-produced plasma as the soft x-ray source and normal incidence multilayer coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 140 angstrom, has a spatial resolution of 0.5 μm, and has a soft x-ray photon flux through the focus of 10 4 s -1 when operated with only 170 mW of average laser power. The microscope is compact; the complete system, including the laser, fits on a single optical table. In this paper they describe the microscope and present images of metallic microstructures

  14. Adaptive-scanning, near-minimum-deformation atomic force microscope imaging of soft sample in liquid: Live mammalian cell example.

    Science.gov (United States)

    Ren, Juan; Zou, Qingze

    2018-03-01

    In this paper, an adaptive-scanning mode (ASM) of atomic force microscope (AFM) with near-minimum sample deformation is proposed for imaging live biological samples in liquid. Conventional contact mode (CM) imaging of live cells is rather slow (scan rate  imaging speed increases, significant deformation of the soft and highly corrugated cell membrane is induced. Such a low speed CM imaging of live biological samples is not only time consuming, but also incapable of capturing dynamic biological evolutions occurring in seconds to minutes. The proposed ASM approach aims to address these issues through two synergetic efforts integrated together. First, an adaptive-scanning technique is proposed to optimally adjust the lateral scanning speed to accommodate the sample topography variation and the probe-sample interaction force, so that the scanning-caused sample deformation is maintained below the threshold value while the overall imaging time is minimized. Secondly, a data-driven iterative feedforward control is integrated to the vertical feedback loop along with a gradient-based optimization of the deflection set-point to substantially improve the tracking of the sample topography while maintaining the vertical sample deformation around the minimal. The ASM technique is experimentally validated through imaging live human prostate cancer cells on AFM. The experimental results demonstrate that compared to the conventional CM imaging, the imaging speed is increased over eight times without loss of tracking the topography details of the live cell membrane, and the probe-sample interaction force is substantially reduced. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Evaluation ofEnterococcus faecalisadhesion, penetration, and method to prevent the penetration ofEnterococcus faecalisinto root cementum: Confocal laser scanning microscope and scanning electron microscope analysis.

    Science.gov (United States)

    Halkai, Rahul S; Hegde, Mithra N; Halkai, Kiran R

    2016-01-01

    To ascertain the role of Enterococcus faecalis in persistent infection and a possible method to prevent the penetration of E. faecalis into root cementum. One hundred and twenty human single-rooted extracted teeth divided into five groups. Group I (control): intact teeth, Group II: no apical treatment done, Group III divided into two subgroups. In Groups IIIa and IIIb, root apex treated with lactic acid of acidic and neutral pH, respectively. Group IV: apical root cementum exposed to lactic acid and roughened to mimic the apical resorption. Group V: apical treatment done same as Group IV and root-end filling done using mineral trioxide aggregate (MTA). Apical one-third of all samples immersed in E. faecalis broth for 8 weeks followed by bone morphogenetic protein and obturation and again immersed into broth for 8 weeks. Teeth split into two halves and observed under confocal laser scanning microscope and scanning electron microscope, organism identified by culture and polymerase chain reaction techniques. Adhesion and penetration was observed in Group IIIa and Group IV. Only adhesion in Group II and IIIB and no adhesion and penetration in Group I and V. Adhesion and penetration of E. faecalis into root cementum providing a long-term nidus for subsequent infection are the possible reason for persistent infection and root-end filling with MTA prevents the adhesion and penetration.

  16. Scanning probe microscopy of single Au ion implants in Si

    International Nuclear Information System (INIS)

    Vines, L.; Monakhov, E.; Maknys, K.; Svensson, B.G.; Jensen, J.; Hallen, A.; Kuznetsov, A. Yu.

    2006-01-01

    We have studied 5 MeV Au 2+ ion implantation with fluences between 7 x 10 7 and 2 x 10 8 cm -2 in Si by deep level transient spectroscopy (DLTS) and scanning capacitance microscopy (SCM). The DLTS measurements show formation of electrically active defects such as the two negative charge states of the divacancy (V 2 (=/-) and V 2 (-/0)) and the vacancy-oxygen (VO) center. It is observed that the intensity of the V 2 (=/-) peak is lower compared to that of V 2 (-/0) by a factor of 5. This has been attributed to a highly localized distribution of the defects along the ion tracks, which results in trapping of the carriers at V 2 (-/0) and incomplete occupancy of V 2 (=/-). The SCM measurements obtained in a plan view show a random pattern of regions with a reduced SCM signal for the samples implanted with fluence above 2 x 10 8 cm -2 . The reduced SCM signal is attributed to extra charges associated with acceptor states, such as V 2 (-/0), formed along the ion tracks in the bulk Si. Indeed, the electron emission rate from the V 2 (-/0) state is in the range of 10 kHz at room temperature, which is well below the probing frequency of the SCM measurements, resulting in 'freezing' of electrons at V 2 (-/0)

  17. Atomic level analysis of biomolecules by the scanning atom probe

    International Nuclear Information System (INIS)

    Nishikawa, Osamu; Taniguchi, Masahiro; Ikai, Atsushi

    2009-01-01

    Utilizing the unique features of the scanning atom probe (SAP) the binding states of the biomolecules, leucine and methionine, are investigated at atomic level. The molecules are mass analyzed by detecting a single atom and/or clustering atoms field evaporated from a specimen surface. Since the field evaporation is a static process, the evaporated clustering atoms are closely related with the binding between atoms forming the molecules. For example, many thiophene radicals are detected when polythiophene is mass analyzed by the SAP. In the present study the specimens are prepared by immersing a micro cotton ball of single walled carbon nanotubes (SWCNT) in the leucine or methionine solution. The mass spectra obtained by analyzing the cotton balls exhibit singly and doubly ionized carbon ions of SWCNT and the characteristic fragments of the molecules, CH 3 , CHCH 3 , C 4 H 7 , CHNH 2 and COOH for leucine and CH 3 , SCH 3 , C 2 H 4 , C 4 H 7 , CHNH 2 and COOH for methionine.

  18. Laser scanning dental probe for endodontic root canal treatment

    Science.gov (United States)

    Blank, Molly A. B.; Friedrich, Michal; Hamilton, Jeffrey D.; Lee, Peggy; Berg, Joel; Seibel, Eric J.

    2011-03-01

    Complications that arise during endodontic procedures pose serious threats to the long-term integrity and health of the tooth. Potential complexities of root canals include residual pulpal tissue, cracks, mesial-buccal 2 and accessory canals. In the case of a failed root canal, a successful apicoectomy can be jeopardized by isthmuses, accessory canals, and root microfracture. Confirming diagnosis using a small imaging probe would allow proper treatment and prevent retreatment of endodontic procedures. An ultrathin and flexible laser scanning endoscope of 1.2 to 1.6mm outer diameter was used in vitro to image extracted teeth with varied root configurations. Teeth were opened using a conventional bur and high speed drill. Imaging within the opened access cavity clarified the location of the roots where canal filing would initiate. Although radiographs are commonly used to determine the root canal size, position, and shape, the limited 2D image perspective leaves ambiguity that could be clarified if used in conjunction with a direct visual imaging tool. Direct visualization may avoid difficulties in locating the root canal and reduce the number of radiographs needed. A transillumination imaging device with the separated illumination and light collection functions rendered cracks visible in the prepared teeth that were otherwise indiscernible using reflected visible light. Our work demonstrates that a small diameter endoscope with high spatial resolution may significantly increase the efficiency and success of endodontic procedures.

  19. An exchangeable-tip scanning probe instrument for the analysis of combinatorial libraries of electrocatalysts

    Science.gov (United States)

    Rus, Eric D.; Wang, Hongsen; Legard, Anna E.; Ritzert, Nicole L.; Bruce Van Dover, Robert; Abruña, Héctor D.

    2013-02-01

    A combined scanning differential electrochemical mass spectrometer (SDEMS)-scanning electrochemical microscope (SECM) apparatus is described. The SDEMS is used to detect and spatially resolve volatile electrochemically generated species at the surface of a substrate electrode. The SECM can electrochemically probe the reactivity of the surface and also offers a convenient means of leveling the sample. It is possible to switch between these two different scanning tips and techniques without moving the sample and while maintaining potential control of the substrate electrode. A procedure for calibration of the SDEMS tip-substrate separation, based upon the transit time of electrogenerated species from the substrate to the tip is also described. This instrument can be used in the characterization of combinatorial libraries of direct alcohol fuel cell anode catalysts. The apparatus was used to analyze the products of methanol oxidation at a Pt substrate, with the SDEMS detecting carbon dioxide and methyl formate, and a PtPb-modified Pt SECM tip used for the selective detection of formic acid. As an example system, the electrocatalytic methanol oxidation activity of a sputter-deposited binary PtRu composition spread in acidic media was analyzed using the SDEMS. These results are compared with those obtained from a pH-sensitive fluorescence assay.

  20. Scanning SQUID microscope with an in-situ magnetization/demagnetization field for geological samples

    Science.gov (United States)

    Du, Junwei; Liu, Xiaohong; Qin, Huafeng; Wei, Zhao; Kong, Xiangyang; Liu, Qingsong; Song, Tao

    2018-04-01

    Magnetic properties of rocks are crucial for paleo-, rock-, environmental-magnetism, and magnetic material sciences. Conventional rock magnetometers deal with bulk properties of samples, whereas scanning microscope can map the distribution of remanent magnetization. In this study, a new scanning microscope based on a low-temperature DC superconducting quantum interference device (SQUID) equipped with an in-situ magnetization/demagnetization device was developed. To realize the combination of sensitive instrument as SQUID with high magnetizing/demagnetizing fields, the pick-up coil, the magnetization/demagnetization coils and the measurement mode of the system were optimized. The new microscope has a field sensitivity of 250 pT/√Hz at a coil-to-sample spacing of ∼350 μm, and high magnetization (0-1 T)/ demagnetization (0-300 mT, 400 Hz) functions. With this microscope, isothermal remanent magnetization (IRM) acquisition and the according alternating field (AF) demagnetization curves can be obtained for each point without transferring samples between different procedures, which could result in position deviation, waste of time, and other interferences. The newly-designed SQUID microscope, thus, can be used to investigate the rock magnetic properties of samples at a micro-area scale, and has a great potential to be an efficient tool in paleomagnetism, rock magnetism, and magnetic material studies.

  1. Confocal scanning microscopy with multiple optical probes for high speed measurements and better imaging

    Science.gov (United States)

    Chun, Wanhee; Lee, SeungWoo; Gweon, Dae-Gab

    2008-02-01

    Confocal scanning microscopy (CSM) needs a scanning mechanism because only one point information of specimen can be obtained. Therefore the speed of the confocal scanning microscopy is limited by the speed of the scanning tool. To overcome this limitation from scanning tool we propose another scanning mechanism. We make three optical probes in the specimen under confocal condition of each point. Three optical probes are moved by beam scanning mechanism with shared resonant scanning mirror (RM) and galvanometer driven mirror (GM). As each optical probe scan allocated region of the specimen, information from three points is obtained simultaneously and image acquisition time is reduced. Therefore confocal scanning microscopy with multiple optical probes is expected to have three times faster speed of the image acquisition than conventional one. And as another use, multiple optical probes to which different light wavelength is applied can scan whole same region respectively. It helps to obtain better contrast image in case of specimens having different optical characteristics for specific light wavelength. In conclusion confocal scanning microscopy with multiple optical probes is useful technique for views of image acquisition speed and image quality.

  2. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jijin; Ferranti, David C; Stern, Lewis A; Sanford, Colin A; Huang, Jason [Carl Zeiss NTS, LLC, One Corporation Way, Peabody, MA 01960 (United States); Ren Zheng; Qin Luchang [Department of Physics and Astronomy, Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Hall, Adam R, E-mail: adam.hall@uncg.edu [Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2901 E Lee St. Ste 2200, Greensboro, NC 27401 (United States)

    2011-07-15

    We report the formation of solid-state nanopores using a scanning helium ion microscope. The fabrication process offers the advantage of high sample throughput along with fine control over nanopore dimensions, producing single pores with diameters below 4 nm. Electronic noise associated with ion transport through the resultant pores is found to be comparable with levels measured on devices made with the established technique of transmission electron microscope milling. We demonstrate the utility of our nanopores for biomolecular analysis by measuring the passage of double-strand DNA.

  3. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jijin; Ferranti, David C.; Stern, Lewis A.; Sanford, Colin A.; Huang, Jason; Ren, Zheng; Qin, Lu-Chang; Hall, Adam R.

    2011-06-10

    We report the formation of solid-state nanopores using a scanning helium ion microscope. The fabrication process offers the advantage of high sample throughput along with fine control over nanopore dimensions, producing single pores with diameters below 4 nm. Electronic noise associated with ion transport through the resultant pores is found to be comparable with levels measured on devices made with the established technique of transmission electron microscope milling. We demonstrate the utility of our nanopores for biomolecular analysis by measuring the passage of double-strand DNA.

  4. Development of a backscattering type ultraviolet apertureless near-field scanning optical microscope.

    Science.gov (United States)

    Kwon, Sangjin; Jeong, Hyun; Jeong, Mun Seok; Jeong, Sungho

    2011-08-01

    A backscattering type ultraviolet apertureless near-field scanning optical microscope (ANSOM) for the correlated measurement of topographical and optical characteristics of photonic materials with high optical resolution was developed. The near-field Rayleigh scattering image of GaN covered with periodic submicron Cr dots showed that optical resolution around 40 nm was achievable. By measuring the tip scattered photoluminescence of InGaN/GaN multi quantum wells, the applicability of the developed microscope for high resolution fluorescence measurement was also demonstrated.

  5. Visualizing Morphological Changes of Abscission Zone Cells in Arabidopsis by Scanning Electron Microscope.

    Science.gov (United States)

    Shi, Chun-Lin; Butenko, Melinka A

    2018-01-01

    Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.

  6. Signal of microstrip scanning near-field optical microscope in far- and near-field zones.

    Science.gov (United States)

    Morozov, Yevhenii M; Lapchuk, Anatoliy S

    2016-05-01

    An analytical model of interference between an electromagnetic field of fundamental quasi-TM(EH)00-mode and an electromagnetic field of background radiation at the apex of a near-field probe based on an optical plasmon microstrip line (microstrip probe) has been proposed. The condition of the occurrence of electromagnetic energy reverse flux at the apex of the microstrip probe was obtained. It has been shown that the nature of the interference depends on the length of the probe. Numerical simulation of the sample scanning process was conducted in illumination-reflection and illumination-collection modes. Results of numerical simulation have shown that interference affects the scanning signal in both modes. However, in illumination-collection mode (pure near-field mode), the signal shape and its polarity are practically insensible to probe length change; only signal amplitude (contrast) is slightly changed. However, changing the probe length strongly affects the signal amplitude and shape in the illumination-reflection mode (the signal formed in the far-field zone). Thus, we can conclude that even small background radiation can significantly influence the signal in the far-field zone and has practically no influence on a pure near-field signal.

  7. Design and performance of the 2-ID-B scanning x-ray microscope

    International Nuclear Information System (INIS)

    McNulty, I.

    1998-01-01

    We have constructed a high resolution scanning x-ray microscope at the 2-ID-B beamline at the Advanced Photon Source for 1-4 keV x-ray imaging and microspectroscopy experiments. The microscope uses a Fresnel zone plate to focus coherent x-ray undulator radiation to a 150 nm focal spot on a sample. The spectral flux in the focus is 10 8 ph/s/0.1% BW. X-ray photons transmitted by the sample are detected by an avalanche photodiode as the sample is scanned to form an absorption image. The sample stage has both coarse and fine translation axes for raster scanning and a rotation axis for microtomography experiments. The incident x-ray beam energy can also be scanned via the 2-ID-B monochromator while the sample is kept in focus to record spatially resolved absorption spectra. We have measured the performance of the instrument with various test objects. The microscope hardware, software, and performance are discussed in this paper

  8. Positioning Pd catalyst particles for carbon nanotube growth using charge patterns created with a scanning electron microscope

    NARCIS (Netherlands)

    Zonnevylle, A.C.; Hagen, C.W.; Kruit, P.; Valenti, M.; Schmidt-Ott, A.

    2009-01-01

    Positioning of charged nanoparticles with the help of charge patterns in an insulator substrate is a known method. However, the creation of charge patterns with a scanning electron microscope for this is relatively new. Here a scanning electron microscope is used for the creation of localized charge

  9. A Resonant Scanning Dipole-Antenna Probe for Enhanced Nanoscale Imaging

    NARCIS (Netherlands)

    Neumann, L.; van 't Oever, Jan Joannes Frederik; van Hulst, N.F.

    2013-01-01

    We present a scanning antenna probe that provides 35 nm optical hotspots with a 16-fold excitation enhancement. A resonant optical antenna, tuned to operation in the visible, is carved into the aluminum-coated scanning probe. The antenna resonances, field localization, excitation, and polarization

  10. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1993-01-01

    While the first two volumes on Scanning Tunneling Microscopy (STM) and its related scanning probe (SXM) methods have mainly concentrated on intro­ ducing the experimental techniques, as well as their various applications in different research fields, this third volume is exclusively devoted to the theory of STM and related SXM methods. As the experimental techniques including the reproducibility of the experimental results have advanced, more and more theorists have become attracted to focus on issues related to STM and SXM. The increasing effort in the development of theoretical concepts for STM/SXM has led to considerable improvements in understanding the contrast mechanism as well as the experimental conditions necessary to obtain reliable data. Therefore, this third volume on STM/SXM is not written by theorists for theorists, but rather for every scientist who is not satisfied by just obtaining real­ space images of surface structures by STM/SXM. After a brief introduction (Chap. 1), N. D. Lang first co...

