WorldWideScience

Sample records for scanning micro-hall probe

  1. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa{sub 2}Cu{sub 3}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Xing, W.; Heinrich, B. [Simon Fraser Univ., British Columbia (Canada); Zhou, H. [CTF Systems, Inc., British Columbia (Canada)] [and others

    1994-12-31

    Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  2. Terahertz scanning probe microscope

    NARCIS (Netherlands)

    Klapwijk, T.M.

    2014-01-01

    The invention provides aterahertz scanning probe microscope setup comprising (i) a terahertz radiation source configured to generate terahertz radiation; (ii) a terahertz lens configured to receive at least part of the terahertz radiation from the terahertz radiation source; (iii) a cantilever unit

  3. Accurate micro Hall effect measurements on scribe line pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Petersen, Dirch Hjorth; Wang, Fei

    2009-01-01

    Hall mobility and sheet carrier density are important parameters to monitor in advanced semiconductor production. If micro Hall effect measurements are done on small pads in scribe lines, these parameters may be measured without using valuable test wafers. We report how Hall mobility can...... be extracted from micro four-point measurements performed on a rectangular pad. The dimension of the investigated pad is 400 × 430 ¿m2, and the probe pitches range from 20 ¿m to 50 ¿m. The Monte Carlo method is used to find the optimal way to perform the Hall measurement and extract Hall mobility most...

  4. Automated Micro Hall Effect measurements

    DEFF Research Database (Denmark)

    Petersen, Dirch Hjorth; Henrichsen, Henrik Hartmann; Lin, Rong

    2014-01-01

    With increasing complexity of processes and variety of materials used for semiconductor devices, stringent control of the electronic properties is becoming ever more relevant. Collinear micro four-point probe (M4PP) based measurement systems have become high-end metrology methods for characteriza...

  5. Nanobits: customizable scanning probe tips

    DEFF Research Database (Denmark)

    Kumar, Rajendra; Shaik, Hassan Uddin; Sardan Sukas, Özlem

    2009-01-01

    We present here a proof-of-principle study of scanning probe tips defined by planar nanolithography and integrated with AFM probes using nanomanipulation. The so-called 'nanobits' are 2-4 mu m long and 120-150 nm thin flakes of Si3N4 or SiO2, fabricated by electron beam lithography and standard...... silicon processing. Using a microgripper they were detached from an array and fixed to a standard pyramidal AFM probe or alternatively inserted into a tipless cantilever equipped with a narrow slit. The nanobit-enhanced probes were used for imaging of deep trenches, without visible deformation, wear...... or dislocation of the tips of the nanobit after several scans. This approach allows an unprecedented freedom in adapting the shape and size of scanning probe tips to the surface topology or to the specific application....

  6. Advanced oxidation scanning probe lithography

    Science.gov (United States)

    Ryu, Yu K.; Garcia, Ricardo

    2017-04-01

    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  7. Soft stylus probes for scanning electrochemical microscopy.

    Science.gov (United States)

    Cortés-Salazar, Fernando; Träuble, Markus; Li, Fei; Busnel, Jean-Marc; Gassner, Anne-Laure; Hojeij, Mohamad; Wittstock, Gunther; Girault, Hubert H

    2009-08-15

    A soft stylus microelectrode probe has been developed to carry out scanning electrochemical microscopy (SECM) of rough, tilted, and large substrates in contact mode. It is fabricated by first ablating a microchannel in a polyethylene terephthalate thin film and filling it with a conductive carbon ink. After curing the carbon track and lamination with a polymer film, the V-shaped stylus was cut thereby forming a probe, with the cross section of the carbon track at the tip being exposed either by UV-photoablation machining or by blade cutting followed by polishing to produce a crescent moon-shaped carbon microelectrode. The probe properties have been assessed by cyclic voltammetry, approach curves, and line scans over electrochemically active and inactive substrates of different roughness. The influence of probe bending on contact mode imaging was then characterized using simple patterns. Boundary element method simulations were employed to rationalize the distance-dependent electrochemical response of the soft stylus probes.

  8. Scanning Probe Microscopy of Graphene

    Science.gov (United States)

    Tautz, Pamela

    2011-10-01

    Scanning tunneling microscopy has been used to study the unusual electronic properties of graphene. In an effort to support the graphene with minimal interaction with the substrate, we used a hexagonal boron nitride (hBN) substrate. To minimize contaminants between the CVD graphene and boron nitride, the graphene samples were cleaned with distilled water and isopropanol prior to transfer to hBN substrate. We have also examined the growth of graphene flakes by chemical vapor deposition. In particular, we examined the relationship between the orientations of the first and second layer of CVD grown graphene. We found the growth mechanism preferentially resulted in rotations of 9^o or less indicating flakes with first and second layers aligned.

  9. Nanobits - exchangable and customisable scanning probe tips

    DEFF Research Database (Denmark)

    Yildiz, Izzet

    Invention of atomic force microscopy (AFM) pioneered a novel aspect for the surface metrology concept. A range of scanning probe methods have been developed over the years based on different sorts of tip-surface interaction: electrical, optical, thermal, force. Reproducible and fast fabrication...

  10. SCANNING KELVIN PROBE APPLIED TO LOCALISED ...

    African Journals Online (AJOL)

    2015-01-15

    Jan 15, 2015 ... SCANNING KELVIN PROBE APPLIED TO LOCALISED CORROSION. A. Hussain and Sk M. Haque. Department of Chemical Engineering and Process Technology, Jubail Industrial College,. P. O. Box. 10099, Al-Jubail, KSA. Received: 19 October 2014 / Accepted: 12 January 2015 / Published online: 15 ...

  11. Aligned ion implementation using scanning probes

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, A.

    2006-12-12

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail. (orig.)

  12. Full information acquisition in scanning probe microscopy and spectroscopy

    Science.gov (United States)

    Jesse, Stephen; Belianinov, Alex; Kalinin, Sergei V.; Somnath, Suhas

    2017-04-04

    Apparatus and methods are described for scanning probe microscopy and spectroscopy based on acquisition of full probe response. The full probe response contains valuable information about the probe-sample interaction that is lost in traditional scanning probe microscopy and spectroscopy methods. The full probe response is analyzed post data acquisition using fast Fourier transform and adaptive filtering, as well as multivariate analysis. The full response data is further compressed to retain only statistically significant components before being permanently stored.

  13. Scanning Probe Microscopy of Organic Solar Cells

    Science.gov (United States)

    Reid, Obadiah G.

    Nanostructured composites of organic semiconductors are a promising class of materials for the manufacture of low-cost solar cells. Understanding how the nanoscale morphology of these materials affects their efficiency as solar energy harvesters is crucial to their eventual potential for large-scale deployment for primary power generation. In this thesis we describe the use of optoelectronic scanning-probe based microscopy methods to study this efficiency-structure relationship with nanoscale resolution. In particular, our objective is to make spatially resolved measurements of each step in the power conversion process from photons to an electric current, including charge generation, transport, and recombination processes, and correlate them with local device structure. We have achieved two aims in this work: first, to develop and apply novel electrically sensitive scanning probe microscopy experiments to study the optoelectronic materials and processes discussed above; and second, to deepen our understanding of the physics underpinning our experimental techniques. In the first case, we have applied conductive-, and photoconductive atomic force (cAFM & pcAFM) microscopy to measure both local photocurrent collection and dark charge transport properties in a variety of model and novel organic solar cell composites, including polymer/fullerene blends, and polymer-nanowire/fullerene blends, finding that local heterogeneity is the rule, and that improvements in the uniformity of specific beneficial nanostructures could lead to large increases in efficiency. We have used scanning Kelvin probe microscopy (SKPM) and time resolved-electrostatic force microscopy (trEFM) to characterize all-polymer blends, quantifying their sensitivity to photochemical degradation and the subsequent formation of local charge traps. We find that while trEFM provides a sensitive measure of local quantum efficiency, SKPM is generally unsuited to measurements of efficiency, less sensitive than tr

  14. The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities

    Science.gov (United States)

    Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex

    2014-01-01

    A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…

  15. Scanning microscopic four-point conductivity probes

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Hansen, Torben Mikael; Bøggild, Peter

    2002-01-01

    the conducting material either for a silicon wafer or a single probe unit. Using shadow masking photolithography an electrode spacing (pitch) down to 1.1 mum was obtained, with cantilever separation down to 200 run. Characterisation measurements have shown the microscopic probes to be mechanically very flexible......A method for fabricating microscopic four-point probes is presented. The method uses silicon-based microfabrication technology involving only two patterning steps. The last step in the fabrication process is an unmasked deposition of the conducting probe material, and it is thus possible to select...

  16. Scanned probe microscopy for thin film superconductor development

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, J. [National Institute of Standards and Technology, Boulder, CO (United States)

    1996-12-31

    Scanned probe microscopy is a general term encompassing the science of imaging based on piezoelectric driven probes for measuring local changes in nanoscale properties of materials and devices. Techniques like scanning tunneling microscopy, atomic force microscopy, and scanning potentiometry are becoming common tools in the production and development labs in the semiconductor industry. The author presents several examples of applications specific to the development of high temperature superconducting thin films and thin-film devices.

  17. EDITORIAL: Scanning probe microscopy: a visionary development Scanning probe microscopy: a visionary development

    Science.gov (United States)

    Demming, Anna

    2013-07-01

    The development of scanning probe microscopy repositioned modern physics. When Rohrer and Binnig first used electronic tunnelling effects to image atoms and quantum states they did more than pin down theoretical hypotheses to real-world observables; the scanning tunnelling microscope fed imaginations, prompting researchers to consider new directions and possibilities [1]. As Rohrer once commented, 'We could show that you can easily manipulate or position something small in space with an accuracy of 10 pm.... When you can do that, you simply have ideas of what you can do' [2]. The development heralded a cavalry of scanning probe techniques—such as atomic force microscopy (AFM) [3-5], scanning near-field optical microscopy (SNOM) [6-8] and Kelvin probe force microscopy (KPFM) [9, 10]—that still continue to bring nanomaterials and nanoscale phenomena into fresh focus. Not long after the development of scanning tunnelling microscopy, Binnig, Quate and Gerber collaborating in California in the US published work on a new type of microscope also capable of atomic level resolution [3]. The original concept behind scanning tunnelling microscopy uses electrical conductance, which places substantial limitations on the systems that it can image. Binnig, Quate and Gerber developed the AFM to 'feel' the topology of surfaces like the needle of an old fashioned vinyl player. In this way insulators could be imaged as well. The development of a force modulation mode AFM extended the tool's reach to soft materials making images of biological samples accessible with the technique [4]. There have now been a number of demonstrations of image capture at rates that allow dynamics at the nanoscale to be tracked in real time, opening further possibilities in applications of the AFM as described in a recent review by Toshio Ando at Kanazawa University [5]. Researchers also found a way to retrieve optical information at 'super-resolution' [6, 7]. Optical microscopy provides spectral

  18. Fast scanning probe for tokamak plasmas

    Science.gov (United States)

    Boedo, J.; Gray, D.; Chousal, L.; Conn, R.; Hiller, B.; Finken, K. H.

    1998-07-01

    We describe a fast reciprocating probe drive, which has three main new features: (1) a detachable and modular probe head for easy maintenance, (2) a combination of high heat flux capability, high bandwidth, and low-Z materials construction, and (3) low weight, compact, inexpensive construction. The probe is mounted in a fast pneumatic drive in order to reach plasma regions of interest and remain inserted long enough to obtain good statistics while minimizing the heat flux to the tips and head. The drive is pneumatic and has been designed to be compact and reliable to comply with space and maintenance requirements of tokamaks. The probe described here has five tips which obtain a full spectrum of plasma parameters: electron temperature profile Te(r), electron density profile ne(r), floating potential profile Vf(r), poloidal electric field profile Eθ(r), saturation current profile Isat(r), and their fluctuations up to 3 MHz. We describe the probe show radial profiles of various parameters. We compare the density and temperature data to that obtained with a helium beam. We also discuss the techniques to process the data optimally, particularly double probe data and profile fits.

  19. Challenges of scanning hall microscopy using batch fabricated probes

    NARCIS (Netherlands)

    Hatakeyama, Kodai

    2016-01-01

    Scanning Hall probe microscopy is a widely used technique for quantitative high resolution imaging of magnetic stray fields. Up to now probes with nanometer spatial resolution have only been realized by electron beam lithography, which is a slow and expensive fabrication technique. In this thesis,

  20. Micro-Hall magnetometry on a Co-organic chain compound

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, L.; Simonet, V. E-mail: simonet@grenoble.cnrs.fr; Wernsdorfer, W.; Bogani, L.; Sessoli, R

    2004-05-01

    The static and dynamical properties of Co-organic chains, with strong magnetic anisotropy, are studied by micro-Hall magnetometry. The low-temperature hysteresis cycles are discussed with respect to the helical structure of the chains. Thermally activated relaxation of the magnetization is observed, compatible with the Glauber model for a 1D Ising system.

  1. Plasmonic interferometry: probing launching dipoles in scanning-probe plasmonics

    CERN Document Server

    Mollet, O; Genet, C; Huant, S; Drezet, A

    2014-01-01

    We develop a semi-analytical method for analyzing surface plasmon interferometry using near-field scanning optical sources. We compare our approach to Young double hole interferometry experiments using scanning tunneling microscope (STM) discussed in the literature and realize experiments with an aperture near-field scanning optical microscope (NSOM) source positioned near a ring like aperture slit milled in a thick gold film. In both cases the agreement between experiments and model is very good. We emphasize the role of dipole orientations and discuss the role of magnetic versus electric dipole contributions to the imaging process as well as the directionality of the effective dipoles associated with the various optical and plasmonic sources.

  2. Precision of single-engage micro Hall effect measurements

    DEFF Research Database (Denmark)

    Henrichsen, Henrik Hartmann; Hansen, Ole; Kjær, Daniel

    2014-01-01

    Recently a novel microscale Hall effect measurement technique has been developed to extract sheet resistance (RS), Hall sheet carrier density (NHS) and Hall mobility (μH) from collinear micro 4-point probe measurements in the vicinity of an insulating boundary [1]. The technique measures in less......]. In this study we calculate the measurement error on RS, NHS and μH resulting from electrode position errors, probe placement, sample size and Hall signal magnitude. We show the relationship between measurement precision and electrode pitch, which is important when down-scaling the micro 4-point probe to fit...

  3. Semiconductor Surface Characterization by Scanning Probe Microscopies

    Science.gov (United States)

    2001-01-01

    potentiometry (STP)8 and ballistic electron emission microscopy (BEEM)9 which allow mapping of lateral surface potential and local subsurface Schottky...A.P.Fein. "Tunneling Spectroscopy of the Si(1 1 1)2xl Surface", Surf.Sci. 181, 295- 306, 1987. 8. P.Muralt, D.W.Pohl, "Scanning tunneling potentiometry

  4. Nanolithography on hydrogen terminateed silicon by scanning probe microscopy

    NARCIS (Netherlands)

    Schönenberger, Christian; Kramer, Niels; Kramer, N.

    1996-01-01

    Scanning-probe microscopes (SPM), i.e. the scanning-tunneling and force microscopes, can be used to locally oxidize hydrogen-terminated silicon and hydrogenated amorphous silicon. Because of its reliability and potential for pattern transfer, this lithography process has found great attention and

  5. Fast micro Hall effect measurements on small pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Petersen, Dirch Hjorth; Nielsen, Peter F.

    2011-01-01

    Sheet resistance, carrier mobility, and sheet carrier density are important parameters in semiconductor production, and it is therefore important to be able to rapidly and accurately measure these parameters even on small samples or pads. The interpretation of four-point probe measurements on small...

  6. Is scanning in probed order recall articulatory?

    Science.gov (United States)

    Farrell, Simon; Lelièvre, Anna

    2009-09-01

    We consider how theories of serial recall might apply to other short-term memory tasks involving recall of order. In particular, we consider the possibility that when participants are cued to recall an item at an arbitrary position in a sequence, they covertly serially recall the list up to the cued position. One question is whether such "scanning" is articulatory in nature. Two experiments are presented in which the syllabic length of words preceding and following target positions were manipulated, to test the prediction of an articulatory-based mechanism that time to recall an item at a particular position will depend on the number of preceding long words. Although latency was dependent on target position, no word length effects on latency were observed. Additionally, the effects of word length on accuracy replicate recent demonstrations in serial recall that recall accuracy is dependent on the word length of all list items, not just that of target items, in line with distinctiveness assumptions. It is concluded that if scanning does occur, it is not carried out by covert or overt articulation.

  7. Optical characterication of probes for photon scanning tunnelling microscopy

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    The photon scanning tunnelling microscope is a well-established member of the family of scanning near-field optical microscopes used for optical imaging at the sub-wavelength scale. The quality of the probes, typically pointed uncoated optical fibres, used is however difficult to evaluate...... in a direct manner and has most often been inferred from the apparent quality of recorded optical images. Complicated near-field optical imaging characteristics, together with the possibility of topographically induced artefacts, however, has increased demands for a more reliable probe characterization...... technique. Here we present experimental results obtained for optical characterization of two different probes by imaging of a well-specified near-field intensity distribution at various spatial frequencies. In particular, we observe that a sharply pointed dielectric probe can be highly suitable for imaging...

  8. Open Source Scanning Probe Microscopy Control Software Package Gxsm

    Energy Technology Data Exchange (ETDEWEB)

    Zahl P.; Wagner, T.; Moller, R.; Klust, A.

    2009-08-10

    Gxsm is a full featured and modern scanning probe microscopy (SPM) software. It can be used for powerful multidimensional image/data processing, analysis, and visualization. Connected toan instrument, it is operating many different avors of SPM, e.g., scanning tunneling microscopy(STM) and atomic force microscopy (AFM) or in general two-dimensional multi channel data acquisition instruments. The Gxsm core can handle different data types, e.g., integer and oating point numbers. An easily extendable plug-in architecture provides many image analysis and manipulation functions. A digital signal processor (DSP) subsystem runs the feedback loop, generates the scanning signals and acquires the data during SPM measurements. The programmable Gxsm vector probe engine performs virtually any thinkable spectroscopy and manipulation task, such as scanning tunneling spectroscopy (STS) or tip formation. The Gxsm software is released under the GNU general public license (GPL) and can be obtained via the Internet.

  9. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1996-01-01

    Scanning Tunneling Microscopy III provides a unique introduction to the theoretical foundations of scanning tunneling microscopy and related scanning probe methods. The different theoretical concepts developed in the past are outlined, and the implications of the theoretical results for the interpretation of experimental data are discussed in detail. Therefore, this book serves as a most useful guide for experimentalists as well as for theoreticians working in the filed of local probe methods. In this second edition the text has been updated and new methods are discussed.

  10. Modeling the hysteresis of a scanning probe microscope

    DEFF Research Database (Denmark)

    Dirscherl, Kai; Garnæs, Jørgen; Nielsen, L.

    2000-01-01

    Most scanning probe microscopes use piezoelectric actuators in open loop configurations. Therefore a major problem related to these instruments is the image distortion due to the hysteresis effect of the piezo. In order to eliminate the distortions, cost effective software control based on a model...

  11. Handheld probes and galvanometer scanning for optical coherence tomography

    Science.gov (United States)

    Duma, V.-F.; Dobre, G.; Demian, D.; Cernat, R.; Sinescu, C.; Topala, F. I.; Negrutiu, M. L.; Hutiu, Gh.; Bradu, A.; Rolland, J. P.; Podoleanu, A. G.

    2015-09-01

    As part of the ongoing effort of the biomedical imaging community to move Optical Coherence Tomography (OCT) systems from the lab to the clinical environment and produce OCT systems appropriate for multiple types of investigations in a medical department, handheld probes equipped with different types of scanners need to be developed. These allow different areas of a patient's body to be investigated using OCT with the same system and even without changing the patient's position. This paper reviews first the state of the art regarding OCT handheld probes. Novel probes with a uni-dimensional (1D) galvanometer-based scanner (GS) developed in our groups are presented. Their advantages and limitations are discussed. Aspects regarding the use of galvoscanners with regard to Micro-Electro- Mechanical Systems (MEMS) are pointed out, in relationship with our studies on optimal scanning functions of galvanometer devices in OCT. These scanning functions are briefly discussed with regard to their main parameters: profile, theoretical duty cycle, scan frequency, and scan amplitude. The optical design of the galvoscanner and refractive optics combination in the probe head, optimized for various applications, is considered. Perspectives of the field are pointed out in the final part of the paper.

  12. Improved controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben

    2013-01-01

    ) is monitored by an oxygen sensor. We present here some examples of its capabilities demonstrated by high temperature topography with simultaneously ac electrical conductance measurements during atmosphere changes, electrochemical impedance spectroscopy at various temperatures, and measurements of the surface......To locally access electrochemical active surfaces and interfaces in operando at the sub-micron scale at high temperatures in a reactive gas atmosphere is of great importance to understand the basic mechanisms in new functional materials, for instance, for energy technologies, such as solid oxide...... fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy...

  13. Plant cell wall characterization using scanning probe microscopy techniques

    Science.gov (United States)

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  14. Plant cell wall characterization using scanning probe microscopy techniques

    Directory of Open Access Journals (Sweden)

    Himmel Michael E

    2009-08-01

    Full Text Available Abstract Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy.

  15. Nanofabrication of magnetic scanned-probe microscope sensors

    CERN Document Server

    Chong, B K

    2001-01-01

    experiments were carried out under ambient conditions. The experiments required no extra preparation to be done to the specimen before imaging and measurements were carried out under ambient conditions. These probes offer the prospect of direct magnetic field measurement, non- invasiveness, very close proximity, possible local manipulation, better control over the tip- specimen interaction distance and topographic imaging. It is hoped that these magnetic microscope probes will be of great interest and general utility for academic and industrial magneticians. This thesis presents the development of novel magnetic sensor combined with Atomic Force Microscope probe (AFM) using conventional semiconductor processing techniques and Electron Beam Lithography (EBL). The fabrication of these magnetic sensors was performed on a common micromachined silicon substrate using a generic batch fabrication technique. Sub-micron Hall bar for Scanning Hall probe Microscopy (SHPM) and electromagnetic force coil magnet for Scanni...

  16. Band excitation method applicable to scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  17. Processing of Graphene combining Optical Detection and Scanning Probe Lithography

    Directory of Open Access Journals (Sweden)

    Zimmermann Sören

    2015-01-01

    Full Text Available This paper presents an experimental setup tailored for robotic processing of graphene with in-situ vision based control. A robust graphene detection approach is presented applying multiple image processing operations of the visual feedback provided by a high-resolution light microscope. Detected graphene flakes can be modified using a scanning probe based lithographical process that is directly linked to the in-situ optical images. The results of this process are discussed with respect to further application scenarios.

  18. Integrated microfluidic linking chip for scanning probe nanolithography

    Science.gov (United States)

    Ryu, Kee Suk; Wang, Xuefeng; Shaikh, Kashan; Bullen, David; Goluch, Edgar; Zou, Jun; Liu, Chang; Mirkin, Chad A.

    2004-07-01

    This letter reports an architecture for a microfluidic chip that dresses (inks) multiple nanolithography tips in a high-density array in a parallel and multiplexed fashion. The microfluidic chip consists of multiple precision patterned thin-film poly(dimethylsiloxane) (PDMS) patches serving as porous inking pads. Inking chemicals are supplied from loading reservoirs to the inking pads through microfluidic channels. The gas-permeable thin PDMS membranes allow ink molecules to diffuse through while preventing bulk liquid from overflowing or evaporating. The inking chip provides high-density inking, easy loading of inks, and reduced evaporation losses. We present the fabrication process and inking of scanning probe contact printing probes and commercial nitride probes.

  19. Gold nanocone near-field scanning optical microscopy probes.

    Science.gov (United States)

    Fleischer, Monika; Weber-Bargioni, Alexander; Altoe, M Virginia P; Schwartzberg, Adam M; Schuck, P James; Cabrini, Stefano; Kern, Dieter P

    2011-04-26

    Near-field scanning optical microscopy enables the simultaneous topographical and subdiffraction limited optical imaging of surfaces. A process is presented for the implementation of single individually engineered gold cones at the tips of atomic force microscopy cantilevers. These cantilevers act as novel high-performance optical near-field probes. In the fabrication, thin-film metallization, electron beam induced deposition of etch masks, and Ar ion milling are combined. The cone constitutes a well-defined highly efficient optical antenna with a tip radius on the order of 10 nm and an adjustable plasmon resonance frequency. The sharp tip enables high resolution topographical imaging. By controllably varying the cone size, the resonance frequency can be adapted to the application of choice. Structural properties of these sharp-tipped probes are presented together with topographical images recorded with a cone probe. The antenna functionality is demonstrated by gathering the near-field enhanced Raman signature of individual carbon nanotubes with a gold cone scanning probe.

  20. PROBING STRESS EFFECTS IN SINGLE CRYSTAL ORGANIC TRANSISTORS BY SCANNING KELVIN PROBE MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Teague, L

    2010-06-11

    We report scanning Kelvin probe microscopy (SKPM) of single crystal difluoro bis(triethylsilylethynyl) anthradithiophene (diF-TESADT) organic transistors. SKPM provides a direct measurement of the intrinsic charge transport in the crystals independent of contact effects and reveals that degradation of device performance occurs over a time period of minutes as the diF-TESADT crystal becomes charged.

  1. Computer vision distortion correction of scanning probe microscopy images.

    Science.gov (United States)

    Gaponenko, Iaroslav; Tückmantel, Philippe; Ziegler, Benedikt; Rapin, Guillaume; Chhikara, Manisha; Paruch, Patrycja

    2017-04-06

    Since its inception, scanning probe microscopy (SPM) has established itself as the tool of choice for probing surfaces and functionalities at the nanoscale. Although recent developments in the instrumentation have greatly improved the metrological aspects of SPM, it is still plagued by the drifts and nonlinearities of the piezoelectric actuators underlying the precise nanoscale motion. In this work, we present an innovative computer-vision-based distortion correction algorithm for offline processing of functional SPM measurements, allowing two images to be directly overlaid with minimal error - thus correlating position with time evolution and local functionality. To demonstrate its versatility, the algorithm is applied to two very different systems. First, we show the tracking of polarisation switching in an epitaxial Pb(Zr0.2Ti0.8)O3 thin film during high-speed continuous scanning under applied tip bias. Thanks to the precise time-location-polarisation correlation we can extract the regions of domain nucleation and track the motion of domain walls until the merging of the latter in avalanche-like events. Secondly, the morphology of surface folds and wrinkles in graphene deposited on a PET substrate is probed as a function of applied strain, allowing the relaxation of individual wrinkles to be tracked.

  2. MEMS ultrasonic probe rotary scanning imaging system for medical endoscope

    Science.gov (United States)

    Chen, Xiaodong; Wen, Shijie; Yu, Daoyin

    2006-11-01

    Medical ultrasonic endoscope is the combination of electronic endoscope and ultrasonic sensor technology. Ultrasonic endoscope sends the ultrasonic probe into coelom through the biopsy channel of an electronic endoscope and rotates it by a micro motor, acquiring fault histology features of digestive organs. Compared with external ultrasonic detection, the system reduces the distance between the transducer and the organ, diminishing the effects on imaging of fats and body cavity gas. On the basis of ultrasonic imaging system, this paper implements a pulse echo imaging system. We describe the ultrasonic probe, emission circuit, receiving circuit and protective circuit in detail. With the demodulation circuit, we get the amplitude of echo which indicates the objects. And to achieve the rotary scan, we design a synchronous control circuit and a data transfer circuit basing on the USB2.0 interface. Finally we get a grey image with 256 grey levels after coordinate conversion.

  3. Method for determining a spring constant for a deformable scanning probe microscope element, and scanning probe microscope and calibration device arranged for determining a spring constant for a probe element

    NARCIS (Netherlands)

    Sadeghian, H.; Yang, C.K.; Bossche, A.; French, P.J.; Goosen, J.F.L.; Van Keulen, A.

    2012-01-01

    A method for determining a spring constant k for a deformable probe element (102) of a scanning probe microscope SPM (100). The probe (102) has an outer surface area consisting of a tip area (112) on a first probe side (108) and a tip-less area (113). The probe (102) also has a probe electrode (114)

  4. Elimination of periodic damped artifacts in scanning probe microscopy images

    Science.gov (United States)

    Chen, Yuhang; Huang, Wenhao

    2010-04-01

    When scanning probe microscopy (SPM) is operated at high scan rates, stripe-like artifacts will appear frequently in the SPM images. The removal of the image artifacts is highly demanded because they will distort the results in precise measurements. In this work, a method based on Prony analysis has been introduced to erase such periodic damped artifacts. Results demonstrate that this method prevails against the conventional fast Fourier transformation (FFT) method. Clean eliminations of the image artifacts are obtained, with almost no sacrifice of the detailed surface information. Even for arbitrary rough surfaces, the image artifacts can also be reduced by more than one order of magnitude. However, small amounts of stripes may still remain in the images. In these cases, the Prony analysis combined with locally weighted smoothing will provide better image quality. The artifacts reduction can have a meaning in the SPM-based visualization of dynamic phenomena with a nanoscale resolution.

  5. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    Science.gov (United States)

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-03-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution.

  6. Integrated Confocal and Scanning Probe Microscopy for Biomedical Research

    Directory of Open Access Journals (Sweden)

    B.J. Haupt

    2006-01-01

    Full Text Available Atomic force microscopy (AFM continues to be developed, not only in design, but also in application. The new focus of using AFM is changing from pure material to biomedical studies. More frequently, it is being used in combination with other optical imaging methods, such as confocal laser scanning microscopy (CLSM and fluorescent imaging, to provide a more comprehensive understanding of biological systems. To date, AFM has been used increasingly as a precise micromanipulator, probing and altering the mechanobiological characteristics of living cells and tissues, in order to examine specific, receptor-ligand interactions, material properties, and cell behavior. In this review, we discuss the development of this new hybrid AFM, current research, and potential applications in diagnosis and the detection of disease.

  7. Probing Nanoscale Electronic and Magnetic Interaction with Scanning Tunneling Spectroscopy

    DEFF Research Database (Denmark)

    Bork, Jakob

    This thesis is concerned with fundamental research into electronic and magnetic interaction on the nanoscale. From small metallic and magnetic islands and layers to single atoms. The research revolves around magnetic interaction probed through the spectroscopic capabilities of the scanning....... This is related to research in correlated electron materials such as studies of phase transitions in heavy fermion compounds and magnetic interaction in spintronic research. The capping of cobalt islands on Cu(111) with silver is investigated with STM and photoemission spectroscopy. It is shown that at low...... coverage the silver preferably nucleates on top of the bilayer high cobalt islands compared to directly on the Cu(111) substrate. Furthermore, the silver forms a combination of a reconstruction and a Moire pattern which is investigated with low-energy electron diraction and spectroscopic STM mapping at 6...

  8. UHV-compatible spectroscopic scanning Kelvin probe for surface analysis

    Science.gov (United States)

    Baikie, I.; Petermann, U.; Lägel, B.

    1999-08-01

    We have developed an ultra-high vacuum (UHV) compatible scanning Kelvin probe (SKP) to measure local work function ( φ) differences between a conducting sample and a reference metal tip to less than 1 meV. The work function is an extremely sensitive indicator of surface condition and is affected by adsorption, evaporation, surface topography, etc. For example, the increase of φ due to oxidation of Si(111) and polycrystalline rhenium is 1.4 and 1.9 eV, respectively. We have performed SKP work function topographies of metal and semiconductor samples during various UHV cleaning processes to determine if changes in surface work function (Δ φ) can be attributed to chemical contamination, e.g., carbon, or surface structural changes due to thermal processing or ion sputtering. We can, for instance, see major changes in oxidation kinetics due to the type of cleaning mechanism, flash anneal or sputter-anneal, or through as little as 0.6% carbon contamination. The UHV SKP control loop utilises a novel tracking system to maintain constant tip-to-sample spacing during scanning. Combined with the in-house 'Off-Null' detection method we have developed this allows a significantly higher signal-to-noise ratio than alternative detection methods including the lock-in amplifier. Using this system we have performed in situ surface photovoltage spectroscopy during the oxidation of Si(111), illustrating the capability of this technique to probe the local density of states, and surface barrier height spectroscopy during surface processing.

  9. Analysis of Scanned Probe Images for Magnetic Focusing in Graphene

    Science.gov (United States)

    Bhandari, Sagar; Lee, Gil-Ho; Kim, Philip; Westervelt, Robert M.

    2017-07-01

    We have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN-graphene-hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons. The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.

  10. Monolithically Integrated, Mechanically Resilient Carbon-Based Probes for Scanning Probe Microscopy

    Science.gov (United States)

    Kaul, Anupama B.; Megerian, Krikor G.; Jennings, Andrew T.; Greer, Julia R.

    2010-01-01

    Scanning probe microscopy (SPM) is an important tool for performing measurements at the nanoscale in imaging bacteria or proteins in biology, as well as in the electronics industry. An essential element of SPM is a sharp, stable tip that possesses a small radius of curvature to enhance spatial resolution. Existing techniques for forming such tips are not ideal. High-aspect-ratio, monolithically integrated, as-grown carbon nanofibers (CNFs) have been formed that show promise for SPM applications by overcoming the limitations present in wet chemical and separate substrate etching processes.

  11. Scanning probe microscopes go video rate and beyond

    Science.gov (United States)

    Rost, M. J.; Crama, L.; Schakel, P.; van Tol, E.; van Velzen-Williams, G. B. E. M.; Overgauw, C. F.; ter Horst, H.; Dekker, H.; Okhuijsen, B.; Seynen, M.; Vijftigschild, A.; Han, P.; Katan, A. J.; Schoots, K.; Schumm, R.; van Loo, W.; Oosterkamp, T. H.; Frenken, J. W. M.

    2005-05-01

    In this article we introduce a, video-rate, control system that can be used with any type of scanning probe microscope, and that allows frame rates up to 200images/s. These electronics are capable of measuring in a fast, completely analog mode as well as in the more conventional digital mode. The latter allows measurements at low speeds and options, such as, e.g., atom manipulation, current-voltage spectroscopy, or force-distance curves. For scanning tunneling microscope (STM) application we implemented a hybrid mode between the well-known constant-height and constant-current modes. This hybrid mode not only increases the maximum speed at which the surface can be imaged, but also improves the resolution at lower speeds. Acceptable image quality at high speeds could only be obtained by pushing the performance of each individual part of the electronics to its limit: we developed a preamplifier with a bandwidth of 600kHz, a feedback electronics with a bandwidth of 1MHz, a home-built bus structure for the fast data transfer, fast analog to digital converters, and low-noise drivers. Future improvements and extensions to the control electronics can be realized easily and quickly, because of its open architecture with its modular plug-in units. In the second part of this article we show our high-speed results. The ultrahigh vacuum application of these control electronics on our (UHV)-STM enabled imaging speeds up to 0.3mm/s, while still obtaining atomic step resolution. At high frame rates, the images suffered from noticeable distortions, which we have been able to analyze by virtue of the unique access to the error (dZ) signal. The distortions have all been associated with mechanical resonances in the scan head of the UHV-STM. In order to reduce such resonance effects, we have designed and built a scan head with high resonance frequencies (⩾64kHz), especially for the purpose of testing the fast electronics. Using this scanner we have reached video-rate imaging speeds

  12. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    Science.gov (United States)

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  13. Scanning probe studies of the pilus nanowires in Geobacter sulfurreducens

    Science.gov (United States)

    Veazey, Joshua P.

    In microbial organisms like bacteria, pili (singular: pilus) are filament-like appendages that are nanometers in diameter and microns long. The sizes and structures of the different types of pili found in nature are adapted to serve one of many distinct functions for the organism from which they come. The pili expressed by the bacterium Geobacter sulfurreducens act as electrically conductive nanowires that provide conduits for electrons to leave the cell during its respiratory cycle. Biological experiments have suggested that long range electron transfer across micron distances may proceed along the protein matrix, rather than by metal cofactors (metal atoms bound to the protein). Protein conductivity across such distances would require a novel transport mechanism. In an effort to elucidate this mechanism, our lab has used two electronically sensitive scanning probe techniques: Scanning Tunneling Microscopy (STM) and Conductive Probe Atomic Force Microscopy (CP-AFM). I employed the high resolution imaging and electronic sensitivity of STM to resolve the molecular sub-structure and local electronic density of states (LDOS) at different points above pili from purified preparations, deposited onto a conducting substrate. The significant and stable tunneling currents achieved for biologically relevant voltages, in the absence of metal cofactors, demonstrated conduction between tip and substrate via the protein matrix. We observed periodicity of roughly 10 nm and 2.5 nm in topographs of the pili. In our acquisition of LDOS, we observed gap-like asymmetric energy spectra that were dependent upon the location of the tip above the pilus, suggestive of easier current flow out of one side of the cylindrical pilus and into the opposite side. Voltage-dependent STM imaging, which also contains information about the LDOS at each pixel, was consistent with this interpretation. The asymmetry in spectra observed on one pilus edge had a slightly larger magnitude than the other edge

  14. Laser scanning dental probe for endodontic root canal treatment

    Science.gov (United States)

    Blank, Molly A. B.; Friedrich, Michal; Hamilton, Jeffrey D.; Lee, Peggy; Berg, Joel; Seibel, Eric J.

    2011-03-01

    Complications that arise during endodontic procedures pose serious threats to the long-term integrity and health of the tooth. Potential complexities of root canals include residual pulpal tissue, cracks, mesial-buccal 2 and accessory canals. In the case of a failed root canal, a successful apicoectomy can be jeopardized by isthmuses, accessory canals, and root microfracture. Confirming diagnosis using a small imaging probe would allow proper treatment and prevent retreatment of endodontic procedures. An ultrathin and flexible laser scanning endoscope of 1.2 to 1.6mm outer diameter was used in vitro to image extracted teeth with varied root configurations. Teeth were opened using a conventional bur and high speed drill. Imaging within the opened access cavity clarified the location of the roots where canal filing would initiate. Although radiographs are commonly used to determine the root canal size, position, and shape, the limited 2D image perspective leaves ambiguity that could be clarified if used in conjunction with a direct visual imaging tool. Direct visualization may avoid difficulties in locating the root canal and reduce the number of radiographs needed. A transillumination imaging device with the separated illumination and light collection functions rendered cracks visible in the prepared teeth that were otherwise indiscernible using reflected visible light. Our work demonstrates that a small diameter endoscope with high spatial resolution may significantly increase the efficiency and success of endodontic procedures.

  15. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1993-01-01

    While the first two volumes on Scanning Tunneling Microscopy (STM) and its related scanning probe (SXM) methods have mainly concentrated on intro­ ducing the experimental techniques, as well as their various applications in different research fields, this third volume is exclusively devoted to the theory of STM and related SXM methods. As the experimental techniques including the reproducibility of the experimental results have advanced, more and more theorists have become attracted to focus on issues related to STM and SXM. The increasing effort in the development of theoretical concepts for STM/SXM has led to considerable improvements in understanding the contrast mechanism as well as the experimental conditions necessary to obtain reliable data. Therefore, this third volume on STM/SXM is not written by theorists for theorists, but rather for every scientist who is not satisfied by just obtaining real­ space images of surface structures by STM/SXM. After a brief introduction (Chap. 1), N. D. Lang first co...

  16. An Evanescent Field Optical Microscope. Scanning probe Microscopy

    NARCIS (Netherlands)

    van Hulst, N.F.; Segerink, Franciscus B.; Bölger, B.; Bölger, B.; Wickramasinghe, H. Kumar

    1991-01-01

    An Evanescent Field Optical Microscope (EFOM) is presented, which employs frustrated total internal reflection on a highly localized scale by means of a sharp dielectric tip. The coupling of the evanescent field to the sub-micrometer probe as a function of probe-sample distance, angle of incidence

  17. Scanning probe and micropatterning approaches for biomolecular screening applications

    CERN Document Server

    Wilde, L M

    2002-01-01

    Force mapping using atomic force microscopy (AFM) allows for the simultaneous acquisition of topography and probe-sample interaction data. For example, AFM probes functionalised with an antigen can be employed to map the spatial distribution of recognition events on a substrate functionalised with the complementary specific antibody. However, this technique is currently limited to the detection of a single receptor-ligand species. Were the detection of multiple receptor-ligand interactions possible, AFM force mapping would offer greater scope as a sensitive tool for bioassay and screening applications. This thesis outlines developments in probe and substrate immobilisation methods to facilitate this process. We have developed an immobilisation strategy, which allows two antigen species, human serum albumin (HSA) and the beta subunit of human chorionic gonadotropin (beta hCG) to be simultaneously present on an AFM probe. Single point force spectroscopy results have revealed the ability of such probes to discri...

  18. Scanning probe microscopy investigation of complex-oxide heterostructures

    Science.gov (United States)

    Bi, Feng

    Advances in the growth of precisely tailored complex-oxide heterostructures have led to new emergent behavior and associated discoveries. One of the most successful examples consists of an ultrathin layer of LaAlO 3 (LAO) deposited on TiO2-terminated SrTiO3 (STO), where a high mobility quasi-two dimensional electron liquid (2DEL) is formed at the interface. Such 2DEL demonstrates a variety of novel properties, including field tunable metal-insulator transition, superconductivity, strong spin-orbit coupling, magnetic and ferroelectric like behavior. Particularly, for 3-unit-cell (3 u.c.) LAO/STO heterostructures, it was demonstrated that a conductive atomic force microscope (c-AFM) tip can be used to "write" or "erase" nanoscale conducting channels at the interface, making LAO/STO a highly flexible platform to fabricate novel nanoelectronics. This thesis is focused on scanning probe microscopy studies of LAO/STO properties. We investigate the mechanism of c-AFM lithography over 3 u.c. LAO/STO in controlled ambient conditions by using a vacuum AFM, and find that the water molecules dissociated on the LAO surface play a critical role during the c-AFM lithography process. We also perform electro-mechanical response measurements over top-gated LAO/STO devices. Simultaneous piezoresponse force microscopy (PFM) and capacitance measurements reveal a correlation between LAO lattice distortion and interfacial carrier density, which suggests that PFM could not only serve as a powerful tool to map the carrier density at the interface but also provide insight into previously reported frequency dependence of capacitance enhancement of top-gated LAO/STO structures. To study magnetism at the LAO/STO interface, magnetic force microscopy (MFM) and magnetoelectric force microscopy (MeFM) are carried out to search for magnetic signatures that depend on the carrier density at the interface. Results demonstrate an electronicallycontrolled ferromagnetic phase on top-gated LAO

  19. Encapsulated tips for reliable nanoscale conduction in scanning probe technologies.

    Science.gov (United States)

    Bhaskaran, Harish; Sebastian, Abu; Drechsler, Ute; Despont, Michel

    2009-03-11

    Nanoscale tip apexes of conducting cantilever probes are important enablers for several conducting probe technologies that require reliable long-term operation, while preserving the nanoscale integrity of the tip apex. In this paper, the concept of an encapsulated tip with a nanoscale conducting core is presented. A method to fabricate such tips on conducting silicon microcantilevers is described. Long-term conduction and wear reliability of these nanoscale tips are evaluated systematically, and their ability to operate for sliding distances greater than 2 m in conduction and 11 m in wear on amorphous carbon is demonstrated. These results are expected to have an impact on the future of conducting probe-based technologies such as probe-based nanometrology, data storage and nanolithography.

  20. Online correction of scanning probe microscopes with pixel accuracy

    DEFF Research Database (Denmark)

    Dirscherl, Kai

    2000-01-01

    -20% depending on the piezo material used and the scan range. The change in sensitivity is up to 20% as well, depending on the scan frequency. Current software controlled SPM are equipped with an algorithm that changes the shape of the control voltage online in a way to produce a linear piezo movement...

  1. Carbon Nanotube Tip Probes: Stability and Lateral Resolution in Scanning Probe Microscopy and Application to Surface Science to Semiconductors

    Science.gov (United States)

    Nguyen, Cattien V.; Chao, Kuo-Jen; Stevens, Ramsey M. D.; Delzeit, Lance; Cassell, Alan; Han, Jie; Meyyappan, M.; Arnold, James (Technical Monitor)

    2001-01-01

    In this paper we present results on the stability and lateral resolution capability of carbon nanotube (CNT) scanning probes as applied to atomic force microscopy (AFM). Surface topography images of ultra-thin films (2-5 nm thickness) obtained with AFM are used to illustrate the lateral resolution capability of single-walled carbon nanotube probes. Images of metal films prepared by ion beam sputtering exhibit grain sizes ranging from greater than 10 nm to as small as approximately 2 nm for gold and iridium respectively. In addition, imaging stability and lifetime of multi-walled carbon nanotube scanning probes are studied on a relatively hard surface of silicon nitride (Si3N4). AFM images Of Si3N4 surface collected after more than 15 hrs of continuous scanning show no detectable degradation in lateral resolution. These results indicate the general feasibility of CNT tips and scanning probe microscopy for examining nanometer-scale surface features of deposited metals as well as non-conductive thin films. AFM coupled with CNT tips offers a simple and nondestructive technique for probing a variety of surfaces, and has immense potential as a surface characterization tool in integrated circuit manufacturing.

  2. Combination of scanning probe microscopy techniques for evaluating the electrical parameters of individual multiwalled carbon nanotubes

    Science.gov (United States)

    Sokolov, D. V.; Davletkildeev, N. A.; Bolotov, V. V.; Lobov, I. A.

    2017-10-01

    Using two techniques of scanning probe microscopy, the electrical properties (work function, Fermi level position, free carriers’ concentration, electrical resistance, conductivity, and carriers’ mobility) of individual multiwalled carbon nanotubes were evaluated.

  3. Scanning Probe Investigation of Pitting Corrosion on Aluminum 5083 H131

    Science.gov (United States)

    2014-05-01

    solution, and a pit is subsequently formed. Dislocation of the particle may have been facilitated by the AFM tip, formation of corrosion products, or...Scanning Probe Investigation of Pitting Corrosion on Aluminum 5083 H131 by Joseph P. Labukas and Kenneth E. Strawhecker ARL-TR-6925 May...Scanning Probe Investigation of Pitting Corrosion on Aluminum 5083 H131 Joseph P. Labukas and Kenneth E. Strawhecker Weapons and Materials

  4. Batch fabrication of scanning microscopy probes for thermal and magnetic imaging using standard micromachining

    NARCIS (Netherlands)

    Sarajlic, Edin; Vermeer, Rolf; Delalande, M.Y.; Siekman, Martin Herman; Huijink, R.; Fujita, H.; Abelmann, Leon

    2010-01-01

    We present a process for batch fabrication of a novel scanning microscopy probe for thermal and magnetic imaging using standard micromachining and conventional optical contact lithography. The probe features an AFM-type cantilever with a sharp pyramidal tip composed of four freestanding silicon

  5. A carbon nanofibre scanning probe assembled using an electrothermal microgripper

    DEFF Research Database (Denmark)

    Carlson, Kenneth; Dyvelkov, Karin Nordström; Eicchorn, V.

    2007-01-01

    Functional devices can be directly assembled using microgrippers with an in situ electron microscope. Two simple and compact silicon microgripper designs are investigated here. These are operated by electrothermal actuation, and are used to transfer a catalytically grown multi-walled carbon...... nanofibre from a fixed position on a substrate to the tip of an atomic force microscope cantilever, inside a scanning electron microscope. Scanning of high aspect ratio trenches using the nanofibre supertip shows a significantly better performance than that with standard pyramidal silicon tips. Based...

  6. Handheld scanning probes for optical coherence tomography: developments, applications, and perspectives

    Science.gov (United States)

    Duma, V.-F.; Demian, D.; Sinescu, C.; Cernat, R.; Dobre, G.; Negrutiu, M. L.; Topala, F. I.; Hutiu, Gh.; Bradu, A.; Podoleanu, A. G.

