WorldWideScience

Sample records for scanning ion conductance

  1. Multifunctional scanning ion conductance microscopy

    Science.gov (United States)

    Page, Ashley; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science. PMID:28484332

  2. Scanning Ion Conductance Microscopy of Live Keratinocytes

    International Nuclear Information System (INIS)

    Hegde, V; Mason, A; Saliev, T; Smith, F J D; McLean, W H I; Campbell, P A

    2012-01-01

    Scanning ion conductance microscopy (SICM) is perhaps the least well known technique from the scanning probe microscopy (SPM) family of instruments. As with its more familiar counterpart, atomic force microscopy (AFM), the technique provides high-resolution topographic imaging, with the caveat that target structures must be immersed in a conducting solution so that a controllable ion current may be utilised as the basis for feedback. In operation, this non-contact characteristic of SICM makes it ideal for the study of delicate structures, such as live cells. Moreover, the intrinsic architecture of the instrument, incorporating as it does, a scanned micropipette, lends itself to combination approaches with complementary techniques such as patch-clamp electrophysiology: SICM therefore boasts the capability for both structural and functional imaging. For the present observations, an ICnano S system (Ionscope Ltd., Melbourn, UK) operating in 'hopping mode' was used, with the objective of assessing the instrument's utility for imaging live keratinocytes under physiological buffers. In scans employing cultured HaCaT cells (spontaneously immortalised, human keratinocytes), we compared the qualitative differences of live cells imaged with SICM and AFM, and also with their respective counterparts after chemical fixation in 4% paraformaldehyde. Characteristic surface microvilli were particularly prominent in live cell imaging by SICM. Moreover, time lapse SICM imaging on live cells revealed that changes in the pattern of microvilli could be tracked over time. By comparison, AFM imaging on live cells, even at very low contact forces (< nN), could not routinely image microvilli: rather, an apparently convolved image of the underlying cytoskeleton was instead prevalent. We note that the present incarnation of the commercial instrument falls some way behind the market leading SPMs in terms of technical prowess and scanning speed, however, the intrinsic non-obtrusive nature of

  3. Phase modulation mode of scanning ion conductance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-08-04

    This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

  4. Scanning Ion Conductance Microscopy for Studying Biological Samples

    Directory of Open Access Journals (Sweden)

    Irmgard D. Dietzel

    2012-11-01

    Full Text Available Scanning ion conductance microscopy (SICM is a scanning probe technique that utilizes the increase in access resistance that occurs if an electrolyte filled glass micro-pipette is approached towards a poorly conducting surface. Since an increase in resistance can be monitored before the physical contact between scanning probe tip and sample, this technique is particularly useful to investigate the topography of delicate samples such as living cells. SICM has shown its potential in various applications such as high resolution and long-time imaging of living cells or the determination of local changes in cellular volume. Furthermore, SICM has been combined with various techniques such as fluorescence microscopy or patch clamping to reveal localized information about proteins or protein functions. This review details the various advantages and pitfalls of SICM and provides an overview of the recent developments and applications of SICM in biological imaging. Furthermore, we show that in principle, a combination of SICM and ion selective micro-electrodes enables one to monitor the local ion activity surrounding a living cell.

  5. Analysis of leaf surfaces using scanning ion conductance microscopy.

    Science.gov (United States)

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  6. Scanning ion conductance microscopy for visualizing the three-dimensional surface topography of cells and tissues.

    Science.gov (United States)

    Nakajima, Masato; Mizutani, Yusuke; Iwata, Futoshi; Ushiki, Tatsuo

    2018-01-01

    Scanning ion conductance microscopy (SICM), which belongs to the family of scanning probe microscopy, regulates the tip-sample distance by monitoring the ion current through the use of an electrolyte-filled nanopipette as the probing tip. Thus, SICM enables "contact-free" imaging of cell surface topography in liquid conditions. In this paper, we applied hopping mode SICM for obtaining topographical images of convoluted tissue samples such as trachea and kidney in phosphate buffered saline. Some of the SICM images were compared with the images obtained by scanning electron microscopy (SEM) after drying the same samples. We showed that the imaging quality of hopping mode SICM was excellent enough for investigating the three-dimensional surface structure of the soft tissue samples. Thus, SICM is expected to be used for imaging a wide variety of cells and tissues - either fixed or alive- at high resolution under physiologically relevant liquid conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Macro-SICM: A Scanning Ion Conductance Microscope for Large-Range Imaging.

    Science.gov (United States)

    Schierbaum, Nicolas; Hack, Martin; Betz, Oliver; Schäffer, Tilman E

    2018-04-17

    The scanning ion conductance microscope (SICM) is a versatile, high-resolution imaging technique that uses an electrolyte-filled nanopipet as a probe. Its noncontact imaging principle makes the SICM uniquely suited for the investigation of soft and delicate surface structures in a liquid environment. The SICM has found an ever-increasing number of applications in chemistry, physics, and biology. However, a drawback of conventional SICMs is their relatively small scan range (typically 100 μm × 100 μm in the lateral and 10 μm in the vertical direction). We have developed a Macro-SICM with an exceedingly large scan range of 25 mm × 25 mm in the lateral and 0.25 mm in the vertical direction. We demonstrate the high versatility of the Macro-SICM by imaging at different length scales: from centimeters (fingerprint, coin) to millimeters (bovine tongue tissue, insect wing) to micrometers (cellular extensions). We applied the Macro-SICM to the study of collective cell migration in epithelial wound healing.

  8. Intermittent Contact Alternating Current Scanning Electrochemical Microscopy: A Method for Mapping Conductivities in Solid Li Ion Conducting Electrolyte Samples

    Energy Technology Data Exchange (ETDEWEB)

    Catarelli, Samantha Raisa; Lonsdale, Daniel [Uniscan Instruments Ltd., Macclesfield (United Kingdom); Cheng, Lei [Energy Storage and Distribution Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Materials Sciences and Engineering Department, University of California Berkeley, Berkeley, CA (United States); Syzdek, Jaroslaw [Bio-Logic USA LLC, Knoxville, TN (United States); Doeff, Marca, E-mail: mmdoeff@lbl.gov [Energy Storage and Distribution Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-03-31

    Intermittent contact alternating current scanning electrochemical microscopy (ic-ac-SECM) has been used to determine the electrochemical response to an ac signal of several types of materials. A conductive gold foil and insulating Teflon sheet were first used to demonstrate that the intermittent contact function allows the topography and conductivity to be mapped simultaneously and independently in a single experiment. Then, a dense pellet of an electronically insulating but Li ion conducting garnet phase, Al-substituted Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO), was characterized using the same technique. The polycrystalline pellet was prepared by classical ceramic sintering techniques and was comprised of large (~150 μm) grains. Critical information regarding the contributions of grain and grain boundary resistances to the total conductivity of the garnet phase was lacking due to ambiguities in the impedance data. In contrast, the use of the ic-ac-SECM technique allowed spatially resolved information regarding local conductivities to be measured directly. Impedance mapping of the pellet showed that the grain boundary resistance, while generally higher than that of grains, varied considerably, revealing the complex nature of the LLZO sample.

  9. Efficient Imaging and Real-Time Display of Scanning Ion Conductance Microscopy Based on Block Compressive Sensing

    Science.gov (United States)

    Li, Gongxin; Li, Peng; Wang, Yuechao; Wang, Wenxue; Xi, Ning; Liu, Lianqing

    2014-07-01

    Scanning Ion Conductance Microscopy (SICM) is one kind of Scanning Probe Microscopies (SPMs), and it is widely used in imaging soft samples for many distinctive advantages. However, the scanning speed of SICM is much slower than other SPMs. Compressive sensing (CS) could improve scanning speed tremendously by breaking through the Shannon sampling theorem, but it still requires too much time in image reconstruction. Block compressive sensing can be applied to SICM imaging to further reduce the reconstruction time of sparse signals, and it has another unique application that it can achieve the function of image real-time display in SICM imaging. In this article, a new method of dividing blocks and a new matrix arithmetic operation were proposed to build the block compressive sensing model, and several experiments were carried out to verify the superiority of block compressive sensing in reducing imaging time and real-time display in SICM imaging.

  10. Multivalent ion conducting solids

    Energy Technology Data Exchange (ETDEWEB)

    Imanaka, N. [Osaka Univ., Suita, Osaka (Japan). Dept. of Applied Chemistry

    2008-07-01

    Solid electrolytes possess important characteristics for industrial applications. Only a single ionic species can macroscopically migrate in these solids. This paper described a the new NASICON (M-Zr-Nb-P-O) type system, exhibiting an exceptionally high level of trivalent M3+ ion conductivity on polycrystalline solids. The partial substitution of the smaller higher valent Nb5+ ion for Zr4+ stabilized the NASICON phase and realized the M3+ ion conduction in the NASICON structure. It was concluded that the conductivities of the series are comparable to those of the practically applied solid electrolytes of oxide anion conductors of YSZ and CSZ. 3 refs., 2 figs.

  11. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I

  12. Shape and compliance of endothelial cells after shear stress in vitro or from different aortic regions: scanning ion conductance microscopy study.

    Directory of Open Access Journals (Sweden)

    Claire M F Potter

    Full Text Available To measure the elongation and compliance of endothelial cells subjected to different patterns of shear stress in vitro, and to compare these parameters with the elongation and compliance of endothelial cells from different regions of the intact aorta.Porcine aortic endothelial cells were cultured for 6 days under static conditions or on an orbital shaker. The shaker generated a wave of medium, inducing pulsatile shear stress with a preferred orientation at the edge of the well or steadier shear stress with changing orientation at its centre. The topography and compliance of these cells and cells from the inner and outer curvature of ex vivo porcine aortic arches were measured by scanning ion conductance microscopy (SICM.Cells cultured under oriented shear stress were more elongated and less compliant than cells grown under static conditions or under shear stress with no preferred orientation. Cells from the outer curvature of the aorta were more elongated and less compliant than cells from the inner curvature.The elongation and compliance of cultured endothelial cells vary according to the pattern of applied shear stress, and are inversely correlated. A similar inverse correlation occurs in the aortic arch, with variation between regions thought to experience different haemodynamic stresses.

  13. Ion-conducting membranes

    Science.gov (United States)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  14. Scanning ion irradiation of polyimide films

    Energy Technology Data Exchange (ETDEWEB)

    Luecken, Stefan; Koval, Yuri; Mueller, Paul [Department of Physics and Interdisciplinary Center for Molecular Materials (ICMM), Universitaet Erlangen-Nuernberg (Germany)

    2012-07-01

    Recently we found, that the surface of nearly any polymer can be converted into conductive material by low energy ion irradiation. The graphitized layer consists of nanometer sized graphene and graphite flakes. In order to enhance the conductivity and to increase the size of the flakes we applied a novel method of scanning irradiation. We investigated the influence of various irradiation parameters on the conductivity of the graphitized layer. We show, that the conductance vs. temperature can be described in terms of weak Anderson localization. At approximately 70 K, a crossover occurs from 2-dimensional to 3-dimensional behavior. This can be explained by a decrease of the Thouless length with increasing temperature. The crossover temperature can be used to estimate the thickness of the graphitized layer.

  15. Scanning tunneling spectroscopy study of DNA conductivity

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Král, Karel; Bunček, M.; Nešpůrek, Stanislav; Todorciuc, Tatiana; Weiter, M.; Navrátil, J.; Schneider, Bohdan; Pavluch, J.

    2008-01-01

    Roč. 6, č. 3 (2008), s. 422-426 ISSN 1895-1082 R&D Projects: GA AV ČR KAN401770651; GA MŠk OC 137; GA AV ČR KAN400720701; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40500505; CEZ:AV0Z40550506 Keywords : molecular electronics * DNA * scanning tunneling microscopy * conductivity * charge carrier transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.448, year: 2008

  16. Aligned ion implementation using scanning probes

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, A

    2006-12-12

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail. (orig.)

  17. Aligned ion implantation using scanning probes

    International Nuclear Information System (INIS)

    Persaud, A.

    2006-01-01

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail. (orig.)

  18. Scanning ion microscopy with low energy lithium ions

    International Nuclear Information System (INIS)

    Twedt, Kevin A.; Chen, Lei; McClelland, Jabez J.

    2014-01-01

    Using an ion source based on photoionization of laser-cooled lithium atoms, we have developed a scanning ion microscope with probe sizes of a few tens of nanometers and beam energies from 500 eV to 5 keV. These beam energies are much lower than the typical operating energies of the helium ion microscope or gallium focused ion beam systems. We demonstrate how low energy can be advantageous in ion microscopy when detecting backscattered ions, due to a decreased interaction volume and the potential for surface sensitive composition analysis. As an example application that demonstrates these advantages, we non-destructively image the removal of a thin residual resist layer during plasma etching in a nano-imprint lithography process. - Highlights: • We use an ion source based on photoionization of laser-cooled lithium atoms. • The ion source makes possible a low energy (500 eV to 5 keV) scanning ion microscope. • Low energy is preferred for ion microscopy with backscattered ions. • We use the microscope to image a thin resist used in nano-imprint lithography

  19. Ion conductivity of nasicon ceramics

    International Nuclear Information System (INIS)

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  20. Ionomers for Ion-Conducting Energy Materials

    Science.gov (United States)

    Colby, Ralph

    For ionic actuators and battery separators, it is vital to utilize single-ion conducting ionomers that avoid the detrimental polarization of other ions. Single-ion conducting ionomers are synthesized based on DFT calculations, with low glass transition temperatures (facile dynamics) to prepare ion-conducting membranes for battery separators that conduct Li+ or Na+. Characterization by X-ray scattering, dielectric spectroscopy, FTIR, NMR and linear viscoelasticity collectively develop a coherent picture of ionic aggregation and both counterion and polymer dynamics. 7Li NMR diffusion measurements find that diffusion is faster than expected by conductivity using the Nernst-Einstein equation, which means that the majority of Li diffusion occurs by ion pairs moving with the polymer segmental motion. Segmental motion only contributes to ionic conduction in the rare event that one of these ion pairs has an extra Li (a positive triple ion). This leads us to a new metric for ion-conducting soft materials, the product of the cation number density p0 and their diffusion coefficient D; p0D is the diffusive flux of lithium ions. This new metric has a maximum at intermediate ion content that corresponds to the overlap of ion pair polarizability volumes. At higher ion contents, the ion pairs interact strongly and form larger aggregation states that retard segmental motion of both mobile ion pairs and triple ions.

  1. Simulation study of secondary electron images in scanning ion microscopy

    CERN Document Server

    Ohya, K

    2003-01-01

    The target atomic number, Z sub 2 , dependence of secondary electron yield is simulated by applying a Monte Carlo code for 17 species of metals bombarded by Ga ions and electrons in order to study the contrast difference between scanning ion microscopes (SIM) and scanning electron microscopes (SEM). In addition to the remarkable reversal of the Z sub 2 dependence between the Ga ion and electron bombardment, a fine structure, which is correlated to the density of the conduction band electrons in the metal, is calculated for both. The brightness changes of the secondary electron images in SIM and SEM are simulated using Au and Al surfaces adjacent to each other. The results indicate that the image contrast in SIM is much more sensitive to the material species and is clearer than that for SEM. The origin of the difference between SIM and SEM comes from the difference in the lateral distribution of secondary electrons excited within the escape depth.

  2. Scanning transmission ion microscopy of polycarbonate nanocapillaries

    International Nuclear Information System (INIS)

    Gal, G.A.B.; Rajta, I.; Szilasi, S.Z.; Juhasz, Z.; Biri, S.; Csik, A.; Sulik, B.; Cserhati, Cs.

    2011-01-01

    Complete text of publication follows. Nanochanneled materials are of a great interest due to their peculiar properties and high potential impact for the fabrication of nanostructures and nanodevices. Polycarbonate membranes are produced by heavy ion irradiation followed by chemical etching of the ion tracks. The irradiation parameters determine the porosity (areal density of the capillaries) and angular spread, while the channel diameters and shapes depend on the chemical process parameters. Such polycarbonate (and other materials) membranes are commercially available from a few manufacturers. The primary use of the filters involves packaging and filtering applications. Moreover, they are used for collecting atmospheric aerosols for environmental research. The nanocapillaries formed in membranes are particularly suitable for ion and electron guiding studies of a recently discovered, but not yet completely understood capillary guiding phenomenon. This interesting guiding effect is very promising for patterning by parallel writing with ions and/or electrons through masks. In order to get a better understanding of this phenomenon, we need a better characterization of the capillaries themselves. This study is addressing the angular distribution of the nanochannels in the polycarbonate filters by using a nuclear microprobe facility and the method of scanning transmission ion microscopy (STIM). The STIM experiments in this work have been performed at ATOMKI. The proton energy was 2 MeV, the beam intensity was about 1000 protons s -1 , the beam spot size was about 1 x 1 μm, the scan size was 100 x 100 μm and the beam divergence was smaller than 0.07 deg. A scanning electron microscope (SEM, Hitachi S4300 CFE) was used to measure the capillary diameters and the membrane porosity. The sample thickness was determined by a profilometer (AMBIOS XP-I). We have investigated two different pieces of Millipore Isopore TM samples. A typical SEM image showed several overlapping

  3. Scanning nanoscale multiprobes for conductivity measurements

    DEFF Research Database (Denmark)

    Bøggild, Peter; Hansen, Torben Mikael; Kuhn, Oliver

    2000-01-01

    We report fabrication and measurements with two- and four-point probes with nanoscale dimensions, for high spatial resolution conductivity measurements on surfaces and thin films. By combination of conventional microfabrication and additive three-dimensional nanolithography, we have obtained...... electrode spacings down to 200 nm. At the tips of four silicon oxide microcantilevers, narrow carbon tips are grown in converging directions and subsequently coated with a conducting layer. The probe is placed in contact with a conducting surface, whereby the electrode resistance can be determined....... The nanoelectrodes withstand considerable contact force before breaking. The probe offers a unique possibility to position the voltage sensors, as well as the source and drain electrodes in areas of nanoscale dimensions. ©2000 American Institute of Physics....

  4. Scanning microscopic four-point conductivity probes

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Hansen, Torben Mikael; Bøggild, Peter

    2002-01-01

    A method for fabricating microscopic four-point probes is presented. The method uses silicon-based microfabrication technology involving only two patterning steps. The last step in the fabrication process is an unmasked deposition of the conducting probe material, and it is thus possible to select...... the conducting material either for a silicon wafer or a single probe unit. Using shadow masking photolithography an electrode spacing (pitch) down to 1.1 mum was obtained, with cantilever separation down to 200 run. Characterisation measurements have shown the microscopic probes to be mechanically very flexible...

  5. Realization of a scanning ion beam monitor

    International Nuclear Information System (INIS)

    Pautard, C.

    2008-07-01

    During this thesis, a scanning ion beam monitor has been developed in order to measure on-line fluence spatial distributions. This monitor is composed of an ionization chamber, Hall Effect sensors and a scintillator. The ionization chamber set between the beam exit and the experiment measures the ion rate. The beam spot is localized thanks to the Hall Effect sensors set near the beam sweeping magnets. The scintillator is used with a photomultiplier tube to calibrate the ionization chamber and with an imaging device to calibrate the Hall Effect sensors. This monitor was developed to control the beam lines of a radiobiology dedicated experimentation room at GANIL. These experiments are held in the context of the research in hadron-therapy. As a matter of fact, this new cancer treatment technique is based on ion irradiations and therefore demands accurate knowledge about the relation between the dose deposit in biological samples and the induced effects. To be effective, these studies require an on-line control of the fluence. The monitor has been tested with different beams at GANIL. Fluence can be measured with a relative precision of ±4% for a dose rate ranging between 1 mGy/s and 2 Gy/s. Once permanently set on the beam lines dedicated to radiobiology at GANIL, this monitor will enable users to control the fluence spatial distribution for each irradiation. The scintillator and the imaging device are also used to control the position, the spot shape and the energy of different beams such as those used for hadron-therapy. (author)

  6. Conductivity change of defective graphene by helium ion beams

    Directory of Open Access Journals (Sweden)

    Yuichi Naitou

    2017-04-01

    Full Text Available Applying a recently developed helium ion microscope, we demonstrated direct nano-patterning and Anderson localization of single-layer graphene (SLG on SiO2/Si substrates. In this study, we clarified the spatial-resolution-limitation factor of direct nano-patterning of SLG. Analysis of scanning capacitance microscopy measurements reveals that the conductivity of helium ion (H+-irradiated SLG nanostructures depends on their geometrical size, i.e., the smaller the H+-irradiated SLG region, the higher its conductivity becomes. This finding can be explained by the hopping carrier transport across strongly localized states of defective SLG.

  7. Oxide interfaces with enhanced ion conductivity

    NARCIS (Netherlands)

    Leon, C.; Santamaria, J.; Boukamp, Bernard A.

    2013-01-01

    The new field of nano-ionics is expected to yield large improvements in the performance of oxide-based energy generation and storage devices based on exploiting size effects in ion conducting materials. The search for novel materials with enhanced ionic conductivity for application in energy devices

  8. Relaxation behavior of ion conducting glasses

    International Nuclear Information System (INIS)

    Bunde, A.; Dieterich, W.; Maass, P.; Meyer, M.

    1997-01-01

    We investigate by Monte Carlo simulations the diffusion of ions in an energetically disordered lattice, where the Coulomb interaction between the mobile ions is explicitly taken into account. We show that the combined effect of Coulomb interaction and disorder can account for the ionic ac-conductivity in glasses and the recently discovered non-Arrhenius behavior of the dc-conductivity in glassy fast ionic conductors. Our results suggest that glassy ionic conductors can be optimized by lowering the strength of the energetic disorder but that the ionic interaction effects set an upper bound for the conductivity at high temperatures. (author)

  9. Precursor and Neutral Loss Scans in an RF Scanning Linear Quadrupole Ion Trap

    Science.gov (United States)

    Snyder, Dalton T.; Szalwinski, Lucas J.; Schrader, Robert L.; Pirro, Valentina; Hilger, Ryan; Cooks, R. Graham

    2018-03-01

    Methodology for performing precursor and neutral loss scans in an RF scanning linear quadrupole ion trap is described and compared to the unconventional ac frequency scan technique. In the RF scanning variant, precursor ions are mass selectively excited by a fixed frequency resonance excitation signal at low Mathieu q while the RF amplitude is ramped linearly to pass ions through the point of excitation such that the excited ion's m/z varies linearly with time. Ironically, a nonlinear ac frequency scan is still required for ejection of the product ions since their frequencies vary nonlinearly with the linearly varying RF amplitude. In the case of the precursor scan, the ejection frequency must be scanned so that it is fixed on a product ion m/z throughout the RF scan, whereas in the neutral loss scan, it must be scanned to maintain a constant mass offset from the excited precursor ions. Both simultaneous and sequential permutation scans are possible; only the former are demonstrated here. The scans described are performed on a variety of samples using different ionization sources: protonated amphetamine ions generated by nanoelectrospray ionization (nESI), explosives ionized by low-temperature plasma (LTP), and chemical warfare agent simulants sampled from a surface and analyzed with swab touch spray (TS). We lastly conclude that the ac frequency scan variant of these MS/MS scans is preferred due to electronic simplicity. In an accompanying manuscript, we thus describe the implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 using constant RF voltage. [Figure not available: see fulltext.

  10. Fast sodium ion conductivity in supertetrahedral phosphidosilicates.

    Science.gov (United States)

    Johrendt, Dirk; Haffner, Arthur; Hatz, Anna Katharina; Moudrakovski, Igor; Lotsch, Bettina Valeska

    2018-04-03

    Fast sodium ion conductors are key components of sodium-based all-solid-state batteries which hold promise as safe systems for large-scale storage of electrical power. Here, we report the synthesis, crystal structure determination and Na+ ion conductivities of six new sodium ion conductors, the phosphidosilicates Na19Si13P25, Na23Si19P33, Na23Si28P45, Na23Si37P57, LT-NaSi2P3 and HT-NaSi2P3, which are entirely based on earth-abundant elements. The new structures exhibit SiP4 tetrahedra assembling interpenetrating networks of T3 to T5 supertetrahedral clusters which can be hierarchically assigned to sphalerite- or diamond-type structures. 23Na solid-state NMR spectra and geometrical pathway analysis indicate Na+ ion mobility between the supertetrahedral cluster networks. Electrochemical impedance spectroscopy revealed Na+ ion conductivities up to σ (Na+) = 4 ∙ 10-4 Scm-1 with an activation energy of Ea = 0.25 eV in HT-NaSi2P3 at 25 °C. The conductivities increase with the size of the supertetrahedral clusters due to the dilution of Na+ ions as the charge density of the anionic supertetrahedral networks decreases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structures and ion conduction pathways of amorphous lithium ion conductors

    International Nuclear Information System (INIS)

    Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei

    2014-01-01

    For ( 7 Li 2 S) x (P 2 S 5 ) 100-x glasses (x = 50, 60, and 70) and 7 Li 7 P 3 S 11 metastable crystal, time-of-flight neutron diffraction and synchrotron X-ray diffraction experiments were performed, and three-dimensional structures and conduction pathways of lithium ions were studied using the reverse Monte Carlo (RMC) modeling and the bond valence sum (BVS) approach. The conduction pathways of the lithium ions could be classified into two types: lithium 'stable' and 'metastable' regions, respectively. Moreover, it was found that there is a significant relationship between the activation energy of the electrical conduction and the topology of the conduction pathways of the lithium ions. (author)

  12. Conduction Mechanisms and Structure of Ionomeric Single-Ion Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Ralph H. [Pennsylvania State Univ., University Park, PA (United States); Maranas, Janna K. [Pennsylvania State Univ., University Park, PA (United States); Mueller, Karl T. [Pennsylvania State Univ., University Park, PA (United States); Runt, James [Pennsylvania State Univ., University Park, PA (United States); Winey, Karen I. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-03-01

    Our team has designed using DFT (Gaussian) and synthesized low glass transition temperature single-ion conductors that are either polyanions that conduct small cations Li+, Na+, Cs+ or polycations that conduct small anions F-, OH-, Br-. We utilize a wide range of complimentary experimental materials characterization tools to understand ion transport; differential scanning calorimetry, dielectric relaxation spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, linear viscoelasticity, X-ray scattering and molecular dynamics simulations. The glass transition temperature Tg needs to be as low as possible to facilitate ion transport, so the nonionic parts of the polymer need to be polar, flexible and have strong solvation interactions with the ions. The lowest Tg we have managed for polyanions conducting Li+ is -60 °C. In contrast, polysiloxanes with PEO side chains and tetrabutylphosphonium cationic side groups have Tg ≈ -75 °C that barely increases with ion content, as anticipated by DFT. A survey of all polyanions in the literature suggests that Tg < -80 °C is needed to achieve the 10-4 S/cm conductivity needed for battery separators.

  13. Ion heat conduction losses in Extrap

    International Nuclear Information System (INIS)

    Tennfors, E.

    1989-08-01

    The classical ion heat conduction losses in Extrap discharges are calculated using polynomial magnetic field profiles and compared to the power input. For polynomials matched to magnetic field profiles measured in present experiments, these losses are small. By varying the coefficients of the polynomials, a region is found, where the power input can balance the classical heat conduction losses. Each set of coefficients corresponds to values of the parameters F and Θ used in RFP physics. The region determines a region in an F-Θ diagram, including the usual RFP region but extending to higher values of Θ and βΘ

  14. Conductance of Ion Channels - Theory vs. Experiment

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents

  15. Nanochannel alignment analysis by scanning transmission ion microscopy

    DEFF Research Database (Denmark)

    Rajta, I.; Gál, G.A.B.; Szilasi, S.Z.

    2010-01-01

    In this paper a study on the ion transmission ratio of a nanoporous alumina sample is presented. The sample was investigated by scanning transmission ion microscopy (STIM) with different beam sizes. The hexagonally close-packed AlO nanocapillary array, realized as a suspended membrane of 15 νm...

  16. Electronic structure classifications using scanning tunneling microscopy conductance imaging

    International Nuclear Information System (INIS)

    Horn, K.M.; Swartzentruber, B.S.; Osbourn, G.C.; Bouchard, A.; Bartholomew, J.W.

    1998-01-01

    The electronic structure of atomic surfaces is imaged by applying multivariate image classification techniques to multibias conductance data measured using scanning tunneling microscopy. Image pixels are grouped into classes according to shared conductance characteristics. The image pixels, when color coded by class, produce an image that chemically distinguishes surface electronic features over the entire area of a multibias conductance image. Such open-quotes classedclose quotes images reveal surface features not always evident in a topograph. This article describes the experimental technique used to record multibias conductance images, how image pixels are grouped in a mathematical, classification space, how a computed grouping algorithm can be employed to group pixels with similar conductance characteristics in any number of dimensions, and finally how the quality of the resulting classed images can be evaluated using a computed, combinatorial analysis of the full dimensional space in which the classification is performed. copyright 1998 American Institute of Physics

  17. High-voltage scanning ion microscope: Beam optics and design

    Energy Technology Data Exchange (ETDEWEB)

    Magilin, D., E-mail: dmitrymagilin@gmail.com; Ponomarev, A.; Rebrov, V.; Ponomarov, A.

    2015-05-01

    This article is devoted to the conceptual design of a compact high-voltage scanning ion microscope (HVSIM). In an HVSIM design, the ion optical system is based on a high-brightness ion source. Specifically, the ion optical system is divided into two components: an ion injector and a probe-forming system (PFS) that consists of an accelerating tube and a multiplet of quadrupole lenses. The crossover is formed and controlled by the injector, which acts as an object collimator, and is focused on the image plane by the PFS. The ion microprobe has a size of 0.1 μm and an energy of 2 MeV. When the influence of the chromatic and third-order aberrations is theoretically taken into account, the HVSIM forms an ion microprobe.

  18. Scanning MOKE investigation of ion-beam-synthesized silicide films

    Energy Technology Data Exchange (ETDEWEB)

    Gumarov, G.G., E-mail: ifoggg@gmail.com [Zavoisky Physical-Technical Institute of THE RAS, 10/7 Sibirsky Trakt, Kazan 420029, Tatarstan (Russian Federation); Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Tatarstan (Russian Federation); Konovalov, D.A.; Alekseev, A.V. [Zavoisky Physical-Technical Institute of THE RAS, 10/7 Sibirsky Trakt, Kazan 420029, Tatarstan (Russian Federation); Petukhov, V.Yu. [Zavoisky Physical-Technical Institute of THE RAS, 10/7 Sibirsky Trakt, Kazan 420029, Tatarstan (Russian Federation); Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Tatarstan (Russian Federation); Zhikharev, V.A. [Kazan State Technology University, 68 Karl Marx St., Kazan 420015, Tatarstan (Russian Federation); Nuzhdin, V.I.; Shustov, V.A. [Zavoisky Physical-Technical Institute of THE RAS, 10/7 Sibirsky Trakt, Kazan 420029, Tatarstan (Russian Federation)

    2012-07-01

    Fe ions with an energy of 40 keV were implanted into Si plates with the fluence varying in the range of (1.6-3.0) Multiplication-Sign 10{sup 17} ion/cm{sup 2} in the external magnetic field. Scanning magnetooptical Kerr effect (MOKE) studies have shown that all samples possess uniaxial anisotropy. Both the coercive field and the anisotropy field increase with fluence. It was suggested that induced anisotropy is caused by inverse magnetostriction.

  19. Scanning conductance microscopy investigations on fixed human chromosomes

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Lange, Jacob Moresco; Jensen, Linda Boye

    2008-01-01

    Scanning conductance microscopy investigations were carried out in air on human chromosomes fixed on pre-fabricated SiO2 surfaces with a backgate. The point of the investigation was to estimate the dielectric constant of fixed human chromosomes in order to use it for microfluidic device...... optimization. The phase shift caused by the electrostatic forces, together with geometrical measurements of the atomic force microscopy (AFM) cantilever and the chromosomes were used to estimate a value,for the dielectric constant of different human chromosomes....

  20. Focal depth measurement of scanning helium ion microscope

    International Nuclear Information System (INIS)

    Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke

    2014-01-01

    When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.

  1. Scanning ion deep level transient spectroscopy: I. Theory

    International Nuclear Information System (INIS)

    Laird, J S; Jagadish, C; Jamieson, D N; Legge, G J F

    2006-01-01

    Theoretical aspects of a new technique for the MeV ion microbeam are described in detail for the first time. The basis of the technique, termed scanning ion deep level transient spectroscopy (SIDLTS), is the imaging of defect distributions within semiconductor devices. The principles of SIDLTS are similar to those behind other deep level transient spectroscopy (DLTS) techniques with the main difference stemming from the injection of carriers into traps using the localized energy-loss of a focused MeV ion beam. Energy-loss of an MeV ion generates an electron-hole pair plasma, providing the equivalent of a DLTS trap filling pulse with a duration which depends on space-charge screening of the applied electric field and ambipolar erosion of the plasma for short ranging ions. Some nanoseconds later, the detrapping current transient is monitored as a charge transient. Scanning the beam in conjunction with transient analysis allows the imaging of defect levels. As with DLTS, the temperature dependence of the transient can be used to extract trap activation levels. In this, the first of a two-part paper, we introduce the various stages of corner capture and derive a simple expression for the observed charge transient. The second paper will illustrate the technique on a MeV ion implanted Au-Si Schottky junction

  2. Energy landscapes for mobile ions in ion conducting solids

    Indian Academy of Sciences (India)

    molecular dynamics (MD) simulations yields quantitative predictions of the ion transport characteristics. As ... Solid electrolytes; bond valence analysis; ion transport in glasses. 1. .... clusters are considered to contribute only to a.c. conduc-.

  3. In situ ion etching in a scanning electron microscope

    International Nuclear Information System (INIS)

    Dhariwal, R.S.; Fitch, R.K.

    1977-01-01

    A facility for ion etching in a scanning electron microscope is described which incorporates a new type of electrostatic ion source and viewing of the specimen is possible within about 30 sec after terminating the ion bombardment. Artefacts produced during etching have been studied and cone formation has been followed during its growth. The instrument has provided useful structural information on metals, alloys, and sinters. However, although insulating materials, such as plastics, glass and resins, have been successfully etched, interpretation of the resultant micrographs is more difficult. Ion etching of soft biological tissues, such as the rat duodenum was found to be of considerable interest. The observed structural features arise from the selective intake of the heavy fixation elements by different parts of the tissue. Hard biological materials, such as dental tissues and restorative materials, have also been studied and the prismatic structure of the enamel and the form and distribution of the dentinal tubules have been revealed. (author)

  4. Frequency-scanning MALDI linear ion trap mass spectrometer for large biomolecular ion detection.

    Science.gov (United States)

    Lu, I-Chung; Lin, Jung Lee; Lai, Szu-Hsueh; Chen, Chung-Hsuan

    2011-11-01

    This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.

  5. Scanning transmission ion microscopy on Fudan SPM facility

    International Nuclear Information System (INIS)

    Li Yongqiang; Shen Hao; Zheng Yi; Li Xinyi; Liu Bo; Satoh Takahiro

    2011-01-01

    In this paper, we report a novel measurement system based on the development of Fudan Scanning Proton Microscopy (SPM) facility. By using Si-PIN diode(Hamamatsu S1223-01) detector, scanning transmission ion microscopy (STIM) measurement system has been set up. It can provide density and structural images with high probing efficiency and non-destruction by utilizing the energy loss of high energy (MeV) and focused ions penetrating through a thin sample. STIM measurement is able to map the density distribution of organic elements which mostly compose biology materials, such information can not be detected by using conventional Be-windowed Si (Li) X-ray detector in Particle Induced X-ray Emission (PIXE) technique. The spatial resolution capability of STIM is higher than PIXE technique at same accelerator status. As a result of STIM measurement, Paramecium attached on the top of Kapton tube was measured by STIM. (authors)

  6. Simultaneous and Sequential MS/MS Scan Combinations and Permutations in a Linear Quadrupole Ion Trap.

    Science.gov (United States)

    Snyder, Dalton T; Szalwinski, Lucas J; Cooks, R Graham

    2017-10-17

    Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MS n operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.

  7. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    Directory of Open Access Journals (Sweden)

    Kota Kasahara

    Full Text Available The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage.

  8. Conducting swift heavy ion track networks

    Czech Academy of Sciences Publication Activity Database

    Fink, Dietmar; Kiv, A.; Fuks, D.; Vacík, Jiří; Hnatowicz, Vladimír; Chandra, A.; Saad, A.

    2010-01-01

    Roč. 165, č. 3 (2010), s. 227-244 ISSN 1042-0150 R&D Projects: GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : ion tracks * negative differential resistance * neural networks Subject RIV: JJ - Other Materials Impact factor: 0.660, year: 2010

  9. Ion thermal conductivity and ion distribution function in the banana regime

    International Nuclear Information System (INIS)

    Taguchi, Masayoshi

    1988-01-01

    A method for calculating the ion thermal conductivity and the ion distribution function in the banana regime is formulated for an axisymmetric toroidal plasma of arbitrary aspect ratio. A simple expression for this conductivity is also derived. (author)

  10. High resolution helium ion scanning microscopy of the rat kidney.

    Directory of Open Access Journals (Sweden)

    William L Rice

    Full Text Available Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details

  11. A computer program for scanning transmission ion microscopy simulation

    International Nuclear Information System (INIS)

    Wu, R.; Shen, H.; Mi, Y.; Sun, M.D.; Yang, M.J.

    2005-01-01

    With the installation of the Scanning Proton Microprobe system at Fudan University, we are in the process of developing a three-dimension reconstruction technique based on scanning transmission ion microscopy-computed tomography (STIM-CT). As the first step, a related computer program of STIM simulation has been established. This program is written in the Visual C++[reg], using the technique of OOP (Object Oriented Programming) and it is a standard multiple-document Windows[reg] program. It can be run with all MS Windows[reg] operating systems. The operating mode is the menu mode, using a multiple process technique. The stopping power theory is based on the Bethe-Bloch formula. In order to simplify the calculation, the improved cylindrical coordinate model was introduced in the program instead of a usual spherical or cylindrical coordinate model. The simulated results of a sample at several rotation angles are presented

  12. Hopping models for ion conduction in noncrystals

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    2007-01-01

    semiconductors). These universalities are subject of much current interest, for instance interpreted in the context of simple hopping models. In the present paper we first discuss the temperature dependence of the dc conductivity in hopping models and the importance of the percolation phenomenon. Next......, the experimental (quasi)universality of the ac conductivity is discussed. It is shown that hopping models are able to reproduce the experimental finding that the response obeys time-temperature superposition, while at the same time a broad range of activation energies is involved in the conduction process. Again...

  13. Aspirated capacitor measurements of air conductivity and ion mobility spectra

    International Nuclear Information System (INIS)

    Aplin, K.L.

    2005-01-01

    Measurements of ions in atmospheric air are used to investigate atmospheric electricity and particulate pollution. Commonly studied ion parameters are (1) air conductivity, related to the total ion number concentration, and (2) the ion mobility spectrum, which varies with atmospheric composition. The physical principles of air ion instrumentation are long established. A recent development is the computerized aspirated capacitor, which measures ions from (a) the current of charged particles at a sensing electrode, and (b) the rate of charge exchange with an electrode at a known initial potential, relaxing to a lower potential. As the voltage decays, only ions of higher and higher mobility are collected by the central electrode and contribute to the further decay of the voltage. This enables extension of the classical theory to calculate ion mobility spectra by inverting voltage decay time series. In indoor air, ion mobility spectra determined from both the voltage decay inversion, and an established voltage switching technique, were compared and shown to be of similar shape. Air conductivities calculated by integration were: 5.3±2.5 and 2.7±1.1 fSm -1 , respectively, with conductivity determined to be 3 fSm -1 by direct measurement at a constant voltage. Applications of the relaxation potential inversion method include air ion mobility spectrum retrieval from historical data, and computation of ion mobility spectra in planetary atmospheres

  14. Scanning probe microscopy of single Au ion implants in Si

    International Nuclear Information System (INIS)

    Vines, L.; Monakhov, E.; Maknys, K.; Svensson, B.G.; Jensen, J.; Hallen, A.; Kuznetsov, A. Yu.

    2006-01-01

    We have studied 5 MeV Au 2+ ion implantation with fluences between 7 x 10 7 and 2 x 10 8 cm -2 in Si by deep level transient spectroscopy (DLTS) and scanning capacitance microscopy (SCM). The DLTS measurements show formation of electrically active defects such as the two negative charge states of the divacancy (V 2 (=/-) and V 2 (-/0)) and the vacancy-oxygen (VO) center. It is observed that the intensity of the V 2 (=/-) peak is lower compared to that of V 2 (-/0) by a factor of 5. This has been attributed to a highly localized distribution of the defects along the ion tracks, which results in trapping of the carriers at V 2 (-/0) and incomplete occupancy of V 2 (=/-). The SCM measurements obtained in a plan view show a random pattern of regions with a reduced SCM signal for the samples implanted with fluence above 2 x 10 8 cm -2 . The reduced SCM signal is attributed to extra charges associated with acceptor states, such as V 2 (-/0), formed along the ion tracks in the bulk Si. Indeed, the electron emission rate from the V 2 (-/0) state is in the range of 10 kHz at room temperature, which is well below the probing frequency of the SCM measurements, resulting in 'freezing' of electrons at V 2 (-/0)

  15. Ion-/proton-conducting apparatus and method

    Science.gov (United States)

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2011-05-17

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  16. Neoclassical electron heat conduction in tokamaks performed by the ions

    International Nuclear Information System (INIS)

    Ware, A.A.

    1987-07-01

    The increment to neoclassical ion heat conduction caused by electron collisions is shown to act like electron heat conduction since the energy is taken from and given back to the electrons at each diffusion step length. It can exceed electron neoclassical heat conduction by an order of magnitude

  17. Enhancement of electrical conductivity of ion-implanted polymer films

    International Nuclear Information System (INIS)

    Brock, S.