  11. Modeling a Miniaturized Scanning Electron Microscope Focusing Column - Lessons Learned in Electron Optics Simulation

    Science.gov (United States)

    Loyd, Jody; Gregory, Don; Gaskin, Jessica

    2016-01-01

    This presentation discusses work done to assess the design of a focusing column in a miniaturized Scanning Electron Microscope (SEM) developed at the NASA Marshall Space Flight Center (MSFC) for use in-situ on the Moon-in particular for mineralogical analysis. The MSFC beam column design uses purely electrostatic fields for focusing, because of the severe constraints on mass and electrical power consumption imposed by the goals of lunar exploration and of spaceflight in general. The resolution of an SEM ultimately depends on the size of the focused spot of the scanning beam probe, for which the stated goal here is a diameter of 10 nanometers. Optical aberrations are the main challenge to this performance goal, because they blur the ideal geometrical optical image of the electron source, effectively widening the ideal spot size of the beam probe. In the present work the optical aberrations of the mini SEM focusing column were assessed using direct tracing of non-paraxial rays, as opposed to mathematical estimates of aberrations based on paraxial ray-traces. The geometrical ray-tracing employed here is completely analogous to ray-tracing as conventionally understood in the realm of photon optics, with the major difference being that in electron optics the lens is simply a smoothly varying electric field in vacuum, formed by precisely machined electrodes. Ray-tracing in this context, therefore, relies upon a model of the electrostatic field inside the focusing column to provide the mathematical description of the "lens" being traced. This work relied fundamentally on the boundary element method (BEM) for this electric field model. In carrying out this research the authors discovered that higher accuracy in the field model was essential if aberrations were to be reliably assessed using direct ray-tracing. This led to some work in testing alternative techniques for modeling the electrostatic field. Ultimately, the necessary accuracy was attained using a BEM

  12. Intensity-modulated scanning Kelvin probe microscopy for probing recombination in organic photovoltaics.

    Science.gov (United States)

    Shao, Guozheng; Glaz, Micah S; Ma, Fei; Ju, Huanxin; Ginger, David S

    2014-10-28

    We study surface photovoltage decays on sub-millisecond time scales in organic solar cells using intensity-modulated scanning Kelvin probe microscopy (SKPM). Using polymer/fullerene (poly[N-9"-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]/[6,6]-phenyl C71-butyric acid methyl ester, PCDTBT/PC71BM) bulk heterojunction devices as a test case, we show that the decay lifetimes measured by SKPM depend on the intensity of the background illumination. We propose that this intensity dependence is related to the well-known carrier-density-dependent recombination kinetics in organic bulk heterojunction materials. We perform transient photovoltage (TPV) and charge extraction (CE) measurements on the PCDTBT/PC71BM blends to extract the carrier-density dependence of the recombination lifetime in our samples, and we find that the device TPV and CE data are in good agreement with the intensity and frequency dependence observed via SKPM. Finally, we demonstrate the capability of intensity-modulated SKPM to probe local recombination rates due to buried interfaces in organic photovoltaics (OPVs). We measure the differences in photovoltage decay lifetimes over regions of an OPV cell fabricated on an indium tin oxide electrode patterned with two different phosphonic acid monolayers known to affect carrier lifetime.

  13. Theoretical analysis of moiré fringe multiplication under a scanning electron microscope

    International Nuclear Information System (INIS)

    Li, Yanjie; Xie, Huimin; Chen, Pengwan; Zhang, Qingming

    2011-01-01

    In this study, theoretical analysis and experimental verification of fringe multiplication under a scanning electron microscope (SEM) are presented. Fringe multiplication can be realized by enhancing the magnification or the number of scanning lines under the SEM. A universal expression of the pitch of moiré fringes is deduced. To apply this method to deformation measurement, the calculation formulas of strain and displacement are derived. Compared to natural moiré, the displacement sensitivity is increased by fringe multiplication while the strain sensitivity may be retained or enhanced depending on the number of scanning lines used. The moiré patterns are formed by the interference of a 2000 lines mm −1 grating with the scanning lines of SEM, and the measured parameters of moiré fringes from experimental results agree well with theoretical analysis

  14. Improvement to the scanning electron microscope image adaptive Canny optimization colorization by pseudo-mapping.

    Science.gov (United States)

    Lo, T Y; Sim, K S; Tso, C P; Nia, M E

    2014-01-01

    An improvement to the previously proposed adaptive Canny optimization technique for scanning electron microscope image colorization is reported. The additional feature, called pseudo-mapping technique, is that the grayscale markings are temporarily mapped to a set of pre-defined pseudo-color map as a mean to instill color information for grayscale colors in chrominance channels. This allows the presence of grayscale markings to be identified; hence optimization colorization of grayscale colors is made possible. This additional feature enhances the flexibility of scanning electron microscope image colorization by providing wider range of possible color enhancement. Furthermore, the nature of this technique also allows users to adjust the luminance intensities of selected region from the original image within certain extent. © 2014 Wiley Periodicals, Inc.

  15. A cryogenic scanning laser microscope for investigation of dynamical states in long Josephson junctions

    DEFF Research Database (Denmark)

    Holm, Jesper; Mygind, Jesper

    1995-01-01

    The first local oscillators based on moving magnetic flux quanta in long Josephson junctions are being developed for superconducting integrated quasi-optical SIS receivers. In order to further refine these oscillators one has to understand the complex dynamics of these devices. Since the local...... on measurements on different oscillator samples, performed with a novel Cryogenic Scanning Laser Microscope (CSLM) having a spatial resolution of less than ±2.5 μm over a 500 μm×50 μm wide scanning area in the temperature range 2 K-300 K. Even though the dynamical states are extremely sensitive to external noise...... this microscope enables us to make stable in-situ measurements on operating Josephson junctions. Recent results are presented and discussed....

  16. Diagnosis of electrocution: The application of scanning electron microscope and energy-dispersive X-ray spectroscopy in five cases.

    Science.gov (United States)

    Visonà, S D; Chen, Y; Bernardi, P; Andrello, L; Osculati, A

    2018-03-01

    Deaths from electricity, generally, do not have specific findings at the autopsy. The diagnosis is commonly based on the circumstances of the death and the morphologic findings, above all the current mark. Yet, the skin injury due to an electrocution and other kinds of thermal injuries often cannot be differentiated with certainty. Therefore, there is a great interest in finding specific markers of electrocution. The search for the metallization of the skin through Scanning Electron Microscope equipped with Energy Dispersive X-Ray Spectroscopy (EDS) probe is of special importance in order to achieve a definite diagnosis in case of suspected electrocution. We selected five cases in which the electrocution was extremely likely considering the circumstances of the death. In each case a forensic autopsy was performed. Then, the skin specimens were stained with Hematoxylin Eosin and Perls. On the other hand, the skin lesions were examined with a scanning electron microscope equipped with EDS probe in order to evaluate the morphological ultrastructural features and the presence of deposits on the surface of the skin. The typical skin injury of the electrocution (current mark) were macroscopically detected in all of the cases. The microscopic examination of the skin lesions revealed the typical spherical vacuoles in the horny layer and, in the epidermis, the elongation of the cell nuclei as well as necrosis. Perls staining was negative in 4 out 6 cases. Ultrastructural morphology revealed the evident vacuolization of the horny layer, elongation of epidermic cells, coagulation of the elastic fibers. In the specimens collected from the site of contact with the conductor of case 1 and 2, the presence of the Kα peaks of iron was detected. In the corresponding specimens taken from cases 2, 4, 5 the microanalysis showed the Kα peaks of titanium. In case 3, titanium and carbon were found. In the suspicion of electrocution, the integrated use of different tools is recommended

  17. Design and performance of the 2-ID-B scanning x-ray microscope

    Science.gov (United States)

    McNulty, Ian; Frigo, Sean P.; Retsch, Cornelia C.; Wang, Yuxin; Feng, Yipeng; Qian, Yonglin; Trakhtenberg, Emil M.; Tieman, Brian; Cha, B.-C.; Goetze, K.; Mooney, Timothy M.; Haddad, Waleed S.

    1998-11-01

    We have constructed a high resolution scanning x-ray microscopy at the 2-ID-B beamline at the Advanced Photon Source for 1-4 keV x-ray imaging and microspectroscopy experiments. The microscope uses a Fresnel zone plate to focus coherent x-ray undulator radiation to a 150 nm focal spot on a sample. The spectral flux in the focus is 108 ph/s/0.1 percent BW. X- ray photons transmitted by the sample are detected by an avalanche photodiode as the sample is scanned to form an absorption image. The sample stage has both coarse and fine translation axes for raster scanning and a rotation axis for microtomography experiments. The incident x- ray beam energy can also be scanned and a rotation axis for microtomography experiments. The incident x-ray beam energy can also be scanned via the 2-ID-B monochromator while the sample is kept in focus to record spatially resolved absorption spectra. We have measured the performance of the instrument with various test objects. THe microscope hardware, software, and performance are discussed in this paper.

  18. Circular mode: a new scanning probe microscopy method for investigating surface properties at constant and continuous scanning velocities.

    Science.gov (United States)

    Nasrallah, Hussein; Mazeran, Pierre-Emmanuel; Noël, Olivier

    2011-11-01

    In this paper, we introduce a novel scanning probe microscopy mode, called the circular mode, which offers expanded capabilities for surface investigations especially for measuring physical properties that require high scanning velocities and/or continuous displacement with no rest periods. To achieve these specific conditions, we have implemented a circular horizontal displacement of the probe relative to the sample plane. Thus the relative probe displacement follows a circular path rather than the conventional back and forth linear one. The circular mode offers advantages such as high and constant scanning velocities, the possibility to be combined with other classical operating modes, and a simpler calibration method of the actuators generating the relative displacement. As application examples of this mode, we report its ability to (1) investigate the influence of scanning velocity on adhesion forces, (2) measure easily and instantly the friction coefficient, and (3) generate wear tracks very rapidly for tribological investigations. © 2011 American Institute of Physics

  19. Differential phase microscope and micro-tomography with a Foucault knife-edge scanning filter

    Science.gov (United States)

    Watanabe, N.; Hashizume, J.; Goto, M.; Yamaguchi, M.; Tsujimura, T.; Aoki, S.

    2013-10-01

    An x-ray differential phase microscope with a Foucault knife-edge scanning filter was set up at the bending magnet source BL3C, Photon Factory. A reconstructed phase profile from the differential phase image of an aluminium wire at 5.36 keV was fairly good agreement with the numerical simulation. Phase tomography of a biological specimen, such as an Artemia cyst, could be successfully demonstrated.

  20. Scanning Electron Microscopic Evaluation of Root Canal Irrigation with Saline, Sodium Hypochlorite, and Citric Acid,

    Science.gov (United States)

    1983-12-01

    endodontic techniques; citric acid for root canal irrigation 4410,ABSTACgmf --,-,m- ,-rms n roc"---’This Study used a scanning electron microscope and a...wall is instrumented during canal preparation and that the smeared layer seems to be found only where endodontic instruments have scraped the surface...between the extremes. It was also decided to use a magnification of 75X to evaluate the superficial debris and 800X to evaluate the smeared layer

  1. Precipitates Segmentation from Scanning Electron Microscope Images through Machine Learning Techniques

    OpenAIRE

    João P. Papa; Clayton R. Pereira; Victor H.C. de Albuquerque; Cleiton C. Silva; Alexandre X. Falcão; João Manuel R. S.Tavares

    2011-01-01

    The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Supp...

  2. Quantitative topographic imaging using a near-field scanning microwave microscope

    Science.gov (United States)

    Vlahacos, C. P.; Steinhauer, D. E.; Dutta, S. K.; Feenstra, B. J.; Anlage, Steven M.; Wellstood, F. C.

    1998-04-01

    We describe a technique for extracting topographic information using a scanning near-field microwave microscope. By monitoring the shift of the system's resonant frequency, we obtain quantitative topographic images of uniformly conducting metal surfaces. At a frequency of 9.572 GHz, our technique allows a height discrimination of about 55 nm at a separation of 30 μm. We present topographic images of uneven, conducting samples and compare the height response and sensitivity of the system with theoretical expectations.

  3. Clinical and scanning electron microscopic assessments of porcelain and ceromer resin veneers.

    OpenAIRE

    Dhawan P; Prakash H; Shah N

    2003-01-01

    PURPOSE: Recently available Ceromer resin materials are promising for fabrication of esthetic anterior laminates and provices an alternative, cost effective treament modality to porcelain laminates for discolored anterior anterior teeth. It was proposed to study the esthetic quality and surface finish of veneers fbricated from ceromer resin and compare it with the standard porcelain veneers, both clinically as well as by scanning electron microscope (SEM) at baseline and at 12 months. If foun...

  4. Design of Pixellated CMOS Photon Detector for Secondary Electron Detection in the Scanning Electron Microscope

    OpenAIRE

    Joon Huang Chuah; David Holburn

    2011-01-01

    This paper presents a novel method of detecting secondary electrons generated in the scanning electron microscope (SEM). The method suggests that the photomultiplier tube (PMT), traditionally used in the Everhart-Thornley (ET) detector, is to be replaced with a configurable multipixel solid-state photon detector offering the advantages of smaller dimension, lower supply voltage and power requirements, and potentially cheaper product cost. The design of the proposed detector has been implement...

  5. Surface topography acquisition method for double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry.

    Science.gov (United States)

    Zhang, Tao; Gao, Feng; Jiang, Xiangqian

    2017-10-02

    This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.

  6. Development of a scanning nearfield optical microscope for low-temperature investigations of semiconductor nanostructures

    International Nuclear Information System (INIS)

    Hodeck, Kai Friedrich

    2009-01-01

    In the present work the electronic structure of MOCVD-grown InGaAs/GaAs and InAs/GaAs quantum dots which are characterized by a particularly low ground state transition energy, was investigated using Scanning Nearfield Optical Microscopy (SNOM). The pivotal question of the presented investigations is, which influence the interaction of the confined carriers has on the energy states of the biexcitons and the multiexcitons in a quantum dot. Therefore, photoluminescence spectra of single quantum dots were investigated under varying excitation intensity at different temperatures between 5 K and 300 K. The construction of a novel scanning nearfield microscope especially for low temperatures allowed the investigation of single quantum dots. Due to significant improvements of the positioning technology and the shear-force distance control between the sample and the nearfield probe a stable scanning of the quantum dot samples at 5 K could be demonstrated, showing a lateral optical resolution of 200 nm. This way, in the photoluminescence spectroscopy of single quantum dots the thermal linewidth broadening of the detected light was reduced down to a value of less than 1 meV, which allowed the identification of the transitions of biexcitons and multiexcitons. On the basis of the performed measurements, for the InGaAs/GaAs quantum dots a biexciton state was identified, with variable binding energies of 2-7 meV. Furthermore, a positively charged trion state with a binding energy of 11 meV was observed, showing high emission intensity, which can be assigned to the sample doping. Accordingly, for the positively charged biexciton state a binding energy of 11 meV can be announced. For the investigated InAs/GaAs quantum dots a biexciton state with binding energies of 3-4 meV was found. Some of the investigated InAs/GaAs quantum dots showed the formation of positively charged states, in particular of a trion state with a binding energy of 3 meV, and of the positively charged

  7. Development of a scanning nearfield optical microscope for low-temperature investigations of semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hodeck, Kai Friedrich

    2009-02-19

    In the present work the electronic structure of MOCVD-grown InGaAs/GaAs and InAs/GaAs quantum dots which are characterized by a particularly low ground state transition energy, was investigated using Scanning Nearfield Optical Microscopy (SNOM). The pivotal question of the presented investigations is, which influence the interaction of the confined carriers has on the energy states of the biexcitons and the multiexcitons in a quantum dot. Therefore, photoluminescence spectra of single quantum dots were investigated under varying excitation intensity at different temperatures between 5 K and 300 K. The construction of a novel scanning nearfield microscope especially for low temperatures allowed the investigation of single quantum dots. Due to significant improvements of the positioning technology and the shear-force distance control between the sample and the nearfield probe a stable scanning of the quantum dot samples at 5 K could be demonstrated, showing a lateral optical resolution of 200 nm. This way, in the photoluminescence spectroscopy of single quantum dots the thermal linewidth broadening of the detected light was reduced down to a value of less than 1 meV, which allowed the identification of the transitions of biexcitons and multiexcitons. On the basis of the performed measurements, for the InGaAs/GaAs quantum dots a biexciton state was identified, with variable binding energies of 2-7 meV. Furthermore, a positively charged trion state with a binding energy of 11 meV was observed, showing high emission intensity, which can be assigned to the sample doping. Accordingly, for the positively charged biexciton state a binding energy of 11 meV can be announced. For the investigated InAs/GaAs quantum dots a biexciton state with binding energies of 3-4 meV was found. Some of the investigated InAs/GaAs quantum dots showed the formation of positively charged states, in particular of a trion state with a binding energy of 3 meV, and of the positively charged

  8. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy.

    Science.gov (United States)

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P; Yang, Chen; Hosseini, Nahid; Fantner, Georg E

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  9. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy

    Science.gov (United States)

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P.; Yang, Chen; Hosseini, Nahid; Fantner, Georg E.

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  10. A proximal retarding field analyzer for scanning probe energy loss spectroscopy

    Science.gov (United States)

    Bauer, Karl; Murphy, Shane; Palmer, Richard E.

    2017-03-01

    A compact proximal retarding field analyzer for scanning probe energy loss spectroscopy measurements is described. Using the scanning tunneling microscope (STM) tip as a field emission (FE) electron source in conjunction with this analyzer, which is placed at a glancing angle to the surface plane, FE sample current and electron reflectivity imaging may be performed simultaneously. This is demonstrated in measurements of Ag nanostructures prepared on graphite by electron-beam lithography, where a material contrast of 13% is observed, with a lateral resolution of 25 nm, between the silver and graphite in electron reflectivity images. Topological contrast mechanisms such as edge enhancement and shadowing are also observed, giving rise to additional features in the electron reflectivity images. The same instrument configuration has been used to measure electron energy loss spectra on bare graphite, where the zero loss peak, π band plasmon loss peak and secondary electron peaks are observed. Using this simple and compact analyzer an STM, with sufficient open access to the tip-sample junction, may easily be augmented to provide simultaneous elemental and topographic mapping, supplementing STM image measurements with FE sample current and electron reflectivity images, as well as electron energy loss spectroscopy measurements, in the same instrument.

  11. A scanning electron microscopic study of the dysplastic epithelia adjacent to oral squamous cell carcinoma.

    Science.gov (United States)

    Worawongvasu, Ratthapong

    2007-01-01

    By light microscopy, the dysplastic oral epithelia due to the neoplastic processes are similar to epithelial changes due to the inflammatory processes. Scanning electron microscopy may elucidate the different surface changes between the two. The aim of this study was to examine the surface appearances of the dysplastic oral epithelia adjacent to oral squamous cell carcinoma to see if there are any surface changes. A total of 2 specimens, one specimen from each patient with oral squamous cell carcinoma, were used for this study. Each specimen was divided in two. One half was prepared for light microscopy and the other half was prepared for scanning electron microscopy. Light microscopically, the epithelia showed mild dysplasia. By scanning electron microscopy, the keratinized cells showed irregular microridges surrounding pits, which were variable and irregular in size and shape, and the nonkeratinized cells showed parallel microridges with irregularly widened intervals between each microridge. Irregular, broad, and partly swollen microridges and irregular short, stubby surface projections were also seen. The oral epithelia adjacent to oral squamous cell carcinoma showed mild dysplasia light microscopically but appeared abnormal by scanning electron microscopy. The abnormal epithelial cells showed pleomorphism, irregular and disoriented microridges, and abnormal surface microstructures.

  12. Characterization of Line Nanopatterns on Positive Photoresist Produced by Scanning Near-Field Optical Microscope

    Directory of Open Access Journals (Sweden)

    Sadegh Mehdi Aghaei

    2015-01-01

    Full Text Available Line nanopatterns are produced on the positive photoresist by scanning near-field optical microscope (SNOM. A laser diode with a wavelength of 450 nm and a power of 250 mW as the light source and an aluminum coated nanoprobe with a 70 nm aperture at the tip apex have been employed. A neutral density filter has been used to control the exposure power of the photoresist. It is found that the changes induced by light in the photoresist can be detected by in situ shear force microscopy (ShFM, before the development of the photoresist. Scanning electron microscope (SEM images of the developed photoresist have been used to optimize the scanning speed and the power required for exposure, in order to minimize the final line width. It is shown that nanometric lines with a minimum width of 33 nm can be achieved with a scanning speed of 75 µm/s and a laser power of 113 mW. It is also revealed that the overexposure of the photoresist by continuous wave laser generated heat can be prevented by means of proper photoresist selection. In addition, the effects of multiple exposures of nanopatterns on their width and depth are investigated.