    2016-03-01

    We present the handheld scanning probes that we have recently developed in our current project for biomedical imaging in general and for Optical Coherence Tomography (OCT) in particular. OCT is an established, but dynamic imagistic technique based on laser interferometry, which offers micrometer resolutions and millimeters penetration depths. With regard to existing devices, the newly developed handheld probes are simple, light and relatively low cost. Their design is described in detail to allow for the reproduction in any lab, including for educational purposes. Two probes are constructed almost entirely from off-the-shelf components, while a third, final variant is constructed with dedicated components, in an ergonomic design. The handheld probes have uni-dimensional (1D) galvanometer scanners therefore they achieve transversal sections through the biological sample investigated - in contrast to handheld probes equipped with bi-dimensional (2D) scanners that can also achieve volumetric (3D) reconstructions of the samples. These latter handheld probes are therefore also discussed, as well as the possibility to equip them with galvanometer 2D scanners or with Risley prisms. For galvanometer scanners the optimal scanning functions studied in a series of previous works are pointed out; these functions offer a higher temporal efficiency/duty cycle of the scanning process, as well as artifact-free OCT images. The testing of the handheld scanning probes in dental applications is presented, for metal ceramic prosthesis and for teeth.

  7. Scanning Probe Evaluation of Electronic, Mechanical and Structural Material Properties

    Science.gov (United States)

    Virwani, Kumar

    2011-03-01

    We present atomic force microscopy (AFM) studies of a range of properties from three different classes of materials: mixed ionic electronic conductors, low-k dielectrics, and polymer-coated magnetic nanoparticles. (1) Mixed ionic electronic conductors are being investigated as novel diodes to drive phase-change memory elements. Their current-voltage characteristics are measured with direct-current and pulsed-mode conductive AFM (C-AFM). The challenges to reliability of the C-AFM method include the electrical integrity of the probe, the sample and the contacts, and the minimization of path capacitance. The role of C-AFM in the optimization of these electro-active materials will be presented. (2) Low dielectric constant (low-k) materials are used in microprocessors as interlayer insulators, a role directly affected by their mechanical performance. The mechanical properties of nanoporous silicate low-k thin films are investigated in a comparative study of nanomechanics measured by AFM and by traditional nanoindentation. Both methods are still undergoing refinement as reliable analytical tools for determining nanomechanical properties. We will focus on AFM, the faster of the two methods, and its developmental challenges of probe shape, cantilever force constant, machine compliance and calibration standards. (3) Magnetic nanoparticles are being explored for their use in patterned media for magnetic storage. Current methods for visualizing the core-shell structure of polymer-coated magnetic nanoparticles include dye-staining the polymer shell to provide contrast in transmission electron microscopy. AFM-based fast force-volume measurements provide direct visualization of the hard metal oxide core within the soft polymer shell based on structural property differences. In particular, the monitoring of adhesion and deformation between the AFM tip and the nanoparticle, particle-by-particle, provides a reliable qualitative tool to visualize core-shell contrast without the use

  8. A fast spatial scanning combination emissive and Mach probe for edge plasma diagnosis

    Science.gov (United States)

    Lehmer, R. D.; Labombard, B.; Conn, R. W.

    1989-04-01

    A fast spatially scanning emissive and Mach probe has been developed for the measurement of plasma profiles in the PISCES facility at UCLA. A pneumatic cylinder is used to drive a multiple tip probe along a 15 cm stroke in less than 400 msec, giving single shot profiles while limiting power deposition to the probe. A differentially pumped sliding O-ring seal allows the probe to be moved between shots to infer two and three dimensional profiles. The probe system has been used to investigate the plasma potential, density, and parallel Mach number profiles of the presheath induced by a wall surface and scrape-off-layer profile modifications in biased limiter simulation experiments. Details of the hardware, data acquisition electronics, and tests of probe reliability are discussed.

  9. Preparation of platinum/iridium scanning probe microscopy tips

    DEFF Research Database (Denmark)

    Sørensen, Alexis Hammer; Hvid, U.; Mortensen, M.W.

    1999-01-01

    material being etched is platinum/iridium (10%) the influence of the stop phase of the ac current terminating each pulse in the second etching is found to be negligible, while in the case of second etching of tungsten wires it is important to break the pulse in a certain phase to avoid formation of a thick...... of platinum from the wire surface and hereby give rise to "etching" of the wire. In the second etching blunt tips become sharp while tips which are already sharp apparently stay sharp. Therefore, the second etching scheme with pulses separated by pauses is found to be a very important factor...... for the production of sharp tips. After being etched the tips are ready for use in scanning tunneling microscopes, or they may be bent to form integrated tip/cantilever systems in ordinary commercial atomic force microscopes, being applicable as tapping mode tips and as electrostatic force microscopy tips. ©1999...

  10. Artifact mitigation of ptychography integrated with on-the-fly scanning probe microscopy

    Science.gov (United States)

    Huang, Xiaojing; Yan, Hanfei; Ge, Mingyuan; Öztürk, Hande; Nazaretski, Evgeny; Robinson, Ian K.; Chu, Yong S.

    2017-07-01

    We report our experiences with conducting ptychography simultaneously with the X-ray fluorescence measurement using the on-the-fly mode for efficient multi-modality imaging. We demonstrate that the periodic artifact inherent to the raster scan pattern can be mitigated using a sufficiently fine scan step size to provide an overlap ratio of >70%. This allows us to obtain transmitted phase contrast images with enhanced spatial resolution from ptychography while maintaining the fluorescence imaging with continuous-motion scans on pixelated grids. This capability will greatly improve the competence and throughput of scanning probe X-ray microscopy.

  11. Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes

    Energy Technology Data Exchange (ETDEWEB)

    Riener, Christian K.; Kienberger, Ferry; Hahn, Christoph D.; Buchinger, Gerhard M.; Egwim, Innocent O.C.; Haselgruebler, Thomas; Ebner, Andreas; Romanin, Christoph; Klampfl, Christian; Lackner, Bernd; Prinz, Heino; Blaas, Dieter; Hinterdorfer, Peter; Gruber, Hermann J

    2003-11-14

    Single molecule recognition force microscopy (SMRFM) is a versatile atomic force microscopy (AFM) method to probe specific interactions of cognitive molecules on the single molecule level. It allows insights to be gained into interaction potentials and kinetic barriers and is capable of mapping interaction sites with nm positional accuracy. These applications require a ligand to be attached to the AFM tip, preferably by a distensible poly(ethylene glycol) (PEG) chain between the measuring tip and the ligand molecule. The PEG chain greatly facilitates specific binding of the ligand to immobile receptor sites on the sample surface. The present study contributes to tip-PEG-ligand tethering in three ways: (i) a convenient synthetic route was found to prepare NH{sub 2}-PEG-COOH which is the key intermediate for long heterobifunctional crosslinkers; (ii) a variety of heterobifunctional PEG derivatives for tip-PEG-ligand linking were prepared from NH{sub 2}-PEG-COOH; (iii) in particular, a new PEG crosslinker with one thiol-reactive end and one terminal nitrilotriacetic acid (NTA) group was synthesized and successfully used to tether His{sub 6}-tagged protein molecules to AFM tips via noncovalent NTA-Ni{sup 2+}-His{sub 6} bridges. The new crosslinker was applied to link a recombinant His{sub 6}-tagged fragment of the very-low density lipoprotein receptor to the AFM tip whereupon specific docking to the capsid of human rhinovirus particles was observed by force microscopy. In a parallel study, the specific interaction of the small GTPase Ran with the nuclear import receptor importin {beta}1 was studied in detail by SMRFM, using the new crosslinker to link His{sub 6}-tagged Ran to the measuring tip [Nat. Struct. Biol. (2003), 10, 553-557].

  12. Combined nanoprobes for scanning probe microscopy: laser technology for processing and testing

    Science.gov (United States)

    Veiko, V. P.; Golubok, A. O.; Zuong, Z.; Varkentina, N. V.; Yakovlev, E. B.

    2008-02-01

    Scanning probe microscopy (SPM) is a high spatial resolution method of surface topography visualization and measurement of its local properties. The detecting of interaction arising between the sharp solid-state probe and the sample surface is the foundation of SPM. In dependence from nature of this interaction the scanning tunnel microscopy (STM), scanning force microscopy (SFM), scanning near field optical microscopy (SNOM), etc. are distinguished. The spatial resolution of all types of probe microscopy determins both sharpness of increasing of interaction between a probe and a sample at their approach, and shape and size of a top of a solid-state probe. So, the progress in SPM information capabilities is highly depends from probe properties and first of all from properly fabricated aperture size. Fabrication procedures are rather complicated because of nanometric scale size of aperture and hard requirements to reproducibility and need to be improved. The way how to do it is involving of feed-back in a processing procedure-results in two types of feedback for the process of drawing-out has been suggested, tested and installed into the technological set-up. Different probes have been fabricated by laser-assisted drawing-out during this work: SNOM types from optical fibers, micropipettes from quartz glass capillaries, micropipettes with microwires inside and with metallic covers outside. Some examples of application of above mentioned combined probes for cell membrane technology are described. Most important from them are topographical studying of cells and bacteria in living condition (in liquid) and studying of the mechanical properties of cell (rigidity of cell membrane) using the nanopipette as a tip of a force sensor. Also measurement of ion current that runs through cell membrane during its metabolic process using the nanopipette as well as in the well-known patch-clamp method have been done.

  13. Data analysis using the Internet: the World Wide Web scanning probe microscopy data analysis system.

    Science.gov (United States)

    Williams, P M; Davies, M C; Roberts, C J; Tendler, S J

    1997-10-01

    The first interactive world-wide web-based image analysis system is presented (http://pharm6.pharm.nottingham.ac.uk/processing/main. html). The system, currently tailored to scanning probe microscopy image data, has been developed to permit the use of software algorithms developed within our laboratory by researchers throughout the world. The implementation and functionality of the scanning probe microscopy server is described. Feedback from users of the facility has demonstrated its value within the research community, and highlighted key operational issues which are to be addressed. A future role of Internet-based data processing software is also discussed.

  14. Final report: Mapping Interactions in Hybrid Systems with Active Scanning Probes

    Energy Technology Data Exchange (ETDEWEB)

    Berezovsky, Jesse [Case Western Reserve Univ., Cleveland, OH (United States)

    2017-09-29

    This project aimed to study and map interactions between components of hybrid nanodevices using a novel scanning probe approach. To enable this work, we initially constructed a flexible experimental apparatus allowing for simultaneous scanning probe and confocal optical microscopy measurements. This setup was first used for all-optical measurements of nanostructures, with the focus then shifting to hybrid devices in which single coherent electron spins are coupled to micron-scale ferromagnetic elements, which may prove useful for addressing single spins, enhanced sensing, or spin-wave-mediated coupling of spins for quantum information applications. A significant breakthrough was the realization that it is not necessary to fabricate a magnetic structure on a scanning probe – instead a ferromagnetic vortex core can act as an integrated, solid state, scanning probe. The core of the vortex produces a very strong, localized fringe field which can be used analogously to an MFM tip. Unlike a traditional MFM tip, however, the vortex core is scanned within an integrated device (eliminating drift), and can be moved on vastly faster timescales. This approach allows the detailed investigation of interactions between single spins and complex driven ferromagnetic dynamics.

  15. RTSPM: real-time Linux control software for scanning probe microscopy.

    Science.gov (United States)

    Chandrasekhar, V; Mehta, M M

    2013-01-01

    Real time computer control is an essential feature of scanning probe microscopes, which have become important tools for the characterization and investigation of nanometer scale samples. Most commercial (and some open-source) scanning probe data acquisition software uses digital signal processors to handle the real time data processing and control, which adds to the expense and complexity of the control software. We describe here scan control software that uses a single computer and a data acquisition card to acquire scan data. The computer runs an open-source real time Linux kernel, which permits fast acquisition and control while maintaining a responsive graphical user interface. Images from a simulated tuning-fork based microscope as well as a standard topographical sample are also presented, showing some of the capabilities of the software.

  16. In situ surface reduction of a NiO-YSZ-alumina composite using scanning probe microscopy

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Jacobsen, Torben; Thydén, Karl Tor Sune

    2014-01-01

    In situ surface reductions of NiO-YSZ-Al2O3 composites into Ni-YSZ-Al2O3 cermets were carried out at 312–525 °C in a controlled atmosphere high-temperature scanning probe microscope (CAHT-SPM) in dry and humidified 9 % H2 in N2. The reduction of NiO was followed by contact mode scanning of topogr......In situ surface reductions of NiO-YSZ-Al2O3 composites into Ni-YSZ-Al2O3 cermets were carried out at 312–525 °C in a controlled atmosphere high-temperature scanning probe microscope (CAHT-SPM) in dry and humidified 9 % H2 in N2. The reduction of NiO was followed by contact mode scanning...

  17. Apertureless scanning microscope probe as a detector of semiconductor laser emission

    Energy Technology Data Exchange (ETDEWEB)

    Dunaevskiy, Mikhail, E-mail: Mike.Dunaeffsky@mail.ioffe.ru [Ioffe Institute, Saint-Petersburg 194021 (Russian Federation); National Research University of Information Technologies, Mechanics and Optics (ITMO), Saint-Petersburg 197101 (Russian Federation); Dontsov, Anton; Monakhov, Andrei [Ioffe Institute, Saint-Petersburg 194021 (Russian Federation); Alekseev, Prokhor; Titkov, Alexander [Ioffe Institute, Saint-Petersburg 194021 (Russian Federation); Saint Petersburg Electrotechnical University ' LETI,' Saint-Petersburg 197376 (Russian Federation); Baranov, Alexei; Girard, Paul; Arinero, Richard; Teissier, Roland [Institut d' Electronique du Sud, UMR 5214 UM2-CNRS, CC082, Université Montpellier 2, 34095 Montpellier Cedex 5 (France)

    2015-04-27

    An operating semiconductor laser has been studied using a scanning probe microscope. A shift of the resonance frequency of probe that is due to its heating by laser radiation has been analyzed. The observed shift is proportional to the absorbed radiation and can be used to measure the laser near field or its output power. A periodical dependence of the measured signal has been observed as a function of distance between the probe and the surface of the laser due to the interference of the outgoing and cantilever-reflected waves. Due to the multiple reflections resulting in the interference, the light absorption by the probe cantilever is greatly enhanced compared with a single pass case. Interaction of infrared emission of a diode laser with different probes has been studied.

  18. Combining optical tweezers and scanning probe microscopy to study DNA-protein interactions

    NARCIS (Netherlands)

    Huisstede, Jurgen H G; Subramaniam, Vinod; Bennink, Martin L

    We present the first results obtained with a new instrument designed and built to study DNA-protein interactions at the single molecule level. This microscope combines optical tweezers with scanning probe microscopy and allows us to locate DNA-binding proteins on a single suspended DNA molecule. A

  19. Observation of nanostructure by scanning near-field optical microscope with small sphere probe

    Directory of Open Access Journals (Sweden)

    Yasushi Oshikane, Toshihiko Kataoka, Mitsuru Okuda, Seiji Hara, Haruyuki Inoue and Motohiro Nakano

    2007-01-01

    Full Text Available Step and terrace structure has been observed in an area of 1 μm×1 μm on the cleaved surface of KCl–KBr solid-solution single crystal by scanning near-field optical microscope (SNOM with a small sphere probe of 500 nm diameter. Lateral spatial resolution of the SNOM system was estimated to be 20 nm from the observation of step width and the scanning-step interval. Vertical spatial resolution was estimated to be 5–2 nm from the observation of step height and noise level of photomultiplier tube (PMT. With applying a dielectric dipole radiation model to the probe surface, the reason why such a high spatial resolution was obtained in spite of the 500 nm sphere probe, was understood as the effect of the near-field term appeared in the radiation field equations.

  20. Development of a scanning nanopipette probe microscope for fine processing using atmospheric pressure plasma jet

    Science.gov (United States)

    Morimatsu, Daisuke; Sugimoto, Hiromitsu; Nakamura, Atsushi; Ogino, Akihisa; Nagatsu, Masaaki; Iwata, Futoshi

    2016-08-01

    We developed a novel technique for fine material processing based on a localized atmospheric-pressure plasma jet (APPJ) using a scanning probe microscope equipped with a nanopipette. Using a nanopipette — a tapered glass capillary with an aperture of sub-micrometer diameter — as a nozzle makes it possible to localize the discharge area of the APPJ for fine surface processing. The nanopipette can also be used as a probe for a scanning probe microscope operated with shear-force feedback control, which is capable of positioning the pipette edge in the vicinity of material surfaces for APPJ processing and imaging of the processed surface. Sub-micrometer holes and line patterns were successfully processed on a photoresist film. It was possible to control the size of the processed patterns by varying the applied pulse voltage and the distance between the pipette and the surface.

  1. Single-body lensed-fiber scanning probe actuated by magnetic force for optical imaging.

    Science.gov (United States)

    Min, Eun Jung; Na, Jihoon; Ryu, Seon Young; Lee, Byeong Ha

    2009-06-15

    We propose a fiber-based hand-held scanning probe suitable for the sample arm of an optical imaging system including optical coherence tomography. To achieve compactness, a single-body lensed-fiber and a solenoid actuator were utilized. The focusing lens of the probe was directly formed onto the distal end of a fiber, which eliminated the need for additional optical components and optical alignment. A ferromagnetic iron bead was glued onto the middle of the fiber to enable actuation by magnetic force, which allowed easy fabrication and good practicality. The fiber piece having the built-in fiber lens was forced to oscillate in its resonant frequency. With the implemented probe, optical coherence tomography images of a human fingertip and a pearl were obtained at an imaging speed of 30 frames/s over a scanning range of 4 mm.

  2. Fabrication and characterization of probes for combined scanning electrochemical/optical microscopy experiments.

    Science.gov (United States)

    Lee, Youngmi; Bard, Allen J

    2002-08-01

    A technique that combines scanning electrochemical microscopy (SECM) and optical microscopy (OM) was implemented with a new probe tip. The tip for scanning electrochemicaVoptical microscopy (SECM/OM) was constructed by insulating a typical gold-coated near-field scanning optical microscopy tip using electrophoretic anodic paint. Once fabricated, the tip was characterized by steady-state cyclic voltammetry, as well as optical and electrochemical approach experiments. This tip generated a stable steady-state current and well-defined SECM approach curves for both conductive and insulating substrates. Durable tips whose geometry was a ring with < 1 microm as outer ring radius could be consistently fabricated. Simultaneous electrochemical and optical images of an interdigitated array electrode were obtained with a resolution on the micrometer scale, demonstrating good performance of the tip as both an optical and an electrochemical probe for imaging microstructures. The SECM feedback current measurements were successfully employed to determine tip-substrate distances for imaging.

  3. Resolution enhancement of scanning four-point-probe measurements on two-dimensional systems

    DEFF Research Database (Denmark)

    Hansen, Torben Mikael; Stokbro, Kurt; Hansen, Ole

    2003-01-01

    /15 of the four-point-probe electrode spacing. The real conductance sheet is simulated by a grid of discrete resistances, which is optimized by means of a standard optimization algorithm, until the simulated voltage-to-current ratios converges with the measurement. The method has been tested against simulated...... data as well as real measurements and is found to successfully deconvolute the four-point-probe measurements. In conjunction with a newly developed scanning four-point probe with electrode spacing of 1.1 µm, the method can resolve the conductivity with submicron resolution. ©2003 American Institute......A method to improve the resolution of four-point-probe measurements of two-dimensional (2D) and quasi-2D systems is presented. By mapping the conductance on a dense grid around a target area and postprocessing the data, the resolution can be improved by a factor of approximately 50 to better than 1...

  4. Tuning Localized Surface Plasmon Resonance in Scanning Near-Field Optical Microscopy Probes.

    Science.gov (United States)

    Vasconcelos, Thiago L; Archanjo, Bráulio S; Fragneaud, Benjamin; Oliveira, Bruno S; Riikonen, Juha; Li, Changfeng; Ribeiro, Douglas S; Rabelo, Cassiano; Rodrigues, Wagner N; Jorio, Ado; Achete, Carlos A; Cançado, Luiz Gustavo

    2015-06-23

    A reproducible route for tuning localized surface plasmon resonance in scattering type near-field optical microscopy probes is presented. The method is based on the production of a focused-ion-beam milled single groove near the apex of electrochemically etched gold tips. Electron energy-loss spectroscopy and scanning transmission electron microscopy are employed to obtain highly spatially and spectroscopically resolved maps of the milled probes, revealing localized surface plasmon resonance at visible and near-infrared wavelengths. By changing the distance L between the groove and the probe apex, the localized surface plasmon resonance energy can be fine-tuned at a desired absorption channel. Tip-enhanced Raman spectroscopy is applied as a test platform, and the results prove the reliability of the method to produce efficient scattering type near-field optical microscopy probes.

  5. Green's function modeling of response of two-dimensional materials to point probes for scanning probe microscopy.

    Science.gov (United States)

    Tewary, V K; Quardokus, Rebecca C; DelRio, Frank W

    2016-04-29

    A Green's function (GF) method is developed for interpreting scanning probe microscopy (SPM) measurements on new two-dimensional (2D) materials. GFs for the Laplace/Poisson equations are calculated by using a virtual source method for two separate cases of a finite material containing a rectangular defect and a hexagonal defect. The prescribed boundary values are reproduced almost exactly by the calculated GFs. It is suggested that the GF is not just a mathematical artefact but a basic physical characteristic of material systems, which can be measured directly by SPM for 2D solids. This should make SPM an even more powerful technique for characterization of 2D materials.

  6. Scanning probe microscopy estimation of the wear resistance of the surface of a modified PVC film

    Science.gov (United States)

    Kochetkova, A. S.; Gorbushin, P. N.; Sosnov, E. A.; Kolert, K.; Malygin, A. A.

    2017-04-01

    An atomic force microscopy technique is proposed to determine the wear resistance of a protective coating deposited by the sol-gel method on the surface of a polyvinylchloride film. The force of action of a probe on a sample is estimated under various scanning conditions. It is shown that the obtained data on the resistance of a coating to the action of a probe in the contact mode can be used to qualitatively estimate the adhesion of the coating to the surface of a polymer matrix.

  7. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    Science.gov (United States)

    Nishikawa, Osamu; Taniguchi, Masahiro

    2017-04-01

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  8. An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography.

    Science.gov (United States)

    Mochalov, Konstantin E; Chistyakov, Anton A; Solovyeva, Daria O; Mezin, Alexey V; Oleinikov, Vladimir A; Vaskan, Ivan S; Molinari, Michael; Agapov, Igor I; Nabiev, Igor; Efimov, Anton E

    2017-11-01

    In the past decade correlative microscopy, which combines the potentials of different types of high-resolution microscopies with a variety of optical microspectroscopy techniques, has been attracting increasing attention in material science and biological research. One of outstanding solutions in this area is the combination of scanning probe microscopy (SPM), which provides data on not only the topography, but also the spatial distribution of a wide range of physical properties (elasticity, conductivity, etc.), with ultramicrotomy, allowing 3D multiparametric examination of materials. The combination of SPM and ultramicrotomy (scanning probe nanotomography) is very appropriate for characterization of soft multicompound nanostructurized materials, such as polymer matrices and microstructures doped with different types of nanoparticles (magnetic nanoparticles, quantum dots, nanotubes, etc.), and biological materials. A serious problem of this technique is a lack of chemical and optical characterization tools, which may be solved by using optical microspectroscopy. Here, we report the development of an instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography in a single apparatus. This approach retains all the advantages of SPM and upright optical microspectroscopy and allows 3D multiparametric characterization using both techniques. As the first test of the system developed, we have performed correlative characterization of the morphology and the magnetic and fluorescent properties of fluorescent magnetic microspheres doped with a fluorescent dye and magnetic nanoparticles. The results of this study can be used to obtain 3D volume images of a specimen for most high-resolution near-field scanning probe microscopies: SNOM, TERS, AFM-IR, etc. This approach will result in development of unique techniques combining the advantages of SPM (nanoscale morphology and a wide range of physical parameters) and high-resolution optical

  9. Practical aspects of single-pass scan Kelvin probe force microscopy

    Science.gov (United States)

    Li, Guangyong; Mao, Bin; Lan, Fei; Liu, Liming

    2012-11-01

    The single-pass scan Kelvin probe force microscopy (KPFM) in ambient condition has a few advantages over the dual-pass lift-up scan KPFM. For example, its spatial resolution is expected to be higher; and its topographical errors caused by electrostatic forces are minimized because electrostatic forces are actively suppressed during the simultaneous topographical and KPFM measurement. Because single-pass scan KPFM in ambient condition is relatively new, it received little attention in the literature so far. In this article, we discuss several major practical aspects of single-pass scan KPFM especially in ambient condition. First, we define the resolution using a point spread function. With this definition, we analyze the relation between the resolution and the scanning parameters such as tip apex radius and tip-surface distance. We further study the accuracy of KPFM based on the point spread function. Then, we analyze the sensitivity of KPFM under different operation modes. Finally, we investigate the crosstalk between the topographical image and the surface potential image and demonstrate the practical ways to minimize the crosstalk. These discussions not only help us to understand the single-pass scan KPFM but also provide practical guidance in using single-pass scan KPFM.

  10. Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen R.; Petersen, Dirch Hjorth

    2014-01-01

    Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green's function formalism, and apply it to graphene. Sampling the local conduction properties at finite...... length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. Spectral signatures in the Fourier transforms of real space conductance maps include characteristics that can be related...... to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements. © 2014 American Physical Society....

  11. Ultrasound probe and needle-guide calibration for robotic ultrasound scanning and needle targeting.

    Science.gov (United States)

    Kim, Chunwoo; Chang, Doyoung; Petrisor, Doru; Chirikjian, Gregory; Han, Misop; Stoianovici, Dan

    2013-06-01

    Image-to-robot registration is a typical step for robotic image-guided interventions. If the imaging device uses a portable imaging probe that is held by a robot, this registration is constant and has been commonly named probe calibration. The same applies to probes tracked by a position measurement device. We report a calibration method for 2-D ultrasound probes using robotic manipulation and a planar calibration rig. Moreover, a needle guide that is attached to the probe is also calibrated for ultrasound-guided needle targeting. The method is applied to a transrectal ultrasound (TRUS) probe for robot-assisted prostate biopsy. Validation experiments include TRUS-guided needle targeting accuracy tests. This paper outlines the entire process from the calibration to image-guided targeting. Freehand TRUS-guided prostate biopsy is the primary method of diagnosing prostate cancer, with over 1.2 million procedures performed annually in the U.S. alone. However, freehand biopsy is a highly challenging procedure with subjective quality control. As such, biopsy devices are emerging to assist the physician. Here, we present a method that uses robotic TRUS manipulation. A 2-D TRUS probe is supported by a 4-degree-of-freedom robot. The robot performs ultrasound scanning, enabling 3-D reconstructions. Based on the images, the robot orients a needle guide on target for biopsy. The biopsy is acquired manually through the guide. In vitro tests showed that the 3-D images were geometrically accurate, and an image-based needle targeting accuracy was 1.55 mm. These validate the probe calibration presented and the overall robotic system for needle targeting. Targeting accuracy is sufficient for targeting small, clinically significant prostatic cancer lesions, but actual in vivo targeting will include additional error components that will have to be determined.

  12. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong Yongpeng [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China)], E-mail: yongpengt@yahoo.com.cn; Li Changming [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Liang Feng [Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen Jianmin [Shenzhen Municipal Hospital for Chronic Disease Control and Prevention, Guangdong 518020 (China); Zhang Hong; Liu Guoqing; Sun Huibin [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China); Luong, John H.T. [Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, H4P 2R2 (Canada)

    2008-12-15

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al{sub 2}O{sub 3} and TiO{sub 2}) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl{sub 2}) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe{sub 2}O{sub 3} nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  13. Micro-four-point probes in a UHV scanning electron microscope for in-situ surface-conductivity measurements

    DEFF Research Database (Denmark)

    Shiraki, I.; Nagao, T.; Hasegawa, S.

    2000-01-01

    For in-situ measurements of surface conductivity in ultrahigh vacuum (UHV), we have installed micro-four-point probes (probe spacings down to 4 mum) in a UHV scanning electron microscope (SEM) combined with scanning reflection-high-energy electron diffraction (RHEED). With the aid of piezoactuators...... for precise positioning of the probes, local conductivity of selected surface domains of well-defined superstructures could be measured during SEM and RHEED observations. It was found that the surface sensitivity of the conductivity measurements was enhanced by reducing the probe spacing, enabling...

  14. Scanning MWCNT-Nanopipette and Probe Microscopy: Li Patterning and Transport Studies.

    Science.gov (United States)

    Larson, Jonathan M; Bharath, Satyaveda C; Cullen, William G; Reutt-Robey, Janice E

    2015-10-07

    A carbon-nanotube-enabling scanning probe technique/nanotechnology for manipulating and measuring lithium at the nano/mesoscale is introduced. Scanning Li-nanopipette and probe microscopy (SLi-NPM) is based on a conductive atomic force microscope (AFM) cantilever with an open-ended multi-walled carbon nanotube (MWCNT) affixed to its apex. SLi-NPM operation is demonstrated with a model system consisting of a Li thin film on a Si(111) substrate. By control of bias, separation distance, and contact time, attograms of Li can be controllably pipetted to or from the MWCNT tip. Patterned surface Li features are then directly probed via noncontact AFM measurements with the MWCNT tip. The subsequent decay of Li features is simulated with a mesoscale continuum model, developed here. The Li surface diffusion coefficient for a four (two) Li layer thick film is measured as D=8(±1.2)×10(-15) cm(2) s(-1) (D=1.75(±0.15)×10(-15) cm(2) s(-1)). Dual-Li pipetting/measuring with SLi-NPM enables a broad range of time-dependent Li and nanoelectrode characterization studies of fundamental importance to energy-storage research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Use Of Scanning Probe Microscopy To Investigate Crystal-Fluid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Orme, C A; Giocondi, J L

    2007-04-16

    Over the past decade there has been a natural drive to extend the investigation of dynamic surfaces in fluid environments to higher resolution characterization tools. Various aspects of solution crystal growth have been directly visualized for the first time. These include island nucleation and growth using transmission electron microscopy and scanning tunneling microscopy; elemental step motion using scanning probe microscopy; and the time evolution of interfacial atomic structure using various diffraction techniques. In this lecture we will discuss the use of one such in situ method, scanning probe microscopy, as a means of measuring surface dynamics during crystal growth and dissolution. We will cover both practical aspects of imaging such as environmental control, fluid flow, and electrochemical manipulation, as well as the types of physical measurements that can be made. Measurements such as step motion, critical lengths, nucleation density, and step fluctuations, will be put in context of the information they provide about mechanistic processes at surfaces using examples from metal and mineral crystal growth.

  16. Scanning probe microscopy: instrumentation and applications on thin films and magnetic multilayers.

    Science.gov (United States)

    Karoutsos, Vagelis

    2009-12-01

    In this article we present a review on instrumentation and the modes of operation of a scanning probe microscope. In detail, we review the main techniques of Scanning Probe Microscopy (SPM), which are Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM), focusing our attention on the latter one. The AFM instrument provides information on the roughness and grain size of thin films. As an example we review recent results on two metallic thin film systems: thin Ag films deposited on glass, and Ni/Pt compositionally modulated multilayers deposited on glass, Si, and polyimide substrates. To show the validity of the grain size measurements, we compare the data with the ones resulting from X-ray diffraction (XRD) measurements. We show that the AFM results are reliable for grain diameters as small as 14 nm, which is approximately comparable to the tip radius. Finally, we deal with Magnetic Force Microscopy (MFM) results on Co/Pt and Co/Au multilayers. We observe perpendicularly magnetized domains. The domain configurations are correlated to the magnetization hysteresis curves.

  17. Scanning Hall Probe Microscopy of Magnetic Vortices inVery Underdoped yttrium-barium-copper-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Guikema, Janice Wynn; /SLAC, SSRL

    2005-12-02

    Since their discovery by Bednorz and Mueller (1986), high-temperature cuprate superconductors have been the subject of intense experimental research and theoretical work. Despite this large-scale effort, agreement on the mechanism of high-T{sub c} has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density n{sub s}/m*. For this dissertation I implemented a scanning Hall probe microscope and used it to study magnetic vortices in newly available single crystals of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} (Liang et al. 1998, 2002). These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth {lambda}{sub ab}), and revealed an intriguing phenomenon of ''split'' vortices. Scanning Hall probe microscopy is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-{Phi}{sub 0} (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail scanning Hall probe (and SQUID) microscopy studies of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} crystals with T{sub c} {le} 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher (2000, 2001b). We searched for predicted hc/e vortices (Wynn et al. 2001) and a vortex memory effect (Bonn et al. 2001) with null results, placing upper bounds on the vison energy inconsistent with

  18. THE INTEGRATED USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY, AND VIRTUAL REALITY TO PREDICT THE CHEMICAL REACTIVITY OF ENVIRONMENTAL SURFACES

    Science.gov (United States)

    In the last decade three new techniques scanning probe microscopy (SPM), virtual reality (YR) and computational chemistry ave emerged with the combined capability of a priori predicting the chemically reactivity of environmental surfaces. Computational chemistry provides the cap...

  19. NATO Advanced Study Institute on Scanning Probe Microscopy : Characterization, Nanofabrication and Device Application of Functional Materials

    CERN Document Server

    Vilarinho, Paula Maria; Kingon, Angus; Scanning Probe Microscopy : Characterization, Nanofabrication and Device Application of Functional Materials

    2005-01-01

    As the characteristic dimensions of electronic devices continue to shrink, the ability to characterize their electronic properties at the nanometer scale has come to be of outstanding importance. In this sense, Scanning Probe Microscopy (SPM) is becoming an indispensable tool, playing a key role in nanoscience and nanotechnology. SPM is opening new opportunities to measure semiconductor electronic properties with unprecedented spatial resolution. SPM is being successfully applied for nanoscale characterization of ferroelectric thin films. In the area of functional molecular materials it is being used as a probe to contact molecular structures in order to characterize their electrical properties, as a manipulator to assemble nanoparticles and nanotubes into simple devices, and as a tool to pattern molecular nanostructures. This book provides in-depth information on new and emerging applications of SPM to the field of materials science, namely in the areas of characterisation, device application and nanofabrica...

  20. Preparations of Zinc Oxides and Characterization of the Photovoltaic Behavior Using a Scanning Kelvin Probe

    Science.gov (United States)

    He, Y.; Zhi, W.; Zhou, B. O.

    Surface photovoltage of semiconductors depend strongly on their electronic structures, in particular, their Fermi energy level. This offers a possibility to characterize photoelectronic behavior using the Kelvin probe structure by measurements of work function (WF). In this paper, ZnO films were prepared using the CVD method and their microstructures and morphology were characterized using the XRD and SEM. Furthermore, photovoltage evolution and WF of selected ZnO samples were measured using a scanning Kelvin probe (SKP) system. It is found that the surface photovoltage and its time-resolved evolution process as well as the energy level structure of ZnO films can be correlated to WF very well. The present study therefore provides a simple and practical methodology for the characterization of photovoltaic behavior of semiconductor films.

  1. ANALYSIS OF SURFACE DEFECTS OF ALUMINUM AND ITS ALLOYS WITH A SCANNING KELVIN PROBE

    Directory of Open Access Journals (Sweden)

    A. K. Tyavlovsky

    2017-01-01

    Full Text Available Currently, the use of probe electrometry in non-destructive testing is constrained by the complexity of measurement results interpretation. An output signal of electrometric probe depends on a number of physical and chemical parameters of surface including chemical composition variations, stresses, dislocations, crystallographic orientation of a surface, etc. The study aims to the use of probe electrometry methods for nondestructive testing and analysis of precision metal surfaces’ defects after different treatment or processing.Control of surface defects of aluminum and its alloys was performed with a scanning Kelvin probe technique. The results of scanning were plotted in a form of contact potential difference (CPD distribution map. Additionally, a histogram of CPD values distribution and statistical characteristics including the expectation of CPD mean value and histogram half-width were calculated either for the whole distribution or for each individual mode in a case of multimodal distribution.The spatial CPD distribution of A99 aluminum and AMG-2 alloy surfaces after electrochemical polishing and diamond finishing was studied. An additional study was held for AMG-2 surface after the formation of 30 microns thick specific nanostructured alumina oxide surface layer. Higher quality surfaces have characterized as more homogeneous distribution of the physical properties (at half-width distribution histogram. Surfaces with higher mechanical strength and overall better mechanical properties found to have lower CPD values that correspond to higher electron work function and surface energy. The presence of the second mode in the CPD distribution histogram indicates the significant proportion of defect areas on the sample surface.Analysis of visualized CPD distribution maps using defined criteria allows detecting and characterizing such defects as residual stress areas, areas with reduced microhardness, surface contamination spots, corrosion

  2. Vortex imaging and local magnetization studies in HTS by scanning Hall probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, A.; Pross, A.; Cole, D.; Bending, S

    2004-08-01

    We have used scanning Hall probe microscopy to correlate vortex images and local magnetisation measurements in two different high temperature superconducting samples. Near the edge of a continuous YBCO thin film we have observed local hysteresis inversion and negative remanent fields, which can be semi-quantitatively explained in terms of a theoretical model of flux penetration in an infinitely long superconducting strip. In a YBCO film containing a regular square array of antidots we have further find that vortices trapped at antidots exhibit an unusual behaviour upon field sweep reversal.

  3. Low-Level Detection of Poly(amidoamine PAMAM Dendrimers Using Immunoimaging Scanning Probe Microscopy

    Directory of Open Access Journals (Sweden)

    Chevelle A. Cason

    2012-01-01

    Full Text Available Immunoimaging scanning probe microscopy was utilized for the low-level detection and quantification of biotinylated G4 poly(amidoamine PAMAM dendrimers. Results were compared to those of high-performance liquid chromatography (HPLC and found to provide a vastly improved analytical method for the low-level detection of dendrimers, improving the limit of detection by a factor of 1000 (LOD=2.5×10−13 moles. The biorecognition method is reproducible and shows high specificity and good accuracy. In addition, the capture assay platform shows a promising approach to patterning dendrimers for nanotechnology applications.

  4. Low-Level Detection of Poly(amidoamine) PAMAM Dendrimers Using Immunoimaging Scanning Probe Microscopy.

    Science.gov (United States)

    Cason, Chevelle A; Fabré, Thomas A; Buhrlage, Andrew; Haik, Kristi L; Bullen, Heather A

    2012-01-01

    Immunoimaging scanning probe microscopy was utilized for the low-level detection and quantification of biotinylated G4 poly(amidoamine) PAMAM dendrimers. Results were compared to those of high-performance liquid chromatography (HPLC) and found to provide a vastly improved analytical method for the low-level detection of dendrimers, improving the limit of detection by a factor of 1000 (LOD = 2.5 × 10(-13) moles). The biorecognition method is reproducible and shows high specificity and good accuracy. In addition, the capture assay platform shows a promising approach to patterning dendrimers for nanotechnology applications.

  5. Teaching Plasmonics, Scanning Probe Microscopy and Other Useful Experiments at the Upper Level

    Science.gov (United States)

    Sanchez, Erik

    2012-10-01

    It is important to teach students concepts and experimental skills relating to modern research being performed today. Experiments that help educate students about the latest research helps them get jobs and into the doors at many great academic institutions. PSU's Advanced Experimental Class for physics undergraduates offers many novel experiments to help the students accomplish this task. Labs involving Plasmonics, thin film deposition, scanning probe microscopy (SPM) and more will be discussed. In addition, a new NSF funded project involving the building of a Do-It-Yourself (DIY) SPM will be discussed.

  6. Material Transport and Synthesis by Cantilever-free Scanning Probe Lithography

    Science.gov (United States)

    Liao, Xing

    Reliably synthesizing and transporting materials in nanoscale is the key question in many fields of nanotechnology. Cantilever-free scanning probe lithography, by replacing fragile and costly cantilevers with a robust and low cost elastomeric structure, fundamentally solved the low-throughput nature of scanning probe lithography, which has great potential to be a powerful and point-of-use tool for high throughput synthesis of various kinds of nanomaterials. Two nanolithographic methods, polymer pen lithography (PPL) and beam pen lithography (BPL), have been developed based on the cantilever-free architecture to directly deliver materials and transfer energy to substrates, respectively. The first portion of my thesis, including chapter two and chapter three, addresses major challenges remaining in the cantilever-free scanning probe lithographic techniques. Chapter two details the role of contact force in polymer pen lithography. A geometric model was developed to quantitatively explain the relationship between the z-piezo extension, the contact force and the resulted feature size. With such a model, force can be used as the in-situ feedback during the patterning and a new method for leveling the pen arrays was developed, which utilizes the total force between the pen arrays and the surface to achieve leveling with a tilt of less than 0.004°. In chapter three, massively multiplexed near-field photolithography has been demonstrated by combining BPL with a batch method to fabricate nanometer scale apertures in parallel fashion and a strategy to individually actuation of each pen in the pen array are discussed. This transformative combination enables one to writing arbitrary patterns composed of diffraction-unlimited features over square centimeter areas that are in registry with existing patterns and nanostructures, creating a unified tool for constructing and studying nanomaterials. The second portion of this thesis focuses on applications of cantilever-free scanning

  7. Electronic properties of (Zn,CoO systems probed by scanning tunnelling spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Moldovan

    2008-05-01

    Full Text Available The aim of this paper is to gain insight into theelectronic properties of (Zn,CoO system - a widebandgap Diluted Magnetic Semiconductors (DMSshowing room temperature (RT ferromagnetism undern-type doping conditions. On the experimental side, ultrahigh-vacuum scanning tunnelling microscopy andspectroscopy (STM and STS at variable temperature (Tare used to probe the local electronic structure of thesystem. It is presented the map of the local density ofstates (LDOS of polar ZnO surfaces. Then, it is possibleto decorate (incorporate Co atoms onto (into thesemiconductor.

  8. Direct Measurement of Built-in Electrical Potential in Photovoltaic Devices by Scanning Kelvin Probe Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C. S.; Mutinho, H. R.; Hasoon, F. S.; Al-Thani, H. A.; Friedman, D. J.; Geisz, J. F.; Wang, Q.; Romero, M. J.; Al-Jassim, M. M.

    2003-05-01

    We report on direct measurements of the built-in electrical potential in Cu(In,Ga)Se2, GaInP2 single-junction, and GaInP2/GaAs tandem-junction solar cells, by using scanning Kelvin probe microscopy. Potential profiles on cross sections of the devices were measured quantitatively and spatially resolved in open and short circuit, under and without illuminations, with selective photon energies matching the band gaps of the junctions. The measurements provide valuable information about the electrical properties of the devices and are useful for understanding the performance and improving the design of solar cells.

  9. Calibration and examination of piezoresistive Wheatstone bridge cantilevers for scanning probe microscopy.

    Science.gov (United States)

    Gotszalk, Teodor; Grabiec, Piotr; Rangelow, Ivo W

    2003-01-01

    This paper describes the method of determining the force constant and displacement sensitivity of piezoresistive Wheatstone bridge cantilevers applied in scanning probe microscopy (SPM). In the procedure presented here, the force constant for beams with various geometry is determined based on resonance frequency measurement. The displacement sensitivity is measured by the deflection of the cantilever with the calibrated piezoactuator stage. Preliminary results show that our method is capable of measuring the force constant of Wheatstone bridge cantilevers with an accuracy of better than 5% and this is used as feedback for improvement of sensor micromachining process.

  10. In Situ Scanning Probe Microscopy and New Perspectives in Analytical Chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Zhang, Jingdong; Chi, Qijin

    1999-01-01

    for molecular- and mesoscopic-scale analytical chemistry, are then reviewed. They are illustrated by metallic electro-crystallisation and -dissolution, and in situ STM spectroscopy of large redox molecules. The biophysically oriented analytical options of in situ atomic force microscopy, and analytical chemical......The resolution of scanning probe microscopies is unpresedented but the techniques are fraught with limitations as analytical tools. These limitations and their relationship to the physical mechanisms of image contrast are first discussed. Some new options based on in situ STM, which hold prospects...

  11. Growth of Pd-Filled Carbon Nanotubes on the Tip of Scanning Probe Microscopy

    Directory of Open Access Journals (Sweden)

    Tomokazu Sakamoto

    2009-01-01

    Full Text Available We have synthesized Pd-filled carbon nanotubes (CNTs oriented perpendicular to Si substrates using a microwave plasma-enhanced chemical vapor deposition (MPECVD for the application of scanning probe microscopy (SPM tip. Prior to the CVD growth, Al thin film (10 nm was coated on the substrate as a buffer layer followed by depositing a 5∼40 nm-thick Pd film as a catalyst. The diameter and areal density of CNTs grown depend largely on the initial Pd thickness. Scanning electron microscopy (SEM and transmission electron microscopy (TEM images clearly show that Pd is successfully encapsulated into the CNTs, probably leading to higher conductivity. Using optimum growth conditions, Pd-filled CNTs are successfully grown on the apex of the conventional SPM cantilever.

  12. Experimental Route to Scanning Probe Hot Electron Nanoscopy (HENs) Applied to 2D Material

    KAUST Repository

    Giugni, Andrea

    2017-06-09

    This paper presents details on a new experimental apparatus implementing the hot electron nanoscopy (HENs) technique introduced for advanced spectroscopies on structure and chemistry in few molecules and interface problems. A detailed description of the architecture used for the laser excitation of surface plasmons at an atomic force microscope (AFM) tip is provided. The photogenerated current from the tip to the sample is detected during the AFM scan. The technique is applied to innovative semiconductors for applications in electronics: 2D MoS2 single crystal and a p-type SnO layer. Results are supported by complementary scanning Kelvin probe microscopy, traditional conductive AFM, and Raman measurements. New features highlighted by HEN technique reveal details of local complexity in MoS2 and polycrystalline structure of SnO at nanometric scale otherwise undetected. The technique set in this paper is promising for future studies in nanojunctions and innovative multilayered materials, with new insight on interfaces.

  13. MRT letter: An extended scanning probe microscopy system for macroscopic topography imaging.

    Science.gov (United States)

    Fu, Ji; Li, Faxin

    2014-10-01

    Enlightened by the principle of scanning probe microscopy or atomic force microscope (AFM), we proposed a novel surface topography imaging system based on the scanning of a piezoelectric unimorph cantilever. The height of sample surface can be obtained by recording the cantilever's strain using an ultra-sensitive strain gauge and the Z-axis movement is realized by electric bending of the cantilever. This system can be operated in the way similar to the contact mode in AFM, with the practical height detection resolution better than 100 nm. Imaging of the inner surface of a steel tube and on a transparent wing of a honey bee were conducted and the obtained results showed that this proposed system is a very promising solution for in situ topography mapping. © 2014 Wiley Periodicals, Inc.

  14. Automatic transperineal ultrasound probe positioning based on CT scan for image guided radiotherapy

    Science.gov (United States)

    Camps, S. M.; Verhaegen, F.; Paiva Fonesca, G.; de With, P. H. N.; Fontanarosa, D.