    1985-01-01

    The electrical conductivity of ion-implanted films of Nylon 66, Polypropylene (PP), Poly(tetrafluoroethylene) (Teflon) and mainly Poly (ethylene terephthalate) (PET) was determined by DC measurements at voltages up to 4500 V and compared with the corresponding values of pristine films. Measurements were made at 21 0 C +/- 1 0 C and 65 +/- 2% RH. The electrical conductivity of PET films implanted with F + , Ar + , or As + ions at energies of 50 keV increases by seven orders of magnitude as the fluence increases from 1 x 10 18 to 1 x 10 20 ions/m 2 . The conductivity of films implanted with As + was approximately one order greater than those implanted with Ar + , which in turn was approximately one-half order greater than those implanted with F + . The conductivity of the most conductive film ∼1 S/m) was almost 14 orders of magnitude greater than the pristine PET film. Except for the three PET samples implanted at fluences near 1 x 10 20 ions/m 2 with F + , Ar + , and As + ions, all implanted films were ohmic up to an electric field strength of 600 kV/m. The temperature dependence of the conductivity of the three PET films implanted near a fluence of 1 x 10 20 ions/m 2 was measured over the range of 80 K < T < 300 K

  18. Ion implantation damage annealing in 4H-SiC monitored by scanning spreading resistance microscopy

    International Nuclear Information System (INIS)

    Suchodolskis, A.; Hallen, A.; Linnarsson, M.K.; Osterman, J.; Karlsson, U.O.

    2006-01-01

    To obtain a better understanding of the damage annealing process and dopant defect incorporation and activation we have implanted epitaxially grown 4H-SiC layers with high doses of Al + ions. Cross-sections of the samples are investigated by scanning spreading resistance microscopy (SSRM) using a commercial atomic force microscopy (AFM). The defects caused by the implanted ions compensate for the doping and decrease the charge carrier mobility. This causes the resistivity to increase in the as-implanted regions. The calculated profile of implanted ions is in good agreement with the measured ones and shows a skewed Gaussian shape. Implanted samples are annealed up to 400 deg. C. Despite these low annealing temperatures we observe a clear improvement of the sample conductivity in the as-implanted region

  19. Single-ion conducting diblock terpolymers for lithium-ion batteries

    Science.gov (United States)

    Morris, Melody; Epps, Thomas H., III

    Block polymer (BP) electrolytes provide an attractive route to overcome the competing constraints of high conductivity and mechanical/thermal stability in lithium-ion batteries through nanoscale self-assembly. For example, macromolecules can be engineered such that one domain conducts lithium ions and the other prevents lithium dendrite formation. Herein, we report on the behavior of a single-ion conducting BP electrolyte that was designed to facilitate the transport of lithium ions. These polymers differ from traditional salt-doped BP electrolytes, which require the addition of a lithium salt to bestow conductivity and typically suffer from substantial counterion motion that reduces efficiency. New single-ion BPs were synthesized, and the nanoscale morphologies were determined using small angle X-ray scattering and transmission electron microscopy. Electrolyte performance was measured using AC impedance spectroscopy and DC polarization, and the results were correlated to nanoscale morphology and ion content. Enhanced physical understanding of single-ion BPs was gained by connecting the ion mobility to the chemistry, chain structure, and ion content of the single-ion BP. These studies can be applied to other charged-neutral block polymers to elucidate the effects of ion content on self-assembly and macroscopic properties.

  20. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    International Nuclear Information System (INIS)

    Weis, Christoph D.

    2011-01-01

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  1. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Christoph D.

    2011-10-04

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  2. Dopant profiling based on scanning electron and helium ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Augustus K.W., E-mail: kwac2@cam.ac.uk [Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Boden, Stuart A. [University of Southampton, Electronics and Computer Science, Highfield, Southampton SO17 1BJ (United Kingdom)

    2016-02-15

    In this paper, we evaluate and compare doping contrast generated inside the scanning electron microscope (SEM) and scanning helium ion microscope (SHIM). Specialised energy-filtering techniques are often required to produce strong doping contrast to map donor distributions using the secondary electron (SE) signal in the SEM. However, strong doping contrast can be obtained from n-type regions in the SHIM, even without energy-filtering. This SHIM technique is more sensitive than the SEM to donor density changes above its sensitivity threshold, i.e. of the order of 10{sup 16} or 10{sup 17} donors cm{sup −3} respectively on specimens with or without a p–n junction; its sensitivity limit is well above 2×10{sup 17} acceptors cm{sup −3} on specimens with or without a p–n junction. Good correlation is found between the widths and slopes of experimentally measured doping contrast profiles of thin p-layers and the calculated widths and slopes of the potential energy distributions across these layers, at a depth of 1 to 3 nm and 5 to 10 nm below the surface in the SHIM and the SEM respectively. This is consistent with the mean escape depth of SEs in silicon being about 1.8 nm and 7 nm in the SHIM and SEM respectively, and we conclude that short escape depth, low energy SE signals are most suitable for donor profiling. - Highlights: • Strong doping contrast from n-type regions in the SHIM without energy-filtering. • Sensitivity limits are established of the SHIM and SEM techniques. • We discuss the impact of SHIM imaging conditions on quantitative dopant profiling. • Doping contrast stems from different surface layer thicknesses in the SHIM and SEM.

  3. Ion thermal conductivity for a pure tokamak plasma

    International Nuclear Information System (INIS)

    Bolton, C.W. III.

    1981-06-01

    The ion thermal conductivity is calculated for a wide range of aspect ratios and collision frequencies. The calculation is done by solving the drift kinetic equation, with a model collision operator, using a finite element method, and then calculating the energy weighted friction force to determine the heat flux. The thermal conductivity, determined from the heat flux, is then curve fitted to analytic formulas. These formulas allow the conductivity to be calculated at all collision frequencies and aspect ratios down to about 3

  4. Local thermal conductivity of polycrystalline AlN ceramics measured by scanning thermal microscopy and complementary scanning electron microscopy techniques

    International Nuclear Information System (INIS)

    Zhang Yue-Fei; Wang Li; Wei Bin; Ji Yuan; Han Xiao-Dong; Zhang Ze; Heiderhoff, R.; Geinzer, A. K.; Balk, L. J.

    2012-01-01

    The local thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based techniques at room temperature. The quantitative thermal conductivity for the AlN sample is gained by using a SThM with a spatial resolution of sub-micrometer scale through using the 3ω method. A thermal conductivity of 308 W/m·K within grains corresponding to that of high-purity single crystal AlN is obtained. The slight differences in thermal conduction between the adjacent grains are found to result from crystallographic misorientations, as demonstrated in the electron backscattered diffraction. A much lower thermal conductivity at the grain boundary is due to impurities and defects enriched in these sites, as indicated by energy dispersive X-ray spectroscopy. (condensed matter: structural, mechanical, and thermal properties)

  5. Electrical conductivity enhancement of polyethersulfone (PES) by ion implantation

    International Nuclear Information System (INIS)

    Bridwell, L.B.; Giedd, R.E.; Wang Yongqiang; Mohite, S.S.; Jahnke, T.; Brown, I.M.

    1991-01-01

    Amorphous polyethersulfone (PES) films have been implanted with a variety of ions (He, B, C, N and As) at a bombarding energy of 50 keV in the dose range 10 16 -10 17 ions/cm 2 . Surface resistance as a function of dose indicates a saturation effect with a significant difference between He and the other ions used. ESR line shapes in the He implanted samples changed from a mixed Gaussian/Lorentzian to a pure Lorentzian and narrowed with increasing dose. Temperature dependent resistivity indicates an electron hopping mechanism for conduction. Infrared results indicate cross-linking or self-cyclization occurred for all implanted ions with further destruction in the case of As. (orig.)

  6. Electrical studies on silver based fast ion conducting glassy materials

    International Nuclear Information System (INIS)

    Rao, B. Appa; Kumar, E. Ramesh; Kumari, K. Rajani; Bhikshamaiah, G.

    2014-01-01

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag 2 O−[(1−x)B 2 O 3 −xTeO 2 ] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO 2 as well as with temperature. The conductivity of the present glass system is found to be of the order of 10 −2 S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries

  7. Scanning deep level transient spectroscopy using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J S; Bardos, R A; Saint, A; Moloney, G M; Legge, G F.J. [Melbourne Univ., Parkville, VIC (Australia)

    1994-12-31

    Traditionally the scanning ion microprobe has given little or no information regarding the electronic structure of materials in particular semiconductors. A new imaging technique called Scanning Ion Deep Level Transient Spectroscopy (SIDLTS) is presented which is able to spatially map alterations in the band gap structure of materials by lattice defects or impurities. 3 refs., 2 figs.

  8. Scanning deep level transient spectroscopy using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J.S.; Bardos, R.A.; Saint, A.; Moloney, G.M.; Legge, G.F.J. [Melbourne Univ., Parkville, VIC (Australia)

    1993-12-31

    Traditionally the scanning ion microprobe has given little or no information regarding the electronic structure of materials in particular semiconductors. A new imaging technique called Scanning Ion Deep Level Transient Spectroscopy (SIDLTS) is presented which is able to spatially map alterations in the band gap structure of materials by lattice defects or impurities. 3 refs., 2 figs.

  9. Defect imaging and channeling studies using channeling scanning transmission ion microscopy

    NARCIS (Netherlands)

    King, PJC; Breese, MBH; Smulders, PJM; Wilshaw, PR; Grime, GW

    The technique of channeling scanning transmission ion microscopy (CSTIM) can be used to produce images of individual crystal defects (such as dislocations and stacking faults) using the scanned, focused ion beam from a nuclear microprobe. As well as offering a new method for studies of crystal

  10. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Previous reports on Poisson-Nernst-Planck (PNP simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  11. Ion conduction in crystalline superionic solids and its applications

    Science.gov (United States)

    Chandra, Angesh

    2014-06-01

    Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.

  12. Fast optimization and dose calculation in scanned ion beam therapy

    International Nuclear Information System (INIS)

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-01-01

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min

  13. Nanoscale electrical property studies of individual GeSi quantum rings by conductive scanning probe microscopy.

    Science.gov (United States)

    Lv, Yi; Cui, Jian; Jiang, Zuimin M; Yang, Xinju

    2012-11-29

    The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. By combining the SKM results with those obtained by conductive atomic force microscopy and scanning capacitance microscopy, the correlations between the surface potential, conductance, and carrier density distributions are revealed, and a possible interpretation for the QRs' conductance distributions is suggested.

  14. Structure and size of ions electrochemically doped in conducting polymer

    Science.gov (United States)

    Kaneto, Keiichi; Hata, Fumito; Uto, Sadahito

    2018-05-01

    Among electroactive polymers (EAPs) for softactuators, conducting polymers have been intensively studied because of the large strain and stress caused by a low voltage operation. A larger deformation is desirable to extend their cycle life by reducing the operation voltage, and this is advantageous for their potential use in wider applications. The deformation is generated by the insertion of ions by electrochemical oxidation; hence, the magnitude of the strain depends on the bulkiness of the ions in the electrolytes. It is important, therefore, to clarify the structure and size of the ions during the electrochemical cycle, in order to achieve better performance of actuation. Anion and cation sizes (radii) in polypyrrole (PPy) film have been estimated using the precise measurement of strain against the amount of charge injected during the electrochemical cycles, assuming isotropic deformation of the film. The anion size was estimated using an anion-drive film, which was electrodeposited in TBABF4/methyl benzoate. The film was electrochemically cycled in sodium electrolytes, and the strain was measured simultaneously using a laser displacement meter. The cation size was obtained using a cation-drive film, being electropolymerized in aqueous dodecylbenzene sulfonic (DBS) acid. The cation-drive film was cycled in chloride electrolytes and measured the strain. The Cl-, Br-, NO3- , BF4- , and ClO4- radii were found to be approximately 235, 245, 250, 270 and 290 pm, respectively. The radii of K+, Na+ and Li+ were approximately 230, 237 and 274 pm, respectively. The results were discussed and took the crystalline ion radius and hydrated ion radius (Stokes radius) into consideration. It was found that the structure and size of the anions were slightly larger than the crystalline ion radius. Contrary to the anions, the cation radii were close to the hydrated ion radius, being larger than the crystalline ion radius.

  15. Ion implantation induced conducting nano-cluster formation in PPO

    International Nuclear Information System (INIS)

    Das, A.; Patnaik, A.; Ghosh, G.; Dhara, S.

    1997-01-01

    Conversion of polymers and non-polymeric organic molecules from insulating to semiconducting materials as an effect of energetic ion implantation is an established fact. Formation of nano-clusters enriched with carbonaceous materials are made responsible for the insulator-semiconductor transition. Conduction in these implanted materials is observed to follow variable range hopping (VRH) mechanism. Poly(2,6-dimethyl phenylene oxide) [PPO] compatible in various proportion with polystyrene is used as a high thermal resistant insulating polymer. PPO has been used for the first time in the ion implantation study

  16. Enhanced electrical conductivity in Xe ion irradiated CNT based transparent conducting electrode on PET substrate

    Science.gov (United States)

    Surbhi; Sharma, Vikas; Singh, Satyavir; Garg, Priyanka; Asokan, K.; Sachdev, Kanupriya

    2018-02-01

    An investigation of MWCNT-based hybrid electrode films with improved electrical conductivity after Xe ion irradiation is reported. A multilayer hybrid structure of Ag-MWCNT layer embedded in between two ZnO layers was fabricated and evaluated, pre and post 100 keV Xe ion irradiation, for their performance as Transparent Conducting Electrode in terms of their optical and electrical properties. X-ray diffraction pattern exhibits highly c-axis oriented ZnO films with a small variation in lattice parameters with an increase in ion fluence. There is no significant change in the surface roughness of these films. Raman spectra were used to confirm the presence of CNT. The pristine multilayer films exhibit an average transmittance of ˜70% in the entire visible region and the transmittance increases with Xe ion fluence. A significant enhancement in electrical conductivity post-Xe ion irradiation viz from 1.14 × 10-7 Ω-1 cm-1 (pristine) to 7.04 × 103 Ω-1 cm-1 is seen which is due to the high connectivity in the top layer with Ag-CNT hybrid layer facilitating the smooth transfer of electrons.

  17. Software ion scan functions in analysis of glycomic and lipidomic MS/MS datasets.

    Science.gov (United States)

    Haramija, Marko

    2018-03-01

    Hardware ion scan functions unique to tandem mass spectrometry (MS/MS) mode of data acquisition, such as precursor ion scan (PIS) and neutral loss scan (NLS), are important for selective extraction of key structural data from complex MS/MS spectra. However, their software counterparts, software ion scan (SIS) functions, are still not regularly available. Software ion scan functions can be easily coded for additional functionalities, such as software multiple precursor ion scan, software no ion scan, and software variable ion scan functions. These are often necessary, since they allow more efficient analysis of complex MS/MS datasets, often encountered in glycomics and lipidomics. Software ion scan functions can be easily coded by using modern script languages and can be independent of instrument manufacturer. Here we demonstrate the utility of SIS functions on a medium-size glycomic MS/MS dataset. Knowledge of sample properties, as well as of diagnostic and conditional diagnostic ions crucial for data analysis, was needed. Based on the tables constructed with the output data from the SIS functions performed, a detailed analysis of a complex MS/MS glycomic dataset could be carried out in a quick, accurate, and efficient manner. Glycomic research is progressing slowly, and with respect to the MS experiments, one of the key obstacles for moving forward is the lack of appropriate bioinformatic tools necessary for fast analysis of glycomic MS/MS datasets. Adding novel SIS functionalities to the glycomic MS/MS toolbox has a potential to significantly speed up the glycomic data analysis process. Similar tools are useful for analysis of lipidomic MS/MS datasets as well, as will be discussed briefly. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Thermal conductivity profile determination in proton-irradiated ZrC by spatial and frequency scanning thermal wave methods

    International Nuclear Information System (INIS)

    Jensen, C.; Chirtoc, M.; Horny, N.; Antoniow, J. S.; Pron, H.; Ban, H.

    2013-01-01

    Using complementary thermal wave methods, the irradiation damaged region of zirconium carbide (ZrC) is characterized by quantifiably profiling the thermophysical property degradation. The ZrC sample was irradiated by a 2.6 MeV proton beam at 600 °C to a dose of 1.75 displacements per atom. Spatial scanning techniques including scanning thermal microscopy (SThM), lock-in infrared thermography (lock-in IRT), and photothermal radiometry (PTR) were used to directly map the in-depth profile of thermal conductivity on a cross section of the ZrC sample. The advantages and limitations of each system are discussed and compared, finding consistent results from all techniques. SThM provides the best resolution finding a very uniform thermal conductivity envelope in the damaged region measuring ∼52 ± 2 μm deep. Frequency-based scanning PTR provides quantification of the thermal parameters of the sample using the SThM measured profile to provide validation of a heating model. Measured irradiated and virgin thermal conductivities are found to be 11.9 ± 0.5 W m −1 K −1 and 26.7 ±1 W m −1 K −1 , respectively. A thermal resistance evidenced in the frequency spectra of the PTR results was calculated to be (1.58 ± 0.1) × 10 −6 m 2 K W −1 . The measured thermal conductivity values compare well with the thermal conductivity extracted from the SThM calibrated signal and the spatially scanned PTR. Combined spatial and frequency scanning techniques are shown to provide a valuable, complementary combination for thermal property characterization of proton-irradiated ZrC. Such methodology could be useful for other studies of ion-irradiated materials

  19. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  20. Conductive Polymeric Binder for Lithium-Ion Battery Anode

    Science.gov (United States)

    Gao, Tianxiang

    Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle

  1. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  2. Modelling of thermal conductance during microthermal machining with scanning thermal microscope using an inverse methodology

    International Nuclear Information System (INIS)

    Yang Yuching; Chang Winjin; Fang Tehua; Fang Shihchung

    2008-01-01

    In this study, a general methodology for determining the thermal conductance between the probe tip and the workpiece during microthermal machining using Scanning Thermal Microscopy (SThM) has been proposed. The processing system was considered as an inverse heat conduction problem with an unknown thermal conductance. Temperature dependence for the material properties and thermal conductance in the analysis of heat conduction is taken into account. The conjugate gradient method is used to solve the inverse problem. Furthermore, this methodology can also be applied to estimate the thermal contact conductance in other transient heat conduction problems, like metal casting process, injection molding process, and electronic circuit systems

  3. Scanning ion deep level transient spectroscopy: II. Ion irradiated Au-Si Schottky junctions

    International Nuclear Information System (INIS)

    Laird, J S; Jagadish, C; Jamieson, D N; Legge, G J F

    2006-01-01

    Here we introduce a new technique called scanning ion deep level transient spectroscopy (SIDLTS) for the spatial analysis of electrically active defects in devices. In the first part of this paper, a simple theory behind SIDLTS was introduced and factors determining its sensitivity and resolution were discussed. In this paper, we demonstrate the technique on MeV boron implantation induced defects in an Au-Si Schottky junction. SIDLTS measurements are compared with capacitance DLTS measurements over the temperature range, 100-300 K. SIDLTS analyses indicate the presence of two levels, one of which was positively identified as the E c - 0.23 eV divacancy level. The high sensitivity of SIDLTS is verified and the advantages and limitations of the technique are discussed in light of non-exponential components in the charge transient response. Reasons for several undetected levels are also discussed

  4. Comparative study of ion conducting pathways in borate glasses

    International Nuclear Information System (INIS)

    Hall, Andreas; Swenson, Jan; Adams, Stefan

    2006-01-01

    The conduction pathways in metal-halide doped silver, lithium, and sodium diborate glasses have been examined by bond valence analysis of reverse Monte Carlo (RMC) produced structural models of the glasses. Although all glass compositions have basically the same short-range structure of the boron-oxygen network, it is evident that the intermediate-range structure is strongly dependent on the type of mobile ion. The topography of the pathways and the coordination of the pathway sites differ distinctly between the three glass systems. The mobile silver ions in the AgI-doped glass tend to be mainly iodine-coordinated and travel in homogeneously distributed pathways located in salt-rich channels of the borate network. In the NaCl-doped glass, there is an inhomogeneous spatial distribution of pathways that reflects the inhomogeneous introduction of salt ions into the glass. However, since the salt clusters are not connected, no long-range conduction pathways are formed without including also oxygen-rich regions. The pathways in the LiCl-doped glass are slightly more evenly distributed compared to the NaCl-doped glass (but not as ordered as in the AgI-doped glass), and the regions of mainly oxygen-coordinated pathway sites are of higher importance for the long-range migration. In order to more accurately investigate how these differences in the intermediate-range order of the glasses affect the ionic conductivity, we have compared the realistic structure models to more or less randomized structures. An important conclusion from this comparison is that we find no evidence that a pronounced intermediate-range order in the atomic structure or in the network of conduction pathways, as in the AgI-doped glass, is beneficial for the dc conductivity

  5. Construction of a four tip scanning tunneling microscope/scanning electron microscope combination and conductivity measurements of silicide nanowires

    International Nuclear Information System (INIS)

    Zubkov, Evgeniy

    2013-01-01

    In this work the combination of a four-tip scanning tunneling microscope with a scanning electron microscope is presented. By means of this apparatus it is possible to perform the conductivity measurements on the in-situ prepared nanostructures in ultra-high vacuum. With the aid of a scanning electron microscope (SEM), it becomes possible to position the tunneling tips of the four-tip scanning tunneling microscope (STM), so that an arrangement for a four-point probe measurement on nanostructures can be obtained. The STM head was built according to the novel coaxial Beetle concept. This concept allows on the one hand, a very compact arrangement of the components of the STM and on the other hand, the new-built STM head has a good mechanical stability, in order to achieve atomic resolution with all four STM units. The atomic resolution of the STM units was confirmed by scanning a Si(111)-7 x 7 surface. The thermal drift during the STM operation, as well as the resonant frequencies of the mechanical structure of the STM head, were determined. The scanning electron microscope allows the precise and safe navigation of the tunneling tips on the sample surface. Multi tip spectroscopy with up to four STM units can be performed synchronously. To demonstrate the capabilities of the new-built apparatus the conductivity measurements were carried out on metallic yttrium silicide nanowires. The nanowires were prepared by the in-situ deposition of yttrium on a heated Si(110) sample surface. Current-voltage curves were recorded on the nanowires and on the wetting layer in-between. The curves indicate an existence of the Schottky barrier between the yttrium silicide nanowires and the silicon bulk. By means of the two-tip measurements with a gate, the insulating property of the Schottky barrier has been confirmed. Using this Schottky barrier, it is possible to limit the current to the nanowire and to prevent it from flowing through the silicon bulk. A four-tip resistance measurement

  6. Silicon-conductive nanopaper for Li-ion batteries

    KAUST Repository

    Hu, Liangbing

    2013-01-01

    There is an increasing interest in the development of thin, flexible energy storage devices for new applications. For large scale and low cost devices, structures with the use of earth abundant materials are attractive. In this study, we fabricated flexible and conductive nanopaper aerogels with incorporated carbon nanotubes (CNT). Such conductive nanopaper is made from aqueous dispersions with dispersed CNT and cellulose nanofibers. Such aerogels are highly porous with open channels that allow the deposition of a thin-layer of silicon through a plasma-enhanced CVD (PECVD) method. Meanwhile, the open channels also allow for an excellent ion accessibility to the surface of silicon. We demonstrated that such lightweight and flexible Si-conductive nanopaper structure performs well as Li-ion battery anodes. A stable capacity of 1200. mA. h/g for 100 cycles in half-cells is achieved. Such flexible anodes based on earth abundant materials and aqueous dispersions could potentially open new opportunities for low-cost energy devices, and potentially can be applied for large-scale energy storage. © 2012 Elsevier Ltd.

  7. A fluorescent screen + CCD system for quality assurance of therapeutic scanned ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, E., E-mail: eriuli@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Furukawa, T., E-mail: t_furu@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Inaniwa, T., E-mail: taku@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Sato, S., E-mail: shin_s@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Himukai, T., E-mail: himukai@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Shirai, T., E-mail: t_shirai@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Noda, K., E-mail: noda_k@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan)

    2011-12-15

    A fluorescent screen + a charge coupled device (CCD) system were developed to verify the performance of scanned ion beams at the HIMAC. The fluorescent light from the screen is observed by the CCD camera. Two-dimensional fields, produced by the scanning process, i.e., the position and the size of the beam for each scan, represent of the important issues in scanning irradiation. In the developed system, the two-dimensional relative fluence and the flatness of the irradiation field were measured in a straightforward technique from the luminance distribution on the screen. The position and the size of the beams were obtained from centroid computation results of the brightness. By the good sensitivity and spatial resolution of the fluorescent screen + CCD system, the scanned ion beams were verified as the measurements at the HIMAC prototype scanning system.

  8. A fluorescent screen + CCD system for quality assurance of therapeutic scanned ion beams

    Science.gov (United States)

    Takeshita, E.; Furukawa, T.; Inaniwa, T.; Sato, S.; Himukai, T.; Shirai, T.; Noda, K.

    2011-12-01

    A fluorescent screen + a charge coupled device (CCD) system were developed to verify the performance of scanned ion beams at the HIMAC. The fluorescent light from the screen is observed by the CCD camera. Two-dimensional fields, produced by the scanning process, i.e., the position and the size of the beam for each scan, represent of the important issues in scanning irradiation. In the developed system, the two-dimensional relative fluence and the flatness of the irradiation field were measured in a straightforward technique from the luminance distribution on the screen. The position and the size of the beams were obtained from centroid computation results of the brightness. By the good sensitivity and spatial resolution of the fluorescent screen + CCD system, the scanned ion beams were verified as the measurements at the HIMAC prototype scanning system.

  9. New lithium-ion conducting perovskite oxides related to (Li, La)TiO3

    Indian Academy of Sciences (India)

    Unknown

    We describe the synthesis and lithium-ion conductivity of new perovskite-related oxides ... work on lithium-ion conducting perovskite oxides containing d0 cations. Keywords. ..... On the other hand, Nb/Ta compounds show a higher conductivity.

  10. Testing Conducted for Lithium-Ion Cell and Battery Verification

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.

    2004-01-01

    The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.

  11. Investigation of the lithium ion mobility in cyclic model compounds and their ion conduction properties

    Energy Technology Data Exchange (ETDEWEB)

    Thielen, Joerg

    2011-07-27

    In view of both, energy density and energy drain, rechargeable lithium ion batteries outperform other present accumulator systems. However, despite great efforts over the last decades, the ideal electrolyte in terms of key characteristics such as capacity, cycle life, and most important reliable safety, has not yet been identified. Steps ahead in lithium ion battery technology require a fundamental understanding of lithium ion transport, salt association, and ion solvation within the electrolyte. Indeed, well defined model compounds allow for systematic studies of molecular ion transport. Thus, in the present work, based on the concept of immobilizing ion solvents, three main series with a cyclotriphosphazene (CTP), hexaphenylbenzene (HBP), and tetramethylcyclotetrasiloxane (TMS) scaffold were prepared. Lithium ion solvents, among others ethylene carbonate (EC), which has proven to fulfill together with propylene carbonate safety and market concerns in commercial lithium ion batteries, were attached to the different cores via alkyl spacers of variable length. All model compounds were fully characterized, pure and thermally stable up to at least 235 C, covering the requested broad range of glass transition temperatures from -78.1 C up to +6.2 C. While the CTP models tend to rearrange at elevated temperatures over time, which questions the general stability of alkoxide related (poly)phosphazenes, both, the HPB and CTP based models show no evidence of core stacking. In particular the CTP derivatives represent good solvents for various lithium salts, exhibiting no significant differences in the ionic conductivity {sigma}{sub dc} and thus indicating comparable salt dissociation and rather independent motion of cations and ions. In general, temperature-dependent bulk ionic conductivities investigated via impedance spectroscopy follow a William-Landel-Ferry (WLF) type behavior. Modifications of the alkyl spacer length were shown to influence ionic conductivities only in

  12. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  13. Electronically conductive polymer binder for lithium-ion battery electrode

    Science.gov (United States)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  14. Ion-conductivity of thin film Li-Borate glasses

    International Nuclear Information System (INIS)

    Abouzari, M.R.S.

    2007-01-01

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi 2 O.(1-y)B 2 O 3 with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10 -10 Ω -1 cm -1 and 2.5 x 10 -6 Ω -1 cm -1 when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but we have also found that the depression arises from the nature of ionic motions. The model

  15. Ion-conductivity of thin film Li-Borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Abouzari, M.R.S.

    2007-12-17

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi{sub 2}O.(1-y)B{sub 2}O{sub 3} with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10{sup -10} {omega}{sup -1}cm{sup -1} and 2.5 x 10{sup -6} {omega}{sup -1}cm{sup -1} when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but

  16. Scanning ion images; analysis of pharmaceutical drugs at organelle levels

    Science.gov (United States)

    Larras-Regard, E.; Mony, M.-C.

    1995-05-01

    With the ion analyser IMS 4F used in microprobe mode, it is possible to obtain images of fields of 10 × 10 [mu]m2, corresponding to an effective magnification of 7000 with lateral resolution of 250 nm, technical characteristics that are appropriate for the size of cell organelles. It is possible to characterize organelles by their relative CN-, P- and S- intensities when the tissues are prepared by freeze fixation and freeze substitution. The recognition of organelles enables correlation of the tissue distribution of ebselen, a pharmaceutical drug containing selenium. The various metabolites characterized in plasma, bile and urine during biotransformation of ebselen all contain selenium, so the presence of the drug and its metabolites can be followed by images of Se. We were also able to detect the endogenous content of Se in tissue, due to the increased sensitivity of ion analysis in microprobe mode. Our results show a natural occurrence of Se in the border corresponding to the basal lamina of cells of proximal but not distal tubules of the kidney. After treatment of rats with ebselen, an additional site of Se is found in the lysosomes. We suggest that in addition to direct elimination of ebselen and its metabolites by glomerular filtration and urinary elimination, a second process of elimination may occur: Se compounds reaching the epithelial cells via the basal lamina accumulate in lysosomes prior to excretion into the tubular fluid. The technical developments of using the IMS 4F instrument in the microprobe mode and the improvement in preparation of samples by freeze fixation and substitution further extend the limit of ion analysis in biology. Direct imaging of trace elements and molecules marked with a tracer make it possible to determine their targets by comparison with images of subcellular structures. This is a promising advance in the study of pathways of compounds within tissues, cells and the whole organism.

  17. Ion doping of surface layers in conducting electrical materials

    International Nuclear Information System (INIS)

    Zukowski, P.; Karwat, Cz.; Kozak, Cz. M.; Kolasik, M.; Kiszczak, K.

    2009-01-01

    The presented article gives basic component elements of an implanter MKPCz-99, its parameters and methods for doping surface layers of conducting electrical materials. The discussed device makes possible to dope the materials with ions of gaseous elements. At the application of cones made of solid-element sheets it is possible to perform doping with atoms that do not chemically react with the modified material. By performing voltage drop measurements with a specialized circuit between a movable testing electrode and the modified sample the dependence of transition resistance on pressure force of the testing electrode on the sample can be determined. The testing can be performed at the current passage of a determined value for surfaces modified with ions of gaseous elements or atoms of solid elements. A computer stand for switch testing makes possible to measure temperature of switch contacts and voltage drop at the contact and thereby to determine contact resistance of a switch depending on the number of switch cycles (ON-OFF). Pattern recording of current and voltage at the switch contacts and the application of an adequate computer software makes possible to determined the value of energy between fixed and moving contacts at their getting apart. In order to eliminate action of the environment onto the switch operation measurements can be performed at placing the tested switch together with the driving system in an atmosphere of noble gas like argon. (authors)

  18. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  19. On fabrication procedures of Li-ion conducting garnets

    Energy Technology Data Exchange (ETDEWEB)

    Hanc, Emil [The Mineral and Energy Economy Research Institute, Polish Academy of Sciences, ul. Wybickiego 7, 31-261 Kraków (Poland); Zając, Wojciech, E-mail: wojciech.zajac@agh.edu.pl [AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków (Poland); Lu, Li; Yan, Binggong; Kotobuki, Masashi [Materials Science Group, Department of Mechanical Engineering, National University of Singapore (Singapore); Ziąbka, Magdalena [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków (Poland); Molenda, Janina [AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków (Poland)

    2017-04-15

    Ceramic oxides exhibiting high lithium-ion mobility at room temperature receive broad attention as candidate electrolytes for lithium batteries. Lithium-stuffed garnets from the Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} group seem to be especially promising because of their high ionic conductivity at room temperature and their electrochemical stability. In this work, we discuss factors that affect formation of the garnet in its bulk form or in the form of thick and thin films. We demonstrate that zinc oxide can be applied as a sintering aid that facilitate the formation of the highly conducting cubic Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} garnet phase in a single-step sintering procedure. Based on our experience with the single-step sintering experiments, we successfully fabricated a thick-film membrane consisting of a garnet solid electrolyte using the tape casting technique. In order to reduce the thickness of the electrolyte even further we investigated the fabrication of a thin-film Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} electrolyte by means of the pulsed laser deposition technique.

  20. Transport and solid state battery characteristic studies of silver based super ion conducting glasses

    International Nuclear Information System (INIS)

    Jayaseelan, S.; Muralidharan, P.; Venkateswarlu, M.; Satyanarayana, N.

    2005-01-01

    Silverarsenotellurite (SAT), silverphosphotellurite (SPT) and silvervanadotellurite (SVT) quaternary glass systems were prepared with various formers compositions by a melt quenching method. Glass nature, glass transition temperature (T g ) and structure of the prepared glasses were identified respectively by X-ray diffraction (XRD), differential scanning calorimetric (DSC) and Fourier transform infrared (FT-IR) technique. Electrical conductivity studies were carried out by impedance measurement in the frequency range 40 Hz to 100 KHz at different temperatures for all three sets of AgI-Ag 2 O-[TeO 2 -M 2 O 5 ] (M 2 O 5 = As 2 O 5 , P 2 O 5 , V 2 O 5 ) glasses. The high conducting compositions of SAT, SPT and SVT glass samples were fixed from the results of total conductivity (σ t ). Electronic conductivity (σ e ) studies were made on high conducting composition of each glass system by Wagner's polarization method. Total current (i t ) is due to ion and electron. Electronic current (i e ) due to electron were estimated through mobility studies. Ionic conductivity (σ i ) and ionic current (i i ) were calculated respectively using the conductivity (σ t and σ e ) and current (i t and i e ) results for the SAT, SPT and SVT glasses. Transport numbers due to ion (t i ) and electron (t e ) were calculated using the conductivity and mobility results for each glass system. The high conducting composition of the SAT, SPT and SVT glasses were used as solid electrolytes with silver metal as an anode and iodine:graphite (I:C) as a cathode for the fabrication of solid state batteries (SSBs). All the fabricated batteries were characterized by measuring the open circuit voltage (OCV) and polarization properties and estimated the batteries performances

  1. Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices

    International Nuclear Information System (INIS)

    Shukur, M.F.; Kadir, M.F.Z.

    2015-01-01

    Highlights: • Cation transference number of the highest conducting starch-chitosan-NH 4 Cl-glycerol electrolyte is 0.56. • LSV has shown that the polymer electrolyte is suitable for fabrication of EDLC and proton batteries. • The fabricated EDLC has been charged and discharged for 500 cycles. • Secondary proton battery has been charged and discharged for 40 cycles. - Abstract: This paper reports the characterization of starch-chitosan blend based solid polymer electrolyte (SPE) system and its application in electrochemical double layer capacitor (EDLC) and proton batteries. All the SPEs are prepared via solution cast technique. Results from X-ray diffraction (XRD) verify the conductivity result from our previous work. Scanning electron microscopy (SEM) analysis shows the difference in the electrolyte's surface with respect to NH 4 Cl and glycerol content. From transference number measurements (TNM), transference number of ion (t ion ) of the electrolytes shows that ion is the dominant conducting species. Transference number of cation (t + ) for the highest conducting electrolyte is found to be 0.56. Linear sweep voltammetry (LSV) result confirms the suitability of the highest conducting electrolyte to be used in the fabrication of EDLC and proton batteries. The EDLC has been characterized using cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. The open circuit potential (OCP) of the primary proton batteries for 48 h is lasted at (1.54 ± 0.02) V, while that of secondary proton batteries is lasted at (1.58 ± 0.01) V. The primary proton batteries have been discharged at different constant currents. The secondary proton battery has been charged and discharged for 40 cycles

  2. Conductance of single atoms and molecules studied with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Neel, N; Kroeger, J; Limot, L; Berndt, R

    2007-01-01

    The conductance of single atoms and molecules is investigated with a low-temperature scanning tunnelling microscope. In a controlled and reproducible way, clean Ag(111) surfaces, individual silver atoms on Ag(111) as well as individual C 60 molecules adsorbed on Cu(100) are contacted with the tip of the microscope. Upon contact the conductance changes discontinuously in the case of the tip-surface junction while the tip-atom and tip-molecule junctions exhibit a continuous transition from the tunnelling to the contact regime

  3. Physico-chemical changes in heavy ions irradiated polymer foils by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Ciesla, K.; Trautmann, Ch.; Vansant, E.F.

    1994-01-01

    The sample of commercial PETP (Hostaphan) and very heavy ions irradiated products were investigated by differential scanning calorimetry in nitrogen flow. Irradiation were performed with Dy ions of 13 MeV/u with fluences 5 x 10 10 ions/cm 2 . Differences were observed in melting behaviour of unirradiated and irradiated foils. The influence of irradiation conditions on the results was noticed. Moreover the samples of polyimide (Kapton) and polycarbonate (Macrofol) irradiated in similar conditions were examined by DSC. The DSC traces have been compared with those of unirradiated reference samples. (author). 8 refs, 5 figs

  4. Nano-tomography of porous geological materials using focused ion beam-scanning electron microscopy

    NARCIS (Netherlands)

    Liu, Yang; King, Helen E.; van Huis, Marijn A.; Drury, Martyn R.; Plümper, Oliver

    2016-01-01

    Tomographic analysis using focused ion beam-scanning electron microscopy (FIB-SEM) provides three-dimensional information about solid materials with a resolution of a few nanometres and thus bridges the gap between X-ray and transmission electron microscopic tomography techniques. This contribution

  5. Boundary Element Solution of Geometrical Inverse Heat Conduction Problems for Development of IR CAT Scan

    International Nuclear Information System (INIS)

    Choi, C. Y.; Park, C. T.; Kim, T. H.; Han, K. N.; Choe, S. H.

    1995-01-01

    A geometrical inverse heat conduction problem is solved for the development of Infrared Computerized-Axial-Tomography (IR CAT) Scan by using a boundary element method in conjunction with regularization procedure. In this problem, an overspecified temperature condition by infrared scanning is provided on the surface, and is used together with other conditions to solve the position of an unknown boundary (cavity). An auxiliary problem is introduced in the solution of this problem. By defining a hypothetical inner boundary for the auxiliary problem domain, the cavity is located interior to the domain and its position is determined by solving a potential problem. Boundary element method with regularization procedure is used to solve this problem, and the effects of regularization on the inverse solution method are investigated by means of numerical analysis

  6. Magnetic-field-controlled negative differential conductance in scanning tunneling spectroscopy of graphene npn junction resonators

    Science.gov (United States)

    Li, Si-Yu; Liu, Haiwen; Qiao, Jia-Bin; Jiang, Hua; He, Lin

    2018-03-01

    Negative differential conductance (NDC), characterized by the decreasing current with increasing voltage, has attracted continuous attention for its various novel applications. The NDC typically exists in a certain range of bias voltages for a selected system and controlling the regions of NDC in curves of current versus voltage (I -V ) is experimentally challenging. Here, we demonstrate a magnetic-field-controlled NDC in scanning tunneling spectroscopy of graphene npn junction resonators. The magnetic field not only can switch on and off the NDC, but also can continuously tune the regions of the NDC in the I -V curves. In the graphene npn junction resonators, magnetic fields generate sharp and pronounced Landau-level peaks with the help of the Klein tunneling of massless Dirac fermions. A tip of scanning tunneling microscope induces a relatively shift of the Landau levels in graphene beneath the tip. Tunneling between the misaligned Landau levels results in the magnetic-field-controlled NDC.

  7. Exploring the QCD Phase Structure with Beam Energy Scan in Heavy-ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaofeng, E-mail: xfluo@mail.ccnu.edu.cn

    2016-12-15

    Beam energy scan programs in heavy-ion collisions aim to explore the QCD phase structure at high baryon density. Sensitive observables are applied to probe the signatures of the QCD phase transition and critical point in heavy-ion collisions at RHIC and SPS. Intriguing structures, such as dip, peak and oscillation, have been observed in the energy dependence of various observables. In this paper, an overview is given and corresponding physics implications will be discussed for the experimental highlights from the beam energy scan programs at the STAR, PHENIX and NA61/SHINE experiments. Furthermore, the beam energy scan phase II at RHIC (2019–2020) and other future experimental facilities for studying the physics at low energies will be also discussed.

  8. EXPERIMENTAL EFFECTS OF CONDUCTIVITY AND MAJOR IONS ON STREAM PERIPHYTON - abstract

    Science.gov (United States)

    Our study examined if specific conductivities comprised of different ions associated with resource extraction affected stream periphyton assemblages, which are important sources of primary production. Sixteen artificial streams were dosed with two ion recipes intended to mimic so...

  9. Closed-loop conductance scanning tunneling spectroscopy: demonstrating the equivalence to the open-loop alternative.

    Science.gov (United States)

    Hellenthal, Chris; Sotthewes, Kai; Siekman, Martin H; Kooij, E Stefan; Zandvliet, Harold J W

    2015-01-01

    We demonstrate the validity of using closed-loop z(V) conductance scanning tunneling spectroscopy (STS) measurements for the determination of the effective tunneling barrier by comparing them to more conventional open-loop I(z) measurements. Through the development of a numerical model, the individual contributions to the effective tunneling barrier present in these experiments, such as the work function and the presence of an image charge, are determined quantitatively. This opens up the possibility of determining tunneling barriers of both vacuum and molecular systems in an alternative and more detailed manner.

  10. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    National Research Council Canada - National Science Library

    Florjanczyk, Zbigniew

    2008-01-01

    This project report concerns studies on the synthesis of new polymer electrolytes for application in lithium and lithium-ion batteries characterized by limited participation of anions in the transport...