  13. Method for estimating the tip geometry of scanning ion conductance microscope pipets.

    Science.gov (United States)

    Caldwell, Matthew; Del Linz, Samantha J L; Smart, Trevor G; Moss, Guy W J

    2012-11-06

    Scanning ion conductance microscopy (SICM) offers the ability to perform contact-free, high-resolution imaging of biological cells and tissues at physiological conditions. However, imaging resolution is highly dependent on the geometry of the SICM probe, which is generally not known. Small, high-resolution probes are too fine to image optically and, to date, geometry estimation has usually required electron microscopy (EM). This is time-consuming and prone to failure and cannot provide information about the crucial internal geometry of the probe. Here we demonstrate a new method for determining SICM tip geometry that overcomes the limitations of EM imaging. The method involves fitting an analytical model to current changes during quasi-controlled breakage of the pipet tip. The data can be routinely obtained using the SICM apparatus itself and our method thus opens the way for substantially better quantification in SICM imaging and measurement.

  14. Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope

    Science.gov (United States)

    de Jonge, Niels [Oak Ridge, TN

    2010-08-17

    A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.

  15. Scanning transmission x-ray microscope for materials science spectromicroscopy at the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, T.; Seal, S.; Shin, H. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The brightness of the Advanced Light Source will be exploited by several new instruments for materials science spectromicroscopy over the next year or so. The first of these to become operational is a scanning transmission x-ray microscope with which near edge x-ray absorption spectra (NEXAFS) can be measured on spatial features of sub-micron size. Here the authors describe the instrument as it is presently implemented, its capabilities, some studies made to date and the developments to come. The Scanning Transmission X-ray Microscope makes use of a zone plate lens to produce a small x-ray spot with which to perform absorption spectroscopy through thin samples. The x-ray beam from ALS undulator beamline 7.0 emerges into the microscope vessel through a silicon nitride vacuum window 160nm thick and 300{mu}m square. The vessel is filled with helium at atmospheric pressure. The zone plate lens is illuminated 1mm downstream from the vacuum window and forms an image in first order of a pinhole which is 3m upstream in the beamline. An order sorting aperture passes the first order converging light and blocks the unfocused zero order. The sample is at the focus a few mm downstream of the zone plate and mounted from a scanning piezo stage which rasters in x and y so that an image is formed, pixel by pixel, by an intensity detector behind the sample. Absorption spectra are measured point-by-point as the photon energy is scanned by rotating the diffraction grating in the monochromator and changing the undulator gap.

  16. Scanning transmission x-ray microscope for materials science spectromicroscopy at the ALS

    International Nuclear Information System (INIS)

    Warwick, T.; Seal, S.; Shin, H.

    1997-01-01

    The brightness of the Advanced Light Source will be exploited by several new instruments for materials science spectromicroscopy over the next year or so. The first of these to become operational is a scanning transmission x-ray microscope with which near edge x-ray absorption spectra (NEXAFS) can be measured on spatial features of sub-micron size. Here the authors describe the instrument as it is presently implemented, its capabilities, some studies made to date and the developments to come. The Scanning Transmission X-ray Microscope makes use of a zone plate lens to produce a small x-ray spot with which to perform absorption spectroscopy through thin samples. The x-ray beam from ALS undulator beamline 7.0 emerges into the microscope vessel through a silicon nitride vacuum window 160nm thick and 300μm square. The vessel is filled with helium at atmospheric pressure. The zone plate lens is illuminated 1mm downstream from the vacuum window and forms an image in first order of a pinhole which is 3m upstream in the beamline. An order sorting aperture passes the first order converging light and blocks the unfocused zero order. The sample is at the focus a few mm downstream of the zone plate and mounted from a scanning piezo stage which rasters in x and y so that an image is formed, pixel by pixel, by an intensity detector behind the sample. Absorption spectra are measured point-by-point as the photon energy is scanned by rotating the diffraction grating in the monochromator and changing the undulator gap

  17. Atomic Force Microscope nanolithography on chromosomes to generate single-cell genetic probes.

    Science.gov (United States)

    Di Bucchianico, Sebastiano; Poma, Anna M; Giardi, Maria F; Di Leandro, Luana; Valle, Francesco; Biscarini, Fabio; Botti, Dario

    2011-06-28

    Chromosomal dissection provides a direct advance for isolating DNA from cytogenetically recognizable region to generate genetic probes for fluorescence in situ hybridization, a technique that became very common in cyto and molecular genetics research and diagnostics. Several reports describing microdissection methods (glass needle or a laser beam) to obtain specific probes from metaphase chromosomes are available. Several limitations are imposed by the traditional methods of dissection as the need for a large number of chromosomes for the production of a probe. In addition, the conventional methods are not suitable for single chromosome analysis, because of the relatively big size of the microneedles. Consequently new dissection techniques are essential for advanced research on chromosomes at the nanoscale level. We report the use of Atomic Force Microscope (AFM) as a tool for nanomanipulation of single chromosomes to generate individual cell specific genetic probes. Besides new methods towards a better nanodissection, this work is focused on the combination of molecular and nanomanipulation techniques which enable both nanodissection and amplification of chromosomal and chromatidic DNA. Cross-sectional analysis of the dissected chromosomes reveals 20 nm and 40 nm deep cuts. Isolated single chromosomal regions can be directly amplified and labeled by the Degenerate Oligonucleotide-Primed Polymerase Chain Reaction (DOP-PCR) and subsequently hybridized to chromosomes and interphasic nuclei. Atomic force microscope can be easily used to visualize and to manipulate biological material with high resolution and accuracy. The fluorescence in situ hybridization (FISH) performed with the DOP-PCR products as test probes has been tested succesfully in avian microchromosomes and interphasic nuclei. Chromosome nanolithography, with a resolution beyond the resolution limit of light microscopy, could be useful to the construction of chromosome band libraries and to the molecular

  18. Application of Environmental Scanning Electron Microscope-Nanomanipulation System on Spheroplast Yeast Cells Surface Observation.

    Science.gov (United States)

    Rad, Maryam Alsadat; Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2017-01-01

    The preparation and observations of spheroplast W303 cells are described with Environmental Scanning Electron Microscope (ESEM). The spheroplasting conversion was successfully confirmed qualitatively, by the evaluation of the morphological change between the normal W303 cells and the spheroplast W303 cells, and quantitatively, by determining the spheroplast conversion percentage based on the OD 800 absorbance data. From the optical microscope observations as expected, the normal cells had an oval shape whereas spheroplast cells resemble a spherical shape. This was also confirmed under four different mediums, that is, yeast peptone-dextrose (YPD), sterile water, sorbitol-EDTA-sodium citrate buffer (SCE), and sorbitol-Tris-Hcl-CaCl 2 (CaS). It was also observed that the SCE and CaS mediums had a higher number of spheroplast cells as compared to the YPD and sterile water mediums. The OD 800 absorbance data also showed that the whole W303 cells were fully converted to the spheroplast cells after about 15 minutes. The observations of the normal and the spheroplast W303 cells were then performed under an environmental scanning electron microscope (ESEM). The normal cells showed a smooth cell surface whereas the spheroplast cells had a bleb-like surface after the loss of its integrity when removing the cell wall.

  19. Identification of mycobacterium tuberculosis in sputum smear slide using automatic scanning microscope

    Science.gov (United States)

    Rulaningtyas, Riries; Suksmono, Andriyan B.; Mengko, Tati L. R.; Saptawati, Putri

    2015-04-01

    Sputum smear observation has an important role in tuberculosis (TB) disease diagnosis, because it needs accurate identification to avoid high errors diagnosis. In development countries, sputum smear slide observation is commonly done with conventional light microscope from Ziehl-Neelsen stained tissue and it doesn't need high cost to maintain the microscope. The clinicians do manual screening process for sputum smear slide which is time consuming and needs highly training to detect the presence of TB bacilli (mycobacterium tuberculosis) accurately, especially for negative slide and slide with less number of TB bacilli. For helping the clinicians, we propose automatic scanning microscope with automatic identification of TB bacilli. The designed system modified the field movement of light microscope with stepper motor which was controlled by microcontroller. Every sputum smear field was captured by camera. After that some image processing techniques were done for the sputum smear images. The color threshold was used for background subtraction with hue canal in HSV color space. Sobel edge detection algorithm was used for TB bacilli image segmentation. We used feature extraction based on shape for bacilli analyzing and then neural network classified TB bacilli or not. The results indicated identification of TB bacilli that we have done worked well and detected TB bacilli accurately in sputum smear slide with normal staining, but not worked well in over staining and less staining tissue slide. However, overall the designed system can help the clinicians in sputum smear observation becomes more easily.

  20. Spatial-scanning hyperspectral imaging probe for bio-imaging applications.

    Science.gov (United States)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2016-03-01

    The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50,000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications.

  1. Nonlinear least squares regression for single image scanning electron microscope signal-to-noise ratio estimation.

    Science.gov (United States)

    Sim, K S; Norhisham, S

    2016-11-01

    A new method based on nonlinear least squares regression (NLLSR) is formulated to estimate signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images. The estimation of SNR value based on NLLSR method is compared with the three existing methods of nearest neighbourhood, first-order interpolation and the combination of both nearest neighbourhood and first-order interpolation. Samples of SEM images with different textures, contrasts and edges were used to test the performance of NLLSR method in estimating the SNR values of the SEM images. It is shown that the NLLSR method is able to produce better estimation accuracy as compared to the other three existing methods. According to the SNR results obtained from the experiment, the NLLSR method is able to produce approximately less than 1% of SNR error difference as compared to the other three existing methods. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  2. Development of a miniature scanning electron microscope for in-flight analysis of comet dust

    Science.gov (United States)

    Conley, J. M.; Bradley, J. G.; Giffin, C. E.; Albee, A. L.; Tomassian, A. D.

    1983-01-01

    A description is presented of an instrument which was developed with the original goal of being flown on the International Comet Mission, scheduled for a 1985 launch. The Scanning Electron Microscope and Particle Analyzer (SEMPA) electron miniprobe is a miniaturized electrostatically focused electron microscope and energy dispersive X-ray analyzer for in-flight analysis of comet dust particles. It was designed to be flown on board a comet rendezvous spacecraft. Other potential applications are related to asteroid rendezvous and planetary lander missions. According to the development objectives, SEMPA miniprobe is to have the capability for imaging and elemental analysis of particles in the size range of 0.25 microns and larger.

  3. The scanning transmission microscope at the NSLS [National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Rarback, H.; Buckley, C.; Goncz, K.

    1989-01-01

    The scanning transmission soft x-ray microscope (STXM), that has been under development at the National Synchrotron Light Source has been substantially upgraded for operation with the X1 undulator. The principal new features are: optical prefocusing, using a visible light interferometer, a dedicated VAXstation 3200 with a more user friendly and flexible software system for image acquisition and analysis, a flow cell that makes it possible not only to keep the specimen wet during exposure, but to change the fluid around the specimen as well, and a more compact proportional counter that is capable of counting rates of several MHz. In conjunction with new zone plates of better resolution and higher efficiency, the microscope is ready for a period of extended use in biological imaging. 9 refs., 6 figs

  4. A variable-temperature scanning tunneling microscope capable of single-molecule vibrational spectroscopy

    International Nuclear Information System (INIS)

    Stipe, B.C.; Rezaei, M.A.; Ho, W.

    1999-01-01

    The design and performance of a variable-temperature scanning tunneling microscope (STM) is presented. The microscope operates from 8 to 350 K in ultrahigh vacuum. The thermally compensated STM is suspended by springs from the cold tip of a continuous flow cryostat and is completely surrounded by two radiation shields. The design allows for in situ dosing and irradiation of the sample as well as for the exchange of samples and STM tips. With the STM feedback loop off, the drift of the tip-sample spacing is approximately 0.001 Angstrom/min at 8 K. It is demonstrated that the STM is well-suited for the study of atomic-scale chemistry over a wide temperature range, for atomic-scale manipulation, and for single-molecule inelastic electron tunneling spectroscopy (IETS). copyright 1999 American Institute of Physics

  5. Dynamic characterization of carboxymethyl cellulosic nonwoven material in the environmental scanning electron microscope

    International Nuclear Information System (INIS)

    Wei, Q.F.; Wang, X.Q.

    2005-01-01

    Carboxymethyl cellulosic fibers have been increasingly used in health care, agriculture and biomedical areas. The fundamental understanding of the material under different conditions is of importance in these applications. The use of environmental scanning electron microscopy for dynamic characterization of these nonwoven materials under different conditions has been explored in this study. Dynamic tensile testing under different humidity conditions was performed in a Philips XL 30 FEG-ESEM. The relative humidity in the microscope chamber was adjusted from 10% up to 100% by controlling the specimen temperature and the chamber pressure. The tensile testing was carried out on a stage that was placed in the microscope chamber. The studies under dynamic conditions have given new insight into the kinetics of structure formation, rearrangement and breakdown that are important for the processing and product development of these fiber materials

  6. A novel approach for fast scanning of nuclear emulsions with continuous motion of the microscope stage

    Science.gov (United States)

    Aleksandrov, A.; Tioukov, V.

    2013-08-01

    Nuclear emulsions have been used in particle physics experiments for many decades because of their unique spatial resolution. The use of nuclear emulsions as precise tracking detectors in large experiments has recently been made possible due to advances in the production of emulsion films and to the development of very fast automatic scanning devices. The present scanning speed of the European Scanning System (ESS), which has been developed within the OPERA Collaboration, is about 20 cm2/h. In addition to the scanning of OPERA films, the ESS is used for other applications with ever-growing demands for scanning speed, such as the muon radiography of volcanoes. In order to further increase the scanning speed of the ESS, we are testing a novel approach different from the standard stop-and-go motion of the microscope stage in the horizontal plane. Indeed we perform data acquisition with the stage moving at constant speed, using an objective lens with wide field of view. Unlike the implementation realized in Japan where the movement of objective lens and stage are synchronized to pile up images of the same view in a vertical stack, in this approach only the stage is moving horizontally. Thus images at different depths are not fully overlapped and special care is needed in the reconstruction. This approach can give a substantial increase in the scanning speed, especially for thin emulsion layers and wide field of view. In this paper we demonstrate that, after applying special corrections, the emulsion data quality can be as good as with the standard stop-and-go approach. This technique allows to double the scanning speed of the ESS, bringing it to 40 cm2/h without any hardware modification.

  7. Phase zone plates as condensers for the Gottingen scanning x-ray microscope

    International Nuclear Information System (INIS)

    Hilkenbach, R.; Thieme

    1987-01-01

    With the Gottingen scanning x-ray microscope the synchrotron source is image by x-ray optics into a monochromatic small scan spot, through which a specimen can be moved. Hereby one part of the optics, the condenser zone plate and a pinhole, works as a linear monochromator in the wavelength region of λ = 2.36 nm to λ = 4.5 nm. The efficiency of such a condenser should be as high as possible to minimize the loss of radiation. Phase zone plates have a four times higher efficiency in the first order of diffraction than amplitude zone plates. Two condenser zone plates, KZP4 and KZP5, have been constructed so that they are well suited for the use in the scanning microscope. These zone plates have been made holographically by superposing two wavefronts of laser light in an specific designed optical arrangement and exposing the zone plate structure into a photoresist. Using reactive ion etching (RIE) the structure has been transformed into Germanium. The thickness of the zone plate has been chosen to show at λ = 2.36 nm a phase effect. The efficiency has been measured at the Berliner Elektronenspeircherring Gesellschaft fur Synchrotronstrahlung m.b.H., Berlin

  8. Analysis of light scattering from human breast tissue using a custom dual-optical scanning near-field optical microscope.

    Science.gov (United States)

    Kyle, Jennifer Reiber; Kyle, Michael D; Raghavan, Ravi; Budak, Gurer; Ozkan, Cengiz S; Ozkan, Mihrimah

    2011-03-01

    In this paper we introduce a custom scanning near-field optical microscope (SNOM) that simultaneously collects reflection and transmission near-field images along with topography. This dual-optical SNOM uses a bent probe, which allows for axial reflection imaging, accurate surface scanning, and easy identification of topographic artifacts. Using this novel dual-optical SNOM, we image desiccated and non-desiccated human breast epithelial tissue. By comparing the simultaneous SNOM images, we isolate the effects of tissue morphology and variations in refractive indices on the forward- and back-scattering of light from the tissue. We find that the reduction in back-scattering from tissue, relative to the glass slide, is caused by dense packing of the scattering sites in the cytoplasm (morphology) in the desiccated tissue and a thin-film of water adhering to the glass slide (refractive index) in the non-desiccated tissue sample. Our work demonstrates the potential of our customized dual-optical SNOM system for label-free tissue diagnostics. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Full-field parallel interferometry coherence probe microscope for high-speed optical metrology.

    Science.gov (United States)

    Safrani, A; Abdulhalim, I

    2015-06-01

    Parallel detection of several achromatic phase-shifted images is used to obtain a high-speed, high-resolution, full-field, optical coherence probe tomography system based on polarization interferometry. The high enface imaging speed, short coherence gate, and high lateral resolution provided by the system are exploited to determine microbump height uniformity in an integrated semiconductor chip at 50 frames per second. The technique is demonstrated using the Linnik microscope, although it can be implemented on any polarization-based interference microscopy system.

  10. Scanning probe and micropatterning approaches for biomolecular screening applications

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, Lisa M

    2002-07-01

    Force mapping using atomic force microscopy (AFM) allows for the simultaneous acquisition of topography and probe-sample interaction data. For example, AFM probes functionalised with an antigen can be employed to map the spatial distribution of recognition events on a substrate functionalised with the complementary specific antibody. However, this technique is currently limited to the detection of a single receptor-ligand species. Were the detection of multiple receptor-ligand interactions possible, AFM force mapping would offer greater scope as a sensitive tool for bioassay and screening applications. This thesis outlines developments in probe and substrate immobilisation methods to facilitate this process. We have developed an immobilisation strategy, which allows two antigen species, human serum albumin (HSA) and the beta subunit of human chorionic gonadotropin ({beta}hCG) to be simultaneously present on an AFM probe. Single point force spectroscopy results have revealed the ability of such probes to discriminate between their corresponding antibodies (anti-HSA and anti-{beta}hCG lgG antibodies). In addition, these antibodies have been employed in the fabrication of a 2-D biomolecular array using microfluidic network patterning. The formed chequered pattern was visualised with fluorescence microscopy using fluorescently tagged anti-IgG antibodies. In parallel with such developments we have employed AFM force volume imaging to investigate the distribution of antigen binding sites on an antibody functionalised substrate. Highly resolved adhesion maps were obtained of surfaces functionalised with anti-HSA lgG antibodies using HSA functionalised AFM probes, adopting the sample molecular tether immobilisation strategy employed in the single point force spectroscopy investigations. The observed forces were seen to be comparable with previous investigations. The addition of free HSA into the system was found to result in a significant reduction in the number of

  11. Unveiling the Mysteries of Mars with a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM)

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Doloboff, I. J.; Jerman, G.