    2017-03-01

    Image interpretation is crucial during ultrasound image acquisition. A skilled operator is typically needed to verify if the correct anatomical structures are all visualized and with sufficient quality. The need for this operator is one of the major reasons why presently ultrasound is not widely used in radiotherapy workflows. To solve this issue, we introduce an algorithm that uses anatomical information derived from a CT scan to automatically provide the operator with a patient-specific ultrasound probe setup. The first application we investigated, for its relevance to radiotherapy, is 4D transperineal ultrasound image acquisition for prostate cancer patients. As initial test, the algorithm was applied on a CIRS multi-modality pelvic phantom. Probe setups were calculated in order to allow visualization of the prostate and adjacent edges of bladder and rectum, as clinically required. Five of the proposed setups were reproduced using a precision robotic arm and ultrasound volumes were acquired. A gel-filled probe cover was used to ensure proper acoustic coupling, while taking into account possible tilted positions of the probe with respect to the flat phantom surface. Visual inspection of the acquired volumes revealed that clinical requirements were fulfilled. Preliminary quantitative evaluation was also performed. The mean absolute distance (MAD) was calculated between actual anatomical structure positions and positions predicted by the CT-based algorithm. This resulted in a MAD of (2.8±0.4) mm for prostate, (2.5±0.6) mm for bladder and (2.8±0.6) mm for rectum. These results show that no significant systematic errors due to e.g. probe misplacement were introduced.

  15. Advanced electric-field scanning probe lithography on molecular resist using active cantilever

    Science.gov (United States)

    Kaestner, Marcus; Aydogan, Cemal; Ivanov, Tzvetan; Ahmad, Ahmad; Angelov, Tihomir; Reum, Alexander; Ishchuk, Valentyn; Krivoshapkina, Yana; Hofer, Manuel; Lenk, Steve; Atanasov, Ivaylo; Holz, Mathias; Rangelow, Ivo W.

    2015-07-01

    The routine "on demand" fabrication of features smaller than 10 nm opens up new possibilities for the realization of many devices. Driven by the thermally actuated piezoresistive cantilever technology, we have developed a prototype of a scanning probe lithography (SPL) platform which is able to image, inspect, align, and pattern features down to the single digit nanoregime. Here, we present examples of practical applications of the previously published electric-field based current-controlled scanning probe lithography. In particular, individual patterning tests are carried out on calixarene by using our developed table-top SPL system. We have demonstrated the application of a step-and-repeat SPL method including optical as well as atomic force microscopy-based navigation and alignment. The closed-loop lithography scheme was applied to sequentially write positive and negative tone features. Due to the integrated unique combination of read-write cycling, each single feature is aligned separately with the highest precision and inspected after patterning. This routine was applied to create a pattern step by step. Finally, we have demonstrated the patterning over larger areas, over existing topography, and the practical applicability of the SPL processes for lithography down to 13-nm pitch patterns. To enhance the throughput capability variable beam diameter electric field, current-controlled SPL is briefly discussed.

  16. Touching is believing: interrogating halide perovskite solar cells at the nanoscale via scanning probe microscopy

    Science.gov (United States)

    Li, Jiangyu; Huang, Boyuan; Nasr Esfahani, Ehsan; Wei, Linlin; Yao, Jianjun; Zhao, Jinjin; Chen, Wei

    2017-10-01

    Halide perovskite solar cells based on CH3NH3PbI3 and related materials have emerged as the most exciting development in the next generation photovoltaic technologies, yet the microscopic phenomena involving photo-carriers, ionic defects, spontaneous polarization, and molecular vibration and rotation interacting with numerous grains, grain boundaries, and interfaces are still inadequately understood. In fact, there is still need for an effective method to interrogate the local photovoltaic properties of halide perovskite solar cells that can be directly traced to their microstructures on one hand and linked to their device performance on the other hand. In this perspective, we propose that scanning probe microscopy (SPM) techniques have great potential to realize such promises at the nanoscale, and highlight some of the recent progresses and challenges along this line of investigation toward local probing of photocurrent, work function, ionic activities, polarization switching, and chemical degradation. We also emphasize the importance of multi-modality imaging, in-operando scanning, big data analysis, and multidisciplinary collaboration for further studies toward fully understanding of these complex systems.

  17. Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

    Directory of Open Access Journals (Sweden)

    Jakub S. Prauzner-Bechcicki

    2016-11-01

    Full Text Available Titanium dioxide, or titania, sensitized with organic dyes is a very attractive platform for photovoltaic applications. In this context, the knowledge of properties of the titania–sensitizer junction is essential for designing efficient devices. Consequently, studies on the adsorption of organic dyes on titania surfaces and on the influence of the adsorption geometry on the energy level alignment between the substrate and an organic adsorbate are necessary. The method of choice for investigating the local environment of a single dye molecule is high-resolution scanning probe microscopy. Microscopic results combined with the outcome of common spectroscopic methods provide a better understanding of the mechanism taking place at the titania–sensitizer interface. In the following paper, we review the recent scanning probe microscopic research of a certain group of molecular assemblies on rutile titania surfaces as it pertains to dye-sensitized solar cell applications. We focus on experiments on adsorption of three types of prototypical dye molecules, i.e., perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA, phtalocyanines and porphyrins. Two interesting heteromolecular systems comprising molecules that are aligned with the given review are discussed as well.

  18. Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography

    Science.gov (United States)

    Kaestner, Marcus; Hofer, Manuel; Rangelow, Ivo W.

    2013-07-01

    Going "beyond the CMOS information-processing era," taking advantage of quantum effects occurring at sub-10-nm level, requires novel device concepts and associated fabrication technologies able to produce promising features at acceptable cost levels. Herein, the challenge affecting the lithographic technologies comprises the marriage of down-scaling the device-relevant feature size towards single-nanometer resolution with a simultaneous increase of the throughput capabilities. Mix-and-match lithographic strategies are one promising path to break through this trade-off. Proof-of-concept combining electron beam lithography (EBL) with the outstanding capabilities of closed-loop electric field current-controlled scanning probe nanolithography (SPL) is demonstrated. This combination, whereby also extreme ultraviolet lithography (EUVL) is possible instead of EBL, enables more: improved patterning resolution and reproducibility in combination with excellent overlay and placement accuracy. Furthermore, the symbiosis between EBL (EUVL) and SPL expands the process window of EBL (EUVL) beyond the state of the art, allowing SPL-based pre- and post-patterning of EBL (EUVL) written features at critical dimension levels with scanning probe microscopy-based pattern overlay alignment capability. Moreover, we are able to modify the EBL (EUVL) pattern even after the development step. The ultra-high resolution mix-and-match lithography experiments are performed on the molecular glass resist calixarene using a Gaussian e-beam lithography system operating at 10 keV and a home-developed SPL setup.

  19. Harnessing tunable scanning probe techniques to measure shear enhanced adhesion of gecko-inspired fibrillar arrays.

    Science.gov (United States)

    Li, Yasong; Zhou, James H-W; Zhang, Cheng; Menon, Carlo; Gates, Byron D

    2015-02-04

    The hierarchical arrays of mesoscale to nanoscale fibrillar structures on a gecko's foot enable the animal to climb surfaces of varying roughness. Adhesion force between the fibrillar structures and various surfaces is maximized after the gecko drags its foot in one direction, which has also been demonstrated to improve the adhesion forces of artificial fibrillar arrays. Essential conditions that influence the magnitude of these interactions include the lateral distance traveled and velocity between the contacting surfaces, as well as the velocity at which the two surfaces are subsequently separated. These parameters have, however, not been systematically investigated to assess the adhesion properties of artificial adhesives. We introduce a systematic study that investigates these conditions using a scanning probe microscope to measure the adhesion forces of artificial adhesives through a process that mimics the mechanism by which a gecko climbs. The measured adhesion response was different for arrays of shorter and longer fibrils. These results from 9000 independent measurements also provide further insight into the dynamics of the interactions between fibrillar arrays and contacting surfaces. These studies establish scanning probe microscopy techniques as a versatile approach for measuring a variety of adhesion properties of artificial fibrillar adhesives.

  20. Hot-spot detection and calibration of a scanning thermal probe with a noise thermometry gold wire sample

    NARCIS (Netherlands)

    Gaitas, A.; Wolgast, S.; Covington, E.; Kurdak, C.

    2013-01-01

    Measuring the temperature profile of a nanoscale sample using scanning thermal microscopy is challenging due to a scanning probe's non-uniform heating. In order to address this challenge, we have developed a calibration sample consisting of a 1-?m wide gold wire, which can be heated electrically by

  1. Design and testing of prototype handheld scanning probes for optical coherence tomography.

    Science.gov (United States)

    Demian, Dorin; Duma, Virgil-Florin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Cernat, Ramona; Topala, Florin Ionel; Hutiu, Gheorghe; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-08-01

    Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic-for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat-in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated. © IMechE 2014.

  2. An exchangeable-tip scanning probe instrument for the analysis of combinatorial libraries of electrocatalysts

    Science.gov (United States)

    Rus, Eric D.; Wang, Hongsen; Legard, Anna E.; Ritzert, Nicole L.; Bruce Van Dover, Robert; Abruña, Héctor D.

    2013-02-01

    A combined scanning differential electrochemical mass spectrometer (SDEMS)-scanning electrochemical microscope (SECM) apparatus is described. The SDEMS is used to detect and spatially resolve volatile electrochemically generated species at the surface of a substrate electrode. The SECM can electrochemically probe the reactivity of the surface and also offers a convenient means of leveling the sample. It is possible to switch between these two different scanning tips and techniques without moving the sample and while maintaining potential control of the substrate electrode. A procedure for calibration of the SDEMS tip-substrate separation, based upon the transit time of electrogenerated species from the substrate to the tip is also described. This instrument can be used in the characterization of combinatorial libraries of direct alcohol fuel cell anode catalysts. The apparatus was used to analyze the products of methanol oxidation at a Pt substrate, with the SDEMS detecting carbon dioxide and methyl formate, and a PtPb-modified Pt SECM tip used for the selective detection of formic acid. As an example system, the electrocatalytic methanol oxidation activity of a sputter-deposited binary PtRu composition spread in acidic media was analyzed using the SDEMS. These results are compared with those obtained from a pH-sensitive fluorescence assay.

  3. Mapping piezoelectric response in nanomaterials using a dedicated non-destructive scanning probe technique.

    Science.gov (United States)

    Calahorra, Yonatan; Smith, Michael; Datta, Anuja; Benisty, Hadas; Kar-Narayan, Sohini

    2017-12-14

    There has been tremendous interest in piezoelectricity at the nanoscale, for example in nanowires and nanofibers where piezoelectric properties may be enhanced or controllably tuned, thus necessitating robust characterization techniques of piezoelectric response in nanomaterials. Piezo-response force microscopy (PFM) is a well-established scanning probe technique routinely used to image piezoelectric/ferroelectric domains in thin films, however, its applicability to nanoscale objects is limited due to the requirement for physical contact with an atomic force microscope (AFM) tip that may cause dislocation or damage, particularly to soft materials, during scanning. Here we report a non-destructive PFM (ND-PFM) technique wherein the tip is oscillated into "discontinuous" contact during scanning, while applying an AC bias between tip and sample and extracting the piezoelectric response for each contact point by monitoring the resulting localized deformation at the AC frequency. ND-PFM is successfully applied to soft polymeric (poly-l-lactic acid) nanowires, as well as hard ceramic (barium zirconate titanate-barium calcium titanate) nanowires, both previously inaccessible by conventional PFM. Our ND-PFM technique is versatile and compatible with commercial AFMs, and can be used to correlate piezoelectric properties of nanomaterials with their microstructural features thus overcoming key characterisation challenges in the field.

  4. Magnetic hydroxyapatite coatings as a new tool in medicine: A scanning probe investigation

    Energy Technology Data Exchange (ETDEWEB)

    Gambardella, A., E-mail: a.gambardella@biomec.ior.it [Laboratorio di NanoBiotecnologie (NaBi), Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, I-40136 Bologna (Italy); Bianchi, M. [Laboratorio di NanoBiotecnologie (NaBi), Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, I-40136 Bologna (Italy); Kaciulis, S.; Mezzi, A.; Brucale, M. [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche, Via Salaria km 29.300, P.O. Box 10, 00015 Monterotondo Staz, Roma (Italy); Cavallini, M. [Magnetic Nanostructures for Spintronics and Nanomedicine, CNR-ISMN, Via Gobetti 101, 40129 Bologna (Italy); Herrmannsdoerfer, T.; Chanda, G.; Uhlarz, M. [Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Cellini, A.; Pedna, M.F. [Unità Operativa Microbiologia Laboratorio Unico del Centro Servizi AUSL della Romagna, Pievesestina, Cesena (Italy); Sambri, V. [Unità Operativa Microbiologia Laboratorio Unico del Centro Servizi AUSL della Romagna, Pievesestina, Cesena (Italy); Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università degli Studi di Bologna, Via Zamboni 33, 40126 Bologna (Italy); Marcacci, M.; Russo, A. [Laboratorio di NanoBiotecnologie (NaBi), Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, I-40136 Bologna (Italy); Laboratorio di Biomeccanica ed Innovazione Tecnologica, Istituto Ortopedico Rizzoli, Via di Barbiano1/10, I-40136 Bologna (Italy)

    2016-05-01

    Hydroxyapatite films enriched with magnetite have been fabricated via a Pulsed Plasma Deposition (PPD) system with the final aim of representing a new platform able to disincentivate bacterial adhesion and biofilm formation. The chemical composition and magnetic properties of films were respectively examined by X-ray photoelectron spectroscopy (XPS) and Superconducting Quantum Interference Device (SQUID) measurements. The morphology and conductive properties of the magnetic films were investigated via a combination of scanning probe technologies including atomic force microscopy (AFM), electrostatic force microscopy (EFM), and scanning tunneling microscopy (STM). Interestingly, the range of adopted techniques allowed determining the preservation of the chemical composition and magnetic properties of the deposition target material while STM analysis provided new insights on the presence of surface inhomogeneities, revealing the presence of magnetite-rich islands over length scales compatible with the applications. Finally, preliminary results of bacterial adhesion tests, indicated a higher ability of magnetic hydroxyapatite films to reduce Escherichia coli adhesion at 4 h from seeding compared to control hydroxyapatite films. - Highlights: • Pulsed Plasma Deposition technique is used to deposit magnetite-rich films of hydroxyapatite for antibacterial purposes. • The preservation of the chemical composition and magnetic properties of the deposition target material is demonstrated. • Scanning tunnelling microscopy is employed for the first time to reveal the presence of magnetite-rich states at the surface. • Preliminary tests suggest that Mag HA films hamper the adhesion of Escherichia coli compared to not magnetic films.

  5. Ultra-Compact Multitip Scanning Probe Microscope with an Outer Diameter of 50 mm

    Science.gov (United States)

    Cherepanov, Vasily; Zubkov, Evgeny; Junker, Hubertus; Korte, Stefan; Blab, Marcus; Coenen, Peter; Voigtländer, Bert

    We present a multitip scanning tunneling microscope (STM) where four independent STM units are integrated on a diameter of 50 mm. The coarse positioning of the tips is done under the control of an optical microscope or an SEM in vacuum. The heart of this STM is a new type of piezoelectric coarse approach called Koala Drive which can have a diameter greater than 2.5 mm and a length smaller than 10 mm. Alternating movements of springs move a central tube which holds the STM tip or AFM sensor. This new operating principle provides a smooth travel sequence and avoids shaking which is intrinsically present for nanopositioners based on inertial motion with saw tooth driving signals. Inserting the Koala Drive in a piezo tube for xyz-scanning integrates a complete STM inside a 4 mm outer diameter piezo tube of Koala Drive makes the scanning probe microscopy design ultra-compact and accordingly leads to a high mechanical stability. The drive is UHV, low temperature, and magnetic field compatible. The compactness of the Koala Drive allows building a four-tip STM as small as a single-tip STM with a drift of Koala Drive.

  6. Reduced Sampling Size with Nanopipette for Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging.

    Science.gov (United States)

    Kohigashi, Tsuyoshi; Otsuka, Yoichi; Shimazu, Ryo; Matsumoto, Takuya; Iwata, Futoshi; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Mass spectrometry imaging (MSI) with ambient sampling and ionization can rapidly and easily capture the distribution of chemical components in a solid sample. Because the spatial resolution of MSI is limited by the size of the sampling area, reducing sampling size is an important goal for high resolution MSI. Here, we report the first use of a nanopipette for sampling and ionization by tapping-mode scanning probe electrospray ionization (t-SPESI). The spot size of the sampling area of a dye molecular film on a glass substrate was decreased to 6 μm on average by using a nanopipette. On the other hand, ionization efficiency increased with decreasing solvent flow rate. Our results indicate the compatibility between a reduced sampling area and the ionization efficiency using a nanopipette. MSI of micropatterns of ink on a glass and a polymer substrate were also demonstrated.

  7. Scalable maskless patterning of nanostructures using high-speed scanning probe arrays

    Science.gov (United States)

    Chen, Chen; Akella, Meghana; Du, Zhidong; Pan, Liang

    2017-08-01

    Nanoscale patterning is the key process to manufacture important products such as semiconductor microprocessors and data storage devices. Many studies have shown that it has the potential to revolutionize the functions of a broad range of products for a wide variety of applications in energy, healthcare, civil, defense and security. However, tools for mass production of these devices usually cost tens of million dollars each and are only affordable to the established semiconductor industry. A new method, nominally known as "pattern-on-the- y", that involves scanning an array of optical or electrical probes at high speed to form nanostructures and offers a new low-cost approach for nanoscale additive patterning. In this paper, we report some progress on using this method to pattern self-assembled monolayers (SAMs) on silicon substrate. We also functionalize the substrate with gold nanoparticle based on the SAM to show the feasibility of preparing amphiphilic and multi-functional surfaces.

  8. Charge-imaging field-effect transistors for scanned probe microscopy

    Science.gov (United States)

    Chen, Lester Hao-Lin

    This thesis presents experiments on integrating a charge-imaging field-effect transistor onto a scanned probe microscopy cantilever to make a moveable charge-imager. Such an imager would be used for imaging the spatial distribution of electric charge in semiconductor heterostructures and devices. Learning about the spatial distribution of charge yields knowledge about electrical transport at the microscopic level. The information gained from measuring the spatial distribution of charge increases with improvements in the spatial resolution and charge sensitivity of the charge-imaging probes. So, the goal is to devise a charge-imager with sub-micron spatial resolution and single-electron charge sensitivity. To achieve high spatial resolution and excellent charge sensitivity, the charge-imaging field-effect transistors are made with a quantum point contact geometry. The charge response is confined to a disc with full width half-maximum comparable to its channel width, and the charge noise spectrum reaches values "1 e/Hz½ at 30 kHz. Their low power dissipation (deflections of the cantilever to map the sample topography. The strain-sensing field-effect transistors have a white noise value for the deflection noise of 0.5 nm/Hz½ at 10 kHz. This thesis describes the fabrication and characterization of charge-imaging field-effect transistors and scanned microscopy cantilevers with integrated strain-sensing transistors. The transistors and cantilevers were fabricated in a GaAs/AlGaAs heterostructure using electron-beam lithography and were characterized at liquid Helium temperatures. Possible future experiments include demonstrating the charge-imaging FET's sensitivity to single electrons, creating a charge- and topography-imaging cantilever, and directly measuring the electron distributions in nanostructures.

  9. Electrical Potential of Acupuncture Points: Use of a Noncontact Scanning Kelvin Probe

    Directory of Open Access Journals (Sweden)

    Brian J. Gow

    2012-01-01

    Full Text Available Objective. Acupuncture points are reportedly distinguishable by their electrical properties. However, confounders arising from skin-to-electrode contact used in traditional electrodermal methods have contributed to controversies over this claim. The Scanning Kelvin Probe is a state-of-the-art device that measures electrical potential without actually touching the skin and is thus capable of overcoming these confounding effects. In this study, we evaluated the electrical potential profiles of acupoints LI-4 and PC-6 and their adjacent controls. We hypothesize that acupuncture point sites are associated with increased variability in potential compared to adjacent control sites. Methods. Twelve healthy individuals were recruited for this study. Acupuncture points LI-4 and PC-6 and their adjacent controls were assessed. A 2 mm probe tip was placed over the predetermined skin site and adjusted to a tip-to-sample distance of 1.0 mm under tip oscillation settings of 62.4 Hz frequency. A surface potential scan spanning a 1.0 cm × 1.0 cm area was obtained. Results. At both the PC-6 and LI-4 sites, no significant differences in mean potential were observed compared to their respective controls (Wilcoxon rank-sum test, and 0.79, resp.. However, the LI-4 site was associated with significant increase in variability compared to its control as denoted by standard deviation and range ( and 0.0005, resp.. At the PC-6 site, no statistical differences in variability were observed. Conclusion. Acupuncture points may be associated with increased variability in electrical potential.

  10. Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale.

    Science.gov (United States)

    Legleiter, Justin; Park, Matthew; Cusick, Brian; Kowalewski, Tomasz

    2006-03-28

    One of the major thrusts in proximal probe techniques is combination of imaging capabilities with simultaneous measurements of physical properties. In tapping mode atomic force microscopy (TMAFM), the most straightforward way to accomplish this goal is to reconstruct the time-resolved force interaction between the tip and surface. These tip-sample forces can be used to detect interactions (e.g., binding sites) and map material properties with nanoscale spatial resolution. Here, we describe a previously unreported approach, which we refer to as scanning probe acceleration microscopy (SPAM), in which the TMAFM cantilever acts as an accelerometer to extract tip-sample forces during imaging. This method utilizes the second derivative of the deflection signal to recover the tip acceleration trajectory. The challenge in such an approach is that with real, noisy data, the second derivative of the signal is strongly dominated by the noise. This problem is solved by taking advantage of the fact that most of the information about the deflection trajectory is contained in the higher harmonics, making it possible to filter the signal by "comb" filtering, i.e., by taking its Fourier transform and inverting it while selectively retaining only the intensities at integer harmonic frequencies. Such a comb filtering method works particularly well in fluid TMAFM because of the highly distorted character of the deflection signal. Numerical simulations and in situ TMAFM experiments on supported lipid bilayer patches on mica are reported to demonstrate the validity of this approach.

  11. Corrosion Investigation of Laser Brazed Aluminium-Steel Joints Using the Scanning Kelvin Probe

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo-Martinez, C.A.; Vrenken, J.; Hannour, F. [Corus Research, Development and Technology, IJmuiden (Netherlands)

    2004-07-01

    Full text of publication follows: Given the increased interest of the automotive and transport industry in using aluminium-steel combinations to produce lighter vehicles, with reduced pollutant emissions, joining technologies such as laser brazing appear promising. However, in this type of joint, aluminium and steel become in electrical contact, increasing the susceptibility to galvanic corrosion. This depends on the electrochemical properties of the alloys to be joined and the joint itself. Differences in microstructure and composition resulting from such joint configurations during the brazing process also influence significantly the corrosion properties of the joint. In this paper, the corrosion behaviour of AA6016/ steel joints was studied using scanning Kelvin probe on bare, zinc phosphated and electro-coated specimens. In addition, for comparison, panels were subjected to accelerated cyclic corrosion tests, including the Hoogovens cyclic test (HCT) and the VDA 621-415. Kelvin probe potential mapping showed that corrosion and coating delamination initiate locally at the interface galvanized steel/joint. However, relative long exposures were required during accelerated testing (i.e. 10 weeks VDA) to achieve detectable corrosion and coating delamination at the joint. This indicates that the galvanic coupling effect is only moderate and it can be controlled with an appropriate coating system. In conclusion, AA6016/galvanized steel laser-brazed joints certainly appear to be applicable for car bodies (i.e. roof type applications). (authors)

  12. Highly sensitive scanning of gene mutations: TaqMan probes as blocking agents

    Directory of Open Access Journals (Sweden)

    I. V. Botezatu

    2016-01-01

    Full Text Available DNA Melting Analysis is very effective in clinical DNA diagnostics: it is simple to perform, high throughput, labor-, time- and cost-effective and is implemented in the “closed tube” format minimizing the risk of samples cross-contamination. Although more sensitive than sequencing by Sanger (mutant allele detection limit is ~5 and ~15 % respectively, it, however, is inferior in this respect to some other, more laborious and expensive methods (in particular, ddPCR (digital droplet PCR. Using the BRAF gene as a prototype, we developed the original version of the DNA melting analysis, based on the ability of TaqMan probes to hamper the primer extension reaction by Taq-polymerase. It is found that the weaker blocking effect on the mutant template, which is due to the mismatch in the probe-DNA heteroduplex, permits enriched amplification of the mutant allele and provides a significant (10-fold or more increase in sensitivity of mutation scanning.

  13. TOPICAL REVIEW: Static states and dynamic behaviour of charges: observation and control by scanning probe microscopy

    Science.gov (United States)

    Ishii, Masashi

    2010-05-01

    This paper reviews charges that locally functionalize materials. Microscopic analyses and operation of charges using various scanning probe microscopy (SPM) techniques have revealed static, quasi-static/quasi-dynamic and dynamic charge behaviours. Charge-sensitive SPM has allowed for the visualization of the distribution of functionalized charges in electronic devices. When used as bit data in a memory system, the charges can be operated by SPM. The behaviour of quasi-static/quasi-dynamic charges is discussed here. In the data-writing process, spatially dispersive charges rather than a fast injection rate are introduced, but the technical problems can be solved by using nanostructures. Careful charge operations using SPM should realize a memory with a larger density than Tbit/inch2. Dynamic charges have been introduced in physical analyses and chemical processes. Although the observable timescale is limited by the SPM system response time of the order of several seconds, dynamics such as photon-induced charge redistributions and probe-assisted chemical reactions are observed.

  14. Neutral Red as a Probe for Confocal Laser Scanning Microscopy Studies of Plant Roots

    Science.gov (United States)

    DUBROVSKY, JOSEPH G.; GUTTENBERGER, MARTIN; SARALEGUI, ANDRES; NAPSUCIALY-MENDIVIL, SELENE; VOIGT, BORIS; BALUŠKA, FRANTIŠEK; MENZEL, DIEDRIK

    2006-01-01

    • Background and Aims Neutral red (NR), a lipophilic phenazine dye, has been widely used in various biological systems as a vital stain for bright-field microscopy. In its unprotonated form it penetrates the plasma membrane and tonoplast of viable plant cells, then due to protonation it becomes trapped in acidic compartments. The possible applications of NR for confocal laser scanning microscopy (CLSM) studies were examined in various aspects of plant root biology. • Methods NR was used as a fluorochrome for living roots of Phaseolus vulgaris, Allium cepa, A. porrum and Arabidopsis thaliana (wild-type and transgenic GFP-carrying lines). The tissues were visualized using CLSM. The effect of NR on the integrity of the cytoskeleton and the growth rate of arabidopsis primary roots was analysed to judge potential toxic effects of the dye. • Key Results The main advantages of the use of NR are related to the fact that NR rapidly penetrates root tissues, has affinity to suberin and lignin, and accumulates in the vacuoles. It is shown that NR is a suitable probe for visualization of proto- and metaxylem elements, Casparian bands in the endodermis, and vacuoles in cells of living roots. The actin cytoskeleton and the microtubule system of the cells, as well as the dynamics of root growth, remain unchanged after short-term application of NR, indicating a relatively low toxicity of this chemical. It was also found that NR is a useful probe for the observation of the internal structures of root nodules and of fungal hyphae in vesicular–arbuscular mycorrhizas. • Conclusions Ease, low cost and absence of tissue processing make NR a useful probe for structural, developmental and vacuole-biogenetic studies of plant roots with CLSM. PMID:16520341

  15. Versatile variable temperature and magnetic field scanning probe microscope for advanced material research

    Science.gov (United States)

    Jung, Jin-Oh; Choi, Seokhwan; Lee, Yeonghoon; Kim, Jinwoo; Son, Donghyeon; Lee, Jhinhwan

    2017-10-01

    We have built a variable temperature scanning probe microscope (SPM) that covers 4.6 K-180 K and up to 7 T whose SPM head fits in a 52 mm bore magnet. It features a temperature-controlled sample stage thermally well isolated from the SPM body in good thermal contact with the liquid helium bath. It has a 7-sample-holder storage carousel at liquid helium temperature for systematic studies using multiple samples and field emission targets intended for spin-polarized spectroscopic-imaging scanning tunneling microscopy (STM) study on samples with various compositions and doping conditions. The system is equipped with a UHV sample preparation chamber and mounted on a two-stage vibration isolation system made of a heavy concrete block and a granite table on pneumatic vibration isolators. A quartz resonator (qPlus)-based non-contact atomic force microscope (AFM) sensor is used for simultaneous STM/AFM operation for research on samples with highly insulating properties such as strongly underdoped cuprates and strongly correlated electron systems.

  16. Invited review article: A 10 mK scanning probe microscopy facility.

    Science.gov (United States)

    Song, Young Jae; Otte, Alexander F; Shvarts, Vladimir; Zhao, Zuyu; Kuk, Young; Blankenship, Steven R; Band, Alan; Hess, Frank M; Stroscio, Joseph A

    2010-12-01

    We describe the design, development and performance of a scanning probe microscopy (SPM) facility operating at a base temperature of 10 mK in magnetic fields up to 15 T. The microscope is cooled by a custom designed, fully ultra-high vacuum (UHV) compatible dilution refrigerator (DR) and is capable of in situ tip and sample exchange. Subpicometer stability at the tip-sample junction is achieved through three independent vibration isolation stages and careful design of the dilution refrigerator. The system can be connected to, or disconnected from, a network of interconnected auxiliary UHV chambers, which include growth chambers for metal and semiconductor samples, a field-ion microscope for tip characterization, and a fully independent additional quick access low temperature scanning tunneling microscope (STM) and atomic force microscope (AFM) system. To characterize the system, we present the cooling performance of the DR, vibrational, tunneling current, and tip-sample displacement noise measurements. In addition, we show the spectral resolution capabilities with tunneling spectroscopy results obtained on an epitaxial graphene sample resolving the quantum Landau levels in a magnetic field, including the sublevels corresponding to the lifting of the electron spin and valley degeneracies.

  17. The FAST module: An add-on unit for driving commercial scanning probe microscopes at video rate and beyond

    Science.gov (United States)

    Esch, Friedrich; Dri, Carlo; Spessot, Alessio; Africh, Cristina; Cautero, Giuseppe; Giuressi, Dario; Sergo, Rudi; Tommasini, Riccardo; Comelli, Giovanni

    2011-05-01

    We present the design and the performance of the FAST (Fast Acquisition of SPM Timeseries) module, an add-on instrument that can drive commercial scanning probe microscopes (SPM) at and beyond video rate image frequencies. In the design of this module, we adopted and integrated several technical solutions previously proposed by different groups in order to overcome the problems encountered when driving SPMs at high scanning frequencies. The fast probe motion control and signal acquisition are implemented in a way that is totally transparent to the existing control electronics, allowing the user to switch immediately and seamlessly to the fast scanning mode when imaging in the conventional slow mode. The unit provides a completely non-invasive, fast scanning upgrade to common SPM instruments that are not specifically designed for high speed scanning. To test its performance, we used this module to drive a commercial scanning tunneling microscope (STM) system in a quasi-constant height mode to frame rates of 100 Hz and above, demonstrating extremely stable and high resolution imaging capabilities. The module is extremely versatile and its application is not limited to STM setups but can, in principle, be generalized to any scanning probe instrument.

  18. Electrical characterization of dislocations in gallium nitride using advanced scanning probe techniques

    Science.gov (United States)

    Simpkins, Blake Shelley Ginsberg

    GaN-based materials are promising for high speed and power applications such as amplifier and communications circuits. Ga, In, and AIN-based alloys span a wide optical range (2--6.1 eV) and exhibit strong polarizations making them useful in many devices; however, films are highly defective (˜10 8 dislocations cm-2) due to lack of suitable substrates. Thus, nanoscale electronic characterization of these dislocations is critical for device and growth optimization. Scanning probe techniques enable characterization at length-scales unattainable by conventional techniques. First, scanning Kelvin probe microscopy (SKPM) was used to image surface potential variations due to charged dislocations in HVPE-grown GaN. The film's structural evolution "with thickness was monitored showing a decrease in dislocation density, likely through dislocation reaction. Numerical simulations were used to investigate tip-size effects when imaging highly localized (tens of nm) potential variations indicating that measured dislocation induced potential features in GaN can be much smaller (˜80%) than true variations. Next, capacitance variations in MBE-grown HFETs, due to dislocations-induced carrier depletion, were imaged with scanning capacitance microscopy (SCM). The distribution of these charged centers was correlated with buffer schemes showing that an AIN buffer leads to pseudomorphic (2D) nucleation and randomly distributed misfit dislocations while deposition directly on SiC results in island (3D) nucleation and a domain structure with dislocations grouped at domain boundaries. Hall measurements and numerical simulations were also carried out to further study the implications of these microstructures. Numerical results indicated that randomly distributed dislocations deplete a larger fraction of free carriers than the same density of grouped dislocations and correlated favorably with Hall results. Correlated SKPM and conductive AFM (C-AFM) measurements were then used to study

  19. Adaptive Q control for Tapping-mode Nano-scanning Using a Piezo-actuated Bimorph Probe

    CERN Document Server

    Gunev, Ihsan; Karaman, Sertac; Basdogan, Cagatay

    2012-01-01

    A new approach, called Adaptive Q-control, for tapping-mode Atomic Force Microscopy (AFM) is introduced and implemented on a home-made AFM set-up utilizing a Laser Doppler Vibrometer (LDV) and a piezo-actuated bimorph probe. In the standard Q-control, the effective Q-factor of the scanning probe is adjusted prior to the scanning depending on the application. However, there is a trade-off in setting the effective Q-factor of an AFM probe. The Q-factor is either increased to reduce the tapping forces or decreased to increase the maximum achievable scan speed. Realizing these two benefits simultaneously using the standard Q-control is not possible. In adaptive Q-control, the Q-factor of the probe is set to an initial value as in standard Q-control, but then modified on the fly during scanning when necessary to achieve this goal. In this paper, we present the basic theory behind the adaptive Q-control, the electronics enabling the on-line modification of the probe's effective Q-factor, and the results of the expe...

  20. General three-dimensional image simulation and surface reconstruction in scanning probe microscopy using a dexel representation.

    Science.gov (United States)

    Qian, Xiaoping; Villarrubia, J S

    2007-12-01

    The ability to image complex general three-dimensional (3D) structures, including reentrant surfaces and undercut features using scanning probe microscopy, is becoming increasing important in many small length-scale applications. This paper presents a dexel data representation and its algorithm implementation for scanning probe microscope (SPM) image simulation (morphological dilation) and surface reconstruction (erosion) on such general 3D structures. Validation using simulations, some of which are modeled upon actual atomic force microscope data, demonstrates that the dexel representation can efficiently simulate SPM imaging and reconstruct the sample surface from measured images, including those with reentrant surfaces and undercut features.

  1. Recent Advances in Cantilever-Free Scanning Probe Lithography: High-Throughput, Space-Confined Synthesis of Nanostructures and Beyond.

    Science.gov (United States)

    He, Qiyuan; Tan, Chaoliang; Zhang, Hua

    2017-05-23

    Scalability is the major challenge for scanning probe lithography (SPL). Recently developed cantilever-free scanning probe technologies provide a solution to the issue of scalability by incorporating massive arrays of polymer pens, which fundamentally overcome the low-throughput nature of SPL. The further development of cantilever-free SPL brings up a variety of applications in electronics, biology, and chemical synthesis. In this Perspective, we highlight the space-confined synthesis of complex nanostructures enabled by different types of cantilever-free SPL technologies.

  2. Miniature endoscopic optical coherence tomography probe employing a two-axis microelectromechanical scanning mirror with through-silicon vias.

    Science.gov (United States)

    Liu, Lin; Wu, Lei; Sun, Jingjing; Lin, Elaine; Xie, Huikai

    2011-02-01

    We present the design and experimental results of a new MEMS-based endoscopic optical coherence tomography (OCT) probe. The uniqueness of this miniature OCT imaging probe is a two-axis MEMS mirror with through-silicon vias (TSVs) for interconnecting. The TSV interconnection enables ultracompact probe design, successfully reducing the probe size to only 2.6 mm in diameter. The MEMS mirror is actuated by an electrothermal actuator that is capable of scanning ± 16° at only 3.6 V DC. Two-dimensional and three-dimensional OCT images of microspheres embedded in PDMS and acute rat brain tissue have been obtained with this miniature probe in a time-domain OCT system.

  3. PREDICTING CHEMICAL REACTIVITY OF HUMIC SUBSTANCES FOR MINERALS AND XENOBIOTICS: USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY AND VIRTUAL REALITY

    Science.gov (United States)

    In this chapter we review the literature on scanning probe microscopy (SPM), virtual reality (VR), and computational chemistry and our earlier work dealing with modeling lignin, lignin-carbohydrate complexes (LCC), humic substances (HSs) and non-bonded organo-mineral interactions...

  4. Quantitative imaging of electrospun fibers by PeakForce Quantitative NanoMechanics atomic force microscopy using etched scanning probes.

    Science.gov (United States)

    Chlanda, Adrian; Rebis, Janusz; Kijeńska, Ewa; Wozniak, Michal J; Rozniatowski, Krzysztof; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof J

    2015-05-01

    Electrospun polymeric submicron and nanofibers can be used as tissue engineering scaffolds in regenerative medicine. In physiological conditions fibers are subjected to stresses and strains from the surrounding biological environment. Such stresses can cause permanent deformation or even failure to their structure. Therefore, there is a growing necessity to characterize their mechanical properties, especially at the nanoscale. Atomic force microscopy is a powerful tool for the visualization and probing of selected mechanical properties of materials in biomedical sciences. Image resolution of atomic force microscopy techniques depends on the equipment quality and shape of the scanning probe. The probe radius and aspect ratio has huge impact on the quality of measurement. In the presented work the nanomechanical properties of four different polymer based electrospun fibers were tested using PeakForce Quantitative NanoMechanics atomic force microscopy, with standard and modified scanning probes. Standard, commercially available probes have been modified by etching using focused ion beam (FIB). Results have shown that modified probes can be used for mechanical properties mapping of biomaterial in the nanoscale, and generate nanomechanical information where conventional tips fail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Direct imaging of defect formation in strained organic flexible electronics by Scanning Kelvin Probe Microscopy.

    Science.gov (United States)

    Cramer, Tobias; Travaglini, Lorenzo; Lai, Stefano; Patruno, Luca; de Miranda, Stefano; Bonfiglio, Annalisa; Cosseddu, Piero; Fraboni, Beatrice

    2016-12-02

    The development of new materials and devices for flexible electronics depends crucially on the understanding of how strain affects electronic material properties at the nano-scale. Scanning Kelvin-Probe Microscopy (SKPM) is a unique technique for nanoelectronic investigations as it combines non-invasive measurement of surface topography and surface electrical potential. Here we show that SKPM in non-contact mode is feasible on deformed flexible samples and allows to identify strain induced electronic defects. As an example we apply the technique to investigate the strain response of organic thin film transistors containing TIPS-pentacene patterned on polymer foils. Controlled surface strain is induced in the semiconducting layer by bending the transistor substrate. The amount of local strain is quantified by a mathematical model describing the bending mechanics. We find that the step-wise reduction of device performance at critical bending radii is caused by the formation of nano-cracks in the microcrystal morphology of the TIPS-pentacene film. The cracks are easily identified due to the abrupt variation in SKPM surface potential caused by a local increase in resistance. Importantly, the strong surface adhesion of microcrystals to the elastic dielectric allows to maintain a conductive path also after fracture thus providing the opportunity to attenuate strain effects.

  6. Scattering compensation by focus scanning holographic aberration probing (F-SHARP) (Conference Presentation)

    Science.gov (United States)

    Papadopoulos, Ioannis N.; Jouhanneau, Jean-Sébastien; Poulet, James; Judkewitz, Benjamin

    2017-02-01

    Optical microscopy is an indispensable tool for researchers, allowing them to closely investigate different organisms, revealing new features and phenomena in biomedical research. Although very useful, conventional imaging techniques that rely only on ballistic, unaffected photons to form images inside inhomogeneous media, like biological tissue, are eventually limited up to the diffusion regime of optical propagation where scattering becomes dominant and no ballistic light can be detected. Adaptive optics and nonlinear optimization methods that rely on so called guide stars have been employed to overcome this problem and image deeper inside biological tissue. These techniques attempt to recover the optimal wavefront that will enhance the image quality or that will render a focus spot inside the scattering biological tissue. In order to achieve that, they have to iterate through each correction mode (e.g. each pixel on a wavefront shaper) thus trading off measurement time with wavefront resolution. Here we present a new turbidity suppression approach, termed Focus Scanning Holographic Aberration Probing (F-SHARP or F♯) that allows us to directly measure the amplitude and phase of the scattered light distribution at the focal plane (scattered E-field PSF). Knowledge of the E-field enables rapid correction of both aberration and scattering with a high resolution. We demonstrate the power of F-SHARP by correcting for aberration and scattering and imaging neuronal structures through the larval zebrafish and mouse brain and through thinned mouse skull in vivo.

  7. Intermittent trapping of a liquid-like vortex state visualized by scanning Hall probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, A; Bending, S J [Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Li, Z Z; Raffy, H [Laboratoire de Physique des Solides, Universite Paris-Sud, Batiment 510, UMR 8502, 91405 Orsay (France)

    2011-11-15

    We have used scanning Hall probe microscopy to investigate vortex structures and vortex dynamics in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} thin films in very low perpendicular magnetic fields. After nominally zero field cooling in the Earth's field we find that the vortices appear to be in a stable glassy state in our highly disordered samples. After applying a cancellation field of a few Oersted at low temperature, however, the system enters a new regime at very low magnetic induction when the only image contrast is due to vortices that are intermittently trapped on strong pinning centres. This state shares many of the signatures of the re-entrant vortex liquid phase that has been theoretically predicted in these highly anisotropic materials at very low vortex densities. Analysing the trapping times for vortices in the fluctuating state we estimate that the pinning potential of typical strong pinning centres is about 900 K under our experimental conditions. To our knowledge, this is the first direct experimental evidence for the existence of a dynamic liquid-like vortex state in this highly anisotropic material at very low magnetic induction.

  8. Laser-assisted scanning probe alloying nanolithography (LASPAN) and its application in gold-silicon system

    Science.gov (United States)

    Peng, Luohan

    Nanoscale science and technology demand novel approaches and new knowledge to further advance. Nanoscale fabrication has been widely employed in both modern science and engineering. Micro/nano lithography is the most common technique to deposit nanostructures. Fundamental research is also being conducted to investigate structural, physical and chemical properties of the nanostructures. This research contributes fundamental understanding in surface science through development of a new methodology. Doing so, experimental approaches combined with energy analysis were carried out. A delicate hardware system was designed and constructed to realize the nanometer scale lithography. We developed a complete process, namely laser-assisted scanning probe alloying nanolithography (LASPAN), to fabricate well-defined nanostructures in gold-silicon (Au-Si) system. As a result, four aspects of nanostructures were made through different experimental trials. A non-equilibrium phase (AuSi3) was discovered, along with a non-equilibrium phase diagram. Energy dissipation and mechanism of nanocrystalization in the process have been extensively discussed. The mechanical energy input and laser radiation induced thermal energy input were estimated. An energy model was derived to represent the whole process of LASPAN.

  9. Electrochemical and scanning probe microscopic characterization of spontaneously adsorbed organothiolate monolayers at gold

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Sze-Shun Season [Iowa State Univ., Ames, IA (United States)

    1999-12-10

    This dissertation presented several results which add to the general knowledge base regarding organothiolates monolayer spontaneously adsorbed at gold films. Common to the body of this work is the use of voltammetric reductive resorption and variants of scanning probe microscopy to gain insight into the nature of the monolayer formation process as well as the resulting interface. The most significant result from this work is the success of using friction force microscopy to discriminate the end group orientation of monolayer chemisorbed at smooth gold surfaces with micrometer resolution (Chapter 4). The ability to detect the differences in the orientational disposition is demonstrated by the use PDMS polymer stamp to microcontact print an adlayer of n-alkanethiolate of length n in a predefine pattern onto a gold surface, followed by the solution deposition of a n-alkanethiol of n ± 1 to fill in the areas on the gold surface intentionally not coated by the stamping process. These two-component monolayers can be discriminated by using friction force microscopy which detects differences in friction contributed by the differences in the orientation of the terminal groups at surfaces. This success has recently led to the detection of the orientation differences at nanometer scale. Although the substrates examined in this work consisted entirely of smooth gold films, the same test can be performed on other smooth substrates and monolayer materials.

  10. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules.

    Science.gov (United States)

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2015-01-01

    Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926-1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface.

  11. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules

    Directory of Open Access Journals (Sweden)

    Philipp Leinen

    2015-11-01

    Full Text Available Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926–1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf of the non-contact atomic force microscope (NC-AFM tuning fork sensor as well as the magnitude of the electric current (I flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111 surface.

  12. Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air

    Energy Technology Data Exchange (ETDEWEB)

    Abdellatif, M.H. [Department of Nanostructures, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Physics Department, National Research Center, Elbehoos st., 12622, Dokki, Giza (Egypt); Salerno, M., E-mail: marco.salerno@iit.it [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Polovitsyn, Anatolii [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Dipartimentodi Fisica, Università di Genova, via Dodecaneso 33, I-16146 Genova (Italy); Marras, Sergio [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); De Angelis, Francesco [Department of Nanostructures, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy)

    2017-05-01

    Highlights: • The surface potential of drop cast nanocrystals was measured by SKPM in ambient air. • The nanocrystal facet work function was derived by theory. • By comparing theory and experiment we distinguished the nanocrystal facets. • Nanocrystal facet control is of practical interest for optoelectronic devices. - Abstract: The work function of nano-materials is important for a full characterization of their electronic properties. Because the band alignment, band bending and electronic noise are very sensitive to work function fluctuations, the dependence of the work function of nano-scale crystals on facet orientation can be a critical issue in optimizing optoelectronic devices based on these materials. We used scanning Kelvin probe microscopy to assess the local work function on samples of silver nano-plates at sub-micrometric spatial resolution. With the appropriate choice of the substrate and based on statistical analysis, it was possible to distinguish the surface potential of the different facets of silver nano-plates even if the measurements were done in ambient conditions without the use of vacuum. A phenomenological model was used to calculate the differences of facet work function of the silver nano-plates and the corresponding shift in Fermi level. This theoretical prediction and the experimentally observed difference in surface potential on the silver nano-plates were in good agreement. Our results show the possibility to sense the nano-crystal facets by appropriate choice of the substrate in ambient conditions.

  13. Field programmable gate array based reconfigurable scanning probe/optical microscope.

    Science.gov (United States)

    Nowak, Derek B; Lawrence, A J; Dzegede, Zechariah K; Hiester, Justin C; Kim, Cliff; Sánchez, Erik J

    2011-10-01

    The increasing popularity of nanometrology and nanospectroscopy has pushed researchers to develop complex new analytical systems. This paper describes the development of a platform on which to build a microscopy tool that will allow for flexibility of customization to suit research needs. The novelty of the described system lies in its versatility of capabilities. So far, one version of this microscope has allowed for successful near-field and far-field fluorescence imaging with single molecule detection sensitivity. This system is easily adapted for reflection, polarization (Kerr magneto-optical (MO)), Raman, super-resolution techniques, and other novel scanning probe imaging and spectroscopic designs. While collecting a variety of forms of optical images, the system can simultaneously monitor topographic information of a sample with an integrated tuning fork based shear force system. The instrument has the ability to image at room temperature and atmospheric pressure or under liquid. The core of the design is a field programmable gate array (FPGA) data acquisition card and a single, low cost computer to control the microscope with analog control circuitry using off-the-shelf available components. A detailed description of electronics, mechanical requirements, and software algorithms as well as examples of some different forms of the microscope developed so far are discussed.