  11. Theory and simulation of ion conduction in the pentameric GLIC channel.

    Science.gov (United States)

    Zhu, Fangqiang; Hummer, Gerhard

    2012-10-09

    GLIC is a bacterial member of the large family of pentameric ligand-gated ion channels. To study ion conduction through GLIC and other membrane channels, we combine the one-dimensional potential of mean force for ion passage with a Smoluchowski diffusion model, making it possible to calculate single-channel conductance in the regime of low ion concentrations from all-atom molecular dynamics (MD) simulations. We then perform MD simulations to examine sodium ion conduction through the GLIC transmembrane pore in two systems with different bulk ion concentrations. The ion potentials of mean force, calculated from umbrella sampling simulations with Hamiltonian replica exchange, reveal a major barrier at the hydrophobic constriction of the pore. The relevance of this barrier for ion transport is confirmed by a committor function that rises sharply in the barrier region. From the free evolution of Na(+) ions starting at the barrier top, we estimate the effective diffusion coefficient in the barrier region, and subsequently calculate the conductance of the pore. The resulting diffusivity compares well with the position-dependent ion diffusion coefficient obtained from restrained simulations. The ion conductance obtained from the diffusion model agrees with the value determined via a reactive-flux rate calculation. Our results show that the conformation in the GLIC crystal structure, with an estimated conductance of ~1 picosiemens at 140 mM ion concentration, is consistent with a physiologically open state of the channel.

  12. Correlative Analysis of Immunoreactivity in Confocal Laser-Scanning Microscopy and Scanning Electron Microscopy with Focused Ion Beam Milling

    Directory of Open Access Journals (Sweden)

    Takahiro eSonomura

    2013-02-01

    Full Text Available Three-dimensional reconstruction of ultrastructure of rat brain with minimal effort has recently been realized by scanning electron microscopy combined with focused ion beam milling (FIB-SEM. Because application of immunohistochemical staining to electron microscopy has a great advantage in that molecules of interest are specifically localized in ultrastructures, we here tried to apply immunocytochemistry to FIB-SEM and correlate immunoreactivity in confocal laser-scanning microcopy (CF-LSM with that in FIB-SEM. The dendrites of medium-sized spiny neurons in rat neostriatum were visualized with a recombinant viral vector, which labeled the infected neurons with membrane-targeted GFP in a Golgi stain-like fashion, and thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2. After detecting the sites of terminals apposed to the dendrites in CF-LSM, GFP and VGluT2 immunoreactivities were further developed for electron microscopy by the immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB methods, respectively. In the contrast-inverted FIB-SEM images, silver precipitation and DAB deposits were observed as fine dark grains and diffuse dense profiles, respectively, indicating that these immunoreactivities were easily recognizable as in the images of transmission electron microscopy. In the sites of interest, some appositions were revealed to display synaptic specialization of asymmetric type. The present method is thus useful in the three-dimensional analysis of immunocytochemically differentiated synaptic connection in the central neural circuit.

  13. A genome scan conducted in a multigenerational pedigree with convergent strabismus supports a complex genetic determinism.

    Directory of Open Access Journals (Sweden)

    Anouk Georges

    Full Text Available A genome-wide linkage scan was conducted in a Northern-European multigenerational pedigree with nine of 40 related members affected with concomitant strabismus. Twenty-seven members of the pedigree including all affected individuals were genotyped using a SNP array interrogating > 300,000 common SNPs. We conducted parametric and non-parametric linkage analyses assuming segregation of an autosomal dominant mutation, yet allowing for incomplete penetrance and phenocopies. We detected two chromosome regions with near-suggestive evidence for linkage, respectively on chromosomes 8 and 18. The chromosome 8 linkage implied a penetrance of 0.80 and a rate of phenocopy of 0.11, while the chromosome 18 linkage implied a penetrance of 0.64 and a rate of phenocopy of 0. Our analysis excludes a simple genetic determinism of strabismus in this pedigree.

  14. A genome scan conducted in a multigenerational pedigree with convergent strabismus supports a complex genetic determinism.

    Science.gov (United States)

    Georges, Anouk; Cambisano, Nadine; Ahariz, Naïma; Karim, Latifa; Georges, Michel

    2013-01-01

    A genome-wide linkage scan was conducted in a Northern-European multigenerational pedigree with nine of 40 related members affected with concomitant strabismus. Twenty-seven members of the pedigree including all affected individuals were genotyped using a SNP array interrogating > 300,000 common SNPs. We conducted parametric and non-parametric linkage analyses assuming segregation of an autosomal dominant mutation, yet allowing for incomplete penetrance and phenocopies. We detected two chromosome regions with near-suggestive evidence for linkage, respectively on chromosomes 8 and 18. The chromosome 8 linkage implied a penetrance of 0.80 and a rate of phenocopy of 0.11, while the chromosome 18 linkage implied a penetrance of 0.64 and a rate of phenocopy of 0. Our analysis excludes a simple genetic determinism of strabismus in this pedigree.

  15. Ionic conduction in 70-MeV C5+-ion-irradiated poly(vinylidenefluoride- co-hexafluoropropylene)-based gel polymer electrolytes

    International Nuclear Information System (INIS)

    Saikia, D.; Kumar, A.; Singh, F.; Avasthi, D.K.; Mishra, N.C.

    2005-01-01

    In an attempt to increase the Li + -ion diffusivity, poly(vinylidenefluoride-co-hexafluoropropylene)-(propylene carbonate+diethyl carbonate)-lithium perchlorate gel polymer electrolyte system has been irradiated with 70-MeV C 5+ -ion beam of nine different fluences. Swift heavy-ion irradiation shows enhancement in ionic conductivity at lower fluences and decrease in ionic conductivity at higher fluences with respect to unirradiated gel polymer electrolyte films. Maximum room-temperature (303 K) ionic conductivity is found to be 2x10 -2 S/cm after irradiation with a fluence of 10 11 ions/cm 2 . This interesting result could be attributed to the fact that for a particular ion beam with a given energy, a higher fluence provides critical activation energy for cross linking and crystallization to occur, which results in the decrease in ionic conductivity. X-ray-diffraction results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤10 11 ions/cm 2 ) and increase in crystallinity at higher fluences (>10 11 ions/cm 2 ). Analysis of Fourier-transform infrared spectroscopy results suggests the bond breaking at a fluence of 5x10 9 ions/cm 2 and cross linking at a fluence of 10 12 ions/cm 2 and corroborate conductivity and x-ray-diffraction results. Scanning electron micrographs exhibit increased porosity of the polymer electrolyte after ion irradiation

  16. Improvements in technique for determining the surfactant penetration in hair fibres using scanning ion beam analyses

    International Nuclear Information System (INIS)

    Hollands, R.; Clough, A.S.; Meredith, P.

    1999-01-01

    The penetration abilities of surfactants need to be known by companies manufacturing hair-care products. In this work three complementary techniques were used simultaneously - PIXE, NRA and RBS - to measure the penetration of a surfactant, which had been deuterated, into permed hair fibres. Using a scanning micro-beam of 2 MeV 3 He ions 2-dimensional concentration maps were obtained which showed whether the surfactant penetrated the fibre or just stayed on the surface. This is the first report of the use of three simultaneous scattering techniques with a scanning micro-beam. (author)

  17. Structural, thermal and ion transport properties of radiation grafted lithium conductive polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)]. E-mail: mahmoudeithar@mailcity.com; Saidi, Hamdani [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)

    2006-10-10

    Structural, thermal and ion transport properties of lithium conductive polymer electrolytes prepared by radiation-induced grafting of styrene onto poly(vinylidene fluoride) (PVDF) films and subsequent activation with LiPH{sub 6}/EC/DEC liquid electrolyte were investigated in correlation with the content of the grafted polystyrene (Y%). The changes in the structure were studied using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Thermal gravimetric analysis (TGA) was used to evaluate the thermal stability. The ionic conductivity was measured by means of ac impedance spectroscopy at various temperatures. The polymer electrolytes were found to undergo considerable structural and morphological changes that resulted in a noticeable increase in their ionic conductivity with the increase in Y% at various temperatures (25-65 deg. C). The ionic conductivity achieved a value of 1.61 x 10{sup -3} S cm{sup -1} when Y of the polymer electrolyte reached 50% and at 25 deg. C. The polymer electrolytes also showed a multi-step degradation behaviour and thermal stability up to 120 deg. C, which suits normal lithium battery operation temperature range. The overall results of this work suggest that the structural changes took place in PVDF matrix during the preparation of these polymer electrolytes have a strong impact on their various properties.

  18. A novel approach to water polution monitoring by combining ion exchange resin and XRF-scanning technique

    Science.gov (United States)

    Huang, J. J.; Lin, S. C.; Löwemark, L.; Liou, Y. H.; Chang, Q. M.; Chang, T. K.; Wei, K. Y.; Croudace, I. W. C.

    2017-12-01

    Due to the rapid industrial expansion, environments are subject to irregular fluctuations and spatial distributions in pollutant concentrations. This study proposes to use ion exchange resin accompanied with the XRF-scanning technique to monitor environmental pollution. As a passive sampling sorbent, the use of ion exchange resin provides a rapid, low cost and simple method to detect episodic pollution signals with a high spatial sampling density. In order to digest large quantities of samples, the fast and non-destructive Itrax-XRF core scanner has been introduced to assess elemental concentrations in the resin samples. Although the XRF scanning results are often considered as a semi-quantitative measurement due to possible absorption or scattering caused by the physical variabilities of scanned materials, the use of resin can minimize such influences owing to the standarization of the sample matrix. In this study, 17 lab-prepared standard resin samples were scanned with the Itrax-XRF core scanner (at 100 s exposure time with the Mo-tube) and compared with the absolute elemental concentrations. Six elements generally used in pollution studies (Cr, Mn, Ni, Cu, Zn, and Pb) were selected, and their regression lines and correlation coefficients were determined. In addition, 5 standard resin samples were scanned at different exposure time settings (1 s, 5 s, 15 s, 30 s, 100 s) to address the influence of exposure time on the accuracy of the measurements. The results show that within the test range (from few ppm to thousands ppm), the correlation coefficients are higher than 0.97, even at the shortest exposure time (1 s). Furthermore, a pilot field survey with 30 resin samples has been conducted in a potentially polluted farm area in central Taiwan to demonstrate the feasibility of this novel approach. The polluted hot zones could be identified and the properties and sources of wastewater pollution can therefore be traced over large areas for the purposes of

  19. Surface damage through grazing incidence ions investigated by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Redinger, Alex

    2009-01-01

    Surface damage, caused by grazing incidence ions, is investigated with variable temperature scanning tunneling microscopy. The experiments are carried out on a Pt(111) crystal. The kinetic energy of noble gas ions is varied between 1-15 keV and the angle of incidence can be adjusted between θ = 78.5 and θ = 90 measured with respect to the surface normal. The damage patterns of single ion impacts, on flat terraces and at step edges of monoatomic height, are investigated at low surface temperatures. Ions hitting a flat terrace are usually specular reflected. The energy transfer from the ion to the crystal atoms is small and only little damage is produced. In contrast, at ascending step edges, which are illuminated by the ion beam, large angle scattering events occur. Sputtering, adatom and vacancy production is induced. However, a significant fraction of the ions, which hit step edges, enter the crystal and are guided in between two atomic layers parallel to the surface via small angle binary collisions. This steering process is denoted as subsurface channeling. The energy loss per length scale of the channeled particles is low, which results in long ion trajectories (up to 1000A). During the steering process, the ions produce surface damage. Depending on the ion species and the ion energy, adatom and vacancies or surface vacancy trenches of monoatomic width are observed. The surface damage can be used to track the path of the ion. This makes the whole trajectory of single ions with keV energy visible. The number of sputtered atoms per incident ion at ascending step edges, i.e. the step edge sputtering yield, is measured experimentally for different irradiation conditions. For θ = 86 , the sputtering yield is determined from the fluence dependent retraction of pre-existing illuminated step edges. An alternative method for the step edge sputtering yield determination, is the analysis of the concentration of ascending steps and of the removed amount of material as a

  20. Surface damage through grazing incidence ions investigated by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Redinger, Alex

    2009-07-10

    Surface damage, caused by grazing incidence ions, is investigated with variable temperature scanning tunneling microscopy. The experiments are carried out on a Pt(111) crystal. The kinetic energy of noble gas ions is varied between 1-15 keV and the angle of incidence can be adjusted between {theta} = 78.5 and {theta} = 90 measured with respect to the surface normal. The damage patterns of single ion impacts, on flat terraces and at step edges of monoatomic height, are investigated at low surface temperatures. Ions hitting a flat terrace are usually specular reflected. The energy transfer from the ion to the crystal atoms is small and only little damage is produced. In contrast, at ascending step edges, which are illuminated by the ion beam, large angle scattering events occur. Sputtering, adatom and vacancy production is induced. However, a significant fraction of the ions, which hit step edges, enter the crystal and are guided in between two atomic layers parallel to the surface via small angle binary collisions. This steering process is denoted as subsurface channeling. The energy loss per length scale of the channeled particles is low, which results in long ion trajectories (up to 1000A). During the steering process, the ions produce surface damage. Depending on the ion species and the ion energy, adatom and vacancies or surface vacancy trenches of monoatomic width are observed. The surface damage can be used to track the path of the ion. This makes the whole trajectory of single ions with keV energy visible. The number of sputtered atoms per incident ion at ascending step edges, i.e. the step edge sputtering yield, is measured experimentally for different irradiation conditions. For {theta} = 86 , the sputtering yield is determined from the fluence dependent retraction of pre-existing illuminated step edges. An alternative method for the step edge sputtering yield determination, is the analysis of the concentration of ascending steps and of the removed amount

  1. Analysis of tyrosine phosphorylation sites in signaling molecules by a phosphotyrosine-specific immonium ion scanning method

    DEFF Research Database (Denmark)

    Steen, Hanno; Pandey, Akhilesh; Andersen, Jens S

    2002-01-01

    mechanism for activating or inhibiting enzymes and for the assembly of multiprotein complexes. Here, we describe a mass spectrometry-based phosphotyrosine-specific immonium ion scanning (PSI scanning) method for selective detection of tyrosine-phosphorylated peptides. Once the tyrosine....... Because of its simplicity and specificity, PSI scanning is likely to become an important tool in proteomic studies of pathways involving tyrosine phosphorylation....

  2. Studies of YBa{sub 2}Cu{sub 3}O{sub 6+x} degradation and surface conductivity properties by Scanning Spreading Resistance Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Truchly, Martin, E-mail: martin.truchly@fmph.uniba.sk [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Plecenik, Tomas; Krsko, Ondrej; Gregor, Maros; Satrapinskyy, Leonid; Roch, Tomas; Grancic, Branislav; Mikula, Marian [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Dujavova, Agata; Chromik, Stefan [Institute of Electrical Engineering, Slovak Academy of Sciences, 84104 Bratislava (Slovakia); Kus, Peter; Plecenik, Andrej [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia)

    2012-12-14

    Local surface conductivity properties and surface degradation of c-axis oriented YBa{sub 2}Cu{sub 3}O{sub 6+x} (YBCO) thin films were studied by Scanning Spreading Resistance Microscopy (SSRM). For the surface degradation studies, the YBCO surface was cleaned by ion beam etching and the SSRM surface conductivity map has been subsequently repeatedly measured over several hours in air and pure nitrogen. Average surface conductivity of the scanned area was gradually decreasing over time in both cases, faster in air. This was explained by oxygen out-diffusion in both cases and chemical reactions with water vapor in air. The obtained surface conductivity images also revealed its high inhomogenity on micrometer and nanometer scale with numerous regions of highly enhanced conductivity compared to the surroundings. Furthermore, it has been shown that the size of these conductive regions considerably depends on the applied voltage. We propose that such inhomogeneous surface conductivity is most likely caused by varying thickness of degraded YBCO surface layer as well as varying oxygen concentration (x parameter) within this layer, what was confirmed by scanning Auger electron microscopy (SAM). In our opinion the presented findings might be important for analysis of current-voltage and differential characteristics measured on classical planar junctions on YBCO as well as other perovskites.

  3. Tuning the conductivity of vanadium dioxide films on silicon by swift heavy ion irradiation

    Directory of Open Access Journals (Sweden)

    H. Hofsäss

    2011-09-01

    Full Text Available We demonstrate the generation of a persistent conductivity increase in vanadium dioxide thin films grown on single crystal silicon by irradiation with 1 GeV 238U swift heavy ions at room temperature. VO2 undergoes a temperature driven metal-insulator-transition (MIT at 67 °C. After room temperature ion irradiation with high electronic energy loss of 50 keV/nm the conductivity of the films below the transition temperature is strongly increased proportional to the ion fluence of 5·109 U/cm2 and 1·1010 U/cm2. At high temperatures the conductivity decreases slightly. The ion irradiation slightly reduces the MIT temperature. This observed conductivity change is persistent and remains after heating the samples above the transition temperature and subsequent cooling. Low temperature measurements down to 15 K show no further MIT below room temperature. Although the conductivity increase after irradiation at such low fluences is due to single ion track effects, atomic force microscopy (AFM measurements do not show surface hillocks, which are characteristic for ion tracks in other materials. Conductive AFM gives no evidence for conducting ion tracks but rather suggests the existence of conducting regions around poorly conducting ion tracks, possible due to stress generation. Another explanation of the persistent conductivity change could be the ion-induced modification of a high resistivity interface layer formed during film growth between the vanadium dioxide film and the n-Silicon substrate. The swift heavy ions may generate conducting filaments through this layer, thus increasing the effective contact area. Swift heavy ion irradiation can thus be used to tune the conductivity of VO2 films on silicon substrates.

  4. In-air scanning transmission ion microscopy of cultured cancer cells

    International Nuclear Information System (INIS)

    Ortega, R.; Deves, G.; Moretto, Ph.

    2001-01-01

    Scanning transmission ion microscopy (STIM) imaging of living cultured cells has been carried out using a proton external-beam with the nuclear microprobe of Bordeaux-Gradignan. STIM could be performed in air atmosphere after passage of a focused proton beam through a 150 nm thick silicon nitride window. Energy loss STIM images were obtained with a spatial resolution in the micrometer range and enabled the identification of sub-cellular ultrastructures

  5. Scanning transmission ion micro-tomography (STIM-T) of biological specimens

    International Nuclear Information System (INIS)

    Schwertner, Michael; Sakellariou, Arthur; Reinert, Tilo; Butz, Tilman

    2006-01-01

    Computed tomography (CT) was applied to sets of Scanning Transmission Ion Microscopy (STIM) projections recorded at the LIPSION ion beam laboratory (Leipzig) in order to visualize the 3D-mass distribution in several specimens. Examples for a test structure (copper grid) and for biological specimens (cartilage cells, cygospore) are shown. Scanning Transmission Micro-Tomography (STIM-T) at a resolution of 260 nm was demonstrated for the first time. Sub-micron features of the Cu-grid specimen were verified by scanning electron microscopy. The ion energy loss measured during a STIM-T experiment is related to the mass density of the specimen. Typically, biological specimens can be analysed without staining. Only shock freezing and freeze-drying is required to preserve the ultra-structure of the specimen. The radiation damage to the specimen during the experiment can be neglected. This is an advantage compared to other techniques like X-ray micro-tomography. At present, the spatial resolution is limited by beam position fluctuations and specimen vibrations

  6. The memory effect of nanoscale memristors investigated by conducting scanning probe microscopy methods

    Directory of Open Access Journals (Sweden)

    César Moreno

    2012-11-01

    Full Text Available We report on the use of scanning force microscopy as a versatile tool for the electrical characterization of nanoscale memristors fabricated on ultrathin La0.7Sr0.3MnO3 (LSMO films. Combining conventional conductive imaging and nanoscale lithography, reversible switching between low-resistive (ON and high-resistive (OFF states was locally achieved by applying voltages within the range of a few volts. Retention times of several months were tested for both ON and OFF states. Spectroscopy modes were used to investigate the I–V characteristics of the different resistive states. This permitted the correlation of device rectification (reset with the voltage employed to induce each particular state. Analytical simulations by using a nonlinear dopant drift within a memristor device explain the experimental I–V bipolar cycles.

  7. Hydrogen and oxygen behaviors on Porous-Si surfaces observed using a scanning ESD ion microscope

    International Nuclear Information System (INIS)

    Itoh, Yuki; Ueda, Kazuyuki

    2004-01-01

    A scanning electron-stimulated desorption (ESD) ion microscope (SESDIM) measured the 2-D images of hydrogen and oxygen distribution on solid surfaces. A primary electron beam at 600 eV, with a pulse width of 220 ns, resulted in ion yields of H + and O + . This SESDIM is applied to the surface analysis of Porous-Si (Po-Si) partially covered with SiN films. During the heating of a specimen of the Po-Si at 800 deg. C under ultra-high-vacuum (UHV) conditions, the components of the surface materials were moved or diffused by thermal decomposition accompanied by a redistribution of hydrogen and oxygen. After cyclic heating of above 800 deg. C, the dynamic behaviors of H + and O + accompanied by the movements of the SiN layers were observed as images of H + and O + . This was because the H + and O + ions have been identified as composite materials by their kinetic energies

  8. thermal, electrical and structural characterization of fast ion conducting glasses (Ag Br)x(AgPO)1-x

    International Nuclear Information System (INIS)

    Kartini, E.; Yufus, S.; Priyanto, T; Indayaningsih, N; Collins, M F

    2001-01-01

    Fast ion conducting glasses are of considerable technological interest because of their possible application in batteries, sensors, and displays. One of the main scientific challenges is to explain how the disordered structure of the glass is related to the high ionic conductivity that can be achieved at ambient temperature. Fast ion conducting glasses (AgBr) x (AgPO3) 1- x with x=0.0; 0.2; 0.3; 0.4; 0.5; 0.7; and 0.85 were prepared by rapid quenching. The studies of structure, thermal property and electrical conductivity have been made. The X-ray diffraction patterns of this system show that the sample are glasses for x 0.5. The neutron diffraction data shows that all AgBr doped glasses exhibit a strong and relatively sharp diffraction peak at anomalously low momentum transfer value, Q∼ 0.7 Α - 1. The low Q-peak is not observed in AgPO 3 glass, and in the X-ray data. The results of electrical conductivity show that the conduction is essentially ionic and due to silver ions alone. The logarithm of the ionic conductivity increases with increasing AgBr mole fraction, and reaches maximum for x = 0.5. The thermal property results measured by differential scanning calorimetric show that the temperatures of the glass transition, the crystallization and the melt reach minimum for the glass with composition x 0.5. We conclude that there appears to be a relation between higher conductivity at ambient temperature, and the low Q-peak. Based on this investigation a better fast ion conducting glass proposed is (AgBr) 0 .5(AgPO 3 ) 0 .5 with the conductivity of 8 x 10 - 5 S/cm

  9. Scanning-probe-microscopy of polyethylene terephthalate surface treatment by argon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Beltran, Francisco [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Sanchez, Isaac C. [Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); España-Sánchez, Beatriz L.; Mota-Morales, Josué D.; Carrillo, Salvador; Enríquez-Flores, C.I. [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Poncin-Epaillard, Fabienne, E-mail: epaill@univ-lemans.fr [Institute for Molecules and Materials, UMR CNRS 6283, Av. O. Messiaen, Universitè du Maine, Le Mans 72085 (France); Luna-Barcenas, Gabriel, E-mail: gluna@qro.cinvestav.mx [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico)

    2015-11-01

    Highlights: • Kelvin-probe-force microscopy helps study of PET surface treated by Ar ion beam. • Ar ion beam surface treatment promotes chain scission and N insertion. • Surface roughness and work function increases as intensity of ion energy increases. • Adhesive force of PET decrease due to the surface changes by ion bombardment. - Abstract: The effect of argon (Ar{sup +}) ion beam treatment on the surface of polyethylene terephthalate (PET) samples was studied by scanning probe microscopy (SPM) and the changes in surface topography were assessed by atomic force microscopy (AFM). Kelvin probe force microscopy (KPFM) sheds light of adhesion force between treated polymer films and a Pt/Cr probe under dry conditions, obtaining the contact potential difference of material. As a result of Ar{sup +} ion bombardment, important surface chemical changes were detected by X-ray photoelectron spectroscopy (XPS) measurements such as chains scission and incorporation of nitrogen species. Ion beam treatment increases the surface roughness from 0.49 ± 0.1 nm to 7.2 ± 0.1 nm and modify the surface potential of PET samples, decreasing the adhesive forces from 12.041 ± 2.1 nN to 5.782 ± 0.06 nN, and producing a slight increase in the electronic work function (Φ{sub e}) from 5.1 V (untreated) to 5.2 V (treated). Ar{sup +} ion beam treatment allows to potentially changing the surface properties of PET, modifying surface adhesion, improving surface chemical changes, wetting properties and surface potential of polymers.

  10. Micro-four-point probes in a UHV scanning electron microscope for in-situ surface-conductivity measurements

    DEFF Research Database (Denmark)

    Shiraki, I.; Nagao, T.; Hasegawa, S.

    2000-01-01

    For in-situ measurements of surface conductivity in ultrahigh vacuum (UHV), we have installed micro-four-point probes (probe spacings down to 4 mum) in a UHV scanning electron microscope (SEM) combined with scanning reflection-high-energy electron diffraction (RHEED). With the aid of piezoactuators...

  11. Variation in viscosity and ion conductivity of a polymer–salt complex ...

    Indian Academy of Sciences (India)

    The ion conductivity shows a strong increase for an irradiation of. 35 kGy. DSC studies indicate a decrease in crystallinity with gamma dose. Keywords. Gamma irradiation; polymer electrolyte; viscosity; ion conductivity. PACS Nos 61.82.Pv; 66.30.Dn; 47.57.Ng; 81.70.Pg. 1. Introduction. When polymers are exposed to high ...

  12. Ion motion and conductivity in rubidium and cesium hexafluorotitanates

    International Nuclear Information System (INIS)

    Moskvich, Yu.N.; Cherkasov, B.I.; Sukhovskij, A.A.; Davidovich, R.L.; AN SSSR, Vladivostok. Inst. Khimii)

    1988-01-01

    Relaxation times for 19 F nuclei and electric conductivity in Rb 2 TiF 6 and Cs 2 TiF 6 polycrystals are measured. The parameters of reoriented anion motion and diffusion cation motion are determined according to the NMR data. The effect of phase transition to the cubic phase on the parameters of these motions are studied. High conductivity reaching values σ∼10 -2 -10 -3 Ohm -1 xm -1 is detected at high temperatures. The electric conductivity observed is shown to be caused by the diffusion motion of Rb + and Cs + cations

  13. Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries

    Science.gov (United States)

    Deng, Kuirong; Wang, Shuanjin; Ren, Shan; Han, Dongmei; Xiao, Min; Meng, Yuezhong

    2017-08-01

    Electrolytes play a vital role in modulating lithium ion battery performance. An outstanding electrolyte should possess both high ionic conductivity and unity lithium ion transference number. Here, we present a facile method to fabricate a network type sp3 boron-based single-ion conducting polymer electrolyte (SIPE) with high ionic conductivity and lithium ion transference number approaching unity. The SIPE was synthesized by coupling of lithium bis(allylmalonato)borate (LiBAMB) and pentaerythritol tetrakis(2-mercaptoacetate) (PETMP) via one-step photoinitiated in situ thiol-ene click reaction in plasticizers. Influence of kinds and content of plasticizers was investigated and the optimized electrolytes show both outstanding ionic conductivity (1.47 × 10-3 S cm-1 at 25 °C) and high lithium transference number of 0.89. This ionic conductivity is among the highest ionic conductivity exhibited by SIPEs reported to date. Its electrochemical stability window is up to 5.2 V. More importantly, Li/LiFePO4 cells with the prepared single-ion conducting electrolytes as the electrolyte as well as the separator display highly reversible capacity and excellent rate capacity under room temperature. It also demonstrates excellent long-term stability and reliability as it maintains capacity of 124 mA h g-1 at 1 C rate even after 500 cycles without obvious decay.

  14. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez

    2012-01-01

    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  15. Real-time dose compensation methods for scanned ion beam therapy of moving tumors

    International Nuclear Information System (INIS)

    Luechtenborg, Robert

    2012-01-01

    Scanned ion beam therapy provides highly tumor-conformal treatments. So far, only tumors showing no considerable motion during therapy have been treated as tumor motion and dynamic beam delivery interfere, causing dose deteriorations. One proposed technique to mitigate these deteriorations is beam tracking (BT), which adapts the beam position to the moving tumor. Despite application of BT, dose deviations can occur in the case of non-translational motion. In this work, real-time dose compensation combined with beam tracking (RDBT) has been implemented into the control system to compensate these dose changes by adaptation of nominal particle numbers during irradiation. Compared to BT, significantly reduced dose deviations were measured using RDBT. Treatment planning studies for lung cancer patients including the increased biological effectiveness of ions revealed a significantly reduced over-dose level (3/5 patients) as well as significantly improved dose homogeneity (4/5 patients) for RDBT. Based on these findings, real-time dose compensated re-scanning (RDRS) has been proposed that potentially supersedes the technically complex fast energy adaptation necessary for BT and RDBT. Significantly improved conformity compared to re-scanning, i.e., averaging of dose deviations by repeated irradiation, was measured in film irradiations. Simulations comparing RDRS to BT revealed reduced under- and overdoses of the former method.

  16. Millimeter length micromachining using a heavy ion nuclear microprobe with standard magnetic scanning

    International Nuclear Information System (INIS)

    Nesprías, F.; Debray, M.E.; Davidson, J.; Kreiner, A.J.

    2013-01-01

    In order to increase the scanning length of our microprobe, we have developed an irradiation procedure suitable for use in any nuclear microprobe, extending at least up to 400% the length of our heavy ion direct writing facility using standard magnetic exploration. Although this method is limited to patterns of a few millimeters in only one direction, it is useful for the manufacture of curved waveguides, optical devices such Mach–Zehnder modulators, directional couplers as well as channels for micro-fluidic applications. As an example, this technique was applied to the fabrication of 3 mm 3D-Mach–Zehnder modulators in lithium niobate with short Y input/output branches and long shaped parallel-capacitor control electrodes. To extend and improve the quality of the machined structures we developed new scanning control software in LabView™ platform. The new code supports an external dose normalization, electrostatic beam blanking and is capable of scanning figures at 16 bit resolution using a National Instruments™ PCI-6731 High-Speed I/O card. A deep and vertical micromachining process using swift 35 Cl ions 70 MeV bombarding energy and direct write patterning was performed on LiNbO 3 , a material which exhibits a strong natural anisotropy to conventional etching. The micromachined structures show the feasibility of this method for manufacturing micro-fluidic channels as well

  17. Millimeter length micromachining using a heavy ion nuclear microprobe with standard magnetic scanning

    Energy Technology Data Exchange (ETDEWEB)

    Nesprías, F. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); Debray, M.E., E-mail: debray@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología. Universidad Nacional de Gral. San Martín, M. De Irigoyen 3100 (1650), San Martín, Buenos Aires (Argentina); Davidson, J. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología. Universidad Nacional de Gral. San Martín, M. De Irigoyen 3100 (1650), San Martín, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires (Argentina); and others

    2013-04-01

    In order to increase the scanning length of our microprobe, we have developed an irradiation procedure suitable for use in any nuclear microprobe, extending at least up to 400% the length of our heavy ion direct writing facility using standard magnetic exploration. Although this method is limited to patterns of a few millimeters in only one direction, it is useful for the manufacture of curved waveguides, optical devices such Mach–Zehnder modulators, directional couplers as well as channels for micro-fluidic applications. As an example, this technique was applied to the fabrication of 3 mm 3D-Mach–Zehnder modulators in lithium niobate with short Y input/output branches and long shaped parallel-capacitor control electrodes. To extend and improve the quality of the machined structures we developed new scanning control software in LabView™ platform. The new code supports an external dose normalization, electrostatic beam blanking and is capable of scanning figures at 16 bit resolution using a National Instruments™ PCI-6731 High-Speed I/O card. A deep and vertical micromachining process using swift {sup 35}Cl ions 70 MeV bombarding energy and direct write patterning was performed on LiNbO{sub 3}, a material which exhibits a strong natural anisotropy to conventional etching. The micromachined structures show the feasibility of this method for manufacturing micro-fluidic channels as well.

  18. Specimen preparation by ion beam slope cutting for characterization of ductile damage by scanning electron microscopy.

    Science.gov (United States)

    Besserer, Hans-Bernward; Gerstein, Gregory; Maier, Hans Jürgen; Nürnberger, Florian

    2016-04-01

    To investigate ductile damage in parts made by cold sheet-bulk metal forming a suited specimen preparation is required to observe the microstructure and defects such as voids by electron microscopy. By means of ion beam slope cutting both a targeted material removal can be applied and mechanical or thermal influences during preparation avoided. In combination with scanning electron microscopy this method allows to examine voids in the submicron range and thus to analyze early stages of ductile damage. In addition, a relief structure is formed by the selectivity of the ion bombardment, which depends on grain orientation and microstructural defects. The formation of these relief structures is studied using scanning electron microscopy and electron backscatter diffraction and the use of this side effect to interpret the microstructural mechanisms of voids formation by plastic deformation is discussed. A comprehensive investigation of the suitability of ion beam milling to analyze ductile damage is given at the examples of a ferritic deep drawing steel and a dual phase steel. © 2016 Wiley Periodicals, Inc.

  19. Scanning ion micro-beam techniques for measuring diffusion in heterogeneous materials

    International Nuclear Information System (INIS)

    Jenneson, P.M.; Clough, A.S.

    1998-01-01

    A raster scanning MeV micro-beam of 1 H + or 3 He + ions was used to study the diffusion of small molecules in heterogeneous materials. The location of elemental contaminants (heavier than Lithium) in polymer insulated cables was studied with 1 H micro-Particle Induced X-ray Emission (μPIXE). Concentration profiles of a deuterated molecule in a hair fibre were determined with 3 He micro-Nuclear Reaction Analysis (μNRA). Chlorine and heavy water (D 2 0) diffusion into cement pastes were profiled using a combination of 3 He μPIXE and μNRA. (authors)

  20. Artificial ion tracks in volcanic dark mica simulating natural radiation damage: A scanning force microscopy study

    International Nuclear Information System (INIS)

    Lang, M.; Glasmacher, U.A.; Moine, B.; Mueller, C.; Neumann, R.; Wagner, G.A.

    2002-01-01

    A new dating technique uses alpha-recoil tracks (ART), formed by the natural α-decay of U, Th and their daughter products, to determine the formation age of Quaternary volcanic rocks ( 6 a). Visualization of etched ART by scanning force microscopy (SFM) enables to access track densities beyond 10 8 cm -2 and thus extend the new ART-dating technique to an age range >10 6 a. In order to simulate natural radiation damage, samples of phlogopite, originating from Quaternary and Tertiary volcanic rocks of the Eifel (Germany) and Kerguelen Islands (Indian Ocean) were irradiated with U, Ni (11.4 MeV/u), Xe, Cr, Ne (1.4 MeV/u) and Bi (200 keV) ions. After irradiation and etching with HF at various etching times, phlogopite surfaces were visualized by SFM. Hexagonal etch pits are typical of U, Xe and Cr ion tracks, but the etch pits of Ni, Ne and Bi ion tracks are triangular. Surfaces irradiated with U, Xe, Cr and Ni ions do not show any significant difference between etch pit density and irradiation fluence, whereas the Ne-irradiated surface show ∼14 times less etch pit density. The etching rate v H (parallel to cleavage) depends on the chemical composition of the phlogopite. The etching rate v T ' (along the track) increases with energy loss

  1. Conductivity studies of Chitosan doped with different ammonium salts: Effect of ion size

    Science.gov (United States)

    Mohan, C. Raja; Senthilkumar, M.; Jayakumar, K.

    2015-06-01

    In the present investigation influence of ion size on the electrical properties of various ammonium salts of various concentrations doped with Chitosan liquid electrolyte has been studied. The attachment of ammonium salts with Chitosan has been confirmed through FTIR Spectrum. Polarizability is calculated from the refractive index data. Addition of ammonium salts increases the conductivity. It is also observed that increase in ion size, increases the ionic conductivity due to increase in amorphous nature of the material. Increase in concentration leads to increase in conductivity due to the presence of more number of free ions.

  2. Calculation and experimental verification of the RBE-weighted dose for scanned ion beams in the presence of target motion

    International Nuclear Information System (INIS)

    Gemmel, A; Rietzel, E; Kraft, G; Durante, M; Bert, C

    2011-01-01

    We present an algorithm suitable for the calculation of the RBE-weighted dose for moving targets with a scanned particle beam. For verification of the algorithm, we conducted a series of cell survival measurements that were compared to the calculations. Calculation of the relative biological effectiveness (RBE) with respect to tumor motion was included in the treatment planning procedure, in order to fully assess its impact on treatment delivery with a scanned ion beam. We implemented an algorithm into our treatment planning software TRiP4D which allows determination of the RBE including its dependence on target tissue, absorbed dose, energy and particle spectra in the presence of organ motion. The calculations are based on time resolved computed tomography (4D-CT) and the corresponding deformation maps. The principal of the algorithm is illustrated in in silico simulations that provide a detailed view of the different compositions of the energy and particle spectra at different target positions and their consequence on the resulting RBE. The calculations were experimentally verified with several cell survival measurements using a dynamic phantom and a scanned carbon ion beam. The basic functionality of the new dose calculation algorithm has been successfully tested in in silico simulations. The algorithm has been verified by comparing its predictions to cell survival measurements. Four experiments showed in total a mean difference (standard deviation) of −1.7% (6.3%) relative to the target dose of 9 Gy (RBE). The treatment planning software TRiP is now capable to calculate the patient relevant RBE-weighted dose in the presence of target motion and was verified against cell survival measurements.

  3. Proton and oxide ion conductivity of doped LaScO3

    DEFF Research Database (Denmark)

    Lybye, D.; Bonanos, N.

    1999-01-01

    . At temperatures below 800 degrees C and low partial pressure of oxygen, proton conduction was dominant. Above this temperature, the ionic conductivity is dominated by oxide ion transport. The protonic transport number was estimated from the conductivities measured in dry and in water-moisturised gas. An isotope......The conductivity of La0.9Sr0.1Sc0.9Mg0.1O3 has been studied by impedance spectroscopy in controlled atmospheres. The material was found to be a mixed conductor with p-type conduction at high oxygen partial pressures and a combined proton and oxide ion conductor at low oxygen partial pressures...

  4. Formation of conductive polymers using nitrosyl ion as an oxidizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung-Shin; Jung, Yongju; Singh, Nikhilendra

    2016-06-07

    A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.

  5. Dense ceramic membranes based on ion conducting oxides

    International Nuclear Information System (INIS)

    Fontaine, M.L.; Larring, Y.; Bredesen, R.; Norby, T.; Grande, T.

    2007-01-01

    This chapter reviews the recent progress made in the fields of high temperature oxygen and hydrogen separation membranes. Studies of membranes for oxygen separation are mainly focusing on materials design to improve flux, and to lesser extent, related to stability issues. High oxygen fluxes satisfying industrial requirements can be obtained but, for many materials, the surface exchange rate is limiting the performance. The current status on electrolyte-type and mixed proton and electron conducting membranes is outlined, highlighting materials with improved stability in typical applications as solid oxide fuel cell technology and gas separation. In our presentation more fundamental aspects related to transport properties, chemical and mechanical stability of membrane materials are also treated. It is concluded that a significantly better understanding of the long term effects of operation in chemical gradients is needed for these types of membrane materials. (authors)

  6. Ion-conducting ceramic apparatus, method, fabrication, and applications

    Science.gov (United States)

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2012-03-06

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  7. Modeling Li-ion conductivity in LiLa(PO{sub 3}){sub 4} powder

    Energy Technology Data Exchange (ETDEWEB)

    Mounir, Ferhi, E-mail: ferhi.mounir@gmail.com [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Karima, Horchani-Naifer [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Khaled, Ben Saad [Laboratoire de Photovoltaieque, Centre des Recherches et des Technologies de l' Energie, Technopole Borj Cedria, BP No. 95, 2050 Hammam Lif (Tunisia); Mokhtar, Ferid [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia)

    2012-07-01

    Polycrystalline powder and single-crystal of LiLa(PO{sub 3}){sub 4} are synthesized by solid state reaction and flux technique, respectively. A morphological description of the obtained product was made based on scanning electron microscopy micrographs. The obtained powder was characterized by X-ray powder diffraction, FTIR and Raman spectroscopies. Ionic conductivity of the LiLa(PO{sub 3}){sub 4} powder was measured and evaluated over a temperature range from 553 to 913 K. Single crystals of LiLa(PO{sub 3}){sub 4} are characterized by single-crystal X-ray diffraction. The LiLa(PO{sub 3}){sub 4} structure was found to be isotypic with LiNd(PO{sub 3}){sub 4}. It crystallizes in the monoclinic system with space group C2/c and cell parameters: a=16.635(6) A, b=7.130(3) A, c=9.913(3) A, {beta}=126.37(4) Degree-Sign , V=946.72(6) A{sup 3} and Z=4. The LiLa(PO{sub 3}){sub 4} structure was described as an alternation between spiraling chains (PO{sub 3}){sub n} and (La{sup 3+}, Li{sup +}) cations along the b direction. The small Li{sup +} ions, coordinated to four oxygen atoms, were located in the large connected cavities created between the LaO{sub 8} polyhedra and the polyphosphate chains. The jumping of Li{sup +} through tunnels of the crystalline network was investigated using complex impedance spectroscopy. The close value of the activation energies calculated through the analysis of conductivity data and loss spectra indicate that the transport in the investigated system is through hopping mechanism. The correlation between ionic conductivity of LiLa(PO{sub 3}){sub 4} and its crystallographic structure was investigated and the most probably transport pathway model was determined.