    2017-01-01

    Development of a miniaturized scanning electron microscope that will utilize the martian atmosphere to dissipate charge during analysis continues. This instrument is expected to be used on a future rover or lander to answer fundamental Mars science questions. To identify the most important questions, a survey was taken at the 47th Lunar and Planetary Science Conference (LPSC). From the gathered information initial topics were identified for a SEM on the martian surface. These priorities are identified and discussed below. Additionally, a concept of operations is provided with the goal of maximizing the science obtained with the minimum amount of communication with the instrument.

  12. Morphological observation and characterization of thePseudoregma bambucicolawith the scanning electron microscope.

    Science.gov (United States)

    Nong, Xiang; Zeng, Xuemei; Yang, Yaojun; Liang, Zi; Tang, Mei; Liao, Lejuan; Luo, Chaobing

    2017-11-01

    Both leica microscopic camera system and scanning electron microscopy was used to observe and characterize the feet, back, abdomen, antennae and mouthparts of the Pseudoregma bambucicola from the bamboo, Bambusa multiplex . The possible functions of all the external morphological characteristics of the P. bambucicola were described and discussed in detail, which offers a basis for further enriching the biology, phylogeny and ecological niche of the P. bambucicola . Moreover, the morphological results should contribute to morphological identification and differentiation of the P. bambucicola from other aphids in the same family.

  13. Scanning-electron-microscope study of normal-impingement erosion of ductile metals

    Science.gov (United States)

    Brainard, W. A.; Salik, J.

    1980-01-01

    Scanning electron microscopy was used to characterize the erosion of annealed copper and aluminum surfaces produced by both single- and multiple-particle impacts. Macroscopic 3.2 mm diameter steel balls and microscopic, brittle erodant particles were projected by a gas gun system so as to impact at normal incidence at speeds up to 140 m/sec. During the impacts by the brittle erodant particles, at lower speeds the erosion behavior was similar to that observed for the larger steel balls. At higher velocities, particle fragmentation and the subsequent cutting by the radial wash of debris created a marked change in the erosion mechanism.

  14. Interpretation of scanning electron microscope measurements of minority carrier diffusion lengths in semiconductors

    Science.gov (United States)

    Flat, A.; Milnes, A. G.

    1978-01-01

    In scanning electron microscope (SEM) injection measurements of minority carrier diffusion lengths some uncertainties of interpretation exist when the response current is nonlinear with distance. This is significant in epitaxial layers where the layer thickness is not large in relation to the diffusion length, and where there are large surface recombination velocities on the incident and contact surfaces. An image method of analysis is presented for such specimens. A method of using the results to correct the observed response in a simple convenient way is presented. The technique is illustrated with reference to measurements in epitaxial layers of GaAs. Average beam penetration depth may also be estimated from the curve shape.

  15. SEM analysis of ionizing radiation effects in linear integrated circuits. [Scanning Electron Microscope

    Science.gov (United States)

    Stanley, A. G.; Gauthier, M. K.

    1977-01-01

    A successful diagnostic technique was developed using a scanning electron microscope (SEM) as a precision tool to determine ionization effects in integrated circuits. Previous SEM methods radiated the entire semiconductor chip or major areas. The large area exposure methods do not reveal the exact components which are sensitive to radiation. To locate these sensitive components a new method was developed, which consisted in successively irradiating selected components on the device chip with equal doses of electrons /10 to the 6th rad (Si)/, while the whole device was subjected to representative bias conditions. A suitable device parameter was measured in situ after each successive irradiation with the beam off.

  16. Diffusion length measurement using the scanning electron microscope. [for silicon solar cell

    Science.gov (United States)

    Weizer, V. G.

    1975-01-01

    The present work describes a measuring technique employing the scanning electron microscope in which values of the true bulk diffusion length are obtained. It is shown that surface recombination effects can be eliminated through application of highly doped surface field layers. The effects of high injection level and low-high junction current generation are investigated. Results obtained with this technique are compared to those obtained by a penetrating radiation (X-ray) method, and a close agreement is found. The SEM technique is limited to cells that contain a back surface field layer.

  17. SLAM examination of solar cells and solar cell welds. [Scanning Laser Acoustic Microscope

    Science.gov (United States)

    Stella, P. M.; Vorres, C. L.; Yuhas, D. E.

    1981-01-01

    The scanning laser acoustic microscope (SLAM) has been evaluated for non-destructive examination of solar cells and interconnector bonds. Using this technique, it is possible to view through materials in order to reveal regions of discontinuity such as microcracks and voids. Of particular interest is the ability to evaluate, in a unique manner, the bonds produced by parallel gap welding. It is possible to not only determine the area and geometry of the bond between the tab and cell, but also to reveal any microcracks incurred during the welding. By correlating the SLAM results with conventional techniques of weld evaluation a more confident weld parameter optimization can be obtained.

  18. Fiber optic light collection system for scanning-tunneling-microscope-induced light emission.

    Science.gov (United States)

    Watkins, Neil J; Long, James P; Kafafi, Zakya H; Mäkinen, Antti J

    2007-05-01

    We report a compact light collection scheme suitable for retrofitting a scanning tunneling microscope (STM) for STM-induced light emission experiments. The approach uses a pair of optical fibers with large core diameters and high numerical apertures to maximize light collection efficiency and to moderate the mechanical precision required for alignment. Bench tests indicate that efficiency reduction is almost entirely due to reflective losses at the fiber ends, while losses due to fiber misalignment have virtually been eliminated. Photon-map imaging with nanometer features is demonstrated on a stepped Au(111) surface with signal rates exceeding 10(4) counts/s.

  19. Reducing scanning electron microscope charging by using exponential contrast stretching technique on post-processing images.

    Science.gov (United States)

    Sim, K S; Tan, Y Y; Lai, M A; Tso, C P; Lim, W K

    2010-04-01

    An exponential contrast stretching (ECS) technique is developed to reduce the charging effects on scanning electron microscope images. Compared to some of the conventional histogram equalization methods, such as bi-histogram equalization and recursive mean-separate histogram equalization, the proposed ECS method yields better image compensation. Diode sample chips with insulating and conductive surfaces are used as test samples to evaluate the efficiency of the developed algorithm. The algorithm is implemented in software with a frame grabber card, forming the front-end video capture element.

  20. Optical microscope illumination analysis using through-focus scanning optical microscopy.

    Science.gov (United States)

    Attota, Ravi Kiran; Park, Haesung

    2017-06-15

    Misalignment of the aperture diaphragm present in optical microscopes results in angular illumination asymmetry (ANILAS) at the sample plane. Here we show that through-focus propagation of ANILAS results in a lateral image shift with a focus position. This could lead to substantial errors in quantitative results for optical methods that use through-focus images such as three-dimensional nanoparticle tracking, confocal microscopy, and through-focus scanning optical microscopy (TSOM). A correlation exists between ANILAS and the slant in TSOM images. Hence, the slant in the TSOM image can be used to detect, analyze, and rectify the presence of ANILAS.

  1. Transient measurements with an ultrafast scanning tunneling microscope on semiconductor surfaces

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    We demonstrate: the use of an ultrafast scanning tunneling microscope on a semiconductor surface. Laser-induced transient signals with 1.8 ps rise time are detected, The investigated sample is a low-temperature grown GaAs layer plated on a sapphire substrate with a thin gold layer that serves as st...... by the nonuniform carrier density created by the absorption of the light (photo Dember effect). The transient depends in sign and in shape on the direction of optical excitation. This signal is the dominating transient in tunneling mode. The signals are explained by a capacitive coupling across the tunneling gap...

  2. Cancer cell imaging by stable wet near-field scanning optical microscope with resonance tracking method

    International Nuclear Information System (INIS)

    Park, Kyoung-Duck; Park, Doo-Jae; Jeong, Mun-Seok; Choi, Geun-Chang; Lee, Seung-Gol; Byeon, Clare-Chisu; Choi, Soo-Bong

    2014-01-01

    We report on a successful topographical and optical imaging of various cancer cells in liquid and in air by using a stable wet near-field scanning optical microscope that utilizes a resonance tracking method. We observed a clear dehydration which gives rise to a decrease in the cell volume down to 51%. In addition, a micro-ball lens effect due to the round-shaped young cancer cells was observed from near-field imaging, where the refractive index of young cancer cells was deduced.

  3. Cancer cell imaging by stable wet near-field scanning optical microscope with resonance tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyoung-Duck [Sungkyunkwan University, Suwon (Korea, Republic of); Inha University, Incheon (Korea, Republic of); Park, Doo-Jae; Jeong, Mun-Seok [Sungkyunkwan University, Suwon (Korea, Republic of); Choi, Geun-Chang [Seoul National University, Seoul (Korea, Republic of); Lee, Seung-Gol [Inha University, Incheon (Korea, Republic of); Byeon, Clare-Chisu [Kyungpook National University, Daegu (Korea, Republic of); Choi, Soo-Bong [Incheon National University, Incheon (Korea, Republic of)

    2014-05-15

    We report on a successful topographical and optical imaging of various cancer cells in liquid and in air by using a stable wet near-field scanning optical microscope that utilizes a resonance tracking method. We observed a clear dehydration which gives rise to a decrease in the cell volume down to 51%. In addition, a micro-ball lens effect due to the round-shaped young cancer cells was observed from near-field imaging, where the refractive index of young cancer cells was deduced.

  4. The Fresnel mode of Lorentz microscopy using a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Chapman, J.N.; Waddell, E.M.; Batson, P.E.; Ferrier, R.P.

    1979-01-01

    The most widely used method of investigating ferromagnetic films in the transmission electron microscope is the Fresnel or defocus mode of Lorentz microscopy. This may be implemented either in a fixed beam or a scanning instrument. Despite a rather inefficient utilization of electrons, several advantages accrue if the latter is used, and provided it is equipped with a field emission gun, low noise images may be obtained in acceptable recording times. To extract quantitative estimates of domain wall widths from such images it is necessary to measure accurately both instrumental and specimen parameters. Methods for this are discussed and an example of an analysis using a polycrystalline permalloy film is given. (Auth.)

  5. Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope

    International Nuclear Information System (INIS)

    Hornberger, Benjamin; Feser, Michael; Jacobsen, Chris

    2007-01-01

    Phase contrast in X-ray imaging provides lower radiation dose, and dramatically higher contrast at multi-keV photon energies when compared with absorption contrast. We describe here the use of a segmented detector in a scanning transmission X-ray microscope to collect partially coherent bright field images. We have adapted a Fourier filter reconstruction technique developed by McCallum, Landauer and Rodenburg to retrieve separate, quantitative maps of specimen phase shift and absorption. This is demonstrated in the imaging of a germanium test pattern using 525eV soft X-rays

  6. Choice of the best use conditions of the scanning electron microscope

    International Nuclear Information System (INIS)

    Dubus, A.

    1985-01-01

    Suggestions are given to the user to allow him a best control of the scanning electron microscope operation, and to fit, in the best way, the operation conditions in front of the specificity of each problem. The user is recalled the need of best knowledge control of the nature of the sample, the type of researched information (at what scale, what accuracy,...). The user is given the principal criterions of choice to deduce, in function of the technique physical parameters, a compromise in the operation parameters [fr

  7. Visible Light Emission from Atomic Scale Patterns Fabricated by the Scanning Tunneling Microscope

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Stokbro, Kurt

    1999-01-01

    Scanning tunneling microscope (STM) induced light emission from artificial atomic scale structures comprising silicon dangling bonds on hydrogen-terminated Si(001) surfaces has been mapped spatially and analyzed spectroscopically in the visible spectral range. The light emission is based on a novel...... mechanism involving optical transitions between a tip state and localized states on the sample surface. The wavelength of the photons can be changed by the bias voltage of the STM. The spatial resolution of the photon maps is as good as that of STM topographic images and the photons are emitted from...

  8. Electron tomography of HEK293T cells using scanning electron microscope-based scanning transmission electron microscopy.

    Science.gov (United States)

    You, Yun-Wen; Chang, Hsun-Yun; Liao, Hua-Yang; Kao, Wei-Lun; Yen, Guo-Ji; Chang, Chi-Jen; Tsai, Meng-Hung; Shyue, Jing-Jong

    2012-10-01

    Based on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged.

  9. SCANNING PROBE MICROSCOPY STUDY OF MOLECULAR NANOSTRUCTURES ON 2D MATERIALS

    OpenAIRE

    Chen, Chuanhui

    2017-01-01

    Molecules adsorbed on two-dimensional (2D) materials can show interesting physical and chemical properties. This thesis presents scanning probe microscopy (SPM) investigation of emerging 2D materials, molecular nanostructures on 2D substrates at the nanometer scale, and biophysical processes on the biological membrane. Two main techniques of nano-probing are used: scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The study particularly emphasizes on self-assembled molecul...

  10. Enhanced phase contrast transfer using ptychography combined with a pre-specimen phase plate in a scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Ercius, Peter [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Nellist, Peter D. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Ophus, Colin, E-mail: clophus@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-15

    The ability to image light elements in both crystalline and noncrystalline materials at near atomic resolution with an enhanced contrast is highly advantageous to understand the structure and properties of a wide range of beam sensitive materials including biological specimens and molecular hetero-structures. This requires the imaging system to have an efficient phase contrast transfer at both low and high spatial frequencies. In this work we introduce a new phase contrast imaging method in a scanning transmission electron microscope (STEM) using a pre-specimen phase plate in the probe forming aperture, combined with a fast pixelated detector to record diffraction patterns at every probe position, and phase reconstruction using ptychography. The phase plate significantly enhances the contrast transfer of low spatial frequency information, and ptychography maximizes the extraction of the phase information at all spatial frequencies. In addition, the STEM probe with the presence of the phase plate retains its atomic resolution, allowing simultaneous incoherent Z-contrast imaging to be obtained along with the ptychographic phase image. An experimental image of Au nanoparticles on a carbon support shows high contrast for both materials. Multislice image simulations of a DNA molecule shows the capability of imaging soft matter at low dose conditions, which implies potential applications of low dose imaging of a wide range of beam sensitive materials. - Highlights: • This work demonstrates a phase contrast imaging method by combining a pre-specimen phase plate with ptychogrpahy. • This method is shown to have a high phase contrast transfer efficiency at both low and high spatial frequencies. • Unlike CTEM which uses a heavy defocus to gain contrast, the phase plate gives a linear phase contrast at zero defocus aberrations. • Image simulations of DNA suggest this method is highly attractive for imaging beam sensitive materials at a low dose.

  11. Scanning electron microscope image signal-to-noise ratio monitoring for micro-nanomanipulation.

    Science.gov (United States)

    Marturi, Naresh; Dembélé, Sounkalo; Piat, Nadine

    2014-01-01

    As an imaging system, scanning electron microscope (SEM) performs an important role in autonomous micro-nanomanipulation applications. When it comes to the sub micrometer range and at high scanning speeds, the images produced by the SEM are noisy and need to be evaluated or corrected beforehand. In this article, the quality of images produced by a tungsten gun SEM has been evaluated by quantifying the level of image signal-to-noise ratio (SNR). In order to determine the SNR, an efficient and online monitoring method is developed based on the nonlinear filtering using a single image. Using this method, the quality of images produced by a tungsten gun SEM is monitored at different experimental conditions. The derived results demonstrate the developed method's efficiency in SNR quantification and illustrate the imaging quality evolution in SEM. © 2014 Wiley Periodicals, Inc.

  12. Selective scanning tunneling microscope light emission from rutile phase of VO2.

    Science.gov (United States)

    Sakai, Joe; Kuwahara, Masashi; Hotsuki, Masaki; Katano, Satoshi; Uehara, Yoichi

    2016-09-28

    We observed scanning tunneling microscope light emission (STM-LE) induced by a tunneling current at the gap between an Ag tip and a VO2 thin film, in parallel to scanning tunneling spectroscopy (STS) profiles. The 34 nm thick VO2 film grown on a rutile TiO2 (0 0 1) substrate consisted of both rutile (R)- and monoclinic (M)-structure phases of a few 10 nm-sized domains at room temperature. We found that STM-LE with a certain photon energy of 2.0 eV occurs selectively from R-phase domains of VO2, while no STM-LE was observed from M-phase. The mechanism of STM-LE from R-phase VO2 was determined to be an interband transition process rather than inverse photoemission or inelastic tunneling processes.

  13. Development of scanning X-ray microscopes for materials science spectromicroscopy at the Advanced Light Source

    International Nuclear Information System (INIS)

    Warwick, T.; Ade, H.

    1997-07-01

    Third generation synchrotron sources of soft x-rays provide an excellent opportunity to apply established x-ray spectroscopic materials analysis techniques to surface imaging on a sub-micron scale. This paper describes an effort underway at the Advanced Light Source (ALS) to pursue this development using Fresnel zone plate lenses. These are used to produce a sub-micron spot of x-rays for use in scanning microscopy. Several groups have developed microscopes using this technique. A specimen is rastered in the focused x-ray spot and a detector signal is acquired as a function of position to generate an image. Spectroscopic capability is added by holding the small spot on a feature of interest and scanning through the spectrum. The authors are pursuing two spectroscopic techniques: Near Edge X-ray Absorption Spectroscopy (NEXAFS), X-ray Photoelectron Spectroscopy (XPS) which together provide a powerful capability for light element analysis in materials science

  14. Examination of mycological samples by means of the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1973-04-01

    Full Text Available Three species of Siphomycetes: Rhizopus arhizus, Rhizopus equinus and Rhizopus nigricans, as well as a Septomycete: Emericella nidulans, have been examined by means of a scanning electron microscope. Among the difjerent Rhizopus, this technique showed differences in the appearance of the sporangia. In Emericella nidulans, scanning microscopy enábled one to ascertain that the "Hull cells" were completely hollow and also demonstrated the ornemented aspect of the ascospores.Três espécies de Sifomicetas: Rhizopus arhizus, Rhizopus equinus, Rhizopus nigricans e um Septomiceta: Emericella nidulans foram examinados em microscopia de exploração. Esta técnica mostrou detalhes não evidenciáveis ao poder de resolução do microscópio óptico, demonstrando ser útil para o diagnóstico em micologia.

  15. Batch fabrication of scanning microscopy probes for thermal and magnetic imaging using standard micromachining

    NARCIS (Netherlands)

    Sarajlic, Edin; Vermeer, Rolf; Delalande, M.Y.; Siekman, Martin Herman; Huijink, R.; Fujita, H.; Abelmann, Leon

    2010-01-01

    We present a process for batch fabrication of a novel scanning microscopy probe for thermal and magnetic imaging using standard micromachining and conventional optical contact lithography. The probe features an AFM-type cantilever with a sharp pyramidal tip composed of four freestanding silicon

  16. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules.

    Science.gov (United States)

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2015-01-01

    Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926-1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface.