  14. Observations of liver cancer cells in scanning probe acoustic microscope: a preliminary study

    Science.gov (United States)

    Chen, Xiaohui; Fang, Xiaoyue; Xi, Qing; Guo, Hua; Zhang, Ning; Ding, Mingyue

    2016-04-01

    Scanning probe acoustic microscope (SPAM) can be used to acquire the morphology image as well as the non-destructive internal structures acoustic image. However, the observations of the morphology image as well as the internal structures acoustic image of liver cancer cells in SPAM are few. In this paper, we cultured 4 different types of liver cancer cells on the silicon wafer and coverslip to observe their morphology images as well as acoustic images in SPAM, and made a preliminary study of the 8 types of cells specimens (hereinafter referred to as the silicon specimens and coverslips specimens). The experimental measurement results showed that some cellular pseudopodium were observed in the morphology images of the coverslip specimens while no such cellular pseupodium were appeared in the morphology images of the silicon specimens, which concluded that the living liver cancer cells were less likely to grow on the silicon wafer. SPAM provides a rapid and sensitive visual method for studying the morphology and internal structures of the cancer cells. The proposed method can be also used to obtain the morphology and internal information in both solid and soft material wafers, such as silicon and cells, with the resolution of nanometer scale.

  15. Thermal scanning probe lithography for the directed self-assembly of block copolymers

    Science.gov (United States)

    Gottlieb, S.; Lorenzoni, M.; Evangelio, L.; Fernández-Regúlez, M.; Ryu, Y. K.; Rawlings, C.; Spieser, M.; Knoll, A. W.; Perez-Murano, F.

    2017-04-01

    Thermal scanning probe lithography (t-SPL) is applied to the fabrication of chemical guiding patterns for directed self-assembly (DSA) of block copolymers (BCP). The two key steps of the overall process are the accurate patterning of a poly(phthalaldehyde) resist layer of only 3.5 nm thickness, and the subsequent oxygen-plasma functionalization of an underlying neutral poly(styrene-random-methyl methacrylate) brush layer. We demonstrate that this method allows one to obtain aligned line/space patterns of poly(styrene-block-methyl methacrylate) BCP of 18.5 and 11.7 nm half-pitch. Defect-free alignment has been demonstrated over areas of tens of square micrometres. The main advantages of t-SPL are the absence of proximity effects, which enables the realization of patterns with 10 nm resolution, and its compatibility with standard DSA methods. In the brush activation step by oxygen-plasma exposure, we observe swelling of the brush. This effect is discussed in terms of the chemical reactions occurring in the exposed areas. Our results show that t-SPL can be a suitable method for research activities in the field of DSA, in particular for low-pitch, high-χ BCP to achieve sub-10 nm line/space patterns.

  16. Discordance in fibrosis staging between liver biopsy and transient elastography using the FibroScan XL probe.

    Science.gov (United States)

    Myers, Robert P; Pomier-Layrargues, Gilles; Kirsch, Richard; Pollett, Aaron; Beaton, Melanie; Levstik, Mark; Duarte-Rojo, Andres; Wong, David; Crotty, Pam; Elkashab, Magdy

    2012-03-01

    The FibroScan XL probe facilitates liver stiffness measurement (LSM) by transient elastography (TE) in obese patients, yet factors affecting its accuracy have not been described. Our objectives were to examine the prevalence, risk factors, and causes of discordance between fibrosis estimated by the FibroScan XL probe and biopsy. Two hundred and ten patients with chronic liver disease (45% viral hepatitis, 55% nonalcoholic fatty liver disease (NAFLD) and a body mass index (BMI) ≥ 28 kg/m(2)) underwent liver biopsy and TE with the FibroScan XL probe. Predictors of discordance ≥ 2 fibrosis stages between measures, which occurred in 11% of patients (n=24), were identified by comparing patient, TE, and biopsy characteristics of discordant and non-discordant cases. Fibrosis estimated by the FibroScan XL probe was greater than biopsy in 75% (18/24) of discordant cases. Although biopsy quality was not associated with discordance, discordant cases were less likely to have ≥ 10 valid shots (75% vs. 97%; p=0.001), a success rate ≥ 60% (67% vs. 95%; p liver stiffness (IQR/M) liver stiffness was of borderline significance (OR 1.73 per log(10)-transformed value; 95% CI 0.95-3.18; p=0.08). Discordance was 4- to 5-fold more frequent among patients with severe obesity (BMI ≥ 40 kg/m(2): 32% vs. 8%) and liver stiffness above the median of 7.0 kPa (20% vs. 4%; both p liver fibrosis estimated by biopsy and TE using the FibroScan XL probe was infrequent in this obese population. Patients with severe obesity and elevated liver stiffness have the greatest risk of discordance. Copyright © 2011 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  17. On the sensitivity of probe-corrected spherical near-field antenna measurements with high-order probes using double phi-step theta-scanning scheme against various measurement uncertainties

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2011-01-01

    In this paper, the relatively recently introduced double phi-step theta-scanning scheme and the probe correction technique associated with it is examined against the traditional phi-scanning scheme and the first-order probe correction. The important result of this paper is that the double phi...

  18. Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Birkelund, Karen

    1997-01-01

    Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium...

  19. Analysis of IgG kinetic stability by differential scanning calorimetry, probe fluorescence and light scattering.

    Science.gov (United States)

    Nemergut, Michal; Žoldák, Gabriel; Schaefer, Jonas V; Kast, Florian; Miškovský, Pavol; Plückthun, Andreas; Sedlák, Erik

    2017-11-01

    Monoclonal antibodies of the immunoglobulin G (IgG) type have become mainstream therapeutics for the treatment of many life-threatening diseases. For their successful application in the clinic and a favorable cost-benefit ratio, the design and formulation of these therapeutic molecules must guarantee long-term stability for an extended period of time. Accelerated stability studies, e.g., by employing thermal denaturation, have the great potential for enabling high-throughput screening campaigns to find optimal molecular variants and formulations in a short time. Surprisingly, no validated quantitative analysis of these accelerated studies has been performed yet, which clearly limits their application for predicting IgG stability. Therefore, we have established a quantitative approach for the assessment of the kinetic stability over a broad range of temperatures. To this end, differential scanning calorimetry (DSC) experiments were performed with a model IgG, testing chaotropic formulations and an extended temperature range, and they were subsequently analyzed by our recently developed three-step sequential model of IgG denaturation, consisting of one reversible and two irreversible steps. A critical comparison of the predictions from this model with data obtained by an orthogonal fluorescence probe method, based on 8-anilinonaphthalene-1-sulfonate binding to partially unfolded states, resulted in very good agreement. In summary, our study highlights the validity of this easy-to-perform analysis for reliably assessing the kinetic stability of IgGs, which can support accelerated formulation development of monoclonal antibodies by ranking different formulations as well as by improving colloidal stability models. © 2017 The Protein Society.

  20. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Christoph D.

    2011-10-04

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  1. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    Science.gov (United States)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-12-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  2. Improved accuracy and speed in scanning probe microscopy by image reconstruction from non-gridded position sensor data.

    Science.gov (United States)

    Ziegler, Dominik; Meyer, Travis R; Farnham, Rodrigo; Brune, Christoph; Bertozzi, Andrea L; Ashby, Paul D

    2013-08-23

    Scanning probe microscopy (SPM) has facilitated many scientific discoveries utilizing its strengths of spatial resolution, non-destructive characterization and realistic in situ environments. However, accurate spatial data are required for quantitative applications but this is challenging for SPM especially when imaging at higher frame rates. We present a new operation mode for scanning probe microscopy that uses advanced image processing techniques to render accurate images based on position sensor data. This technique, which we call sensor inpainting, frees the scanner to no longer be at a specific location at a given time. This drastically reduces the engineering effort of position control and enables the use of scan waveforms that are better suited for the high inertia nanopositioners of SPM. While in raster scanning, typically only trace or retrace images are used for display, in Archimedean spiral scans 100% of the data can be displayed and at least a two-fold increase in temporal or spatial resolution is achieved. In the new mode, the grid size of the final generated image is an independent variable. Inpainting to a few times more pixels than the samples creates images that more accurately represent the ground truth.

  3. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.

    Science.gov (United States)

    Hwang, Gwangseok; Chung, Jaehun; Kwon, Ohmyoung

    2014-11-01

    The application of conventional scanning thermal microscopy (SThM) is severely limited by three major problems: (i) distortion of the measured signal due to heat transfer through the air, (ii) the unknown and variable value of the tip-sample thermal contact resistance, and (iii) perturbation of the sample temperature due to the heat flux through the tip-sample thermal contact. Recently, we proposed null-point scanning thermal microscopy (NP SThM) as a way of overcoming these problems in principle by tracking the thermal equilibrium between the end of the SThM tip and the sample surface. However, in order to obtain high spatial resolution, which is the primary motivation for SThM, NP SThM requires an extremely sensitive SThM probe that can trace the vanishingly small heat flux through the tip-sample nano-thermal contact. Herein, we derive a relation between the spatial resolution and the design parameters of a SThM probe, optimize the thermal and electrical design, and develop a batch-fabrication process. We also quantitatively demonstrate significantly improved sensitivity, lower measurement noise, and higher spatial resolution of the fabricated SThM probes. By utilizing the exceptional performance of these fabricated probes, we show that NP SThM can be used to obtain a quantitative temperature profile with nanoscale resolution independent of the changing tip-sample thermal contact resistance and without perturbation of the sample temperature or distortion due to the heat transfer through the air.

  4. Bias assisted scanning probe microscopy direct write lithography enables local oxygen enrichment of lanthanum cuprates thin films

    Science.gov (United States)

    Lavini, Francesco; Yang, Nan; Vasudevan, Rama K.; Strelcov, E.; Jesse, S.; Okatan, M. B.; Kravchenko, I.; Di Castro, Daniele; Kalinin, Sergei V.; Balestrino, Giuseppe; Aruta, Carmela; Foglietti, Vittorio

    2015-08-01

    Scanning probe bias techniques have been used as a method to locally dope thin epitaxial films of La2CuO4 (LCO) fabricated by pulsed laser deposition. The local electrochemical oxidation of LCO very efficiently introduces interstitial oxygen defects in the thin film. Details on the influence of the tip voltage bias and environmental conditions on the surface morphology have been investigated. The results show that a local uptake of oxygen occurs in the oxidized films.

  5. Plasma-deposited fluorocarbon films: insulation material for microelectrodes and combined atomic force microscopy-scanning electrochemical microscopy probes.

    Science.gov (United States)

    Wiedemair, Justyna; Balu, Balamurali; Moon, Jong-Seok; Hess, Dennis W; Mizaikoff, Boris; Kranz, Christine

    2008-07-01

    Pinhole-free insulation of micro- and nanoelectrodes is the key to successful microelectrochemical experiments performed in vivo or in combination with scanning probe experiments. A novel insulation technique based on fluorocarbon insulation layers deposited from pentafluoroethane (PFE, CF3CHF2) plasmas is presented as a promising electrical insulation approach for microelectrodes and combined atomic force microscopy-scanning electrochemical microscopy (AFM-SECM) probes. The deposition allows reproducible and uniform coating, which is essential for many analytical applications of micro- and nanoelectrodes such as, e.g., in vivo experiments and SECM experiments. Disk-shaped microelectrodes and frame-shaped AFM tip-integrated electrodes have been fabricated by postinsulation focused ion beam (FIB) milling. The thin insulation layer for combined AFM-SECM probes renders this fabrication technique particularly useful for submicro insulation providing radius ratios of the outer insulation versus the disk electrode (RG values) suitable for SECM experiments. Characterization of PFE-insulated AFM-SECM probes will be presented along with combined AFM-SECM approach curves and imaging.

  6. Towards non-invasive high-resolution 3D nano-tomography by ultrasonic scanning probe microscopy

    Science.gov (United States)

    Sharahi, Hossein J.; Shekhawat, Gajendra; Dravid, Vinayak; Egberts, Philip; Kim, Seonghwan

    2017-07-01

    Nanoscale imaging techniques that can be used to visualize and characterize local aggregations of the embedded nanoparticulates with sufficient resolution have attracted a great deal of interest. Ultrasonic scanning probe microscopy (SPM) and its derivatives are nondestructive techniques that can be used to elucidate subsurface nanoscale features and mechanical properties. Although many different ultrasonic methods have been used for subsurface imaging, the mechanisms and crucial parameters associated with the contrast formation in subsurface imaging are still unclear. Here, the impact of mechanical properties of the nanoparticulates/matrix, size of the nanoparticulates, buried depth of the nanoparticulates, and the ultrasonic excitation frequency on the developed ultrasonic SPM images have been investigated. To verify our theoretical model, experimental measurements of scanning near-field ultrasound holography (SNFUH) have been recreated in our theoretical analysis to reveal comparable variations in phase contrast measured in SNFUH while scanning over the nanoparticulates embedded in bacteria.

  7. Sample exchange by beam scanning with applications to noncollinear pump-probe spectroscopy at kilohertz repetition rates

    Science.gov (United States)

    Spencer, Austin P.; Hill, Robert J.; Peters, William K.; Baranov, Dmitry; Cho, Byungmoon; Huerta-Viga, Adriana; Carollo, Alexa R.; Curtis, Anna C.; Jonas, David M.

    2017-06-01

    In laser spectroscopy, high photon flux can perturb the sample away from thermal equilibrium, altering its spectroscopic properties. Here, we describe an optical beam scanning apparatus that minimizes repetitive sample excitation while providing shot-to-shot sample exchange for samples such as cryostats, films, and air-tight cuvettes. In this apparatus, the beam crossing point is moved within the focal plane inside the sample by scanning both tilt angles of a flat mirror. A space-filling spiral scan pattern was designed that efficiently utilizes the sample area and mirror scanning bandwidth. Scanning beams along a spiral path is shown to increase the average number of laser shots that can be sampled before a spot on the sample cell is resampled by the laser to ˜1700 (out of the maximum possible 2500 for the sample area and laser spot size) while ensuring minimal shot-to-shot spatial overlap. Both an all-refractive version and an all-reflective version of the apparatus are demonstrated. The beam scanning apparatus does not measurably alter the time delay (less than the 0.4 fs measurement uncertainty), the laser focal spot size (less than the 2 μ m measurement uncertainty), or the beam overlap (less than the 3.3% measurement uncertainty), leading to pump-probe and autocorrelation signal transients that accurately characterize the equilibrium sample.

  8. A menu of electron probes for optimising information from scanning transmission electron microscopy.

    Science.gov (United States)

    Nguyen, D T; Findlay, S D; Etheridge, J

    2018-01-01

    We assess a selection of electron probes in terms of the spatial resolution with which information can be derived about the structure of a specimen, as opposed to the nominal image resolution. Using Ge [001] as a study case, we investigate the scattering dynamics of these probes and determine their relative merits in terms of two qualitative criteria: interaction volume and interpretability. This analysis provides a 'menu of probes' from which an optimum probe for tackling a given materials science question can be selected. Hollow cone, vortex and spherical wave fronts are considered, from unit cell to Ångstrom size, and for different defocus and specimen orientations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A scanning probe mounted on a field-effect transistor: Characterization of ion damage in Si.

    Science.gov (United States)

    Shin, Kumjae; Lee, Hoontaek; Sung, Min; Lee, Sang Hoon; Shin, Hyunjung; Moon, Wonkyu

    2017-10-01

    We have examined the capabilities of a Tip-On-Gate of Field-Effect Transistor (ToGoFET) probe for characterization of FIB-induced damage in Si surface. A ToGoFET probe is the SPM probe which the Field Effect Transistor(FET) is embedded at the end of a cantilever and a Pt tip was mounted at the gate of FET. The ToGoFET probe can detect the surface electrical properties by measuring source-drain current directly modulated by the charge on the tip. In this study, a Si specimen whose surface was processed with Ga+ ion beam was prepared. Irradiation and implantation with Ga+ ions induce highly localized modifications to the contact potential. The FET embedded on ToGoFET probe detected the surface electric field profile generated by schottky contact between the Pt tip and the sample surface. Experimentally, it was shown that significant differences of electric field due to the contact potential barrier in differently processed specimens were observed using ToGOFET probe. This result shows the potential that the local contact potential difference can be measured by simple working principle with high sensitivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

    Directory of Open Access Journals (Sweden)

    Urs Gysin

    2015-12-01

    Full Text Available Background: The resolution in electrostatic force microscopy (EFM, a descendant of atomic force microscopy (AFM, has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip–sample interface for optically excited measurements such as local surface photo voltage detection.Results: We present Kelvin probe force microscopy (KPFM measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.

  11. Reversible Hydrogenation and Bandgap Opening of Graphene and Graphite Surfaces Probed by Scanning Tunneling Spectroscopy

    NARCIS (Netherlands)

    Castellanos-Gomez, Andres; Wojtaszek, Magdalena; Arramel, [No Value; Tombros, Nikolaos; van Wees, Bart J.

    2012-01-01

    The effects of hydrogenation on the topography and electronic properties of graphene and graphite surfaces are studied by scanning tunneling microscopy and spectroscopy. The surfaces are chemically modified using an Ar/H2 plasma. By analyzing thousands of scanning tunneling spectroscopy measurements

  12. Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation.

    Science.gov (United States)

    Li, Zhuoyan; Shen, Jin H; Kozub, John A; Prasad, Ratna; Lu, Pengcheng; Joos, Karen M

    2014-03-01

    Investigations have shown that pulsed lasers tuned to 6.1 µm in wavelength are capable of ablating ocular and neural tissue with minimal collateral damage. This study investigated whether a miniature B-scan forward-imaging optical coherence tomography (OCT) probe can be combined with the laser to provide real-time visual feedback during laser incisions. A miniature 25-gauge B-scan forward-imaging OCT probe was developed and combined with a 250 µm hollow-glass waveguide to permit delivery of 6.1 µm laser energy. A gelatin mixture and both porcine corneal and retinal tissues were simultaneously imaged and lased (6.1 µm, 10 Hz, 0.4-0.7 mJ) through air. The ablation studies were observed and recorded in real time. The crater dimensions were measured using OCT imaging software (Bioptigen, Durham, NC). Histological analysis was performed on the ocular tissues. The combined miniature forward-imaging OCT and mid-infrared laser-delivery probe successfully imaged real-time tissue ablation in gelatin, corneal tissue, and retinal tissue. Application of a constant number of 60 pulses at 0.5 mJ/pulse to the gelatin resulted in a mean crater depth of 123 ± 15 µm. For the corneal tissue, there was a significant correlation between the number of pulses used and depth of the lased hole (Pearson correlation coefficient = 0.82; P = 0.0002). Histological analysis of the cornea and retina tissues showed discrete holes with minimal thermal damage. A combined miniature OCT and laser-delivery probe can monitor real-time tissue laser ablation. With additional testing and improvements, this novel instrument has the future possibility of effectively guiding surgeries by simultaneously imaging and ablating tissue. © 2013 Wiley Periodicals, Inc.

  13. A Miniature Forward-imaging B-scan Optical Coherence Tomography Probe to Guide Real-time Laser Ablation

    Science.gov (United States)

    Li, Zhuoyan; Shen, Jin H.; Kozub, John A.; Prasad, Ratna; Lu, Pengcheng; Joos, Karen M.

    2014-01-01

    Background and Objective Investigations have shown that pulsed lasers tuned to 6.1 μm in wavelength are capable of ablating ocular and neural tissue with minimal collateral damage. This study investigated whether a miniature B-scan forward-imaging optical coherence tomography (OCT) probe can be combined with the laser to provide real-time visual feedback during laser incisions. Study Design/Methods and Materials A miniature 25-gauge B-scan forward-imaging OCT probe was developed and combined with a 250 μm hollow-glass waveguide to permit delivery of 6.1 μm laser energy. A gelatin mixture and both porcine corneal and retinal tissues were simultaneously imaged and lased (6.1 μm, 10 Hz, 0.4-0.7 mJ) through air. The ablation studies were observed and recorded in real time. The crater dimensions were measured using OCT imaging software (Bioptigen, Durham, NC). Histological analysis was performed on the ocular tissues. Results The combined miniature forward-imaging OCT and mid-infrared laser-delivery probe successfully imaged real-time tissue ablation in gelatin, corneal tissue, and retinal tissue. Application of a constant number of 60 pulses at 0.5 mJ/pulse to the gelatin resulted in a mean crater depth of 123 ± 15 μm. For the corneal tissue, there was a significant correlation between the number of pulses used and depth of the lased hole (Pearson correlation coefficient = 0.82; P = 0.0002). Histological analysis of the cornea and retina tissues showed discrete holes with minimal thermal damage. Conclusions A combined miniature OCT and laser -delivery probe can monitor real-time tissue laser ablation. With additional testing and improvements, this novel instrument has the future possibility of effectively guiding surgeries by simultaneously imaging and ablating tissue. PMID:24648326

  14. Probing the electronic structure of graphene sheets with various thicknesses by scanning transmission X-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Lili; Liu, Jinyin; Zhao, Guanqi; Gao, Jing; Sun, Xuhui, E-mail: xhsun@suda.edu.cn, E-mail: jzhong@suda.edu.cn; Zhong, Jun, E-mail: xhsun@suda.edu.cn, E-mail: jzhong@suda.edu.cn [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China)

    2013-12-16

    The electronic structure of an aggregation of graphene sheets with various thicknesses was probed by scanning transmission X-ray microscopy. A uniform oxidation of the graphene sheets in the flat area was observed regardless of the thickness, while in the folded area the result could be strongly affected by the geometry. Moreover, thick parts of the aggregation showed strong angle-dependence to the incident X-ray, while thin parts showed less angle-dependence, which might be related to the surface wrinkles and ripples. The electronic structure differences due to the geometry and thickness suggest a complicated situation in the aggregation of graphene sheets.

  15. An ultra-low temperature scanning Hall probe microscope for magnetic imaging below 40 mK

    OpenAIRE

    Karci Ozgur; Piatek Julian O.; Jorba Pau; Dede Munir; Ronnow Henrik M.; Oral Ahmet

    2014-01-01

    We describe the design of a low temperature scanning Hall probe microscope (SHPM) for a dilution refrigerator system. A detachable SHPM head with 25.4 mm OD and 200 mm length is integrated at the end of the mixing chamber base plate of the dilution refrigerator insert (Oxford Instruments, Kelvinox MX-400) by means of a dedicated docking station. It is also possible to use this detachable SHPM head with a variable temperature insert (VTI) for 2 K-300 K operations. A microfabricated 1 mu m size...

  16. Discretization of electronic states in large InAsP/InP multilevel quantum dots probed by scanning tunneling spectroscopy.

    Science.gov (United States)

    Fain, B; Robert-Philip, I; Beveratos, A; David, C; Wang, Z Z; Sagnes, I; Girard, J C

    2012-03-23

    The topography and the electronic structure of InAsP/InP quantum dots are probed by cross-sectional scanning tunneling microscopy and spectroscopy. The study of the local density of states in such large quantum dots confirms the discrete nature of the electronic levels whose wave functions are measured by differential conductivity mapping. Because of their large dimensions, the energy separation between the discrete electronic levels is low, allowing for quantization in both the lateral and growth directions as well as the observation of the harmonicity of the dot lateral potential.

  17. Surface polymerization of (3,4-ethylenedioxythiophene) probed by in situ scanning tunneling microscopy on Au(111) in ionic liquids.

    Science.gov (United States)

    Ahmad, Shahzada; Carstens, Timo; Berger, Rüdiger; Butt, Hans-Jürgen; Endres, Frank

    2011-01-01

    The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situ scanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situ STM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situ microscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM).

  18. Scan parameters and the diffusion emphasis effect in diffusion-weighted imaging using a motion-probing gradient preparation pulse.

    Science.gov (United States)

    Takahashi, Daisuke; Tanji, Hajime; Yamaki, Tomoya; Obara, Makoto; Machida, Yoshio

    2014-07-01

    Diffusion-sensitized driven equilibrium preparation (DSDE) is a gradient echo (GRE) diffusion-weighted imaging (DWI) sequence that employs a motion-probing gradient (MPG) preparation pulse and phase cycling. In DSDE, several scan parameters of the MPG preparation pulse and the GRE sequence affect diffusion sensitivity. Our investigation of the relationship between these scan parameters and the diffusion emphasis effect revealed the importance of "prep.TE" in the MPG preparation pulse and "TFE shot interval" in the gradient echo sequence. Appropriate choice of these parameters allows DSDE to provide a similar DWI to that of conventional single-shot SEEPI DWI. We therefore concluded DSDE to be a useful DWI method.

  19. An electronic probe micro-analyser. A linear scan device; Microanalyseur a sonde electronique. Dispositif de balayage lineaire

    Energy Technology Data Exchange (ETDEWEB)

    Kirianenko, A.; Maurice, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The Castaing electronic probe micro-analyser makes possible static analysis at successive points. For two years this apparatus has been equipped by its constructor with an automatic device for surface scanning. In order to increase the micro-analyser's efficiency a 'linear' scan device has been incorporated making it possible to obtain semi-quantitative analyses very rapidly. (authors) [French] Le microanalyseur a sonde electronique de Castaing permet l'analyse statique en des points successifs. Depuis deux ans, cet appareil a ete equipe par son constructeur d'un dispositif de balayage automatique 'surface'. Afin d'augmenter l'efficacite du microanalyaeur, on a adapte un dispositif de balayage 'lineaire' qui permet d'obtenir tres rapidement des analyses semi-quantitative. (auteurs)

  20. Compact MEMS-driven pyramidal polygon reflector for circumferential scanned endoscopic imaging probe.

    Science.gov (United States)

    Mu, Xiaojing; Zhou, Guangya; Yu, Hongbin; Du, Yu; Feng, Hanhua; Tsai, Julius Ming Lin; Chau, Fook Siong

    2012-03-12

    A novel prototype of an electrothermal chevron-beam actuator based microelectromechanical systems (MEMS) platform has been successfully developed for circumferential scan. Microassembly technology is utilized to construct this platform, which consists of a MEMS chevron-beam type microactuator and a micro-reflector. The proposed electrothermal microactuators with a two-stage electrothermal cascaded chevron-beam driving mechanism provide displacement amplification, thus enabling a highly reflective micro-pyramidal polygon reflector to rotate a large angle for light beam scanning. This MEMS platform is ultra-compact, supports circumferential imaging capability and is suitable for endoscopic optical coherence tomography (EOCT) applications, for example, for intravascular cancer detection.

  1. Characterization of the receptor binding residues of kisspeptins by positional scanning using peptide photoaffinity probes.

    OpenAIRE

    Misu, Ryosuke; Oishi, Shinya; Setsuda, Shohei; Noguchi, Taro; Kaneda, Masato; Ohno, Hiroaki; Evans, Barry; Navenot, Jean-Marc; Peiper, Stephen C.; Fujii, Nobutaka

    2013-01-01

    Kisspeptins, endogenous peptide ligands for GPR54, play an important role in GnRH secretion. Since in vivo administration of kisspeptins induces increased plasma LH levels, GPR54 agonists hold promise as therapeutic agents for the treatment of hormonal secretion diseases. To facilitate the design of novel potent GPR54 ligands, residues in kisspeptins that involve in the interaction with GPR54 were investigated by kisspeptin-based photoaffinity probes. Herein, we report the design and synthesi...

  2. Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy

    Directory of Open Access Journals (Sweden)

    Xiaofei Zhang

    2018-01-01

    Full Text Available Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode. Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing.

  3. Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy.

    Science.gov (United States)

    Zhang, Xiaofei; Gao, Fengli; Li, Xide

    2018-01-24

    Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p) sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode) and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode). Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing.

  4. DTAF: an efficient probe to study cyanobacterial-plant interaction using confocal laser scanning microscopy (CLSM)

    NARCIS (Netherlands)

    Ahmed, M.; Stal, L.J.; Hasnain, S.

    2011-01-01

    A variety of microscopic techniques have been utilized to study cyanobacterial associations with plant roots, but confocal laser scanning microscopy (CLSM) is the least used due to the unavailability of a suitable fluorescent dye. Commonly used lectins have problems with their binding ability with

  5. DTAF: an efficient probe to study cyanobacterial-plant interaction using confocal laser scanning microscopy (CLSM).

    NARCIS (Netherlands)

    Ahmed, M.; Stal, L.J.; Hasnain, S.

    2011-01-01

    A variety of microscopic techniques have been utilized to study cyanobacterial associations with plant roots, but confocal laser scanning microscopy (CLSM) is the least used due to the unavailability of a suitable fluorescent dye. Commonly used lectins have problems with their binding ability with

  6. Carbon-fiber tips for scanning probe microscopes and molecular electronics experiments

    NARCIS (Netherlands)

    Rubio-Bollinger, G.; Castellanos-Gomez, A.; Bilan, S.; Zotti, L.A.; Arroyo, C.R.; Agraït, N.; Cuevas, J.

    2012-01-01

    We fabricate and characterize carbon-fiber tips for their use in combined scanning tunneling and force microscopy based on piezoelectric quartz tuning fork force sensors. An electrochemical fabrication procedure to etch the tips is used to yield reproducible sub-100-nm apex. We also study electron

  7. Atomic and Electronic Structure of Quantum Dots Measured with Scanning Probe Techniques

    NARCIS (Netherlands)

    Sun, Z.|info:eu-repo/dai/nl/314075674

    2012-01-01

    This thesis deals with low temperature scanning tunneling microscopy/spectroscopy and atomic force microscopy (LT-STM/STS and AFM) studies on colloidal semiconductor and graphene quantum dots (g-QDs). These nanostructures are interesting because they show tunable electrical and optical properties

  8. Electrical Study of Trapped Charges in Copper-Doped Zinc Oxide Films by Scanning Probe Microscopy for Nonvolatile Memory Applications.

    Directory of Open Access Journals (Sweden)

    Ting Su

    Full Text Available Charge trapping properties of electrons and holes in copper-doped zinc oxide (ZnO:Cu films have been studied by scanning probe microscopy. We investigated the surface potential dependence on the voltage and duration applied to the copper-doped ZnO films by Kelvin probe force microscopy. It is found that the Fermi Level of the 8 at.% Cu-doped ZnO films shifted by 0.53 eV comparing to undoped ZnO films. This shift indicates significant change in the electronic structure and energy balance in Cu-doped ZnO films. The Fermi Level (work function of zinc oxide films can be tuned by Cu doping, which are important for developing this functional material. In addition, Kelvin probe force microscopy measurements demonstrate that the nature of contact at Pt-coated tip/ZnO:Cu interface is changed from Schottky contact to Ohmic contact by increasing sufficient amount of Cu ions. The charge trapping property of the ZnO films enhance greatly by Cu doping (~10 at.%. The improved stable bipolar charge trapping properties indicate that copper-doped ZnO films are promising for nonvolatile memory applications.

  9. Surface topography acquisition method for double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry.

    Science.gov (United States)

    Zhang, Tao; Gao, Feng; Jiang, Xiangqian

    2017-10-02

    This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.

  10. Availability of feature-oriented scanning probe microscopy for remote-controlled measurements on board a space laboratory or planet exploration Rover.

    Science.gov (United States)

    Lapshin, Rostislav V

    2009-06-01

    Prospects for a feature-oriented scanning (FOS) approach to investigations of sample surfaces, at the micrometer and nanometer scales, with the use of scanning probe microscopy under space laboratory or planet exploration rover conditions, are examined. The problems discussed include decreasing sensitivity of the onboard scanning probe microscope (SPM) to temperature variations, providing autonomous operation, implementing the capabilities for remote control, self-checking, self-adjustment, and self-calibration. A number of topical problems of SPM measurements in outer space or on board a planet exploration rover may be solved via the application of recently proposed FOS methods.

  11. Circular photocurrent response of a topological insulator thin film probed by scanning photocurrent microscopy

    Science.gov (United States)

    Qu, Dong-Xia; Kou, Xufeng; Lang, Murong; Crowhurst, Jonathan; Armstrong, Michael; Zaug, Joseph; Wang, Kang L.; Chapline, George

    2015-03-01

    The remarkable nature of surface states in topological insulators is expected to have a unique photocurrent response to electromagnetic radiation. However, the surface and bulk photo-excited charge transport mechanisms, in relation to the band bending at the electrode-topological insulator interface, have not been well understood. Here, we present scanning photocurrent microscopy measurements on a gated topological insulator microdevice and show that the spin-polarized photocurrent displays direction reversal near the electrical contact interfaces. We discuss two possible mechanisms, which alternatively play dominant roles in the helicity-dependent photocurrent map. Our analysis determines the magnitude of each contribution, and reveals the governing process under different gate conditions.

  12. Two-step controllable electrochemical etching of tungsten scanning probe microscopy tips

    KAUST Repository

    Khan, Yasser

    2012-01-01

    Dynamic electrochemical etching technique is optimized to produce tungsten tips with controllable shape and radius of curvature of less than 10 nm. Nascent features such as dynamic electrochemical etching and reverse biasing after drop-off are utilized, and two-step dynamic electrochemical etching is introduced to produce extremely sharp tips with controllable aspect ratio. Electronic current shut-off time for conventional dc drop-off technique is reduced to ?36 ns using high speed analog electronics. Undesirable variability in tip shape, which is innate to static dc electrochemical etching, is mitigated with novel dynamic electrochemical etching. Overall, we present a facile and robust approach, whereby using a novel etchant level adjustment mechanism, 30° variability in cone angle and 1.5 mm controllability in cone length were achieved, while routinely producing ultra-sharp probes. © 2012 American Institute of Physics.

  13. Spin-polarized scanning-tunneling probe for helical Luttinger liquids.

    Science.gov (United States)

    Das, Sourin; Rao, Sumathi

    2011-06-10

    We propose a three-terminal spin-polarized STM setup for probing the helical nature of the Luttinger liquid edge state that appears in the quantum spin Hall system. We show that the three-terminal tunneling conductance depends on the angle (θ) between the magnetization direction of the tip and the local orientation of the electron spin on the edge while the two terminal conductance is independent of this angle. We demonstrate that chiral injection of an electron into the helical Luttinger liquid (when θ is zero or π) is associated with fractionalization of the spin of the injected electron in addition to the fractionalization of its charge. We also point out a spin current amplification effect induced by the spin fractionalization.

  14. Controlled-Resonant Surface Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Matthias [ORNL; Ovchinnikova, Olga S [ORNL; Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL

    2014-01-01

    This paper reports on the advancement of a controlled-resonance surface tapping-mode single capillary liquid junction extraction/ESI emitter for mass spectrometry imaging. The basic instrumental setup and the general operation of the system were discussed and optimized performance metrics were presented. The ability to spot sample, lane scan and chemically image in an automated and controlled fashion were demonstrated. Rapid, automated spot sampling was demonstrated for a variety of compound types including the cationic dye basic blue 7, the oligosaccharide cellopentaose, and the protein equine heart cytochrome c. The system was used for lane scanning and chemical imaging of the cationic dye crystal violet in inked lines on glass and for lipid distributions in mouse brain thin tissue sections. Imaging of the lipids in mouse brain tissue under optimized conditions provided a spatial resolution of approximately 35 m based on the ability to distinguish between features observed both in the optical and mass spectral chemical images. The sampling spatial resolution of this system was comparable to the best resolution that has been reported for other types of atmospheric pressure liquid extraction-based surface sampling/ionization techniques used for mass spectrometry imaging.

  15. The memory effect of nanoscale memristors investigated by conducting scanning probe microscopy methods

    Directory of Open Access Journals (Sweden)

    César Moreno

    2012-11-01

    Full Text Available We report on the use of scanning force microscopy as a versatile tool for the electrical characterization of nanoscale memristors fabricated on ultrathin La0.7Sr0.3MnO3 (LSMO films. Combining conventional conductive imaging and nanoscale lithography, reversible switching between low-resistive (ON and high-resistive (OFF states was locally achieved by applying voltages within the range of a few volts. Retention times of several months were tested for both ON and OFF states. Spectroscopy modes were used to investigate the I–V characteristics of the different resistive states. This permitted the correlation of device rectification (reset with the voltage employed to induce each particular state. Analytical simulations by using a nonlinear dopant drift within a memristor device explain the experimental I–V bipolar cycles.

  16. Nanoscale patterning and deformation of soft matter by scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S. [Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films - Nanosystems and Nanometrology, GR-54124, Thessaloniki (Greece)], E-mail: skasa@physics.auth.gr; Mitsakakis, K.; Logothetidis, S. [Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films - Nanosystems and Nanometrology, GR-54124, Thessaloniki (Greece)

    2007-09-15

    In this work, atomic force microscopy (AFM) was used for the surface nanopatterning as well as to study the nanoscale deformation of soft, carbon-based thin films and polymeric (polyethylene terephthalate, PET) membranes. The process of the AFM nanolithography was realized by application of contact force pulses to the samples, using silicon rectangular cantilevers of relatively high spring constant (k{sub c} = 11 N/m, nominal value). Simultaneously, AFM is functioned as a nanometrology instrument, for nanomechanical measurements of the applied force and pressure for plastic deformation of the surface, which were found to vary between 200 and 2500 nN and between 1 and 4 GPa, respectively. The derived data were cross-checked with the materials' nanomechanical properties, which were measured using depth-sensing Nanoindentation, and the limits of the possible applied forces were specified. During the herein presented AFM nanolithography, several types of well-defined shapes, like pits and lines, were made. The dimensions of the patterned structures were correlated with the nanolithography parameters (e.g. applied force). The contact mechanics for the formation of uniformly patterned surfaces are discussed, in terms of shape geometry and dimensions, which comprise the essential characteristics for advanced applications like 'probe-based data storage', where data storage capacity is determined by pattern dimensions, or preferential adsorption of biomolecules on a patterned surface.

  17. Scanned Probe Characterization of Atmospheric Effects on diF TESADT Thin-Film Transistors

    Science.gov (United States)

    Bougher, Cortney; Huston, Shawn; Ward, Jeremy; Obaid, Abdul; Loth, Marsha; Anthony, John; Jurchescu, Oana; Conrad, Brad

    2014-03-01

    Single crystal organic semiconductors have been shown to exhibit carrier mobilities comparable to the silicon currently used in photovoltaics. However, during solution deposition of common organic semiconducting materials the resultant thin-film is often polycrystalline. Device performance and electrical properties of organic thin-film transistors are highly dependent on crystal structure and molecular packing. In polycrystalline thin-films, boundary regions between crystal grains can affect the overall performance of devices, as crystal structure and packing may differ from that of the surrounding crystal regions. These boundary regions may also serve as defect sites, allowing environmental factors, such as oxygen content and humidity, to alter local charge transport through devices. We utilize Kelvin Probe Force Microscopy (KPFM) to characterize how grain boundaries alter local conductivity and device performance as a function of doping in 2,8-difluoro-5,11-triethysilylethynyl anthradithiophene (diF TESADT) thin-film transistor surfaces. Device voltage drops at grain boundaries are characterized as a function of both atmospheric dopants and transition time between dopants. NC Space Grant Consortium, Appalachian State University Office of Student Research, Ralph E Powe Junior Faculty Enhancement Award.

  18. Fabrication and Demonstration of Mercury Disc-Well Probes for Stripping-Based Cyclic Voltammetry Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Barton, Zachary J; Rodríguez-López, Joaquín

    2017-03-07

    Scanning electrochemical microscopy (SECM) is a rising technique for the study of energy storage materials. Hg-based probes allow the extension of SECM investigations to ionic processes, but the risk of irreversible Hg amalgam saturation limits their operation to rapid timescales and dilute analyte solutions. Here, we report a novel fabrication protocol for Hg disc-well ultramicroelectrodes (UMEs), which retain access to stripping information but are less susceptible to amalgam saturation than traditional Hg sphere-caps or thin-films. The amalgamation and stripping behaviors of Hg disc-well UMEs are compared to those of traditional Hg sphere-cap UMEs and corroborated with data from finite element simulations. The improved protection against amalgam saturation allows Hg disc-wells to operate safely in highly concentrated environments at long timescales. The utility of the probes for bulk measurements extends also to SECM studies, where the disc geometry facilitates small tip-substrate gaps and improves both spatial and temporal resolution. Because they can carry out slow, high-resolution anodic stripping voltammetry approaches and imaging in concentrated solutions, Hg disc-well electrodes fill a new analytical niche for studies of ionic reactivity and are a valuable addition to the electrochemical toolbox.

  19. Deceleration of probe beam by stage bias potential improves resolution of serial block-face scanning electron microscopic images.

    Science.gov (United States)

    Bouwer, James C; Deerinck, Thomas J; Bushong, Eric; Astakhov, Vadim; Ramachandra, Ranjan; Peltier, Steven T; Ellisman, Mark H

    2017-01-01

    Serial block-face scanning electron microscopy (SBEM) is quickly becoming an important imaging tool to explore three-dimensional biological structure across spatial scales. At probe-beam-electron energies of 2.0 keV or lower, the axial resolution should improve, because there is less primary electron penetration into the block face. More specifically, at these lower energies, the interaction volume is much smaller, and therefore, surface detail is more highly resolved. However, the backscattered electron yield for metal contrast agents and the backscattered electron detector sensitivity are both sub-optimal at these lower energies, thus negating the gain in axial resolution. We found that the application of a negative voltage (reversal potential) applied to a modified SBEM stage creates a tunable electric field at the sample. This field can be used to decrease the probe-beam-landing energy and, at the same time, alter the trajectory of the signal to increase the signal collected by the detector. With decelerated low landing-energy electrons, we observed that the probe-beam-electron-penetration depth was reduced to less than 30 nm in epoxy-embedded biological specimens. Concurrently, a large increase in recorded signal occurred due to the re-acceleration of BSEs in the bias field towards the objective pole piece where the detector is located. By tuning the bias field, we were able to manipulate the trajectories of the  primary and secondary electrons, enabling the spatial discrimination of these signals using an advanced ring-type BSE detector configuration or a standard monolithic BSE detector coupled with a blocking aperture.

  20. Probing the surface chemistry of polycrystalline ZnO with scanning tunneling microscopy and tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, G.S.; Bonnell, D.A. (Univ. of Pennsylvania, Philadelphia (United States))

    This paper describes the use of scanning tunneling microscopy and spatially resolved tunneling spectroscopy to examine polycrystalline ZnO surface in ultrahigh vacuum after bake-out, after a low temperature anneal that cleaned the surface, after a high temperature anneal, which segregated bismuth to the surface, after being dosed with O{sub 2} and H{sub 2}O, and after exposure to air. The tunneling spectra depend both on the proximity to structural features, such as grain boundaries, and on the chemical composition of the surface. For example, the segregation of bismuth to the surface causes the tunneling spectra to have a p-type rectification. Our results also indicate that the rectification of tunneling spectra acquired in air is caused by surface hydration and that images of surfaces that have not been heated in vacuum have inferior resolution due to a reduction in the height of the apparent tunnel barrier. Spatially resolved tunneling spectroscopy has been used to demonstrate that surface hydration has a greater effect on the crystallite surfaces than on the grain boundary surfaces.

  1. Scanning probe microscope visualization of t-loop assembly by TRF2 in cells

    Science.gov (United States)

    Cao, En-Hua; Guo, Xiao-Fe; Wang, Ju-Jun; Qin, Jing-Fen

    2005-02-01

    Telomeres are essential nucleoprotein structure at the ends of all eukaryotic chromosomes. Our previous work demonstrated that mammalian telomeres were shown to end in a large t-loop structure in vitro and the formation of t-loops was dependent on the presence of TRF2. In this work, the telomere DNA and its complex of TRF2 in HeLa cells has been direct observed in the nanometer resolution regime by atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM). AFM images showed that the looped structures exited in cell extract containing TRF2, but it disappeared in the protein-deleted samples. When cells were pretreated by UV light plus psoralen, the looped structure could be observed in the protein-deleted samples. SNOM images further demonstrated TRF2 and p53 proteins in cell was bound at the loop junction. Above results suggest that the telomere t-loop structure by TRF2 play a important role in cell-senescence, and might signals p53 protein directly through association with the t-loop junction in cells.

  2. An ultra-low temperature scanning Hall probe microscope for magnetic imaging below 40 mK

    Science.gov (United States)

    Karcı, Özgür; Piatek, Julian O.; Jorba, Pau; Dede, Münir; Rønnow, Henrik M.; Oral, Ahmet

    2014-10-01

    We describe the design of a low temperature scanning Hall probe microscope (SHPM) for a dilution refrigerator system. A detachable SHPM head with 25.4 mm OD and 200 mm length is integrated at the end of the mixing chamber base plate of the dilution refrigerator insert (Oxford Instruments, Kelvinox MX-400) by means of a dedicated docking station. It is also possible to use this detachable SHPM head with a variable temperature insert (VTI) for 2 K-300 K operations. A microfabricated 1μm size Hall sensor (GaAs/AlGaAs) with integrated scanning tunneling microscopy tip was used for magnetic imaging. The field sensitivity of the Hall sensor was better than 1 mG/√Hz at 1 kHz bandwidth at 4 K. Both the domain structure and topography of LiHoF4, which is a transverse-field Ising model ferromagnet which orders below TC = 1.53 K, were imaged simultaneously below 40 mK.

  3. Two-dimensional nanoscale imaging of gadolinium spins via scanning probe relaxometry with a single spin in diamond

    Science.gov (United States)

    Pelliccione, Matthew; Myers, Bryan; Pascal, Laetitia; Das, Anand; Jayich, Ania

    2015-03-01

    Spin-labeling of molecules with paramagnetic ions is an important approach for determining molecular structure, however current ensemble techniques lack the sensitivity to detect few isolated spins. In this talk, we demonstrate two-dimensional nanoscale imaging of paramagnetic gadolinium compounds using scanning relaxometry of a single nitrogen vacancy (NV) center in diamond. Gadopentetate dimeglumine attached to an atomic force microscope tip is controllably interacted with and detected by the NV center, by virtue of the fact that the NV exhibits fast relaxation in the fluctuating magnetic field generated by electron spin flips in the gadolinium. We demonstrate a reduction in the T1 relaxation time of the NV center by over two orders of magnitude, probed with a spatial resolution of 20 nm, limited by thermal drift in ambient conditions. We discuss the importance of mitigating drift to reach truly nanoscale imaging and present progress towards cryogenic scanning magnetometry, along with utilizing chemically functionalized tips to gain greater control over the Gd distribution on the tip. Our result exhibits the viability of the technique for imaging individual spins attached to complex nanostructures or biomolecules, along with studying the magnetic dynamics of isolated spins.

  4. Hand Controlled Manipulation of Single Molecules via a Scanning Probe Microscope with a 3D Virtual Reality Interface.

    Science.gov (United States)

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2016-10-02

    Considering organic molecules as the functional building blocks of future nanoscale technology, the question of how to arrange and assemble such building blocks in a bottom-up approach is still open. The scanning probe microscope (SPM) could be a tool of choice; however, SPM-based manipulation was until recently limited to two dimensions (2D). Binding the SPM tip to a molecule at a well-defined position opens an opportunity of controlled manipulation in 3D space. Unfortunately, 3D manipulation is largely incompatible with the typical 2D-paradigm of viewing and generating SPM data on a computer. For intuitive and efficient manipulation we therefore couple a low-temperature non-contact atomic force/scanning tunneling microscope (LT NC-AFM/STM) to a motion capture system and fully immersive virtual reality goggles. This setup permits "hand controlled manipulation" (HCM), in which the SPM tip is moved according to the motion of the experimenter's hand, while the tip trajectories as well as the response of the SPM junction are visualized in 3D. HCM paves the way to the development of complex manipulation protocols, potentially leading to a better fundamental understanding of nanoscale interactions acting between molecules on surfaces. Here we describe the setup and the steps needed to achieve successful hand-controlled molecular manipulation within the virtual reality environment.

  5. Microscopic techniques bridging between nanoscale and microscale with an atomically sharpened tip - field ion microscopy/scanning probe microscopy/ scanning electron microscopy.