  8. Modeling Li-ion conductivity in LiLa(PO3)4 powder

    International Nuclear Information System (INIS)

    Mounir, Ferhi; Karima, Horchani-Naifer; Khaled, Ben Saad; Mokhtar, Férid

    2012-01-01

    Polycrystalline powder and single-crystal of LiLa(PO 3 ) 4 are synthesized by solid state reaction and flux technique, respectively. A morphological description of the obtained product was made based on scanning electron microscopy micrographs. The obtained powder was characterized by X-ray powder diffraction, FTIR and Raman spectroscopies. Ionic conductivity of the LiLa(PO 3 ) 4 powder was measured and evaluated over a temperature range from 553 to 913 K. Single crystals of LiLa(PO 3 ) 4 are characterized by single-crystal X-ray diffraction. The LiLa(PO 3 ) 4 structure was found to be isotypic with LiNd(PO 3 ) 4 . It crystallizes in the monoclinic system with space group C2/c and cell parameters: a=16.635(6) Å, b=7.130(3) Å, c=9.913(3) Å, β=126.37(4)°, V=946.72(6) Å 3 and Z=4. The LiLa(PO 3 ) 4 structure was described as an alternation between spiraling chains (PO 3 ) n and (La 3+ , Li + ) cations along the b direction. The small Li + ions, coordinated to four oxygen atoms, were located in the large connected cavities created between the LaO 8 polyhedra and the polyphosphate chains. The jumping of Li + through tunnels of the crystalline network was investigated using complex impedance spectroscopy. The close value of the activation energies calculated through the analysis of conductivity data and loss spectra indicate that the transport in the investigated system is through hopping mechanism. The correlation between ionic conductivity of LiLa(PO 3 ) 4 and its crystallographic structure was investigated and the most probably transport pathway model was determined.

  9. Helium ion microscopy and energy selective scanning electron microscopy - two advanced microscopy techniques with complementary applications

    Science.gov (United States)

    Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.

    2014-06-01

    Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.

  10. Atomistic Modeling of Ion Conduction through the Voltage-Sensing Domain of the Shaker K+ Ion Channel.

    Science.gov (United States)

    Wood, Mona L; Freites, J Alfredo; Tombola, Francesco; Tobias, Douglas J

    2017-04-20

    Voltage-sensing domains (VSDs) sense changes in the membrane electrostatic potential and, through conformational changes, regulate a specific function. The VSDs of wild-type voltage-dependent K + , Na + , and Ca 2+ channels do not conduct ions, but they can become ion-permeable through pathological mutations in the VSD. Relatively little is known about the underlying mechanisms of conduction through VSDs. The most detailed studies have been performed on Shaker K + channel variants in which ion conduction through the VSD is manifested in electrophysiology experiments as a voltage-dependent inward current, the so-called omega current, which appears when the VSDs are in their resting state conformation. Only monovalent cations appear to permeate the Shaker VSD via a pathway that is believed to be, at least in part, the same as that followed by the S4 basic side chains during voltage-dependent activation. We performed μs-time scale atomistic molecular dynamics simulations of a cation-conducting variant of the Shaker VSD under applied electric fields in an experimentally validated resting-state conformation, embedded in a lipid bilayer surrounded by solutions containing guanidinium chloride or potassium chloride. Our simulations provide insights into the Shaker VSD permeation pathway, the protein-ion interactions that control permeation kinetics, and the mechanism of voltage-dependent activation of voltage-gated ion channels.

  11. In situ recording of particle network formation in liquids by ion conductivity measurements.

    Science.gov (United States)

    Pfaffenhuber, Christian; Sörgel, Seniz; Weichert, Katja; Bele, Marjan; Mundinger, Tabea; Göbel, Marcus; Maier, Joachim

    2011-09-21

    The formation of fractal silica networks from a colloidal initial state was followed in situ by ion conductivity measurements. The underlying effect is a high interfacial lithium ion conductivity arising when silica particles are brought into contact with Li salt-containing liquid electrolytes. The experimental results were modeled using Monte Carlo simulations and tested using confocal fluorescence laser microscopy and ζ-potential measurements.

  12. Subsurface Examination of a Foliar Biofilm Using Scanning Electron- and Focused-Ion-Beam Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Patricia K.; Arey, Bruce W.; Mahaffee, Walt F.

    2011-08-01

    The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB can remove a predetermined amount of material from a selected site to allow for subsurface exploration and when coupled with SEM or scanning ion- beam microscopy (SIM) could be suitable to examine the subsurface structure of bacterial biofilms on the leaf surface. The suitability of chemical and cryofixation was examined for use with the FIB SEM to examine bacterial biofilms on leaf surfaces. The biological control agent, Burkholderia pyroccinia FP62, that rapidly colonizes the leaf surface and forms biofilms, was inoculated onto geranium leaves and incubated in a greenhouse for 7 or 14 days. Cryofixation was not suitable for examination of leaf biofilms because it created a frozen layer over the leaf surface that cracked when exposed to the electron beam and the protective cap required for FIB milling could not be accurately deposited. With chemically fixed samples, it was possible to precisely FIB mill a single cross section (5 µm) or sequential cross sections from a single site without any damage to the surrounding surface. Biofilms, 7 days post-inoculation (DPI), were composed of 2 to 5 bacterial cell layers while biofilms 14 DPI ranged from 5 to greater than 30 cell layers. Empty spaces between bacteria cells in the subsurface structure were observed in biofilms 7- and 14-DPI. Sequential cross sections inferred that the empty spaces were often continuous between FP62 cells and could possibly make up a network of channels throughout the biofilm. FIB SEM was a useful tool to observe the subsurface composition of a foliar biofilm.

  13. Effect of variation in the glass-former network structure on the relaxation properties of conductive Ag+ ions in AgI-based fast ion conducting glasses

    Science.gov (United States)

    Hanaya, Minoru; Nakayama, Michiko; Hatate, Atsuo; Oguni, Masaharu

    1995-08-01

    Heat capacities and ac conductivities of AgI-based fast ion conducting glasses of AgI-Ag2O-P2O5 and AgI-Ag2O-B2O3 systems with different P-O or B-O network structures but with the same AgI concentration of 1.55×104 mol m-3 were measured in the temperature range 14-400 K and in the temperature and frequency ranges 100-200 K and 10 Hz-1 MHz, respectively. The β-glass transition due to a freezing-in of the rearrangement of Ag+ ions was observed by adiabatic calorimetry for the glasses in the liquid-nitrogen temperature region, and the conductometry was suggested to see the same mode of Ag+-ion motion as the calorimetry. It was found that the development of the network structure of the glass former at constant AgI concentration resulted in the decrease of the β-glass transition temperature and the activation energy for the diffusional motion of Ag+ ions and in the increase of the heat-capacity jump associated with the glass transition. The results support the amorphous AgI aggregate model for the structure of the conductive region in the glasses with relatively high AgI compositions, indicating that Ag+-ion conductivity is mainly dominated by the degree of development of the AgI aggregate region dependent on the glass-former network structure as well as the AgI composition.

  14. Oxygen ion implantation induced microstructural changes and electrical conductivity in Bakelite RPC detector material

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K. V. Aneesh, E-mail: aneesh1098@gmail.com; Ravikumar, H. B., E-mail: hbr@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Mysore-570006 (India); Ranganathaiah, C., E-mail: cr@physics.uni-mysore.ac.in [Govt. Research Centre, Sahyadri Educational Institutions, Mangalore-575007 (India); Kumarswamy, G. N., E-mail: kumy79@gmail.com [Department of Studies in Physics, Amrita Vishwa Vidyapeetham, Bangalore-560035 (India)

    2016-05-06

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite Resistive Plate Chamber (RPC) detector materials were exposed to 100 keV Oxygen ion in the fluences of 10{sup 12}, 10{sup 13}, 10{sup 14} and 10{sup 15} ions/cm{sup 2}. Ion implantation induced microstructural changes have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and X-Ray Diffraction (XRD) techniques. Positron lifetime parameters viz., o-Ps lifetime and its intensity shows the deposition of high energy interior track and chain scission leads to the formation of radicals, secondary ions and electrons at lower ion implantation fluences (10{sup 12} to10{sup 14} ions/cm{sup 2}) followed by cross-linking at 10{sup 15} ions/cm{sup 2} fluence due to the radical reactions. The reduction in electrical conductivity of Bakelite detector material is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate implantation energy and fluence of Oxygen ion on polymer based Bakelite RPC detector material may reduce the leakage current, improves the efficiency, time resolution and thereby rectify the aging crisis of the RPC detectors.

  15. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Science.gov (United States)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  16. Structural and electrical evolution of He ion irradiated hydrocarbon films observed by conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Fan, Hongyu; Yang, Deming; Sun, Li; Yang, Qi; Niu, Jinhai; Bi, Zhenhua; Liu, Dongping

    2013-01-01

    Polymer-like hydrocarbon films are irradiated with 100 keV He ion at the fluences of 1.0 × 10 15 –1.0 × 10 17 ions/cm 2 or at the irradiation temperature ranging from 25 to 600 °C. Conductive atomic force microscopy (CAFM) has been used to evaluate the nanoscale electron conducting properties of these irradiated hydrocarbon films. Nanoscale and conducting defects have been formed in the hydrocarbon films irradiated at a relatively high ion fluence (1.0 × 10 17 ions/cm 2 ) or an elevated sample temperature. Analysis indicates that He ion irradiation results in the evolution of polymer-like hydrocarbon into a dense structure containing a large fraction of sp 2 carbon clusters. The sp 2 carbon clusters formed in irradiated hydrocarbon films can contribute to the formation of filament-like conducting channels with a relatively high local field-enhancing factor. Measurements indicate that the growth of nanoscale defects due to He ion irradiation can result in the surface swelling of irradiated hydrocarbon films at a relatively high ion fluences or elevated temperature

  17. Structural and electrical evolution of He ion irradiated hydrocarbon films observed by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Yang, Deming [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Sun, Li [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics, Liaoning Normal University, Dalian 116023 (China); Yang, Qi; Niu, Jinhai; Bi, Zhenhua [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electronic Science, Aeronautics, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-10-01

    Polymer-like hydrocarbon films are irradiated with 100 keV He ion at the fluences of 1.0 × 10{sup 15}–1.0 × 10{sup 17} ions/cm{sup 2} or at the irradiation temperature ranging from 25 to 600 °C. Conductive atomic force microscopy (CAFM) has been used to evaluate the nanoscale electron conducting properties of these irradiated hydrocarbon films. Nanoscale and conducting defects have been formed in the hydrocarbon films irradiated at a relatively high ion fluence (1.0 × 10{sup 17} ions/cm{sup 2}) or an elevated sample temperature. Analysis indicates that He ion irradiation results in the evolution of polymer-like hydrocarbon into a dense structure containing a large fraction of sp{sup 2} carbon clusters. The sp{sup 2} carbon clusters formed in irradiated hydrocarbon films can contribute to the formation of filament-like conducting channels with a relatively high local field-enhancing factor. Measurements indicate that the growth of nanoscale defects due to He ion irradiation can result in the surface swelling of irradiated hydrocarbon films at a relatively high ion fluences or elevated temperature.

  18. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  19. Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors

    International Nuclear Information System (INIS)

    Richter, Daniel; Saito, Nami; Chaudhri, Naved; Härtig, Martin; Ellerbrock, Malte; Jäkel, Oliver; Combs, Stephanie E.; Habermehl, Daniel; Herfarth, Klaus; Durante, Marco; Bert, Christoph

    2014-01-01

    Purpose: Estimation of the actual delivered 4-dimensional (4D) dose in treatments of patients with mobile hepatocellular cancer with scanned carbon ion beam therapy. Methods and Materials: Six patients were treated with 4 fractions to a total relative biological effectiveness (RBE)–weighted dose of 40 Gy (RBE) using a single field. Respiratory motion was addressed by dedicated margins and abdominal compression (5 patients) or gating (1 patient). 4D treatment dose reconstructions based on the treatment records and the measured motion monitoring data were performed for the single-fraction dose and a total of 17 fractions. To assess the impact of uncertainties in the temporal correlation between motion trajectory and beam delivery sequence, 3 dose distributions for varying temporal correlation were calculated per fraction. For 3 patients, the total treatment dose was formed from the fractional distributions using all possible combinations. Clinical target volume (CTV) coverage was analyzed using the volumes receiving at least 95% (V 95 ) and 107% (V 107 ) of the planned doses. Results: 4D dose reconstruction based on daily measured data is possible in a clinical setting. V 95 and V 107 values for the single fractions ranged between 72% and 100%, and 0% and 32%, respectively. The estimated total treatment dose to the CTV exhibited improved and more robust dose coverage (mean V 95 > 87%, SD < 3%) and overdose (mean V 107 < 4%, SD < 3%) with respect to the single-fraction dose for all analyzed patients. Conclusions: A considerable impact of interplay effects on the single-fraction CTV dose was found for most of the analyzed patients. However, due to the fractionated treatment, dose heterogeneities were substantially reduced for the total treatment dose. 4D treatment dose reconstruction for scanned ion beam therapy is technically feasible and may evolve into a valuable tool for dose assessment

  20. Chalcogenide glasses as optical and ion-conducting materials. Kogaku oyobi ion dendo zairyo toshite no chalcogenide glass

    Energy Technology Data Exchange (ETDEWEB)

    Toge, N.; Minami, T. (Univ. of Osaka Prefecture, Osaka (Japan))

    1991-12-01

    Nonoxide glasses whose main constituent are chalcogen elements like S, Se, or Te etc. show a lot of various properties, for instance, high infrared transmittancy and semi-conductivity which are already well known. Additionally, the optical properties change a lot along with the phase transition's happening between crystal and noncrystal under comparative low temperature. Further, it is also observed that the glasses containing proper cation appear high ion-conductivity. This paper supplies a brief reviews of chalcogenide glasses used as materials for infrared fiber, phase transition optical memory and superionic conductor, wherein the former two have already on the stage of utilization, particularly the realization of a rewritable optical memory is possible by using chalcogenide glasses film, and ion-conductor is in the phase to have shown the possibility of high conductivity while the development thereof is being expected. 22 refs., 8 figs.

  1. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior may depend on the details of ion hydration....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS...... direct calculation of the number of M+ ions entering the film, and therefore the inserted M+ mass. The mass of the water molecules is calculated as a difference. The results yield the following primary hydration numbers: Li+: 5.5-5.6; Na+: 4.0-4.1; K+: 2.0-2.5; Rb+: 0.6-1.2; Cs+: ~0. The most important...

  2. Modifying the conductivity of polypyrrole through low-energy lead ion implantation

    International Nuclear Information System (INIS)

    Booth, Marsilea Adela; Leveneur, Jérôme; Costa, Alexsandro Santos; Kennedy, John; Harbison, SallyAnn; Travas-Sejdic, Jadranka

    2012-01-01

    Interest lies in the creation of novel nanocomposite materials obtained through mixing, impregnation or incorporation techniques. One such technique is ion implantation which possesses the potential for retaining properties from the base material and implanted material as well as any effects observed from combining the two. To this end low-energy (15 keV) implantation of lead ions of various fluences was performed in conducting polypyrrole films. The presence of lead-rich particles was evidenced through transmission electron microscopy. An interesting trend was observed between fluence and conductivity. Of the fluences tested, the optimum fluences of lead ion implantation in polypyrrole films for enhanced conductivity are 5 × 10 14 at. cm −2 and 2 × 10 15 at. cm −2 . The conductivity and stability appear to result from a combination of effects: polymer degradation arising from ion beam damage, an increase in charge-carriers (dications) present after implantation and precipitation of Pb-rich nanoparticles. Monitoring conductivity over time showed increased retention of conductivity levels after lead implantation. Improvements in stability for polypyrrole open avenues for application and bring polypyrrole one step closer to practical use. A mechanism is suggested for this advantageous retained conductivity. -- Highlights: ► Implanted and characterized polypyrrole films with Pb ions at different fluences. ► Samples indicate high conductivity when implanted with particular fluences. ► Increase in charge carriers and precipitation of conductive Pb-rich phase. ► Conductivity stability is higher for some implanted fluences than for pristine polypyrrole.

  3. Physicochemical, spectroscopic and electrochemical characterization of magnesium ion-conducting, room temperature, ternary molten electrolytes

    Science.gov (United States)

    Narayanan, N. S. Venkata; Ashok Raj, B. V.; Sampath, S.

    Room temperature, magnesium ion-conducting molten electrolytes are prepared using a combination of acetamide, urea and magnesium triflate or magnesium perchlorate. The molten liquids show high ionic conductivity, of the order of mS cm -1 at 298 K. Vibrational spectroscopic studies based on triflate/perchlorate bands reveal that the free ion concentration is higher than that of ion-pairs and aggregates in the melt. Electrochemical reversibility of magnesium deposition and dissolution is demonstrated using cyclic voltammetry and impedance studies. The transport number of Mg 2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.40. Preliminary studies on the battery characteristics reveal good capacity for the magnesium rechargeable cell and open up the possibility of using this unique class of acetamide-based room temperature molten electrolytes in secondary magnesium batteries.

  4. Ultrastructural Characterization of the Glomerulopathy in Alport Mice by Helium Ion Scanning Microscopy (HIM).

    Science.gov (United States)

    Tsuji, Kenji; Suleiman, Hani; Miner, Jeffrey H; Daley, James M; Capen, Diane E; Păunescu, Teodor G; Lu, Hua A Jenny

    2017-09-15

    The glomerulus exercises its filtration barrier function by establishing a complex filtration apparatus consisting of podocyte foot processes, glomerular basement membrane and endothelial cells. Disruption of any component of the glomerular filtration barrier leads to glomerular dysfunction, frequently manifested as proteinuria. Ultrastructural studies of the glomerulus by transmission electron microscopy (TEM) and conventional scanning electron microscopy (SEM) have been routinely used to identify and classify various glomerular diseases. Here we report the application of newly developed helium ion scanning microscopy (HIM) to examine the glomerulopathy in a Col4a3 mutant/Alport syndrome mouse model. Our study revealed unprecedented details of glomerular abnormalities in Col4a3 mutants including distorted podocyte cell bodies and disorganized primary processes. Strikingly, we observed abundant filamentous microprojections arising from podocyte cell bodies and processes, and presence of unique bridging processes that connect the primary processes and foot processes in Alport mice. Furthermore, we detected an altered glomerular endothelium with disrupted sub-endothelial integrity. More importantly, we were able to clearly visualize the complex, three-dimensional podocyte and endothelial interface by HIM. Our study demonstrates that HIM provides nanometer resolution to uncover and rediscover critical ultrastructural characteristics of the glomerulopathy in Col4a3 mutant mice.

  5. Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance

    Science.gov (United States)

    Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Wallace, B. A.; Pohorille, Andrew

    2011-01-01

    Molecular dynamics simulations were carried out in order to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistant with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive.The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be non-conducting. The conductance of the hexamer was estimated to be 115+/-34 pS and 74+/-20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K(+) and Cl(-) with their first solvation shells intact. The free energy barrier encountered by K(+) is only 2.2 kcal/mol whereas Cl(-) encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics. keywords: ion channels, peptaibols, channel conductance, molecular dynamics

  6. Properties of grafted polymer metal complexes as ion exchangers and its electrical conductivity

    International Nuclear Information System (INIS)

    El-Arnaouty, M.B.; Abdel Ghaffar, A.M.; Eid, M.

    2011-01-01

    The polyelectrolyte has been prepared as a potential proton exchanger polymer by grafting of acrylic acid/acrylamide and acrylic acid/acrylonitrile comonomer onto low density polyethylene film via gamma radiation. The influence of grafting percent on the electrical conductivity was studied. The resulting polymers were then characterized by evaluating their physico-chemical properties such as ion exchange capacity, and electrical conductivity as a function of grafting yield. The grafted films at different compositions was characterized by FTIR, TGA and SEM. The ion exchange capacity (IEC) of the grafted film at grafting % (191) and monomer concentration ratio 50:50 for (LDPE-g-AAc/AAm) was found to be more than that for (LDPE-g-AAc/AN). The electrical conductivity was found to be greatly affected by the comonomer composition where it increased as the degree of grafting increased for all grafted films. After alkaline treatment with 3% KOH, the electrical conductivity of the grafted films found to be increased. The presence of potassium as counter ion maximized the electrical conductivity of the grafted films. The electrical conductivity of Cu-membrane complexes was higher than that of both Co and Ni complexes. The electrical conductivity increases by increasing both Cu ions content and temperature

  7. Thermal conductivity measurement of the He-ion implanted layer of W using transient thermoreflectance technique

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Shilian; Li, Yuanfei [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang, Zhigang [Department of Electronic Engineering, Dalian University of Technology, Dalian 116024 (China); Jia, Yuzhen [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213 (China); Li, Chun [School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144 (China); Xu, Ben; Chen, Wanqi [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bai, Suyuan [School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029 (China); Huang, Zhengxing; Tang, Zhenan [Department of Electronic Engineering, Dalian University of Technology, Dalian 116024 (China); Liu, Wei, E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-02-15

    Transient thermoreflectance method was applied on the thermal conductivity measurement of the surface damaged layer of He-implanted tungsten. Uniform damages tungsten surface layer was produced by multi-energy He-ion implantation with thickness of 450 nm. Result shows that the thermal conductivity is reduced by 90%. This technique was further applied on sample with holes on the surface, which was produced by the He-implanted at 2953 K. The thermal conductivity decreases to 3% from the bulk value.

  8. A study of tritium behavior in lithium oxide by ion conductivity measurements

    International Nuclear Information System (INIS)

    Noda, Kenji; Ishii, Yoshinobu; Ohno, Hideo; Watanabe, Hitoshi

    1989-01-01

    Ion conductivity of lithium oxide (Li 2 O) irradiated with oxygen ions was measured to obtain information about the effects of irradiation on the behavior of lithium ions and tritium. The conductivity around 490 K decreased with the ion fluence, while around 440 K it increased. The decrease around 490 K and the increase around 440 K were assumed to be attributed to the F + centers and the unspecified radiation defects, respectively. From the point of view that the rate determinant in the mechanism of diffusion of lithium ions in Li 2 O leading to the ion conductivity is the same as that of tritium, the diffusivity of tritium is assumed to be as follows: the diffusivity of tritium is decreased by the F + centers in the range from 490 K to the temperature at which almost all of F + centers are recovered, while it is increased around 440 K by the unspecified radiation defects. In addition, effects of the irradiation on valence states of tritium (i.e., T + , T - ) were discussed in terms of the radiation defects. (orig.)

  9. Scanning tunnel microscopic image of tungsten (100) and (110) real surfaces and nature of conduction electron reflection

    International Nuclear Information System (INIS)

    Pryadkin, S.L.; Tsoj, V.S.

    1988-01-01

    The electrically polished (100) and (110) surfaces of tungsten are studied with the aid of a scanning tunnel microscope at atmospheric pressure. The (110) surface consists of a large number of atomically plane terraces whereas the (100) surface is faceted. The scanning tunnel microscope data can explain such results of experiments on transverse electron focussing as the strong dependence of the probability for specular reflection of conduction electrons scattered by the (100) surface on the electron de Broglie wavelength and the absence of a dependence of the probability for specular reflection on the wavelength for the (110) surface

  10. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy.

    Science.gov (United States)

    Bauer, J; Sommerer, F; Mairani, A; Unholtz, D; Farook, R; Handrack, J; Frey, K; Marcelos, T; Tessonnier, T; Ecker, S; Ackermann, B; Ellerbrock, M; Debus, J; Parodi, K

    2014-08-21

    Monte Carlo (MC) simulations of beam interaction and transport in matter are increasingly considered as essential tools to support several aspects of radiation therapy. Despite the vast application of MC to photon therapy and scattered proton therapy, clinical experience in scanned ion beam therapy is still scarce. This is especially the case for ions heavier than protons, which pose additional issues like nuclear fragmentation and varying biological effectiveness. In this work, we present the evaluation of a dedicated framework which has been developed at the Heidelberg Ion Beam Therapy Center to provide automated FLUKA MC simulations of clinical patient treatments with scanned proton and carbon ion beams. Investigations on the number of transported primaries and the dimension of the geometry and scoring grids have been performed for a representative class of patient cases in order to provide recommendations on the simulation settings, showing that recommendations derived from the experience in proton therapy cannot be directly translated to the case of carbon ion beams. The MC results with the optimized settings have been compared to the calculations of the analytical treatment planning system (TPS), showing that regardless of the consistency of the two systems (in terms of beam model in water and range calculation in different materials) relevant differences can be found in dosimetric quantities and range, especially in the case of heterogeneous and deep seated treatment sites depending on the ion beam species and energies, homogeneity of the traversed tissue and size of the treated volume. The analysis of typical TPS speed-up approximations highlighted effects which deserve accurate treatment, in contrast to adequate beam model simplifications for scanned ion beam therapy. In terms of biological dose calculations, the investigation of the mixed field components in realistic anatomical situations confirmed the findings of previous groups so far reported only in

  11. Carbon nanotube: nanodiamond Li-ion battery cathodes with increased thermal conductivity

    Science.gov (United States)

    Salgado, Ruben; Lee, Eungiee; Shevchenko, Elena V.; Balandin, Alexander A.

    2016-10-01

    Prevention of excess heat accumulation within the Li-ion battery cells is a critical design consideration for electronic and photonic device applications. Many existing approaches for heat removal from batteries increase substantially the complexity and overall weight of the battery. Some of us have previously shown a possibility of effective passive thermal management of Li-ion batteries via improvement of thermal conductivity of cathode and anode material1. In this presentation, we report the results of our investigation of the thermal conductivity of various Li-ion cathodes with incorporated carbon nanotubes and nanodiamonds in different layered structures. The cathodes were synthesized using the filtration method, which can be utilized for synthesis of commercial electrode-active materials. The thermal measurements were conducted with the "laser flash" technique. It has been established that the cathode with the carbon nanotubes-LiCo2 and carbon nanotube layered structure possesses the highest in-plane thermal conductivity of 206 W/mK at room temperature. The cathode containing nanodiamonds on carbon nanotubes structure revealed one of the highest cross-plane thermal conductivity values. The in-plane thermal conductivity is up to two orders-of-magnitude greater than that in conventional cathodes based on amorphous carbon. The obtained results demonstrate a potential of carbon nanotube incorporation in cathode materials for the effective thermal management of Li-ion high-powered density batteries.

  12. Electrical conductivity and ion diffusion in porcine meniscus: effects of strain, anisotropy, and tissue region.

    Science.gov (United States)

    Kleinhans, Kelsey L; McMahan, Jeffrey B; Jackson, Alicia R

    2016-09-06

    The purpose of the present study was to investigate the effects of mechanical strain, anisotropy, and tissue region on electrical conductivity and ion diffusivity in meniscus fibrocartilage. A one-dimensional, 4-wire conductivity experiment was employed to measure the electrical conductivity in porcine meniscus tissues from two tissue regions (horn and central), for two tissue orientations (axial and circumferential), and for three levels of compressive strain (0%, 10%, and 20%). Conductivity values were then used to estimate the relative ion diffusivity in meniscus. The water volume fraction of tissue specimens was determined using a buoyancy method. A total of 135 meniscus samples were measured; electrical conductivity values ranged from 2.47mS/cm to 4.84mS/cm, while relative ion diffusivity was in the range of 0.235 to 0.409. Results show that electrical conductivity and ion diffusion are significantly anisotropic (pmeniscus fibrocartilage, which is essential in developing new strategies to treat and/or prevent tissue degeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Flexible probe for measuring local conductivity variations in Li-ion electrode films

    Science.gov (United States)

    Hardy, Emilee; Clement, Derek; Vogel, John; Wheeler, Dean; Mazzeo, Brian

    2018-04-01

    Li-ion battery performance is governed by electronic and ionic properties of the battery. A key metric that characterizes Li-ion battery cell performance is the electronic conductivity of the electrodes, which are metal foils with thin coatings of electrochemically active materials. To accurately measure the spatial variation of electronic conductivity of these electrodes, a micro-four-line probe (μ4LP) was designed and used to non-destructively measure the properties of commercial-quality Li-ion battery films. This previous research established that the electronic conductivity of film electrodes is not homogeneous throughout the entirety of the deposited film area. In this work, a micro-N-line probe (μNLP) and a flexible micro-flex-line probe (μFLP) were developed to improve the non-destructive micro-scale conductivity measurements that we can take. These devices were validated by comparing test results to that of the predecessor, the micro-four-line probe (μ4LP), on various commercial-quality Li-ion battery electrodes. Results show that there is significant variation in conductivity on a millimeter and even micrometer length scale through the electrode film. Compared to the μ4LP, the μNLP and μFLP also introduce additional measurement configuration possibilities, while providing a more robust design. Researchers and manufacturers can use these probes to identify heterogeneity in their electrodes during the fabrication process, which will lead to the development of better batteries.

  14. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Inda, Yasushi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Katoh, Takashi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Baba, Mamoru [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)

    2007-12-06

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10{sup -3} S cm{sup -1} or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO{sub 2} positive electrode, a Li{sub 4}Ti{sub 5}O{sub 12} negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic. (author)

  15. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    , and a secondary (or outer) solvation shell, consisting of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior...... may depend on the details of ion hydration. Although the solvation of alkali metal ions in aqueous solution has been discussed for many years, there is still no clear consensus. Part of the discrepancy is simply that different methods measure over different time scales, and therefore do...... not necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique...

  16. Feature-based plan adaptation for fast treatment planning in scanned ion beam therapy

    International Nuclear Information System (INIS)

    Chen Wenjing; Gemmel, Alexander; Rietzel, Eike

    2013-01-01

    We propose a plan adaptation method for fast treatment plan generation in scanned ion beam therapy. Analysis of optimized treatment plans with carbon ions indicates that the particle number modulation of consecutive rasterspots in depth shows little variation throughout target volumes with convex shape. Thus, we extract a depth-modulation curve (DMC) from existing reference plans and adapt it for creation of new plans in similar treatment situations. The proposed method is tested with seven CT serials of prostate patients and three digital phantom datasets generated with the MATLAB code. Plans are generated with a treatment planning software developed by GSI using single-field uniform dose optimization for all the CT datasets to serve as reference plans and ‘gold standard’. The adapted plans are generated based on the DMC derived from the reference plans of the same patient (intra-patient), different patient (inter-patient) and phantoms (phantom-patient). They are compared with the reference plans and a re-positioning strategy. Generally, in 1 min on a standard PC, either a physical plan or a biological plan can be generated with the adaptive method provided that the new target contour is available. In all the cases, the V95 values of the adapted plans can achieve 97% for either physical or biological plans. V107 is always 0 indicating no overdosage, and target dose homogeneity is above 0.98 in all cases. The dose received by the organs at risk is comparable to the optimized plans. The plan adaptation method has the potential for on-line adaptation to deal with inter-fractional motion, as well as fast off-line treatment planning, with either the prescribed physical dose or the RBE-weighted dose. (paper)

  17. Conductive surface modification of cauliflower-like WO3 and its electrochemical properties for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yoon, Sukeun; Woo, Sang-Gil; Jung, Kyu-Nam; Song, Huesup

    2014-01-01

    Highlights: • Synthesis of cauliflower-like carbon-decorated WO 3 . • Superior cyclability and rate capability for cauliflower-like carbon-decorated WO 3 . • Electrochemical reaction behavior of cauliflower-like carbon-decorated WO 3 with lithium. • In-situ XRD analysis during the first discharge–charge shows a complex reaction of intercalation and conversion of WO 3 . - Abstract: Cauliflower-like WO 3 was synthesized by a hydrothermal reaction without a surfactant, followed by firing, and was investigated as an anode material for lithium-ion battery applications. The scanning electron microscope (SEM) and transmission electron microscope (TEM) characterization indicated that WO 3 nanorods had an aggregation framework and built a cauliflower morphology. With the objective of understanding the charge–discharge process within a voltage range of 0–3 V vs. Li + /Li, in situ X-ray diffraction was used and a complex reaction of intercalation and conversion of WO 3 was revealed for the first time. The cauliflower-like WO 3 after being decorated with carbon provides a high gravimetric capacity of >635 mA h/g (Li 5.5 WO 3 ) with good cycling and a high rate capability when used as an anode in lithium-ion batteries. Based on our studies, we attribute the high electrochemical performance to the nanoscopic WO 3 particles and a conductive carbon layer, which makes them a potential candidate for lithium-ion batteries

  18. Electrical conduction in 100 keV Kr+ ion implanted poly (ethylene terephthalate)

    Science.gov (United States)

    Goyal, P. K.; Kumar, V.; Gupta, Renu; Mahendia, S.; Anita, Kumar, S.

    2012-06-01

    Polyethylene terephthalate (PET) samples have been implanted to 100 keV Kr+ ions at the fluences 1×1015-- 1×1016 cm-2. From I-V characteristics, the conduction mechanism was found to be shifted from ohmic to space charge limited conduction (SCLC) after implantation. The surface conductivity of these implanted samples was found to increase with increasing implantation dose. The structural alterations in the Raman spectra of implanted PET samples indicate that such an increase in the conductivity may be attributed to the formation of conjugated double bonded carbonaceous structure in the implanted layer of PET.

  19. Atomic Scale Picture of the Ion Conduction Mechanism in Tetrahedral Network of Lanthanum Barium Gallate

    Energy Technology Data Exchange (ETDEWEB)

    Jalarvo, Niina H [ORNL; Gourdon, Olivier [ORNL; Bi, Zhonghe [ORNL; Gout, Delphine J [ORNL; Ohl, Michael E [ORNL; Paranthaman, Mariappan Parans [ORNL

    2013-01-01

    Combined experimental study of impedance spectroscopy, neutron powder diffraction and quasielastic neutron scattering was performed to shed light into the atomic scale ion migration processes in proton and oxide ion conductor; La0.8Ba1.2GaO3.9 . This material consist of tetrahedral GaO4 units, which are rather flexible and rocking motion of these units promotes the ionic migration process. The oxide ion (vacancy) conduction takes place on channels along c axis, involving a single elementary step, which occurs between adjacent tetrahedron (inter-tetrahedron jump). The proton conduction mechanism consists of intra-tetrahedron and inter-tetrahedron elementary processes. The intra-tetrahedron proton transport is the rate-limiting process, with activation energy of 0.44 eV. The rocking motion of the GaO4 tetrahedron aids the inter-tetrahedral proton transport, which has the activation energy of 0.068 eV.

  20. All-solid-state ion-selective silicone rubber membrane electrodes with a new conducting polymer

    International Nuclear Information System (INIS)

    Park, Eun Rang; Chung, Yeon Joon; Hwang, Sun Woo

    2012-01-01

    New conducting polymers containing heterocyclic rings with carbazole, ethylene dioxythiophene (EDOT) and benzobisthiazole were synthesized and the characterized by using organic spectroscopic methods. Potentiometric ion-selective membrane electrodes (ISMEs) have been extensively used for ion analysis in clinical, environmental, and industrial fields owing to their wide response range (4 to 7 orders of magnitude), no effect of sample turbidity, fast response time, and ease of miniaturization. Considerable attention has been given to alternative use of room-temperature vulcanizing (RTV)-type silicone rubber (SR) owing to its strong adhesion and high thermal durability. Unfortunately, the high membrane resistance of SR-based ion-selective membranes (ISMs) (2 to 3 higher orders of magnitude compared to those of poly(vinyl chloride)(PVC)-based ones) has significantly restricted their application. Herein, we demonstrate a new method to reduce the membrane resistance via addition of a new conducting polymer into the SR-based ISMs.

  1. Mixed mobile ion effect on a.c. conductivity of boroarsenate glasses

    Indian Academy of Sciences (India)

    In this article we report the study of mixed mobile ion effect (MMIE) in boroarsenate glasses. DSC and a.c. electrical conductivity studies have been carried out for MgO–(25−)Li2O–50B2O3–25As2O3 glasses. It is observed that strength of MMIE in a.c. conductivity is less pronounced with increase in temperature and ...

  2. Mesocosm Community Response Sensitivities to Specific Conductivity Comprised of Different Major Ions

    Science.gov (United States)

    Traditional toxicity test assays have been used to evaluate the relative sensitivity to different major ion mixtures as a proxy for understanding what the response of aquatic species growing in their natural environment would be during exposure to specific conductivity stress ema...

  3. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H., E-mail: h-manjunath@blr.amrita.edu; Kumaraswamy, G. N. [Department of Physics, Amrita Vishwa Vidyapeetham, Bengaluru-560 035 (India); Damle, R. [Department of Physics, Bangalore University, Bengaluru-560 056 (India)

    2016-05-06

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10{sup −1} – 10{sup −3} Scm{sup −1}, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEO{sub x}NaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O{sup +1} ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  4. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Benjamin Michael [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, τ, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single

  5. The influence of lateral beam profile modifications in scanned proton and carbon ion therapy: a Monte Carlo study

    CERN Document Server

    Parodi, K; Kraemer, M; Sommerer, F; Naumann, J; Mairani, A; Brons, S

    2010-01-01

    Scanned ion beam delivery promises superior flexibility and accuracy for highly conformal tumour therapy in comparison to the usage of passive beam shaping systems. The attainable precision demands correct overlapping of the pencil-like beams which build up the entire dose distribution in the treatment field. In particular, improper dose application due to deviations of the lateral beam profiles from the nominal planning conditions must be prevented via appropriate beam monitoring in the beamline, prior to the entrance in the patient. To assess the necessary tolerance thresholds of the beam monitoring system at the Heidelberg Ion Beam Therapy Center, Germany, this study has investigated several worst-case scenarios for a sensitive treatment plan, namely scanned proton and carbon ion delivery to a small target volume at a shallow depth. Deviations from the nominal lateral beam profiles were simulated, which may occur because of misaligned elements or changes of the beam optic in the beamline. Data have been an...

  6. Active raster scanning with carbon ions. Reirradiation in patients with recurrent skull base chordomas and chondrosarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, Matthias; Welzel, Thomas; Oelmann, Jan; Habl, Gregor; Hauswald, Henrik; Jensen, Alexandra; Debus, Juergen; Herfarth, Klaus [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Ellerbrock, Malte [Heidelberg Ion Therapy Center (HIT), Heidelberg (Germany)

    2014-07-15

    To evaluate the safety and efficacy of reirradiation with carbon ions in patients with relapse of skull base chordoma and chondrosarcoma. Reirradiation with carbon ions was performed on 25 patients with locally recurrent skull base chordoma (n = 20) or chondrosarcoma (n = 5). The median time between the last radiation exposure and the reirradiation with carbon ions was 7 years. In the past, 23 patients had been irradiated once, two patients twice. Reirradiation was delivered using the active raster scanning method. The total median dose was 51.0 GyE carbon ions in a weekly regimen of five to six fractions of 3 GyE. Local progression-free survival (LPFS) was evaluated using the Kaplan-Meier method; toxicity was evaluated using the NCI Common Terminology Criteria for Adverse Events (CTCAE v.4.03). The treatment could be finished in all patients without interruption. In 80 % of patients, symptom control was achieved after therapy. The 2-year-LPFS probability was 79.3 %. A PTV volume of < 100 ml or a total dose of > 51 GyE was associated with a superior local control rate. The therapy was associated with low acute toxicity. One patient developed grade 2 mucositis during therapy. Furthermore, 12 % of patients had tympanic effusion with mild hypacusis (grade 2), while 20 % developed an asymptomatic temporal lobe reaction after treatment (grade 1). Only one patient showed a grade 3 osteoradionecrosis. Reirradiation with carbon ions is a safe and effective method in patients with relapsed chordoma and chondrosarcoma of the skull base. (orig.) [German] Evaluierung der Sicherheit und Wirksamkeit einer Re-Bestrahlung mittels Kohlenstoffionen bei Patienten mit Lokalrezidiv eines Chordoms und Chondrosarkoms der Schaedelbasis. Bei 25 Patienten mit einem Lokalrezidiv eines Chordoms (n = 20) oder Chondrosarkoms (n = 5) der Schaedelbasis erfolgte eine Re-Bestrahlung mittels Kohlenstoffionen. Die mediane Zeit zwischen letzter Bestrahlung und Re-Bestrahlung mit Kohlenstoffionen

  7. Nano-Tomography of Porous Geological Materials Using Focused Ion Beam-Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-10-01

    Full Text Available Tomographic analysis using focused ion beam-scanning electron microscopy (FIB-SEM provides three-dimensional information about solid materials with a resolution of a few nanometres and thus bridges the gap between X-ray and transmission electron microscopic tomography techniques. This contribution serves as an introduction and overview of FIB-SEM tomography applied to porous materials. Using two different porous Earth materials, a diatomite specimen, and an experimentally produced amorphous silica layer on olivine, we discuss the experimental setup of FIB-SEM tomography. We then focus on image processing procedures, including image alignment, correction, and segmentation to finally result in a three-dimensional, quantified pore network representation of the two example materials. To each image processing step we consider potential issues, such as imaging the back of pore walls, and the generation of image artefacts through the application of processing algorithms. We conclude that there is no single image processing recipe; processing steps need to be decided on a case-by-case study.

  8. Low-Temperature Reduction of Graphene Oxide: Electrical Conductance and Scanning Kelvin Probe Force Microscopy

    Science.gov (United States)

    Slobodian, Oleksandr M.; Lytvyn, Peter M.; Nikolenko, Andrii S.; Naseka, Victor M.; Khyzhun, Oleg Yu.; Vasin, Andrey V.; Sevostianov, Stanislav V.; Nazarov, Alexei N.

    2018-05-01

    Graphene oxide (GO) films were formed by drop-casting method and were studied by FTIR spectroscopy, micro-Raman spectroscopy (mRS), X-ray photoelectron spectroscopy (XPS), four-points probe method, atomic force microscopy (AFM), and scanning Kelvin probe force (SKPFM) microscopy after low-temperature annealing at ambient conditions. It was shown that in temperature range from 50 to 250 °C the electrical resistivity of the GO films decreases by seven orders of magnitude and is governed by two processes with activation energies of 6.22 and 1.65 eV, respectively. It was shown that the first process is mainly associated with water and OH groups desorption reducing the thickness of the film by 35% and causing the resistivity decrease by five orders of magnitude. The corresponding activation energy is the effective value determined by desorption and electrical connection of GO flakes from different layers. The second process is mainly associated with desorption of oxygen epoxy and alkoxy groups connected with carbon located in the basal plane of GO. AFM and SKPFM methods showed that during the second process, first, the surface of GO plane is destroyed forming nanostructured surface with low work function and then at higher temperature a flat carbon plane is formed that results in an increase of the work function of reduced GO.