  17. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules

    Directory of Open Access Journals (Sweden)

    Philipp Leinen

    2015-11-01

    Full Text Available Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926–1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf of the non-contact atomic force microscope (NC-AFM tuning fork sensor as well as the magnitude of the electric current (I flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111 surface.

  18. Study of skin of an Egyptian mummy using a scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Mańkowska-Pliszka Hanna

    2017-06-01

    Full Text Available The first study of modified human remains using an electron microscope was carried out at the end of the 1950 and in 1979 the first result of the study involving a scanning electron microscope (SEM was published for the first time. The study was mainly focused on the structure of tissues and cells. With the help of this technique cell and tissue elements, viruses and bacterial endospores as well as the structure of epithelium and the collagen contents of dermis were identified and described. In the above-mentioned case the object of the study using a SEM was a free part of the right hand (forearm with the dorsal and palmar parts of hand of unknown origin, with signs of mummification revealed during microscopic analysis. Our study was aimed at finding the answer to the question if the mummification of the studied limb was natural or intentional, and if the study using a SEM could link the anonymous remains with ancient Egypt.

  19. Microgap Evaluation of Novel Hydrophilic and Hydrophobic Obturating System: A Scanning Electron Microscope Study.

    Science.gov (United States)

    Hegde, Vibha; Murkey, Laxmi Suresh

    2017-05-01

    The purpose of an endodontic obturation is to obtain a fluid tight hermetic seal of the entire root canal system. There has been an evolution of different materials and techniques to achieve this desired gap free fluid tight seal due to presence of anatomic complexity of the root canal system. To compare the microgap occurring in root canals obturated with hydrophilic versus hydrophobic systems using scanning electron microscope. Sixty extracted human single-rooted premolars were decoronated, instrumented using NiTi rotary instruments. The samples (n=20) were divided into three groups and obturated with Group A - (control group) gutta-percha with AH Plus, Group B - C-point with Smartpaste Bio and Group C - gutta-percha with guttaflow 2. The samples were split longitudinally into two halves and microgap was observed under scanning electron microscope in the apical 3 mm of the root canal. Group A (control) showed a mean difference of 8.54 as compared to 5.76 in group C. Group B showed the lowest mean difference of 0.83 suggesting that the hydrophilic system (C-point/Smartpaste Bio) produced least microgap as compared to the hydrophobic groups. Novel hydrophilic obturating system (C-points/ Smart-paste Bio) showed better seal and least microgap as compared to gutta-percha/guttaflow 2 and gutta-percha/ AH plus which showed gap at the sealer dentin interface due to less penetration and bonding of these hydrophobic obturating system.

  20. [Observation and analysis of microstructure of dentin caries lesions through 3D laser scanning microscope].

    Science.gov (United States)

    Lixia, Xu; Hongmei, Xu; Xiaoying, Zhu; Limei, Sun

    2016-10-01

    Microstructural changes in dentin carious lesions were investigated using a 3D laser scanning microscope, which has a morphological theoretical foundation in the further study of clinical caries disease prevention and treatments. Six fresh extracted caries molars were prepared into cross-section specimens. The sections were examined by 3D and laser measuring morphology. Zones were identified in the lesions on the basis of their optical appearance. Two zones were identified in the lesions on the basis of their laser appearance. The microstructure showed that the tubular was partly closed in transparent dentin; peritubular and intertubular dentin were reduced in the zone of demineralization; peritubular and intertubular dentin were damaged and fused; a beaded sample and oval lesions formed in the zone of bacterial invasion; and abnormal dentin structure was present in the zone of destruction on the basis of their laser appearance. Four zones were iden-tified in the lesions according to their colors, as determined from their 3D appearance. 3D laser scanning micros-cope may be a powerful, accessible, and non-destructive technique, as it identified the lesion and tubular zones, as well as peritubular and intertubular dentin in the four zones' lesions. The microstructure of dentin caries lesions may have significant merit in the evaluation of clinical prevention and treatment.

  1. Scanning tunneling microscope combined with synchrotron-radiation for elemental analysis

    International Nuclear Information System (INIS)

    Okuda, T.; Eguchi, T.; Matsushima, T.; Hamada, M.; Ma, X.-D.; Kataoka, A.; Harasawa, A.; Kinoshita, T.; Hasegawa, Y.

    2004-01-01

    Full text: We present a newly developed synchrotron-radiation-illuminated scanning-tunneling-microscope (SR-STM) at BL-19A in Photon Factory (KEK, Japan). Combining the energy tunability of SR light with the high-spatial resolution of STM, we aim to develop an element-specific microscope. That is, by detecting the photoelectrons from the specific core-levels excited by SR light with STM tip, we expect an elemental mapping of the surface with high spatial resolution. Figure shows an STM image of the Si(111) 7 x 7 surface by the SR- STM in a constant current mode (V sample = - 1.2 V, I t =240 pA) with and without SR light illuminating with the photon energy ranging from hv = 93 to 105 eV. As shown in the figure, atomically resolved imaging is attained even under the light illumination. The cross-sectional profile of the STM image is shown in the right of the figure. Light shade indicates the SR illumination during scanning over the area. When the surface is illuminated by the SR light, the tip height is obviously raised. Moreover, a sharp increase of the tip height is observed above the Si L adsorption edge ( ∼ 101 eV). These results demonstrate the possibility of elemental identification using this technique. The spatial resolution of the elemental mapping is approximately micron order at present. In order to improve it, we are now testing a tip-coating and some other trial techniques

  2. Polarized light and scanning electron microscopic investigation of enamel hypoplasia in primary teeth.

    Science.gov (United States)

    Sabel, Nina; Klingberg, Gunilla; Dietz, Wolfram; Nietzsche, Sandor; Norén, Jörgen G

    2010-01-01

    Enamel hypoplasia is a developmental disturbance during enamel formation, defined as a macroscopic defect in the enamel, with a reduction of the enamel thickness with rounded, smooth borders. Information on the microstructural level is still limited, therefore further studies are of importance to better understand the mechanisms behind enamel hypoplasia. To study enamel hypoplasia in primary teeth by means of polarized light microscopy and scanning electron microscopy. Nineteen primary teeth with enamel hypoplasia were examined in a polarized light microscope and in a scanning electron microscope. The cervical and incisal borders of the enamel hypoplasia had a rounded appearance, as the prisms in the rounded cervical area of the hypoplasia were bent. The rounded borders had a normal surface structure whereas the base of the defects appeared rough and porous. Morphological findings in this study indicate that the aetiological factor has a short duration and affects only certain ameloblasts. The bottom of the enamel hypoplasia is porous and constitutes possible pathways for bacteria into the dentin.

  3. Probing superconductors. Spectroscopic-imaging scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Hanaguri, Tetsuo

    2011-01-01

    Discovery of high-temperature superconductivity in a cuprate triggered developments of various spectroscopic tools which have been utilized to elucidate electronic states of this mysterious compound. Particularly, angle-resolved photoemission spectroscopy and scanning-tunneling microscopy/spectroscopy are improved considerably. It is now possible to map the superconducting gap in both momentum and real spaces using these two techniques. Here we review spectroscopic-imaging scanning tunneling microscopy which is able to explore momentum-space phase structure of the superconducting gap, as well as real-space structure. Applications of this technique to a cuprate and an iron-based superconductor are discussed. (author)

  4. First-principles theory of inelastic currents in a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Hu, Ben Yu-Kuang; Thirstrup, C.

    1998-01-01

    A first-principles theory of inelastic tunneling between a model probe tip and an atom adsorbed on a surface is presented, extending the elastic tunneling theory of Tersoff and Hamann. The inelastic current is proportional to the change in the local density of states at the center of the tip due...... to the addition of the adsorbate. We use the theory to investigate the vibrational heating of an adsorbate below a scanning tunneling microscopy tip. We calculate the desorption rate of PI from Si(100)-H(2 X 1) as a function of the sample bias and tunnel current, and find excellent a,agreement with recent...

  5. Simulations and measurements in scanning electron microscopes at low electron energy

    Czech Academy of Sciences Publication Activity Database

    Walker, C.; Frank, Luděk; Müllerová, Ilona

    2016-01-01

    Roč. 38, č. 6 (2016), s. 802-818 ISSN 0161-0457 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 EU Projects: European Commission(XE) 606988 - SIMDALEE2 Institutional support: RVO:68081731 Keywords : Monte Carlo modeling * scanned probe * computer simulation * electron-solid interactions * surface analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.345, year: 2016

  6. Gallium nitride nanowire probe for near-field scanning microwave microscopy

    Science.gov (United States)

    Weber, J. C.; Blanchard, P. T.; Sanders, A. W.; Imtiaz, A.; Wallis, T. M.; Coakley, K. J.; Bertness, K. A.; Kabos, P.; Sanford, N. A.; Bright, V. M.

    2014-01-01

    We report on the fabrication of a GaN nanowire probe for near-field scanning microwave microscopy. A single nanowire was Pt-bonded to a commercial Si cantilever prior to evaporation of a Ti/Al coating to provide a microwave signal pathway. Testing over a microcapacitor calibration sample shows the probe to have capacitance resolution of at least 0.7 fF with improved sensitivity and reduced uncertainty compared with a commercial microwave probe. High wear resistance of the defect-free nanowire enabled it to maintain a tip radius of 150 nm after multiple contact-mode scans while demonstrating nanometer-scale topographical resolution.

  7. A design for a subminiature, low energy scanning electron microscope with atomic resolution

    International Nuclear Information System (INIS)

    Eastham, D. A.; Edmondson, P.; Greene, S.; Donnelly, S.; Olsson, E.; Svensson, K.; Bleloch, A.

    2009-01-01

    We describe a type of scanning electron microscope that works by directly imaging the electron field-emission sites on a nanotip. Electrons are extracted from the nanotip through a nanoscale aperture, accelerated in a high electric field, and focused to a spot using a microscale Einzel lens. If the whole microscope (accelerating section and lens) and the focal length are both restricted in size to below 10 μm, then computer simulations show that the effects of aberration are extremely small and it is possible to have a system with approximately unit magnification at electron energies as low as 300 eV. Thus a typical emission site of 1 nm diameter will produce an image of the same size, and an atomic emission site will give a resolution of 0.1-0.2 nm (1-2 A). Also, because the beam is not allowed to expand beyond 100 nm in diameter, the depth of field is large and the contribution to the beam spot size from chromatic aberrations is less than 0.02 nm (0.2 A) for 500 eV electrons. Since it is now entirely possible to make stable atomic sized emitters (nanopyramids), it is expected that this instrument will have atomic resolution. Furthermore the brightness of the beam is determined only by the field emission and can be up to 1x10 6 times larger than in a typical (high energy) electron microscope. The advantages of this low energy, bright-beam electron microscope with atomic resolution are described and include the possibility of it being used to rapidly sequence the human genome from a single strand of DNA as well as being able to identify atomic species directly from the elastic scattering of electrons

  8. Handheld scanning probes for optical coherence tomography: developments, applications, and perspectives

    Science.gov (United States)

    Duma, V.-F.; Demian, D.; Sinescu, C.; Cernat, R.; Dobre, G.; Negrutiu, M. L.; Topala, F. I.; Hutiu, Gh.; Bradu, A.; Podoleanu, A. G.

    2016-03-01

    We present the handheld scanning probes that we have recently developed in our current project for biomedical imaging in general and for Optical Coherence Tomography (OCT) in particular. OCT is an established, but dynamic imagistic technique based on laser interferometry, which offers micrometer resolutions and millimeters penetration depths. With regard to existing devices, the newly developed handheld probes are simple, light and relatively low cost. Their design is described in detail to allow for the reproduction in any lab, including for educational purposes. Two probes are constructed almost entirely from off-the-shelf components, while a third, final variant is constructed with dedicated components, in an ergonomic design. The handheld probes have uni-dimensional (1D) galvanometer scanners therefore they achieve transversal sections through the biological sample investigated - in contrast to handheld probes equipped with bi-dimensional (2D) scanners that can also achieve volumetric (3D) reconstructions of the samples. These latter handheld probes are therefore also discussed, as well as the possibility to equip them with galvanometer 2D scanners or with Risley prisms. For galvanometer scanners the optimal scanning functions studied in a series of previous works are pointed out; these functions offer a higher temporal efficiency/duty cycle of the scanning process, as well as artifact-free OCT images. The testing of the handheld scanning probes in dental applications is presented, for metal ceramic prosthesis and for teeth.

  9. In-Situ Microprobe Observations of Dispersed Oil with Low-Temperature Low-Vacuum Scanning Electron Microscope

    International Nuclear Information System (INIS)

    Mohsen, H.T.

    2010-01-01

    A low cost cryostat stage from high heat capacity material is designed and constructed, in attempt to apply size distribution techniques for examination of oil dispersions. Different materials were tested according to their heat capacity to keep the liquid under investigation in frozen state as long as possible during the introduction of the cryostat stage to the low-vacuum scanning electron microscope. Different concentrations of non ionic surfactant were added to artificially contaminated with 10000 ppm Balayeam base oil in 3.5 % saline water, where oil and dispersing liquid have been added and shacked well to be investigated under the microscope as fine frozen droplets. The efficiency of dispersion was examined using low temperature low-vacuum scanning electron microscope. The shape and size distributions of freeze oil droplets were studied by digital imaging processing technique in conjunction with scanning electron microscope counting method. Also elemental concentration of oil droplets was analyzed.

  10. Preparation of platinum/iridium scanning probe microscopy tips

    DEFF Research Database (Denmark)

    Sørensen, Alexis Hammer; Hvid, U.; Mortensen, M.W.

    1999-01-01

    We report on the development of an etching setup for use in the preparation of platinum/iridium tips for atomic force microscopy and scanning electrostatic force microscopy as well as scanning tunneling microscopy. The etching process is based on a two step electrochemical procedure. The first step...... material being etched is platinum/iridium (10%) the influence of the stop phase of the ac current terminating each pulse in the second etching is found to be negligible, while in the case of second etching of tungsten wires it is important to break the pulse in a certain phase to avoid formation of a thick....... This mechanism is based on the formation of oxygen and hydrogen at the platinum/iridium electrode when the potential is above the dissociation potential of water (~ 1.23 V) and storage of these products interstitially in the outer layers of the platinum wire. This leads to "microexplosions" that detach fragments...

  11. Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope.

    Science.gov (United States)

    Cutler, Patrick J; Malik, Michael D; Liu, Sheng; Byars, Jason M; Lidke, Diane S; Lidke, Keith A

    2013-01-01

    Many cellular signaling processes are initiated by dimerization or oligomerization of membrane proteins. However, since the spatial scale of these interactions is below the diffraction limit of the light microscope, the dynamics of these interactions have been difficult to study on living cells. We have developed a novel high-speed hyperspectral microscope (HSM) to perform single particle tracking of up to 8 spectrally distinct species of quantum dots (QDs) at 27 frames per second. The distinct emission spectra of the QDs allows localization with ∼10 nm precision even when the probes are clustered at spatial scales below the diffraction limit. The capabilities of the HSM are demonstrated here by application of multi-color single particle tracking to observe membrane protein behavior, including: 1) dynamic formation and dissociation of Epidermal Growth Factor Receptor dimers; 2) resolving antigen induced aggregation of the high affinity IgE receptor, FcεR1; 3) four color QD tracking while simultaneously visualizing GFP-actin; and 4) high-density tracking for fast diffusion mapping.

  12. Novel low-dose imaging technique for characterizing atomic structures through scanning transmission electron microscope

    Science.gov (United States)

    Su, Chia-Ping; Syu, Wei-Jhe; Hsiao, Chien-Nan; Lai, Ping-Shan; Chen, Chien-Chun

    2017-08-01

    To investigate dislocations or heterostructures across interfaces is now of great interest to condensed matter and materials scientists. With the advances in aberration-corrected electron optics, the scanning transmission electron microscope has demonstrated its excellent capability of characterizing atomic structures within nanomaterials, and well-resolved atomic-resolution images can be obtained through long-exposure data acquisition. However, the sample drifting, carbon contamination, and radiation damage hinder further analysis, such as deriving three-dimensional (3D) structures from a series of images. In this study, a method for obtaining atomic-resolution images with significantly reduced exposure time was developed, using which an original high-resolution image with approximately one tenth the electron dose can be obtained by combining a fast-scan high-magnification image and a slow-scan low-magnification image. The feasibility of obtaining 3D atomic structures using the proposed approach was demonstrated through multislice simulation. Finally, the feasibility and accuracy of image restoration were experimentally verified. This general method cannot only apply to electron microscopy but also benefit to image radiation-sensitive materials using various light sources.

  13. Application of scanning Kelvin probe microscopy for the electrical characterization of microcrystalline silicon for photovoltaics

    International Nuclear Information System (INIS)

    Breymesser, A.

    2000-05-01

    In the last years microcrystalline silicon thin films have attracted great attention as a new photovoltaic material. With this material it is possible to combine simple and cheap low temperature deposition techniques known from amorphous silicon with the long-term stability of the photovoltaic performance like in bulk crystalline silicon solar cells. The critical point is the deposition procedure with numerous tunable parameters influencing the quality and character of the produced diode structures. Additionally there is a great uncertainty about unintentionally incorporated defects, which is not affected by the deposition parameters. Extended investigation of the material, diode and solar cell characteristics is essential in order to correlate the impact of deposition conditions with the quality of the devices. The situation is complicated due to the anisotropic and inhomogeneous character of microcrystalline silicon. Scanning Kelvin probe microscopy (SKPM) is a work function measurement method based on a scanning force microscope (SFM) and a modified Kelvin probe technique. Due to the excellent lateral resolution of the SFM work function measurements with resolutions far below the micrometer level can be carried out. Applied on doped microcrystalline silicon structures it is possible to visualize the position of the Fermi level within the band gap and the influence of the deposition conditions on it. Within this work a SKPM based on a commercially available SFM was constructed and built. Great effort was concentrated on the characterization of the SKPM experiment. On the basis of an extended knowledge about the performance investigations concentrated on cross sections of microcrystalline silicon diode structures produced by hot-wire chemical vapor deposition (HW-CVD). A pin structure for the diodes was chosen due to the low diffusion lengths within this rather defective material. The evolution of the built-in electric drift field within the intrinsic absorber is

  14. A fast spatial scanning combination emissive and mach probe for edge plasma diagnosis

    International Nuclear Information System (INIS)

    Lehmer, R.D.; LaBombard, B.; Conn, R.W.