    Science.gov (United States)

    Tomitori, Masahiko; Sasahara, Akira

    2014-11-01

    Over a hundred years an atomistic point of view has been indispensable to explore fascinating properties of various materials and to develop novel functional materials. High-resolution microscopies, rapidly developed during the period, have taken central roles in promoting materials science and related techniques to observe and analyze the materials. As microscopies with the capability of atom-imaging, field ion microscopy (FIM), scanning tunneling microscopy (STM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) can be cited, which have been highly evaluated as methods to ultimately bring forward the viewpoint of reductionism in materials science. On one hand, there have been difficulties to derive useful and practical information on large (micro) scale unique properties of materials using these excellent microscopies and to directly advance the engineering for practical materials. To make bridges over the gap between an atomic scale and an industrial engineering scale, we have to develop emergence science step-by-step as a discipline having hierarchical structures for future prospects by combining nanoscale and microscale techniques; as promising ways, the combined microscopic instruments covering the scale gap and the extremely sophisticated methods for sample preparation seem to be required. In addition, it is noted that spectroscopic and theoretical methods should implement the emergence science.Fundamentally, the function of microscope is to determine the spatial positions of a finite piece of material, that is, ultimately individual atoms, at an extremely high resolution with a high stability. To define and control the atomic positions, the STM and AFM as scanning probe microscopy (SPM) have successfully demonstrated their power; the technological heart of SPM lies in an atomically sharpened tip, which can be observed by FIM and TEM. For emergence science we would like to set sail using the tip as a base. Meanwhile, it is significant

  6. CdSe/CdS-quantum rods: fluorescent probes for in vivo two-photon laser scanning microscopy

    Science.gov (United States)

    Dimitrijevic, Jelena; Krapf, Lisa; Wolter, Christopher; Schmidtke, Christian; Merkl, Jan-Philip; Jochum, Tobias; Kornowski, Andreas; Schüth, Anna; Gebert, Andreas; Hüttmann, Gereon; Vossmeyer, Tobias; Weller, Horst

    2014-08-01

    CdSe/CdS-Quantum-dots-quantum-rods (QDQRs) with an aspect ratio of ~6 are prepared via the seeded growth method, encapsulated within a shell of crosslinked poly(isoprene)-block-poly(ethylene glycol) (PI-b-PEG) diblock copolymer, and transferred from the organic phase into aqueous media. Their photoluminescence quantum yield (PLQY) of 78% is not compromised by the phase transfer. Within a period of two months the PLQY of QDQRs in aqueous solution at neutral pH decreases only slightly (to ~65%). The two-photon (TP) action cross sections of QDQRs (~105 GM) are two orders of magnitude higher than those of CdSe/CdS/ZnS-core/shell/shell quantum dots (QDs, ~103 GM) with comparable diameter (~5 nm). After applying PI-b-PEG encapsulated QDQRs onto the small intestinal mucosa of mice in vivo, their strong red fluorescence can easily be observed by two-photon laser scanning microscopy (TPLSM) and clearly distinguished from autofluorescent background. Our results demonstrate that PI-b-PEG encapsulated CdSe/CdS-QDQRs are excellent probes for studying the uptake and fate of nanoparticles by two-photon imaging techniques in vivo.CdSe/CdS-Quantum-dots-quantum-rods (QDQRs) with an aspect ratio of ~6 are prepared via the seeded growth method, encapsulated within a shell of crosslinked poly(isoprene)-block-poly(ethylene glycol) (PI-b-PEG) diblock copolymer, and transferred from the organic phase into aqueous media. Their photoluminescence quantum yield (PLQY) of 78% is not compromised by the phase transfer. Within a period of two months the PLQY of QDQRs in aqueous solution at neutral pH decreases only slightly (to ~65%). The two-photon (TP) action cross sections of QDQRs (~105 GM) are two orders of magnitude higher than those of CdSe/CdS/ZnS-core/shell/shell quantum dots (QDs, ~103 GM) with comparable diameter (~5 nm). After applying PI-b-PEG encapsulated QDQRs onto the small intestinal mucosa of mice in vivo, their strong red fluorescence can easily be observed by two-photon laser

  7. The black silicon method IV: the fabrication of three-dimensional structures in silicon with high aspect ratios for scanning probe microscopy and other applications

    NARCIS (Netherlands)

    Jansen, Henricus V.; de Boer, Meint J.; Boer, M.A.; Otter, A.M.; Elwenspoek, Michael Curt

    1995-01-01

    The recently developed black silicon method (BSM) is presented as a powerful tool in finding recipes for the fabrication of MEMS building blocks such as Ay-stages. scanning probe tips, inkjet filters, multi-electrodes for neuro-electronic interfaces, and mouldings Lor direct patterning into

  8. Feedback-induced voltage change of a Vertical-Cavity Surface-Emitting Laser as an active detection system for miniature optical scanning probe microscopes.

    Science.gov (United States)

    Heinis, Dominique; Gorecki, Christophe; Bargiel, Sylwester; Cretin, Bernard

    2006-04-17

    We propose a novel detection technique for scanning probe microscopy based on the measuring of the feedback-induced voltage change of 780-nm VCSEL operating at constant current in far-field regime when we modulate mechanically the length of a coupled-cavity generating the feedback conditions. The voltage change of the VCSEL is produced by light back reflected from the sample to the laser cavity. Two-dimensional image probing is successfully demonstrated with high temporal resolution, offering a viable solution for miniature parallel scanning probe optical microscopes, such as confocal microscope, where the use of a photodetector is avoided. This approach opens the possibility to perform imaging tasks in a low cost and hand-held miniature device with much improved effective-space.

  9. Determination of proteins at nanogram levels by synchronous fluorescence scan technique with a novel composite nanoparticle as a fluorescence probe

    Science.gov (United States)

    Wang, Lun; Chen, Hongqi; Wang, Leyu; Wang, Guangfeng; Li, Ling; Xu, Fagong

    2004-09-01

    A novel composite nanoparticle has been prepared by an in situ polymerization method and applied as a protein fluorescence probe. The nano-CdS has been prepared, then the polymerization of acrylic acid (AA) was carried out by initiator potassium persulfate (KPS) under ultrasonic irradiation. The surface of the composite nanoparticles was covered with abundant carboxylic groups (COOH). The nanoparticles are water-soluble, stable, and biocompatible. The synchronous fluorescence intensity of the composite nanoparticles is significantly increased in the presence of trace protein at pH 6.90. Based on this, a new synchronous fluorescence scan (SFS) analysis was developed for the determination of proteins including BSA, HSA, and human γ-IgG. When Δ λ=280 nm, maximum synchronous fluorescence is produced at 290 nm. Under the optimum conditions, the response is linearly proportional to the concentration of proteins. The linear range is 0.1-10 μg ml -1 for HSA, 0.09-8.0 μg ml -1 for BSA, and 0.08-15 μg ml -1 for human γ-IgG, respectively. The method has been applied to the determination of the total protein in human serum samples collected from the hospital and the results are satisfactory.

  10. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications.

    Science.gov (United States)

    Li, Mo; Tang, H X; Roukes, M L

    2007-02-01

    Scanning probe microscopies (SPM) and cantilever-based sensors generally use low-frequency mechanical devices of microscale dimensions or larger. Almost universally, off-chip methods are used to sense displacement in these devices, but this approach is not suitable for nanoscale devices. Nanoscale mechanical sensors offer a greatly enhanced performance that is unattainable with microscale devices. Here we describe the fabrication and operation of self-sensing nanocantilevers with fundamental mechanical resonances up to very high frequencies (VHF). These devices use integrated electronic displacement transducers based on piezoresistive thin metal films, permitting straightforward and optimal nanodevice readout. This non-optical transduction enables applications requiring previously inaccessible sensitivity and bandwidth, such as fast SPM and VHF force sensing. Detection of 127 MHz cantilever vibrations is demonstrated with a thermomechanical-noise-limited displacement sensitivity of 39 fm Hz(-1/2). Our smallest devices, with dimensions approaching the mean free path at atmospheric pressure, maintain high resonance quality factors in ambient conditions. This enables chemisorption measurements in air at room temperature, with unprecedented mass resolution less than 1 attogram (10(-18) g).

  11. In-situ probing of metallic glass formation and crystallization upon heating and cooling via fast differential scanning calorimetry

    Science.gov (United States)

    Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-06-01

    The crystallization of small-scale Au-based metallic glass samples was investigated by fast differential scanning calorimetry. Rapid cooling and heating makes possible in-situ probing of glass formation from the supercooled liquid state or direct transition from the glassy state to the equilibrium liquid and, thereby, the determination of a critical cooling (Φc ˜ 600 Ks-1) and heating rate (Φh ˜ 6 × 103 Ks-1) for crystallization. Crystallization kinetics was studied in the whole supercooled liquid region by linear heating and isothermal calorimetry. We show that the temperature dependence of crystal growth is reflected in a "Kissinger plot" for Au49Ag5.5Pd2.3Cu26.9Si16.3 and compares well with a model for crystal growth in a glassy system. Linear heating and isothermal measurements after heating the glass show that its crystallization is always growth-controlled up to its temperature of melting. In contrast, for a low degree of direct undercooling from the equilibrium liquid isothermal crystallization is nucleation-controlled, whereas it is again growth-controlled at large undercooling. The overall crystallization behavior of the metallic glass is presented in a complete time-temperature-transformation map on cooling and, so far not accessible, on heating after various cooling procedures.

  12. Scanning probe microscopies for the creation and characterization of interfacial architectures: Studies of alkyl thiolate monolayers at gold

    Energy Technology Data Exchange (ETDEWEB)

    Green, John -Bruce [Iowa State Univ., Ames, IA (United States)

    1997-01-10

    Scanning probe microscopy (SPM) offers access to the structural and material properties of interfaces, and when combined with macroscopic characterization techniques results in a powerful interfacial development tool. However, the relative infancy of SPM techniques has dictated that initial investigations concentrate on model interfacial systems as benchmarks for testing the control and characterization capabilities of SPM. One such family of model interfacial systems results from the spontaneous adsorption of alkyl thiols to gold. This dissertation examines the application of SPM to the investigation of the interfacial properties of these alkyl thiolate monolayers. Structural investigations result in a proposed explanation for counterintuitive correlations between substrate roughness and heterogeneous electron transfer barrier properties. Frictional measurements are used for characterization of the surface free energy of a series of end-group functionalized monolayers, as well as for the material properties of monolayers composed of varying chain length alkyl thiols. Additional investigations used these characterization techniques to monitor the real-time evolution of chemical and electrochemical surface reactions. The results of these investigations demonstrates the value of SPM technology to the compositional mapping of surfaces, elucidation of interfacial defects, creation of molecularly sized chemically heterogeneous architectures, as well as to the monitoring of surface reactions. However, it is the future which will demonstrate the usefulness of SPM technology to the advancement of science and technology.

  13. Microfabrication of a scanning probe with NV centers in a selectively grown diamond thin film through a xenon difluoride etching process

    Science.gov (United States)

    Zhu, Minjie; Li, Jinhua; Toda, Masaya; Ono, Takahito

    2017-12-01

    A scanning probe with nitrogen vacancy (NV) centers in diamond thin film was fabricated via a standard micro/nano electromechanical system process. The diamond thin film was selectively grown by microwave plasma enhanced chemical vapor deposition on a partially nucleated silicon surface. NV centers are embedded during the diamond growth with a pure nitrogen gas flow to the growth chamber. The existence of NV centers in the diamond thin film was confirmed by photoluminescence measurements. In addition, we found that a xenon difluoride (XeF2) etching process and anneal treatment have an influence on the existence of NV centers in the diamond. The fabricated scanning probe with NV centers in diamond thin film can be used as a magnetic scanning sensor. It is anticipated that the alternative method of selectively growing diamond thin film provides various diamond structures in diverse applications.

  14. Liver Steatosis Assessed by Controlled Attenuation Parameter (CAP) Measured with the XL Probe of the FibroScan: A Pilot Study Assessing Diagnostic Accuracy.

    Science.gov (United States)

    Sasso, Magali; Audière, Stéphane; Kemgang, Astrid; Gaouar, Farid; Corpechot, Christophe; Chazouillères, Olivier; Fournier, Céline; Golsztejn, Olivier; Prince, Stéphane; Menu, Yves; Sandrin, Laurent; Miette, Véronique

    2016-01-01

    To assess liver steatosis, the controlled attenuation parameter (CAP; giving an estimate of ultrasound attenuation ∼3.5 MHz) is available with the M probe of the FibroScan. We report on the adaptation of the CAP for the FibroScan XL probe (center frequency 2.5 MHz) without modifying the range of values (100-400 dB/m). CAP validation was successfully performed on Field II simulations and on tissue-mimicking phantoms. In vivo performance was assessed in a cohort of 59 patients spanning the range of steatosis. In vivo reproducibility was good and similar with both probes. The area under receiver operative characteristic curve was equal to 0.83/0.84 and 0.92/0.91 for the M/XL probes to detect >2% and >16% liver fat, respectively, as assessed by magnetic resonance imaging. Patients can now be assessed simultaneously for steatosis and fibrosis using the FibroScan, regardless of their morphology. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Designing topological defects in 2D materials using scanning probe microscopy and a self-healing mechanism: a density functional-based molecular dynamics study

    Science.gov (United States)

    Popov, Igor; Đurišić, Ivana; Belić, Milivoj R.

    2017-12-01

    Engineering of materials at the atomic level is one of the most important aims of nanotechnology. The unprecedented ability of scanning probe microscopy to address individual atoms opened up the possibilities for nanomanipulation and nanolitography of surfaces and later on of two-dimensional materials. While the state-of-the-art scanning probe lithographic methods include, primarily, adsorption, desorption and repositioning of adatoms and molecules on substrates or tailoring nanoribbons by etching of trenches, the precise modification of the intrinsic atomic structure of materials is yet to be advanced. Here we introduce a new concept, scanning probe microscopy with a rotating tip, for engineering of the atomic structure of membranes based on two-dimensional materials. In order to indicate the viability of the concept, we present our theoretical research, which includes atomistic modeling, molecular dynamics simulations, Fourier analysis and electronic transport calculations. While stretching can be employed for fabrication of atomic chains only, our comprehensive molecular dynamics simulations indicate that nanomanipulation by scanning probe microscopy with a rotating tip is capable of assembling a wide range of topological defects in two-dimensional materials in a rather controllable and reproducible manner. We analyze two possibilities. In the first case the probe tip is retracted from the membrane while in the second case the tip is released beneath the membrane allowing graphene to freely relax and self-heal the pore made by the tip. The former approach with the tip rotation can be achieved experimentally by rotation of the sample, which is equivalent to rotation of the tip, whereas irradiation of the membrane by nanoclusters can be utilized for the latter approach. The latter one has the potential to yield a yet richer diversity of topological defects on account of a lesser determinacy. If successfully realized experimentally the concept proposed here could

  16. Controlled attenuation parameter using the FibroScan® XL probe for quantification of hepatic steatosis for non-alcoholic fatty liver disease in an Asian population.

    Science.gov (United States)

    Chan, Wah-Kheong; Nik Mustapha, Nik Raihan; Wong, Grace Lai-Hung; Wong, Vincent Wai-Sun; Mahadeva, Sanjiv

    2017-02-01

    The FibroScan® XL probe reduces failure of liver stiffness measurement (LSM) and unreliable results in obese patients. The objective of this article is to evaluate the accuracy of controlled attenuation parameter (CAP) obtained using the XL probe for the estimation of hepatic steatosis in patients with non-alcoholic fatty liver disease (NAFLD). Adult NAFLD patients with a liver biopsy within six months were included and were examined with the FibroScan® M and XL probes. Histopathological findings were reported according to the Non-Alcoholic Steatohepatitis Clinical Research Network Scoring System. Participants who did not have fatty liver on ultrasonography were recruited as controls. A total of 57 NAFLD patients and 22 controls were included. The mean age of the NAFLD patients and controls was 50.1 ± 10.4 years and 20.2 ± 1.3 years, respectively (p = 0.000). The mean body mass index was 30.2 ± 5.0 kg per m2 and 20.5 ± 2.4 kg per m2, respectively (p = 0.000). The distribution of steatosis grades were: S0, 29%; S1, 17%; S2, 35%; S3, 19%. The AUROC for estimation of steatosis grade ≥ S1, S2 and S3 was 0.94, 0.80 and 0.69, respectively, using the M probe, and 0.97, 0.81 and 0.67, respectively, using the XL probe. CAP obtained using the XL probe had similar accuracy as the M probe for the estimation of hepatic steatosis in NAFLD patients.

  17. Scanning probe microscopy applied to the study of domains and domain walls in a ferroelectric KNbO3 crystal

    Directory of Open Access Journals (Sweden)

    Martínez-Pastor, J.

    2006-06-01

    Full Text Available A commercial Atomic Force Microscope (AFM and a semi-home made Scanning Near-Field Optical Microscope (SNOM have been used to characterize electrically, topographically and optically the domain walls among natural ferroelectric domains in a KNbO3 crystal. The AFM measurements have been performed with a metallic coated tip in order to detect electrostatic forces between the polarization field at the ferroelectric surface and the tip. An external electric field has also been applied between the sample surface and the tip to tune this electrostatic interaction over the atomic forces. In optical transmission images, acquired under near field conditions, we observe a clear contrast of the signal at the domain walls between 180º spontaneous polarization domains; while the images of the surface topography, obtained simultaneously, show a reasonably flat surface of the crystal. The scanning probe microscopy techniques used in this work are valuable tools for the investigation of ferroelectric materials and, in particular, to characterize the domain walls, without needing a either especial preparation or damage of the sample surface.Hemos utilizado un Microscopio de Fuerzas Atómicas (AFM comercial y un Microscopio Óptico de Campo Cercano (SNOM semi-casero para caracterizar eléctrica, óptica y topográficamente las paredes de dominio presentes entre los dominios ferroeléctricos naturales de un cristal de KNbO3. Las medidas de AFM las hemos realizado con una punta recubierta con metal, para detectar las fuerzas electrostáticas entre los campos de polarización de la superficie ferroeléctrica y la punta. Además, hemos aplicado campos eléctricos externos entre la superficie de la muestra y la punta, de manera que se pueda variar la fuerza electrostática en relación a las fuerzas atómicas. En imágenes de transmisión óptica, bajo condiciones de campo cercano, observamos un claro contraste de la señal en las fronteras entre los dominios ferroel

  18. Workshop on the coupling of synchrotron radiation IR and X-rays with tip based scanning probe microscopies X-TIP

    Energy Technology Data Exchange (ETDEWEB)

    Comin, F.; Martinez-Criado, G.; Mundboth, K.; Susini, J. [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France); Purans, J.; Sammelselg, V. [Tartu Univ. (Estonia); Chevrier, J.; Huant, S. [Universite Joseph-Fourier, Grenoble I, LEPES, 38 (France); Hamilton, B. [School of Electrical Engineering and Electronics, Manchester (United Kingdom); Saito, A. [Osaka Univ., RIKEN/SPring8 (Japan); Dhez, O. [OGG, INFM/CNR, 38 - Grenoble (France); Brocklesby, W.S. [Southampton Univ., Optoelectronics Research Centre (United Kingdom); Alvarez-Prado, L.M. [Ovieado, Dept. de Fisica (Spain); Kuzmin, A. [Institute of Solid State Physics - Riga (Latvia); Pailharey, D. [CRMC-N - CNRS, 13 - Marseille (France); Tonneau, D. [CRMCN - Faculte des sciences de Luminy, 13 - Marseille (France); Chretien, P. [Laboratoire de Genie Electrique de Paris, 75 - Paris (France); Cricenti, A. [ISM-CNR, Rome (Italy); DeWilde, Y. [ESPCI, 75 - Paris (France)

    2005-07-01

    The coupling of scanning probe microscopy (SPM) with synchrotron radiation is attracting increasing attention from nano-science community. By combining these 2 tools one can visualize, for example, the sample nano-structure prior to any X-ray characterization. Coupled with focusing devices or independently, SPM can provide spatial resolution below the optical limits. Furthermore, the possibility of employing SPM to manipulate nano-objects under X-ray beams is another exciting perspective. This document gathers the transparencies of 6 of the presentations made at the workshop: 1) the combination of atomic force microscopy and X-ray beam - experimental set-up and objectives; 2) the combination of scanning probe microscope and X-rays for detection of electrons; 3) towards soft X-ray scanning microscopy using tapered capillaries and laser-based high harmonic sources; 4) near-field magneto-optical microscopy; 5) near-field scanning optical microscopy - a brief overview -; and 6) from aperture-less near-field optical microscopy to infra-red near-field night vision. 4 posters entitled: 1) development of laboratory setup for X-ray/AFM experiments, 2) towards X-ray diffraction on single islands, 3) nano-XEOL using near-field detection, and 4) local collection with a STM tip of photoelectrons emitted by a surface irradiated by visible of UV laser beam, are included in the document.

  19. Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method

    Science.gov (United States)

    Wilson, Adam A.

    The ability to measure thermal properties of thin films and nanostructured materials is an important aspect of many fields of academic study. A strategy especially well-suited for nanoscale investigations of these properties is the scanning hot probe technique, which is unique in its ability to non-destructively interrogate the thermal properties with high resolution, both laterally as well as through the thickness of the material. Strategies to quantitatively determine sample thermal conductivity depend on probe calibration. State of the art calibration strategies assume that the area of thermal exchange between probe and sample does not vary with sample thermal conductivity. However, little investigation has gone into determining whether or not that assumption is valid. This dissertation provides a rigorous study into the probe-to-sample heat transfer through the air gap at diffusive distances for a variety of values of sample thermal conductivity. It is demonstrated that the thermal exchange radius and gap/contact thermal resistance varies with sample thermal conductivity as well as tip-to-sample clearance in non-contact mode. In contact mode, it is demonstrated that higher thermal conductivity samples lead to a reduction in thermal exchange radius for Wollaston probe tips. Conversely, in non-contact mode and in contact mode for sharper probe tips where air contributes the most to probe-to-sample heat transfer, the opposite trend occurs. This may be attributed to the relatively strong solid-to-solid conduction occurring between probe and sample for the Wollaston probes. A three-dimensional finite element (3DFE) model was developed to investigate how the calibrated thermal exchange parameters vary with sample thermal conductivity when calibrating the probe via the intersection method in non-contact mode at diffusive distances. The 3DFE model was then used to explore the limits of sensitivity of the experiment for a range of simulated experimental conditions. It

  20. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization.

    Science.gov (United States)

    Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris

    2014-12-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  1. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Andrew J., E-mail: berger.156@osu.edu; Page, Michael R.; Young, Justin R.; Bhallamudi, Vidya P.; Johnston-Halperin, Ezekiel; Pelekhov, Denis V.; Hammel, P. Chris [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Jacob, Jan [Werum Software and Systems CIS AG, Wulf-Werum-Straße 3, 21337 Lüneburg (Germany); Lewis, Jim; Wenzel, Lothar [National Instruments, Austin, Texas 78759 (United States)

    2014-12-15

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  2. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization

    Science.gov (United States)

    Berger, Andrew J.; Page, Michael R.; Jacob, Jan; Young, Justin R.; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P.; Johnston-Halperin, Ezekiel; Pelekhov, Denis V.; Hammel, P. Chris

    2014-12-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  3. mK-Scanning Probe Microscope(mK-SPM) operating in a Cryogen-Free Dilution Refrigerator at 20mK

    Science.gov (United States)

    Dede, Munir; Karci, Ozgur; Snelling, Chris; Oral, Ahmet

    2012-02-01

    Dramatic increase in liquid helium price limits the usage of cryogenic equipment. Dry cryogen-free dilution refrigerators(DR) systems are promising platforms to run mK-Scanning Probe Microscopes(mK-SPM) systems with a number of operating modes: STM, AFM, MFM, EFM, SSRM, PFM, etc. We present the design of a mK-Scanning Probe Microscope (mK-SPM) operating in a cryogen-free DR. An Oxford Instrument cryogen-free DR(Triton DR200) with 200uW cooling power and 7mK base temperature is used for the experiments. A 1W Pulse Tube cryocooler is integrated into the DR. After wiring and attaching the microscope we achieved 20mK base temperature. Piezo driven Stick slip coarse approach mechanism is used to bring the sample in to close proximity of the sample. In these initial results we deliberately did not take any precautions to isolate the pumping lines, attached to the DR and the DR itself. The turbomolecular pump was attached directly to the top plate of the DR. We first tested our mK-SPM in Scanning Tunnelling Microscope (STM) mode as it is the most sensitive of the SPM techniques. An image, using a gold coated 6μm period calibration grating at 20mK, obtained under these rudimentary conditions.

  4. Serial and parallel Si, Ge, and SiGe direct-write with scanning probes and conducting stamps

    Energy Technology Data Exchange (ETDEWEB)

    Vasko, Stephanie E.; Kapetanovic, Adnan; Talla, Vamsi; Brasino, Michael D.; Zhu, Zihua; Scholl, Andreas; Torrey, Jessica D.; Rolandi, Marco

    2011-05-16

    Precise materials integration in nanostructures is fundamental for future electronic and photonic devices. We demonstrate Si, Ge, and SiGe nanostructure direct-write with deterministic size, geometry, and placement control. The biased probe of an atomic force microscope (AFM) reacts diphenylsilane or diphenylgermane to direct-write carbon-free Si, Ge, and SiGe nano and heterostructures. Parallel directwrite is available on large areas by substituting the AFM probe with conducting microstructured stamps. This facile strategy can be easily expanded to a broad variety of semiconductor materials through precursor selection.

  5. Anisotropic excitation of surface plasmon polaritons on a metal film by a scattering-type scanning near-field microscope with a non-rotationally-symmetric probe tip

    Directory of Open Access Journals (Sweden)

    Walla Frederik

    2018-01-01

    Full Text Available We investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM. The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.

  6. Anisotropic excitation of surface plasmon polaritons on a metal film by a scattering-type scanning near-field microscope with a non-rotationally-symmetric probe tip

    Science.gov (United States)

    Walla, Frederik; Wiecha, Matthias M.; Mecklenbeck, Nicolas; Beldi, Sabri; Keilmann, Fritz; Thomson, Mark D.; Roskos, Hartmut G.

    2018-01-01

    We investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM). The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.

  7. Scanning near-field microscopy of microdisk resonator with InP/GalnP quantum dots using cantilever-based probes

    Science.gov (United States)

    Shelaev, A. V.; Mintairov, A. M.; Dorozhkin, P. S.; Bykov, V. A.

    2016-08-01

    We present cantilever-probe based scanning near-field microscopy (SNOM) studies of GaInP microdisks resonators (radii R=2 um and quality factors Q∼1000) with embedded InP quantum dots (QDs) emitting at ∼750 nm. Near-field photoluminescence spectroscopy in collection regime, using side excitation from micro-objective, was used for imaging of whispering-gallery modes (WGMs) with a spatial resolution below the light diffraction limit. Using collection-illumination regime we imaged the position of single InP/GaInP QDs in microdisk.

  8. INFLUENCE OF FILM STRUCTURE AND LIGHT ON CHARGE TRAPPING AND DISSIPATION DYNAMICS IN SPUN-CAST ORGANIC THIN-FILM TRANSISTORS MEASURED BY SCANNING KELVIN PROBE MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Teague, L.; Moth, M.; Anthony, J.

    2012-05-03

    Herein, time-dependent scanning Kelvin probe microscopy of solution processed organic thin film transistors (OTFTs) reveals a correlation between film microstructure and OTFT device performance with the location of trapped charge within the device channel. The accumulation of the observed trapped charge is concurrent with the decrease in I{sub SD} during operation (V{sub G}=-40 V, V{sub SD}= -10 V). We discuss the charge trapping and dissipation dynamics as they relate to the film structure and show that application of light quickly dissipates the observed trapped charge.

  9. Observation of silicon carbide Schottky barrier diode under applied reverse bias using atomic force microscopy/Kelvin probe force microscopy/scanning capacitance force microscopy

    Science.gov (United States)

    Uruma, Takeshi; Satoh, Nobuo; Yamamoto, Hidekazu

    2017-08-01

    We have observed a commercial silicon-carbide Schottky barrier diode (SiC-SBD) using our novel analysis system, in which atomic force microscopy (AFM) is combined with both Kelvin probe force microscopy (KFM; for surface-potential measurement) and scanning capacitance force microscopy (SCFM; for differential-capacitance measurement). The results obtained for the SiC-SBD under an applied reverse bias indicate both the scan area in the sample and a peak value of the SCFM signal in the region where the existence of trapped electrons is deduced from the KFM analysis. Thus, our measurement system can be used to examine commercial power devices; however, novel polishing procedures are required in order to investigate the Schottky contact region.

  10. Ex-vivo endoscopic laryngeal cancer imaging using two forward-looking fiber optic scanning endoscope probes

    Science.gov (United States)

    Cernat, R.; Tatla, T.; Pang, J.-Y.; Tadrous, P. J.; Gelikonov, G.; Gelikonov, V.; Zhang, Y. Y.; Bradu, A.; Li, X. D.; Podoleanu, A. G.

    2012-12-01

    Larynx cancer is one of the most common primary head and neck cancers. For early-stage laryngeal cancer, both surgery and radiotherapy are effective treatment modalities, offering a high rate of local control and cure. Optical coherence tomography (OCT) is an established non-invasive optical biopsy method, capable of imaging ranges of 2- 3 mm into tissue. By using the principles of low coherence light interferometry, OCT can be used to distinguish normal from unhealthy laryngeal mucosa in patients. Two forward-looking endoscope OCT probes of different sizes in a sweeping frequency OCT (SS-OCT) configuration were compared in terms of their performances for ex-vivo laryngeal cancer imaging. The setup configuration of the first OCT probe unit was designed and constructed at the Institute of Applied Physics RAS, Russia (diameter of 1.9 mm and the rigid part at the distal end is 13 mm long). The second OCT endoscope probe was constructed at the Department of Biomedical Engineering at Johns Hopkins University, USA, using a tubular piezoelectric actuator with quartered electrodes in combination with a resonant fiber cantilever (diameter of 2.4 mm, and rigid part of 45 mm). Cross-sectional images of laryngeal lesions using the two OCT configurations were aquired and compared with OCT images obtained in a 1310 nm SS-OCT classical non-endoscopic system. The work presented here is an intermediate step in our research towards in-vivo endoscopic laryngeal cancer imaging.

  11. MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy.

    Science.gov (United States)

    Cogliati, Andrea; Canavesi, Cristina; Hayes, Adam; Tankam, Patrice; Duma, Virgil-Florin; Santhanam, Anand; Thompson, Kevin P; Rolland, Jannick P

    2016-06-13

    High-speed scanning in optical coherence tomography (OCT) often comes with either compromises in image quality, the requirement for post-processing of the acquired images, or both. We report on distortion-free OCT volumetric imaging with a dual-axis micro-electro-mechanical system (MEMS)-based handheld imaging probe. In the context of an imaging probe with optics located between the 2D MEMS and the sample, we report in this paper on how pre-shaped open-loop input signals with tailored non-linear parts were implemented in a custom control board and, unlike the sinusoidal signals typically used for MEMS, achieved real-time distortion-free imaging without post-processing. The MEMS mirror was integrated into a compact, lightweight handheld probe. The MEMS scanner achieved a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Distortion-free imaging with no post-processing with a Gabor-domain optical coherence microscope (GD-OCM) with 2 μm axial and lateral resolutions over a field of view of 1 × 1 mm2 is demonstrated experimentally through volumetric images of a regular microscopic structure, an excised human cornea, and in vivo human skin.

  12. Complex nano-patterning of structural, optical, electrical and electron emission properties of amorphous silicon thin films by scanning probe

    Science.gov (United States)

    Fait, Jan; Čermák, Jan; Stuchlík, Jiří; Rezek, Bohuslav

    2018-01-01

    Preparation of nanoscale templates represents an important step for synthesis and assembly of diverse nanostructures and nanoscale devices. We show that complex nano-structural templates in a thin (40 nm) layer of hydrogenated amorphous silicon (a-Si:H) can be prepared by using locally applied electric field in an atomic force microscope (AFM). Depth of the resulting structures (1-40 nm) can be controlled by the process parameters (magnitude of electric field, exposure time, or nano-sweeping of the tip). We demonstrate that complex patterns can be scribed into the a-Si:H layer in that way. The prepared patterns exhibit different structural, optical, electrical, and electron emission properties, compared to the surroundings as detected by Raman micro-spectroscopy, scanning electron microscopy (SEM), and conductive AFM. The silicon thin films with locally modified properties can be useful in themselves or can serve as templates for further nanoscale growth or assembly.

  13. Development of a Micro-SPM (Scanning Probe Microscope by Post-Assembly of a MEMS-Stage and an Independent Cantilever

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2007-08-01

    Full Text Available The development of miniature scanning probe microscopes (SPM on the basis of the MEMS technique has gained more and more interest. Here a novel approach is presented to realize a micro-SPM, in which by means of post-assembly a conventional cantilever is mounted onto a MEMS positioning stage and used to detect the topography variation of the surface under test. Compared with other integrated micro-SPMs, the proposed micro-SPM can maintain the lateral resolution by simply renewing its cantilever in use, and therefore features low cost, practicability and longer lifetime. Preliminary experimental results are reported, which demonstrate that the proposed microSPM can be realized.

  14. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    Energy Technology Data Exchange (ETDEWEB)

    Saive, Rebecca, E-mail: rebecca.saive@innovationlab.de; Kowalsky, Wolfgang [InnovationLab GmbH, 69115 Heidelberg (Germany); Institut für Hochfrequenztechnik, TU Braunschweig, 38106 Braunschweig (Germany); Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg (Germany); Mueller, Christian [InnovationLab GmbH, 69115 Heidelberg (Germany); Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg (Germany); Schinke, Janusz; Lovrincic, Robert [InnovationLab GmbH, 69115 Heidelberg (Germany); Institut für Hochfrequenztechnik, TU Braunschweig, 38106 Braunschweig (Germany)

    2013-12-09

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces.

  15. Measuring the Thickness and Potential Profiles of the Space-Charge Layer at Organic/Organic Interfaces under Illumination and in the Dark by Scanning Kelvin Probe Microscopy.

    Science.gov (United States)

    Rojas, Geoffrey A; Wu, Yanfei; Haugstad, Greg; Frisbie, C Daniel

    2016-03-09

    Scanning Kelvin probe microscopy was used to measure band-bending at the model donor/acceptor heterojunction poly(3-hexylthiophene) (P3HT)/fullerene (C60). Specifically, we measured the variation in the surface potential of C60 films with increasing thicknesses grown on P3HT to produce a surface potential profile normal to the substrate both in the dark and under illumination. The results confirm a space-charge carrier region with a thickness of 10 nm, consistent with previous observations. We discuss the possibility that the domain size in bulk heterojunction organic solar cells, which is comparable to the space-charge layer thickness, is actually partly responsible for less than expected electron/hole recombination rates.

  16. Near-Field Imaging of Free Carriers in ZnO Nanowires with a Scanning Probe Tip Made of Heavily Doped Germanium

    Science.gov (United States)

    Sakat, Emilie; Giliberti, Valeria; Bollani, Monica; Notargiacomo, Andrea; Pea, Marialilia; Finazzi, Marco; Pellegrini, Giovanni; Hugonin, Jean-Paul; Weber-Bargioni, Alexander; Melli, Mauro; Sassolini, Simone; Cabrini, Stefano; Biagioni, Paolo; Ortolani, Michele; Baldassarre, Leonetta

    2017-11-01

    A novel scanning probe tip made of heavily doped semiconductor is fabricated and used instead of standard gold-coated tips in infrared scattering-type near-field microscopy. Midinfrared near-field microscopy experiments are conducted on ZnO nanowires with a lateral resolution better than 100 nm, using tips made of heavily electron-doped germanium with a plasma frequency in the midinfrared (plasma wavelength of 9.5 μ m ). Nanowires embedded in a dielectric matrix are imaged at two wavelengths, 11.3 and 8.0 μ m , above and below the plasma wavelength of the tips. An opposite sign of the imaging contrasts between the nanowire and the dielectric matrix is observed at the two infrared wavelengths, indicating a clear role of the free-electron plasma in the heavily doped germanium tip in building the imaging contrast. Electromagnetic simulations with a multispherical dipole model accounting for the finite size of the tip are well consistent with the experiments. By comparison of the simulated and measured imaging contrasts, an estimate for the local free-carrier density in the investigated ZnO nanowires in the low 1019 cm-3 range is retrieved. The results are benchmarked against the scattering intensity and phase maps obtained on the same sample with a gold-coated probe tip in pseudoheterodyne detection mode.

  17. Dual-MWCNT Probe Thermal Sensor Assembly and Evaluation Based on Nanorobotic Manipulation inside a Field-Emission-Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Zhan Yang

    2015-03-01

    Full Text Available We report a thermal sensor composed of two multiwalled carbon nano-tubes (MWCNTs inside a field-emission-scanning electron microscope. The sensor was assembled using a nanorobotic manipulation system, which was used to construct a probe tip in order to detect the local environment of a single cell. An atomic force microscopy (AFM cantilever was used as a substrate; the cantilever was composed of Si3N4 and both sides were covered with a gold layer. MWCNTs were individually assembled on both sides of the AFM cantilever by employing nanorobotic manipulation. Another AFM cantilever was subsequently used as an end effector to manipulate the MWCNTs to touch each other. Electron-beam-induced deposition (EBID was then used to bond the two MWCNTs. The MWCNT probe thermal sensor was evaluated inside a thermostated container in the temperature range from 25°C to 60°C. The experimental results show the positive characteristics of the temperature coefficient of resistance (TCR.

  18. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Science.gov (United States)

    Burke, Kerry B.; Stapleton, Andrew J.; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A. L. David; Belcher, Warwick J.; Dastoor, Paul C.

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  19. Submolecular resolution in scanning probe images of Sn-phthalocyanines on Cu(1 0 0) using metal tips

    Science.gov (United States)

    Buchmann, Kristof; Hauptmann, Nadine; Foster, Adam S.; Berndt, Richard

    2017-10-01

    Single Sn-phthalocyanine (SnPc) molecules adsorb on Cu(1 0 0) with the Sn ion above (Sn-up) or below (Sn-down) the molecular plane. Here we use a combination of atomic force microscopy (AFM), scanning tunnelling microscopy (STM) and first principles calculations to understand the adsorption configuration and origin of observed contrast of molecules in the Sn-down state. AFM with metallic tips images the pyrrole nitrogen atoms in these molecules as attractive features while STM reveals a chirality of the electronic structure of the molecules close to the Fermi level E_F, which is not observed in AFM. Using density functional theory calculations, the origin of the submolecular contrast is analysed and, while the electrostatic forces turn out to be negligible, the van der Waals interaction between the phenyl rings of SnPc and the substrate deform the molecule, push the pyrrole nitrogen atoms away from the substrate and thus induce the observed submolecular contrast. Simulated STM images reproduce the chirality of the electronic structure near E_F.

  20. Observation of photodynamically-induced cell destruction probed by video microscopy, laser-scanning microscopy, and fluorescence spectroscopy

    Science.gov (United States)

    Rueck, Angelika C.; Strauss, Wolfgang S. L.; Gschwend, Michael H.; Koenig, Karsten; Brunner, B.; Schneckenburger, Herbert; Walt, Heinrich; Steiner, Rudolf W.

    1993-07-01

    In order to study light-induced reactions during PDT, the fluorescence response of the photosensitizer meso-tetra(4-sulfonatophenyl)porphyrin (TPPS4) was observed in different cell systems and correlated with the sensitivity to photodynamic induced destructions. RR 1022 epithelial cells from the rat were grown on microscopic slides at a high and low cell density. Using video microscopy in combination with microspectrofluorometry we observed a different fluorescence behavior for high and low cell conditions during light exposure. A fluorescence relocalization from the cytoplasm to the nucleus and an intensity increase-- correlated with the formation of a new molecular species--could be detected only for low cell density. Moreover, cell cultures at a high density showed to be less sensitive to photodynamic destructions. In addition to cell culture-experiments, we observed the light-induced reactions of TPPS4 accumulated in multicellular tumor spheroids. For these measurements laser scanning microscopy was used. Fluorescence relocalization and intensity increase could be detected only for the peripheric parts of the spheroids. The different fluorescence response seems to reflect different metabolic and physiologic states of the cells.

  1. Probing defect states in polycrystalline GaN grown on Si(111) by sub-bandgap laser-excited scanning tunneling spectroscopy

    Science.gov (United States)

    Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.

    2017-01-01

    We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.

  2. Thermal evolution of the Ni{sub 3}Fe compound obtained by mechanical alloying as probed by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Popa, F. [Department of Materials Science and Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400641 Cluj-Napoca (Romania); Isnard, O. [Institut Néel, CNRS, associé à l’Université de Grenoble J. Fourier, 25 rue des Martyrs, BP 166, 38042 Grenoble (France); Chicinaş, I., E-mail: Ionel.Chicinas@stm.utcluj.ro [Department of Materials Science and Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400641 Cluj-Napoca (Romania); Pop, V. [Faculty of Physics, Babes-Bolyai University, 1 M. Kogălniceanu St., 400084 Cluj-Napoca (Romania)

    2013-03-25

    Highlights: ► Thermal evolution of Ni{sub 3}Fe compound obtained by MA was studied by DSC. ► At low milling times both Ni{sub 3}Fe formation and recrystallization occur during heating. ► Ni{sub 3}Fe grains obtained by milling and Ni{sub 3}Fe new germs produced during heating growth. ► Ni{sub 3}Fe compound recrystallization enthalpy increases by increasing milling time. ► The activation energy of the recrystallization process has been calculated. -- Abstract: An investigation of the formation of Ni{sub 3}Fe soft magnetic material by high energy ball milling combining X-ray as well as neutron diffraction and differential scanning calorimetry (DSC) is presented. The Ni{sub 3}Fe powders have been obtained by mechanical alloying of elemental powders in a planetary mill under argon atmosphere for milling times ranging from 2 h to 28 h. Ni{sub 3}Fe intermetallic compound is obtained after 10–12 h of milling, as showed by X-ray and neutron diffraction and magnetic studies. The obtained crystallite has the mean size of 20 ± 2 nm after 28 h of milling. The DSC curves, recorded for different heating speeds, present a broad transformation reaction of the as-milled powders. The onset temperature of the transition is about 500 °C. The transition has been assigned to the re-crystallization of the nanocrystalline samples. The Curie temperature of Ni{sub 3}Fe is also observed in the DSC curves, indicating the compound formation. DSC studies prove that the activation energy and the re-crystallization enthalpy increase with the milling time, as the compound is formed by milling and his grain size decrease.

  3. Oxidation of arsenopyrite and deposition of gold on the oxidized surfaces: A scanning probe microscopy, tunneling spectroscopy and XPS study

    Science.gov (United States)

    Mikhlin, Yuri L.; Romanchenko, Alexander S.; Asanov, Igor P.

    2006-10-01

    We have used ex situ atomic force microscopy (AFM), scanning tunneling microscopy and spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS) to study the surfaces of natural arsenopyrite samples that were electrochemically polarized in 1 M HCl, or leached in acidic solutions containing ferric iron salts, and then reacted with aqueous gold (III) chloride at ambient temperatures. For arsenopyrite oxidized on a positive-going potential sweep, progressively increasing amounts of surface Fe(III)-O and As-O species, and of S/Fe and S/As ratios in a non-stoichiometric sulfidic layer were found. The products formed in the sweep to a potential of 0.6 V (Ag/AgCl) of the passivity region are shaped in about 100 nm protrusions of two sorts, which are arranged in micrometer-size separate areas, while they are largely mixed at higher, "transpassive" potentials. The quantities of surface alteration substances notably decrease after leaching in ferric chloride and ferric sulfate acidic solutions. Passivation of arsenopyrite was suggested to associate with the disordered, metal-deficient surface layer having moderate excess of sulfur rather than with the products of arsenopyrite oxidation. Exposure of arsenopyrite to 10 -5-10 -3 M AuCl4- (pH 2) solutions results in the deposition of 8-50 nm gold particles; only a small fraction of the gold is present as Au(I)-S species. The electrochemical oxidation at 0.6 V or ageing of arsenopyrite in air promotes the subsequent gold deposition; in contrast, the amount of Au deposited on arsenopyrite that was treated by leaching in ferric chloride and sulfate solutions was about 10 times smaller than with polished arsenopyrite samples. It has been concluded that reducing agents formed as intermediates of arsenopyrite decomposition facilitate the Au 0 cementation although other factors related to the surface state of the arsenopyrite play a role as well. A decrease in the tunneling current magnitudes with decreasing the Au 0 particle

  4. Limitations on the use of scanning probe microscopy for the measurement of field emission from copper surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Y.

    2004-02-25

    conductive AFM is a topography-imaging instrument capable of extremely high magnification, making it possible to image the actual point of field emission. The technique appeared to be a powerful tool for in-situ measurement of the F-N current combined with imaging of the emitter itself. Following initially promising results, we began a systematic program of characterizing FE from natively-oxidized and oxide-coated polished copper surfaces. The results obtained were, however, not consistently repeatable and we believed that the difficulty was due to a lack of a mechanically-robust and electrically-conductive coating for the AFM tip surface. Similar problems have been recently reported by O'Shea et a1 for similar measurements. The metal-coated tips have been found to wear rapidly during image scanning and measuring current such that the conductive layer on the very end of the tip becomes insulating after minimal use. This difficulty is magnified by working in ambient because the sample and/or tip becomes quickly contaminated, producing chemical changes to the surface barrier heights in the high electric field region. Even in vacuum, wear of tip is found to affect tip-sample adhesion. In general, metal-coated tips are not reliable for obtaining repeatable FE data, although the problem is not completely resolved. We present our data for conductive-AFM using Pt/Ir-coated Si tips generating FE from natively-oxidized Cu, and films of Au on mica, Al{sub 2}O{sub 3} on Pt, Mg on Cu, Hf and W on Cu and, also, Hf ion-implanted into Cu, all in dry nitrogen atmosphere. Hardened surfaces, such as Hf-implanted, and oxide coatings on metals have historically exhibited higher breakdown thresholds and were chosen as sample surfaces for our investigation. F-N behavior was observed in all cases; however, the difficulties pointed out by O'Shea et a1 were readily observable.

  5. Surface and bulk 3D analysis of natural and processed ruby using electron probe micro analyzer and X-ray micro CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Rakesh K., E-mail: rakesh.materialscience@gmail.com; Singh, Saroj K.; Mishra, B.K.

    2016-08-15

    Highlights: • Firm linking between two advance techniques: Micro-CT and EPMA for mineral analysis. • Attempt to identify and differentiate the treated gem stone from natural counterpart. • 3D structural and surface elemental analysis of the natural gem stone. - Abstract: The change in surface compositional and bulk structural characteristics of the natural ruby stone, before and after heat treatment with lead oxide has been analyzed using two advance characterization techniques like: X-ray micro CT scan (μ-CT) and electron probe micro analyzer (EPMA). The analytical correlation between these two techniques in identification as well as in depth study of the ores and minerals before and after processing has been presented. Also, we describe the aesthetic enhancement of a low quality defective ruby stone by lead oxide filling and the sequential analysis of this ruby stone before and after treatment using these two advanced techniques to identify and to confirm the change in its aesthetic value. The cracks healing and pores filling by the metal oxide on the surface of the ruby have been analyzed using μ-CT and EPMA. Moreover, in this work we describe the advance characterization of the repaired gem stones especially ruby stones. This work will light up the path for in-depth understanding of diffusion mechanism and abstract information of impurity particles inside the minerals. Based on these observations, EPMA and micro CT are shown to be powerful tools for the identification as well as research in gem stones.

  6. Imaging breast cancer morphology using probe-based confocal laser endomicroscopy: towards a real-time intraoperative imaging tool for cavity scanning.