  9. Synthesis of rock-salt type lithium borohydride and its peculiar Li+ ion conduction properties

    Directory of Open Access Journals (Sweden)

    R. Miyazaki

    2014-05-01

    Full Text Available The high energy density and excellent cycle performance of lithium ion batteries makes them superior to all other secondary batteries and explains why they are widely used in portable devices. However, because organic liquid electrolytes have a higher operating voltage than aqueous solution, they are used in lithium ion batteries. This comes with the risk of fire due to their flammability. Solid electrolytes are being investigated to find an alternative to organic liquid. However, the nature of the solid-solid point contact at the interface between the electrolyte and electrode or between the electrolyte grains is such that high power density has proven difficult to attain. We develop a new method for the fabrication of a solid electrolyte using LiBH4, known for its super Li+ ion conduction without any grain boundary contribution. The modifications to the conduction pathway achieved by stabilizing the high pressure form of this material provided a new structure with some LiBH4, more suitable to the high rate condition. We synthesized the H.P. form of LiBH4 under ambient pressure by doping LiBH4 with the KI lattice by sintering. The formation of a KI - LiBH4 solid solution was confirmed both macroscopically and microscopically. The obtained sample was shown to be a pure Li+ conductor despite its small Li+ content. This conduction mechanism, where the light doping cation played a major role in ion conduction, was termed the “Parasitic Conduction Mechanism.” This mechanism made it possible to synthesize a new ion conductor and is expected to have enormous potential in the search for new battery materials.

  10. Self-sensing cantilevers with integrated conductive coaxial tips for high-resolution electrical scanning probe metrology

    International Nuclear Information System (INIS)

    Haemmerli, Alexandre J.; Pruitt, Beth L.; Harjee, Nahid; Koenig, Markus; Garcia, Andrei G. F.; Goldhaber-Gordon, David

    2015-01-01

    The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design, fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz–10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip

  11. Ion-beam-directed self-organization of conducting nanowire arrays

    International Nuclear Information System (INIS)

    Batzill, M.; Bardou, F.; Snowdon, K. J.

    2001-01-01

    Glancing-incidence ion-beam irradiation has been used both to ease kinetic constraints which otherwise restrict the establishment of long-range order and to impose external control on the orientation of nanowire arrays formed during stress-field-induced self-ordering of calcium atoms on a CaF 2 (111) surface. The arrays exhibit exceptional long-range order, with the long axis of the wires oriented along the azimuthal direction of ion-beam incidence. Transport measurements reveal a highly anisotropic electrical conductivity, whose maximum lies in the direction of the long axis of the 10.1-nm-period calcium wires

  12. High-performance ion-exchange chromatography of alkali metals with conductivity detection

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, A.R.

    1981-01-01

    High-performance ion-exchange chromatography of alkali metal and ammonium ions was studied using a conductivity meter as detector. Elution with 0.003 N mitric acid gave excellent resolution. Sensitivity levels, for a 200 micro litre injection, vary from 5 ppm for potassium to 0.1 ppm for lithium. A method to decrease retention times by reducing the exchange capacity of the cation exchange column used by loading it with calciumions, without affecting the resolation, has been described. Application of the method to water, soil and uranium dioxide samples has been demonstrated. (author)

  13. Forging Fast Ion Conducting Nanochannels with Swift Heavy Ions: The Correlated Role of Local Electronic and Atomic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Sachan, Ritesh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Cooper, Valentino R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Liu, Bin [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Aidhy, Dilpuneet S. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Mechanical Engineering; Voas, Brian K. [Iowa State Univ., Ames, IA (United States). Dept. of Materials Science and Engineering; Lang, Maik [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Ou, Xin [Chinese Academy of Sciences (CAS), Shanghai (China). State Key Lab. of Functional Material for Informatics; Trautmann, Christina [GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Technical Univ. of Darmstadt (Germany). Dept. of Materials Science; Zhang, Yanwen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Chisholm, Matthew F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division

    2016-12-19

    Atomically disordered oxides have attracted significant attention in recent years due to the possibility of enhanced ionic conductivity. However, the correlation between atomic disorder, corresponding electronic structure, and the resulting oxygen diffusivity is not well understood. The disordered variants of the ordered pyrochlore structure in gadolinium titanate (Gd2Ti2O7) are seen as a particularly interesting prospect due to intrinsic presence of a vacant oxygen site in the unit atomic structure, which could provide a channel for fast oxygen conduction. In this paper, we provide insights into the subangstrom scale on the disordering-induced variations in the local atomic environment and its effect on the electronic structure in high-energy ion irradiation-induced disordered nanochannels, which can be utilized as pathways for fast oxygen ion transport. With the help of an atomic plane-by-plane-resolved analyses, the work shows how the presence of various types of TiOx polyhedral that exist in the amorphous and disordered crystalline phase modify the electronic structures relative to the ordered pyrochlore phase in Gd2Ti2O7. Finally, the correlated molecular dynamics simulations on the disordered structures show a remarkable enhancement in oxygen diffusivity as compared with ordered pyrochlore lattice and make that a suitable candidate for applications requiring fast oxygen conduction.

  14. Low conductive support for thermal insulation of a sample holder of a variable temperature scanning tunneling microscope.

    Science.gov (United States)

    Hanzelka, Pavel; Vonka, Jakub; Musilova, Vera

    2013-08-01

    We have designed a supporting system to fix a sample holder of a scanning tunneling microscope in an UHV chamber at room temperature. The microscope will operate down to a temperature of 20 K. Low thermal conductance, high mechanical stiffness, and small dimensions are the main features of the supporting system. Three sets of four glass balls placed in vertices of a tetrahedron are used for thermal insulation based on small contact areas between the glass balls. We have analyzed the thermal conductivity of the contacts between the balls mutually and between a ball and a metallic plate while the results have been applied to the entire support. The calculation based on a simple model of the setup has been verified with some experimental measurements. In comparison with other feasible supporting structures, the designed support has the lowest thermal conductance.

  15. Ion conductivities of ZrF4-BaF2-CsF glasses

    International Nuclear Information System (INIS)

    Kawamoto, Yoji; Nohara, Ichiro

    1987-01-01

    The glass-forming region in the ZrF 4 -BaF 2 -CsF glass system has been determined and the ac conductivity and the transport number of fluoride ions have been measured. The conductivities of compounds β-Cs 2 ZrF 6 , α-SrZrF 6 , α-BaZrF 6 , β-BaZrF 6 and α-PbZrF 6 have also been measured. These results and a previous study of ZrF 4 -BaF 2 -MF n (M: the groups I-IV metals) glasses revealed the following: (1) the ZrF 4 -BaF 2 -CsF glasses are exclusively fluoride-ion conductors; (2) the ionic conductivities of ZrF 4 -based glasses are predominantly determined by the activation energies for conduction; (3) the activation energy for conduction decreases with an increase in the average polarizability of glass-constituting cations; (4) a decrease in average Zr-F bond length and a lowering of the average F coordination number of Zr are presumed to increase the activation energy for conduction. Principles of developing ZrF 4 -based glasses with higher conductivities have also been proposed. (Auth.)

  16. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  17. Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Lybye, D.; Bonanos, N.

    2004-01-01

    Many metal oxides of fluorite and perovskite related structures are oxide ion conductors, which have practical applications in devices such as oxygen sensors, solid oxide fuel cells (SOFC) and electrolysers. Several structural and thermodynamic parameters such as (1) critical radius of the pathway...... such parameters for fluorite and perovskite oxides by considering their sensitivities to the individual ionic radii. Based on experimental data available in the literature, it is argued that lattice distortion (lattice stress and deviation from cubic symmetry) due to ion radii mismatch determines the ionic...... conductivity to a very large extent, and that lattice distortion is of much greater importance than many other proposed parameters. In case of the perovskites, the charge of the B-site ion is also of major importance. (C) 2004 Published by Elsevier B.V....

  18. SU-F-T-213: Commissioning Results of the Prototype Active Scanning Irradiation System of Korea Heavy Ion Medical Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C; Seduk, J; Yang, T [Korea Institute of Radiological And Medical Sciences, Seoul, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: A prototype actives scanning beam delivery system was designed, manufactured and installed as a part of the Korea Heavy Ion Medical Accelerator Project. The prototype system includes the most components for steering, modulating, detecting incident beam to patient. The system was installed in MC-50 cyclotron beam line and tested to extract the normal operation conditions. Methods: The commissioning process was completed by using 45 MeV of proton beam. To measure the beam position accuracy along the scanning magnet power supply current, 25 different spots were scanning and measured. The scanning results on GaF film were compared with the irradiation plan. Also, the beam size variation and the intensity reduction using range shifter were measured and analyzed. The results will be used for creating a conversion factors for asymmetric behavior of scanning magnets and a dose compensation factor for longitudinal direction. Results: The results show asymmetry operations on both scanning × and y magnet. In case of scanning magnet × operation, the current to position conversion factors were measured 1.69 mm/A for positive direction and 1.74 mm/A for negative direction. The scanning magnet y operation shows 1.38mm/A and 1.48 mm/A for both directions. The size of incoming beam which was 18 mm as sigma becomes larger up to 55 mm as sigma while using 10 mm of the range shifter plate. As the beam size becomes large, the maximum intensity of the was decreased. In case of using 10 mm of range shifter, the maximum intensity was only 52% compared with no range shifter insertion. Conclusion: For the appropriate operation of the prototype active scanning system, the commissioning process were performed to measure the beam characteristics variation. The obtained results would be applied on the irradiation planning software for more precise dose delivery using the active scanning system.

  19. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    Directory of Open Access Journals (Sweden)

    Mahnaz M Abdi

    Full Text Available A new sensing area for a sensor based on surface plasmon resonance (SPR was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+ and Hg(2+ ions. The Pb(2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+ compared to Hg(2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  20. Determination of Monochloroacetic Acid in Swimming Pool Water by Ion Chromatography-Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Maria Pythias B. Espino

    2013-12-01

    Full Text Available In this study, an analytical method involving ion chromatography with conductivity detection was developed and optimized for the determination of monochloroacetic acid in swimming pool water. The ion chromatographic method has a detection limit of 0.02 mg L-1 and linear range of 0.05 to 1.0 mg L-1 with correlation coeff icient of 0.9992. The method is reproducible with percent RSD of 0.052% (n=10. The recovery of monochloroacetic acid spiked in different water types (bottled, tap and swimming pool water ranged from 28 to 122%. In dilute solutions, chloride and bromide were simultaneously analyzed along with monochloroacetic acid using the optimized method. Chloride and bromide have detection limits of 0.01 to 0.05 mg L-1, respectively. The usefulness of the ion chromatographic method was demonstrated in the analysis of monochloroacetic acid in swimming pool water samples. In such highly-chlorinated samples, an Ag/H cartridge was used prior to the ion chromatographic determination so as to minimize the signal due to chloride ion. Monochloroacetic acid was detected in concentrations between 0.020 and 0.093 mg L-1 in three of the six swimming pool water samples studied. The presence of monochloroacetic acid in the swimming pool water samples suggests the possible occurrence of other disinfection by-products in these waters.

  1. Determination of Monochloroacetic Acid in Swimming Pool Water by Ion Chromatography-Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Maria Pythias B. Espino

    2013-02-01

    Full Text Available In this study, an analytical method involving ion chromatography with conductivity detection was developed and optimized for the determination of monochloroacetic acid in swimming pool water. The ion chromatographic method has a detection limit of 0.02 mg L-1 and linear range of 0.05 to 1.0 mg L-1 with correlation coeff icient of 0.9992. The method is reproducible with percent RSD of 0.052% (n=10. The recovery of monochloroacetic acid spiked in different water types (bottled, tap and swimming pool water ranged from 28 to 122%. In dilute solutions, chloride and bromide were simultaneously analyzed along with monochloroacetic acid using the optimized method. Chloride and bromide have detection limits of 0.01 to 0.05 mg L-1, respectively. The usefulness of the ion chromatographic method was demonstrated in the analysis of monochloroacetic acid in swimming pool water samples. In such highly-chlorinated samples, an Ag/H cartridge was used prior to the ion chromatographic determination so as to minimize the signal due to chloride ion. Monochloroacetic acid was detected in concentrations between 0.020 and 0.093 mg L-1 in three of the six swimming pool water samples studied. The presence of monochloroacetic acid in the swimming pool water samples suggests the possible occurrence of other disinfection by-products in these waters.

  2. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    Science.gov (United States)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  3. Modification and structuring of conducting polymer films on insulating substrates by ion beam treatment

    International Nuclear Information System (INIS)

    Asmus, T.; Wolf, Gerhard K.

    2000-01-01

    Besides the commonly used procedures of UV-, X-ray and electron beam lithography, surface structuring by ion beam processes represents an alternative route to receive patterns in the nanometre-micrometre scale. In this work we focused on changes of surface properties of the polymer materials induced by ion irradiation and on reproducing hexagonal and square patterns in the micrometre scale. To achieve a better understanding of modification and structuring of insulating and conducting polymers by ion beam treatment we investigated effects of 14 keV Ar + bombardment on thin films of doped conducting polyethoxithiophene (PEOT) and polyethylenedioxithiophene (PEDT) on polyethersulfone (PES) as insulating substrate within the fluence range from 10 14 to 10 17 ions/cm 2 . Changes of surface properties like wettability, solubility, topology and electrochemical behaviour have been studied by contact angle technique, AFM/LFM, cyclovoltammetry and electrochemical microelectrode. By irradiation through copper masks structured patterns were achieved. These patterns can be converted by galvanic or electroless copper deposition in structured metal layers

  4. A 4D dose computation method to investigate motion interplay effects in scanned ion beam prostate therapy

    International Nuclear Information System (INIS)

    Ammazzalorso, F; Jelen, U

    2014-01-01

    In particle therapy, the interplay between beam scanning and target motion during treatment delivery may result in dose deterioration. Interplay effects have been studied for targets exhibiting periodic respiratory motion, however, they are not well understood for irregular motion patterns, such as those exhibited by the prostate. In this note, we propose and validate a 4D dose computation method, which enables estimation of effective dose delivered to the prostate by scanning ion beams in presence of intrafraction motion, as well as facilitates investigation of various motion interplay countermeasures. (note)

  5. Electronic and ionic conductivity studies on microwave synthesized glasses containing transition metal ions

    Directory of Open Access Journals (Sweden)

    Basareddy Sujatha

    2017-01-01

    Full Text Available Glasses in the system xV2O5·20Li2O·(80 − x [0.6B2O3:0.4ZnO] (where 10 ≤ x ≤ 50 have been prepared by a simple microwave method. Microwave synthesis of materials offers advantages of efficient transformation of energy throughout the volume in an effectively short time. Conductivity in these glasses was controlled by the concentration of transition metal ion (TMI. The dc conductivity follows Arrhenius law and the activation energies determined by regression analysis varies with the content of V2O5 in a non-linear passion. This non-linearity is due to different conduction mechanisms operating in the investigated glasses. Impedance and electron paramagnetic resonance (EPR spectroscopic studies were performed to elucidate the nature of conduction mechanism. Cole–cole plots of the investigated glasses consist of (i single semicircle with a low frequency spur, (ii two depressed semicircles and (iii single semicircle without spur, which suggests the operation of two conduction mechanisms. EPR spectra reveal the existence of electronic conduction between aliovalent vanadium sites. Further, in highly modified (10V2O5 mol% glasses Li+ ion migration dominates.

  6. Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan

    Science.gov (United States)

    Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.

    2017-10-01

    Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.

  7. Using differential scanning calorimetry, laser refractometry, electrical conductivity and spectrophotometry for discrimination of different types of Bulgarian honey

    International Nuclear Information System (INIS)

    Vlaeva, I; Nikolova, K; Tsankova, D; Bodurov, I; Marudova, M; Viraneva, A; Yovcheva, T; Lekova, S

    2017-01-01

    The potential of several physical methods for investigation of the botanical origin of honey has been discussed. Samples from the three most prevalent types of honey in Bulgaria (acacia, linden and honeydew) have been used. They have been examined by laser refractometry, UV, VIS and FTIR spectroscopy, electric conductivity measurement and differential scanning calorimetry. The purpose of this study was to reveal the physical characterizations of honeys from different flora produced in Bulgaria and to identify honeys with a high apitherapy potential for future studies. (paper)

  8. Research and design of scanning power supply for deep tumor therapy facility with heavy ions accelerator in Lanzhou

    International Nuclear Information System (INIS)

    Huang Yuzhen; Liu Yuntao; Chen Youxin; Gao Daqing; Zhang Shu; Gao Yalin

    2009-01-01

    This paper describes the technique targets and operation principle of the scanning power supply for the deep tumor therapy facility with heavy ions in Cooler-Storage-Ring of the Heavy Ion Research Facility in Lanzhou (HIRFL-CSR). To ensure the specified accuracy of the current, the hysteresis loop control strategy was adopted, and tracking error was constrained in the specified tolerance. One prototype was designed and installed. And the simulation results and test results were listed in the paper. The results show that all the targets can meet the design requirements, and that the circuit configuration and hysteresis loop control strategy selected are practicable. (authors)

  9. Direct evidence of ionic fluxes across ion-selective membranes: a scanning electrochemical microscopic and potentiometric study.

    Science.gov (United States)

    Gyurcsányi, R E; Pergel, E; Nagy, R; Kapui, I; Lan, B T; Tóth, K; Bitter, I; Lindner, E

    2001-05-01

    Scanning electrochemical microscopy (SECM) supplemented with potentiometric measurements was used to follow the time-dependent buildup of a steady-state diffusion layer at the aqueous-phase boundary of lead ion-selective electrodes (ISEs). Differential pulse voltammetry is adapted to SECM for probing the local concentration profiles at the sample side of solvent polymeric membranes. Major factors affecting the membrane transport-related surface concentrations were identified from SECM data and the potentiometric transients obtained under different experimental conditions (inner filling solution composition, membrane thickness, surface pretreatment). The amperometrically determined surface concentrations correlated well with the lower detection limits of the lead ion-selective electrodes.

  10. Determination of anionic surfactants during wastewater recycling process by ion pair chromatography with suppressed conductivity detection

    Science.gov (United States)

    Levine, L. H.; Judkins, J. E.; Garland, J. L.; Sager, J. C. (Principal Investigator)

    2000-01-01

    A direct approach utilizing ion pairing reversed-phase chromatography coupled with suppressed conductivity detection was developed to monitor biodegradation of anionic surfactants during wastewater recycling through hydroponic plant growth systems and fixed-film bioreactors. Samples of hydroponic nutrient solution and bioreactor effluent with high concentrations (up to 120 mS electrical conductance) of inorganic ions can be analyzed without pretreatment or interference. The presence of non-ionic surfactants did not significantly affect the analysis. Dynamic linear ranges for tested surfactants [Igepon TC-42, ammonium lauryl sulfate, sodium laureth sulfate and sodium alkyl (C10-C16) ether sulfate] were 2 to approximately 500, 1 to approximately 500, 2.5 to approximately 550 and 3.0 to approximately 630 microg/ml, respectively.

  11. Decoupling ion conductivity and fluid permeation through optimizing hydrophilic channel morphology

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Peter Po-Jen, E-mail: pjchu@cc.ncu.edu.tw; Fang, Yu-Shin; Tseng, Yu-Chen [Department of Chemistry, National Central University, No. 300, Jhongda Rd., Jhongli City, Taoyuan County 32001, Taiwan (R.O.C.) (China)

    2016-05-18

    Approaches to improve membrane ion conductivity usually leads to higher degree of swelling, more serious fuel cross-over and often sacrificed membrane mechanical strength. Preserving all three main membrane properties is a tough challenge in searching high ion conducting fuel cell membrane. The long standing dilemma is resolved by decoupling ion conduction and fluid permeation property by creating optimized channel morphology using external electric field poling. Success of this approach is demonstrated in the proton conducting membrane composed of poly(ether sulfones) (PES) and sulfonated poly(ether ether ketone) (sPEEK, degree of sulfonation=50%) composites prepared under electric field poling condition. The external field enhanced the aromatic chain ordering from both sPEEK and PES and improved the miscibility. This induced interaction is conducive to the formation of more densely packed amorphous domains that eventually leads to preferentially ordered hydrophilic proton conducting channels having a average dimension (3 nm) smaller than that in generic sPEEK or Nafion. The narrower but more ordered channel displayed much lower methanol permeability (3.17×10{sup −7} cm{sup 2}/s), and lower swelling ratio (31.20%), while the conductivity (~10{sup −1} S/cm) is higher than that of Nafion, or sPEEK at higher (64%) degree of sulfonation. The composite is chemically stable and highly durable with improved membrane mechanical strength. Nearly 50% increase of DMFC power output is observed using this membrane, and the best power density is recorded at 155 mA/cm{sup 2} (80 °C, 1M Methanol).

  12. Effect of swift heavy O7+ ion radiations on conductivity of lithium based polymer blend electrolyte

    Science.gov (United States)

    Joge, Prajakta; Kanchan, D. K.; Sharma, Poonam; Jayswal, Manish; Avasthi, D. K.

    2014-07-01

    In the present work, effect of swift heavy O7+ ion of 80 MeV of different fluences, on conductivity of [PVA(47.5)-PEO(47.5)-LiCF3SO3(5)]-EC(8) polymeric films has been investigated using ac impedance spectroscopy. The power law exponent n, hopping frequency ωh and activation energies for conduction Eac and relaxation Ear, have been investigated for different fluences. The DSC measurements are carried out in order to investigate the variations in the degree of crystallinity and thermal parameters (Tm) of the blend specimen prior and after irradiation. The Fourier Transform Infrared (FT-IR) measurements are carried out in order to investigate the changes in the vibrational modes of molecules upon irradiation. The FT-IR measurements corroborate the formation of amorphous phase in the blend matrix after irradiation. The conductivity is found to be optimum at the fluence of 1×1012 ions/cm2. The enhancement and the improvement in the electrolytic properties of PVA-PEO blend upon O7+ ion irradiation have been observed.

  13. Ion-conduction mechanisms in NaSICON-type membranes for energy storage and utilization

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Anthony H. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States); Ihlefeld, Jon F. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States); Bartelt, Norman Charles [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States)

    2015-10-01

    Next generation metal-ion conducting membranes are key to developing energy storage and utilization technologies like batteries and fuel ce lls. Sodium super-ionic conductors (aka NaSICON) are a class of compounds with AM 1 M 2 (PO 4 ) 3 stoichiometry where the choice of "A" and "M" cation varies widely. This report, which de scribes substitutional derivatives of NZP (NaZr 2 P 3 O 12 ), summarizes the accomplishments of a Laboratory D irected Research and Development (LDRD) project to analyze transport mec hanisms using a combination of in situ studies of structure, composition, and bonding, com bined with first principles theory and modeling. We developed an experimental platform and applied methods, such as synchrotron- based X-ray spectroscopies, to probe the electronic structure of compositionally well-controlled NaSICON films while in operation ( i.e ., conducting Na ions exposed to oxygen or water va por atmospheres). First principles theory and modeling were used to interpret the experimental observations and develop an enhanced understanding of atomistic processes that give rise to, and affect, ion conduction.

  14. Study about ion exchange for decreasing the conductivity of water in power plant and refineries

    International Nuclear Information System (INIS)

    Khosravi, M.; Samani; Hajihosseini, N.

    2002-01-01

    Water has been used directly or indirectly for industries, its use would be in factories: such as steam or as a cooler or the product of the industrial material. water is used more than other material in many industries and what ever is obtained as the effect of industrial activities, it is destabilising like waste. By the control of P H and reducing (total dissolved solid) of water or decreasing conductivity of water, we can protect boiler from corrosion. We want to study this article for different method of decreasing (TDS) in order to produce <1μs/cm conductivity. The suitable method which is ion exchange system will be selected

  15. Solid electrolyte batteries and fast ion conducting glasses, factors affecting a proposed merger

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, D R; Tuller, H L; Button, D P; Valez, M [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Materials Science and Engineering

    1983-01-01

    The present paper is concerned with advanced battery systems employing glass as a solid electrolyte. After an initial discussion of battery systems employing solid electrolytes, and of the attractive features offered by glass electrolytes, consideration is given to batteries fabricated with such electrolytes and to their performance characteristics. Subsequent discussion is directed to the two principal characteristics of glasses which are critical to their use as solid electrolytes - viz., their electrical conductivity and resistance to corrosive attack. The present state of knowledge in each of these areas is summarized, with particular focus on glasses with exceptionally high ionic conductivities - so-called fast ion conductors or FIC's.

  16. Scanning electrochemical microscopy for the fabrication of copper nanowires: Atomic contacts with quantized conductance, and molecular adsorption effect

    International Nuclear Information System (INIS)

    Janin, Marion; Ghilane, Jalal; Lacroix, Jean-Christophe

    2012-01-01

    Highlights: ► Electrochemistry and SECM to generate copper nanowires with quantized conductance. ► Stable atomic contacts lasting for several hundreds of seconds have been obtained. ► The quantized conductances are independent of the tip and gap size. ► The method allows contacts to be generated in the presence of chosen molecules. ► Four-electrode configuration opens the route to redox gated atomic contact. - Abstract: Scanning electrochemical microscopy, SECM, is proposed as a tool for the fabrication of copper nanowires. In a first step, configuration based on two electrodes, a platinum UME (cathode) and a copper substrate (anode), operating in the SECM configuration was employed. For nanowires generated in water the conductance changes stepwise and varies by integer values of the conductance quantum G 0 . The formation of atomic contacts is supported by the ohmic behavior of the I–V curve. It depends neither on the UME tip radius nor on the initial gap size between tip and substrate. Atomic contacts generated in aqueous solutions of sodium dodecyl sulfate (SDS) below the critical micellar concentration (CMC) have conductances below 1G 0 attributed to molecular adsorption on the contact. In some cases, the nanowires have low conductance, 0.01G 0 . The corresponding I–V curve shows tunneling rather than ohmic behavior, suggesting that molecular junctions are formed with a few surfactant molecules trapped between the two electrodes. Finally, copper nanowires with quantized conductance have been generated using the SECM operating in a four-electrode setup. Thanks to the reference electrode, this configuration leads to better control of the potential of each working electrode; this setup will make it possible to evaluate the conductance variation and/or modulation upon electrochemical stimuli.

  17. Electrical conduction of organic ultrathin films evaluated by an independently driven double-tip scanning tunneling microscope.

    Science.gov (United States)

    Takami, K; Tsuruta, S; Miyake, Y; Akai-Kasaya, M; Saito, A; Aono, M; Kuwahara, Y

    2011-11-02

    The electrical transport properties of organic thin films within the micrometer scale have been evaluated by a laboratory-built independently driven double-tip scanning tunneling microscope, operating under ambient conditions. The two tips were used as point contact electrodes, and current in the range from 0.1 pA to 100 nA flowing between the two tips through the material can be detected. We demonstrated two-dimensional contour mapping of the electrical resistance on a poly(3-octylthiophene) thin films as shown below. The obtained contour map clearly provided an image of two-dimensional electrical conductance between two point electrodes on the poly(3-octylthiophene) thin film. The conductivity of the thin film was estimated to be (1-8) × 10(-6) S cm(-1). Future prospects and the desired development of multiprobe STMs are also discussed.

  18. Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Chung, Jae Hun; Hwang, Gwang Seok; Jung, Eui Han; Kwon, Oh Myoung [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

  19. Divalent Cations Regulate the Ion Conductance Properties of Diverse Classes of Aquaporins

    Directory of Open Access Journals (Sweden)

    Mohamad Kourghi

    2017-11-01

    Full Text Available Aquaporins (AQPs are known to facilitate water and solute fluxes across barrier membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and water permeability of selected plant and animal AQPs (plant Arabidopsis thaliana AtPIP2;1, AtPIP2;2, AtPIP2;7, human Homo sapiens HsAQP1, rat Rattus norvegicus RnAQP4, RnAQP5, and fly Drosophila melanogaster DmBIB were expressed in Xenopus oocytes and examined in chelator-buffered salines to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+ on ionic conductances. AtPIP2;1, AtPIP2;2, HsAQP1 and DmBIB expressing oocytes had ionic conductances, and showed differential sensitivity to block by external Ca2+. The order of potency of inhibition by Ca2+ was AtPIP2;2 > AtPIP2;1 > DmBIB > HsAQP1. Blockage of the AQP cation channels by Ba2+ and Cd2+ caused voltage-sensitive outward rectification. The channels with the highest sensitivity to Ca2+ (AtPIP2;1 and AtPIP2;2 showed a distinctive relief of the Ca2+ block by co-application of excess Ba2+, suggesting that divalent ions act at the same site. Recognizing the regulatory role of divalent cations may enable the discovery of other classes of AQP ion channels, and facilitate the development of tools for modulating AQP ion channels. Modulators of AQPs have potential value for diverse applications including improving salinity tolerance in plants, controlling vector-borne diseases, and intervening in serious clinical conditions involving AQPs, such as cancer metastasis, cardiovascular or renal dysfunction.

  20. Manipulation of inverted and direct opals by a focused ion beam scanning electron microscope (FIB SEM)

    International Nuclear Information System (INIS)

    Magni, S; Milani, M; Tatti, F; Savoia, C

    2008-01-01

    Focused ion beam (FIB) milling techniques are presented aiming at the manipulation of both tin dioxide (SnO 2 ) inverted opals and polystyrene (PS) direct opals. Different SnO 2 opals are considered in order to estimate the regularity of their bulk after the production. A SnO 2 mesoporous monolith is FIB micromachined to make it suitable for optical applications. PS direct opals are structured by FIB milling at different scales. Ordered arrays of PS opals are modified by selectively removing a single sphere. In performing this task, we discuss the effects on the FIB milling due to the gas-assisted enhanced etching and to the binding of the nearest neighbours. Techniques to achieve imaging of PS opals in absence of a conductive coating are also brought up. Furthermore, isolated PS spheres are drilled with or without enhanced etching in order to produce controlled defects on them. The FIB-assisted manipulations we show may find potential applications in the field of photonic crystals, (bio)sensors and lithography assisted by colloidal masks.

  1. A raster scanning power supply system for controlling relativistic heavy ion beams at the Bevalac Biomedical Facility

    International Nuclear Information System (INIS)

    Stover, G.; Nyman, M.; Halliwell, J.; Lutz, I.; Dwinell, R.

    1987-03-01

    A power supply system is currently being designed and constructed to sweep an 8.0 Tesla-meter relativistic heavy ion beam in a raster scanning mode for radiotherapy use. Two colinear dipole magnets with orthogonally oriented magnetic fields are driven by the system to produce a rectangular field (40 x 40 cm max.) with a uniform dose (+-2.5%) to a target volume 6 meters away. The ''fast'' horizontal scanning magnet is driven by a single power supply which in conjunction with a triac bridge network and a current regulated linear actuator will produce a 1200 cm/sec max. sweep rate. The ''slow'' (40 cm/sec) vertical scanning magnet will be controlled by dual current regulated linear actuators in a push-pull configuration. The scanner system can provide off-axis treatment profiles with large aspect ratios and unusual dimensions

  2. Fine structures and ion images on fresh frozen dried ultrathin sections by transmission electron and scanning ion microscopy

    International Nuclear Information System (INIS)

    Takaya, K.; Okabe, M.; Sawataishi, M.; Takashima, H.; Yoshida, T.

    2003-01-01

    Ion microscopy (IM) of air-dried or freeze-dried cryostat and semi-thin cryosections has provided ion images of elements and organic substances in wide areas of the tissue. For reproducible ion images by a shorter time of exposure to the primary ion beam, fresh frozen dried ultrathin sections were prepared by freezing the tissue in propane chilled with liquid nitrogen, cryocut at 60 nm, mounted on grids and silicon wafer pieces, and freeze-dried. Rat Cowper gland and sciatic nerve, bone marrow of the rat administered of lithium carbonate, tree frog and African toad spleen and buffy coat of atopic dermatitis patients were examined. Fine structures and ion images of the corresponding areas in the same or neighboring sections were observed by transmission electron microscopy (TEM) followed by sector type and time-of-flight type IM. Cells in the buffy coat contained larger amounts of potassium and magnesium while plasma had larger amounts of sodium and calcium. However, in the tissues, lithium, sodium, magnesium, calcium and potassium were distributed in the cell and calcium showed a granular appearance. A granular cell of the tree frog spleen contained sodium and potassium over the cell and magnesium and calcium were confined to granules

  3. Electrochemical studies of ferrocene in a lithium ion conducting organic carbonate electrolyte

    International Nuclear Information System (INIS)

    Laoire, Cormac O.; Plichta, Edward; Hendrickson, Mary; Mukerjee, Sanjeev; Abraham, K.M.

    2009-01-01

    We carried out a detailed study of the kinetics of oxidation of ferrocene (Fc) to ferrocenium ion (Fc + ) in the non-aqueous lithium ion conducting electrolyte composed of a solution of 1 M LiPF 6 in 1:1 EC:EMC solvent mixture. This study using cyclic (CV) and rotating disk electrode (RDE) voltammetry showed that the Fc 0 /Fc + redox couple is reversible in this highly concentrated electrolyte. The ferrocene and ferrocenium ion diffusion coefficients (D) were calculated from these results. In addition, the electron transfer rate constant (k 0 ) and the exchange current density for the oxidation of ferrocene were determined. A comparison of the kinetic data obtained from the two electrochemical techniques appears to show that the data from the RDE experiments are more reliable because they are collected under strict mass transport control. A Tafel slope of c.a. 79 mV/decade and a transfer coefficient α of 0.3 obtained from analysis of the RDE data for ferrocene oxidation suggest that the structure of the activated complex is closer to that of the oxidized specie due to strong interactions with the carbonate solvents. The experiments reported here are relevant to the study of redox reagents for the chemical overcharge protection of Li-ion batteries.

  4. High energy (MeV) ion-irradiated π-conjugated polyaniline: Transition from insulating state to carbonized conducting state

    International Nuclear Information System (INIS)

    Park, S.K.; Lee, S.Y.; Lee, C.S.; Kim, H.M.; Joo, J.; Beag, Y.W.; Koh, S.K.

    2004-01-01

    High energy (MeV) C 2+ , F 2+ , and Cl 2+ ions were irradiated onto π-conjugated polyaniline emeraldine base (PAN-EB) samples. The energy of an ion beam was controlled to a range of 3-4.5 MeV, with the ion dosage varying from 1x10 12 to 1x10 16 ions/cm 2 . The highest dc conductivity (σ dc ) at room temperature was measured to be ∼60 S/cm for 4.5 MeV Cl 2+ ion-irradiated PAN-EB samples with a dose of 1x10 16 ions/cm 2 . We observed the transition of high energy ion-irradiated PAN-EB samples from insulating state to conducting state as a function of ion dosage based on σ dc and its temperature dependence. The characteristic peaks of the Raman spectrum of the PAN-EB samples were reduced, while the D-peak (disordered peak) and the G peak (graphitic peak) appeared as the ion dose increased. From the analysis of the D and G peaks of the Raman spectra of the systems compared to multiwalled carbon nanotubes, ion-irradiated graphites, and annealed carbon films, the number of the clusters of hexagon rings with conducting sp 2 -bonded carbons increased with ion dosage. We also observed the increase in the size of the nanocrystalline graphitic domain of the systems with increasing ion dosage. The intensity of normalized electron paramagnelic resonance signal also increased in correlation with ion dose. The results of this study demonstrate that π-conjugated pristine PAN-EB systems changed from insulating state to carbonized conducting state through high energy ion irradiation with high ion dosage

  5. Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

    International Nuclear Information System (INIS)

    Akhmadaliev, C.

    2004-12-01

    The aim of this work is to investigate the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. This work consists of the two main experimental parts. In the first part the process of elastic wave generation during the irradiation of metallic samples by a pulsed beam of energetic ions was investigated in an energy range from 1.5 to 10 MeV and pulse durations of 0.5-5 μs, applying ions with different masses, e.g. oxygen, silicon and gold, in charge states from 1 + to 4 + . The acoustic amplitude dependence on the ion beam parameters like the ion mass and energy, the ion charge state, the beam spot size and the pulse duration were of interest. This work deals with ultrasound transmitted in a solid, i.e. bulk waves, because of their importance for acoustic transmission microscopy and nondestructive inspection of internal structure of a sample. The second part of this work was carried out using the IMSA-100 FIB system operating in an energy range from 30 to 70 keV. The scanning ion acoustic microscope based on this FIB system was developed and tested. (orig.)

  6. Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadaliev, C.

    2004-12-01

    The aim of this work is to investigate the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. This work consists of the two main experimental parts. In the first part the process of elastic wave generation during the irradiation of metallic samples by a pulsed beam of energetic ions was investigated in an energy range from 1.5 to 10 MeV and pulse durations of 0.5-5 {mu}s, applying ions with different masses, e.g. oxygen, silicon and gold, in charge states from 1{sup +} to 4{sup +}. The acoustic amplitude dependence on the ion beam parameters like the ion mass and energy, the ion charge state, the beam spot size and the pulse duration were of interest. This work deals with ultrasound transmitted in a solid, i.e. bulk waves, because of their importance for acoustic transmission microscopy and nondestructive inspection of internal structure of a sample. The second part of this work was carried out using the IMSA-100 FIB system operating in an energy range from 30 to 70 keV. The scanning ion acoustic microscope based on this FIB system was developed and tested. (orig.)

  7. Conductive surface modification of cauliflower-like WO{sub 3} and its electrochemical properties for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sukeun, E-mail: skyoon@kongju.ac.kr [Division of Advanced Materials Engineering, Kongju National University, Chungnam 330-717 (Korea, Republic of); Woo, Sang-Gil [Advanced Batteries Research Center, Korea Electronics Technology Institute, Gyeonggi 463-816 (Korea, Republic of); Jung, Kyu-Nam [Energy Efficiency and Materials Research Division, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of); Song, Huesup, E-mail: hssong@kongju.ac.kr [Division of Advanced Materials Engineering, Kongju National University, Chungnam 330-717 (Korea, Republic of)

    2014-11-15

    Highlights: • Synthesis of cauliflower-like carbon-decorated WO{sub 3}. • Superior cyclability and rate capability for cauliflower-like carbon-decorated WO{sub 3}. • Electrochemical reaction behavior of cauliflower-like carbon-decorated WO{sub 3} with lithium. • In-situ XRD analysis during the first discharge–charge shows a complex reaction of intercalation and conversion of WO{sub 3}. - Abstract: Cauliflower-like WO{sub 3} was synthesized by a hydrothermal reaction without a surfactant, followed by firing, and was investigated as an anode material for lithium-ion battery applications. The scanning electron microscope (SEM) and transmission electron microscope (TEM) characterization indicated that WO{sub 3} nanorods had an aggregation framework and built a cauliflower morphology. With the objective of understanding the charge–discharge process within a voltage range of 0–3 V vs. Li{sup +}/Li, in situ X-ray diffraction was used and a complex reaction of intercalation and conversion of WO{sub 3} was revealed for the first time. The cauliflower-like WO{sub 3} after being decorated with carbon provides a high gravimetric capacity of >635 mA h/g (Li{sub 5.5}WO{sub 3}) with good cycling and a high rate capability when used as an anode in lithium-ion batteries. Based on our studies, we attribute the high electrochemical performance to the nanoscopic WO{sub 3} particles and a conductive carbon layer, which makes them a potential candidate for lithium-ion batteries.

  8. Measurement of thermal conductivity of Bi2Te3 nanowire using high-vacuum scanning thermal wave microscopy

    Science.gov (United States)

    Park, Kyungbae; Hwang, Gwangseok; Kim, Hayeong; Kim, Jungwon; Kim, Woochul; Kim, Sungjin; Kwon, Ohmyoung

    2016-02-01

    With the increasing application of nanomaterials in the development of high-efficiency thermoelectric energy conversion materials and electronic devices, the measurement of the intrinsic thermal conductivity of nanomaterials in the form of nanowires and nanofilms has become very important. However, the current widely used methods for measuring thermal conductivity have difficulties in eliminating the influence of interfacial thermal resistance (ITR) during the measurement. In this study, by using high-vacuum scanning thermal wave microscopy (HV-STWM), we propose a quantitative method for measuring the thermal conductivity of nanomaterials. By measuring the local phase lag of high-frequency (>10 kHz) thermal waves passing through a nanomaterial in a high-vacuum environment, HV-STWM eliminates the measurement errors due to ITR and the distortion due to heat transfer through air. By using HV-STWM, we measure the thermal conductivity of a Bi2Te3 nanowire. Because HV-STWM is quantitatively accurate and its specimen preparation is easier than in the thermal bridge method, we believe that HV-STWM will be widely used for measuring the thermal properties of various types of nanomaterials.

  9. A conductivity study of preferential solvation of lithium ion in acetonitrile-dimethyl sulfoxide mixtures

    International Nuclear Information System (INIS)

    Mozhzhukhina, Nataliia; Longinotti, M. Paula; Corti, Horacio R.; Calvo, Ernesto J.

    2015-01-01

    The electrical mobility of LiPF 6 in acetonitrile–dimethyl sulfoxide (ACN–DMSO) mixtures, a potential electrolyte in oxygen cathodes of lithium-air batteries, has been studied using a very precise conductance technique, which allowed the determination of the infinite dilution molar conductivity and association constant of the salt in the whole composition range. In the search for preferential Li + ion solvation, we also measured the electrical conductivity of tetrabutylammonium hexafluorophosphate (TBAPF 6 ), a salt formed by a bulky cation, over the same composition range. The results show a qualitative change in the curvature of the LiPF 6 molar conductivity composition dependence for ACN molar fraction (x ACN ) ∼ 0.95, which was not observed for TBAPF 6 . The dependence of the measured Li/Li + couple potential with solvent composition also showed a pronounced change around the same composition. We suggest that these observations can be explained by Li + ion preferential solvation by DMSO in ACN–DMSO mixtures with very low molar fractions of DMSO

  10. Theoretical prediction of ion conductivity in solid state HfO2

    Science.gov (United States)

    Zhang, Wei; Chen, Wen-Zhou; Sun, Jiu-Yu; Jiang, Zhen-Yi

    2013-01-01

    A theoretical prediction of ion conductivity for solid state HfO2 is carried out in analogy to ZrO2 based on the density functional calculation. Geometric and electronic structures of pure bulks exhibit similarity for the two materials. Negative formation enthalpy and negative vacancy formation energy are found for YSH (yttria-stabilized hafnia) and YSZ (yttria-stabilized zirconia), suggesting the stability of both materials. Low activation energies (below 0.7 eV) of diffusion are found in both materials, and YSH's is a little higher than that of YSZ. In addition, for both HfO2 and ZrO2, the supercells with native oxygen vacancies are also studied. The so-called defect states are observed in the supercells with neutral and +1 charge native vacancy but not in the +2 charge one. It can give an explanation to the relatively lower activation energies of yttria-doped oxides and +2 charge vacancy supercells. A brief discussion is presented to explain the different YSH ion conductivities in the experiment and obtained by us, and we attribute this to the different ion vibrations at different temperatures.