    1989-04-01

    A fast spatially scanning emissive and mach probe has been developed for the measurement of plasma profiles in the PISCES facility at UCLA. A pneumatic cylinder is used to drive a multiple tip probe along a 15cm stroke in less than 400msec, giving single shot profiles while limiting power deposition to the probe. A differentially pumped sliding O-ring seal allows the probe to be moved between shots to infer two and three dimensional profiles. The probe system has been used to investigate the plasma potential, density, and parallel mach number profiles of the presheath induced by a wall surface and scrape-off-layer profile modifications in biased limiter simulation experiments. Details of the hardware, data acquisition electronics, and tests of probe reliability are discussed. 30 refs., 24 figs

  15. Dancing the tight rope on the nanoscale--Calibrating a heat flux sensor of a scanning thermal microscope.

    Science.gov (United States)

    Kloppstech, K; Könne, N; Worbes, L; Hellmann, D; Kittel, A

    2015-11-01

    We report on a precise in situ procedure to calibrate the heat flux sensor of a near-field scanning thermal microscope. This sensitive thermal measurement is based on 1ω modulation technique and utilizes a hot wire method to build an accessible and controllable heat reservoir. This reservoir is coupled thermally by near-field interactions to our probe. Thus, the sensor's conversion relation V(th)(Q(GS)*) can be precisely determined. V(th) is the thermopower generated in the sensor's coaxial thermocouple and Q(GS)* is the thermal flux from reservoir through the sensor. We analyze our method with Gaussian error calculus with an error estimate on all involved quantities. The overall relative uncertainty of the calibration procedure is evaluated to be about 8% for the measured conversion constant, i.e., (2.40 ± 0.19) μV/μW. Furthermore, we determine the sensor's thermal resistance to be about 0.21 K/μW and find the thermal resistance of the near-field mediated coupling at a distance between calibration standard and sensor of about 250 pm to be 53 K/μW.

  16. A Fresh Twist on The Electron Microscope: Probing Broken Symmetries at a New Level

    Science.gov (United States)

    Idrobo, Juan Carlos

    The introduction of aberration-correction in scanning transmission electron microscopy (STEM) has allowed the realization of Richard Feynman's long sought dream, atom-by-atom structural and elemental identification of materials by simply looking ``at the thing.'' Until now, the goal of aberration-correction in STEM has been to produce the smallest possible electron probes, which essentially corresponds to a near constant phase across the probe. Phases increase the size of electron probes and result in images and spectra with a lower spatial resolution. In this talk, calculations will be presented showing that aberrations in lenses are intrinsic generators of angular momentum, and that phases introduced in atomic-size electron probes can actually be beneficial when studying the symmetry of materials. In particular, examples of mapping magnetic ordering of materials with atomic size electron probes will be shown. Magnetic dichroism is one of the new frontiers where aberration-correction STEM can have a significant impact, and reveal information that is physically out of reach in X-ray and neutron synchrotrons. Current and future limitations in the experiments and requirements to reveal the magnetic moment (orbital and spin), charge ordering, crystal field splitting, spin-orbit-coupling, optical dichroism, and other physical phenomena associated with broken symmetries will be discussed. This research was supported by the Center for Nanophase Materials Sciences (CNMS), which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Collaborators: J. Rusz, J. Spiegelberg, M.A. McGuire, C.T. Symons, R.R. Vatsavai, C. Cantoni and A.R. Lupini.

  17. Determination of the sequence of intersecting lines using Focused Ion Beam/Scanning Electron Microscope.

    Science.gov (United States)

    Kim, Jiye; Kim, MinJung; An, JinWook; Kim, Yunje

    2016-05-01

    The aim of this study was to verify that the combination of focused ion beam (FIB) and scanning electron microscope/energy-dispersive X-ray (SEM/EDX) could be applied to determine the sequence of line crossings. The samples were transferred into FIB/SEM for FIB milling and an imaging operation. EDX was able to explore the chemical components and the corresponding elemental distribution in the intersection. The technique was successful in determining the sequence of heterogeneous line intersections produced using gel pens and red sealing ink with highest success rate (100% correctness). These observations show that the FIB/SEM was the appropriate instrument for an overall examination of document. © 2016 American Academy of Forensic Sciences.

  18. Correlative Fluorescence and Electron Microscopy in 3D-Scanning Electron Microscope Perspective.

    Science.gov (United States)

    Franks, Jonathan; Wallace, Callen T; Shibata, Masateru; Suga, Mitsuo; Erdman, Natasha; Stolz, Donna B; Watkins, Simon C

    2017-04-03

    The ability to correlate fluorescence microscopy (FM) and electron microscopy (EM) data obtained on biological (cell and tissue) specimens is essential to bridge the resolution gap between the data obtained by these different imaging techniques. In the past such correlations were limited to either EM navigation in two dimensions to the locations previously highlighted by fluorescence markers, or subsequent high-resolution acquisition of tomographic information using a TEM. We present a novel approach whereby a sample previously investigated by FM is embedded and subjected to sequential mechanical polishing and backscatter imaging by scanning electron microscope. The resulting three dimensional EM tomogram of the sample can be directly correlated to the FM data. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  19. Specimen-thickness effects on transmission Kikuchi patterns in the scanning electron microscope.

    Science.gov (United States)

    Rice, K P; Keller, R R; Stoykovich, M P

    2014-06-01

    We report the effects of varying specimen thickness on the generation of transmission Kikuchi patterns in the scanning electron microscope. Diffraction patterns sufficient for automated indexing were observed from films spanning nearly three orders of magnitude in thickness in several materials, from 5 nm of hafnium dioxide to 3 μm of aluminum, corresponding to a mass-thickness range of ~5 to 810 μg cm(-2) . The scattering events that are most likely to be detected in transmission are shown to be very near the exit surface of the films. The energies, spatial distribution and trajectories of the electrons that are transmitted through the film and are collected by the detector are predicted using Monte Carlo simulations. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  20. Revealing the 1 nm/s extensibility of nanoscale amorphous carbon in a scanning electron microscope.

    Science.gov (United States)

    Zhang, Wei

    2013-01-01

    In an ultra-high vacuum scanning electron microscope, the edged branches of amorphous carbon film (∼10 nm thickness) can be continuously extended with an eye-identifying speed (on the order of ∼1 nm/s) under electron beam. Such unusual mobility of amorphous carbon may be associated with deformation promoted by the electric field, which resulted from an inner secondary electron potential difference from the main trunk of carbon film to the tip end of branches under electron beam. This result demonstrates importance of applying electrical effects to modify properties of carbon materials. It may have positive implications to explore some amorphous carbon as electron field emission device. © Wiley Periodicals, Inc.

  1. A simple way to obtain backscattered electron images in a scanning transmission electron microscope.

    Science.gov (United States)

    Tsuruta, Hiroki; Tanaka, Shigeyasu; Tanji, Takayoshi; Morita, Chiaki

    2014-08-01

    We have fabricated a simple detector for backscattered electrons (BSEs) and incorporated the detector into a scanning transmission electron microscope (STEM) sample holder. Our detector was made from a 4-mm(2) Si chip. The fabrication procedure was easy, and similar to a standard transmission electron microscopy (TEM) sample thinning process based on ion milling. A TEM grid containing particle objects was fixed to the detector with a silver paste. Observations were carried out using samples of Au and latex particles at 75 and 200 kV. Such a detector provides an easy way to obtain BSE images in an STEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS).

    Science.gov (United States)

    Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y

    2011-01-01

    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.

  3. Comparative evaluation of enamel abrasivity by toothbrush and velcro: An in vitro scanning electron microscope study.

    Science.gov (United States)

    Ojha, Saroj Kumar; Javdekar, Sadashiv Bhaskar; Dhir, Sangeeta

    2015-01-01

    Plaque control has been shown to be pivotal in maintaining the optimal periodontal health. Mechanical plaque control is the most popular option for establishing the optimal oral health. Toothbrushes have been the novel tool for mechanical cleansing. However, the abrasive potential of the toothbrushes on the enamel surface is an area in gray. The aim of this in vitro study is to evaluate the abrasivity of the toothbrush versus the velcro fasteners. The mounted teeth of both the groups were subjected to abrasion test, and the tooth surfaces were observed for the possible abrasions from the oscillating strokes (toothbrush) and frictional contacts (hook and loop velcro) and examined under the scanning electron microscope. Comparative assessment of both velcro (hook and loop) and toothbrush bristles did not reveal any evidence of abrasion on the tooth specimens. Veclro fasteners are safe and qualitatively at par to the manual toothbrush for their efficacy and efficiency in teeth cleansing.

  4. Fundamentals of overlay measurement and inspection using scanning electron-microscope

    Science.gov (United States)

    Kato, T.; Okagawa, Y.; Inoue, O.; Arai, K.; Yamaguchi, S.

    2013-04-01

    Scanning electron-microscope (SEM) has been successfully applied to CD measurement as promising tools for qualifying and controlling quality of semiconductor devices in in-line manufacturing process since 1985. Furthermore SEM is proposed to be applied to in-die overlay monitor in the local area which is too small to be measured by optical overlay measurement tools any more, when the overlay control limit is going to be stringent and have un-ignorable dependence on device pattern layout, in-die location, and singular locations in wafer edge, etc. In this paper, we proposed new overlay measurement and inspection system to make an effective use of in-line SEM image, in consideration of trade-off between measurement uncertainty and measurement pattern density in each SEM conditions. In parallel, we make it clear that the best hybrid overlay metrology is in considering each tool's technology portfolio.

  5. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    Science.gov (United States)

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  6. A novel and compact nanoindentation device for in situ nanoindentation tests inside the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2012-03-01

    Full Text Available In situ nanomechanical tests provide a unique insight into mechanical behaviors of materials, such as fracture onset and crack propagation, shear band formation and so on. This paper presents a novel in situ nanoindentation device with dimensions of 103mm×74mm×60mm. Integrating the stepper motor, the piezoelectric actuator and the flexure hinge, the device can realize coarse adjustment of the specimen and precision loading and unloading of the indenter automatically. A novel indenter holder was designed to guarantee that the indenter penetrates into and withdraws from the specimen surface vertically. Closed-loop control of the indentation process was established to solve the problem of nonlinearity of the piezoelectric actuator and to enrich the loading modes. The in situ indentation test of Indium Phosphide (InP inside the scanning electron microscope (SEM was carried out and the experimental result indicates the feasibility of the developed device.

  7. Formation of Three-Way Scanning Electron Microscope Moiré on Micro/Nanostructures

    Directory of Open Access Journals (Sweden)

    Qinghua Wang

    2014-01-01

    Full Text Available Three-way scanning electron microscope (SEM moiré was first generated using a designed three-way electron beam (EB in an SEM. The spot-type three-way SEM moiré comes from the interference between the three-way EB and the specimen grating in which the periodic cells are arranged in a triangular manner. The deformation and the structure information of the specimen grating in three directions can be simultaneously obtained from the three-way SEM moiré. The design considerations of the three-way EB were discussed. As an illustration, the three-way SEM moiré spots produced on a silicon slide were presented. The proposed three-way SEM moiré method is expected to characterize micro/nanostructures in triangular or hexagonal arrangements in three directions at the same time.

  8. Point-spread functions for backscattered imaging in the scanning electron microscope

    Science.gov (United States)

    Hennig, Philipp; Denk, Winfried

    2007-12-01

    One knows the imaging system's properties are central to the correct interpretation of any image. In a scanning electron microscope regions of different composition generally interact in a highly nonlinear way during signal generation. Using Monte Carlo simulations we found that in resin-embedded, heavy metal-stained biological specimens staining is sufficiently dilute to allow an approximately linear treatment. We then mapped point-spread functions for backscattered-electron contrast, for primary energies of 3 and 7 keV and for different detector specifications. The point-spread functions are surprisingly well confined (both laterally and in depth) compared even to the distribution of only those scattered electrons that leave the sample again.

  9. Enhanced contrast separation in scanning electron microscopes via a suspended-thin sample approach.

    Science.gov (United States)

    Ji, Yuan; Wang, Li; Guo, Zhenxi; Wei, Bin; Zhao, Jie; Wang, Xiaodong; Zhang, Yinqi; Sui, Manling; Han, Xiaodong

    2014-11-01

    A suspended-thin-sample (STS) approach for signal selection and contrast separation is developed in scanning electron microscopes with commonly used primary beam energies and traditional detectors. Topography contrast, electron channeling contrast and composition contrast are separated and largely enhanced from suspended thin samples of several hundred nanometers in thickness, which is less than the escape depth of backscattered electrons. This imaging technique enables to detect relatively pure secondary electron and elastic backscattered electron singles, whereas suppress multiple inelastic scattering effects. The provided contrast features are different from those of bulk samples, which are largely mixed with inelastic scattering effects. The STS imaging concept and method could be expected to have more applications in distinguishing materials of nanostructures, multilayers, compounds and composites, as well as in SEM-based electron backscatter diffraction, cathodoluminesence, and x-ray microanalysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Design of a cathodoluminescence image generator using a Raspberry Pi coupled to a scanning electron microscope

    Science.gov (United States)

    Benítez, Alfredo; Santiago, Ulises; Sanchez, John E.; Ponce, Arturo

    2018-01-01

    In this work, an innovative cathodoluminescence (CL) system is coupled to a scanning electron microscope and synchronized with a Raspberry Pi computer integrated with an innovative processing signal. The post-processing signal is based on a Python algorithm that correlates the CL and secondary electron (SE) images with a precise dwell time correction. For CL imaging, the emission signal is collected through an optical fiber and transduced to an electrical signal via a photomultiplier tube (PMT). CL Images are registered in a panchromatic mode and can be filtered using a monochromator connected between the optical fiber and the PMT to produce monochromatic CL images. The designed system has been employed to study ZnO samples prepared by electrical arc discharge and microwave methods. CL images are compared with SE images and chemical elemental mapping images to correlate the emission regions of the sample.

  11. Design of a cathodoluminescence image generator using a Raspberry Pi coupled to a scanning electron microscope.

    Science.gov (United States)

    Benítez, Alfredo; Santiago, Ulises; Sanchez, John E; Ponce, Arturo

    2018-01-01

    In this work, an innovative cathodoluminescence (CL) system is coupled to a scanning electron microscope and synchronized with a Raspberry Pi computer integrated with an innovative processing signal. The post-processing signal is based on a Python algorithm that correlates the CL and secondary electron (SE) images with a precise dwell time correction. For CL imaging, the emission signal is collected through an optical fiber and transduced to an electrical signal via a photomultiplier tube (PMT). CL Images are registered in a panchromatic mode and can be filtered using a monochromator connected between the optical fiber and the PMT to produce monochromatic CL images. The designed system has been employed to study ZnO samples prepared by electrical arc discharge and microwave methods. CL images are compared with SE images and chemical elemental mapping images to correlate the emission regions of the sample.

  12. Scanning Electron Microscopic Studies of Microwave Sintered Al-SiC Nanocomposites and Their Properties

    Directory of Open Access Journals (Sweden)

    M. A. Himyan

    2018-01-01

    Full Text Available Al-metal matrix composites (AMMCs reinforced with diverse volume fraction of SiC nanoparticles were synthesized using microwave sintering process. The effects of the reinforcing SiC particles on physical, microstructure, mechanical, and electrical properties were studied. The phase, microstructural, and surface analyses of the composites were systematically conducted using X-ray diffraction (XRD, scanning electron microscope (SEM, and surface profilometer techniques, respectively. The microstructural examination revealed the homogeneous distribution of SiC particles in the Al matrix. Microhardness and compressive strength of nanocomposites were found to be increasing with the increasing volume fraction of SiC particles. Electrical conductivity of the nanocomposites decreases with increasing the SiC content.

  13. Advances in imaging and electron physics the scanning transmission electron microscope

    CERN Document Server

    Hawkes, Peter W

    2009-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.  This particular volume presents several timely articles on the scanning transmission electron microscope. Updated with contributions from leading international scholars and industry experts Discusses hot topic areas and presents current and future research trends Provides an invaluable reference and guide for physicists, engineers and mathematicians.

  14. Scanning Electron Microscopic Studies of the Pecten Oculi in the Quail (Coturnix coturnix japonica

    Directory of Open Access Journals (Sweden)

    Aris F. Pourlis

    2013-01-01

    Full Text Available The main purpose of this study is to extend the microscopic investigations of the pecten oculi in the quail in order to add some information on the unresolved functional anatomy of this unique avian organ. The pecten oculi of the quail was studied by scanning electron microscopy. Eighteen- to-twenty two highly vascularised accordion-like folds were joined apically by a heavily pigmented bridge of tissue, which holds the pecten in a fanlike shape, widest at the base. The structure of the double layered limiting membrane was recorded. The presence of hyalocytes with macrophage-like appearance was illustrated. It is assumed that the pecten oculi of the quail resembles that of the chicken. Illustrated morphological features of this species may add information on the active physiological role of the pecten. But still, the functional significance of this organ is a matter of controversies.

  15. Atmospheric scanning electron microscope system with an open sample chamber: Configuration and applications

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Hidetoshi, E-mail: hinishiy@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Koizumi, Mitsuru, E-mail: koizumi@jeol.co.jp [JEOL Technics Ltd., 2-6-38 Musashino, Akishima, Tokyo 196-0021 (Japan); Ogawa, Koji, E-mail: kogawa@jeol.co.jp [JEOL Technics Ltd., 2-6-38 Musashino, Akishima, Tokyo 196-0021 (Japan); Kitamura, Shinich, E-mail: kitamura@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Konyuba, Yuji, E-mail: ykonyuub@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Watanabe, Yoshiyuki, E-mail: watanabeyoshiy@pref.yamagata.jp [Yamagata Research Institute of Technology, 2-2-1, Matsuei, Yamagata 990-2473 (Japan); Ohbayashi, Norihiko, E-mail: n.ohbayashi@m.tohoku.ac.jp [Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Fukuda, Mitsunori, E-mail: nori@m.tohoku.ac.jp [Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Suga, Mitsuo, E-mail: msuga@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-4, Umezono, Tsukuba 305-8568 (Japan)

    2014-12-15

    An atmospheric scanning electron microscope (ASEM) with an open sample chamber and optical microscope (OM) is described and recent developments are reported. In this ClairScope system, the base of the open sample dish is sealed to the top of the inverted SEM column, allowing the liquid-immersed sample to be observed by OM from above and by SEM from below. The optical axes of the two microscopes are aligned, ensuring that the same sample areas are imaged to realize quasi-simultaneous correlative microscopy in solution. For example, the cathodoluminescence of ZnO particles was directly demonstrated. The improved system has (i) a fully motorized sample stage, (ii) a column protection system in the case of accidental window breakage, and (iii) an OM/SEM operation system controlled by a graphical user interface. The open sample chamber allows the external administration of reagents during sample observation. We monitored the influence of added NaCl on the random motion of silica particles in liquid. Further, using fluorescence as a transfection marker, the effect of small interfering RNA-mediated knockdown of endogenous Varp on Tyrp1 trafficking in melanocytes was examined. A temperature-regulated titanium ASEM dish allowed the dynamic observation of colloidal silver nanoparticles as they were heated to 240 °C and sintered. - Highlights: • Atmospheric SEM (ASEM) allows observation of samples in liquid or gas. • Open sample chamber allows in situ monitoring of evaporation and sintering processes. • in situ monitoring of processes during reagent administration is also accomplished. • Protection system for film breakage is developed for ASEM. • Usability of ASEM has been improved significantly including GUI control.