    Science.gov (United States)

    Chang, Tou Pin; Leff, Daniel R; Shousha, Sami; Hadjiminas, Dimitri J; Ramakrishnan, Rathi; Hughes, Michael R; Yang, Guang-Zhong; Darzi, Ara

    2015-09-01

    Current techniques for assessing the adequacy of tumour excision during breast conserving surgery do not provide real-time direct cytopathological assessment of the internal cavity walls within the breast. This study investigates the ability of probe-based confocal laser endomicroscopy (pCLE), an emerging imaging tool, to image the morphology of neoplastic and non-neoplastic breast tissues, and determines the ability of histopathologists and surgeons to differentiate these images. Freshly excised tumour samples and adjacent non-diseased sections from 50 consenting patients were stained with 0.01 % acriflavine hydrochloride and imaged using pCLE. All discernible pCLE features were cross-examined with conventional histopathology. Following pattern recognition training, 17 histopathologists and surgeons with no pCLE experience interpreted 50 pCLE images independently whilst blinded to histopathology results. Three-hundred and fifty pCLE image mosaics were analysed. Consistent with histopathology findings, the glandular structures, adipocytes and collagen fibres of normal breast were readily visible on pCLE images. These were distinguishable from the morphological architecture exhibited by invasive and non-invasive carcinoma. The mean accuracy of pCLE image interpretation for histopathologists and surgeons was 94 and 92 %, respectively. Overall, inter-observer agreement for histopathologists was 'almost perfect', κ = 0.82; and 'substantial' for surgeons, κ = 0.74. pCLE morphological features of neoplastic and non-neoplastic breast tissues are readily visualized and distinguishable with high accuracy by both histopathologists and surgeons. Further research is required to investigate a potential role for the use of pCLE intraoperatively for in situ detection of residual cancerous foci, thereby guiding operating decision-making based on real-time breast cavity scanning.

  7. Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3ω mode and novel calibration strategies.

    Science.gov (United States)

    Wilson, Adam A; Muñoz Rojo, Miguel; Abad, Begoña; Perez, Jaime Andrés; Maiz, Jon; Schomacker, Jason; Martín-Gonzalez, Marisol; Borca-Tasciuc, Diana-Andra; Borca-Tasciuc, Theodorian

    2015-10-07

    This work discusses measurement of thermal conductivity (k) of films using a scanning hot probe method in the 3ω mode and investigates the calibration of thermal contact parameters, specifically the thermal contact resistance (R(th)C) and thermal exchange radius (b) using reference samples with different thermal conductivities. R(th)C and b were found to have constant values (with b = 2.8 ± 0.3 μm and R(th)C = 44,927 ± 7820 K W(-1)) for samples with thermal conductivity values ranging from 0.36 W K(-1) m(-1) to 1.1 W K(-1) m(-1). An independent strategy for the calibration of contact parameters was developed and validated for samples in this range of thermal conductivity, using a reference sample with a previously measured Seebeck coefficient and thermal conductivity. The results were found to agree with the calibration performed using multiple samples of known thermal conductivity between 0.36 and 1.1 W K(-1) m(-1). However, for samples in the range between 16.2 W K(-1) m(-1) and 53.7 W K(-1) m(-1), calibration experiments showed the contact parameters to have considerably different values: R(th)C = 40,191 ± 1532 K W(-1) and b = 428 ± 24 nm. Finally, this work demonstrates that using these calibration procedures, measurements of both highly conductive and thermally insulating films on substrates can be performed, as the measured values obtained were within 1-20% (for low k) and 5-31% (for high k) of independent measurements and/or literature reports. Thermal conductivity results are presented for a SiGe film on a glass substrate, Te film on a glass substrate, polymer films (doped with Fe nano-particles and undoped) on a glass substrate, and Au film on a Si substrate.

  8. Probing the structure and nano-scale mechanical properties of polymer surfaces with scanning force microscopy and sum frequency vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gracias, David Hugo [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    Scanning Force Microscopy (SFM) has been used to quantitatively measure the elastic modulus, friction and hardness of polymer surfaces with special emphasis on polyethylene and polypropylene. In the experiments, tips of different radii of curvature ranging from 20 nm to 1000 nm have been used and the high pressure applied by the SFM have been observed to affect the values obtained in the measurements. The contact of the SFM tip with the polymer surface is explained by fitting the experimental curves to theoretical predictions of contact mechanics. Sum Frequency Generation (SFG) Vibrational Spectroscopy has been used to measure vibrational spectra of polymer surfaces in the vibrational range of 2700 to 3100 cm-1. Strong correlations are established between surface chemistry and surface structure as probed by SFG and mechanical properties measured by SFM on the surfaces. In these studies segregation of low surface energy moieties, from the bulk of the polymer to the surface have been studied. It was found that surface segregation occurs in miscible polymer blends and a small concentration of surface active polymer can be used to totally modify the surface properties of the blend. A novel high vacuum SFM was built to do temperature dependent measurements of mechanical changes occurring at the surface of polypropylene during the glass transition of the polymer. Using this instrument the modulus and friction of polypropylene was measured in the range of room temperature to ˜-60°C. An increase in the ordering of the backbone of the polymer chains below the glass transition measured by SFG correlates well with the increase in modulus measured on the same surface with SFM. Friction measurements have been done on polyethylene with three different instruments by applying loads ranging from nN to sub newton i.e. over eight orders of magnitude. Pressure and contact area effects were observed to play a significant role in determining the frictional response of the polymer

  9. Direct comparison of the FibroScan XL and M probes for assessment of liver fibrosis in obese and nonobese patients

    Directory of Open Access Journals (Sweden)

    Durango E

    2013-07-01

    Full Text Available Esteban Durango,1,* Christian Dietrich,1,* Helmut Karl Seitz,1 Cornelia Ursula Kunz,2 Gilles T Pomier-Layrargues,3 Andres Duarte-Rojo,4 Melanie Beaton,5 Magdy Elkhashab,6 Robert P Myers,7 Sebastian Mueller1,3 1Department of Medicine and Center for Alcohol Research, Liver Disease and Nutrition, Salem Medical Center, 2Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany; 3Liver Unit, Centre Hospitalier de l'Université de Montréal, Hôpital Saint-Luc, Montréal, Quebec, 4Toronto Western Hospital Liver Centre, Toronto, Ontario; 5Multi-Organ Transplant Unit, University of Western Ontario, London, Ontario; 6The Toronto Liver Centre, Toronto, Ontario; 7Liver Unit, Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada *These authors contributed equally to this researchBackground: A novel Fibroscan XL probe has recently been introduced and validated for obese patients, and has a diagnostic accuracy comparable with that of the standard M probe. The aim of this study was to analyze and understand the differences between these two probes in nonobese patients, to identify underlying causes for these differences, and to develop a practical algorithm to translate results for the XL probe to those for the M probe.Methods and results: Both probes were directly compared first in copolymer phantoms of varying stiffness (4.8, 11, and 40 kPa and then in 371 obese and nonobese patients (body mass index, range 17.2–72.4 from German (n = 129 and Canadian (n = 242 centers. Liver stiffness values for both probes correlated better in phantoms than in patients (r = 0.98 versus 0.82, P 10 kPa for F0, F1–2, F3, and F4 fibrosis, respectively significantly improved agreement between the two probes from r = 0.655 to 0.679.Conclusion: Liver stiffness can be measured in significantly more obese and nonobese patients using the XL probe than the M probe. However, the XL

  10. Scanning drop sensor

    Science.gov (United States)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  11. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution.

    Science.gov (United States)

    Henn, T; Kiessling, T; Ossau, W; Molenkamp, L W; Biermann, K; Santos, P V

    2013-12-01

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast "white light" supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  12. Vacuum scanning capillary photoemission microscopy

    DEFF Research Database (Denmark)

    Aseyev, S.A.; Cherkun, A P; Mironov, B N

    2017-01-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting...

  13. High Pressure Scanning Tunneling Microscopy Studies of AdsorbateStructure and Mobility during Catalytic Reactions: Novel Design of anUltra High Pressure, High Temperature Scanning Tunneling MicroscopeSystem for Probing Catalytic Conversions

    Energy Technology Data Exchange (ETDEWEB)

    Tang, David Chi-Wai [Univ. of California, Berkeley, CA (United States)

    2005-05-16

    The aim of the work presented therein is to take advantage of scanning tunneling microscope’s (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 °C).

  14. In-Plane Anisotropy in Mono- and Few-Layer ReS2 Probed by Raman Spectroscopy and Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Chenet, Daniel A; Aslan, O Burak; Huang, Pinshane Y; Fan, Chris; van der Zande, Arend M; Heinz, Tony F; Hone, James C

    2015-09-09

    Rhenium disulfide (ReS2) is a semiconducting layered transition metal dichalcogenide that exhibits a stable distorted 1T phase. The reduced symmetry of this system leads to in-plane anisotropy in various material properties. Here, we demonstrate the strong anisotropy in the Raman scattering response for linearly polarized excitation. Polarized Raman scattering is shown to permit a determination of the crystallographic orientation of ReS2 through comparison with direct structural analysis by scanning transmission electron microscopy (STEM). Analysis of the frequency difference of appropriate Raman modes is also shown to provide a means of precisely determining layer thickness up to four layers.

  15. Non-invasive current and voltage imaging techniques for integrated circuits using scanning probe microscopy. Final report, LDRD Project FY93 and FY94

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A.N.; Cole, E.I. Jr.; Tangyunyong, Paiboon

    1995-06-01

    This report describes the first practical, non-invasive technique for detecting and imaging currents internal to operating integrated circuits (ICs). This technique is based on magnetic force microscopy and was developed under Sandia National Laboratories` LDRD (Laboratory Directed Research and Development) program during FY 93 and FY 94. LDRD funds were also used to explore a related technique, charge force microscopy, for voltage probing of ICs. This report describes the technical work performed under this LDRD as well as the outcomes of the project in terms of publications and awards, intellectual property and licensing, synergistic work, potential future work, hiring of additional permanent staff, and benefits to DOE`s defense programs (DP).

  16. Scanning Probe Microwave Reflectivity of Aligned Single-Walled Carbon Nanotubes: Imaging of Electronic Structure and Quantum Behavior at the Nanoscale.

    Science.gov (United States)

    Seabron, Eric; MacLaren, Scott; Xie, Xu; Rotkin, Slava V; Rogers, John A; Wilson, William L

    2016-01-26

    Single-walled carbon nanotubes (SWNTs) are 1-dimensional nanomaterials with unique electronic properties that make them excellent candidates for next-generation device technologies. While nanotube growth and processing methods have progressed steadily, significant opportunities remain in advanced methods for their characterization, inspection, and metrology. Microwave near-field imaging offers an extremely versatile "nondestructive" tool for nanomaterials characterization. Herein, we report the application of nanoscale microwave reflectivity to study SWNT electronic properties. Using microwave impedance microscopy (MIM) combined with microwave impedance modulation microscopy (MIM(2)), we imaged horizontal SWNT arrays, showing the microwave reflectivity from individual nanotubes is extremely sensitive to their electronic properties and dependent on the nanotube quantum capacitance under proper experimental conditions. It is shown experimentally that MIM can be a direct probe of the nanotube-free carrier density and the details of their electronic band structure. We demonstrate spatial mapping of local SWNT impedance (MIM), the density of states (MIM(2)), and the nanotube structural morphology (AFM) simultaneously and with lateral resolution down to quantum physics of these important 1D materials.

  17. Theory for Spin Selective Andreev Re ection in Vortex Core of Topological Superconductor: Majorana Zero Modes on Spherical Surface and Application to Spin Polarized Scanning Tunneling Microscope Probe

    Science.gov (United States)

    Zhang, Fu-Chun; Hu, Lun-Hui; Li, Chuang; Xu, Dong-Hui; Zhou, Yi

    Majorana zero modes (MZMs) have been predicted to exist in the topological insulator (TI)/superconductor (SC) heterostructure. Recent spin polarized scanning tunneling microscope(STM) experiment has observed spin-polarization dependence of the zero bias differential tunneling conductance at the center of vortex core. Here we consider a helical electron system described by a Rashba spin orbit coupling Hamiltonian on a spherical surface with a s-wave superconducting pairing due to proximity effect. We examine in-gap excitations of a pair of vortices with one at the north pole and the other at the south pole. While the MZM is not a spin eigenstate, the spin wavefunction of the MZM at the center of the vortex core, r = 0, is parallel to the magnetic field, and the local Andreev reflection of the MZM is spin selective, namely occurs only when the STM tip has the spin polarization parallel to the magnetic field, similar to the case in 1-dimensional nanowire. The total local differential tunneling conductance consists of the normal term proportional to the local density of states and an additional term arising from the Andreev reflection. We apply our theory to examine the recently reported spin-polarized STM experiments and show good agreement with the experiments

  18. Optical nonlinearities of colloidal InP@ZnS core-shell quantum dots probed by Z-scan and two-photon excited emission

    Science.gov (United States)

    Wawrzynczyk, Dominika; Szeremeta, Janusz; Samoc, Marek; Nyk, Marcin

    2015-11-01

    Spectrally resolved nonlinear optical properties of colloidal InP@ZnS core-shell quantum dots of various sizes were investigated with the Z-scan technique and two-photon fluorescence excitation method using a femtosecond laser system tunable in the range from 750 nm to 1600 nm. In principle, both techniques should provide comparable results and can be interchangeably used for determination of the nonlinear optical absorption parameters, finding maximal values of the cross sections and optimizing them. We have observed slight differences between the two-photon absorption cross sections measured by the two techniques and attributed them to the presence of non-radiative paths of absorption or relaxation. The most significant value of two-photon absorption cross section σ2 for 4.3 nm size InP@ZnS quantum dot was equal to 2200 GM, while the two-photon excitation action cross section σ2Φ was found to be 682 GM at 880 nm. The properties of these cadmium-free colloidal quantum dots can be potentially useful for nonlinear bioimaging.

  19. Optical nonlinearities of colloidal InP@ZnS core-shell quantum dots probed by Z-scan and two-photon excited emission

    Directory of Open Access Journals (Sweden)

    Dominika Wawrzynczyk

    2015-11-01

    Full Text Available Spectrally resolved nonlinear optical properties of colloidal InP@ZnS core-shell quantum dots of various sizes were investigated with the Z-scan technique and two-photon fluorescence excitation method using a femtosecond laser system tunable in the range from 750 nm to 1600 nm. In principle, both techniques should provide comparable results and can be interchangeably used for determination of the nonlinear optical absorption parameters, finding maximal values of the cross sections and optimizing them. We have observed slight differences between the two-photon absorption cross sections measured by the two techniques and attributed them to the presence of non-radiative paths of absorption or relaxation. The most significant value of two-photon absorption cross section σ2 for 4.3 nm size InP@ZnS quantum dot was equal to 2200 GM, while the two-photon excitation action cross section σ2Φ was found to be 682 GM at 880 nm. The properties of these cadmium-free colloidal quantum dots can be potentially useful for nonlinear bioimaging.

  20. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff Mathiasen, Anne-Gitte

    2013-01-01

    Mobile probing is a method, developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time and space......). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings point...... to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  1. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff, Anne-Gitte

    2012-01-01

    and space). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings......Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  2. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  3. Tunneling spectroscopy using a probe qubit

    Science.gov (United States)

    Berkley, A. J.; Przybysz, A. J.; Lanting, T.; Harris, R.; Dickson, N.; Altomare, F.; Amin, M. H.; Bunyk, P.; Enderud, C.; Hoskinson, E.; Johnson, M. W.; Ladizinsky, E.; Neufeld, R.; Rich, C.; Smirnov, A. Yu.; Tolkacheva, E.; Uchaikin, S.; Wilson, A. B.

    2013-01-01

    We describe a quantum tunneling spectroscopy technique that requires only low-bandwidth control. The method involves coupling a probe qubit to the system under study to create a localized probe state. The energy of the probe state is then scanned with respect to the unperturbed energy levels of the probed system. Incoherent tunneling transitions that flip the state of the probe qubit occur when the energy bias of the probe is close to an eigenenergy of the probed system. Monitoring these transitions allows the reconstruction of the probed system eigenspectrum. We demonstrate this method on an rf SQUID flux qubit.

  4. Voice coil based scanning probe microscopy

    Czech Academy of Sciences Publication Activity Database

    Klapetek, P.; Valtr, M.; Duchoň, V.; Sobota, Jaroslav

    2012-01-01

    Roč. 7, č. 6 (2012), 332:1-7 ISSN 1931-7573 R&D Projects: GA MPO FR-TI1/241; GA AV ČR KAN311610701; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : SPM * Voice coil * Interferometry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.524, year: 2012

  5. Control theory for scanning probe microscopy revisited

    Directory of Open Access Journals (Sweden)

    Julian Stirling

    2014-03-01

    Full Text Available We derive a theoretical model for studying SPM feedback in the context of control theory. Previous models presented in the literature that apply standard models for proportional-integral-derivative controllers predict a highly unstable feedback environment. This model uses features specific to the SPM implementation of the proportional-integral controller to give realistic feedback behaviour. As such the stability of SPM feedback for a wide range of feedback gains can be understood. Further consideration of mechanical responses of the SPM system gives insight into the causes of exciting mechanical resonances of the scanner during feedback operation.

  6. Renal scan

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003790.htm Renal scan To use the sharing features on this ... anaphylaxis . Alternative Names Renogram; Kidney scan Images Kidney anatomy Kidney - blood and urine flow References Chernecky CC, ...

  7. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1995-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in STM I, these studies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described in chapters on scanning force microscopy, magnetic force microscopy, and scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Together, the two volumes give a comprehensive account of experimental aspects of STM. They provide essential reading and reference material for all students and researchers involved in this field. In this second edition the text has been updated and new methods are discussed.

  8. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1992-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in Vol. I, these sudies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described inchapters on scanning force microscopy, magnetic force microscopy, scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Togehter, the two volumes give a comprehensive account of experimental aspcets of STM. They provide essentialreading and reference material for all students and researchers involvedin this field.

  9. Scanning optical microscope with long working distance objective

    Science.gov (United States)

    Cloutier, Sylvain G.

    2010-10-19

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  10. Cooperative scans

    NARCIS (Netherlands)

    M. Zukowski (Marcin); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2004-01-01

    textabstractData mining, information retrieval and other application areas exhibit a query load with multiple concurrent queries touching a large fraction of a relation. This leads to individual query plans based on a table scan or large index scan. The implementation of this access path in most

  11. MRI Scans

    Science.gov (United States)

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from ...

  12. Bone Scan

    Science.gov (United States)

    ... posts Join Mayo Clinic Connect Bone scan About Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  13. Novel Eddycurrent Probe Development.

    Science.gov (United States)

    1981-12-01

    oVCut MVc AVu inc F C -- -(1)(-jlOOO AZC (23)0 --2--M F1 (23) If the Thevenin source voltages, V0, are adjusted so that Vinc is the same for both the...as small as 1.2 cm. The differential probe assembly was spring loaded about a pivot post (see Figure 12) so it could scan noncircular or eccentric

  14. Scanning radiographic apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Albert, R.D.

    1980-04-01

    Visual display of dental, medical or other radiographic images is realized with an x-ray tube in which an electron beam is scanned through an x-y raster pattern on a broad anode plate, the scanning being synchronized with the x-y sweep signals of a cathode ray tube display and the intensity signal for the display being derived from a small x-ray detector which receives x-rays that have passed through the subject to be imaged. Positioning and support of the detector are provided for by disposing the detector in a probe which may be attached to the x-ray tube at any of a plurality of different locations and by providing a plurality of such probes of different configuration in order to change focal length, to accommodate to different detector placements relative to the subject, to enhance patient comfort and to enable production of both periapical images and wider angle pantomographic images. High image definition with reduced radiation dosage is provided for by a lead glass collimator situated between the x-ray tube and subject and having a large number of spaced-apart minute radiation transmissive passages convergent on the position of the detector. Releasable mounting means enable changes of collimator in conjunction with changes of the probe to change focal length. A control circuit modifies the x-y sweep signals applied to the x-ray tube and modulates electron beam energy and current in order to correct for image distortions and other undesirable effects which can otherwise be present in a scanning x-ray system.

  15. Cultural probes

    DEFF Research Database (Denmark)

    Madsen, Jacob Østergaard

    The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation.......The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation....

  16. Differential-concentration scanning ion conductance microscopy

    OpenAIRE

    Perry, David; Page, Ashley; Chen, Baoping; Frenguelli, Bruno G.; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based scanning probe microscopy technique that utilizes the ionic current flowing between an electrode inserted inside a nanopipette probe containing electrolyte solution and a second electrode placed in a bulk electrolyte bath, to provide information on a substrate of interest. For most applications to date, the composition and concentration of the electrolyte inside and outside the nanopipette is identical, but it is shown herein t...

  17. Scanning table

    CERN Multimedia

    1960-01-01

    Before the invention of wire chambers, particles tracks were analysed on scanning tables like this one. Today, the process is electronic and much faster. Bubble chamber film - currently available - (links can be found below) was used for this analysis of the particle tracks.

  18. Scan Statistics

    CERN Document Server

    Glaz, Joseph

    2009-01-01

    Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.

  19. A Scanning Quantum Cryogenic Atom Microscope

    CERN Document Server

    Yang, Fan; Taylor, Stephen F; Turner, Richard W; Lev, Benjamin L

    2016-01-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a noise floor of 300 pT and provides a 100x improvement in magnetic flux sensitivity over previous atomic scanning probe magnetometers. These capabilities are carefully benchmarked by imaging magnet...

  20. Conductivity Probe

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air. The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air. The needles on the probe are 15 millimeters (0.6 inch) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Theory of dual probes on graphene structures

    DEFF Research Database (Denmark)

    Settnes, Mikkel

    is purely surface and exhibits a wide range of highly intriguing electronic properties. Using a dual probe setup, we demonstrate the application of the developed formalism to a number of different graphene-based systems. The conductance between the two probes in either scanning or spectroscopy mode, shows...

  2. Pollution Probe.

    Science.gov (United States)

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  3. Mobile probes

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Jørgensen, Anna Neustrup; Noesgaard, Signe Schack

    2016-01-01

    to in an interview. This method provided valuable insight into the contextual use, i.e. how did the online resource transfer to the work practice. However, the research team also found that mobile probes may provide the scaffolding necessary for individual and peer learning at a very local (intra-school) community...

  4. Comparative evaluation of efficacy of EndoVac irrigation system to Max-I probe in removing smear layer in apical 1 mm and 3 mm of root canal: An in vitro scanning electron microscope study

    OpenAIRE

    Ankur Dua; Deepti Dua

    2015-01-01

    Background: The purpose of this study was to compare the efficacy of EndoVac irrigation system and side-vented closed ended needle (Max-I probe) in removing smear layer from root canals at 1 mm and 3 mm from working length using ProTaper rotary instrumentation. Materials and Methods: A total of 50 freshly extracted maxillary central incisors were randomly divided into two groups after complete cleaning and shaping with ProTaper rotary files. In one group, final irrigation was performed wi...

  5. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ... the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is a ...

  6. Thyroid Scan and Uptake

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ... the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is a ...

  7. Scanning quantum decoherence microscopy.

    Science.gov (United States)

    Cole, Jared H; Hollenberg, Lloyd C L

    2009-12-09

    The use of qubits as sensitive nanoscale magnetometers has been studied theoretically and recently demonstrated experimentally. In this paper we propose a new concept, in which a scanning two-state quantum system is used to probe a sample through the subtle effects of decoherence. Mapping both the Hamiltonian and decoherence properties of a qubit simultaneously provides a unique image of the magnetic (or electric) field properties at the nanoscale. The resulting images are sensitive to the temporal as well as spatial variation in the fields created by the sample. As examples we theoretically study two applications; one from condensed matter physics, the other biophysics. The individual components required to realize the simplest version of this device (characterization and measurement of qubits, nanoscale positioning) have already been demonstrated experimentally.

  8. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... limitations of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... top of page What are some common uses of the procedure? The thyroid scan is used to ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... of page What are some common uses of the procedure? The thyroid scan is used to determine ...

  11. Lumbar spine CT scan

    Science.gov (United States)

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower ... The lumbar CT scan is good for evaluating large herniated disks, ... smaller ones. This test can be combined with a myelogram to get ...

  12. Arm CT scan

    Science.gov (United States)

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... stopping.) A computer creates separate images of the arm area, called slices. These images can be stored, ...

  13. Thoracic spine CT scan

    Science.gov (United States)

    CAT scan - thoracic spine; Computed axial tomography scan - thoracic spine; Computed tomography scan - thoracic spine; CT scan - ... Philadelphia, PA: Elsevier Mosby; 2013:chap 44. US Food and Drug Administration. Computed tomography (CT). Updated August ...

  14. EDITORIAL: Probing the nanoworld Probing the nanoworld

    Science.gov (United States)

    Miles, Mervyn

    2009-10-01

    In nanotechnology, it is the unique properties arising from nanometre-scale structures that lead not only to their technological importance but also to a better understanding of the underlying science. Over the last twenty years, material properties at the nanoscale have been dominated by the properties of carbon in the form of the C60 molecule, single- and multi-wall carbon nanotubes, nanodiamonds, and recently graphene. During this period, research published in the journal Nanotechnology has revealed the amazing mechanical properties of such materials as well as their remarkable electronic properties with the promise of new devices. Furthermore, nanoparticles, nanotubes, nanorods, and nanowires from metals and dielectrics have been characterized for their electronic, mechanical, optical, chemical and catalytic properties. Scanning probe microscopy (SPM) has become the main characterization technique and atomic force microscopy (AFM) the most frequently used SPM. Over the past twenty years, SPM techniques that were previously experimental in nature have become routine. At the same time, investigations using AFM continue to yield impressive results that demonstrate the great potential of this powerful imaging tool, particularly in close to physiological conditions. In this special issue a collaboration of researchers in Europe report the use of AFM to provide high-resolution topographical images of individual carbon nanotubes immobilized on various biological membranes, including a nuclear membrane for the first time (Lamprecht C et al 2009 Nanotechnology 20 434001). Other SPM developments such as high-speed AFM appear to be making a transition from specialist laboratories to the mainstream, and perhaps the same may be said for non-contact AFM. Looking to the future, characterisation techniques involving SPM and spectroscopy, such as tip-enhanced Raman spectroscopy, could emerge as everyday methods. In all these advanced techniques, routinely available probes will

  15. Novel dual-probes atomic force microscope for line width measurements

    Science.gov (United States)

    Wang, Hequn; Gao, Sitian; Li, Wei; Shi, Yushu; Li, Qi; Li, Shi

    2017-11-01

    Dual-probe Atomic Force Microscope (AFM) can effectively eliminate the influence of the probe size on measurement of the line width, and realize true three-dimensional measurement. Novel dual-probe AFM consists of probe system, scanning system, alignment system and displacement measurement system. As displacement measurement system, the interferometers are added to the novel dual-probes AFM. In order to simplify the dual-probe AFM structure, self-sensing tuning fork probe is used. Measurement method has two steps: the first step is to align two probes and obtain the reference point; the second step is to scan two sides of measured line by two probes separately, and calculate the line width value according to the reference point. In the alignment of two probes, the alignment method is improved by using the edge alignment and the feedback scanning alignment.

  16. Brain PET scan

    Science.gov (United States)

    ... have false results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  17. Coronary Calcium Scan

    Science.gov (United States)

    ... Back To Health Topics / Coronary Calcium Scan Coronary Calcium Scan Also known as Calcium Scan Test A coronary calcium scan is a CT scan of your heart that detects and measures the amount of calcium in the walls of your coronary arteries. Overview ...

  18. A dark mode in scanning thermal microscopy

    Science.gov (United States)

    Ramiandrisoa, Liana; Allard, Alexandre; Joumani, Youssef; Hay, Bruno; Gomés, Séverine

    2017-12-01

    The need for high lateral spatial resolution in thermal science using Scanning Thermal Microscopy (SThM) has pushed researchers to look for more and more tiny probes. SThM probes have consequently become more and more sensitive to the size effects that occur within the probe, the sample, and their interaction. Reducing the tip furthermore induces very small heat flux exchanged between the probe and the sample. The measurement of this flux, which is exploited to characterize the sample thermal properties, requires then an accurate thermal management of the probe-sample system and to reduce any phenomenon parasitic to this system. Classical experimental methodologies must then be constantly questioned to hope for relevant and interpretable results. In this paper, we demonstrate and estimate the influence of the laser of the optical force detection system used in the common SThM setup that is based on atomic-force microscopy equipment on SThM measurements. We highlight the bias induced by the overheating due to the laser illumination on the measurements performed by thermoresistive probes (palladium probe from Kelvin Nanotechnology). To face this issue, we propose a new experimental procedure based on a metrological approach of the measurement: a SThM "dark mode." The comparison with the classical procedure using the laser shows that errors between 14% and 37% can be reached on the experimental data exploited to determine the heat flux transferred from the hot probe to the sample.

  19. Measuring voltage transients with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    We use an ultrafast scanning tunneling microscope to resolve propagating voltage transients in space and time. We demonstrate that the previously observed dependence of the transient signal amplitude on the tunneling resistance was only caused by the electrical sampling circuit. With a modified......-gating photoconductive switch with a rigidly attached fiber, the probe is scanned without changing the probe characteristics. (C) 1997 American Institute of Physics....

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... code: Phone no: Thank you! Do you have a personal story about radiology? Share your patient story ...

  1. Heart PET scan

    Science.gov (United States)

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... taking our brief survey: Survey Do you have a personal story about radiology? Share your patient story ...

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the data obtained by the gamma camera. A probe is a small hand-held device resembling a ... will sit in a chair facing a stationary probe positioned over the thyroid gland in the neck. ...

  4. Proximal Probes Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the...

  5. A miniature forward-imaging optical coherence tomography (OCT) probe

    Science.gov (United States)

    Joos, Karen M.; Shen, Jin-Hui

    2012-03-01

    Optical coherence tomography (OCT) has had a tremendous global health impact upon the current ability to diagnose, treat, and monitor multiple eye diseases. We propose that a miniature forward-imaging OCT probe can be developed for real-time ocular imaging. A miniature 25-gauge forward-imaging probe was designed and developed to use with an 850 nm spectral-domain optical coherence tomography (SDOCT) system (Bioptigen, Inc. Durham, NC). Imaging parameters were determined. Ocular tissues were examined with the miniature OCT probe. A miniature SDOCT probe was developed with the scanning driver within the hand piece. The SDOCT fiber-scanning probe maximally transmitted power of 800 μW. The scanning range was 3 mm when the probe tip was held 3 to 5 mm from the tissue surface. The axial resolution was 6 μm and the lateral resolution was 30-35 μm. The 25-gauge forward-imaging probe was used to image cellophane tape, eyelid skin, cornea, conjunctiva, sclera, iris, anterior lens, anterior chamber angle, retina, retinal tear, retinal detachment, optic nerve head, and optic nerve sheath. Images obtained from the miniature probe appeared similar to images from a 3 mm scanning range of a commercial large handheld OCT probe (Bioptigen, Inc. Durham, NC).

  6. Multifunctional scanning ion conductance microscopy.

    Science.gov (United States)

    Page, Ashley; Perry, David; Unwin, Patrick R

    2017-04-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential-time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science.

  7. Hydrodynamic ultrasonic probe

    Science.gov (United States)

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  8. The scanning probe microscopy study of thin polymer films

    CERN Document Server

    Harron, H R

    1995-01-01

    spherulites fibrils was influenced by the chemical nature of the solvent Results reported here confirm that the fibril structure and spherulite size was significantly affected by the chemical nature of the plasticizing solvent. Detailed observations of the spherulites are included herein. A tapping mode AFM was used in conjunction with the usual contact mode AFM to image the fine spherulitic lamellae structure. It was found that the AFM operated in the tapping mode was less destructive than when operated in the contact mode and gave higher resolution images of the lamellae structure. The lamellae were found to be structurally very similar to the features observed in the study using STM indicating that under certain circumstances, the STM was less destructive over the 'insulating' polymer than the contact mode AFM. technique. Furthermore, images of the crystalline film contained elongated units that were attributed to the lamellae formations that form the basic building blocks of polymer spherulites. The study...

  9. Solid state physics: advanced spectroscopy, scanning probe microscopy, nanostructure fabrication

    CERN Document Server

    Aghion, Stefano

    Thin films of hybrid solar cells and metal oxide semiconductors -IGZO in particular– and homogeneous PMMA polymers have been studied at the Positron Laboratory (L-NESS centre, Politecnico di Milano, Polo Territoriale di Como). A slow energy positron beam and a positron lifetime spectrometer have been employed for these studies. The positron spectroscopy information have been correlated with electrical and optical properties of the materials. The chemical composition and the morphology of voids and porosities in hybrid solar cells and thin film metal oxide semiconductors have been studied, and a strong correlation between positronium fraction, S-parameter and the electrical properties of these materials has been found. In PMMA polymers, free volume measurements have shown that the optical properties of the material depend on the presence of monomer residual fraction and even slight changes in the dimensions and concentration of free volumes. Positrons have been also applied to the study of positron to positr...

  10. Scanning Kelvin Probe applied to localised corrosion | Haque ...

    African Journals Online (AJOL)

    This paper focuses on specific applications of the SKP system. The instrument is calibrated, using different thickness of a model polymer Poly Vinyl Butyral (PVB) on mild steel and on galvanised steel. Artificial defects are used to show how the instrument is capable of detecting a localised corrosion cell and its ability to ...

  11. Theory of Near-Field Scanning with a Probe Array

    Science.gov (United States)

    2014-01-01

    325, Room 3112 Arlington, VA 22203-1768 AFRL/RYMH 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) AFRL-RY-WP-TR-2013-0239 12...are taking place. Antenna FF patterns can also be measured inside an anechoic chamber using a compact-range reflector, which acts as a spatial filter...Furthermore, once built and furnished, an anechoic chamber is less expensive to operate and maintain than an outdoor range. One significant disadvantage

  12. Operation of a scanning near field optical microscope in reflection in combination with a scanning force microscope

    NARCIS (Netherlands)

    van Hulst, N.F.; Moers, M.H.P.; Moers, M.H.P.; Noordman, O.F.J.; Noordman, O.F.J.; Faulkner, T.; Segerink, Franciscus B.; van der Werf, Kees; de Grooth, B.G.; Bölger, B.; Bölger, B.

    1992-01-01

    Images obtained with a scanning near field optical microscope (SNOM) operating in reflection are presented. We have obtained the first results with a SiN tip as optical probe. The instrument is simultaneously operated as a scanning force microscope (SFM). Moreover, the instrument incorporates an

  13. Practical aspects of spherical near-field antenna measurements using a high-order probe

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2006-01-01

    Two practical aspects related to accurate antenna pattern characterization by probe-corrected spherical near-field antenna measurements with a high-order probe are examined. First, the requirements set by an arbitrary high-order probe on the scanning technique are pointed out. Secondly, a channel...... balance calibration procedure for a high-order dual-port probe with non-identical ports is presented, and the requirements set by this procedure for the probe are discussed....

  14. Analysing magnetism using scanning SQUID microscopy.

    Science.gov (United States)

    Reith, P; Renshaw Wang, X; Hilgenkamp, H

    2017-12-01

    Scanning superconducting quantum interference device microscopy (SSM) is a scanning probe technique that images local magnetic flux, which allows for mapping of magnetic fields with high field and spatial accuracy. Many studies involving SSM have been published in the last few decades, using SSM to make qualitative statements about magnetism. However, quantitative analysis using SSM has received less attention. In this work, we discuss several aspects of interpreting SSM images and methods to improve quantitative analysis. First, we analyse the spatial resolution and how it depends on several factors. Second, we discuss the analysis of SSM scans and the information obtained from the SSM data. Using simulations, we show how signals evolve as a function of changing scan height, SQUID loop size, magnetization strength, and orientation. We also investigated 2-dimensional autocorrelation analysis to extract information about the size, shape, and symmetry of magnetic features. Finally, we provide an outlook on possible future applications and improvements.

  15. Two-probe STM experiments at the atomic level.

    Science.gov (United States)

    Kolmer, Marek; Olszowski, Piotr; Zuzak, Rafal; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek

    2017-11-08

    Direct characterization of planar atomic or molecular scale devices and circuits on a supporting surface by multi-probe measurements requires unprecedented stability of single atom contacts and manipulation of scanning probes over large, nanometer scale area with atomic precision. In this work, we describe the full methodology behind atomically defined two-probe scanning tunneling microscopy (STM) experiments performed on a model system: dangling bond dimer wire supported on a hydrogenated germanium (0 0 1) surface. We show that 70 nm long atomic wire can be simultaneously approached by two independent STM scanners with exact probe to probe distance reaching down to 30 nm. This allows direct wire characterization by two-probe I-V characteristics at distances below 50 nm. Our technical results presented in this work open a new area for multi-probe research, which can be now performed with precision so far accessible only by single-probe scanning probe microscopy (SPM) experiments.

  16. Two-probe STM experiments at the atomic level

    Science.gov (United States)

    Kolmer, Marek; Olszowski, Piotr; Zuzak, Rafal; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek

    2017-11-01

    Direct characterization of planar atomic or molecular scale devices and circuits on a supporting surface by multi-probe measurements requires unprecedented stability of single atom contacts and manipulation of scanning probes over large, nanometer scale area with atomic precision. In this work, we describe the full methodology behind atomically defined two-probe scanning tunneling microscopy (STM) experiments performed on a model system: dangling bond dimer wire supported on a hydrogenated germanium (0 0 1) surface. We show that 70 nm long atomic wire can be simultaneously approached by two independent STM scanners with exact probe to probe distance reaching down to 30 nm. This allows direct wire characterization by two-probe I-V characteristics at distances below 50 nm. Our technical results presented in this work open a new area for multi-probe research, which can be now performed with precision so far accessible only by single-probe scanning probe microscopy (SPM) experiments.

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... concern for you. If you had an intravenous line inserted for the procedure, it will usually be ... procedure that same day that requires an intravenous line. Actual scanning time for a thyroid scan is ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the limitations of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid ... body converts food to energy. top of page What are some common uses of the procedure? The ...

  19. RBC nuclear scan

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  20. Mobile Game Probes

    DEFF Research Database (Denmark)

    Borup Lynggaard, Aviaja

    2006-01-01

    This paper will examine how probes can be useful for game designers in the preliminary phases of a design process. The work is based upon a case study concerning pervasive mobile phone games where Mobile Game Probes have emerged from the project. The new probes are aimed towards a specific target...... group and the goal is to specify the probes so they will cover the most relevant areas for our project. The Mobile Game Probes generated many interesting results and new issues occurred, since the probes came to be dynamic and favorable for the process in new ways....

  1. Development of Scanning Ultrafast Electron Microscope Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Kimberlee Chiyoko [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Talin, Albert Alec [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michael, Joseph R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.

  2. Dual-probe spectroscopic fingerprints of defects in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Petersen, Dirch Hjorth

    2014-01-01

    density of states). In this work we develop a real-space Green's function method to compute the conductance. This requires an extension of the standard calculation schemes, which typically address a finite sample between the probes. In contrast, the developed method makes no assumption of the sample size......Recent advances in experimental techniques emphasize the usefulness of multiple scanning probe techniques when analyzing nanoscale samples. Here, we analyze theoretically dual-probe setups with probe separations in the nanometer range, i.e., in a regime where quantum coherence effects can...... be observed at low temperatures. In a dual-probe setup the electrons are injected at one probe and collected at the other. The measured conductance reflects the local transport properties on the nanoscale, thereby yielding information complementary to that obtained with a standard one-probe setup (the local...

  3. Scanning electron microscopy of cold gases

    Science.gov (United States)

    Santra, Bodhaditya; Ott, Herwig

    2015-06-01

    Ultracold quantum gases offer unique possibilities to study interacting many-body quantum systems. Probing and manipulating such systems with ever increasing degree of control requires novel experimental techniques. Scanning electron microscopy is a high resolution technique which can be used for in situ imaging, single site addressing in optical lattices and precision density engineering. Here, we review recent advances and achievements obtained with this technique and discuss future perspectives.

  4. Scanning Electrochemical Microscopy in Neuroscience

    Science.gov (United States)

    Schulte, Albert; Nebel, Michaela; Schuhmann, Wolfgang

    2010-07-01

    This article reviews recent work involving the application of scanning electrochemical microscopy (SECM) to the study of individual cultured living cells, with an emphasis on topographical and functional imaging of neuronal and secretory cells of the nervous and endocrine system. The basic principles of biological SECM and associated negative amperometric-feedback and generator/collector-mode SECM imaging are discussed, and successful use of the methodology for screening soft and fragile membranous objects is outlined. The drawbacks of the constant-height mode of probe movement and the benefits of the constant-distance mode of SECM operation are described. Finally, representative examples of constant-height and constant-distance mode SECM on a variety of live cells are highlighted to demonstrate the current status of single-cell SECM in general and of SECM in neuroscience in particular.

  5. Parallel Probe Readout

    NARCIS (Netherlands)

    Koelmans, W.W.

    2011-01-01

    In this thesis techniques are developed to read out nanoscale probes and arrays of probes.The main targeted application area is probe-based data storage.The work also contributes to other areas, such as metrology, biological sensing, materials research and nano-electro-mechanical switches. First, an

  6. A Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Lev, Benjamin

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (2 um), or 6 nT / Hz1 / 2 per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly one-hundred points with an effective field sensitivity of 600 pT / Hz1 / 2 each point during the same time as a point-by-point scanner would measure these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly two orders of magnitude improvement in magnetic flux sensitivity (down to 10- 6 Phi0 / Hz1 / 2) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are for the first time carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns and done so using samples that may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge transport images at temperatures from room to \\x9D4K in unconventional superconductors and topologically nontrivial materials.

  7. Direct measurement of surface-state conductance by microscopic four-point probe method

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanikawa, T.

    2002-01-01

    For in situ measurements of local electrical conductivity of well defined crystal surfaces in ultrahigh vacuum, we have developed microscopic four-point probes with a probe spacing of several micrometres, installed in a scanning-electron - microscope/electron-diffraction chamber. The probe...

  8. Microfour-point probe for studying electronic transport through surface states

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Shiraki, I.

    2000-01-01

    Microfour-point probes integrated on silicon chips have been fabricated with probe spacings in the range 4-60 mum. They provide a simple robust device for electrical transport measurements at surfaces, bridging the gap between conventional macroscopic four-point probes and scanning tunneling...

  9. Novel laser contact probe for periodontal treatment

    Science.gov (United States)

    Watanabe, Hisashi; Kataoka, Kenzo; Ishikawa, Isao

    2001-04-01

    Application of the erbium: YAG laser to periodontal treatment has been attempted and preferable results have been reported for calculus removal, vaporization of granulation tissue, periodontal pocket sterilization and so on. However, it has been difficult to reach and treat some conditions involving complex root morphology and furcated rots with conventional probes. The new broom probe was designed and tested to overcome these obstacles. The probe was made of 20 super-fine optical fibers bound into a broom shape. The experiments were carried out to evaluate the destructive power of a single fiber and to examine the morphology of tissue destruction and the accessibility to a bifurcated root of a human tooth using the broom probe. The Er:YAG laser prototype was used. A flat specimen plate was made by cutting the root of a cow tooth and then attached to an electrically operated table and irradiated under various conditions. The specimens were examined with both an optical and scanning electron microscope. The irradiated surfaces were also examined with a roughness meter. An irradiation applied with a single fiber with an energy level of 1 to 1.5 mJ at its tip results in a destruction depth of 3 to 24 micrometers . The optimum conditions for the fibers of this probe was 1.0 mJ at 10 pps and a scanning speed of 100 mm/min. No part of the tooth surface remained un-irradiated after using the broom probe to cover the surface 5 times parallel to the tooth axis and then five times at a 30 degree angle to the previous irradiation at a power of 20 mJ at 10 pps. Also curved and irregular surface were destroyed to a maximum depth of 19 micrometers . In conclusion, these results suggest that the broom probe would be applicable for periodontal laser treatments even if the tooth surface has a complex and irregular shape.

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gamma camera. A probe is a small hand-held device resembling a microphone that can detect ... intravenous (IV) catheter into a vein in your hand or arm. Depending on the type of nuclear ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... computer aids in creating the images from the data obtained by the gamma camera. A probe is ... at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2017 ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... story about radiology? Share your patient story here Images × Image Gallery Photograph of a typical probe counter used ... possible charges you will incur. Web page review process: This Web page is reviewed regularly by a ...

  13. Analytical scanning evanescent microwave microscope and control stage

    Science.gov (United States)

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  14. Investigation into scanning tunnelling luminescence microscopy

    CERN Document Server

    Manson-Smith, S K

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provi...

  15. High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues

    Science.gov (United States)

    Bazaei, A.; Yong, Yuen K.; Moheimani, S. O. Reza

    2012-06-01

    Tracking of triangular or sawtooth waveforms is a major difficulty for achieving high-speed operation in many scanning applications such as scanning probe microscopy. Such non-smooth waveforms contain high order harmonics of the scan frequency that can excite mechanical resonant modes of the positioning system, limiting the scan range and bandwidth. Hence, fast raster scanning often leads to image distortion. This paper proposes analysis and design methodologies for a nonlinear and smooth closed curve, known as Lissajous pattern, which allows much faster operations compared to the ordinary scan patterns. A simple closed-form measure is formulated for the image resolution of the Lissajous pattern. This enables us to systematically determine the scan parameters. Using internal model controllers (IMC), this non-raster scan method is implemented on a commercial atomic force microscope driven by a low resonance frequency positioning stage. To reduce the tracking errors due to actuator nonlinearities, higher order harmonic oscillators are included in the IMC controllers. This results in significant improvement compared to the traditional IMC method. It is shown that the proposed IMC controller achieves much better tracking performances compared to integral controllers when the noise rejection performances is a concern.

  16. Electrical conduction through surface superstructures measured by microscopic four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanabe, F.

    2003-01-01

    (STM) are used for measurements of four-point probe conductivity. The probe spacing can be changed from 500 nm to 1 mm. The other method involves monolithic micro-four-point probes, fabricated on silicon chips, whose probe spacing is fixed around several mum. These probes are installed in scanning......For in-situ measurements of the local electrical conductivity of well-defined crystal surfaces in ultra-high vacuum, we have developed two kinds of microscopic four-point probe methods. One involves a "four-tip STM prober," in which four independently driven tips of a scanning tunneling microscope......-electron-microscopy/electron-diffraction chambers, in which the structures of sample surfaces and probe positions are observed in situ. The probes can be positioned precisely on aimed areas on the sample with the aid of piezoactuators. By the use of these machines, the surface sensitivity in conductivity measurements has been greatly enhanced...

  17. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  18. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase...

  19. Full cycle rapid scan EPR deconvolution algorithm

    Science.gov (United States)

    Tseytlin, Mark

    2017-08-01

    period. Separation of the interfering up- and down-field scan responses remains a challenge for reaching the full potential of this new method. For this reason, only a factor of two increase in the scan rate was achieved, in comparison with the standard half-scan RS EPR algorithm. It is important for practical use that faster scans not necessarily increase the signal bandwidth because acceleration of the Larmor frequency driven by the changing magnetic field changes its sign after passing the inflection points on the scan. The half-scan and full-scan algorithms are compared using a LiNC-BuO spin probe of known line-shape, demonstrating that the new method produces stable solutions when RS signals do not completely decay by the end of each half-scan.