  11. Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires

    Directory of Open Access Journals (Sweden)

    Minggang Xia

    2014-05-01

    Full Text Available The electrical and thermal conductivities are measured for individual zinc oxide (ZnO nanowires with and without gallium ion (Ga+ implantation at room temperature. Our results show that Ga+ implantation enhances electrical conductivity by one order of magnitude from 1.01 × 103 Ω−1m−1 to 1.46 × 104 Ω−1m−1 and reduces its thermal conductivity by one order of magnitude from 12.7 Wm−1K−1 to 1.22 Wm−1K−1 for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga+ implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga+ point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga+-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.

  12. Surface-conductivity enhancement of PMMA by keV-energy metal-ion implantation

    International Nuclear Information System (INIS)

    Bannister, M.E.; Hijazi, H.; Meyer, H.M.; Cianciolo, V.; Meyer, F.W.

    2014-01-01

    An experiment has been proposed to measure the neutron electric dipole moment (nEDM) with high precision at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source. One of the requirements of this experiment is the development of PMMA (Lucite) material with a sufficiently conductive surface to permit its use as a high-voltage electrode while immersed in liquid He. At the ORNL Multicharged Ion Research Facility, an R and D activity is under way to achieve suitable surface conductivity in poly-methyl methacrylate (PMMA) using metal ion implantation. The metal implantation is performed using an electron-cyclotron-resonance (ECR) ion source and a recently developed beam line deceleration module that is capable of providing high flux beams for implantation at energies as low as a few tens of eV. The latter is essential for reaching implantation fluences exceeding 1 × 10 16 cm −2 , where typical percolation thresholds in polymers have been reported. In this contribution, we report results on initial implantation of Lucite by Ti and W beams with keV energies to average fluences in the range 0.5–6.2 × 10 16 cm −2 . Initial measurements of surface-resistivity changes are reported as function of implantation fluence, energy, and sample temperature. We also report X-ray photoelectron spectroscopy (XPS) surface and depth profiling measurements of the ion implanted samples, to identify possible correlations between the near surface and depth resolved implanted W concentrations and the measured surface resistivities

  13. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features.

    Science.gov (United States)

    Malavasi, Lorenzo; Fisher, Craig A J; Islam, M Saiful

    2010-11-01

    This critical review presents an overview of the various classes of oxide materials exhibiting fast oxide-ion or proton conductivity for use as solid electrolytes in clean energy applications such as solid oxide fuel cells. Emphasis is placed on the relationship between structural and mechanistic features of the crystalline materials and their ion conduction properties. After describing well-established classes such as fluorite- and perovskite-based oxides, new materials and structure-types are presented. These include a variety of molybdate, gallate, apatite silicate/germanate and niobate systems, many of which contain flexible structural networks, and exhibit different defect properties and transport mechanisms to the conventional materials. It is concluded that the rich chemistry of these important systems provides diverse possibilities for developing superior ionic conductors for use as solid electrolytes in fuel cells and related applications. In most cases, a greater atomic-level understanding of the structures, defects and conduction mechanisms is achieved through a combination of experimental and computational techniques (217 references).

  14. Local structure and oxide-ion conduction mechanism in apatite-type lanthanum silicates.

    Science.gov (United States)

    Masson, Olivier; Berghout, Abid; Béchade, Emilie; Jouin, Jenny; Thomas, Philippe; Asaka, Toru; Fukuda, Koichiro

    2017-01-01

    The local structure of apatite-type lanthanum silicates of general formula La 9.33+x (SiO 4 ) 6 O 2+3x/2 has been investigated by combining the atomic pair distribution function (PDF) method, conventional X-ray and neutron powder diffraction (NPD) data and density functional theory (DFT) calculations. DFT was used to build structure models with stable positions of excess oxide ions within the conduction channel. Two stable interstitial positions were obtained in accordance with literature, the first one located at the very periphery of the conduction channel, neighbouring the SiO 4 tetrahedral units, and the second one closer to the channel axis. The corresponding PDFs and average structures were then calculated and tested against experimental PDFs obtained by X-ray total scattering and NPD Rietveld refinements results gathered from literature. It was shown that of the two stable interstitial positions obtained with DFT only the second one located within the channel is consistent with experimental data. This result consolidates one of the two main conduction mechanisms along the c-axis reported in the literature, namely the one involving cooperative movement of O4 and Oi ions.

  15. Thermal Scanning Conductometry (TSC) as a General Method for Studying and Controlling the Phase Behavior of Conductive Physical Gels.

    Science.gov (United States)

    Bielejewski, Michal

    2018-01-23

    The thermal scanning conductometry protocol is a new approach in studying ionic gels based on low molecular weight gelators. The method is designed to follow the dynamically changing state of the ionogels, and to deliver more information and details about the subtle change of conductive properties with an increase or decrease in the temperature. Moreover, the method allows the performance of long term (i.e. days, weeks) measurements at a constant temperature to investigate the stability and durability of the system and the aging effects. The main advantage of the TSC method over classical conductometry is the ability to perform measurements during the gelation process, which was impossible with the classical method due to temperature stabilization, which usually takes a long time before the individual measurement. It is a well-known fact that to obtain the physical gel phase, the cooling stage must be fast; moreover, depending on the cooling rate, different microstructures can be achieved. The TSC method can be performed with any cooling/heating rate that can be assured by the external temperature system. In our case, we can achieve linear temperature change rates between 0.1 and approximately 10 °C/min. The thermal scanning conductometry is designed to work in cycles, continuously changing between heating and cooling stages. Such an approach allows study of the reproducibility of the thermally reversible gel-sol phase transition. Moreover, it allows the performance of different experimental protocols on the same sample, which can be refreshed to initial state (if necessary) without removal from the measuring cell. Therefore, the measurements can be performed faster, in a more efficient way, and with much higher reproducibility and accuracy. Additionally, the TSC method can be also used as a tool to manufacture the ionogels with targeted properties, like microstructure, with an instant characterization of conductive properties.

  16. Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives

    Science.gov (United States)

    Ahn, Soonho; Kim, Youngduk; Kim, Kyung Joon; Kim, Tae Hyung; Lee, Hyungkeun; Kim, Myung H.

    As lithium ion cells dominate the battery market, the performance improvement is an utmost concern among developers and researchers. Conductive additives are routinely employed to enhance electrode conductivity and capacity. Carbon particulates—graphite or carbon black powders—are conventional and popular choices as conductive fillers. However, percolation requirements of particles demand significant volumetric content of impalpable, and thereby high area conductive fillers. As might be expected, the electrode active surface area escalates unnecessarily, resulting in overall increase in reaction with electrolytes and organic solvents. The increased reactions usually manifest as an irreversible loss of anode capacity, gradual oxidation and consumption of electrolyte on the cathode—which causes capacity decline during cycling—and an increased threat to battery safety by gas evolution and exothermic solvent oxidation. In this work we have utilized high aspect ratio, flexible, micronic metal fibers as low active area and high conductivity additives. The metal fibers appear well dispersed within the electrode and to satisfy percolation requirements very efficiently at very low volumetric content compared to conventional carbon-based conductive additives. Results from 18650-type cells indicate significant enhancements in electrode capacity and high rate capability while the irreversible capacity loss is negligible.

  17. Conductivity and applications of Li-biphenyl-1,2-dimethoxyethane solution for lithium ion batteries

    Institute of Scientific and Technical Information of China (English)

    Geng Chu; Bo-Nan Liu; Fei Luo; Wen-Jun Li; Hao Lu; Li-Quan Chen; Hong Li

    2017-01-01

    The total conductivity of Li-biphenyl-l,2-dimethoxyethane solution (LixBp(DME)9.65,Bp =biphenyl,DME =1,2-dimethoxyethane,x =0.25,0.50,1.00,1.50,2.00) is measured by impedance spectroscopy at a temperature range from 0 ℃C to 40 ℃C.The Li1.50Bp(DME)9.65 has the highest total conductivity 10.7 mS/cm.The conductivity obeys Arrhenius law with the activation energy (Ea(x=0.50) =0.014 eV,Ea(x=1.00) =0.046 eV).The ionic conductivity and electronic conductivity of LixBp(DME)9.65 solutions are investigated at 20 ℃C using the isothermal transient ionic current (ITIC) technique with an ion-blocking stainless steal electrode.The ionic conductivity and electronic conductivity of Li1.00Bp(DME)9.65 are measured as 4.5 mS/cm and 6.6 mS/cm,respectively.The Li1.00Bp(DME)9.65 solution is tested as an anode material of half liquid lithium ion battery due to the coexistence of electronic conductivity and ionic conductivity.The lithium iron phosphate (LFP) and Li1.5Al0.5Ti1.5(PO4)3 (LATP) are chosen to be the counter electrode and electrolyte,respectively.The assembled cell is cycled in the voltage range of 2.2 V-3.75 V at a current density of 50 mA/g.The potential of Lit.00Bp(DME)9.65 solution is about 0.3 V vs.Li+/Li,which indicates the solution has a strong reducibility.The Li1.00Bp(DME)9.65 solution is also used to prelithiate the anode material with low first efficiency,such as hard carbon,soft carbon and silicon.

  18. Optimized treatment parameters to account for interfractional variability in scanned ion beam therapy of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Brevet, Romain

    2015-02-04

    Scanned ion beam therapy of lung tumors is severely limited in its clinical applicability by intrafractional organ motion, interference effects between beam and tumor motion (interplay) as well as interfractional anatomic changes. To compensate for dose deterioration by intrafractional motion, motion mitigation techniques, such as gating have been developed. The latter confines the irradiation to a predetermined breathing state, usually the stable end-exhale phase. However, optimization of the treatment parameters is needed to further improve target dose coverage and normal tissue sparing. The aim of the study presented in this dissertation was to determine treatment planning parameters that permit to recover good target coverage and homogeneity during a full course of lung tumor treatments. For 9 lung tumor patients from MD Anderson Cancer Center (MDACC), a total of 70 weekly time-resolved computed tomography (4DCT) datasets were available, which depict the evolution of the patient anatomy over the several fractions of the treatment. Using the GSI in-house treatment planning system (TPS) TRiP4D, 4D simulations were performed on each weekly 4DCT for each patient using gating and optimization of a single treatment plan based on a planning CT acquired prior to treatment. It was found that using a large beam spot size, a short gating window (GW), additional margins and multiple fields permitted to obtain the best results, yielding an average target coverage (V95) of 96.5%. Two motion mitigation techniques, one approximating the rescanning process (multiple irradiations of the target with a fraction of the planned dose) and one combining the latter and gating, were then compared to gating. Both did neither show an improvement in target dose coverage nor in normal tissue sparing. Finally, the total dose delivered to each patient in a simulation of a fractioned treatment was calculated and clinical requirements in terms of target coverage and normal tissue sparing were

  19. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning

    DEFF Research Database (Denmark)

    Ejsing, Christer S.; Duchoslav, Eva; Sampaio, Julio

    2006-01-01

    We report a method for the identification and quantification of glycerophospholipid molecular species that is based on the simultaneous automated acquisition and processing of 41 precursor ion spectra, specific for acyl anions of common fatty acids moieties and several lipid class-specific fragment...... of glycerophospholipids. The automated analysis of total lipid extracts was powered by a robotic nanoflow ion source and produced currently the most detailed description of the glycerophospholipidome....

  20. In situ study of Li-ions diffusion and deformation in Li-rich cathode materials by using scanning probe microscopy techniques

    Science.gov (United States)

    Zeng, Kaiyang; Li, Tao; Tian, Tian

    2017-08-01

    In this paper, the scanning probe microscopy (SPM) based techniques, namely, conductive-AFM, electrochemical strain microscopy (ESM) and AM-FM (amplitude modulation-frequency modulation) techniques, are used to in situ characterize the changes in topography, conductivity and elastic properties of Li-rich layered oxide cathode (Li1.2Mn0.54Ni0.13Co0.13O2) materials, in the form of nanoparticles, when subject to the external electric field. Nanoparticles are the basic building blocks for composite cathode in a Li-ion rechargeable battery. Characterization of the structure and electrochemical properties of the nanoparticles is very important to understand the performance and reliability of the battery materials and devices. In this study, the conductivity, deformation and mechanical properties of the Li-rich oxide nanoparticles under different polarities of biases are studied using the above-mentioned SPM techniques. This information can be correlated with the Li+-ion diffusion and migration in the particles under external electrical field. The results also confirm that the SPM techniques are ideal tools to study the changes in various properties of electrode materials at nano- to micro-scales during or after the ‘simulated’ battery operation conditions. These techniques can also be used to in situ characterize the electrochemical performances of other energy storage materials, especially in the form of the nanoparticles.

  1. Investigation of the electrical conductivity of γ-irradiated sodium silicate glasses containing multivalence Cu ions

    International Nuclear Information System (INIS)

    Tawansi, A.; Basha, A.F.; El-Konsol, S.

    1981-07-01

    The present investigation deals with a study of the γ-radiation effects on the d.c. electrical resistivity (rho) of SiO 2 -Na 2 O-CaO glasses containing Cu 0 , Cu + , Cu 2+ and mixture of Cu + and Cu 2+ ions over the temperature (T) range from 300 to 630 0 K. The applicability of the polaron hopping conduction mechanism has been established from the reciprocal temperature dependence of 1n rho/T for the samples under investigation. The electrical resistivity is found to decrease by increasing the TM valancy which enhances the hoping process. The post-irradiation effect due to ionizing gamma-radiation is investigated within the frame work of the electron (and hole) trapping theory, and an average value of 0.45 is obtained for the parameter Δ, characterizing traps with an exponentially decreasing numbers below the conduction band. (author)

  2. Development of a Novel Scanning Thermal Microscopy (SThM) Method to Measure the Thermal Conductivity of Biological Cells.

    Science.gov (United States)

    Nakanishi, Kouichi; Kogure, Akinori; Kuwana, Ritsuko; Takamatsu, Hiromu; Ito, Kiyoshi

    2017-01-01

     Differences in the physical properties of individual cells cannot be evaluated with conventional experimental methods that are used to study groups of cells obtained from pure cultures. To examine the differences in the thermal tolerance of individual cells that are genetically identical, a method is needed to measure the thermal energy required to kill single cells. We developed a scanning thermal microscopy (SThM) system and measured the thermal conductivity of various bacterial cells, for example, spore formeing Bacillus genus and non spore-forming bacteria such as Escherichia coli. The thermal conductivity of vegetative cells (0.61 to 0.75 W/m・K) was found to be higher than that of spores (0.29 to 0.45 W/m・K). Furthermore the newly developed method enables us to estimate the thermal energy needed to kill individual cells or spores. We believe that this method can estimate the thermal energy required to achieve the cell for sterilization by heating.

  3. Effect of mixed transition metal ions on DC conductivity in lithium bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Khasa, S.; Yadav, Arti, E-mail: artidabhur@gmail.com; Dahiya, M. S.; Seema,; Ashima [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-131039 (India); Agarwal, A. [Physics Department, G.J. University of science and technology, Hisar-125001 (India)

    2015-06-24

    The DC conductivities of glasses having composition x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (with x=0, 2, 5, 7 and 10, i.e. NVLBB glasses) and glass samples having composition 7NiO·23 Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (NLBB and VLBB respectively) are investigated as a function of temperature. Conductivity for glasses containing higher percentage of lithium ions is predominantly ionic and in glasses containing higher percentage of transition metal (TM) ions is predominantly electronic. The observed increase in conductivity with x and peak-like behavior at x=7 in NVLBB glasses due to competitive transport of small polaron contributing to a significant structural change in NVLBB glasses. Variation of molar volume and density was also observed with x. In NVLBB glasses, as x increases density increases except a slight decrease at x=7. Also density increases in NLBB whereas in case of VLBB it decreases in comparison to NVLBB1 glass composition. Mott’s small polaron hopping (SPH) model has been applied to analyze the high temperature conductivity data and activation energy.

  4. Electrochemical ion exchanger in the water circuit to measure cation conductivity

    International Nuclear Information System (INIS)

    Bengtsson, B.; Ingemarsson, R.; Settervik, G.; Velin, A.

    2010-01-01

    In Ringhals NPP, more than four years of successful operation with a full-scale EDI for the recycling of steam generator blow down (SGBD) gave the inspiration to modify and 'scale down' this EDI process. This with purpose to explore the possibilities to replace the cation exchanger columns used for cation conductivity analysis, with some small and integrated electrochemical ion-exchange cells. Monitoring the cation conductivity requires the use of a small cation resin column upstream of the conductivity probe and is one of the most important analyses at power plants. However, when operating with high alkaline treatment in the steam circuit, it's connected to the disadvantage of getting the resins rapidly exhausted, with needs to be frequently replaced or regenerated. This is causing interruptions in the monitoring and giving rise to high workload for the maintenance. This paper reports about some optimization and tests of two different two-compartment electrochemical cells for the possible replacements of cation resin columns when analyzing cation conductivity in the secondary steam circuit at Ringhals NPPs. Field tests during start up condition and more than four months of steady operation together with real and simulated test for impurity influences, indicates that a ELectrical Ion Echange process (ELIX) could be successfully used to replace the resin columns in Ringhals during operating with high pH-AVT (All Volatile Treatment), using hydrazine and ammonia. Installation of an ELIX-system downstream a particle filter and upstream of a small cation resin column, will introduce additional safety and further reduce the maintenance with possible interruptions. Performance of the ELIX-process together with other chemical additives (Morpholine, ETA, MPA, DMA) and dispersants, may be further evaluated to qualify the ELIX-process as well as SGBD-EDI for wider use in nuclear applications. (author)

  5. Assessment of Early Toxicity and Response in Patients Treated With Proton and Carbon Ion Therapy at the Heidelberg Ion Therapy Center Using the Raster Scanning Technique

    Energy Technology Data Exchange (ETDEWEB)

    Rieken, Stefan; Habermehl, Daniel; Nikoghosyan, Anna; Jensen, Alexandra [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Haberer, Thomas [Heidelberg Ion Therapy Center, Heidelberg (Germany); Jaekel, Oliver [Heidelberg Ion Therapy Center, Heidelberg (Germany); Department of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg (Germany); Muenter, Marc W.; Welzel, Thomas; Debus, Juergen [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Combs, Stephanie E., E-mail: Stephanie.Combs@med.uni-hedielberg.de [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany)

    2011-12-01

    Puropose: To asses early toxicity and response in 118 patients treated with scanned ion beams to validate the safety of intensity-controlled raster scanning at the Heidelberg Ion Therapy Center. Patients and Methods: Between November 2009 and June 2010, we treated 118 patients with proton and carbon ion radiotherapy (RT) using active beam delivery. The main indications included skull base chordomas and chondrosarcomas, salivary gland tumors, and gliomas. We evaluated early toxicity within 6 weeks after RT and the initial clinical and radiologic response for quality assurance in our new facility. Results: In all 118 patients, few side effects were observed, in particular, no high numbers of severe acute toxicity were found. In general, the patients treated with particle therapy alone showed only a few single side effects, mainly Radiation Therapy Oncology Group/Common Terminology Criteria grade 1. The most frequent side effects and cumulative incidence of single side effects were observed in the head-and-neck patients treated with particle therapy as a boost and photon intensity-modulated RT. The toxicities included common radiation-attributed reactions known from photon RT, including mucositis, dysphagia, and skin erythema. The most predominant imaging responses were observed in patients with high-grade gliomas and those with salivary gland tumors. For skull base tumors, imaging showed a stable tumor outline in most patients. Thirteen patients showed improvement of pre-existing clinical symptoms. Conclusions: Side effects related to particle treatment were rare, and the overall tolerability of the treatment was shown. The initial response was promising. The data have confirmed the safe delivery of carbon ions and protons at the newly opened Heidelberg facility.

  6. Enhanced AC conductivity and dielectric relaxation properties of polypyrrole nanoparticles irradiated with Ni12+ swift heavy ions

    International Nuclear Information System (INIS)

    Hazarika, J.; Kumar, A.

    2014-01-01

    In this paper, we report the 160 MeV Ni 12+ swift heavy ions (SHIs) irradiation effects on AC conductivity and dielectric relaxation properties of polypyrrole (PPy) nanoparticles in the frequency range of 42 Hz–5 MHz. Four ion fluences of 5 × 10 10 , 1 × 10 11 , 5 × 10 11 and 1 × 10 12 ions/cm 2 have been used for the irradiation purpose. Transport properties in the pristine and irradiated PPy nanoparticles have been investigated with permittivity and modulus formalisms to study the polarization effects and conductivity relaxation. With increasing ion fluence, the relaxation peak in imaginary modulus (M ″ ) plots shifts toward high frequency suggesting long range motion of the charge carriers. The AC conductivity studies suggest correlated barrier hopping as the dominant transport mechanism. The hopping distance (R ω ) of the charge carriers decreases with increasing the ion fluence. Binding energy (W m ) calculations depict that polarons are the dominant charge carriers

  7. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2017-10-01

    We present measurements of bulk properties of the matter produced in Au+Au collisions at √{sN N}=7.7 ,11.5 ,19.6 ,27 , and 39 GeV using identified hadrons (π±, K±, p , and p ¯) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (|y |<0.1 ) results for multiplicity densities d N /d y , average transverse momenta 〈pT〉 , and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.

  8. Three-dimensional characterization of pigment dispersion in dried paint films using focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Lin, Jui-Ching; Heeschen, William; Reffner, John; Hook, John

    2012-04-01

    The combination of integrated focused ion beam-scanning electron microscope (FIB-SEM) serial sectioning and imaging techniques with image analysis provided quantitative characterization of three-dimensional (3D) pigment dispersion in dried paint films. The focused ion beam in a FIB-SEM dual beam system enables great control in slicing paints, and the sectioning process can be synchronized with SEM imaging providing high quality serial cross-section images for 3D reconstruction. Application of Euclidean distance map and ultimate eroded points image analysis methods can provide quantitative characterization of 3D particle distribution. It is concluded that 3D measurement of binder distribution in paints is effective to characterize the order of pigment dispersion in dried paint films.

  9. Analysis of hydrogen distribution on Mg-Ni alloy surface by scanning electron-stimulated desorption ion microscope (SESDIM)

    International Nuclear Information System (INIS)

    Yamaga, Atsushi; Hibino, Kiyohide; Suzuki, Masanori; Yamada, Masaaki; Tanaka, Kazuhide; Ueda, Kazuyuki

    2008-01-01

    Hydrogen distribution and behavior on a Mg-Ni alloy surface are studied by using a time-of-flight electron-stimulated desorption (TOF-ESD) microscopy and a scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDX). The desorbed hydrogen ions are energy-discriminated and distinguished into two characters in the adsorbed states, which belong to Mg 2 Ni grains and the other to oxygen-contaminated Mg phase at the grain boundaries. Adsorbed hydrogen is found to be stable up to 150 deg. C, but becomes thermally unstable around at 200 deg. C

  10. Epoxy-silica hybrid organic–inorganic electrolytes with a high Li-ion conductivity

    International Nuclear Information System (INIS)

    Vélez, J.F.; Procaccini, R.A.; Aparicio, M.; Mosa, J.

    2013-01-01

    Organic–inorganic hybrid electrolytes were prepared by co-hydrolysis and co-condensation of 3-glycidoxipropyltrimethoxysilane (GPTMS) and tetraethyl orthosilicate (TEOS) doped with lithium acetate as self-supported materials and thin-films. The effects of the relative molar content of LiAc on the physicochemical properties of electrolytes, such as morphology, thermal, chemical and electrochemical properties were investigated. Two and four probes test cells were designed for comparative studies of ionic conductivity of hybrid electrolytes using electrochemical impedance spectroscopy (EIS). Similar ionic conductivities were obtained using both measurement methods, reaching a maximum ionic conductivity value of around 10 −6 S/cm at 25 °C. The conductivity mechanism presents Arrehenius behavior with the increase of the temperature from 25 °C to 120 °C. The electrochemical stability window is found to be in the range of 0–5 V, which ensures that hybrid organic–inorganic materials are potential electrolytes for solid-state rechargeable lithium ion batteries

  11. Fabrication of Conductive Nanostructures by Femtosecond Laser Induced Reduction of Silver Ions

    Science.gov (United States)

    Barton, Peter G.

    Nanofabrication through multiphoton absorption has generated considerable interest because of its unique ability to generate 2D and 3D structures in a single laser-direct-write step as well as its ability to generate feature sizes well below the diffraction limited laser spot size. The majority of multiphoton fabrication has been used to create 3D structures of photopolymers which have applications in a wide variety of fields, but require additional post-processing steps to fabricate conductive structures. It has been shown that metal ions can also undergo multiphoton absorption, which reduces the metal ions to stable atoms/nanoparticles which are formed at the laser focal point. When the focus is located at the substrate surface, the reduced metal is deposited on the surface, which allows arbitrary 2D patterning as well as building up 3D structures from this first layer. Samples containing the metal ions can be prepared either in a liquid solution, or in a polymer film. The polymer film approach has the benefit of added support for the 3D metallic structures; however it is difficult to remove the polymer after fabrication to leave a free standing metallic structure. With the ion solution method, free standing metallic structures can be fabricated but need to be able to withstand surface tension forces when the remaining unexposed solution is washed away. So far, silver nanowires with resistivity on the order of bulk silver have been fabricated, as well as a few small 3D structures. This research focuses on the surfactant assisted multiphoton reduction of silver ions in a liquid solution. The experimental setup consists of a Coherent Micra 10 Ultrafast laser with 30fs pulse length, 80MHz repetition rate, and a wavelength centered at 800nm. This beam is focused into the sample using a 100x objective with a N.A. of 1.49. Silver structures such as nanowires and grid patterns have been produced with minimum linewidth of 180nm. Silver nanowires with resistivity down to

  12. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    DEFF Research Database (Denmark)

    Fuchs, Hermann; Alber, Markus; Schreiner, Thomas

    2015-01-01

    PURPOSE: Helium ions ((4)He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed...... published so far. The advantage of (4)He seems to lie in the reduction of dose to surrounding tissue and to OARs. Nevertheless, additional biological experiments and treatment planning studies with larger patient numbers and more tumor indications are necessary to study the possible benefits of helium ion...

  13. Development of thermal scanning probe microscopy for the determination of thin films thermal conductivity: application to ceramic materials for nuclear industry

    International Nuclear Information System (INIS)

    David, L.

    2006-10-01

    Since the 1980's, various thermal metrologies have been developed to understand and characterize the phenomena of transport of thermal energy at microscopic and submicroscopic scales. Thermal Scanning Probe Microscopy (SThM) is promising. Based on the analysis of the thermal interaction between an heated probe and a sample, it permits to probe the matter at the level of micrometric size in volumes. Performed in the framework of the development of this technique, this work more particularly relates to the study of thin films thermal conductivity. We propose a new modelling of the prediction of measurement with SThM. This model allows not only the calibration of the method for the measurement of bulk material thermal conductivity but also to specify and to better describe the probe - sample thermal coupling and to estimate, from its inversion, thin films thermal conductivity. This new approach of measurement has allowed the determination of the thermal conductivity of micrometric and sub-micrometric thicknesses of meso-porous silicon thin film in particular. Our estimates for the micrometric thicknesses are in agreement with those obtained by the use of Raman spectrometry. For the lower thicknesses of film, we give new data. Our model has, moreover, allowed a better definition of the in-depth resolution of the apparatus. This one is strongly linked to the sensitivity of SThM and strongly depends on the probe-sample thermal coupling area and on the geometry of the probe used. We also developed the technique by the vacuum setting of SThM. Our first results under this environment of measurement are encouraging and validate the description of the coupling used in our model. Our method was applied to the study of ceramics (SiC, TiN, TiC and ZrC) under consideration in the composition of future nuclear fuels. Because of the limitations of SThM in terms of sensitivity to thermal conductivity and in-depth resolution, measurements were also undertaken with a modulated thermo

  14. The structure of new germanates, gallates, borates and silicates with laser, piezo, ferroelectric and ion conducting properties

    International Nuclear Information System (INIS)

    Belokonev, E.L.

    1994-01-01

    The results of structure investigation of more than 50 new crystalline germanates, gallates, borogermanates, borates, and silicates with laser, piezo, ferroelectric, and ion-conducting properties are described. The structure - properties relationship is examined. 71 refs.; 24 figs.; 10 tabs

  15. Detailed characterisation of focused ion beam induced lateral damage on silicon carbide samples by electrical scanning probe microscopy and transmission electron microscopy

    Science.gov (United States)

    Stumpf, F.; Abu Quba, A. A.; Singer, P.; Rumler, M.; Cherkashin, N.; Schamm-Chardon, S.; Cours, R.; Rommel, M.

    2018-03-01

    The lateral damage induced by focused ion beam on silicon carbide was characterized using electrical scanning probe microscopy (SPM), namely, scanning spreading resistance microscopy and conductive atomic force microscopy (c-AFM). It is shown that the damage exceeds the purposely irradiated circles with a radius of 0.5 μm by several micrometres, up to 8 μm for the maximum applied ion dose of 1018 cm-2. Obtained SPM results are critically compared with earlier findings on silicon. For doses above the amorphization threshold, in both cases, three different areas can be distinguished. The purposely irradiated area exhibits resistances smaller than the non-affected substrate. A second region with strongly increasing resistance and a maximum saturation value surrounds it. The third region shows the transition from maximum resistance to the base resistance of the unaffected substrate. It correlates to the transition from amorphized to defect-rich to pristine crystalline substrate. Additionally, conventional transmission electron microscopy (TEM) and annular dark-field STEM were used to complement and explain the SPM results and get a further understanding of the defect spreading underneath the surface. Those measurements also show three different regions that correlate well with the regions observed from electrical SPM. TEM results further allow to explain observed differences in the electrical results for silicon and silicon carbide which are most prominent for ion doses above 3 × 1016 cm-2. Furthermore, the conventional approach to perform current-voltage measurements by c-AFM was critically reviewed and several improvements for measurement and analysis process were suggested that result in more reliable and impactful c-AFM data.

  16. Electrospinning of Ceramic Solid Electrolyte Nanowires for Lithium-Ion Batteries with Enhanced Ionic Conductivity

    Science.gov (United States)

    Yang, Ting

    Solid electrolytes have great potential to address the safety issues of Li-ion batteries, but better synthesis methods are still required for ceramics electrolytes such as lithium lanthanum titanate (LLTO) and lithium lanthanum zirconate (LLZO). Pellets made from ceramic nanopowders using conventional sintering can be porous due to the agglomeration of nanoparticles (NPs). Electrospinning is a simple and versatile technique for preparing oxide ceramic nanowires (NWs) and was used to prepare electrospun LLTO and LLZO NWs. Pellets prepared from the electrospun LLTO NWs had higher density, less void space, and higher Li+ conductivity compared to those comprised of LLTO prepared with conventional sol-gel methods, which demonstrated the potential that electrospinning can provide towards improving the properties of sol-gel derived ceramics. Cubic phase LLZO was stabilized at room temperature in the form of electrospun NWs without extrinsic dopants. Bulk LLZO with tetragonal structure was transformed to the cubic phase using particle size reduction via ball milling. Heating conditions that promoted particle coalescence and grain growth induced a transformation from the cubic to tetragonal phase in both types of nanostructured LLZO. Composite polymer solid electrolyte was fabricated using LLZO NWs as the filler and showed an improved ionic conductivity at room temperature. Nuclear magnetic resonance studies show that LLZO NWs partially modify the polymer matrix and create preferential pathways for Li+ conduction through the modified polymer regions. Doping did not have significant effect on improving the overall conductivity as the interfaces played a predominant role. By comparing fillers with different morphologies and intrinsic conductivities, it was found that both NW morphology and high intrinsic conductivity are desired.

  17. Energy scan in heavy-ion collisions and search for a critical point

    Czech Academy of Sciences Publication Activity Database

    Tokarev, M. V.; Zborovský, Imrich

    2012-01-01

    Roč. 75, č. 6 (2012), s. 700-706 ISSN 1063-7788 R&D Projects: GA MŠk LA08002; GA MŠk LA08015 Institutional support: RVO:61389005 Keywords : heavy-ion collisions * specific heat Subject RIV: BE - Theoretical Physics Impact factor: 0.539, year: 2012

  18. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.

    Science.gov (United States)

    Wang, Byung-Yong; Yoo, Tae-Hee; Song, Yong-Won; Lim, Dae-Soon; Oh, Young-Jei

    2013-05-22

    Direct printing techniques that utilize nanoparticles to mitigate environmental pollution and reduce the processing time of the routing and formation of electrodes have received much attention lately. In particular, copper (Cu) nanoink using Cu nanoparticles offers high conductivity and can be prepared at low cost. However, it is difficult to produce homogeneous nanoparticles and ensure good dispersion within the ink. Moreover, Cu particles require a sintering process over an extended time at a high temperature due to high melting temperature of Cu. During this process, the nanoparticles oxidize quickly in air. To address these problems, the authors developed a Cu ion ink that is free of Cu particles or any other impurities. It consequently does not require separate dispersion stability. In addition, the developed ink is environmentally friendly and can be sintered even at low temperatures. The Cu ion ink was sintered on a flexible substrate using intense pulsed light (IPL), which facilitates large-area, high-speed calcination at room temperature and at atmospheric pressures. As the applied light energy increases, the Cu2O phase diminishes, leaving only the Cu phase. This is attributed to the influence of formic acid (HCOOH) on the Cu ion ink. Only the Cu phase was observed above 40 J cm(-2). The Cu-patterned film after sintering showed outstanding electrical resistivity in a range of 3.21-5.27 μΩ·cm at an IPL energy of 40-60 J cm(-2). A spiral-type micropattern with a line width of 160 μm on a PI substrate was formed without line bulges or coffee ring effects. The electrical resistivity was 5.27 μΩ·cm at an energy level of 40.6 J cm(-2).

  19. Microstructure characterization of a food-grade U-type microemulsion system by differential scanning calorimetry and electrical conductivity techniques.

    Science.gov (United States)

    Zhang, Hui; Taxipalati, Maierhaba; Que, Fei; Feng, Fengqin

    2013-12-01

    The microstructure transitions of a food-grade U-type microemulsion system containing glycerol monolaurate and propionic acid at a 1:1 mass ratio as oil phase and Tween 80 as surfactant were investigated along a water dilution line at a ratio of 80:20 mass% surfactant/oil phase, based on a previously studied phase diagram. From the water thermal behaviours detected by differential scanning calorimetry, three structural regions are identified along the dilution line. In the first region, all water molecules are confined to the water core of the reverse micelles, leading to the formation of w/o microemulsion. As the water content increases, the water gains mobility, transforms into bicontinuous in the second region, and finally the microemulsion become o/w in the third region. The thermal transition points coincide with the structural phase transitions by electrical conductivity measurements, indicating that the structural transitions occur at 35 and 65 mass% of water along the dilution line. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Lithium ion conductivity of molecularly compatibilized chitosan-poly(aminopropyltriethoxysilane)-poly(ethylene oxide) nanocomposites

    International Nuclear Information System (INIS)

    Fuentes, S.; Retuert, P.J.; Gonzalez, G.

    2007-01-01

    Films of composites of chitosan/poly(aminopropyltriethoxysilane)/poly(ethylene oxide) (CHI/pAPS/PEO) containing a fixed amount of lithium salt are studied. The ternary composition diagram of the composites, reporting information on the mechanic stability, the transparence and the electrical conductivity of the films, shows there is a window in which the molecular compatibility of the components is optimal. In this window, defined by the components ratios CHI/PEO 3:2, pAPS/PEO 2:3 and CHI/PEO 1:2, there is a particular composition Li x (CHI) 1 (PEO) 2 (pAPS) 1.2 for which the conductivity reaches a value of 1.7 x 10 -5 S cm -1 at near room temperature. Considering the balance between the Lewis acid and basic sites available in the component and the observed stoichiometry limits of formed polymer complexes, the conductivity values of these products may be understood by the formation of a layered structure in which the lithium ions, stabilized by the donors, poly(ethylene oxide) and/or poly(aminopropyltriethoxysilane), are intercalated in a chitosan matrix

  1. Silver/carbon nanotube hybrids: A novel conductive network for high-rate lithium ion batteries

    International Nuclear Information System (INIS)

    Zhou, Fangdong; Qiu, Kehui; Peng, Gongchang; Xia, Li

    2015-01-01

    LiNi 1/3 Co 1/3 Mn 1/3 O 2 /Ag composite cathodes are synthesized by a thermal decomposition method and multi-walled carbon nanotubes are uniformly introduced into the composites through ball mixing. A composite electrically conductive network consisting of CNTs and Ag is obtained to improve the conductivity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material. By comparing with the pure LiNi 1/3 Co 1/3 Mn 1/3 O 2 and cathode modified by CNTs or Ag, the as-obtained LiNi 1/3 Co 1/3 Mn 1/3 O 2 –CNT/Ag electrode exhibits the best rate capability (120.6 mAh/g at 5C) and cycle performance (134.2 mAh/g at 1C with a capacity retention of 94.4% over 100 cycles). With the construction of 3D spatial conductive network, the novel hybrid CNT/Ag demonstrates itself a promising strategy to improve Li storage performance for lithium ion batteries

  2. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    KAUST Repository

    Alaie, Seyedhamidreza

    2015-02-04

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m-1 K-1 versus 71.6 W m-1 K-1 at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  3. Electrical properties of fast ion conducting silver based borate glasses: Application in solid battery

    International Nuclear Information System (INIS)

    Masoud, Emad M.; Khairy, M.; Mousa, M.A.

    2013-01-01

    Graphical abstract: -- Highlights: •AgI dopant created more opened borate network structure. •Dielectric constant and loss values increased with AgI concentration. •AgI dopant enhanced both ion migration and orientation. •0.6 AgI–0.27 Ag 2 O–0.13 B 2 O 3 showed the highest DC-conductivity at room temperature. •It showed also good life time as a solid electrolyte in solid battery at room temperature. -- Abstract: The electrical properties of the ternary ionic conducting glass system xAgI–(1 – x)[0.67Ag 2 O–0.33B 2 O 3 ], where x = 0.4 , 0.5, 0.6, 0.7 and 0.8, were studied for emphasizing the influence of silver iodide concentration on the transport properties in the based borate glasses. The glasses were prepared by melt quenching technique and characterized using X-ray diffraction (XRD), FT-IR spectra and differential thermal analysis (DTA). XRD confirmed a glassy nature for all investigated compositions. Electrical conductivity (σ), dielectric constant (ε′), dielectric loss (ε ″ ) and impedance spectra (Z′–Z′′) were studied for all samples at a frequency range of 0–10 6 Hz and over a temperature range of 303–413 K. Changes of conductivity and dielectric properties with composition, temperature and frequency were analyzed and discussed. A silver iodine battery using glassy electrolyte sample with the highest ionic conductivity (x = 0.6) was studied

  4. SU-E-T-755: Timing Characteristics of Proton and Carbon Ion Treatments Using a Synchrotron and Modulated Scanning

    International Nuclear Information System (INIS)

    Zhao, J; Li, Y; Huang, Z; Deng, Y; Sun, L; Moyers, M; Hsi, W; Wu, X

    2015-01-01

    Purpose: The time required to deliver a treatment impacts not only the number of patients that can be treated each day but also the accuracy of delivery due to potential movements of patient tissues. Both macroscopic and microscopic timing characteristics of a beam delivery system were studied to examine their impacts on patient treatments. Methods: 35 patients were treated during a clinical trial to demonstrate safety and efficacy of a Siemens Iontris system prior to receiving approval from the Chinese Food and Drug Administration. The system has a variable cycle time and can provide proton beams from 48 to 221 MeV/n and carbon ions from 86 to 430 MeV/n. A modulated scanning beam delivery technique is used where the beam remains stationary at each spot aiming location and is not turned off while the spot quickly moves from one aiming location to the next. The treatment log files for 28 of the trial patients were analyzed to determine several timing characteristics. Results: The average portal time per target dose was 172.5 s/Gy for protons and 150.7 s/Gy for carbon ions. The maximum delivery time for any portal was less than 300 s. The average dwell time per spot was 12 ms for protons and 3.0 ms for carbon ions. The number of aiming positions per energy layer varied from 1 to 258 for protons and 1 to 621 for carbon ions. The average spill time and cycle time per energy layer were 1.20 and 2.68 s for protons and 0.95 and 4.73 s for carbon ions respectively. For 3 of the patients, the beam was gated on and off to reduce the effects of respiration. Conclusion: For a typical target volume of 153 cc as used in this clinical trial, the portal delivery times were acceptable

  5. Microsputterer with integrated ion-drag focusing for additive manufacturing of thin, narrow conductive lines

    Science.gov (United States)

    Kornbluth, Y. S.; Mathews, R. H.; Parameswaran, L.; Racz, L. M.; Velásquez-García, L. F.

    2018-04-01

    We report the design, modelling, and proof-of-concept demonstration of a continuously fed, atmospheric-pressure microplasma metal sputterer that is capable of printing conductive lines narrower than the width of the target without the need for post-processing or lithographic patterning. Ion drag-induced focusing is harnessed to print narrow lines; the focusing mechanism is modelled via COMSOL Multiphysics simulations and validated with experiments. A microplasma sputter head with gold target is constructed and used to deposit imprints with minimum feature sizes as narrow as 9 µm, roughness as small as 55 nm, and electrical resistivity as low as 1.1 µΩ · m.

  6. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    Science.gov (United States)

    Javier, Anna Esmeralda K; Balsara, Nitash Pervez; Patel, Shrayesh Naran; Hallinan, Jr., Daniel T

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  7. Cu_2O Hybridized Titanium Carbide with Open Conductive Frameworks for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Zhang, Huang; Dong, Hui; Zhang, Xuan; Xu, Yunlong; Fransaer, Jan

    2016-01-01

    Though MXenes, a new family of 2D transition metal carbides, are generating considerable interests as electrode materials for batteries and supercapacitors, further application is hindered by their low capacities and poor rate capabilities. Here we propose a simple route for the synthesis of Cu_2O particle hybridized titanium carbide Ti_2CT_x (T = O, OH) composites via a solvothermal method. Electrodes containing Cu_2O/MXene were fabricated without carbon black, and tested as anodes for lithium ion batteries. A discharge capacity of 143 mAh g"−"1 was obtained at a discharge current density of 1000 mA g"−"1 and the capacity retention was near 100% after 200 cycles. The hybrid electrodes with open conductive frameworks exhibited significantly improved electrochemical performance, suggesting a new method for preparing MXene-based composites for energy storage application.