  16. Experimental evaluation of environmental scanning electron microscopes at high chamber pressure.

    Science.gov (United States)

    Fitzek, H; Schroettner, H; Wagner, J; Hofer, F; Rattenberger, J

    2015-11-01

    In environmental scanning electron microscopy (ESEM) high pressure applications have become increasingly important. Wet or biological samples can be investigated without time-consuming sample preparation and potential artefacts from this preparation can be neglected. Unfortunately, the signal-to-noise ratio strongly decreases with increasing chamber pressure. To evaluate the high pressure performance of ESEM and to compare different electron microscopes, information about spatial resolution and detector type is not enough. On the one hand, the scattering of the primary electron beam increases, which vanishes the contrast in images; and on the other hand, the secondary electrons (SE) signal amplification decreases. The stagnation gas thickness (effective distance the beam has to travel through the imaging gas) as well as the SE detection system depend on the microscope and for a complete and serious evaluation of an ESEM or low vacuum SEM it is necessary to specify these two parameters. A method is presented to determine the fraction of scattered and unscattered electrons and to calculate the stagnation gas thickness (θ). To evaluate the high pressure performance of the SE detection system, a method is presented that allows for an analysis of a single image and the calculation of the signal-to-noise ratio of this image. All investigations are performed on an FEI ESEM Quanta 600 (field emission gun) and an FEI ESEM Quanta 200 (thermionic gun). These methods and measurements should represent opportunities for evaluating the high pressure performance of an ESEM. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  17. Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope.

    Science.gov (United States)

    Johnston-Peck, Aaron C; DuChene, Joseph S; Roberts, Alan D; Wei, Wei David; Herzing, Andrew A

    2016-11-01

    Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO 2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. Published by Elsevier B.V.

  18. Attempt to assess the infiltration of enamel made with experimental preparation using a scanning electron microscope.

    Science.gov (United States)

    Skucha-Nowak, Małgorzata

    2015-01-01

    The resin infiltration technique, a minimally invasive method, involves the saturation, strengthening, and stabilization of demineralized enamel by a mixture of polymer resins without the need to use rotary tools or the risk of losing healthy tooth structures. To design and synthesize an experimental infiltrant with potential bacteriostatic properties.To compare the depth of infiltration of the designed experimental preparation with the infiltrant available in the market using a scanning electron microscope. Composition of the experimental infiltrant was established after analysis of 1H NMR spectra of the commercially available compounds that can penetrate pores of demineralized enamel. As the infiltrant should have bacteriostatic features by definition, an addition of 1% of monomer containing metronidazole was made. Thirty extracted human teeth were soaked in an acidic solution, which was to provide appropriate conditions for demineralization of enamel. Afterward, each tooth was divided along the coronal-root axis into two zones. One zone had experimental preparation applied to it (the test group), while the other had commercially available Icon (the control group). The teeth were dissected along the long axis and described above underwent initial observation with use of a Hitachi S-4200 scanning electron microscope. It was found that all samples contained only oxygen and carbon, regardless of the concentration of additions introduced into them. The occurrence of carbon is partially because it is a component of the preparation in question and partially because of sputtering of the sample with it. Hydrogen is also a component of the preparation, as a result of its phase composition; however, it cannot be detected by the EDS method. SEM, in combination with X-ray microanalysis, does not allow one to explicitly assess the depth of penetration of infiltration preparations into enamel.In order to assess the depth of penetration of infiltration preparations with use of

  19. Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    Science.gov (United States)

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-11-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Three-dimensional phase-contrast X-ray microtomography with scanning-imaging X-ray microscope optics.

    Science.gov (United States)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-09-01

    A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning-imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown.

  1. Analytical electron microscope based on scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy to realize highly sensitive elemental imaging especially for light elements

    International Nuclear Information System (INIS)

    Koguchi, Masanari; Tsuneta, Ruriko; Anan, Yoshihiro; Nakamae, Koji

    2017-01-01

    An analytical electron microscope based on the scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy (STEM-WDX) to realize highly sensitive elemental imaging especially for light elements has been developed. In this study, a large-solid-angle multi-capillary x-rays lens with a focal length of 5 mm, long-time data acquisition (e.g. longer than 26 h), and a drift-free system made it possible to visualize boron-dopant images in a Si substrate at a detection limit of 0.2 atomic percent. (paper)

  2. Artifact mitigation of ptychography integrated with on-the-fly scanning probe microscopy

    Science.gov (United States)

    Huang, Xiaojing; Yan, Hanfei; Ge, Mingyuan; Öztürk, Hande; Nazaretski, Evgeny; Robinson, Ian K.; Chu, Yong S.

    2017-07-01

    We report our experiences with conducting ptychography simultaneously with the X-ray fluorescence measurement using the on-the-fly mode for efficient multi-modality imaging. We demonstrate that the periodic artifact inherent to the raster scan pattern can be mitigated using a sufficiently fine scan step size to provide an overlap ratio of >70%. This allows us to obtain transmitted phase contrast images with enhanced spatial resolution from ptychography while maintaining the fluorescence imaging with continuous-motion scans on pixelated grids. This capability will greatly improve the competence and throughput of scanning probe X-ray microscopy.

  3. The scanning probe microscopy study of thin polymer films

    International Nuclear Information System (INIS)

    Harron, H.R.

    1995-08-01

    Scanning Tunnelling Microscopy and Atomic Force Microscopy were used systematically to investigate the morphology, uniformity, coverage and structure of the thin films of several commercially important insulating polymers. Despite the poorly conducting nature of the polymer sample, detailed and convincing images of this class of materials were achieved by STM without the need to coat the samples with a conductive layer. The polymer regions of the sample were further investigated by the use of surface profiling with 'line scans'. The fluctuations of the amplitude therein enabled important film characteristics to be assessed. An environmental stage was designed for the STM to enable the effect of various vapour-sample interactions to be observed during the imaging process. Using the data from the environmental stage in addition to the surface profiling with line scans, an insight into the conduction mechanism and image interpretation was gained. Results suggest that the water content of the sample and its immediate surroundings is an important factor in achieving reliable STM images in air. The initial study culminated with the observation by STM alone of the plasticizer induced crystallization of uncoated PC thin films. The 'amorphous' PC films were observed before crystallization and small ordered regions in roughly the same proportion as that predicted by diffraction studies [Prietschk, 1959 and Schnell, 1964] were imaged. This has never been observed by a microscopy technique. Furthermore, images of the crystalline film contained elongated units that were attributed to the lamellae formations that form the basic building blocks of polymer spherulites. The study continued with the AFM imaging of the growth of crystalline entities in a PC film, without the need for harsh sample treatment or metal coating. A method of casting and crystallizing the films was developed such that the growth was predominantly in two dimensions and consequently ideal for observation by

  4. Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes

    International Nuclear Information System (INIS)

    Riener, Christian K.; Kienberger, Ferry; Hahn, Christoph D.; Buchinger, Gerhard M.; Egwim, Innocent O.C.; Haselgruebler, Thomas; Ebner, Andreas; Romanin, Christoph; Klampfl, Christian; Lackner, Bernd; Prinz, Heino; Blaas, Dieter; Hinterdorfer, Peter; Gruber, Hermann J.

    2003-01-01

    Single molecule recognition force microscopy (SMRFM) is a versatile atomic force microscopy (AFM) method to probe specific interactions of cognitive molecules on the single molecule level. It allows insights to be gained into interaction potentials and kinetic barriers and is capable of mapping interaction sites with nm positional accuracy. These applications require a ligand to be attached to the AFM tip, preferably by a distensible poly(ethylene glycol) (PEG) chain between the measuring tip and the ligand molecule. The PEG chain greatly facilitates specific binding of the ligand to immobile receptor sites on the sample surface. The present study contributes to tip-PEG-ligand tethering in three ways: (i) a convenient synthetic route was found to prepare NH 2 -PEG-COOH which is the key intermediate for long heterobifunctional crosslinkers; (ii) a variety of heterobifunctional PEG derivatives for tip-PEG-ligand linking were prepared from NH 2 -PEG-COOH; (iii) in particular, a new PEG crosslinker with one thiol-reactive end and one terminal nitrilotriacetic acid (NTA) group was synthesized and successfully used to tether His 6 -tagged protein molecules to AFM tips via noncovalent NTA-Ni 2+ -His 6 bridges. The new crosslinker was applied to link a recombinant His 6 -tagged fragment of the very-low density lipoprotein receptor to the AFM tip whereupon specific docking to the capsid of human rhinovirus particles was observed by force microscopy. In a parallel study, the specific interaction of the small GTPase Ran with the nuclear import receptor importin β1 was studied in detail by SMRFM, using the new crosslinker to link His 6 -tagged Ran to the measuring tip [Nat. Struct. Biol. (2003), 10, 553-557

  5. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

    KAUST Repository

    Govyadinov, Alexander A.

    2017-07-14

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  6. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    International Nuclear Information System (INIS)

    Wagner, A.

    1978-08-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min -1 can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected

  7. Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope.

    Science.gov (United States)

    den Engelsen, Daniel; Harris, Paul G; Ireland, Terry G; Fern, George R; Silver, Jack

    2015-10-01

    Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Autoregressive linear least square single scanning electron microscope image signal-to-noise ratio estimation.

    Science.gov (United States)

    Sim, Kok Swee; NorHisham, Syafiq

    2016-11-01

    A technique based on linear Least Squares Regression (LSR) model is applied to estimate signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images. In order to test the accuracy of this technique on SNR estimation, a number of SEM images are initially corrupted with white noise. The autocorrelation function (ACF) of the original and the corrupted SEM images are formed to serve as the reference point to estimate the SNR value of the corrupted image. The LSR technique is then compared with the previous three existing techniques known as nearest neighbourhood, first-order interpolation, and the combination of both nearest neighborhood and first-order interpolation. The actual and the estimated SNR values of all these techniques are then calculated for comparison purpose. It is shown that the LSR technique is able to attain the highest accuracy compared to the other three existing techniques as the absolute difference between the actual and the estimated SNR value is relatively small. SCANNING 38:771-782, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  9. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    Science.gov (United States)

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  10. Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope

    International Nuclear Information System (INIS)

    Engelsen, Daniel den; Harris, Paul G.; Ireland, Terry G.; Fern, George R.; Silver, Jack

    2015-01-01

    Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. - Highlights: • Contrast enhancement are observed in secondary electron and cathodoluminescent images of phosphor particles sitting on top of others. • Backscattered electrons largely explain the observed contrast enhancement. • After glow effects in CL-micrographs of phosphors enable the determination of decay times. • Phosphor saturation can be used to determine the decay time of individual spectral transitions

  11. Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Engelsen, Daniel den; Harris, Paul G.; Ireland, Terry G., E-mail: terry.ireland@brunel.ac.uk; Fern, George R.; Silver, Jack

    2015-10-15

    Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. - Highlights: • Contrast enhancement are observed in secondary electron and cathodoluminescent images of phosphor particles sitting on top of others. • Backscattered electrons largely explain the observed contrast enhancement. • After glow effects in CL-micrographs of phosphors enable the determination of decay times. • Phosphor saturation can be used to determine the decay time of individual spectral transitions.

  12. Effect of condensed water on scanning near-field optical microscope measurement

    International Nuclear Information System (INIS)

    Douas, M; Serena, P A; Marqués, M I

    2013-01-01

    The relevance of the scanning near-field optical microscope (SNOM), for near-field characterization, is often shaded by the appearance of artifacts, especially when geometrical characterization is intended. Artifacts are related to many features such as the feedback system or the scanning mode. For non-vacuum environmental conditions, artifact sources may be related to tip geometry and the pollutants attached, either on the tip or on the studied surfaces, altering the optical image. As an environmental element, water vapor could be treated as a source for artifacts, but could also be used as a tool for chemical characterization of hydrophilic patches. Spontaneous meniscus formation between hydrophilic surfaces, such as the tip and the sample, may guide light from the tip to the sample, enhancing the transmitted signal. This study focuses on the effects that water condensation at the nanoscale has on the signals achieved by SNOM, combining two computational methods (Monte Carlo and finite difference time domain) in order to deal with light propagation through heterogeneous media and water condensation. (paper)

  13. Turning a normal microscope into a super-resolution instrument using a scanning microlens array.

    Science.gov (United States)

    Huszka, Gergely; Gijs, Martin A M

    2018-01-12

    We report dielectric microsphere array-based optical super-resolution microscopy. A dielectric microsphere that is placed on a sample is known to generate a virtual image with resolution better than the optical diffraction limit. However, a limitation of such type of super-resolution microscopy is the restricted field-of-view, essentially limited to the central area of the microsphere-generated image. We overcame this limitation by scanning a micro-fabricated array of ordered microspheres over the sample using a customized algorithm that moved step-by-step a motorized stage, meanwhile the microscope-mounted camera was taking pictures at every step. Finally, we stitched together the extracted central parts of the virtual images that showed super-resolution into a mosaic image. We demonstrated 130 nm lateral resolution (~λ/4) and 5 × 10 5 µm 2 scanned surface area using a two by one array of barium titanate glass microspheres in oil-immersion environment. Our findings may serve as a basis for widespread applications of affordable optical super-resolution microscopy.

  14. A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Caswell, T.A.; Ercius, P.; Tate, M.W.; Ercan, A.; Gruner, S.M.; Muller, D.A.

    2009-01-01

    A scanning transmission electron microscope (STEM) produces a convergent beam electron diffraction pattern at each position of a raster scan with a focused electron beam, but recording this information poses major challenges for gathering and storing such large data sets in a timely manner and with sufficient dynamic range. To investigate the crystalline structure of materials, a 16x16 analog pixel array detector (PAD) is used to replace the traditional detectors and retain the diffraction information at every STEM raster position. The PAD, unlike a charge-coupled device (CCD) or photomultiplier tube (PMT), directly images 120-200 keV electrons with relatively little radiation damage, exhibits no afterglow and limits crosstalk between adjacent pixels. Traditional STEM imaging modes can still be performed by the PAD with a 1.1 kHz frame rate, which allows post-acquisition control over imaging conditions and enables novel imaging techniques based on the retained crystalline information. Techniques for rapid, semi-automatic crystal grain segmentation with sub-nanometer resolution are described using cross-correlation, sub-region integration, and other post-processing methods.

  15. Examination of Scanning Electron Microscope and Computed Tomography Images of PICA

    Science.gov (United States)

    Lawson, John W.; Stackpoole, Margaret M.; Shklover, Valery

    2010-01-01

    Micrographs of PICA (Phenolic Impregnated Carbon Ablator) taken using a Scanning Electron Microscope (SEM) and 3D images taken with a Computed Tomography (CT) system are examined. PICA is a carbon fiber based composite (Fiberform ) with a phenolic polymer matrix. The micrographs are taken at different surface depths and at different magnifications in a sample after arc jet testing and show different levels of oxidative removal of the charred matrix (Figs 1 though 13). CT scans, courtesy of Xradia, Inc. of Concord CA, were captured for samples of virgin PICA, charred PICA and raw Fiberform (Fig. 14). We use these images to calculate the thermal conductivity (TC) of these materials using correlation function (CF) methods. CF methods give a mathematical description of how one material is embedded in another and is thus ideally suited for modeling composites like PICA. We will evaluate how the TC of the materials changes as a function of surface depth. This work is in collaboration with ETH-Zurich, which has expertise in high temperature materials and TC modeling (including CF methods).

  16. Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter.

    Science.gov (United States)

    Munce, Nigel R; Mariampillai, Adrian; Standish, Beau A; Pop, Mihaela; Anderson, Kevan J; Liu, George Y; Luk, Tim; Courtney, Brian K; Wright, Graham A; Vitkin, I Alex; Yang, Victor X D

    2008-04-01

    A novel flexible scanning optical probe is constructed with a finely etched optical fiber strung through a platinum coil in the lumen of a dissipative polymer. The packaged probe is 2.2 mm in diameter with a rigid length of 6mm when using a ball lens or 12 mm when scanning the fiber proximal to a gradient-index (GRIN) lens. Driven by constant high voltage (1-3 kV) at low current (probe oscillates to provide wide forward-viewing angle (13 degrees and 33 degrees with ball and GRIN lens designs, respectively) and high-frame-rate (10-140 fps) operation. Motion of the probe tip is observed with a high-speed camera and compared with theory. Optical coherence tomography (OCT) imaging with the probe is demonstrated with a wavelength-swept source laser. Images of an IR card as well as in vivo Doppler OCT images of a tadpole heart are presented. This optomechanical design offers a simple, inexpensive method to obtain a high-frame-rate forward-viewing scanning probe.

  17. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    International Nuclear Information System (INIS)

    Weis, Christoph D.

    2011-01-01

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  18. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Christoph D.

    2011-10-04

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  19. Non-scanning x-ray fluorescence microscope: application to real time micro-imaging

    International Nuclear Information System (INIS)

    Sakurai, K.; Eba, H.

    2000-01-01

    So far, x-ray fluorescence (XRF) micro-imaging has been performed by a 2D positional scan of a sample against a collimated beam. Obtaining information on specific elements in a nondestructive manner is an attractive prospect for many scientific applications. Furthermore, a synchrotron micro-beam can enhance the spatial resolution down to 0.1 μm. However, the total measuring time becomes quite long (a few hours to a half day), since one needs a number of scanning points in order to obtain a high-quality image. It is possible to obtain an x-ray image with 1 M pixels and with 20 μm resolution in a very short time of 20 sec - 3 min using a non-scanning XRF microscope, which is based on completely different concept. In the present report, we discuss the application of this technique to real time micro-imaging. The experiments were carried out at BL-4A, Photon Factory, Tsukuba, Japan. We employed a grazing-incidence arrangement to make primary x-rays illuminate the whole sample surface. We adopted parallel-beam optics and extremely-close-geometry in order to detect x-ray fluorescence with a CCD camera. The selective-excitation capability of tunable monochromatic synchrotron radiation is a feasible method for distinguishing the elements of interest. One can obtain an image of each element by differentiating the images obtained above and below the absorption edges of interest. The growth of metallic dendrites from a solution dropped on a substrate was studied successfully. Several different growth patterns, corresponding to concentration and other conditions for diffusion, were observed as x-ray images. Since the present technique requires only 40 sec for each shot, it is possible to record a growing process through repeated exposures like a movie. The authors would like to thank Prof. A. Iida (Photon Factory) for his valuable comments. (author)

  20. Final report: Mapping Interactions in Hybrid Systems with Active Scanning Probes

    Energy Technology Data Exchange (ETDEWEB)

    Berezovsky, Jesse [Case Western Reserve Univ., Cleveland, OH (United States)

    2017-09-29

    This project aimed to study and map interactions between components of hybrid nanodevices using a novel scanning probe approach. To enable this work, we initially constructed a flexible experimental apparatus allowing for simultaneous scanning probe and confocal optical microscopy measurements. This setup was first used for all-optical measurements of nanostructures, with the focus then shifting to hybrid devices in which single coherent electron spins are coupled to micron-scale ferromagnetic elements, which may prove useful for addressing single spins, enhanced sensing, or spin-wave-mediated coupling of spins for quantum information applications. A significant breakthrough was the realization that it is not necessary to fabricate a magnetic structure on a scanning probe – instead a ferromagnetic vortex core can act as an integrated, solid state, scanning probe. The core of the vortex produces a very strong, localized fringe field which can be used analogously to an MFM tip. Unlike a traditional MFM tip, however, the vortex core is scanned within an integrated device (eliminating drift), and can be moved on vastly faster timescales. This approach allows the detailed investigation of interactions between single spins and complex driven ferromagnetic dynamics.