  20. Automatic emissive probe apparatus for efficient plasma potential measurements.

    Science.gov (United States)

    Li, Jian-Quan; Lu, Wen-Qi; Xu, Jun; Gao, Fei; Wang, You-Nian

    2017-11-01

    The improved inflection point method of emissive probe is the most accurate method for plasma potential measurements, but its manual operation is quite cumbersome and time-consuming. This paper describes the design and test of an automatic emissive probe apparatus for efficient plasma potential measurements. The apparatus consists of a computer controlled data acquisition (DAQ) card, a working circuit composed of a biasing unit and a heating unit, as well as the emissive probe. The main feature of the apparatus is that both the biasing scan and the heating scan of the probe are controlled by the computer program through analog outputs of the DAQ card, which easily realizes the required timing between the biasing and heating scans of the probe. The apparatus can automatically execute the improved inflection point method of emissive probe and give the plasma potential result. The advantages of high-accuracy, high-efficiency, and durability of probe filament make the apparatus promising for extensive use in plasma potential measurements.

  1. Automatic emissive probe apparatus for efficient plasma potential measurements

    Science.gov (United States)

    Li, Jian-Quan; Lu, Wen-Qi; Xu, Jun; Gao, Fei; Wang, You-Nian

    2017-11-01

    The improved inflection point method of emissive probe is the most accurate method for plasma potential measurements, but its manual operation is quite cumbersome and time-consuming. This paper describes the design and test of an automatic emissive probe apparatus for efficient plasma potential measurements. The apparatus consists of a computer controlled data acquisition (DAQ) card, a working circuit composed of a biasing unit and a heating unit, as well as the emissive probe. The main feature of the apparatus is that both the biasing scan and the heating scan of the probe are controlled by the computer program through analog outputs of the DAQ card, which easily realizes the required timing between the biasing and heating scans of the probe. The apparatus can automatically execute the improved inflection point method of emissive probe and give the plasma potential result. The advantages of high-accuracy, high-efficiency, and durability of probe filament make the apparatus promising for extensive use in plasma potential measurements.

  2. Method for HEPA filter leak scanning with differentiating aerosol detector

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, B.J.; Banks, E.M.; Wikoff, W.O. [NUCON International, Inc., Columbus, OH (United States)

    1997-08-01

    While scanning HEPA filters for leaks with {open_quotes}Off the Shelf{close_quote} aerosol detection equipment, the operator`s scanning speed is limited by the time constant and threshold sensitivity of the detector. This is based on detection of the aerosol density, where the maximum signal is achieved when the scanning probe resides over the pinhole longer than several detector time-constants. Since the differential value of the changing signal can be determined by observing only the first small fraction of the rising signal, using a differentiating amplifier will speed up the locating process. The other advantage of differentiation is that slow signal drift or zero offset will not interfere with the process of locating the leak, since they are not detected. A scanning hand-probe attachable to any NUCON{reg_sign} Aerosol Detector displaying the combination of both aerosol density and differentiated signal was designed. 3 refs., 1 fig.

  3. Laser Scanning in Forests

    Directory of Open Access Journals (Sweden)

    Håkan Olsson

    2012-09-01

    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  4. Micro-hall devices based on high-electron-velocity semiconductors

    OpenAIRE

    Kunets, Vasyl

    2004-01-01

    AlGaAs/GaAs- und AlGaAs/GaAs/InGaAs-Quantengraben-Strukturen mit dotiertem Kanal sowie modulationsdotierte AlGaAs/InGaAs/GaAs- Heterostrukturen auf Halbleitermaterialien mit hoher Elektronendriftgeschwindigkeit werden erfolgreich zur Herstellung von Mikro-Hall-Bauelementen eingesetzt. Mit Blick auf ihre Eignung als Magnetfeldsensoren werden die Signal-Linearität, die Sensitivität und das Rauschen bei schwachen und starken elektrischen Feldern untersucht. Auch bei höheren elektrischen Feldern...

  5. 14 GHz longitudinally detected electron spin resonance using microHall sensors

    Science.gov (United States)

    Bouterfas, M.; Mouaziz, S.; Popovic, R. S.

    2017-09-01

    In this work we developed a home-made LOngitudinally Detected Electron Spin Resonance (LODESR) spectrometer based on a microsize Hall sensor. A coplanar waveguide (CPW)-resonator is used to induce microwave-excitation on the sample at 14 GHz. We used InSb cross-shaped Hall devices with active areas of (10 μm × 10 μm) and (5 μm × 5 μm) . Signal intensities of the longitudinal magnetization component of DPPH and YIG samples of volumes about (10 μm) 3 and (5 μm) 3 , are measured under amplitude and frequency modulated microwave magnetic field generated by the CPW-resonator. At room temperature, 109spins /G √Hz sensitivity is achieved for 0.2mT linewidth, a result which is still better than most of inductive detected LODESR sensitivities.

  6. Formative Assessment Probes

    Science.gov (United States)

    Eberle, Francis; Keeley, Page

    2008-01-01

    Formative assessment probes can be effective tools to help teachers build a bridge between students' initial ideas and scientific ones. In this article, the authors describe how using two formative assessment probes can help teachers determine the extent to which students make similar connections between developing a concept of matter and a…

  7. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... energy. top of page What are some common uses of the procedure? The thyroid scan is used ... gland evaluate changes in the gland following medication use, surgery, radiotherapy or chemotherapy top of page How ...

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential to ... tells you otherwise, you may resume your normal activities after your nuclear medicine scan. If any special ...

  9. Body CT (CAT Scan)

    Science.gov (United States)

    ... Professions Site Index A-Z Computed Tomography (CT) - Body Computed tomography (CT) of the body uses special ... the Body? What is CT Scanning of the Body? Computed tomography, more commonly known as a CT ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and uptake uses small amounts of radioactive materials called radiotracers, a special camera and a computer ... last two months that used iodine-based contrast material. Your doctor will instruct you on how to ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... evaluate changes in the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should ... such as an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... imaging procedures. For many diseases, nuclear medicine scans yield the most useful information needed to make a ... any. Nuclear medicine is less expensive and may yield more precise information than exploratory surgery. Risks Because ...

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Actual scanning time for each thyroid uptake is five minutes or less. top of page What will ... diagnostic procedures have been used for more than five decades, and there are no known long-term ...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is ... thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that uses ...

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... several hours before your exam because eating can affect the accuracy of the uptake measurement. Jewelry and ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... iodine, medications and anesthetics. are breastfeeding. In the days prior to your examination, blood tests may be ... are scheduled for an additional procedure that same day that requires an intravenous line. Actual scanning time ...

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... gland in the neck that controls metabolism , a chemical process that regulates the rate at which the body converts food to energy. top of page What are some common uses of the procedure? The thyroid scan is ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... liquid or capsule form, it is typically swallowed up to 24 hours before the scan. The radiotracer given by intravenous injection is usually given up to 30 minutes prior to the test. When ...

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... regulates the rate at which the body converts food to energy. top of page What are some ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. The thyroid scan and thyroid uptake provide ...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... body. top of page How does the procedure work? With ordinary x-ray examinations, an image is ... with other imaging techniques, such as CT or MRI. However, nuclear medicine scans are more sensitive than ...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... a special camera or imaging device that produces pictures and provides molecular information. The thyroid scan and ... and with the help of a computer, create pictures offering details on both the structure and function ...

  3. Pediatric CT Scans

    Science.gov (United States)

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... abnormal was found, and should not be a cause of concern for you. If you had an ... abnormal was found, and should not be a cause of concern for you. Actual scanning time for ...

  5. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is ... computer, create pictures offering details on both the structure and function of organs and tissues in your ...

  7. The Scanning Optical Microscope.

    Science.gov (United States)

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan you are undergoing. top of page What does the equipment look like? The special camera and ... area of your body. top of page How does the procedure work? With ordinary x-ray examinations, ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... found, and should not be a cause of concern for you. If you had an intravenous line ... found, and should not be a cause of concern for you. Actual scanning time for each thyroid ...

  11. Slow Scan Telemedicine

    Science.gov (United States)

    1984-01-01

    Originally developed under contract for NASA by Ball Bros. Research Corporation for acquiring visual information from lunar and planetary spacecraft, system uses standard closed circuit camera connected to a device called a scan converter, which slows the stream of images to match an audio circuit, such as a telephone line. Transmitted to its destination, the image is reconverted by another scan converter and displayed on a monitor. In addition to assist scans, technique allows transmission of x-rays, nuclear scans, ultrasonic imagery, thermograms, electrocardiograms or live views of patient. Also allows conferencing and consultation among medical centers, general practitioners, specialists and disease control centers. Commercialized by Colorado Video, Inc., major employment is in business and industry for teleconferencing, cable TV news, transmission of scientific/engineering data, security, information retrieval, insurance claim adjustment, instructional programs, and remote viewing of advertising layouts, real estate, construction sites or products.

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? The thyroid scan is used to determine ... you are undergoing. top of page What does the equipment look like? The special camera and imaging ...

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... to identify disease in its earliest stages as well as a patient’s immediate response to therapeutic interventions. ... but is often performed on hospitalized patients as well. Thyroid Scan You will be positioned on an ...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Uptake? A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) ... of thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that ...

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... medical tests that help physicians diagnose and evaluate medical conditions. These imaging scans use radioactive materials called radiopharmaceuticals or radiotracers . Depending on the type of nuclear medicine exam, the radiotracer is either injected into the body, ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. Because ... with other imaging techniques, such as CT or MRI. However, nuclear medicine scans are more sensitive than ...

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... are noninvasive and, with the exception of intravenous injections, are usually painless medical tests that help physicians ... before the scan. The radiotracer given by intravenous injection is usually given up to 30 minutes prior ...

  18. Inflatable traversing probe seal

    Science.gov (United States)

    Trimarchi, Paul A.

    1991-01-01

    An inflatable seal acts as a pressure-tight zipper to provide traversing capability for instrumentation rakes and probes. A specially designed probe segment with a teardrop cross-section in the vicinity of the inflatable seal minimizes leakage at the interface. The probe is able to travel through a lengthwise slot in a pressure vessel or wind tunnel section, while still maintaining pressure integrity. The design uses two commercially available inflatable seals, opposing each other, to cover the probe slot in a wind tunnel wall. Proof-of-concept tests were conducted at vessel pressures up to 30 psig, with seals inflated to 50 psig, showing no measurable leakage along the seal's length or around the probe teardrop cross-section. This seal concept can replace the existing technology of sliding face plate/O-ring systems in applications where lengthwise space is limited.

  19. Scanning thermal microscopy based on a quartz tuning fork and a micro-thermocouple in active mode (2ω method)

    Energy Technology Data Exchange (ETDEWEB)

    Bontempi, Alexia; Nguyen, Tran Phong; Salut, Roland; Thiery, Laurent; Teyssieux, Damien; Vairac, Pascal [FEMTO-ST Institute UMR 6174, Université de Franche-Comté, CNRS, ENSMM, UTBM, 15B Avenue des Montboucons, F-25030 Besançon (France)

    2016-06-15

    A novel probe for scanning thermal microscope using a micro-thermocouple probe placed on a Quartz Tuning Fork (QTF) is presented. Instead of using an external deflection with a cantilever beam for contact detection, an original combination of piezoelectric resonator and thermal probe is employed. Due to a non-contact photothermal excitation principle, the high quality factor of the QTF allows the probe-to-surface contact detection. Topographic and thermal scanning images obtained on a specific sample points out the interest of our system as an alternative to cantilevered resistive probe systems which are the most spread.

  20. Scanning ultrafast electron microscopy

    OpenAIRE

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for whic...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... probe counter used for thyroid uptake exams. The patient sits with the camera directed at the neck for five minutes, and then the leg for ... Medicine Head and Neck Cancer Treatment Radioactive Iodine (I-131) Therapy Head and ...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... type your comment or suggestion into the following text box: Comment: E-mail: Area code: Phone no: ... of a typical probe counter used for thyroid uptake exams. The patient sits with the camera directed at the neck for five minutes, and then the leg for ...

  3. Four-point probe measurements using current probes with voltage feedback to measure electric potentials

    Science.gov (United States)

    Lüpke, Felix; Cuma, David; Korte, Stefan; Cherepanov, Vasily; Voigtländer, Bert

    2018-02-01

    We present a four-point probe resistance measurement technique which uses four equivalent current measuring units, resulting in minimal hardware requirements and corresponding sources of noise. Local sample potentials are measured by a software feedback loop which adjusts the corresponding tip voltage such that no current flows to the sample. The resulting tip voltage is then equivalent to the sample potential at the tip position. We implement this measurement method into a multi-tip scanning tunneling microscope setup such that potentials can also be measured in tunneling contact, allowing in principle truly non-invasive four-probe measurements. The resulting measurement capabilities are demonstrated for \

  4. Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits

    Science.gov (United States)

    2017-03-01

    H- field; Probe Array; Counterfeit Detection; IC Trust . Introduction Counterfeiting is a huge flail that still continues to serve in the...Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits   contains the RF-switch matrix and broad-band (BB) low noise amplifiers (LNAs...fabricated, tested and used for IC’s TRUST . Measurement setup has been proposed for system validation and of IC scanning surface. Validation test of the

  5. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy.

    Science.gov (United States)

    Jung, Woonggyu; Tang, Suo; McCormic, Daniel T; Xie, Tiquiang; Ahn, Yeh-Chan; Su, Jianping; Tomov, Ivan V; Krasieva, Tatiana B; Tromberg, Bruce J; Chen, Zhongping

    2008-06-15

    A factor that limits the use of multiphoton microscopy (MPM) in clinical and preclinical studies is the lack of a compact and flexible probe. We report on a miniaturized MPM probe employing a microelectromechanical system (MEMS) scanning mirror and a double-clad photonic crystal fiber (DCPCF). The use of a MEMS mirror and a DCPCF provides many advantages, such as size reduction, rapid and precise scanning, efficient delivery of short pulses, and high collection efficiency of fluorescent signals. The completed probe was 1 cm in outer diameter and 14 cm in length. The developed probe was integrated into an MPM system and used to image fluorescent beads, paper, and biological specimens.

  7. Depth Sectioning with the Aberration-Corrected Scanning Transmission Electron Microscope

    National Research Council Canada - National Science Library

    Albina Y. Borisevich; Andrew R. Lupini; Stephen J. Pennycook

    2006-01-01

    The ability to correct the aberrations of the probe-forming lens in the scanning transmission electron microscope provides not only a significant improvement in transverse resolution but in addition...

  8. Photon scanning tunneling microscope in combination with a force microscope

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Tack, R.G.; van Hulst, N.F.; Bölger, B.; Bölger, B.

    1994-01-01

    The simultaneous operation of a photon scanning tunneling microscope with an atomic force microscope is presented. The use of standard atomic force silicon nitride cantilevers as near-field optical probes offers the possibility to combine the two methods. Vertical forces and torsion are detected

  9. Ultrafast terahertz scanning tunneling microscopy with atomic resolution

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2016-01-01

    We demonstrate that ultrafast terahertz scanning tunneling microscopy (THz-STM) can probe single atoms on a silicon surface with simultaneous sub-nanometer and sub-picosecond spatio-temporal resolution. THz-STM is established as a new technique for exploring high-field non-equilibrium tunneling...

  10. Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control

    DEFF Research Database (Denmark)

    Frimmer, Martin; Chen, Yuntian; Koenderink, A. Femius

    2011-01-01

    We report an experimental technique to map and exploit the local density of optical states of arbitrary planar nanophotonic structures. The method relies on positioning a spontaneous emitter attached to a scanning probe deterministically and reversibly with respect to its photonic environment while...

  11. Adaptive phase compensation for ultracompact laser scanning endomicroscopy.

    Science.gov (United States)

    Thompson, Alex J; Paterson, Carl; Neil, Mark A A; Dunsby, Chris; French, Paul M W

    2011-05-01

    We present an approach to laser scanning endomicroscopy that requires no moving parts and can be implemented with no distal scanners or optics, permitting extremely compact endoscopic probes to be developed. Our approach utilizes a spatial light modulator to correct for phase variations across a fiber imaging bundle and to encode for arbitrary wavefronts at the distal end of the fiber bundle. Thus, it is possible to realize both focusing and beam scanning at the output of the fiber bundle with no distal components. We present proof of principle results to illustrate three-dimensional scanning of the focal spot and exemplar images of a United States Air Force resolution test chart.

  12. Foldable polymers as probes

    Science.gov (United States)

    Li, Alexander D. Q.; Wang, Wei

    2007-07-03

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  13. Laser Scanning Fluorescence Microscope

    Science.gov (United States)

    Hansen, Eric W.; Zelten, J. Peter; Wiseman, Benjamin A.

    1988-06-01

    We report on the development of a laser scanning fluorescence microscope possessing several features which facilitate its application to biological and biophysical analyses in living cells. It is built around a standard inverted microscope stand, enabling the use of standard optics, micromanipulation apparatus, and conventional (including video) microscopy in conjunction with laser scanning. The beam is scanned across the specimen by a pair of galvanometer-mounted mirrors, driven by a programmable controller which can operate in three modes: full raster scan, region of interest, and random-access. A full 512x512 pixel image can be acquired in one second. In region of interest mode, several subareas of the field can be selected for more rapid or detailed analysis. For those cases where the time scale of the observed phenomenon precludes full-field imaging, or where a full-field image is unnecessary, the random access mode enables an arbitrary pattern of isolated points to be selected and rapidly sequenced through. Via a graphical user interface implemented on the system's host computer, a user will be able to take a scout image either with video or a full-field laser scan, select regions or points on the scout image with a mouse, and set up experimental parameters such as detector integration times with a window-style menu. The instrument is designed to be a flexible testbed for investigating new techniques, without compromising its utility as a tool for biological research.

  14. DESIGN OF THE CONTACT POTENTIALS DIFFERENCE PROBES

    Directory of Open Access Journals (Sweden)

    K. U. Pantsialeyeu

    2016-01-01

    Full Text Available The contact potential difference probes distinguished by great variety and produced mostly in the laboratory for specific experimental applications. As a rule, they consist of commercially available instrumentation, and have a number of disadvantages: large dimensions, complexity and high cost, small sensitivity, operating speed, noiseproof, etc. The purpose of this paper is to describe the basic approaches to design of the small dimension, complete contact potential difference probes, providing high sensitivity, operating speed, and noise immunity. In this paper the contact potential difference probe, which is a electrometer with dynamic capacitor plate at about 0.1–5 mm2 . These probes are could be used in scanning systems, such as a Scanning Kelvin Probe, as well as for controlling system of manufacturing processes, e.g. under friction. The design of such contact potential difference probes conducted using modern electronic components, unique circuitry and design solutions described in detail at paper. The electromechanical modulator applied for mechanical vibrations of the reference sample. To provide a high amplitude and phase stability the upgraded generator with Wien bridge was used instead traditional oscillation sensor. The preamplifier made on the base of modern operational amplifiers with femtoampere current input. The power of the preamplifier designed with «floating ground». It allows keeping the relation constant potential to the probe components when changing over a wide range the compensation voltage. The phase detector-integrator based on the electronic antiphase switches with the modulation frequency of the contact potential difference and the integrator. Fullwave phase detection would greatly increase the sensitivity of the probe. In addition, the application of the phase detection allows suppressing noise and crosstalk at frequencies different from the modulation frequency. The preamplifier and the reference sample

  15. Scanning laser video camera/ microscope

    Science.gov (United States)

    Wang, C. P.; Bow, R. T.

    1984-10-01

    A laser scanning system capable of scanning at standard video rate has been developed. The scanning mirrors, circuit design and system performance, as well as its applications to video cameras and ultra-violet microscopes, are discussed.

  16. Innovative SPM Probes for Energy-Storage Science: MWCNT-Nanopipettes to Nanobattery Probes

    Science.gov (United States)

    Larson, Jonathan; Talin, Alec; Pearse, Alexander; Kozen, Alexander; Reutt-Robey, Janice

    As energy-storage materials and designs continue to advance, new tools are needed to direct and explore ion insertion/de-insertion at well-defined battery materials interfaces. Scanned probe tips, assembled from actual energy-storage materials, permit SPM measures of local cathode-anode (tip-sample) interactions, including ion transfer. We present examples of ``cathode'' MWCNT-terminated STM probe tips interacting with Li(s)/Si(111) anode substrates. The MWCNT tip functions as both SPM probe and Li-nanopipette,[1] for controlled transport and manipulation of Li. Local field conditions for lithium ionization and transfer are determined and compared to electrostatic models. Additional lithium metallic and oxide tips have been prepared by thin film deposition on conventional W tips, the latter of which effectively functions as a nanobattery. We demonstrate use of these novel probe materials in the local lithiation of low-index Si anode interfaces, probing local barriers for lithium insertion. Prospects and limitations of these novel SPM probes will be discussed. U.S. Department of Energy Award Number DESC0001160.

  17. Response of an electrostatic probe for a right cylindrical spacer

    DEFF Research Database (Denmark)

    Rerup, T; Crichton, George C; McAllister, Iain Wilson

    1994-01-01

    During the last decade many experimental studies of surface charge phenomena have been undertaken employing right cylindrical spacers. Measurement of the surface charge was performed using small electrostatic field probes to scan across the dielectric surface. Charges are electrostatically induced...... on the sensor plate by the ambient surface charge, and hence as the probe is moved parallel to the surface the potential of the sensor plate changes. The probe sensor-plate potential is thus the parameter of interest as this parameter can be related in a quantitative manner to the surface charge density...

  18. Hard probes 2006 Asilomar

    CERN Multimedia

    2006-01-01

    "The second international conference on hard and electromagnetic probes of high-energy nuclear collisions was held June 9 to 16, 2006 at the Asilomar Conference grounds in Pacific Grove, California" (photo and 1/2 page)

  19. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  20. Tomographic scanning imager.

    Science.gov (United States)

    Hovland, Harald

    2009-07-06

    In tomographic scanning (TOSCA) imaging, light from a scene is focused onto a reticle mask using conical scan optics, and collected on a single element detector. Alternatively, one or several detectors replace the reticle. Tomographic processing techniques are then applied to the one-dimensional signal to reproduce a two-dimensional image. The TOSCA technique is presented in detail, including its mathematical foundations and some of its limitations. It is shown how TOSCA imaging can be used in a multispectral configuration, and compares well with more conventional alternatives both in simplicity and performance. Examples of image reconstruction using TOSCA techniques are shown.

  1. Scanning the phenomenological MSSM

    CERN Document Server

    Wuerzinger, Jonas

    2017-01-01

    A framework to perform scans in the 19-dimensional phenomenological MSSM is developed and used to re-evaluate the ATLAS experiments' sensitivity to R-parity-conserving supersymmetry with LHC Run 2 data ($\\sqrt{s}=13$ TeV), using results from 14 separate ATLAS searches. We perform a $\\tilde{t}_1$ dedicated scan, only considering models with $m_{\\tilde{t}_1}<1$ TeV, while allowing both a neutralino ($\\tilde{\\chi}_1^0$) and a sneutrino ($\\tilde{\

  2. Angular Approach Scanning Ion Conductance Microscopy.

    Science.gov (United States)

    Shevchuk, Andrew; Tokar, Sergiy; Gopal, Sahana; Sanchez-Alonso, Jose L; Tarasov, Andrei I; Vélez-Ortega, A Catalina; Chiappini, Ciro; Rorsman, Patrik; Stevens, Molly M; Gorelik, Julia; Frolenkov, Gregory I; Klenerman, David; Korchev, Yuri E

    2016-05-24

    Scanning ion conductance microscopy (SICM) is a super-resolution live imaging technique that uses a glass nanopipette as an imaging probe to produce three-dimensional (3D) images of cell surface. SICM can be used to analyze cell morphology at nanoscale, follow membrane dynamics, precisely position an imaging nanopipette close to a structure of interest, and use it to obtain ion channel recordings or locally apply stimuli or drugs. Practical implementations of these SICM advantages, however, are often complicated due to the limitations of currently available SICM systems that inherited their design from other scanning probe microscopes in which the scan assembly is placed right above the specimen. Such arrangement makes the setting of optimal illumination necessary for phase contrast or the use of high magnification upright optics difficult. Here, we describe the designs that allow mounting SICM scan head on a standard patch-clamp micromanipulator and imaging the sample at an adjustable approach angle. This angle could be as shallow as the approach angle of a patch-clamp pipette between a water immersion objective and the specimen. Using this angular approach SICM, we obtained topographical images of cells grown on nontransparent nanoneedle arrays, of islets of Langerhans, and of hippocampal neurons under upright optical microscope. We also imaged previously inaccessible areas of cells such as the side surfaces of the hair cell stereocilia and the intercalated disks of isolated cardiac myocytes, and performed targeted patch-clamp recordings from the latter. Thus, our new, to our knowledge, angular approach SICM allows imaging of living cells on nontransparent substrates and a seamless integration with most patch-clamp setups on either inverted or upright microscopes, which would facilitate research in cell biophysics and physiology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Scanning Ion Conductance Microscopy of Live Keratinocytes

    Science.gov (United States)

    Hegde, V.; Mason, A.; Saliev, T.; Smith, F. J. D.; McLean, W. H. I.; Campbell, P. A.

    2012-07-01

    Scanning ion conductance microscopy (SICM) is perhaps the least well known technique from the scanning probe microscopy (SPM) family of instruments. As with its more familiar counterpart, atomic force microscopy (AFM), the technique provides high-resolution topographic imaging, with the caveat that target structures must be immersed in a conducting solution so that a controllable ion current may be utilised as the basis for feedback. In operation, this non-contact characteristic of SICM makes it ideal for the study of delicate structures, such as live cells. Moreover, the intrinsic architecture of the instrument, incorporating as it does, a scanned micropipette, lends itself to combination approaches with complementary techniques such as patch-clamp electrophysiology: SICM therefore boasts the capability for both structural and functional imaging. For the present observations, an ICnano S system (Ionscope Ltd., Melbourn, UK) operating in 'hopping mode' was used, with the objective of assessing the instrument's utility for imaging live keratinocytes under physiological buffers. In scans employing cultured HaCaT cells (spontaneously immortalised, human keratinocytes), we compared the qualitative differences of live cells imaged with SICM and AFM, and also with their respective counterparts after chemical fixation in 4% paraformaldehyde. Characteristic surface microvilli were particularly prominent in live cell imaging by SICM. Moreover, time lapse SICM imaging on live cells revealed that changes in the pattern of microvilli could be tracked over time. By comparison, AFM imaging on live cells, even at very low contact forces (monitoring the most delicate living structures with attendant high spatial resolutions.

  4. Lysosomal targeting with stable and sensitive fluorescent probes (Superior LysoProbes): applications for lysosome labeling and tracking during apoptosis.

    Science.gov (United States)

    Chen, Xin; Bi, Yue; Wang, Tianyang; Li, Pengfei; Yan, Xin; Hou, Shanshan; Bammert, Catherine E; Ju, Jingfang; Gibson, K Michael; Pavan, William J; Bi, Lanrong

    2015-03-11

    Intracellular pH plays an important role in the response to cancer invasion. We have designed and synthesized a series of new fluorescent probes (Superior LysoProbes) with the capacity to label acidic organelles and monitor lysosomal pH. Unlike commercially available fluorescent dyes, Superior LysoProbes are lysosome-specific and are highly stable. The use of Superior LysoProbes facilitates the direct visualization of the lysosomal response to lobaplatin elicited in human chloangiocarcinoma (CCA) RBE cells, using confocal laser scanning microscopy. Additionally, we have characterized the role of lysosomes in autophagy, the correlation between lysosome function and microtubule strength, and the alteration of lysosomal morphology during apoptosis. Our findings indicate that Superior LysoProbes offer numerous advantages over previous reagents to examine the intracellular activities of lysosomes.

  5. Scanning transmission electron microscope

    NARCIS (Netherlands)

    Kruit, P.

    2006-01-01

    The invention relates to a scanning transmission electron microscope comprising an electron source, an electron accelerator and deflection means for directing electrons emitted by the electron source at an object to be examined, and in addition a detector for detecting electrons coming from the

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... you: have had any tests, such as an x-ray or CT scan, surgeries or treatments using iodinated ... page How does the procedure work? With ordinary x-ray examinations, an image is made by passing x- ...

  7. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... may be performed to measure the level of thyroid hormones in your blood. You may be told not to eat for several hours before your exam because eating can affect the ... as well. Thyroid Scan You will be positioned on an examination ...

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... or less. top of page What will I experience during and after the procedure? Most thyroid scan ... areas. Outside links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo. ...

  9. Scanning bubble chamber pictures

    CERN Multimedia

    1974-01-01

    These were taken at the 2 m hydrogen bubble chamber. The photo shows an early Shiva system where the pre-measurements needed to qualify the event were done manually (cf photo 7408136X). The scanning tables were located in bld. 12. Gilberte Saulmier sits on foreground, Inge Arents at centre.

  10. Cervical MRI scan

    Science.gov (United States)

    ... cancer in the spine Arthritis in the spine MRI works better than CT scan in diagnosing these problems ... test. The strong magnetic fields created during an MRI can cause heart pacemakers and other implants to not work as well. It can also cause a piece ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page Additional Information and Resources RTAnswers.org Radiation Therapy for Head and Neck Cancer top of page ... and Neck Cancer Treatment Radioactive Iodine (I-131) Therapy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear ... to Thyroid Scan and Uptake ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is also known as a thyroid uptake. ... a patient’s immediate response to therapeutic interventions. Nuclear ... medical tests that help physicians diagnose and evaluate medical conditions. ...

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake ...

  14. SPM: Scanning positron microscope

    Directory of Open Access Journals (Sweden)

    Marcel Dickmann

    2015-08-01

    Full Text Available The Munich scanning positron microscope, operated by the Universität der Bundeswehr München and the Technische Universität München, located at NEPOMUC, permits positron lifetime measurements with a lateral resolution in the µm range and within an energy range of 1 – 20 keV.

  15. Laser Beam Scanning Device.

    Science.gov (United States)

    metal mirror. Multiple thermocouple wires attached to the rear of the mirror provide temperature (and hence beam power) information at various points...on the mirror. Scanning is achieved by means of a selector switch which sequentially samples the thermocouple outputs. The thermocouple output voltages are measured and recorded as a function of laser beam power.

  16. Huygens probe on target

    Science.gov (United States)

    1995-07-01

    In October 1997, a Titan/Centaur rocket lifting-off from Cape Canaveral will boost the spacecraft into a 6.7 year trajectory to reach Saturn. The trajectory will use two swing-bys of Venus in April 1998 and June 1999, followed by an Earth swing-by in August 1999 and a Jupiter swing-by in December 2000 to boost speed and reach Saturn in July 2004. A few months after going into orbit around Saturn, the Cassini spacecraft will release the Huygens probe for its descent through the atmosphere of Titan, the largest satellite of Saturn. The Huygens probe will measure the abundance of elements and compounds in Titan's atmosphere, the distribution of trace gases and aerosols, winds, temperature, pressure and surface state and its composition. A multi-spectral camera on the probe will provide images of the landscape of Titan. Titan is a unique planetary body in the solar system. It has an atmosphere which is primarily nitrogen. but is also rich in hydrocarbons. Due to the vast distance of the Saturnian system from the Sun, this atmosphere is at a very low temperature, thus greatly slowing down all the chemical processes. A study of this atmosphere will throw light on the development of our own atmosphere and contribute to our understanding of the origins of life on Earth. The Huygens probe is being developed by ESA with Aerospatiale (F) as the industrial prime contractor. Since the start of the programme in April 1990, very good progress has been made in design and hardware development. The entry into the Titan atmosphere will result in a very high surface temperature on the probe, generated as it decelerates due to the friction of the upper atmospheric layers. After the probe has slowed down sufficiently, a system of parachutes ensures a slow descent to the surface of Titan in approximately two and a half hours. The scientific measurements can only begin after the heat shield, which is needed to protect the probe during the high temperature entry phase, has been ejected

  17. Differential-Concentration Scanning Ion Conductance Microscopy.

    Science.gov (United States)

    Perry, David; Page, Ashley; Chen, Baoping; Frenguelli, Bruno G; Unwin, Patrick R

    2017-11-21

    Scanning ion conductance microscopy (SICM) is a nanopipette-based scanning probe microscopy technique that utilizes the ionic current flowing between an electrode inserted inside a nanopipette probe containing electrolyte solution and a second electrode placed in a bulk electrolyte bath, to provide information on a substrate of interest. For most applications to date, the composition and concentration of the electrolyte inside and outside the nanopipette is identical, but it is shown herein that it can be very beneficial to lift this restriction. In particular, an ionic concentration gradient at the end of the nanopipette, generates an ionic current with a greatly reduced electric field strength, with particular benefits for live cell imaging. This differential concentration mode of SICM (ΔC-SICM) also enhances surface charge measurements and provides a new way to carry out reaction mapping measurements at surfaces using the tip for simultaneous delivery and sensing of the reaction rate. Comprehensive finite element method (FEM) modeling has been undertaken to enhance understanding of SICM as an electrochemical cell and to enable the interpretation and optimization of experiments. It is shown that electroosmotic flow (EOF) has much more influence on the nanopipette response in the ΔC-SICM configuration compared to standard SICM modes. The general model presented advances previous treatments, and it provides a framework for quantitative SICM studies.

  18. Model for resonant plasma probe.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue

    2007-04-01

    This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

  19. The infinite line pressure probe

    Science.gov (United States)

    Englund, D. R.; Richards, W. B.

    1985-01-01

    The infinite line pressure probe provides a means for measuring high frequency fluctuating pressures in difficult environments. A properly designed infinite line probe does not resonate; thus its frequency response is not limited by acoustic resonance in the probe tubing, as in conventional probes. The characteristics of infinite line pressure probes are reviewed and some applications in turbine engine research are described. A probe with a flat-oval cross section, permitting a constant-impedance pressure transducer installation, is described. Techniques for predicting the frequency response of probes with both circular and flat-oval cross sections are also cited.

  20. Scanning nonlinear dielectric potentiometry

    Energy Technology Data Exchange (ETDEWEB)

    Yamasue, Kohei, E-mail: yamasue@riec.tohoku.ac.jp; Cho, Yasuo [Research Institute of Electrical Communication, Tohoku University, 2-1-1, Katahira, Aoba, Sendai 980-8577 (Japan)

    2015-09-15

    Measuring spontaneous polarization and permanent dipoles on surfaces and interfaces on the nanoscale is difficult because the induced electrostatic fields and potentials are often influenced by other phenomena such as the existence of monopole fixed charges, screening charges, and contact potential differences. A method based on tip-sample capacitance detection and bias feedback is proposed which is only sensitive to polarization- or dipole-induced potentials, unlike Kelvin probe force microscopy. The feasibility of this method was demonstrated by simultaneously measuring topography and polarization-induced potentials on a reconstructed Si(111)-(7 × 7) surface with atomic resolution.

  1. Scanning nonlinear dielectric potentiometry.

    Science.gov (United States)

    Yamasue, Kohei; Cho, Yasuo

    2015-09-01

    Measuring spontaneous polarization and permanent dipoles on surfaces and interfaces on the nanoscale is difficult because the induced electrostatic fields and potentials are often influenced by other phenomena such as the existence of monopole fixed charges, screening charges, and contact potential differences. A method based on tip-sample capacitance detection and bias feedback is proposed which is only sensitive to polarization- or dipole-induced potentials, unlike Kelvin probe force microscopy. The feasibility of this method was demonstrated by simultaneously measuring topography and polarization-induced potentials on a reconstructed Si(111)-(7 × 7) surface with atomic resolution.

  2. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    Science.gov (United States)

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection.

  3. Mammographic scanning equalization radiography.

    Science.gov (United States)

    Sabol, J M; Soutar, I C; Plewes, D B

    1993-01-01

    It is well recognized that variations in breast thickness and parenchymal composition can produce a range of exposure which exceeds the latitude of high contrast mammographic film/screen combinations. Optimal imaging of the dense breast is desired since 30%-60% of women present with dense breasts, and they are believed to be at the highest relative risk of developing breast cancer. The application of scanning equalization radiography to mammography has been investigated through the construction and characterization of a prototype mammographic scanning equalization radiography (MSER) system, designed to image mammographic phantoms. The MSER system exposes a Min-R/MRH cassette by raster scanning a 2.0 x 1.6 cm beam of pulsed x-rays across the cassette. A scanning detector behind the cassette measures the local x-ray transmission of the breast. Feedback of the transmission information is used to modulate the duration of each x-ray pulse, to equalize the film exposure. The effective dynamic range of the MSER system is 25 times greater than that of conventional mammography. Artifact-free images of mammographic phantoms show that MSER effectively overcomes the latitude limitations of film/screen mammography, enabling high contrast imaging over a wide range of object x-ray transmission. Anthropomorphic phantom images show that MSER offers up to a sixfold increase in film contrast in the normally underexposed regions of conventional mammograms. Characterization of the entrance exposure shows that there is not a significant difference in exposure between MSER and conventional mammographic techniques, suggesting that both would pose comparable risk to the patient. Calculations show that the construction of a clinical multiple beam MSER system is feasible with minor changes to existing technology.

  4. Scanning transmission electron microscope

    OpenAIRE

    Kruit, P.

    2006-01-01

    The invention relates to a scanning transmission electron microscope comprising an electron source, an electron accelerator and deflection means for directing electrons emitted by the electron source at an object to be examined, and in addition a detector for detecting electrons coming from the object and, connected to the detector, a device for processing the detected electrons so as to form an object image, wherein a beam splitter is provided for dividing the electron beam from the electron...

  5. Scanning micro-sclerometer

    Science.gov (United States)

    Oliver, Warren C.; Blau, Peter J.

    1994-01-01

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch.

  6. Imaging by in situ Scanning Tunnelling Microscopy and its Nanotechnological Perspectives

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2002-01-01

    in the interpretation of the imaging procedure. Other methods of in situ Scanning Probe Microscopy (in situ SPM), such as in situ Scanning Force Microscopy (in situ AFM) are considered for the sake of comparison and they are applied to imaging of non-conducting systems. Major results include demonstration of atomic...

  7. Scanning ultrafast electron microscopy.

    Science.gov (United States)

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  8. Langmuir probe study in the nonresonant current drive regime of ...

    Indian Academy of Sciences (India)

    transferred to a computer by means of RS232 interface. 3. Experimental results. 3.1 Floating potential. Plasma is radially scanned using RF-compensated Langmuir probe to measure the floating potential during the complete duration of discharge. A typical radial pro- file of the floating potential of the plasma sustained by ...

  9. Novel fringe scanning/Fourier transform method of synthetic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T.M.; Albano, R.K.

    1993-08-01

    We have developed a one-dimensional theory and a computer model for synthetically imaging scenes using a novel fringe scanning/Fourier transform technique. Our method probes a scene using two interfering beams of slightly different frequency. These beams form a moving fringe pattern which scans the scene and resonates with any spatial frequency components having the same spatial frequency as the scanning fringe pattern. A simple, non-imaging detector above the scene observes any scattered radiation from the scene falling onto it. If a resonance occurs between the scanning fringe pattern and the scene, then the scattered radiation will be modulated at the difference frequency between the two probing beams. By changing the spatial period of the fringe pattern and then measuring the amplitude and phase of the modulated radiation that is scattered from the scene, the Fourier amplitudes and phases of the different spatial frequency components making up the scene can be measured. A synthetic image of the scene being probed can be generated from this Fourier amplitude and phase data by taking the inverse Fourier transform of this information. This technique could be used to image objects using light, ultrasonic, or other electromagnetic or acoustic waves.

  10. Transfer functions in collection scanning near-field optical microscopy

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Vohnsen, Brian; Bozhevolnaya, Elena A.

    1999-01-01

    are considered with respect to the relation between near-field optical images and the corresponding intensity distributions. Our conclusions are supported with numerical simulations and experimental results obtained by using a photon scanning tunneling microscope with an uncoated fiber tip.......It is generally accepted that, if in collection near-field optical microscopy the probe-sample coupling can be disregarded, a fiber probe can be considered as a detector of the near-field intensity whose size can be accounted for via an intensity transfer function. We show that, in general...

  11. Hard Probes at ATLAS

    CERN Document Server

    Citron, Z; The ATLAS collaboration

    2014-01-01

    The ATLAS collaboration has measured several hard probe observables in Pb+Pb and p+Pb collisions at the LHC. These measurements include jets which show modification in the hot dense medium of heavy ion collisions as well as color neutral electro-weak bosons. Together, they elucidate the nature of heavy ion collisions.

  12. The solar probe antenna

    Science.gov (United States)

    Imbriale, W. A.; Randolph, J. E.; Embuido, E.

    2004-01-01

    This paper details the design of the antenna intended for use on the Solar Probe Mission. The antenna consists of a carbon-carbon reflector jointly used as the antenna and thermal shield and helical feed using tungsten wire and ceramic matrix composite (CMC) materials for the back plate, coaxial cable waveguide. A complete prototype feed assembly was fabricated and tested.

  13. Probing the Solar Interior

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 3. Probing the Solar Interior Hearing the Heartbeats of the Sun. Ashok Ambastha. General Article Volume 3 Issue 3 March 1998 pp 18-31. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Mobile Probing Kit

    DEFF Research Database (Denmark)

    Larsen, Jakob Eg; Sørensen, Lene Tolstrup; Sørensen, J.K.

    2007-01-01

    Mobile Probing Kit is a low tech and low cost methodology for obtaining inspiration and insights into user needs, requirements and ideas in the early phases of a system's development process. The methodology is developed to identify user needs, requirements and ideas among knowledge workers...

  15. One-Probe Search

    DEFF Research Database (Denmark)

    Östlin, Anna; Pagh, Rasmus

    2002-01-01

    We consider dictionaries that perform lookups by probing a single word of memory, knowing only the size of the data structure. We describe a randomized dictionary where a lookup returns the correct answer with probability 1 - e, and otherwise returns don't know. The lookup procedure uses an expan...

  16. Probing the Solar System

    Science.gov (United States)

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  17. Horizon Scanning for Pharmaceuticals

    DEFF Research Database (Denmark)

    Lepage-Nefkens, Isabelle; Douw, Karla; Mantjes, GertJan

    In 2016, the Belgian, Dutch, Luxembourg and Austrian governments declared their intention to collaborate on pharmaceutical policy (BeNeLuxA Collaboration). KCE was asked to lead a task force responsible for developing a Horizon Scanning methodology for pharmaceuticals and a possible model...... and filtration of new and emerging pharmaceutical products. It will maintain and update the HS database, organise company pipeline meetings, and disseminate the HSS’s outputs.  The HS unit works closely together with the designated national HS experts in each collaborating country. The national HS experts...

  18. Surface micromachined scanning mirrors

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    1992-01-01

    Both aluminum cantilever and torsional scanning mirrors have been fabricated and their static and dynamic properties are studied experimentally and theoretically. The experiments showed resonance frequencies in the range of 163 k-Hz - 632 kHz for cantilever beams with Q values between 5 and 11....... Torsional mirrors showed resonance frequencies in the range of 410 kHz - 667 kHz with Q values of 10 - 17. All measurements performed at atmospheric pressure. Both types of mechanical structures were deflected electrostatically at large angles (± 5°) more than 1011 times without breaking and without any...

  19. Mechanosensitive membrane probes.

    Science.gov (United States)

    Dal Molin, Marta; Verolet, Quentin; Soleimanpour, Saeideh; Matile, Stefan

    2015-04-13

    This article assembles pertinent insights behind the concept of planarizable push-pull probes. As a response to the planarization of their polarized ground state, a red shift of their excitation maximum is expected to report on either the disorder, the tension, or the potential of biomembranes. The combination of chromophore planarization and polarization contributes to various, usually more complex processes in nature. Examples include the color change of crabs or lobsters during cooking or the chemistry of vision, particularly color vision. The summary of lessons from nature is followed by an overview of mechanosensitive organic materials. Although often twisted and sometimes also polarized, their change of color under pressure usually originates from changes in their crystal packing. Intriguing exceptions include the planarization of several elegantly twisted phenylethynyl oligomers and polymers. Also mechanosensitive probes in plastics usually respond to stretching by disassembly. True ground-state planarization in response to molecular recognition is best exemplified with the binding of thoughtfully twisted cationic polythiophenes to single- and double-stranded oligonucleotides. Molecular rotors, en vogue as viscosity sensors in cells, operate by deplanarization of the first excited state. Pertinent recent examples are described, focusing on λ-ratiometry and intracellular targeting. Complementary to planarization of the ground state with twisted push-pull probes, molecular rotors report on environmental changes with quenching or shifts in emission rather than absorption. The labeling of mechanosensitive channels is discussed as a bioengineering approach to bypass the challenge to create molecular mechanosensitivity and use biological systems instead to sense membrane tension. With planarizable push-pull probes, this challenge is met not with twistome screening, but with "fluorescent flippers," a new concept to insert large and bright monomers into oligomeric

  20. Confocal scanning Mueller polarimeter

    Science.gov (United States)

    Lompado, Arthur

    2009-08-01

    We describe the design, construction, calibration and testing of a confocal scanning Mueller polarimeter. A polarization state generator and polarization state analyzer have been inserted into the optical path of a conventional confocal scanning imager to collect the reflectance Muller matrix of samples measuring up to 6.26 mm on a side. Four sources are available for sample interrogation using diode lasers centered at 532 nm, 635 nm, 670 nm, and 785 nm. The device captures all required imagery to calculate the Mueller matrix of each image pixel in approximately 90 s. These matrices are then reduced into polarization imagery such as the diattenuation, retardance and depolarization index. Oftentimes this polarization imagery is quite different and potentially more informative than a conventional intensity image. There are a number of fields that can benefit from alternative/enhanced imagery, most notably in the biomedical, discrimination, and target recognition communities. The sensor has been designed for biomedical applications aimed at improving the technique of noninvasive detection of melanoma lesions.

  1. Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM).

    Science.gov (United States)

    Wu, Ryan J; Mittal, Anudha; Odlyzko, Michael L; Mkhoyan, K Andre

    2017-08-01

    Sub-angstrom scanning transmission electron microscopy (STEM) allows quantitative column-by-column analysis of crystalline specimens via annular dark-field images. The intensity of electrons scattered from a particular location in an atomic column depends on the intensity of the electron probe at that location. Electron beam channeling causes oscillations in the STEM probe intensity during specimen propagation, which leads to differences in the beam intensity incident at different depths. Understanding the parameters that control this complex behavior is critical for interpreting experimental STEM results. In this work, theoretical analysis of the STEM probe intensity reveals that intensity oscillations during specimen propagation are regulated by changes in the beam's angular distribution. Three distinct regimes of channeling behavior are observed: the high-atomic-number (Z) regime, in which atomic scattering leads to significant angular redistribution of the beam; the low-Z regime, in which the probe's initial angular distribution controls intensity oscillations; and the intermediate-Z regime, in which the behavior is mixed. These contrasting regimes are shown to exist for a wide range of probe parameters. These results provide a new understanding of the occurrence and consequences of channeling phenomena and conditions under which their influence is strengthened or weakened by characteristics of the electron probe and sample.

  2. Automatic Ultrasound Scanning

    DEFF Research Database (Denmark)

    Moshavegh, Ramin

    Medical ultrasound has been a widely used imaging modality in healthcare platforms for examination, diagnostic purposes, and for real-time guidance during surgery. However, despite the recent advances, medical ultrasound remains the most operator-dependent imaging modality, as it heavily relies...... on the user adjustments on the scanner interface to optimize the scan settings. This explains the huge interest in the subject of this PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been to develop automated techniques to minimize the unnecessary settings...... on the scanners, and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new quantitative measures. Thus, four major issues concerning automation of the medical ultrasound are addressed in this PhD project. They touch upon gain adjustments in ultrasound, automatic synthetic aperture image...

  3. Physical probing of cells

    Science.gov (United States)

    Rehfeldt, Florian; Schmidt, Christoph F.