  8. Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for Oncological Hadrontherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mirandola, Alfredo, E-mail: mirandola@cnao.it; Molinelli, S.; Vilches Freixas, G.; Mairani, A.; Gallio, E.; Panizza, D.; Russo, S.; Ciocca, M. [Fondazione CNAO, strada Campeggi 53, Pavia 27100 (Italy); Donetti, M. [INFN, Torino 10125, Italy and Fondazione CNAO, strada Campeggi 53, Pavia 27100 (Italy); Magro, G. [INFN–Dipartimento di Fisica, Università degli Studi di Pavia, Via U. Bassi 6, Pavia 27100, Italy and Fondazione CNAO, strada Campeggi 53, Pavia 27100 (Italy); Giordanengo, S. [INFN, Torino 10125 (Italy); Orecchia, R. [Fondazione CNAO, strada Campeggi 53, Pavia 27100, Italy and Radiotherapy Division, European Institute of Oncology, Via Ripamonti 435, Milano 20141 (Italy)

    2015-09-15

    Purpose: To describe the dosimetric commissioning and quality assurance (QA) of the actively scanned proton and carbon ion beams at the Italian National Center for Oncological Hadrontherapy. Methods: The laterally integrated depth-dose-distributions (IDDs) were acquired with the PTW Peakfinder, a variable depth water column, equipped with two Bragg peak ionization chambers. FLUKA Monte Carlo code was used to generate the energy libraries, the IDDs in water, and the fragment spectra for carbon beams. EBT3 films were used for spot size measurements, beam position over the scan field, and homogeneity in 2D-fields. Beam monitor calibration was performed in terms of number of particles per monitor unit using both a Farmer-type and an Advanced Markus ionization chamber. The beam position at the isocenter, beam monitor calibration curve, dose constancy in the center of the spread-out-Bragg-peak, dose homogeneity in 2D-fields, beam energy, spot size, and spot position over the scan field are all checked on a daily basis for both protons and carbon ions and on all beam lines. Results: The simulated IDDs showed an excellent agreement with the measured experimental curves. The measured full width at half maximum (FWHM) of the pencil beam in air at the isocenter was energy-dependent for both particle species: in particular, for protons, the spot size ranged from 0.7 to 2.2 cm. For carbon ions, two sets of spot size are available: FWHM ranged from 0.4 to 0.8 cm (for the smaller spot size) and from 0.8 to 1.1 cm (for the larger one). The spot position was accurate to within ±1 mm over the whole 20 × 20 cm{sup 2} scan field; homogeneity in a uniform squared field was within ±5% for both particle types at any energy. QA results exceeding tolerance levels were rarely found. In the reporting period, the machine downtime was around 6%, of which 4.5% was due to planned maintenance shutdowns. Conclusions: After successful dosimetric beam commissioning, quality assurance measurements

  9. Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for Oncological Hadrontherapy

    International Nuclear Information System (INIS)

    Mirandola, Alfredo; Molinelli, S.; Vilches Freixas, G.; Mairani, A.; Gallio, E.; Panizza, D.; Russo, S.; Ciocca, M.; Donetti, M.; Magro, G.; Giordanengo, S.; Orecchia, R.

    2015-01-01

    Purpose: To describe the dosimetric commissioning and quality assurance (QA) of the actively scanned proton and carbon ion beams at the Italian National Center for Oncological Hadrontherapy. Methods: The laterally integrated depth-dose-distributions (IDDs) were acquired with the PTW Peakfinder, a variable depth water column, equipped with two Bragg peak ionization chambers. FLUKA Monte Carlo code was used to generate the energy libraries, the IDDs in water, and the fragment spectra for carbon beams. EBT3 films were used for spot size measurements, beam position over the scan field, and homogeneity in 2D-fields. Beam monitor calibration was performed in terms of number of particles per monitor unit using both a Farmer-type and an Advanced Markus ionization chamber. The beam position at the isocenter, beam monitor calibration curve, dose constancy in the center of the spread-out-Bragg-peak, dose homogeneity in 2D-fields, beam energy, spot size, and spot position over the scan field are all checked on a daily basis for both protons and carbon ions and on all beam lines. Results: The simulated IDDs showed an excellent agreement with the measured experimental curves. The measured full width at half maximum (FWHM) of the pencil beam in air at the isocenter was energy-dependent for both particle species: in particular, for protons, the spot size ranged from 0.7 to 2.2 cm. For carbon ions, two sets of spot size are available: FWHM ranged from 0.4 to 0.8 cm (for the smaller spot size) and from 0.8 to 1.1 cm (for the larger one). The spot position was accurate to within ±1 mm over the whole 20 × 20 cm"2 scan field; homogeneity in a uniform squared field was within ±5% for both particle types at any energy. QA results exceeding tolerance levels were rarely found. In the reporting period, the machine downtime was around 6%, of which 4.5% was due to planned maintenance shutdowns. Conclusions: After successful dosimetric beam commissioning, quality assurance measurements

  10. SU-E-T-778: Use of the 2D MatriXX Detector for Measuring Scanned Ion Beam Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Anvar, M Varasteh; Monaco, V; Sacchi, R; Guarachi, L Fanola; Cirio, R [Istituto Nazionale di Fisica Nucleare (INFN), Division of Turin, TO (Italy); University of Torino, Turin, TO (Italy); Giordanengo, S; Marchetto, F; Vignati, A [Istituto Nazionale di Fisica Nucleare (INFN), Division of Turin, TO (Italy); Donetti, M [Istituto Nazionale di Fisica Nucleare (INFN), Division of Turin, TO (Italy); Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, PV (Italy); Ciocca, M; Panizza, D [Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, PV (Italy)

    2015-06-15

    Purpose: The quality assurance (QA) procedure has to check the most relevant beam parameters to ensure the delivery of the correct dose to patients. Film dosimetry, which is commonly used for scanned ion beam QA, does not provide immediate results. The purpose of this work is to answer whether, for scanned ion beam therapy, film dosimetry can be replaced with the 2D MatriXX detector as a real-time tool. Methods: MatriXX, equipped with 32×32 parallel plate ion-chambers, is a commercial device intended for pre-treatment verification of conventional radiation therapy.The MatriXX, placed at the isocenter, and GAFCHROMIC films, positioned on the MatriXX entrance, were exposed to 131.44 MeV proton and 221.45 MeV/u Carbon-ion beams.The OmniPro-I’mRT software, applied for the data taking of MatriXX, gives the possibility of acquiring consecutive snapshots. Using the NI LabVIEW, the data from snapshots were logged as text files for further analysis. Radiochromic films were scanned with EPSON scanner and analyzed using software programs developed in-house for comparative purposes. Results: The field dose uniformity, flatness, beam position and beam width were investigated. The field flatness for the region covering 6×6 cm{sup 2} square field was found to be better than 2%. The relative standard deviations, expected to be constant over 2×2, 4×4 and 6×6 pixels from MatriXX measurement gives a uniformity of 1.5% in good agreement with the film results.The beam center position is determined with a resolution better than 200 µm for Carbon and less than 100 µm for proton beam.The FWHM determination for a beam wider than 10 mm is satisfactory, whilst for smaller beams the determination is uncertain. Conclusion: Precise beam position and fast 2D dose distribution can be determined in real-time using MatriXX detector. The results show that MatriXX is quick and accurate enough to be used in charged-particle therapy QA.

  11. Structural transitions, ion mobility, and conductivity in CsSbF3(H2PO4)

    Science.gov (United States)

    Kavun, V. Ya.; Uvarov, N. F.; Slobodyuk, A. B.; Ulihin, A. S.; Kovaleva, E. V.; Zemnukhova, L. A.

    2018-02-01

    Structural transitions, ion mobility, and conductivity in CsSbF3(H2PO4) (I) have been investigated by the methods of 1H, 19F, 31P NMR (including 1H, 19F, 31P MAS NMR), DSC, X-ray diffraction, and impedance spectroscopy. It was found that the fundamental changes in 1H, 19F, 31P NMR spectra (above 390 K) were associated with the formation of a crystalline disorder phase I with high ionic mobility in the proton and fluoride sublattices, as a result of a phase transition in the 400-420 K range. In the same temperature range, the transition of PO2(OH)2- anions from the "rigid lattice" to fast reorientations takes place. Above 430 K, there occurs a transition from the crystalline disordered phase to the amorphous one. The types of ion mobility in CsSbF3(H2PO4) and its amorphous phase have been established and temperature ranges of their realization have been determined (150-450 K). According to the NMR data, the diffusion in the proton sublattice of the disordered crystalline and amorphous phases is preserved even at room temperature. The ionic conductivity in CsSbF3(H2PO4) reaches the values of 2.6 × 10-4 S/cm in the temperature range 410-425 K and decreases down to 2.0 × 10-5 S/cm upon transition to the amorphous phase (435-445 K).

  12. Fast-scan monitor examines neutral-beam ion-density profile

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    All of the magnetic mirror confinement fusion experiments at LLL and at other laboratories depend on pulsed, energetic neutral-beam injection for fueling and imparting energy to the trapped plasma for density build-up and stability studies. It is vital to be able to monitor how well the injected ion beam is aimed and focused. To do this, we have designed an ion-beam current-density profile monitor that uses a commercial minimodular data acquisition system. Our prototype model monitors a single 20-kV, 50-A, 10-ms beam. However, the method is applicable to any number of beams with similar sampling target arrays. Also, the electronics can be switched to monitor any one of several target collectors

  13. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I

    DEFF Research Database (Denmark)

    GharibDoust, Seyed Hosein Payandeh; Brighi, Matteo; Sadikin, Yolanda

    2017-01-01

    In this work, a new type of addition reaction between La(BH4)3 and LiX, X = Cl, Br, I, is used to synthesize LiLa(BH4)3Cl and two new compounds LiLa(BH4)3X, X = Br, I. This method increases the amounts of LiLa(BH4)3X and the sample purity. The highest Li-ion conductivity is observed for LiLa(BH4...... with increasing lattice parameter, that is, increasing size of the halide ion in the structure. Thus, we conclude that the sizes of both windows are important for the lithium ion conduction in LiLa(BH4)3X compounds. The lithium ion conductivity is measured over one to three heating cycles and with different...

  14. [Application of precursor ion scanning method in rapid screening of illegally added phosphodiesterase-5 inhibitors and their unknown derivatives in Chinese traditional patent medicines and health foods].

    Science.gov (United States)

    Sun, Jing; Cao, Ling; Feng, Youlong; Tan, Li

    2014-11-01

    The compounds with similar structure often have similar pharmacological activities. So it is a trend for illegal addition that new derivatives of effective drugs are synthesized to avoid the statutory test. This bring challenges to crack down on illegal addition behavior, however, modified derivatives usually have similar product ions, which allow for precursor ion scanning. In this work, precursor ion scanning mode of a triple quadrupole mass spectrometer was first applied to screen illegally added drugs in complex matrix such as Chinese traditional patent medicines and healthy foods. Phosphodiesterase-5 inhibitors were used as experimental examples. Through the analysis of the structure and mass spectrum characteristics of the compounds, phosphodiesterase-5 inhibitors were classified, and their common product ions were screened by full scan of product ions of typical compounds. Then high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method with precursor ion scanning mode was established based on the optimization of MS parameters. The effect of mass parameters and the choice of fragment ions were also studied. The method was applied to determine actual samples and further refined. The results demonstrated that this method can meet the need of rapid screening of unknown derivatives of phosphodiesterase-5 inhibitors in complex matrix, and prevent unknown derivatives undetected. This method shows advantages in sensitivity, specificity and efficiency, and is worth to be further investigated.

  15. Removal of Cu(II) ions from contaminated waters using a conducting microfiltration membrane.

    Science.gov (United States)

    Wang, Xueye; Wang, Zhiwei; Chen, Haiqin; Wu, Zhichao

    2017-10-05

    Efficient removal of toxic metals using low-pressure membrane processes from contaminated waters is an important but challenging task. In the present work, a conducting microfiltration membrane prepared by embedding a stainless steel mesh in the active layer of a polyvinylidene fluoride membrane is developed to remove Cu(II) ions from contaminated waters. Results showed that the conducting membrane had favorable electrochemical properties and stability as cathode. Batch tests showed that Cu(II) removal efficiency increased with the increase of voltages and leveled off with the further enhancement of electric field. The optimal voltages were determined to be 1.0V and 2.0V for the influent Cu(II) concentrations of 5mg/L and 30mg/L, respectively. X-ray photoelectron spectroscopy and X-ray diffraction results demonstrated the presence of Cu(0) and Cu(OH) 2 on the membrane surface. The removal mechanisms involved the intrinsic adsorption of membrane, electrosorption of membrane, adsorption of deposited layer, chemical precipitation of Cu(OH) 2 and deposition of Cu(0) which were aided by electrophoresis and electrochemical oxidation-reduction. Long-term tests showed that the major contributors for Cu(II) removal were the deposition of Cu(0) by electrochemical reduction-oxidation (47.3%±8.5%) and chemical precipitation (41.1%±0.2%), followed by electrosorption, adsorption by the fouling layer and membrane intrinsic sorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Beltless translocation domain of botulinum neurotoxin A embodies a minimum ion-conductive channel.

    Science.gov (United States)

    Fischer, Audrey; Sambashivan, Shilpa; Brunger, Axel T; Montal, Mauricio

    2012-01-13

    Botulinum neurotoxin, the causative agent of the paralytic disease botulism, is an endopeptidase composed of a catalytic domain (or light chain (LC)) and a heavy chain (HC) encompassing the translocation domain (TD) and receptor-binding domain. Upon receptor-mediated endocytosis, the LC and TD are proposed to undergo conformational changes in the acidic endocytic environment resulting in the formation of an LC protein-conducting TD channel. The mechanism of channel formation and the conformational changes in the toxin upon acidification are important but less well understood aspects of botulinum neurotoxin intoxication. Here, we have identified a minimum channel-forming truncation of the TD, the "beltless" TD, that forms transmembrane channels with ion conduction properties similar to those of the full-length TD. At variance with the holotoxin and the HC, channel formation for both the TD and the beltless TD occurs independent of a transmembrane pH gradient. Furthermore, acidification in solution induces moderate secondary structure changes. The subtle nature of the conformational changes evoked by acidification on the TD suggests that, in the context of the holotoxin, larger structural rearrangements and LC unfolding occur preceding or concurrent to channel formation. This notion is consistent with the hypothesis that although each domain of the holotoxin functions individually, each domain serves as a chaperone for the others.

  17. Conductivity through Polymer Electrolytes and Its Implications in Lithium-Ion Batteries: Real-World Application of Periodic Trends

    Science.gov (United States)

    Compton, Owen C.; Egan, Martin; Kanakaraj, Rupa; Higgins, Thomas B.; Nguyen, SonBinh T.

    2012-01-01

    Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory…

  18. Suppression of ion conductance by electro-osmotic flow in nano-channels with weakly overlapping electrical double layers

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-08-01

    Full Text Available This theoretical study investigates the nonlinear ionic current-voltage characteristics of nano-channels that have weakly overlapping electrical double layers. Numerical simulations as well as a 1-D mathematical model are developed to reveal that the electro-osmotic flow (EOF interplays with the concentration-polarization process and depletes the ion concentration inside the channels, thus significantly suppressing the channel conductance. The conductance may be restored at high electrical biases in the presence of recirculating vortices within the channels. As a result of the EOF-driven ion depletion, a limiting-conductance behavior is identified, which is intrinsically different from the classical limiting-current behavior.

  19. Effect of transition metal ions on the conductivity and stability of stabilized zirconia

    DEFF Research Database (Denmark)

    Lybye, D.; Mogensen, Mogens Bjerg

    2007-01-01

    the effect of co-doping with smaller transition metal ions such as Ti-, Fe- and Mn-ions. Many of the ionic radii of the transition metal ions are too small compared to the host lattice ionic radius of zirconium. Here we explore the effect of a) the small ionic radii compared to the large ionic radii...

  20. Speculations on the existence of hydride ions in proton conducting oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2001-01-01

    The chemical and physical nature of the hydride ion is briefly treated. Several reactions of the hydride ion in oxides or oxygen atmosphere are given, A number of perovskites and inverse perovskites are listed. which contain the H- ion on the oxygen or B-anion sites in the archetype ABO(3) System...

  1. Increase of ionic conductivity in the microporous lithosilicate RUB-29 by Na-ion exchange processes

    International Nuclear Information System (INIS)

    Park, S.-H.; Senyshyn, A.; Paulmann, C.

    2007-01-01

    The ionic conductivity in the zeolite-like lithosilicate RUB-29 (Cs 14 Li 24 [Li 18 Si 72 O 172 ].14H 2 O [S.-H. Park, J.B. Parise, H. Gies, H. Liu, C.P. Grey, B.H. Toby, J. Am. Chem. Soc. 122 (2000) 11023-11024]) increases via simple ion-exchange processes, in particular when Na cations replace a part of Cs + and Li + of the material. The resulting ionic conductivity value of 3.2x10 -3 S cm -1 at 885 K is about two orders higher than that for the original material [S.-H. Park, J.B. Parise, M.E. Franke, T. Seydel, C. Paulmann, Micropor. Mesopor. Mater., in print ( (doi:10.1016/j.micromeso.2007.03.040) available online since April 19, 2007)]. The structural basis of a Na + -exchanged RUB-29 sample (Na-RUB-29) at 673 K could be elucidated by means of neutron powder diffraction. Rietveld refinements confirmed the replacement of Na + for both parts of Cs and Li cations, agreeing with idealized cell content, Na 8 Cs 8 Li 40 Si 72 O 172 . As a result of the incorporation of Na + in large pores, the number of Li + vacancies in dense Li 2 O-layers of the structure could increase. This can be one of the main reasons for the improved conductivity in Na-RUB-29. In addition, mobile Na cations may also contribute to the conductivity in Na-RUB-29 as continuous scattering length densities were found around the sites for Na in difference Fourier map. - Graphical abstract: Li 2 O-layers formed by edge- and corner-sharing LiO 4 - and LiO 3 -moieties in the zeolite-like lithosilicate RUB-29 provide optimal pathways for conducting Li + . The number of empty Li sites in this layer-like configuration could increase via 'simple' Na + -exchange processes, promoting fast Li motions

  2. Beam Energy Scan of Specific Heat Through Temperature Fluctuations in Heavy Ion Collisions

    Science.gov (United States)

    Basu, Sumit; Nandi, Basanta K.; Chatterjee, Sandeep; Chatterjee, Rupa; Nayak, Tapan

    2016-01-01

    Temperature fluctuations may have two distinct origins, first, quantum fluctuations that are initial state fluctuations, and second, thermodynamical fluctuations. We discuss a method of extracting the thermodynamic temperature from the mean transverse momentum of pions, by using controllable parameters such as centrality of the system, and range of the transverse momenta. Event-by-event fluctuations in global temperature over a large phase space provide the specific heat of the system. We present Beam Energy Scan of specific heat from data, AMPT and HRG model prediction. Experimental results from NA49, STAR, PHENIX, PHOBOS and ALICE are combined to obtain the specific heat as a function of beam energy. These results are compared to calculations from AMPT event generator, HRG model and lattice calculations, respectively.

  3. Ion thermal conductivity and convective energy transport in JET hot-ion regimes and H-modes

    International Nuclear Information System (INIS)

    Tibone, F.; Balet, B.; Cordey, J.G.

    1989-01-01

    Local transport in a recent series of JET experiments has been studied using interpretive codes. Auxiliary heating, mainly via neutral beam injection, was applied on low-density target plasmas confined in the double-null X-point configuration. This has produced two-component plasmas with high ion temperature and neutron yield and, above a threshold density, H-modes characterised by peak density and power deposition profiles. H-mode confinement was also obtained for the first time with 25 MW auxiliary power, of which 10 MW was from ion cyclotron resonance heating. We have used profile measurements of electron temperature T e from electron cyclotron emission and LIDAR Thomson scattering, ion temperature T i from charge-exchange recombination spectroscopy (during NBI), electron density n e from LIDAR and Abel-inverted interferometer measurements. Only sparse information is, however, available to date concerning radial profiles of effective ionic charge and radiation losses. Deuterium depletion due to high impurity levels is an important effect in these discharges, and our interpretation of thermal ion energy content, neutron yield and ion particle fluxes needs to be confirmed using measured Z eff -profiles. (author) 4 refs., 4 figs

  4. Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Bera, Bijoyendra; Gunda, Naga Siva Kumar; Mitra, Sushanta K; Vick, Douglas

    2012-02-01

    Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 μm) that were observed to further link with bulk pores outside the matrix.

  5. Measurement of the quantum conductance of germanium by an electrochemical scanning tunneling microscope break junction based on a jump-to-contact mechanism.

    Science.gov (United States)

    Xie, Xufen; Yan, Jiawei; Liang, Jinghong; Li, Jijun; Zhang, Meng; Mao, Bingwei

    2013-10-01

    We present quantum conductance measurements of germanium by means of an electrochemical scanning tunneling microscope (STM) break junction based on a jump-to-contact mechanism. Germanium nanowires between a platinum/iridium tip and different substrates were constructed to measure the quantum conductance. By applying appropriate potentials to the substrate and the tip, the process of heterogeneous contact and homogeneous breakage was realized. Typical conductance traces exhibit steps at 0.025 and 0.05 G0. The conductance histogram indicates that the conductance of germanium nanowires is located between 0.02 and 0.15 G0 in the low-conductance region and is free from the influence of substrate materials. However, the distribution of conductance plateaus is too discrete to display distinct peaks in the conductance histogram of the high-conductance region. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam - scanning electron microscopy

    Science.gov (United States)

    Lin, Na; Jia, Zhe; Wang, Zhihui; Zhao, Hui; Ai, Guo; Song, Xiangyun; Bai, Ying; Battaglia, Vincent; Sun, Chengdong; Qiao, Juan; Wu, Kai; Liu, Gao

    2017-10-01

    The structure degradation of commercial Lithium-ion battery (LIB) graphite anodes with different cycling numbers and charge rates was investigated by focused ion beam (FIB) and scanning electron microscopy (SEM). The cross-section image of graphite anode by FIB milling shows that cracks, resulted in the volume expansion of graphite electrode during long-term cycling, were formed in parallel with the current collector. The crack occurs in the bulk of graphite particles near the lithium insertion surface, which might derive from the stress induced during lithiation and de-lithiation cycles. Subsequently, crack takes place along grain boundaries of the polycrystalline graphite, but only in the direction parallel with the current collector. Furthermore, fast charge graphite electrodes are more prone to form cracks since the tensile strength of graphite is more likely to be surpassed at higher charge rates. Therefore, for LIBs long-term or high charge rate applications, the tensile strength of graphite anode should be taken into account.

  7. Realization of a scanning ion beam monitor; Realisation d'un dispositif de controle et d'imagerie de faisceaux balayes d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Pautard, C

    2008-07-15

    During this thesis, a scanning ion beam monitor has been developed in order to measure on-line fluence spatial distributions. This monitor is composed of an ionization chamber, Hall Effect sensors and a scintillator. The ionization chamber set between the beam exit and the experiment measures the ion rate. The beam spot is localized thanks to the Hall Effect sensors set near the beam sweeping magnets. The scintillator is used with a photomultiplier tube to calibrate the ionization chamber and with an imaging device to calibrate the Hall Effect sensors. This monitor was developed to control the beam lines of a radiobiology dedicated experimentation room at GANIL. These experiments are held in the context of the research in hadron-therapy. As a matter of fact, this new cancer treatment technique is based on ion irradiations and therefore demands accurate knowledge about the relation between the dose deposit in biological samples and the induced effects. To be effective, these studies require an on-line control of the fluence. The monitor has been tested with different beams at GANIL. Fluence can be measured with a relative precision of {+-}4% for a dose rate ranging between 1 mGy/s and 2 Gy/s. Once permanently set on the beam lines dedicated to radiobiology at GANIL, this monitor will enable users to control the fluence spatial distribution for each irradiation. The scintillator and the imaging device are also used to control the position, the spot shape and the energy of different beams such as those used for hadron-therapy. (author)

  8. Realization of a scanning ion beam monitor; Realisation d'un dispositif de controle et d'imagerie de faisceaux balayes d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Pautard, C

    2008-07-15

    During this thesis, a scanning ion beam monitor has been developed in order to measure on-line fluence spatial distributions. This monitor is composed of an ionization chamber, Hall Effect sensors and a scintillator. The ionization chamber set between the beam exit and the experiment measures the ion rate. The beam spot is localized thanks to the Hall Effect sensors set near the beam sweeping magnets. The scintillator is used with a photomultiplier tube to calibrate the ionization chamber and with an imaging device to calibrate the Hall Effect sensors. This monitor was developed to control the beam lines of a radiobiology dedicated experimentation room at GANIL. These experiments are held in the context of the research in hadron-therapy. As a matter of fact, this new cancer treatment technique is based on ion irradiations and therefore demands accurate knowledge about the relation between the dose deposit in biological samples and the induced effects. To be effective, these studies require an on-line control of the fluence. The monitor has been tested with different beams at GANIL. Fluence can be measured with a relative precision of {+-}4% for a dose rate ranging between 1 mGy/s and 2 Gy/s. Once permanently set on the beam lines dedicated to radiobiology at GANIL, this monitor will enable users to control the fluence spatial distribution for each irradiation. The scintillator and the imaging device are also used to control the position, the spot shape and the energy of different beams such as those used for hadron-therapy. (author)

  9. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann, E-mail: hermann.fuchs@meduniwien.ac.at [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090, Austria and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Alber, Markus [Department for Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Schreiner, Thomas [PEG MedAustron, Wiener Neustadt 2700 (Austria); Georg, Dietmar [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria)

    2015-09-15

    Purpose: Helium ions ({sup 4}He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed and integrated into the treatment planning system Hyperion. Methods: Current knowledge on RBE of {sup 4}He together with linear energy transfer considerations motivated an empirical depth-dependent “zonal” RBE model. In the plateau region, a RBE of 1.0 was assumed, followed by an increasing RBE up to 2.8 at the Bragg-peak region, which was then kept constant over the fragmentation tail. To account for a variable proton RBE, the same model concept was also applied to protons with a maximum RBE of 1.6. Both RBE models were added to a previously developed pencil beam algorithm for physical dose calculation and included into the treatment planning system Hyperion. The implementation was validated against Monte Carlo simulations within a water phantom using γ-index evaluation. The potential benefits of {sup 4}He based treatment plans were explored in a preliminary treatment planning comparison (against protons) for four treatment sites, i.e., a prostate, a base-of-skull, a pediatric, and a head-and-neck tumor case. Separate treatment plans taking into account physical dose calculation only or using biological modeling were created for protons and {sup 4}He. Results: Comparison of Monte Carlo and Hyperion calculated doses resulted in a γ{sub mean} of 0.3, with 3.4% of the values above 1 and γ{sub 1%} of 1.5 and better. Treatment plan evaluation showed comparable planning target volume coverage for both particles, with slightly increased coverage for {sup 4}He. Organ at risk (OAR) doses were generally reduced using {sup 4}He, some by more than to 30%. Improvements of {sup 4}He over protons were more pronounced for treatment plans taking biological effects into account. All

  10. Lactococcin G is a potassium ion-conducting, two-component bacteriocin.

    Science.gov (United States)

    Moll, G; Ubbink-Kok, T; Hildeng-Hauge, H; Nissen-Meyer, J; Nes, I F; Konings, W N; Driessen, A J

    1996-02-01

    Lactococcin G is a novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides, termed alpha and beta. Peptide synthesis of the alpha and beta peptides yielded biologically active lactococcin G, which was used in mode-of-action studies on sensitive cells of Lactococcus lactis. Approximately equivalent amounts of both peptides were required for optimal bactericidal effect. No effect was observed with either the alpha or beta peptide in the absence of the complementary peptide. The combination of alpha and beta peptides (lactococcin G) dissipates the membrane potential (delta omega), and as a consequence cells release alpha-aminoisobutyrate, a non-metabolizable alanine analog that is accumulated through a proton motive-force dependent mechanism. In addition, the cellular ATP level is dramatically reduced, which results in a drastic decrease of the ATP-driven glutamate uptake. Lactococcin G does not form a proton-conducting pore, as it has no effect on the transmembrane pH gradient. Dissipation of the membrane potential by uncouplers causes a slow release of potassium (rubidium) ions. However, rapid release of potassium was observed in the presence of lactococcin G. These data suggest that the bactericidal effect of lactococcin G is due to the formation of potassium-selective channels by the alpha and beta peptides in the target bacterial membrane.

  11. Simultaneous Determination of Different Anions in Milk Samples Using Ion Chromatography with Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Gülçin Gümüş Yılmaz

    2016-12-01

    Full Text Available The description of a simple method for simultaneous determination of chloride, nitrate, sulfate, iodide, phosphate, thiocyanate, perchlorate, and orotic acid in milk samples was outlined. The method involves the use of dialysis cassettes for matrix elimination, followed by ion chromatography on a high capacity anion exchange column with suppressed conductivity detection. The novelty of dialysis process was that it did not need any chemical and organic solvent for elimination of macromolecules such as fat, carbohydrates and proteins from milk samples. External standard calibration curves for these analytes were linear with great correlation coefficients. The relative standard deviations of analyte concentrations were acceptable both inter-day and intra-day evaluations. Under optimized conditions, the limit of detection (Signal-to-Noise ratio = 3 for chloride, phosphate, thiocyanate, perchlorate, iodide, nitrate, sulfate, and orotate was found to be 0.012, 0.112, 0.140, 0.280, 0.312, 0.516, 0.520, and 0.840 mg L−1, respectively. Significant results were obtained for various spiked milk samples with % recovery in the range of 93.88 - 109.75 %. The proposed method was successfully applied to milk samples collected from Istanbul markets. The advantages of the method described herein are reagent-free, simple, and reliable.

  12. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    Science.gov (United States)

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-06-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions.

  13. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    Science.gov (United States)

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  14. A comparative study on electrochemical performances of the electrodes with different nanocarbon conductive additives for lithium ion batteries

    International Nuclear Information System (INIS)

    Chen, Taiqiang; Pan, Likun; Liu, Xinjuan; Sun, Zhuo

    2013-01-01

    Three nanocarbon materials (0 D acetylene black (AB), 1 D carbon nanotubes (CNTs) and 2 D reduced graphene oxide (RGO)) were used as conductive additives (CAs) in the mesocarbon microbead anodes for lithium ion batteries. The electrochemical performances of the electrodes were investigated. The results show that the CAs have a significant impact on the electrode performance because they can influence the electron conduction and lithium ion transportation within the electrode. The electrode with RGO achieves a maximum capacity of 387 mAh g −1 after 50 cycles at a current density of 50 mA g −1 , much higher than those of the electrodes with AB (334 mAh g −1 ) and CNTs (319 mAh g −1 ). The improvement should be mainly ascribed to the “plane-to-point” conducting network formed in the electrode with 2 D RGO which can favor the electron conduction and enhance the lithium ion transportation. - Highlights: • Three carbon materials were used as additives in the electrodes of Li ion battery. • The electrochemical performances of the electrodes were comparatively investigated. • The carbon additives have a significant impact on the electrode performance. • RGO additive acts as a bridge to form a “plane-to-point” conducting network. • The electrode with RGO exhibits better performance than those with other additives

  15. Low conductive support for thermal insulation of a sample holder of a variable temperature scanning tunneling microscope

    Czech Academy of Sciences Publication Activity Database

    Hanzelka, Pavel; Vonka, J.; Musilová, Věra

    2013-01-01

    Roč. 84, č. 8 (2013), 085103:1-6 ISSN 0034-6748 R&D Projects: GA MŠk ED0017/01/01; GA TA ČR TE01020233 Institutional support: RVO:68081731 Keywords : Thermal conductiviy * Scanning tunneling microscope Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.584, year: 2013

  16. Ion Transport in Confined Geometries below the Nanoscale: Access Resistance Dominates Protein Channel Conductance in Diluted Solutions.

    Science.gov (United States)

    Alcaraz, Antonio; López, M Lidón; Queralt-Martín, María; Aguilella, Vicente M

    2017-10-24

    Synthetic nanopores and mesoscopic protein channels have common traits like the importance of electrostatic interactions between the permeating ions and the nanochannel. Ion transport at the nanoscale occurs under confinement conditions so that the usual assumptions made in microfluidics are challenged, among others, by interfacial effects such as access resistance (AR). Here, we show that a sound interpretation of electrophysiological measurements in terms of channel ion selective properties requires the consideration of interfacial effects, up to the point that they dominate protein channel conductance in diluted solutions. We measure AR in a large ion channel, the bacterial porin OmpF, by means of single-channel conductance measurements in electrolyte solutions containing varying concentrations of high molecular weight PEG, sterically excluded from the pore. Comparison of experiments performed in charged and neutral planar membranes shows that lipid surface charges modify the ion distribution and determine the value of AR, indicating that lipid molecules are more than passive scaffolds even in the case of large transmembrane proteins. We also found that AR may reach up to 80% of the total channel conductance in diluted solutions, where electrophysiological recordings register essentially the AR of the system and depend marginally on the pore characteristics. These findings may have implications for several low aspect ratio biological channels that perform their physiological function in a low ionic strength and macromolecule crowded environment, just the two conditions enhancing the AR contribution.

  17. Enhanced AC conductivity and dielectric relaxation properties of polypyrrole nanoparticles irradiated with Ni{sup 12+} swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, J.; Kumar, A., E-mail: ask@tezu.ernet.in

    2014-08-15

    In this paper, we report the 160 MeV Ni{sup 12+} swift heavy ions (SHIs) irradiation effects on AC conductivity and dielectric relaxation properties of polypyrrole (PPy) nanoparticles in the frequency range of 42 Hz–5 MHz. Four ion fluences of 5 × 10{sup 10}, 1 × 10{sup 11}, 5 × 10{sup 11} and 1 × 10{sup 12} ions/cm{sup 2} have been used for the irradiation purpose. Transport properties in the pristine and irradiated PPy nanoparticles have been investigated with permittivity and modulus formalisms to study the polarization effects and conductivity relaxation. With increasing ion fluence, the relaxation peak in imaginary modulus (M{sup ″}) plots shifts toward high frequency suggesting long range motion of the charge carriers. The AC conductivity studies suggest correlated barrier hopping as the dominant transport mechanism. The hopping distance (R{sub ω}) of the charge carriers decreases with increasing the ion fluence. Binding energy (W{sub m}) calculations depict that polarons are the dominant charge carriers.

  18. Precursor Ion Scan Mode-Based Strategy for Fast Screening of Polyether Ionophores by Copper-Induced Gas-Phase Radical Fragmentation Reactions.

    Science.gov (United States)

    Crevelin, Eduardo J; Possato, Bruna; Lopes, João L C; Lopes, Norberto P; Crotti, Antônio E M

    2017-04-04

    The potential of copper(II) to induce gas-phase fragmentation reactions in macrotetrolides, a class of polyether ionophores produced by Streptomyces species, was investigated by accurate-mass electrospray tandem mass spectrometry (ESI-MS/MS). Copper(II)/copper(I) transition directly induced production of diagnostic acylium ions with m/z 199, 185, 181, and 167 from α-cleavages of [macrotetrolides + Cu] 2+ . A UPLC-ESI-MS/MS methodology based on the precursor ion scan of these acylium ions was developed and successfully used to identify isodinactin (1), trinactin (2), and tetranactin (3) in a crude extract of Streptomyces sp. AMC 23 in the precursor ion scan mode. In addition, copper(II) was also used to induce radical fragmentation reactions in the carboxylic acid polyether ionophore nigericin. The resulting product ions with m/z 755 and 585 helped to identify nigericin in a crude extract of Streptomyces sp. Eucal-26 by means of precursor ion scan experiments, demonstrating that copper-induced fragmentation reactions can potentially identify different classes of polyether ionophores rapidly and selectively.

  19. Preparation and characterization of conducting polyaniline-coated LiVPO4F nanocrystals with core-shell structure and its application in lithium-ion batteries

    International Nuclear Information System (INIS)

    Yan, Haiyan; Wu, Xinming; Li, Yongfei

    2015-01-01

    Highlights: • Conducting PANI-coated LiVPO 4 F has been firstly prepared and investigated. • The unique core-shell structure is helpful for the performance of LiVPO 4 F/PANI. • PANI can enhance the electronic conductivity and increase the lithium diffusion coefficient. • LiVPO 4 F/PANI nanocomposite exhibits superior capacity and cycle stability. - Abstract: In this paper, the electrochemical performance of the pure LiVPO 4 F electrode is significantly improved by coating it with the conducting polyaniline via sol-gel method followed by a self-assembly process. X-ray diffraction (XRD) results indicate that the as-prepared sample crystallized in a triclinic LiVPO 4 F phase. Scanning and transmission electron microscopy images show that the particle size of the composite is about hundreds of nanometer and the conducting layer of polyaniline is uniformly coated on the surface of LiVPO 4 F particles. Electrochemical tests reveal that the polyaniline-coated LiVPO 4 F composite exhibits superior capacity and cycle stability, delivering an initial discharge capacity of 149.3 mAh g −1 at 0.1 C in the voltage range of 3.0–4.5 V. Even at high current rates, it can still present discharge capacities of 146.7, 140.1, 131.9 and 121.5 mAh g −1 at 0.2, 1, 2 and 5 C, respectively. The superior electrochemical performance of the electrode could be attributed to the uniform conducting polymer layer, which improves the electronic conductivity and Li-ions diffusion of LiVPO 4 F. Therefore, it can be drawn a conclusion that the remarkable electrochemical performance of the polyaniline-coated LiVPO 4 F makes this 4 V-class electrode a promising alternative for next-generation lithium-ion batteries.

  20. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    Science.gov (United States)

    Gu, Meng; Xiao, Xing-Cheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D.; Wang, Chong-Min

    2014-01-01

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact. PMID:24418812

  1. High-resolution scanning near-field EBIC microscopy: Application to the characterisation of a shallow ion implanted p+-n silicon junction

    International Nuclear Information System (INIS)

    Smaali, K.; Faure, J.; El Hdiy, A.; Troyon, M.

    2008-01-01

    High-resolution electron beam induced current (EBIC) analyses were carried out on a shallow ion implanted p + -n silicon junction in a scanning electron microscope (SEM) and a scanning probe microscope (SPM) hybrid system. With this scanning near-field EBIC microscope, a sample can be conventionally imaged by SEM, its local topography investigated by SPM and high-resolution EBIC image simultaneously obtained. It is shown that the EBIC imaging capabilities of this combined instrument allows the study of p-n junctions with a resolution of about 20 nm

  2. Amorphous Fast Ion Conducting Systems, Part 1. Structure and Properties of Mid and Far IR Transmitting Materials, Part 2

    Science.gov (United States)

    1991-10-31

    Glasses with high conductivities can also be formed with the Lewis acids GeO 2 (11 ) and no doubt Bi 20 3, TeO2 , etc., but these have been less...P age 3 1. Mechanical Relaxation and Relation to Electrical Relaxation in Fast Ion-Conducting Glasses ...relaxation although considerable information was available for the classical alkali silicate and borate glasses . Our program was to utilize the rheovibron

  3. The molecular mechanism of multi-ion conduction in K{sup +} channels

    Energy Technology Data Exchange (ETDEWEB)

    Gwan, J.F.

    2007-01-19

    Steered molecular dynamics (SMD) simulation method is applied to a fully solvated membrane-channel model for studying the ion permeation process in potassium channels. The channel model is based on the crystallographic structure of a prokaryotic K{sup +} channel- the KcsA channel, which is a representative of most known eukaryotic K{sup +} channels. It has long been proposed that the ion transportation in a conventional K{sup +}-channel follows a multi-ion fashion: permeating ions line in a queue in the channel pore and move in a single file through the channel. The conventional view of multi-ion transportation is that the electrostatic repulsion between ions helps to overcome the attraction between ions and the channel pore. In this study, we proposed two SMD simulation schemes, referred to 'the single-ion SMD' simulations and 'the multi-ion SMD' simulations. Concerted movements of a K-W-K sequence in the selectivity filter were observed in the single-ion SMD simulations. The analysis of the concerted movement reveals the molecular mechanism of the multi-ion transportation. It shows that, rather than the long range electrostatic interaction, the short range polar interaction is a more dominant factor in the multi-ion transportation. The polar groups which play a role in the concerted transportation are the water molecules and the backbone carbonyl groups of the selectivity filter. The polar interaction is sensitive to the relative orientation of the polar groups. By changing the orientation of a polar group, the interaction may switch from attractive to repulsive or vice versa. By this means, the energy barrier between binding sites in the selectivity filter can be switched on and off, and therefore the K{sup +} may be able to move to the neighboring binding site without an external driving force. The concerted transportation in the selectivity filter requires a delicate cooperation between K{sup +}, waters, and the backbone carbonyl groups. To

  4. Ionic conductivity of metal oxides : an essential property for all-solid-state Lithium-ion batteries

    NARCIS (Netherlands)

    Chen, C.; Eichel, R.-A.; Notten, P.H.L.

    2017-01-01

    Essential progress has been made for adopting metal oxides (MeO) in various energy storage and energy conversion applications. Among these, utilizing MeO in Lithium-ions batteries (LIBs) seems to be one of the most promising applications. In particular, conductive Li-containing oxides or

  5. One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes.

    Science.gov (United States)

    Wong, Min Hao; Zhang, Zixuan; Yang, Xianfeng; Chen, Xiaojun; Ying, Jackie Y

    2015-09-14

    An efficient and adaptable method is demonstrated for the synthesis of lithium hexacyanoferrate/conductive polymer hybrids for Li-ion battery cathodes. The hybrids were synthesized via a one-pot method, involving a redox-coupled reaction between pyrrole monomers and the Li3Fe(CN)6 precursor. The hybrids showed much better cyclability relative to reported Prussian Blue (PB) analogs.