  1. Compensating electrostatic forces by single-scan Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Ziegler, Dominik; Rychen, Joerg; Naujoks, Nicola; Stemmer, Andreas

    2007-01-01

    We describe a novel method of single-scan Kelvin probe force microscopy, operating simultaneously with amplitude-modulation distance control in ambient air. A separate Kelvin probe feedback control loop compensates for potential differences between tip and sample by minimizing electrostatic forces. As a result, electrostatically induced height errors in topography are automatically cancelled. To prevent crosstalk from topography or errors in distance control, the Kelvin probe feedback employs phase information resulting from a combination of mechanical and electrical excitation of the cantilever at its second flexural eigenmode. The feedback for amplitude-modulation distance control operates as usual close to the first eigenfrequency

  2. Characterization of photovoltage evolution of ZnO films using a scanning Kelvin probe system

    International Nuclear Information System (INIS)

    Li, W.; Wu, C.W.; Qin, W.G.; Wang, G.C.; Lu, S.Q.; Dong, X.J.; Dong, H.B.; Sun, Q.L.

    2009-01-01

    Work function (WF) and surface photovoltage evolution of films can be measured using the Kelvin probe technique, and further analysis of the photoelectronic behavior can provide information on the energy level structure. In this paper, a theoretical analysis to measure surface photovoltage using Kelvin probe technique is presented. Based on this analysis, the surface photovoltage and its time-resolved evolution process as well as the energy level structure of ZnO films are determined using a scanning Kelvin probe. The present study therefore provides a simple and practical methodology for the characterization of the electronic behavior of films.

  3. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope.

    Science.gov (United States)

    Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří

    2016-05-01

    This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A multipurpose hybrid conventional/scanning near-field optical microscope for applications in materials science and biology

    International Nuclear Information System (INIS)

    Longo, G; Girasole, M; Pompeo, G; Generosi, R; Luce, M; Cricenti, A

    2010-01-01

    A hybrid conventional/scanning near-field optical microscope is presented. The instrument is obtained coupling an Olympus IX-70 inverted optical microscope with a SNOM head, to combine the versatility and ease of use of the conventional microscope with the high-resolution and three-dimensional reconstruction achieved by the SNOM. The head can be run in shear or tapping mode and is optimized to characterize soft, biological samples including living cells in physiological environment by including the SNOM in a cylindrical chamber that insulates it from external noise, while maintaining a controlled temperature and atmosphere

  5. Fast photoacoustic imaging with a line scanning optical-acoustical resolution photoacoustic microscope (LS-OAR-PAM)

    Science.gov (United States)

    Nuster, Robert; Paltauf, Guenther

    2015-07-01

    We present the concept, the setup and a preliminary experiment using optical ultrasound detection with a CCD camera combined with focused line excitation for photoacoustic microscopy. The line scanning optical-acoustical resolution photoacoustic microscope (LS-OAR-PAM) with optical ultrasound detection is capable of real-time B-scan imaging providing acoustical resolution within the individual B-scans and optical out of plane resolution up to a depth limited by optical diffusion. A 3D image is composed of reconstructed B-scan images recorded while scanning the excitation line along the sample surface. Proof of concept is shown by imaging a phantom containing black human hairs and carbon fibers. The obtained C-scan image clearly shows the different resolution in the two perpendicular directions, namely diffraction limited by optical focusing in scan direction and acoustically limited in direction parallel to line orientation by the properties of acoustic wave propagation.

  6. Cyclic Voltammetry Probe Approach Curves with Alkali Amalgams at Mercury Sphere-Cap Scanning Electrochemical Microscopy Probes.

    Science.gov (United States)

    Barton, Zachary J; Rodríguez-López, Joaquín

    2017-03-07

    We report a method of precisely positioning a Hg-based ultramicroelectrode (UME) for scanning electrochemical microscopy (SECM) investigations of any substrate. Hg-based probes are capable of performing amalgamation reactions with metal cations, which avoid unwanted side reactions and positive feedback mechanisms that can prove problematic for traditional probe positioning methods. However, prolonged collection of ions eventually leads to saturation of the amalgam accompanied by irreversible loss of Hg. In order to obtain negative feedback positioning control without risking damage to the SECM probe, we implement cyclic voltammetry probe approach surfaces (CV-PASs), consisting of CVs performed between incremental motor movements. The amalgamation current, peak stripping current, and integrated stripping charge extracted from a shared CV-PAS give three distinct probe approach curves (CV-PACs), which can be used to determine the tip-substrate gap to within 1% of the probe radius. Using finite element simulations, we establish a new protocol for fitting any CV-PAC and demonstrate its validity with experimental results for sodium and potassium ions in propylene carbonate by obtaining over 3 orders of magnitude greater accuracy and more than 20-fold greater precision than existing methods. Considering the timescales of diffusion and amalgam saturation, we also present limiting conditions for obtaining and fitting CV-PAC data. The ion-specific signals isolated in CV-PACs allow precise and accurate positioning of Hg-based SECM probes over any sample and enable the deployment of CV-PAS SECM as an analytical tool for traditionally challenging conditions.

  7. Surface sensitivity effects with local probe scanning Auger-scanning electron microscopy

    NARCIS (Netherlands)

    Van Agterveld, DTL; Palasantzas, G; De Hosson, JTM; Bentley, J; Allen, C; Dahmen, U; Petrov,

    2001-01-01

    Ultra-high-vacuum segregation studies on in-situ fractured Cu-Sb alloys were performed in terms of nanometer scale scanning Auger/Electron microscopy. S contamination leads to the formation Of Cu2S precipitates which, upon removal due to fracture, expose pits with morphology that depends on the

  8. Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms.

    Science.gov (United States)

    Inada, H; Su, D; Egerton, R F; Konno, M; Wu, L; Ciston, J; Wall, J; Zhu, Y

    2011-06-01

    We report detailed investigation of high-resolution imaging using secondary electrons (SE) with a sub-nanometer probe in an aberration-corrected transmission electron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular dark-field (ADF) images both simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we studied the SE image intensity and contrast as functions of applied bias, atomic number, crystal tilt, and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. A possible mechanism for atomic-scale SE imaging is proposed. The ability to image both the surface and bulk of a sample at atomic-scale is unprecedented, and can have important applications in the field of electron microscopy and materials characterization. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. A scanning tunneling microscope capable of imaging specified micron-scale small samples

    Science.gov (United States)

    Tao, Wei; Cao, Yufei; Wang, Huafeng; Wang, Kaiyou; Lu, Qingyou

    2012-12-01

    We present a home-built scanning tunneling microscope (STM) which allows us to precisely position the tip on any specified small sample or sample feature of micron scale. The core structure is a stand-alone soft junction mechanical loop (SJML), in which a small piezoelectric tube scanner is mounted on a sliding piece and a "U"-like soft spring strip has its one end fixed to the sliding piece and its opposite end holding the tip pointing to the sample on the scanner. Here, the tip can be precisely aligned to a specified small sample of micron scale by adjusting the position of the spring-clamped sample on the scanner in the field of view of an optical microscope. The aligned SJML can be transferred to a piezoelectric inertial motor for coarse approach, during which the U-spring is pushed towards the sample, causing the tip to approach the pre-aligned small sample. We have successfully approached a hand cut tip that was made from 0.1 mm thin Pt/Ir wire to an isolated individual 32.5 × 32.5 μm2 graphite flake. Good atomic resolution images and high quality tunneling current spectra for that specified tiny flake are obtained in ambient conditions with high repeatability within one month showing high and long term stability of the new STM structure. In addition, frequency spectra of the tunneling current signals do not show outstanding tip mount related resonant frequency (low frequency), which further confirms the stability of the STM structure.

  10. Confocal laser scanning microscope, Raman microscopy and Western blotting to evaluate inflammatory response after myocardial infarction.

    Science.gov (United States)

    Riezzo, Irene; Cantatore, Santina; DeCarlo, Dania; Fiore, Carmela; Neri, Margherita; Turillazzi, Emanuela; Fineschi, Vittorio

    2015-01-01

    Cardiac muscle necrosis is associated with inflammatory cascade that clears the infarct from dead cells and matrix debris, and then replaces the damaged tissue with scar, through three overlapping phases: the inflammatory phase, the proliferative phase and the maturation phase. Western blotting, laser confocal microscopy, Raman microscopy are valuable tools for studying the inflammatory response following myocardial infarction both humoral and cellular phase, allowing the identification and semiquantitative analysis of proteins produced during the inflammatory cascade activation and the topographical distribution and expression of proteins and cells involved in myocardial inflammation. Confocal laser scanning microscopy (CLSM) is a relatively new technique for microscopic imaging, that allows greater resolution, optical sectioning of the sample and three-dimensional reconstruction of the same sample. Western blotting used to detect the presence of a specific protein with antibody-antigen interaction in the midst of a complex protein mixture extracted from cells, produced semi-quantitative data quite easy to interpret. Confocal Raman microscopy combines the three-dimensional optical resolution of confocal microscopy and the sensitivity to molecular vibrations, which characterizes Raman spectroscopy. The combined use of western blotting and confocal microscope allows detecting the presence of proteins in the sample and trying to observe the exact location within the tissue, or the topographical distribution of the same. Once demonstrated the presence of proteins (cytokines, chemokines, etc.) is important to know the topographical distribution, obtaining in this way additional information regarding the extension of the inflammatory process in function of the time stayed from the time of myocardial infarction. These methods may be useful to study and define the expression of a wide range of inflammatory mediators at several different timepoints providing a more

  11. Multiterminal semiconductor/ferromagnet probes for spin-filter scanning tunneling microscopy

    NARCIS (Netherlands)

    Vera Marun, I.J.; Jansen, R.

    2009-01-01

    We describe the fabrication of multiterminal semiconductor/ferromagnet probes for a new technique to study magnetic nanostructures: spin-filter scanning tunneling microscopy. We describe the principle of the technique, which is based on spin-polarized tunneling and subsequent analysis of the spin

  12. A robust method for processing scanning probe microscopy images and determining nanoobject position and dimensions

    NARCIS (Netherlands)

    Silly, F.

    2009-01-01

    P>Processing of scanning probe microscopy (SPM) images is essential to explore nanoscale phenomena. Image processing and pattern recognition techniques are developed to improve the accuracy and consistency of nanoobject and surface characterization. We present a robust and versatile method to

  13. In Situ Scanning Probe Microscopy and New Perspectives in Analytical Chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Zhang, Jingdong; Chi, Qijin

    1999-01-01

    The resolution of scanning probe microscopies is unpresedented but the techniques are fraught with limitations as analytical tools. These limitations and their relationship to the physical mechanisms of image contrast are first discussed. Some new options based on in situ STM, which hold prospect...

  14. Performance assessment of methods for estimation of fractal dimension from scanning electron microscope images.

    Science.gov (United States)

    Risović, Dubravko; Pavlović, Zivko

    2013-01-01

    Processing of gray scale images in order to determine the corresponding fractal dimension is very important due to widespread use of imaging technologies and application of fractal analysis in many areas of science, technology, and medicine. To this end, many methods for estimation of fractal dimension from gray scale images have been developed and routinely used. Unfortunately different methods (dimension estimators) often yield significantly different results in a manner that makes interpretation difficult. Here, we report results of comparative assessment of performance of several most frequently used algorithms/methods for estimation of fractal dimension. To that purpose, we have used scanning electron microscope images of aluminum oxide surfaces with different fractal dimensions. The performance of algorithms/methods was evaluated using the statistical Z-score approach. The differences between performances of six various methods are discussed and further compared with results obtained by electrochemical impedance spectroscopy on the same samples. The analysis of results shows that the performance of investigated algorithms varies considerably and that systematically erroneous fractal dimensions could be estimated using certain methods. The differential cube counting, triangulation, and box counting algorithms showed satisfactory performance in the whole investigated range of fractal dimensions. Difference statistic is proved to be less reliable generating 4% of unsatisfactory results. The performances of the Power spectrum, Partitioning and EIS were unsatisfactory in 29%, 38%, and 75% of estimations, respectively. The results of this study should be useful and provide guidelines to researchers using/attempting fractal analysis of images obtained by scanning microscopy or atomic force microscopy. © Wiley Periodicals, Inc.

  15. Theory, development, and applications of the scanning positron microbeam and positron reemission microscope

    International Nuclear Information System (INIS)

    Brandes, G.R.

    1990-01-01

    The theory, design, development, and applications of two new imaging instruments, the scanning positron microbeam (SPM) and positron reemission microscope (PRM), are discussed. The SPM consists of a sectored lens which focuses and rasters the positrons from the beam across the sample. The results of rastering the 10μm x 50μm beam across a test grid demonstrate the SPM's ability to scan a 500μm diameter region and to resolve features with ∼ 5μm resolution. The SPM was used to examine the location of defects in a Si-on-SiO 2 sample. Possible applications to three dimensional defect spectroscopy and the observation of small samples are considered. In the PRM, the positrons from the brightness-enhanced beam are focused at 5keV to an 8/Am diameter spot (FWHM) onto a thin metal single crystal. An image of the opposing side of the film is formed by accelerating and focusing the reemitted thermalized positrons with a cathode lens objective and a projector lens. The final image (real) is a record of the thermal positron emission intensity versus position. Images of surface and subsurface defect structures, taken at magnifications up to 4400x and with a resolution up to 80nm, are presented and discussed. The ultimate resolution capabilities and possible applications of the PRM are examined. The implantation and diffusion process of positrons was studied with the PRM by examining the positron emission profile of 3-9keV positrons implanted into a 2200 angstrom thick Ni single crystal

  16. Evaluation of carbon nanotube probes in critical dimension atomic force microscopes.

    Science.gov (United States)

    Choi, Jinho; Park, Byong Chon; Ahn, Sang Jung; Kim, Dal-Hyun; Lyou, Joon; Dixson, Ronald G; Orji, Ndubuisi G; Fu, Joseph; Vorburger, Theodore V

    2016-07-01

    The decreasing size of semiconductor features and the increasing structural complexity of advanced devices have placed continuously greater demands on manufacturing metrology, arising both from the measurement challenges of smaller feature sizes and the growing requirement to characterize structures in more than just a single critical dimension. For scanning electron microscopy, this has resulted in increasing sophistication of imaging models. For critical dimension atomic force microscopes (CD-AFMs), this has resulted in the need for smaller and more complex tips. Carbon nanotube (CNT) tips have thus been the focus of much interest and effort by a number of researchers. However, there have been significant issues surrounding both the manufacture and use of CNT tips. Specifically, the growth or attachment of CNTs to AFM cantilevers has been a challenge to the fabrication of CNT tips, and the flexibility and resultant bending artifacts have presented challenges to using CNT tips. The Korea Research Institute for Standards and Science (KRISS) has invested considerable effort in the controlled fabrication of CNT tips and is collaborating with the National Institute of Standards and Technology on the application of CNT tips for CD-AFM. Progress by KRISS on the precise control of CNT orientation, length, and end modification, using manipulation and focused ion beam processes, has allowed us to implement ball-capped CNT tips and bent CNT tips for CD-AFM. Using two different generations of CD-AFM instruments, we have evaluated these tip types by imaging a line/space grating and a programmed line edge roughness specimen. We concluded that these CNTs are capable of scanning the profiles of these structures, including re-entrant sidewalls, but there remain important challenges to address. These challenges include tighter control of tip geometry and careful optimization of scan parameters and algorithms for using CNT tips.

  17. Evaluation of carbon nanotube probes in critical dimension atomic force microscopes

    Science.gov (United States)

    Choi, Jinho; Park, Byong Chon; Ahn, Sang Jung; Kim, Dal-Hyun; Lyou, Joon; Dixson, Ronald G.; Orji, Ndubuisi G.; Fu, Joseph; Vorburger, Theodore V.

    2016-07-01

    The decreasing size of semiconductor features and the increasing structural complexity of advanced devices have placed continuously greater demands on manufacturing metrology, arising both from the measurement challenges of smaller feature sizes and the growing requirement to characterize structures in more than just a single critical dimension. For scanning electron microscopy, this has resulted in increasing sophistication of imaging models. For critical dimension atomic force microscopes (CD-AFMs), this has resulted in the need for smaller and more complex tips. Carbon nanotube (CNT) tips have thus been the focus of much interest and effort by a number of researchers. However, there have been significant issues surrounding both the manufacture and use of CNT tips. Specifically, the growth or attachment of CNTs to AFM cantilevers has been a challenge to the fabrication of CNT tips, and the flexibility and resultant bending artifacts have presented challenges to using CNT tips. The Korea Research Institute for Standards and Science (KRISS) has invested considerable effort in the controlled fabrication of CNT tips and is collaborating with the National Institute of Standards and Technology on the application of CNT tips for CD-AFM. Progress by KRISS on the precise control of CNT orientation, length, and end modification, using manipulation and focused ion beam processes, has allowed us to implement ball-capped CNT tips and bent CNT tips for CD-AFM. Using two different generations of CD-AFM instruments, we have evaluated these tip types by imaging a line/space grating and a programmed line edge roughness specimen. We concluded that these CNTs are capable of scanning the profiles of these structures, including re-entrant sidewalls, but there remain important challenges to address. These challenges include tighter control of tip geometry and careful optimization of scan parameters and algorithms for using CNT tips.

  18. Three-Dimensional (3D) Nanometrology Based on Scanning Electron Microscope (SEM) Stereophotogrammetry.

    Science.gov (United States)

    Tondare, Vipin N; Villarrubia, John S; Vlada R, András E

    2017-10-01

    Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.

  19. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    Science.gov (United States)

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Comparative evaluation of enamel abrasivity by toothbrush and velcro: An in vitro scanning electron microscope study

    Directory of Open Access Journals (Sweden)

    Saroj Kumar Ojha

    2015-01-01

    Full Text Available Context: Plaque control has been shown to be pivotal in maintaining the optimal periodontal health. Mechanical plaque control is the most popular option for establishing the optimal oral health. Toothbrushes have been the novel tool for mechanical cleansing. However, the abrasive potential of the toothbrushes on the enamel surface is an area in gray. Aims: The aim of this in vitro study is to evaluate the abrasivity of the toothbrush versus the velcro fasteners. Settings and Design: Forty extracted clinically healthy premolars were grouped in two groups. Group A comprising of teeth that were subjected to toothbrush bristles and group B to velcro fasteners (hook and loop. Materials and Methods: The mounted teeth of both the groups were subjected to abrasion test, and the tooth surfaces were observed for the possible abrasions from the oscillating strokes (toothbrush and frictional contacts (hook and loop velcro and examined under the scanning electron microscope. Results: Comparative assessment of both velcro (hook and loop and toothbrush bristles did not reveal any evidence of abrasion on the tooth specimens. Conclusions: Veclro fasteners are safe and qualitatively at par to the manual toothbrush for their efficacy and efficiency in teeth cleansing