    2017-11-01

    In the last two decades, it has become evident that the mechanical properties of the microenvironment of biological cells are as important as traditional biochemical cues for the control of cellular behavior and fate. The field of cell and matrix mechanics is quickly growing and so is the development of the experimental approaches used to study active and passive mechanical properties of cells and their surroundings. Within this topical review we will provide a brief overview, on the one hand, over how cellular mechanics can be probed physically, how different geometries allow access to different cellular properties, and, on the other hand, how forces are generated in cells and transmitted to the extracellular environment. We will describe the following experimental techniques: atomic force microscopy, traction force microscopy, magnetic tweezers, optical stretcher and optical tweezers pointing out both their advantages and limitations. Finally, we give an outlook on the future of the physical probing of cells.

  4. Space Probe Launch

    Science.gov (United States)

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.

  5. Einstein Inflationary Probe (EIP)

    Science.gov (United States)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  6. Hard Probes at RHIC

    Directory of Open Access Journals (Sweden)

    Bielčíková Jana

    2014-04-01

    Full Text Available Measurements of jets and heavy flavour, the so called hard probes, play a crucial role in understanding properties of hot and dense nuclear matter created in high energy heavy-ion collisions. The measurements at the Relativistic Heavy Ion Collider (RHIC showed that in central Au+Au collisons at RHIC energy ( √sNN = 200 GeV the nuclear matter created has properties close to those of perfect liquid, manifests partonic degrees of freedom and is opaque to hard probes. In order to draw quantitative conclusions on properties of this hot and dense nuclear matter reference measurements in proton-proton collisions and d+Au collisions are essential to estimate cold nuclear matter effects. In this proceedings a review of recent results on hard probes measurements in p+p, d+Au and A+A collisions as well as of beam energy dependence of jet quenching from STAR and PHENIX experiments at RHIC is presented.

  7. Probing dimensionality using a simplified 4-probe method.

    Science.gov (United States)

    Kjeldby, Snorre B; Evenstad, Otto M; Cooil, Simon P; Wells, Justin W

    2017-10-04

    4-probe electrical measurements have been in existence for many decades. One of the most useful aspects of the 4-probe method is that it is not only possible to find the resistivity of a sample (independently of the contact resistances), but that it is also possible to probe the dimensionality of the sample. In theory, this is straightforward to achieve by measuring the 4-probe resistance as a function of probe separation. In practice, it is challenging to move all four probes with sufficient precision over the necessary range. Here, we present an alternative approach. We demonstrate that the dimensionality of the conductive path within a sample can be directly probed using a modified 4-probe method in which an unconventional geometry is exploited; three of the probes are rigidly fixed, and the position of only one probe is changed. This allows 2D and 3D (and other) contributions the to resistivity to be readily disentangled. The required experimental instrumentation can be vastly simplified relative to traditional variable spacing 4-probe instruments.

  8. Video rate near-field scanning optical microscopy

    Science.gov (United States)

    Bukofsky, S. J.; Grober, R. D.

    1997-11-01

    The enhanced transmission efficiency of chemically etched near-field optical fiber probes makes it possible to greatly increase the scanning speed of near-field optical microscopes. This increase in system bandwidth allows sub-diffraction limit imaging of samples at video rates. We demonstrate image acquisition at 10 frames/s, rate-limited by mechanical resonances in our scanner. It is demonstrated that the optical signal to noise ratio is large enough for megahertz single pixel acquisition rates.

  9. Nanometer accuracy with continuous scans at the ALBA-NOM

    Science.gov (United States)

    Nicolas, Josep; Pedreira, Pablo; Å ics, Igors; Ramírez, Claudio; Campos, Juan

    2016-09-01

    We present the continuous scan operation of the ALBA-NOM as a working mode that allows obtaining low noise in short time, as well as high accuracy measurements. In the traditional step-scan operation, the position of the probe beam is kept fixed while many data points of autocollimator are averaged for noise reduction. This operation mode is very safe, as one has a perfect correspondence between mirror position and measured angle, but it is time inefficient, as it disregards all the data values acquired during motion, and basically averages data values taken under identical conditions. On the other hand, continuous scan is less safe in terms of correspondence between mirror position and slope, especially for NOM systems for which the autocollimator does not accept an electronic trigger. Nevertheless, it is possible to perform independent acquisitions of the autocollimator and of the linear stage data during a scan, and synchronize signals a posteriori. This solves the main problem of continuous scan with a NOM. Continuous scan operation for performing measurements is very efficient for noise reduction per unit time, as it allows integrating every single data value taken by the autocollimator. In addition, it opens the possibility of introducing pitch variations of the mirror between scans. This allows obtaining many independent datasets that can be combined using error suppression techniques to reduce not just noise but systematic errors too. In this paper we report the methods and the main results.

  10. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes.

    Directory of Open Access Journals (Sweden)

    Qiuying Huang

    2011-04-01

    Full Text Available Probe-based fluorescence melting curve analysis (FMCA is a powerful tool for mutation detection based on melting temperature generated by thermal denaturation of the probe-target hybrid. Nevertheless, the color multiplexing, probe design, and cross-platform compatibility remain to be limited by using existing probe chemistries. We hereby explored two dual-labeled, self-quenched probes, TaqMan and shared-stem molecular beacons, in their ability to conduct FMCA. Both probes could be directly used for FMCA and readily integrated with closed-tube amplicon hybridization under asymmetric PCR conditions. Improved flexibility of FMCA by using these probes was illustrated in three representative applications of FMCA: mutation scanning, mutation identification and mutation genotyping, all of which achieved improved color-multiplexing with easy probe design and versatile probe combination and all were validated with a large number of real clinical samples. The universal cross-platform compatibility of these probes-based FMCA was also demonstrated by a 4-color mutation genotyping assay performed on five different real-time PCR instruments. The dual-labeled, self-quenched probes offered unprecedented combined advantage of enhanced multiplexing, improved flexibility in probe design, and expanded cross-platform compatibility, which would substantially improve FMCA in mutation detection of various applications.

  11. The theory and practice of high resolution scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Joy, D.C. (Tennessee Univ., Knoxville, TN (USA) Oak Ridge National Lab., TN (USA))

    1990-01-01

    Recent advances in instrumentation have produced the first commercial examples of what can justifiably be called High Resolution Scanning Electron Microscopes. The key components of such instruments are a cold field emission gun, a small-gap immersion probe-forming lens, and a clean dry-pumped vacuum. The performance of these microscopes is characterized by several major features including a spatial resolution, in secondary electron mode on solid specimens, which can exceed 1nm on a routine basis; an incident probe current density of the order of 10{sup 6} amps/cm{sup 2}; and the ability to maintain these levels of performance over an accelerating voltage range of from 1 to 30keV. This combination of high resolution, high probe current, low contamination and flexible electron-optical conditions provides many new opportunitites for the application of the SEM to materials science, physics, and the life sciences. 27 refs., 14 figs.

  12. Hollow-tip scanning photoelectron microscopy

    Science.gov (United States)

    Cherkun, A. P.; Mironov, B. N.; Aseyev, S. A.; Chekalin, S. V.

    2014-07-01

    A new type of microscopy based on scanning in vacuum by a beam of charged particles transmitted through a hollow probe has been implemented. This approach provides controllable motion of spatially localized ion, electron, molecular (atomic), and soft X-ray beams and investigation of the surface in the shear force mode. In the photoelectron mode, in which electrons are transmitted through a 2-μm quartz capillary, a surface profile of gadolinium irradiated by 400-nm femtosecond laser pulses has been visualized with a subwave spatial resolution. The new method of microscopy opens an opportunity of investigations in the field of nanometer local photodesorption of molecular ions (one of the last ideas of V.S. Letokhov).

  13. Spin-polarized scanning tunnelling microscopy

    CERN Document Server

    Bode, M

    2003-01-01

    The recent experimental progress in spin-polarized scanning tunnelling microscopy (SP-STM) - a magnetically sensitive imaging technique with ultra-high resolution - is reviewed. The basics of spin-polarized electron tunnelling are introduced as they have been investigated in planar tunnel junctions for different electrode materials, i.e. superconductors, optically excited GaAs, and ferromagnets. It is shown that ferromagnets and antiferromagnets are suitable tip materials for the realization of SP-STM. Possible tip designs and modes of operations are discussed for both classes of materials. The results of recent spatially resolved measurements as performed with different magnetic probe tips and using different modes of operation are reviewed and discussed in terms of applicability to surfaces, thin films, and nanoparticles. The limits of spatial resolution, and the impact of an external magnetic field on the imaging process.

  14. Potential biomedical applications of the scanned nanopipette.

    Science.gov (United States)

    Klenerman, David; Korchev, Yuri

    2006-06-01

    One grand challenge in current biology is to understand how individual cellular molecules interact together to form a functioning living cell. This requires new methods to image a live cell on the nanoscale. The scanned nanopipette can be used to obtain high resolution noncontact images of the surface of live cells under physiological conditions and has been used to develop a family of related methods that allow mapping of cell function on the nanoscale, and hence allow the relationship between cell structure and function to be probed. This is a powerful method to bridge the current gap between high resolution structures of individual molecular complexes and low resolution imaging of live cell structure and function.

  15. Comparative evaluation of probing depth and clinical attachment level using a manual probe and Florida probe.

    Science.gov (United States)

    Kour, Amandeep; Kumar, Ashish; Puri, Komal; Khatri, Manish; Bansal, Mansi; Gupta, Geeti

    2016-01-01

    To compare and evaluate the intra- and inter-examiner efficacy and reproducibility of the first-generation manual (Williams) probe and the third-generation Florida probe in terms of measuring pocket probing depth (PD) and clinical attachment level (CAL). Forty subjects/4000 sites were included in this comparative, cross-sectional study. Group- and site-wise categorizations were done. Based on gingival index, PD, and CAL, patients were divided into four groups, i.e., periodontally healthy, gingivitis, mild to moderate periodontitis, and severe periodontitis. Further, based on these parameters, a total of 4000 sites, with 1000 sites in each category randomly selected from these 40 patients, were taken. Full mouth PD and CAL measurements were recorded with two probes, by Examiner 1 and on Ramfjord teeth by Examiner 2. Full mouth and Ramfjord teeth group- and site-wise PD obtained with the manual probe by both the examiners were statistically significantly deeper than that obtained with the Florida probe. The full mouth and Ramfjord teeth mean CAL measurement by Florida probe was higher as compared to manual probe in mild to moderate periodontitis group and sites, whereas in severe periodontitis group and sites, manual probe recorded higher CAL as compared to Florida probe. Mean PD and CAL measurements were deeper with the manual probe as compared to the Florida probe in all the groups and sites, except for the mild-moderate periodontitis group and sites where the CAL measurements with the manual probe were less than the Florida probe. Manual probe was more reproducible and showed less interexaminer variability as compared to the Florida probe.

  16. Wearable probes for service design

    DEFF Research Database (Denmark)

    Mullane, Aaron; Laaksolahti, Jarmo Matti; Svanæs, Dag

    2014-01-01

    Probes are used as a design method in user-centred design to allow end-users to inform design by collecting data from their lives. Probes are potentially useful in service innovation, but current probing methods require users to interrupt their activity and are consequently not ideal for use...... by service employees in reflecting on the delivery of a service. In this paper, we present the ‘wearable probe’, a probe concept that captures sensor data without distracting service employees. Data captured by the probe can be used by the service employees to reflect and co-reflect on the service journey......, helping to identify opportunities for service evolution and innovation....

  17. Development of Mackintosh Probe Extractor

    Science.gov (United States)

    Rahman, Noor Khazanah A.; Kaamin, Masiri; Suwandi, Amir Khan; Sahat, Suhaila; Jahaya Kesot, Mohd

    2016-11-01

    Dynamic probing is a continuous soil investigation technique, which is one of the simplest soil penetration test. It basically consist of repeatedly driving a metal tipped probe into the ground using a drop weight of fixed mass and travel. Testing was carried out continuously from ground level to the final penetration depth. Once the soil investigation work done, it is difficult to pull out the probe rod from the ground, due to strong soil structure grip against probe cone and prevent the probe rod out from the ground. Thus, in this case, a tool named Extracting Probe was created to assist in the process of retracting the probe rod from the ground. In addition, Extracting Probe also can reduce the time to extract the probe rod from the ground compare with the conventional method. At the same time, it also can reduce manpower cost because only one worker involve to handle this tool compare with conventional method used two or more workers. From experiment that have been done we found that the time difference between conventional tools and extracting probe is significant, average time difference is 155 minutes. In addition the extracting probe can reduce manpower usage, and also labour cost for operating the tool. With all these advantages makes this tool has the potential to be marketed.

  18. Time of flight diffraction imaging for double-probe technique.

    Science.gov (United States)

    Chang, Young-Fo; Hsieh, Cheng-I

    2002-06-01

    Due to rapid progress in microelectronics and computer technologies, the system evolving from analog to digital, and a programmable and flexible synthetic aperture focusing technique (SAFT) for the single-probe pulse-echo imaging technique of ultrasonic nondestructive testing (NDT) becomes feasible. The double-probe reflection technique usually is used to detect the nonhorizontal flaws in the ultrasonic NDT. Because there is an offset between the transmitter and receiver, the position and size of the flaw cannot be directly read from the image. Therefore, a digital signal processing (DSP) imaging method is proposed to process the ultrasonic image obtained by double-probe reflection technique. In the imaging, the signal is redistributed on an ellipsoid with the transmitter and receiver positions as focuses, and the traveltime sum for the echo from the ellipsoid to the focuses as the traveltime of signal. After redistributing all the signals, the useful signals can be constructively added in some point in which the reflected point is; otherwise, the signals will be destructively added. Therefore, the image resolution of the flaw can be improved and the position and size of the flaw can be estimated directly from the processed image. Based on the experimental results, the steep flaw (45 degrees) cannot be detected by the pulse echo technique but can be detected by the double-probe method, and the double-probe B-scan image of 30 degrees tilted crack is clearer than the pulse echo B-scan image. However, the flaw image departs from its true position greatly. After processing, the steep flaw image can be moved to its true position. When the flaws are not greater than the probe largely, the sizes of the flaws are difficult to be discriminated in both pulse echo and double-probe B-scan images. In the processed double-probe B-scan image, the size of the flaws can be estimated successfully, and the images of the flaws are close to their true shape.

  19. LANL Robotic Vessel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Nels W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  20. GPR scan assessment

    Directory of Open Access Journals (Sweden)

    Abbas M. Abbas

    2015-06-01

    Full Text Available Mekaad Radwan monument is situated in the neighborhood of Bab Zuweila in the historical Cairo, Egypt. It was constructed at the middle XVII century (1635 AD. The building has a rectangle shape plan (13 × 6 m with the longitudinal sides approximately WNW-ESE. It comprises three storages namely; the ground floor; the opened floor (RADWAN Bench and the living floor with a total elevation of 15 m above the street level. The building suffers from severe deterioration phenomena with patterns of damage which have occurred over time. These deterioration and damages could be attributed to foundation problems, subsoil water and also to the earthquake that affected the entire Greater Cairo area in October 1992. Ground Penetrating Radar (GPR scan was accomplished against the walls of the opened floor (RADWAN Bench to evaluate the hazard impact on the walls textures and integrity. The results showed an anomalous feature through the southern wall of RADWAN Bench. A mathematical model has been simulated to confirm the obtained anomaly and the model response exhibited a good matching with the outlined anomaly.

  1. Accurate borehole probe calibration

    Energy Technology Data Exchange (ETDEWEB)

    Tchen, T.; Eisler, P. (CSIRO, Mount Waverley, Vic. (Australia). Division of Geomechanics)

    The In Situ Minerals Analysis Group in the CSIRO Division of Geomechanics has developed quantitative borehole logging techniques applicable to iron-ore and coal deposits. They are used currently to determine the formation density, either the iron-ore grades or the raw coal-ash contents, as appropriate, and the borehole diameter. The in-situ analyses depend on probe-calibration equations which were formulated by linear regression analysis that related the probe's spectral outputs with the required geological variable. Calibration equations consisting of a linear combination of first-order terms gave excellent assaying accuracy. The group achieved further improvements in assaying accuracy by developing a more generalised calibration model based on second-order terms and cross-product terms of the probe's spectral parameters. The logging data used for the statistical analysis were recorded in mine development boreholes at three Pilbara iron-ore mines and at a Queensland coal mine. Application of the generalised model, in place of the first-order model, resulted in a reduction of the root mean square (RMS) deviation between assays obtained in the laboratory and by logging, of about 15% relative for iron-ore grades and of about 8% relative for raw coal-ash content. The study also shows that the accuracy obtained using the conventional, non-spectrometric calibration model is inferior to that obtained by using either of the two spectrometric models, where the comparisons made are based on the same set of logging data. 8 refs., 6 figs., 3 tabs.

  2. PROcess Based Diagnostics PROBE

    Science.gov (United States)

    Clune, T.; Schmidt, G.; Kuo, K.; Bauer, M.; Oloso, H.

    2013-01-01

    Many of the aspects of the climate system that are of the greatest interest (e.g., the sensitivity of the system to external forcings) are emergent properties that arise via the complex interplay between disparate processes. This is also true for climate models most diagnostics are not a function of an isolated portion of source code, but rather are affected by multiple components and procedures. Thus any model-observation mismatch is hard to attribute to any specific piece of code or imperfection in a specific model assumption. An alternative approach is to identify diagnostics that are more closely tied to specific processes -- implying that if a mismatch is found, it should be much easier to identify and address specific algorithmic choices that will improve the simulation. However, this approach requires looking at model output and observational data in a more sophisticated way than the more traditional production of monthly or annual mean quantities. The data must instead be filtered in time and space for examples of the specific process being targeted.We are developing a data analysis environment called PROcess-Based Explorer (PROBE) that seeks to enable efficient and systematic computation of process-based diagnostics on very large sets of data. In this environment, investigators can define arbitrarily complex filters and then seamlessly perform computations in parallel on the filtered output from their model. The same analysis can be performed on additional related data sets (e.g., reanalyses) thereby enabling routine comparisons between model and observational data. PROBE also incorporates workflow technology to automatically update computed diagnostics for subsequent executions of a model. In this presentation, we will discuss the design and current status of PROBE as well as share results from some preliminary use cases.

  3. Hyperchromatic laser scanning cytometry

    Science.gov (United States)

    Tárnok, Attila; Mittag, Anja

    2007-02-01

    In the emerging fields of high-content and high-throughput single cell analysis for Systems Biology and Cytomics multi- and polychromatic analysis of biological specimens has become increasingly important. Combining different technologies and staining methods polychromatic analysis (i.e. using 8 or more fluorescent colors at a time) can be pushed forward to measure anything stainable in a cell, an approach termed hyperchromatic cytometry. For cytometric cell analysis microscope based Slide Based Cytometry (SBC) technologies are ideal as, unlike flow cytometry, they are non-consumptive, i.e. the analyzed sample is fixed on the slide. Based on the feature of relocation identical cells can be subsequently reanalyzed. In this manner data on the single cell level after manipulation steps can be collected. In this overview various components for hyperchromatic cytometry are demonstrated for a SBC instrument, the Laser Scanning Cytometer (Compucyte Corp., Cambridge, MA): 1) polychromatic cytometry, 2) iterative restaining (using the same fluorochrome for restaining and subsequent reanalysis), 3) differential photobleaching (differentiating fluorochromes by their different photostability), 4) photoactivation (activating fluorescent nanoparticles or photocaged dyes), and 5) photodestruction (destruction of FRET dyes). With the intelligent combination of several of these techniques hyperchromatic cytometry allows to quantify and analyze virtually all components of relevance on the identical cell. The combination of high-throughput and high-content SBC analysis with high-resolution confocal imaging allows clear verification of phenotypically distinct subpopulations of cells with structural information. The information gained per specimen is only limited by the number of available antibodies and by sterical hindrance.

  4. Cathodoluminescence in the scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kociak, M., E-mail: mathieu.kociak@u-psud.fr [Laboratoire de Physique des Solides, Université Paris-SudParis-Sud, CNRS-UMR 8502, Orsay 91405 (France); Zagonel, L.F. [“Gleb Wataghin” Institute of Physics University of Campinas - UNICAMP, 13083-859 Campinas, São Paulo (Brazil)

    2017-05-15

    Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications. - Highlights: • Reviews the field of STEM-CL. • Introduces the technical requirements and challenges for STEM-CL. • Introduces the different types of excitations probed by STEM-CL. • Gives comprehensive overview of the last fifteenth years in the field.

  5. Development of a combined OCT-Raman probe for the prospective in vivo clinical melanoma skin cancer screening

    Science.gov (United States)

    Mazurenka, M.; Behrendt, L.; Meinhardt-Wollweber, M.; Morgner, U.; Roth, B.

    2017-10-01

    A combined optical coherence tomography (OCT)-Raman probe was designed and built into a spectral domain OCT head, and its performance was evaluated and compared to the most common Raman probe setups, based on a fiber bundle and confocal free space optics. Due to the use of the full field of view of an OCT scanning lens, the combined probe has a superior performance within maximum permissible exposure limits, compared to the other two probes. Skin Raman spectra, recorded in vivo, further prove the feasibility of the OCT-Raman probe for the future in vivo clinical applications in skin cancer screening.

  6. Development of a combined OCT-Raman probe for the prospective in vivo clinical melanoma skin cancer screening.

    Science.gov (United States)

    Mazurenka, M; Behrendt, L; Meinhardt-Wollweber, M; Morgner, U; Roth, B

    2017-10-01

    A combined optical coherence tomography (OCT)-Raman probe was designed and built into a spectral domain OCT head, and its performance was evaluated and compared to the most common Raman probe setups, based on a fiber bundle and confocal free space optics. Due to the use of the full field of view of an OCT scanning lens, the combined probe has a superior performance within maximum permissible exposure limits, compared to the other two probes. Skin Raman spectra, recorded in vivo, further prove the feasibility of the OCT-Raman probe for the future in vivo clinical applications in skin cancer screening.

  7. Scanning force microscopy with chemical specificity : An extensive study of chemically specific tip-surface interactions and the chemical imaging of surface functional groups

    NARCIS (Netherlands)

    van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    An extensive and systematic scanning force microscopy (SFM) study is presented. The observations are based on hydrogen bonding, van der Waals, and Coulombic interactions between the scanning probe (tip) and the substrate and provide the basis for scanning force microscopy with chemical specificity

  8. In situ hydrodynamic lateral force calibration of AFM colloidal probes.

    Science.gov (United States)

    Ryu, Sangjin; Franck, Christian

    2011-11-01

    Lateral force microscopy (LFM) is an application of atomic force microscopy (AFM) to sense lateral forces applied to the AFM probe tip. Recent advances in tissue engineering and functional biomaterials have shown a need for the surface characterization of their material and biochemical properties under the application of lateral forces. LFM equipped with colloidal probes of well-defined tip geometries has been a natural fit to address these needs but has remained limited to provide primarily qualitative results. For quantitative measurements, LFM requires the successful determination of the lateral force or torque conversion factor of the probe. Usually, force calibration results obtained in air are used for force measurements in liquids, but refractive index differences between air and liquids induce changes in the conversion factor. Furthermore, in the case of biochemically functionalized tips, damage can occur during calibration because tip-surface contact is inevitable in most calibration methods. Therefore, a nondestructive in situ lateral force calibration is desirable for LFM applications in liquids. Here we present an in situ hydrodynamic lateral force calibration method for AFM colloidal probes. In this method, the laterally scanned substrate surface generated a creeping Couette flow, which deformed the probe under torsion. The spherical geometry of the tip enabled the calculation of tip drag forces, and the lateral torque conversion factor was calibrated from the lateral voltage change and estimated torque. Comparisons with lateral force calibrations performed in air show that the hydrodynamic lateral force calibration method enables quantitative lateral force measurements in liquid using colloidal probes.

  9. Rotational Dove prism scanning dual angle Doppler OCT

    Science.gov (United States)

    Blatter, Cedric; Coquoz, Séverine; Grajciar, Branislav; Singh, Amardeep S. G.; Werkmeister, René M.; Schmetterer, Leopold; Leitgeb, Rainer A.

    2013-03-01

    Traditional Doppler OCT is highly sensitive to motion artifacts due to the dependence on the Doppler angle. This limits its reproducibility in clinical practice. To overcome this limitation, we use a bidirectional technique with a novel rotating scanning scheme. The volume is probed simultaneously from two distinct illumination directions with variable controlled orientations, allowing reconstruction of the true flow velocity, independently of the vessel orientation. A Dove prism in the sample arm permits a rotation of the illumination directions that can be synchronized with the standard beam steering device. The principle is implemented with Swept Source OCT at 1060nm with 100,000 A-Scans/s. We apply the system to human retinal absolute blood velocity measurement by performing segment and circumpapillary time series scans around the optic nerve head. We also demonstrate microvasculature imaging by calculation of squared intensity differences between successive tomograms.

  10. Scanning tip measurement for identification of point defects

    Directory of Open Access Journals (Sweden)

    Raineri Vito

    2011-01-01

    Full Text Available Abstract Self-assembled iron-silicide nanostructures were prepared by reactive deposition epitaxy of Fe onto silicon. Capacitance-voltage, current-voltage, and deep level transient spectroscopy (DLTS were used to measure the electrical properties of Au/silicon Schottky junctions. Spreading resistance and scanning probe capacitance microscopy (SCM were applied to measure local electrical properties. Using a preamplifier the sensitivity of DLTS was increased satisfactorily to measure transients of the scanning tip semiconductor junction. In the Fe-deposited area, Fe-related defects dominate the surface layer in about 0.5 μm depth. These defects deteriorated the Schottky junction characteristic. Outside the Fe-deposited area, Fe-related defect concentration was identified in a thin layer near the surface. The defect transients in this area were measured both in macroscopic Schottky junctions and by scanning tip DLTS and were detected by bias modulation frequency dependence in SCM.

  11. CT-guided laser probe for ablation of brain tumors

    Directory of Open Access Journals (Sweden)

    Abdolhadi Daneshi

    2010-01-01

    Full Text Available   Abstract  In this study, 22 patients (15-75 years old were selected and transferred to CT scan for tumor ablation. For ablations, after prep and drep under the local anesthesia and mild sedation in proper position, small incision made and special needle inserted and guided by proper direction to the core of the tumor. Then, laser probe inserted through the needle and laser energy delivered. Although we have not a good prognosis in metastatic tumors but post-operative follow up and brain CT scan established the effect of laser on resection and evaporation and diminution of mass effect in tumor lesions.

  12. Nanometre-scale deposition of colloidal Au particles using electrophoresis in a nanopipette probe

    Science.gov (United States)

    Iwata, F.; Nagami, S.; Sumiya, Y.; Sasaki, A.

    2007-03-01

    We describe a novel technique of local electrophoretic deposition of colloidal particles using a scanning probe microscope with a nanopipette probe filled with a colloidal solution. The colloidal solution including nanometre-scale particles was put into the nanopipette probe. A thin metal wire was inserted into the nanopipette probe as an electrode for the electrophoretic deposition. With the probe edge nearly in contact with the conductive surface and with an electric potential applied between the electrode and the surface, the colloidal particles migrated toward the edge of the probe, causing them to be deposited on the surface. It was possible for nanometre-scale Au colloidal particles in an aqueous solution to be deposited on Si surfaces. The size of the Au dots could be modified by adjusting the deposition time and voltage. Dot array and line patterns were successfully plotted on the surface. This technique of local deposition should provide the possibility for fabricating nanostructures such as nanomachines and nanoelectronics.

  13. Automatic emissive probe apparatus for accurate plasma and vacuum space potential measurements

    Science.gov (United States)

    Jianquan, LI; Wenqi, LU; Jun, XU; Fei, GAO; Younian, WANG

    2018-02-01

    We have developed an automatic emissive probe apparatus based on the improved inflection point method of the emissive probe for accurate measurements of both plasma potential and vacuum space potential. The apparatus consists of a computer controlled data acquisition card, a working circuit composed by a biasing unit and a heating unit, as well as an emissive probe. With the set parameters of the probe scanning bias, the probe heating current and the fitting range, the apparatus can automatically execute the improved inflection point method and give the measured result. The validity of the automatic emissive probe apparatus is demonstrated in a test measurement of vacuum potential distribution between two parallel plates, showing an excellent accuracy of 0.1 V. Plasma potential was also measured, exhibiting high efficiency and convenient use of the apparatus for space potential measurements.

  14. The Galaxy Evolution Probe

    Science.gov (United States)

    Glenn, Jason; Galaxy Evolution Probe Team

    2018-01-01

    The Galaxy Evolution Probe (GEP) is a concept for a far-infrared observatory to survey large regions of sky for star-forming galaxies from z = 0 to beyond z = 3. Our knowledge of galaxy formation is incomplete and requires uniform surveys over a large range of redshifts and environments to accurately describe mass assembly, star formation, supermassive black hole growth, interactions between these processes, and what led to their decline from z ~ 2 to the present day. Infrared observations are sensitive to dusty, star-forming galaxies, which have bright polycyclic aromatic hydrocarbon (PAH) emission features and warm dust continuum in the rest-frame mid infrared and cooler thermal dust emission in the far infrared. Unlike previous far-infrared continuum surveys, the GEP will measure photometric redshifts commensurate with galaxy detections from PAH emission and Si absorption features, without the need for obtaining spectroscopic redshifts of faint counterparts at other wavelengths.The GEP design includes a 2 m diameter telescope actively cooled to 4 K and two instruments: (1) An imager covering 10 to 300 um with 25 spectral resolution R ~ 8 bands (with lower R at the longest wavelengths) to detect star-forming galaxies and measure their redshifts photometrically. (2) A 23 – 190 um, R ~ 250 dispersive spectrometer for redshift confirmation and identification of obscured AGN using atomic fine-structure lines. Lines including [Ne V], [O IV], [O III], [O I], and [C II] will probe gas physical conditions, radiation field hardness, and metallicity. Notionally, the GEP will have a two-year mission: galaxy surveys with photometric redshifts in the first year and a second year devoted to follow-up spectroscopy. A comprehensive picture of star formation in galaxies over the last 10 billion years will be assembled from cosmologically relevant volumes, spanning environments from field galaxies and groups, to protoclusters, to dense galaxy clusters.Commissioned by NASA, the

  15. Development of a single cell electroporation method using a scanning ion conductance microscope with a theta nanopipette

    Science.gov (United States)

    Sakurai, Satoshi; Yamazaki, Koji; Ushiki, Tatsuo; Iwata, Futoshi

    2015-08-01

    We developed a novel electroporation method using a scanning ion conductance microscope (SICM) with a theta capillary nanopipette probe that has two apertures at the edge of the pipette. One aperture of the pipette probe was used to control the pipette-surface distance and to apply pulse voltage for electroporation. The other was used to eject material over the cell by local electrophoresis. Using the nanopipette, propidium iodide was successfully introduced into a targeted single Hela cell without influencing the surrounding cells. Furthermore, by scanning the theta nanopipette probe using the SICM, the morphological behaviors of the electroporated cells could be observed.

  16. Scanning Productivity in Interlibrary Loan

    Science.gov (United States)

    Pedersen, Wayne A.; Runestad, Anders

    2009-01-01

    The authors report findings of a research study conducted at the Iowa State University Library. Data was gathered on the scanning of library materials by students working in the Interlibrary Loan (ILL) unit. The goals of the study were fourfold: (1) Develop measures of scanning productivity in ILL, (2) Determine if it is more productive to scan…

  17. Scan converting video tape recorder

    Science.gov (United States)

    Holt, N. I. (Inventor)

    1971-01-01

    A video tape recorder is disclosed of sufficient bandwidth to record monochrome television signals or standard NTSC field sequential color at current European and American standards. The system includes scan conversion means for instantaneous playback at scanning standards different from those at which the recording is being made.

  18. Detectors for scanning video imagers

    Science.gov (United States)

    Webb, Robert H.; Hughes, George W.

    1993-11-01

    In scanning video imagers, a single detector sees each pixel for only 100 ns, so the bandwidth of the detector needs to be about 10 MHz. How this fact influences the choice of detectors for scanning systems is described here. Some important parametric quantities obtained from manufacturer specifications are related and it is shown how to compare detectors when specified quantities differ.

  19. Cosmological Probes for Supersymmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2015-05-01

    Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.

  20. Perforated cenosphere-supported pH-sensitive spin probes

    Energy Technology Data Exchange (ETDEWEB)

    Fomenko, E.V.; Bobko, A.A.; Salanov, A.N.; Kirilyuk, I.A.; Grigor' ev, I.A.; Khramtsov, V.V.; Anshits, A.G. [Russian Academy of Sciences, Krasnoyarsk (Russian Federation)

    2008-03-15

    Porous supports with an accessible internal volume and a shell providing the diffusive migration of pH-sensitive spin probes were obtained for the first time from hollow aluminosilicate cenospheres isolated from the coal fly ash. Using the methods of scanning electron microscopy and electron spin resonance, the morphology of different porous cenosphere modifications and its influence on the diffusion of spin probes from the internal volume were studied. When supporting aqueous solutions of a radical, the characteristic diffusion time for the mesoporous structure of the support is longer by a factor of 3-5 than that for the macroporous structure. Ferrospinel in a content of 6 wt.% do not virtually affect the diffusion rate of spin probes. A constant rate of radical migration of similar to 1 {mu} mol min{sup -1}, determined by radical solubility in water, is achieved when a radical in the solid aggregate state is supported on the magnetic cenospheres.

  1. A GRISM-based probe for spectrally encoded confocal microscopy.

    Science.gov (United States)

    Pitris, C; Bouma, B; Shiskov, M; Tearney, G

    2003-01-27

    Spectrally encoded confocal microscopy (SECM) is a novel approach for obtaining high resolution, depth-sectioned images of microstructure within turbid samples. By encoding one spatial dimension in wavelength, imaging probes can be greatly simplified compared to standard scanning confocal microscopes, potentially enabling endoscopic implementation. The use of a diffraction grating for spectral encoding, however, skews the optical axis through the probe, thus complicating the design of narrow diameter instruments. In this Letter, we describe a novel use of a single-optical-axis element based on high index-of-refraction prisms and a transmission holographic grating for the design of narrow diameter SECM devices. Confocal images obtained with a 10.0 mm probe demonstrate a transverse resolution of 1.1 microm and a field of view of 650 microm.

  2. Performing probe experiments in the SEM.

    Science.gov (United States)

    Peng, L-M; Chen, Q; Liang, X L; Gao, S; Wang, J Y; Kleindiek, S; Tai, S W

    2004-01-01

    A four nanoprobe system has been installed inside a FEI XL30 F scanning electron microscope (SEM), and shown to be fully compatible with the normal functions of the SEM and also a Gatan cold stage (model C1003, -185-400 degrees C). With some selected examples of applications, we have shown that this nanoprobe system may be used effectively for gripping, moving and manipulating nanoobjects, e.g. carbon nanotubes, setting up electric contacts for electronic measurements, tailoring the structure of the nanoobject by cutting, etc. and even for making unexpected nanostructures, e.g. a nanohook. Applications in other areas have also been speculated, limitations or disadvantages of the current design of the probe system were discussed, and methods for possible improvement were suggested.

  3. Neurosurgical hand-held optical coherence tomography (OCT) forward-viewing probe

    Science.gov (United States)

    Sun, Cuiru; Lee, Kenneth K. C.; Vuong, Barry; Cusimano, Michael; Brukson, Alexander; Mariampillai, Adrian; Standish, Beau A.; Yang, Victor X. D.

    2012-02-01

    A prototype neurosurgical hand-held optical coherence tomography (OCT) imaging probe has been developed to provide micron resolution cross-sectional images of subsurface tissue during open surgery. This new ergonomic hand-held probe has been designed based on our group's previous work on electrostatically driven optical fibers. It has been packaged into a catheter probe in the familiar form factor of the clinically accepted Bayonet shaped neurosurgical non-imaging Doppler ultrasound probes. The optical design was optimized using ZEMAX simulation. Optical properties of the probe were tested to yield an ~20 um spot size, 5 mm working distance and a 3.5 mm field of view. The scan frequency can be increased or decreased by changing the applied voltage. Typically a scan frequency of less than 60Hz is chosen to keep the applied voltage to less than 2000V. The axial resolution of the probe was ~15 um (in air) as determined by the OCT system. A custom-triggering methodology has been developed to provide continuous stable imaging, which is crucial for clinical utility. Feasibility of this probe, in combination with a 1310 nm swept source OCT system was tested and images are presented to highlight the usefulness of such a forward viewing handheld OCT imaging probe. Knowledge gained from this research will lay the foundation for developing new OCT technologies for endovascular management of cerebral aneurysms and transsphenoidal neuroendoscopic treatment of pituitary tumors.

  4. Gene probes: principles and protocols

    National Research Council Canada - National Science Library

    Rapley, Ralph; Aquino de Muro, Marilena

    2002-01-01

    ... of labeled DNA has allowed genes to be mapped to single chromosomes and in many cases to a single chromosome band, promoting significant advance in human genome mapping. Gene Probes: Principles and Protocols presents the principles for gene probe design, labeling, detection, target format, and hybridization conditions together with detailed protocols, accom...

  5. Non-inductive current probe

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl

    1977-01-01

    The current probe described is a low-cost, shunt resistor for monitoring current pulses in e.g., pulsed lasers. Rise time is......The current probe described is a low-cost, shunt resistor for monitoring current pulses in e.g., pulsed lasers. Rise time is...

  6. Mobile Probes in Mobile Learning

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Blomhøj, Ulla; Duvaa, Uffe

    In this paper experiences from using mobile probes in educational design of a mobile learning application is presented. The probing process stems from the cultural probe method, and was influenced by qualitative interview and inquiry approaches. In the project, the mobile phone was not only acting...... as an agent for acquiring empirical data (as the situation in hitherto mobile probe settings) but was also the technological medium for which data should say something about (mobile learning). Consequently, not only the content of the data but also the ways in which data was delivered and handled, provided...... a valuable dimension for investigating mobile use. The data was collected at the same time as design activities took place and the collective data was analysed based on user experience goals and cognitive processes from interaction design and mobile learning. The mobile probe increased the knowledge base...

  7. Rotating concave eddy current probe

    Science.gov (United States)

    Roach, Dennis P [Albuquerque, NM; Walkington, Phil [Albuquerque, NM; Rackow, Kirk A [Albuquerque, NM; Hohman, Ed [Albuquerque, NM

    2008-04-01

    A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.

  8. Fluorescent flippers for mechanosensitive membrane probes.

    Science.gov (United States)

    Dal Molin, Marta; Verolet, Quentin; Colom, Adai; Letrun, Romain; Derivery, Emmanuel; Gonzalez-Gaitan, Marcos; Vauthey, Eric; Roux, Aurélien; Sakai, Naomi; Matile, Stefan

    2015-01-21

    In this report, "fluorescent flippers" are introduced to create planarizable push-pull probes with the mechanosensitivity and fluorescence lifetime needed for practical use in biology. Twisted push-pull scaffolds with large and bright dithienothiophenes and their S,S-dioxides as the first "fluorescent flippers" are shown to report on the lateral organization of lipid bilayers with quantum yields above 80% and lifetimes above 4 ns. Their planarization in liquid-ordered (Lo) and solid-ordered (So) membranes results in red shifts in excitation of up to +80 nm that can be transcribed into red shifts in emission of up to +140 nm by Förster resonance energy transfer (FRET). These unique properties are compatible with multidomain imaging in giant unilamellar vesicles (GUVs) and cells by confocal laser scanning or fluorescence lifetime imaging microscopy. Controls indicate that strong push-pull macrodipoles are important, operational probes do not relocate in response to lateral membrane reorganization, and two flippers are indeed needed to "really swim," i.e., achieve high mechanosensitivity.

  9. Design and optimization of a miniaturized imaging probe for simultaneous endomicroscopy and optical coherence tomography

    Science.gov (United States)

    Kretschmer, Simon; Vilches, Sergio; Blattmann, Marc; Ataman, Caglar; Zappe, Hans

    2017-02-01

    A highly-integrated MEMS-based bimodal probe design with integrated piezoelectric fiber scanner for simul- taneous endomicroscopy and optical coherence tomography (OCT) is presented. The two modalities rely on spectrally-separated optical paths that run partially in parallel through a micro-optical bench system, which has dimensions of only 13 x 2 x 3mm3 (l x w x h). An integrated tubular piezoelectric fiber scanner is used to perform en face scanning required for three dimensional OCT measurements. This scanning engine has an outer diameter of 0.9mm and a length of 9mm, and features custom fabricated 10 μm thick polyimide flexible interconnect lines to address the four piezoelectric electrodes. As a platform combining a full-field and a scanning imaging modality, the developed probe design constitutes a blue print for a wide range of multi-modal endoscopic imaging probes.

  10. Transient Astrophysics Probe

    Science.gov (United States)

    Camp, Jordan

    2017-08-01

    Transient Astrophysics Probe (TAP), selected by NASA for a funded Concept Study, is a wide-field high-energy transient mission proposed for flight starting in the late 2020s. TAP’s main science goals, called out as Frontier Discovery areas in the 2010 Decadal Survey, are time-domain astrophysics and counterparts of gravitational wave (GW) detections. The mission instruments include unique imaging soft X-ray optics that allow ~500 deg2 FoV in each of four separate modules; a high sensitivity, 1 deg2 FoV soft X-ray telescope based on single crystal silicon optics; a passively cooled, 1 deg2 FoV Infrared telescope with bandpass 0.6-3 micron; and a set of ~8 small NaI gamma-ray detectors. TAP will observe many events per year of X-ray transients related to compact objects, including tidal disruptions of stars, supernova shock breakouts, neutron star bursts and superbursts, and high redshift Gamma-Ray Bursts. Perhaps most exciting is TAP’s capability to observe X-ray and IR counterparts of GWs involving stellar mass black holes detected by LIGO/Virgo, and possibly X-ray counterparts of GWs from supermassive black holes, detected by LISA and Pulsar Timing Arrays.

  11. Bone Densitometry (Bone Density Scan)

    Science.gov (United States)

    ... back pain. if a DEXA scan gives borderline readings. top of page How should I prepare? On the day ... radiology protection organizations continually review and update the technique ... that those parts of a patient's body not being imaged receive minimal ...

  12. Development of an Optically Modulated Scatterer Probe for a Near-Field Measurement System

    Science.gov (United States)

    2016-09-08

    is proportional to the square of the gain of the antenna because the signal is passing through the AUT twice. The OMS probe is raster scanned in a...μm diameter. To characterize the photodiode performance, which optimally will have a large change in impedance from 10 GHz to 40 GHz between...to the 2.6 GHz in the PDA loaded probe case, which is due to the antenna dimensions not being optimized specifically for the impedance of this

  13. Probing and Manipulating Ultracold Fermi Superfluids

    Science.gov (United States)

    Jiang, Lei

    Ultracold Fermi gas is an exciting field benefiting from atomic physics, optical physics and condensed matter physics. It covers many aspects of quantum mechanics. Here I introduce some of my work during my graduate study. We proposed an optical spectroscopic method based on electromagnetically-induced transparency (EIT) as a generic probing tool that provides valuable insights into the nature of Fermi paring in ultracold Fermi gases of two hyperfine states. This technique has the capability of allowing spectroscopic response to be determined in a nearly non-destructive manner and the whole spectrum may be obtained by scanning the probe laser frequency faster than the lifetime of the sample without re-preparing the atomic sample repeatedly. Both quasiparticle picture and pseudogap picture are constructed to facilitate the physical explanation of the pairing signature in the EIT spectra. Motivated by the prospect of realizing a Fermi gas of 40K atoms with a synthetic non-Abelian gauge field, we investigated theoretically BEC-HCS crossover physics in the presence of a Rashba spin-orbit coupling in a system of two-component Fermi gas with and without a Zeeman field that breaks the population balance. A new bound state (Rashba pair) emerges because of the spin-orbit interaction. We studied the properties of Rashba pairs using a standard pair fluctuation theory. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We discussed in detail the experimental signatures for observing the condensation of Rashba pairs by calculating various physical observables which characterize the properties of the system and can be measured in experiment. The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we studied the effect of a single classical impurity in trapped ultracold Fermi

  14. Lidar arc scan uncertainty reduction through scanning geometry optimization

    Science.gov (United States)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.

  15. Genetically Encoded Fluorescent Redox Probes

    Directory of Open Access Journals (Sweden)

    Hui-Wang Ai

    2013-11-01

    Full Text Available Redox processes are involved in almost every cell of the body as a consequence of aerobic life. In the past decades, redox biology has been increasingly recognized as one of the key themes in cell signaling. The progress has been accelerated by development of fluorescent probes that can monitor redox conditions and dynamics in cells and cell compartments. This short paper focuses on fluorescent redox probes that are genetically encoded, and discusses their properties, molecular mechanism, advantages and pitfalls. Our recent work on reaction-based encoded probes that are responsive to particular redox signaling molecules is also reviewed. Future challenges and directions are also commented.

  16. Genetically encoded fluorescent redox probes.

    Science.gov (United States)

    Ren, Wei; Ai, Hui-Wang

    2013-11-11

    Redox processes are involved in almost every cell of the body as a consequence of aerobic life. In the past decades, redox biology has been increasingly recognized as one of the key themes in cell signaling. The progress has been accelerated by development of fluorescent probes that can monitor redox conditions and dynamics in cells and cell compartments. This short paper focuses on fluorescent redox probes that are genetically encoded, and discusses their properties, molecular mechanism, advantages and pitfalls. Our recent work on reaction-based encoded probes that are responsive to particular redox signaling molecules is also reviewed. Future challenges and directions are also commented.

  17. Optic probe for semiconductor characterization

    Science.gov (United States)

    Sopori, Bhushan L [Denver, CO; Hambarian, Artak [Yerevan, AM

    2008-09-02

    Described herein is an optical probe (120) for use in characterizing surface defects in wafers, such as semiconductor wafers. The optical probe (120) detects laser light reflected from the surface (124) of the wafer (106) within various ranges of angles. Characteristics of defects in the surface (124) of the wafer (106) are determined based on the amount of reflected laser light detected in each of the ranges of angles. Additionally, a wafer characterization system (100) is described that includes the described optical probe (120).

  18. Study on characteristics of eddy current array coil operated in transmit-receive mode and surface inspection using this probe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hun; Jee, Dong Hyun; Cho, Chan Hee; Kim, In Chul [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    Eddy current array (ECA) technology provides the ability to electronically scan without mechanical scanning for a footprint of probe that consists of several eddy current coils arranged side-by-side and two dimensionally. Compared to single-coil eddy current technology, the ECA technology has a higher inspection speed and reliability because a large area can be covered in a single-probe pass and the obtained images can facilitate data interpretation. In this study, we developed an eddy current array probe with 2×16 coil arrays and a multiplexer that can select transmit-receive coils sequentially and operate in transmit-receive mode. Surface inspection was performed using this probe for specimens that had various flaws and the characteristics of transmit-receive mode ECA technology was studied through an analysis of the obtained eddy current signals and C-scan images.

  19. Obstacles to Industrial Implementation of Scanning Systems

    Science.gov (United States)

    Anders Astrom; Olog Broman; John Graffman; Anders Gronlund; Armas Jappinene; Jari Luostarinen; Jan Nystrom; Daniel L. Schmoldt

    1998-01-01

    Initially the group discussed what is meant by scanning systems. An operational definition was adopted to consider scanning system in the current context to be nontraditional scanning. Where, traditional scanning is defined as scanning that has been industrially operational and relatively common for several years-a mature technology. For example,...

  20. Remotely scanned multiphoton temporal focusing by axial grism scanning.

    Science.gov (United States)

    Dana, Hod; Shoham, Shy

    2012-07-15

    A simple technique for remote scanning of the focal plane in temporal focusing multiphoton microscopy is demonstrated both theoretically and experimentally. A new on-axis light propagation optical setup design enables this scanning, which was considered not feasible in previous studies. The focal plane is axially displaced by the movement of a remote optical device, consisting of a double prism grating, and optionally a cylindrical lens. The displacement is linear, and its slope is inversely proportional to the square of the optical system's magnification.