  6. Fluctuation Induced Conductivity Studies of 100 MeV Oxygen Ion Irradiated Pb Doped Bi-2223 Superconductors

    NARCIS (Netherlands)

    Banerjee, Tamalika; Kumar, Ravi; Kanjilal, D.; Ramasamy, S.

    2000-01-01

    We report on 100 MeV oxygen ion irradiation in Pb doped Bi-2223 superconductors. Resistivity measurements reveal that both grains as well as the grain boundaries are affected by such irradiation. An analysis of the excess conductivity has been made within the framework of Aslamazov-Larkin (AL) and

  7. Conductivity enhancement of ion tracks in tetrahedral amorphous carbon by doping with N, B, Cu and Fe

    International Nuclear Information System (INIS)

    Krauser, J.; Nix, A.-K.; Gehrke, H.-G.; Hofsäss, H.; Trautmann, C.; Weidinger, A.

    2012-01-01

    Conducting ion tracks are formed when high-energy heavy ions (e.g. 1 GeV Au) pass through tetrahedral amorphous carbon (ta-C). These nanowires with a diameter of about 8 nm are embedded in the insulating ta-C matrix and of interest for various nanotechnological applications. Usually the overall conductivity of the tracks and the current/voltage characteristics (Ohmic or non-Ohmic) vary strongly from track to track, even when measured on the same sample, indicating that the track formation is neither complete nor homogeneous. To improve the track conductivity, doping of ta-C with N, B, Cu, or Fe is investigated. Beneficial changes in track conductivity after doping compete with a conductivity increase of the surrounding matrix material. Best results are achieved by incorporation of 1 at.% Cu, while for different reasons, the improvement of the tracks remains moderate for N, B, and Fe doping. Conductivity enhancement of the tracks is assumed to develop during the ion track formation process by an increased number of localized states which contribute to the current transport.

  8. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    KAUST Repository

    Alaie, Seyedhamidreza; Goettler, Drew F.; Jiang, Yingbing; Abbas, Khawar; Baboly, Mohammadhosein Ghasemi; Anjum, Dalaver H.; Chaieb, Saharoui; Leseman, Zayd Chad

    2015-01-01

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties

  9. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio; Huggins, Robert A.; Cui, Yi

    2012-01-01

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon

  10. A New Approach to Studying Biological and Soft Materials Using Focused Ion Beam Scanning Electron Microscopy (FIB SEM)

    International Nuclear Information System (INIS)

    Stokes, D J; Morrissey, F; Lich, B H

    2006-01-01

    Over the last decade techniques such as confocal light microscopy, in combination with fluorescent labelling, have helped biologists and life scientists to study biological architectures at tissue and cell level in great detail. Meanwhile, obtaining information at very small length scales is possible with the combination of sample preparation techniques and transmission electron microscopy (TEM) or scanning transmission electron microscopy (STEM). Scanning electron microscopy (SEM) is well known for the determination of surface characteristics and morphology. However, the desire to understand the three dimensional relationships of meso-scale hierarchies has led to the development of advanced microscopy techniques, to give a further complementary approach. A focused ion beam (FIB) can be used as a nano-scalpel and hence allows us to reveal internal microstructure in a site-specific manner. Whilst FIB instruments have been used to study and verify the three-dimensional architecture of man made materials, SEM and FIB technologies have now been brought together in a single instrument representing a powerful combination for the study of biological specimens and soft materials. We demonstrate the use of FIB SEM to study three-dimensional relationships for a range of length scales and materials, from small-scale cellular structures to the larger scale interactions between biomedical materials and tissues. FIB cutting of heterogeneous mixtures of hard and soft materials, resulting in a uniform cross-section, has proved to be of particular value since classical preparation methods tend to introduce artefacts. Furthermore, by appropriate selection, we can sequentially cross-section to create a series of 'slices' at specific intervals. 3D reconstruction software can then be used to volume-render information from the 2D slices, enabling us to immediately see the spatial relationships between microstructural components

  11. Zn substitution NiFe{sub 2}O{sub 4} nanoparticles with enhanced conductivity as high-performances electrodes for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Junwei [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hou, Xianhua, E-mail: houxh@scnu.edu.cn [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Huang, Fengsi; Shen, Kaixiang [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Lam, Kwok-ho [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hunghom, Kowloon 999077 (Hong Kong); Ru, Qiang [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hu, Shejun, E-mail: husj@scnu.edu.cn [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2016-08-15

    Zn{sup 2+} ion substituted nickel ferrite nanomaterials with the chemical formula Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} for x = 0, 0.3, 0.5, 0.7 and 1 have been synthesized by a facile green-chemical hydrothermal method as anode materials in lithium ion battery. The morphology and structure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The physical and electrochemical properties were tested by electrochemical system. Furthermore, the energetic and electronic properties of the samples were investigated by density functional calculations. The results suggest that Zn substitution can affect the conduction performance of the zinc - nickel ferrite. Meanwhile, electrochemical results show that an enhancement in the capacity with increasing Zn concentration is observed especially for x = 0.3 which exhibit high discharge capacity of 1416 mAh g{sup −1}at the end of 100th cycle. Moreover, the theoretical research method with high yield synthesis strategy described in the present work holds promise for the general fabrication of other metallic elements substitution in complex transition metal oxides for high power LIBs. - Highlights: • Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} anodes have been synthesized by hydrothermal method. • First principles calculation was used to investigate the conduction performance. • Electrochemical performance was enhanced with Zn substitution.

  12. Zn substitution NiFe_2O_4 nanoparticles with enhanced conductivity as high-performances electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Mao, Junwei; Hou, Xianhua; Huang, Fengsi; Shen, Kaixiang; Lam, Kwok-ho; Ru, Qiang; Hu, Shejun

    2016-01-01

    Zn"2"+ ion substituted nickel ferrite nanomaterials with the chemical formula Ni_1_−_xZn_xFe_2O_4 for x = 0, 0.3, 0.5, 0.7 and 1 have been synthesized by a facile green-chemical hydrothermal method as anode materials in lithium ion battery. The morphology and structure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The physical and electrochemical properties were tested by electrochemical system. Furthermore, the energetic and electronic properties of the samples were investigated by density functional calculations. The results suggest that Zn substitution can affect the conduction performance of the zinc - nickel ferrite. Meanwhile, electrochemical results show that an enhancement in the capacity with increasing Zn concentration is observed especially for x = 0.3 which exhibit high discharge capacity of 1416 mAh g"−"1at the end of 100th cycle. Moreover, the theoretical research method with high yield synthesis strategy described in the present work holds promise for the general fabrication of other metallic elements substitution in complex transition metal oxides for high power LIBs. - Highlights: • Ni_1_−_xZn_xFe_2O_4 anodes have been synthesized by hydrothermal method. • First principles calculation was used to investigate the conduction performance. • Electrochemical performance was enhanced with Zn substitution.

  13. Formation of conductive and reflective silver nanolayers on plastic films via ion doping and solid–liquid interfacial reduction at ambient temperature

    International Nuclear Information System (INIS)

    Cui, Guanghui; Wu, Dezhen; Zhao, Yuan; Liu, Wei; Wu, Zhanpeng

    2013-01-01

    Conductive and reflective silver layers on both sides of polyimide films have been prepared by doping silver–ammonia ions into the surfaces of polyimide film, and subsequent solid–liquid interfacial reduction, during which double diffusion of silver ions and newly formed silver crystals occurred between the interfaces of polyimide films and the aqueous reducing surroundings. The newly formed silver nanoparticles could migrate and aggregate onto both sides of substrate films, forming continuous and compact silver layers that result in excellent conductivity, i.e. ∼0.6 and 0.5 Ω/sq on the upside and downside surfaces, respectively. The surface reflectivity could be detected up to 80% on the downside and 90% on the upside surface as well. The effects of the silver contents and reducing conditions on the morphologies and properties have been investigated comprehensively, and the two-side properties differences were discussed. A convictive relationship between the morphologies and properties has been established, providing reliable and general guidance in terms of preparation of inorganic nanoparticles on plastic substrates. This novel and simple strategy can be extended to fabricate many other metal, metal oxide and metal sulfide nanoparticles on plastic substrates, using proper oxidants or sulfions to replace the diverse reductants. The films were characterized by inductively coupled plasma, contact angle measurement, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, four-point probe instrument and ultraviolet spectrophotometry

  14. In situ characterization of thermal conductivities of irradiated solids by using ion beam heating and infrared imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mondrik, Nicholas; Gigax, Jonathan; Wang, Xuemei; Price, Lloyd [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Wei, Chaochen [Materials Science and Engineering Department, Texas A and M University, College Station, TX 77843 (United States); Shao, Lin, E-mail: lshao@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Department, Texas A and M University, College Station, TX 77843 (United States)

    2014-08-01

    We propose a method to characterize thermal properties of ion irradiated materials. This method uses an ion beam as a heating source to create a hot spot on sample surface. Infrared imaging is used as a surface temperature mapping tool to record hot zone spreading. Since ion energy, ion flux, and ion penetration depth can be precisely controlled, the beam heating data is highly reliable and repeatable. Using a high speed infrared camera to capture lateral spreading of the hot zone, thermal diffusivity can be readily extracted. The proposed method has advantages in studying radiation induced thermal property changes, for which radiation damage can be introduced by using an irradiating beam over a relatively large beam spot and beam heating can be introduced by using a focused testing beam over a relatively small beam spot. These two beams can be switched without breaking vacuum. Thus thermal conductivity changes can be characterized in situ with ion irradiation. The feasibility of the technique is demonstrated on a single crystal quartz substrate.

  15. In situ characterization of thermal conductivities of irradiated solids by using ion beam heating and infrared imaging

    International Nuclear Information System (INIS)

    Mondrik, Nicholas; Gigax, Jonathan; Wang, Xuemei; Price, Lloyd; Wei, Chaochen; Shao, Lin

    2014-01-01

    We propose a method to characterize thermal properties of ion irradiated materials. This method uses an ion beam as a heating source to create a hot spot on sample surface. Infrared imaging is used as a surface temperature mapping tool to record hot zone spreading. Since ion energy, ion flux, and ion penetration depth can be precisely controlled, the beam heating data is highly reliable and repeatable. Using a high speed infrared camera to capture lateral spreading of the hot zone, thermal diffusivity can be readily extracted. The proposed method has advantages in studying radiation induced thermal property changes, for which radiation damage can be introduced by using an irradiating beam over a relatively large beam spot and beam heating can be introduced by using a focused testing beam over a relatively small beam spot. These two beams can be switched without breaking vacuum. Thus thermal conductivity changes can be characterized in situ with ion irradiation. The feasibility of the technique is demonstrated on a single crystal quartz substrate

  16. The calculation of electron chemical potential and ion charge state and their influence on plasma conductivity in electrical explosion of metal wire

    International Nuclear Information System (INIS)

    Shi, Zongqian; Wang, Kun; Li, Yao; Shi, Yuanjie; Wu, Jian; Jia, Shenli

    2014-01-01

    The electron chemical potential and ion charge state (average ion charge and ion distribution) are important parameters in calculating plasma conductivity in electrical explosion of metal wire. In this paper, the calculating method of electron chemical potential and ion charge state is discussed at first. For the calculation of electron chemical potential, the ideal free electron gas model and Thomas-Fermi model are compared and analyzed in terms of the coupling constant of plasma. The Thomas-Fermi ionization model, which is used to calculate ion charge state, is compared with the method based on Saha equation. Furthermore, the influence of electron degenerated energy levels and ion excited states in Saha equation on the ion charge state is also analyzed. Then the influence of different calculating methods of electron chemical potential and ion charge state on plasma conductivity is discussed by applying them in the Lee-More conductivity model

  17. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    International Nuclear Information System (INIS)

    Singh, Hemant Kr.; Avasthi, D.K.; Aggarwal, Shruti

    2015-01-01

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO 2 :F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In 2 O 3 :Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag +9 ions at fluences ranging from 3.0 × 10 11 ions/cm 2 to 3.0 × 10 13 ions/cm 2 . The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications

  18. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hemant Kr. [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India); Avasthi, D.K. [Inter University Accelerator Center, Post Box 10502, New Delhi (India); Aggarwal, Shruti, E-mail: shruti.al@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India)

    2015-06-15

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO{sub 2}:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In{sub 2}O{sub 3}:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag{sup +9} ions at fluences ranging from 3.0 × 10{sup 11} ions/cm{sup 2} to 3.0 × 10{sup 13} ions/cm{sup 2}. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  19. New method for characterizing paper coating structures using argon ion beam milling and field emission scanning electron microscopy.

    Science.gov (United States)

    Dahlström, C; Allem, R; Uesaka, T

    2011-02-01

    We have developed a new method for characterizing microstructures of paper coating using argon ion beam milling technique and field emission scanning electron microscopy. The combination of these two techniques produces extremely high-quality images with very few artefacts, which are particularly suited for quantitative analyses of coating structures. A new evaluation method has been developed by using marker-controlled watershed segmentation technique of the secondary electron images. The high-quality secondary electron images with well-defined pores makes it possible to use this semi-automatic segmentation method. One advantage of using secondary electron images instead of backscattered electron images is being able to avoid possible overestimation of the porosity because of the signal depth. A comparison was made between the new method and the conventional method using greyscale histogram thresholding of backscattered electron images. The results showed that the conventional method overestimated the pore area by 20% and detected around 5% more pores than the new method. As examples of the application of the new method, we have investigated the distributions of coating binders, and the relationship between local coating porosity and base sheet structures. The technique revealed, for the first time with direct evidence, the long-suspected coating non-uniformity, i.e. binder migration, and the correlation between coating porosity versus base sheet mass density, in a straightforward way. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  20. Characterization of stainless steel through Scanning Electron Microscopy, nitrided in the process of implantation of immersed ions in plasma

    International Nuclear Information System (INIS)

    Moreno S, H.

    2003-01-01

    The present project carries out the investigation of the nitridation of the austenitic stainless steel schedule 304, applying the novel technology of installation of nitrogen ions in immersed materials in plasma (Plll), by means of which they modify those properties of the surface of the steel. The obtained results by means of tests of Vickers microhardness, shows that the hardness was increment from 266 to 740 HV (microhardness units). It was determined by means of scanning electron microscopy, the one semiquantitative chemical analysis of the elements that constitute the austenitic stainless steel schedule 304; the obtained results, show to the nitrogen like an element of their composition in the pieces where carried out to end the PIII technology. The parameters of the plasma with which carried out the technology Plll, were monitored and determined by means of electric probes, and with which it was determined that the density of particles is stable in the interval of 1x10 -1 at 3x10 -1 Torr, and it is where better results of hardness were obtained. That reported in this work, they are the first results obtained when applying the technology Plll in Mexico, and with base in these, it is even necessary to investigate and to deepen until to dominate the process and to be in possibilities of proposing it to be carried out and exploited in an industrial way. (Author)

  1. Scanned ion beam therapy for prostate carcinoma. Comparison of single plan treatment and daily plan-adapted treatment

    International Nuclear Information System (INIS)

    Hild, Sebastian; Graeff, Christian; Rucinski, Antoni; Zink, Klemens; Habl, Gregor; Durante, Marco; Herfarth, Klaus; Bert, Christoph

    2016-01-01

    Intensity-modulated particle therapy (IMPT) for tumors showing interfraction motion is a topic of current research. The purpose of this work is to compare three treatment strategies for IMPT to determine potential advantages and disadvantages of ion prostate cancer therapy. Simulations for three treatment strategies, conventional one-plan radiotherapy (ConvRT), image-guided radiotherapy (IGRT), and online adaptive radiotherapy (ART) were performed employing a dataset of 10 prostate cancer patients with six CT scans taken at one week intervals. The simulation results, using a geometric margin concept (7-2 mm) as well as patient-specific internal target volume definitions for IMPT were analyzed by target coverage and exposure of critical structures on single fraction dose distributions. All strategies led to clinically acceptable target coverage in patients exhibiting small prostate motion (mean displacement < 4 mm), but IGRT and especially ART led to significant sparing of the rectum. In 20 % of the patients, prostate motion exceeded 4 mm causing insufficient target coverage for ConvRT (V95 mean = 0.86, range 0.63-0.99) and IGRT (V95 mean = 0.91, range 0.68-1.00), while ART maintained acceptable target coverage. IMPT of prostate cancer demands consideration of rectal sparing and adaptive treatment replanning for patients exhibiting large prostate motion. (orig.) [de

  2. Study on the dose response characteristics of a scanning liquid ion-chamber electronic portal imaging device

    CERN Document Server

    Ma Shao Gang; Song Yi Xin

    2002-01-01

    Objective: To study the dose response characteristics and the influence factors such as gantry angle, field size and acquisition mode on the dosimetric response curves, when using a scanning liquid ion-chamber electronic portal imaging device (EPID) for dose verification. Methods: All experiments were carried out on a Varian 600 C/D accelerator (6 MV X-ray) equipped with a Varian PortalVision sup T sup M MK2 type EPID. To obtain the dose response curve, the relationship between the incident radiation intensity to the detector and the pixel value output from the EPID were established. Firstly, the different dose rates of 6 MV X-rays were obtained by varying SSD. Secondly, three digital portal images were acquired for each dose rate using the EPID and averaged to avoid the influence of the dose rate fluctuations of the accelerator. The pixel values of all images were read using self-designed image analysis software, and and average for a region consisting of 11 x 11 pixels around the center was taken as the res...

  3. 3D Plant Cell Architecture of Arabidopsis thaliana (Brassicaceae Using Focused Ion Beam–Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Bhawana

    2014-06-01

    Full Text Available Premise of the study: Focused ion beam–scanning electron microscopy (FIB-SEM combines the ability to sequentially mill the sample surface and obtain SEM images that can be used to create 3D renderings with micron-level resolution. We have applied FIB-SEM to study Arabidopsis cell architecture. The goal was to determine the efficacy of this technique in plant tissue and cellular studies and to demonstrate its usefulness in studying cell and organelle architecture and distribution. Methods: Seed aleurone, leaf mesophyll, stem cortex, root cortex, and petal lamina from Arabidopsis were fixed and embedded for electron microscopy using protocols developed for animal tissues and modified for use with plant cells. Each sample was sectioned using the FIB and imaged with SEM. These serial images were assembled to produce 3D renderings of each cell type. Results: Organelles such as nuclei and chloroplasts were easily identifiable, and other structures such as endoplasmic reticula, lipid bodies, and starch grains were distinguishable in each tissue. Discussion: The application of FIB-SEM produced 3D renderings of five plant cell types and offered unique views of their shapes and internal content. These results demonstrate the usefulness of FIB-SEM for organelle distribution and cell architecture studies.

  4. Three-dimensional ultrastructure of osteocytes assessed by focused ion beam-scanning electron microscopy (FIB-SEM).

    Science.gov (United States)

    Hasegawa, Tomoka; Yamamoto, Tomomaya; Hongo, Hiromi; Qiu, Zixuan; Abe, Miki; Kanesaki, Takuma; Tanaka, Kawori; Endo, Takashi; de Freitas, Paulo Henrique Luiz; Li, Minqi; Amizuka, Norio

    2018-04-01

    The aim of this study is to demonstrate the application of focused ion beam-scanning electron microscopy, FIB-SEM for revealing the three-dimensional features of osteocytic cytoplasmic processes in metaphyseal (immature) and diaphyseal (mature) trabeculae. Tibiae of eight-week-old male mice were fixed with aldehyde solution, and treated with block staining prior to FIB-SEM observation. While two-dimensional backscattered SEM images showed osteocytes' cytoplasmic processes in a fragmented fashion, three-dimensional reconstructions of FIB-SEM images demonstrated that osteocytes in primary metaphyseal trabeculae extended their cytoplasmic processes randomly, thus maintaining contact with neighboring osteocytes and osteoblasts. In contrast, diaphyseal osteocytes extended thin cytoplasmic processes from their cell bodies, which ran perpendicular to the bone surface. In addition, these osteocytes featured thick processes that branched into thinner, transverse cytoplasmic processes; at some point, however, these transverse processes bend at a right angle to run perpendicular to the bone surface. Osteoblasts also possessed thicker cytoplasmic processes that branched off as thinner processes, which then connected with cytoplasmic processes of neighboring osteocytes. Thus, FIB-SEM is a useful technology for visualizing the three-dimensional structures of osteocytes and their cytoplasmic processes.

  5. Ion-conducting lithium bis(oxalato)borate-based polymer electrolytes

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Dominko, R.; Nádherná, Martina; Jakubec, Ivo

    2009-01-01

    Roč. 189, č. 1 (2009), s. 133-138 ISSN 0378-7753 R&D Projects: GA MŠk LC523; GA AV ČR KJB400320701 Institutional research plan: CEZ:AV0Z40320502 Keywords : polymer electrolyte * 2-ethoxyethyl methacrylate * lithium -ion battery Subject RIV: CG - Electrochemistry Impact factor: 3.792, year: 2009

  6. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Science.gov (United States)

    Singh, Hemant Kr.; Avasthi, D. K.; Aggarwal, Shruti

    2015-06-01

    Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO2:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In2O3:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag+9 ions at fluences ranging from 3.0 × 1011 ions/cm2 to 3.0 × 1013 ions/cm2. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  7. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Science.gov (United States)

    Tripathi, Namrata; Thakur, Awalendra K.; Shukla, Archana; Marx, David T.

    2015-07-01

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA4LiClO4 dispersed with nano-CeO2 powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε‧) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  8. In-situ Plasticized Cross-linked Polymer Composite Electrolyte Enhanced with Lithium-ion Conducting Nanofibers for Ambient All-Solid-State Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoyi; Zhu, Pei; Jia, Hao; Zhu, Jiadeng; Selvan, R. Kalai; Li, Ya; Dong, Xia; Du, Zhuang; Angunawela, Indunil; Wu, Nianqiang; Dirican, Mahmut

    2018-04-29

    Solid electrolytes have been gaining attention recently for the development of next-generation Li-ion batteries due to the substantial improvements in stability and safety. Among various types of solid electrolytes, composite solid electrolytes (CSEs) exhibit both high ionic conductivity and excellent interfacial contact with the electrodes. Incorporating active nanofibers into the polymer matrix demonstrates an effective method to fabricate CSEs. However, current CSEs based on traditional poly(ethylene oxide) (PEO) polymer suffer from the poor ionic conductivity of PEO and agglomeration effect of inorganic fillers at high concentrations, which limit further improvements in Li+ conductivity and electrochemical stability. Herein, we synthesize a novel PEO based cross-linked polymer (CLP) as the polymer matrix with naturally amorphous structure and high room-temperature ionic conductivity of 2.40 × 10-4 S cm-1. Li0.3La0.557TiO3 (LLTO) nanofibers incorporated composite solid electrolytes (L-CLPCSE) exhibit enhanced ionic conductivity without showing filler agglomeration. The high content of Li-conductive nanofibers improves the mechanical strength, ensures the conductive networks, and increases the total Li+ conductivity to 3.31 × 10-4 S cm-1. The all-solid-state Li|LiFePO4 batteries with L-CLPCSE are able to deliver attractive specific capacity of 147 mAh g-1 at room temperature, and no evident dendrite is found at the anode/electrolyte interface after 100 cycles.

  9. Ion and solvent diffusion and ion conduction of PC-DEC and PC-DME binary solvent electrolytes of LiN(SO2CF3)2

    International Nuclear Information System (INIS)

    Hayamizu, Kikuko; Aihara, Yuichi

    2004-01-01

    Two binary mixed solvent systems typically used for lithium batteries were studied by measuring the self-diffusion coefficients of the solvent, lithium ion and anion, independently by using the multi-nuclear pulsed field-gradient spin-echo (PGSE) 1 H, 7 Li and 19 F NMR method. One system was propylene carbonate (PC) and diethyl carbonate (DEC) system and the other binary system was PC and 1,2-dimethoxyethane (DME), and the lithium salt used was LiN(SO 2 CF 3 ) 2 (LiTFSI). The relative ratio of the PC was changed from zero (pure DME and DEC) to 100% (pure PC) in the DME-PC and the DEC-PC systems, respectively. The self-diffusion coefficients of the solvents were measured with and without the lithium salt, and the two solvents had almost the same diffusion coefficient in the DEC-PC system, while DME diffused faster than PC in the DME-PC system. In the electrolytes the solvents diffused the fastest, followed by the anion with the lithium ion diffusing the slowest. The degree of ion dissociation was estimated for each electrolyte by comparing the ionic conductivities estimated from the ion diffusion and those measured directly by the electrochemical method

  10. Construction of a four tip scanning tunneling microscope/scanning electron microscope combination and conductivity measurements of silicide nanowires; Aufbau einer Vierspitzen-Rastertunnelmikroskop/Rasterelektronenmikroskop-Kombination und Leitfaehigkeitsmessungen an Silizid Nanodraehten

    Energy Technology Data Exchange (ETDEWEB)

    Zubkov, Evgeniy

    2013-09-01

    In this work the combination of a four-tip scanning tunneling microscope with a scanning electron microscope is presented. By means of this apparatus it is possible to perform the conductivity measurements on the in-situ prepared nanostructures in ultra-high vacuum. With the aid of a scanning electron microscope (SEM), it becomes possible to position the tunneling tips of the four-tip scanning tunneling microscope (STM), so that an arrangement for a four-point probe measurement on nanostructures can be obtained. The STM head was built according to the novel coaxial Beetle concept. This concept allows on the one hand, a very compact arrangement of the components of the STM and on the other hand, the new-built STM head has a good mechanical stability, in order to achieve atomic resolution with all four STM units. The atomic resolution of the STM units was confirmed by scanning a Si(111)-7 x 7 surface. The thermal drift during the STM operation, as well as the resonant frequencies of the mechanical structure of the STM head, were determined. The scanning electron microscope allows the precise and safe navigation of the tunneling tips on the sample surface. Multi tip spectroscopy with up to four STM units can be performed synchronously. To demonstrate the capabilities of the new-built apparatus the conductivity measurements were carried out on metallic yttrium silicide nanowires. The nanowires were prepared by the in-situ deposition of yttrium on a heated Si(110) sample surface. Current-voltage curves were recorded on the nanowires and on the wetting layer in-between. The curves indicate an existence of the Schottky barrier between the yttrium silicide nanowires and the silicon bulk. By means of the two-tip measurements with a gate, the insulating property of the Schottky barrier has been confirmed. Using this Schottky barrier, it is possible to limit the current to the nanowire and to prevent it from flowing through the silicon bulk. A four-tip resistance measurement

  11. A differential scanning calorimetric study of the effects of metal ions, substrate/product, substrate analogues and chaotropic anions on the thermal denaturation of yeast enolase 1.

    Science.gov (United States)

    Brewer, J M; Wampler, J E

    2001-03-14

    The thermal denaturation of yeast enolase 1 was studied by differential scanning calorimetry (DSC) under conditions of subunit association/dissociation, enzymatic activity or substrate binding without turnover and substrate analogue binding. Subunit association stabilizes the enzyme, that is, the enzyme dissociates before denaturing. The conformational change produced by conformational metal ion binding increases thermal stability by reducing subunit dissociation. 'Substrate' or analogue binding additionally stabilizes the enzyme, irrespective of whether turnover is occurring, perhaps in part by the same mechanism. More strongly bound metal ions also stabilize the enzyme more, which we interpret as consistent with metal ion loss before denaturation, though possibly the denaturation pathway is different in the absence of metal ion. We suggest that some of the stabilization by 'substrate' and analogue binding is owing to the closure of moveable polypeptide loops about the active site, producing a more 'closed' and hence thermostable conformation.

  12. Neutral Particle Analyzer Vertically Scanning Measurements of MHD-induced Energetic Ion Redistribution or Loss in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley, R. Andre, R.E. Bell, D.S. Darrow, C.W. Domier, E.D. Fredrickson, N.N. Gorelenkov, S.M. Kaye, B.P. LeBlanc, K.C. Lee, F.M. Levinton, D. Liu, N.C. Luhmann, Jr., J.E. Menard, H. Park, D. Stutman, A.L. Roquemore, K. Tritz, H. Yuh and the NSTX Team

    2007-11-15

    Observations of magneto-hydro-dynamic (MHD) induced redistribution or loss of energetic ions measured using the vertically scanning capability of the Neutral Particle Analyzer diagnostic on the National Spherical Torus Experiment (NSTX) are presented along with TRANSP and ORBIT code analysis of the results. Although redistribution or loss of energetic ions due to bursting fishbone-like and low-frequency (f ~ 10 kHz) kinktype MHD activity has been reported previously, the primary goal of this work is to study redistribution or loss due to continuous Alfvénic (f ~ 20 – 150 kHz) modes, a topic that heretofore has not been investigated in detail for NSTX plasmas. Initial indications are that the former drive energetic ion loss whereas the continuous Alfvénic modes only cause redistribution and the energetic ions remain confined.

  13. Neutral Particle Analyzer Vertically Scanning Measurements of MHD-induced Energetic Ion Redistribution or Loss in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Medley, S.S.; Andre, R.; Bell, R.E.; Darrow, D.S.; Domier, C.W.; Fredrickson, E.D.; Gorelenkov, N.N.; Kaye, S.M.; LeBlanc, B.P.; Lee, K.C.; Levinton, F.M.; Liu, D.; Luhmann, N.C. Jr.; Menard, J.E.; Park, H.; Stutman, D.; Roquemore, A.L.; Tritz, K.; Yuh, H

    2007-01-01

    Observations of magneto-hydro-dynamic (MHD) induced redistribution or loss of energetic ions measured using the vertically scanning capability of the Neutral Particle Analyzer diagnostic on the National Spherical Torus Experiment (NSTX) are presented along with TRANSP and ORBIT code analysis of the results. Although redistribution or loss of energetic ions due to bursting fishbone-like and low-frequency (f ∼ 10 kHz) kinktype MHD activity has been reported previously, the primary goal of this work is to study redistribution or loss due to continuous Alfvenic (f ∼ 20-150 kHz) modes, a topic that heretofore has not been investigated in detail for NSTX plasmas. Initial indications are that the former drive energetic ion loss whereas the continuous Alfvenic modes only cause redistribution and the energetic ions remain confined.

  14. CRionScan: A stand-alone real time controller designed to perform ion beam imaging, dose controlled irradiation and proton beam writing

    Science.gov (United States)

    Daudin, L.; Barberet, Ph.; Serani, L.; Moretto, Ph.

    2013-07-01

    High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA's nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.

  15. CRionScan: A stand-alone real time controller designed to perform ion beam imaging, dose controlled irradiation and proton beam writing

    Energy Technology Data Exchange (ETDEWEB)

    Daudin, L., E-mail: daudin@cenbg.in2p3.fr [Université Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Barberet, Ph.; Serani, L.; Moretto, Ph. [Université Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France)

    2013-07-01

    High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d’Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA’s nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.

  16. Nanostructuring of conduction channels in (In,Ga)As-InP heterostructures: Overcoming carrier generation caused by Ar ion milling

    Science.gov (United States)

    Hortelano, V.; Weidlich, H.; Semtsiv, M. P.; Masselink, W. T.; Ramsteiner, M.; Jahn, U.; Biermann, K.; Takagaki, Y.

    2018-04-01

    Nanometer-sized channels are fabricated in (In,Ga)As-InP heterostructures using Ar ion milling. The ion milling causes spontaneous creation of nanowires, and moreover, electrical conduction of the surface as carriers is generated by sputtering-induced defects. We demonstrate a method to restore electrical isolation in the etched area that is compatible with the presence of the nanochannels. We remove the heavily damaged surface layer using a diluted HCl solution and subsequently recover the crystalline order in the moderately damaged part by annealing. We optimize the HCl concentration to make the removal stop on its own before reaching the conduction channel part. The lateral depletion in the channels is shown to be almost absent.

  17. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries

    Science.gov (United States)

    Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan

    2014-06-01

    In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.

  18. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein; Brighi, Matteo; Sadikin, Yolanda

    2017-01-01

    In this work, a new type of addition reaction between La(BH4)3 and LiX, X = Cl, Br, I, is used to synthesize LiLa(BH4)3Cl and two new compounds LiLa(BH4)3X, X = Br, I. This method increases the amounts of LiLa(BH4)3X and the sample purity. The highest Li-ion conductivity is observed for LiLa(BH4)...

  19. Ion-conductive properties of polyether-based composite electrolytes filled with mesoporous silica, alumina and titania

    International Nuclear Information System (INIS)

    Tominaga, Yoichi; Endo, Masanori

    2013-01-01

    Composite polymer electrolytes were prepared consisting of amorphous polyether, Li salt and mesoporous inorganic filler, and we investigated their ion-conductive properties. We synthesized three types of filler, mesoporous silica, alumina and titania (MP-Si, Al, Ti), and characterized their structural and physicochemical properties using SEM, TEM, SAXS and BET surface area measurements. From these measurements, we confirmed that MP fillers have well-defined arrays of mesoporous and hexagonal structures. Dependence on the MP filler content of the glass transition temperature (T g ) revealed that the addition of filler to original polyether-salt electrolyte causes T g decrease, to due to the dissociation of aggregated ions such as triples or crystalline complex domains. The MP-Ti composites had the greatest ionic conductivity (1.4 × 10 −5 S/cm, 7.5 wt% at 30 °C) of all samples, and the values were more than double that of the original. The addition of MP-Ti also increased the lithium transference number, because the electrolyte/filler interface provided active sites that increase mobile Li ions and conducting paths so as to enhance the mobility

  20. Nanoconfinement of LiBH4 for High Ionic Conductivity in Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Lefevr, Jessica Emilia Avlina; Das, Supti; Blanchard, Didier

    2016-01-01

    Efficient energy conversion and storage is crucial for development of systems based on renewable energy sources. For electricity storage, Li-ion batteries are commonly used in electronics devices but require many improvements to obtain longer life-time and higher energy densities. The current use...... of organic liquids and gels electrolytes limits these improvements because of lithium dendrites formation, reducing the lifetime of the battery and which can possibly be hazardous due to risks of short circuits....

  1. Highly conductive bridges between graphite spheres to improve the cycle performance of a graphite anode in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan); Umeno, Tatsuo; Mizuma, Koutarou [Research Center, Mitsui Mining Co. Ltd., Hibiki-machi 1-3, Wakamatsu-ku, Kitakyushu 808-0021 (Japan); Yoshio, Masaki [Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan)

    2008-01-10

    Spherical carbon-coated natural graphite (SCCNG) is a promising anode material for lithium-ion batteries, but the smooth surface of graphite spheres is difficult to wet with an aqueous binder solution, and lacks electrical contacts. As a result, the cycle performance of such a graphite anode material is not satisfactory. An effective method has been introduced to tightly connect adjacent SCCNG particles by a highly conductive binder, viz. acetylene black bridges. The effect of the conductive bridges on the cyclability of SCCNG electrode has been investigated. (author)

  2. Geant4 simulation of clinical proton and carbon ion beams for the treatment of ocular melanomas with the full 3-D pencil beam scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Edoardo; Riccardi, Cristina; Rimoldi, Adele; Tamborini, Aurora [University of Pavia and the INFN section of Pavia, via Bassi 6, 27100 Pavia (Italy); Piersimoni, Pierluigi [Division of Radiation Research, Loma Linda University, Loma Linda, CA 92354 (United States); Ciocca, Mario [Medical Physics Unit, CNAO Foundation, Strada Campeggi 53, 27100 Pavia (Italy)

    2015-07-01

    This work investigates the possibility to use carbon ion beams delivered with active scanning modality, for the treatment of ocular melanomas at the Centro Nazionale di Adroterapia Oncologica (CNAO) in Pavia. The radiotherapy with carbon ions offers many advantages with respect to the radiotherapy with protons or photons, such as a higher relative radio-biological effectiveness (RBE) and a dose release better localized to the tumor. The Monte Carlo (MC) Geant4 10.00 patch-03 toolkit is used to reproduce the complete CNAO extraction beam line, including all the active and passive components characterizing it. The simulation of proton and carbon ion beams and radiation scanned field is validated against CNAO experimental data. For the irradiation study of the ocular melanoma an eye-detector, representing a model of a human eye, is implemented in the simulation. Each element of the eye is reproduced with its chemical and physical properties. Inside the eye-detector a realistic tumor volume is placed and used as the irradiation target. A comparison between protons and carbon ions eye irradiations allows to study possible treatment benefits if carbon ions are used instead of protons. (authors)

  3. Determination of major sodium iodide symporter (NIS) inhibitors in drinking waters using ion chromatography with conductivity detector.

    Science.gov (United States)

    Cengiz, Mehmet Fatih; Bilgin, Ayse Kevser

    2016-02-20

    Goiter is an important health problem all over the world and iodine deficiency is its most common cause. Perchlorate, thiocyanate and nitrate (called as major NIS inhibitors) are known to competitively inhibit iodide uptake by the thyroid gland and thus, human exposure to major NIS inhibitors is a public health concern. In this study, an ion chromatographic method for the determination of most common NIS inhibitor ions in drinking waters was developed and validated. This is the first study where an analytical method is used for the determination of major NIS inhibitors in drinking water by an ion chromatography system in a single run. Chromatographic separations were achieved with an anion-exchange column and separated ions were identified by a conductivity detector. The method was found to be selective, linear, precise accurate and true for all of interested ions. The limits of the detections (LOD) were estimated at 0.003, 0.004 and 0.025mgL(-1) for perchlorate, thiocyanate and nitrate, respectively. Possible interference ions in drinking waters were examined for the best separation of NIS inhibitors. The excellent method validation data and proficiency test result (Z-score for nitrate: -0.1) of the FAPAS(®) suggested that the developed method could be applied for determination of NIS inhibitor residues in drinking waters. To evaluate the usefulness of the method, 75 drinking water samples from Antalya/Turkey were analyzed for NIS inhibitors. Perchlorate concentrations in the samples ranged from not detected (less than LOD) to 0.07±0.02mgL(-1) and the range of nitrate concentrations were found to be 3.60±0.01mgL(-1) and 47.42±0.40mgL(-1). No thiocyanate residues were detected in tested drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Namrata, E-mail: ntripat@ilstu.edu [Department of Physics, Illinois State University, Normal, IL 61790 (United States); Thakur, Awalendra K. [Department of Physics, Indian Institute of Technology Patna, Bihar 800013 (India); Shukla, Archana [Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology, Bombay 721302 (India); Marx, David T. [Department of Physics, Illinois State University, Normal, IL 61790 (United States)

    2015-07-15

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA{sub 4}LiClO{sub 4} dispersed with nano-CeO{sub 2} powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε′) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  5. Conductivity of ion dielectrics during the mean flux-density electron- and X-ray pulse radiation

    International Nuclear Information System (INIS)

    Vajsburd, D.I.; Mesyats, G.A.; Naminov, V.L.; Tavanov, Eh.G.

    1982-01-01

    Conductivity of ion dielectrics under electron and X-ray pulse radiation is investigated. Investigations have been conducted in the range of average beam densities in which extinction of low-energy conductivity takes place. Thin plates of alkali-halogen crystals have been used as samples. Small-dimensional accelerator with controlled beam parameters: 1-20 ns, 0.1-2000 A/cm 2 , 0.3-0.5 MeV has been used for radiation. Temperature dependence of conductivity current pulse is determined. Time resolution of 10 - 10 s is achieved. In the 70-300 K range it practically coincides with radiation pulse. An essential inertial constituent is observed below 300 K. It is shown that at average beam densities a comparable contribution into fast conductivity is made by intracentre conductivity independent of temperature and high-temperature conductivity which decreases with temperature with activation energy equal to the energy of short-wave background. That is why amplitude of fast constituent decreases with temperature slower than high-energy conductivity

  6. Conductivity of natural and modified DNA measured by scanning tunneling microscopy. The effect of sequence, charge and stacking

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Král, Karel; Bunček, M.; Víšková, A.; Nešpůrek, Stanislav; Kochalska, Anna; Todorciuc, Tatiana; Weiter, M.; Schneider, Bohdan

    2008-01-01

    Roč. 138, č. 1-2 (2008), s. 3-10 ISSN 0301-4622 R&D Projects: GA ČR GA203/08/1594; GA AV ČR KAN401770651; GA MŠk OC 137; GA AV ČR KAN200100801; GA ČR GA202/07/0643 Grant - others:Marie-Curie RTN BIMORE(XE) MRTN-CT-2006-035859 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40500505; CEZ:AV0Z50520701 Keywords : DNA conductivity * charge transport in molecular systems * STM * electronic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.362, year: 2008

  7. Conductivity enhancement in K{sup +}-ion conducting dry Solid Polymer Electrolyte (SPE): [PEO: KNO{sub 3}]: A consequence of KI dispersal and nano-ionic effect

    Energy Technology Data Exchange (ETDEWEB)

    Kesharwani, Priyanka; Sahu, Dinesh K.; Mahipal, Y.K.; Agrawal, R.C., E-mail: rakesh_c_agrawal@yahoo.co.in

    2017-06-01

    Solid–State batteries. Ion transport behaviour has been characterized in terms of ionic conductivity (σ), total ionic (t{sub ion}) and cation (t{sub +}) transference numbers, evaluated using different ac/dc techniques. Temperature dependent conductivity measurements have also been done to compute activation energy (E{sub a}) value by linear least square fitting of respective ‘log σ -1/T’ plots. Materials characterization vis-a-vis complexation of salt in polymeric host has been confirmed by SEM/XRD/FTIR/DSC analysis. - Highlights: • Non-lithium chemical based SPE films: [95PEO:5KNO{sub 3}] & [70PEO:30KNO{sub 3}] investigated. • Substantial enhancement in σ{sub rt} and t{sub +} achieved adopting two approaches. • As first approach, CPEs prepared dispersing IInd-phase active filler into Ist-phase SPE. • As second approach, Nano–ionic effect introduced by ball milling prior to casting CPE film. • Dry polymer electrolytes can be used for All-Solid-State battery applications.

  8. In-situ ionic conductivity measurement of lithium ceramics under high energy heavy ion irradiation

    International Nuclear Information System (INIS)

    Nakazawa, Tetsuya; Noda, Kenji; Ishii, Yoshinobu; Ohno, Hideo; Watanabe, Hitoshi; Matsui, Hisayuki.

    1992-01-01

    To obtain fundamental information regarding the radiation damage in some lithium ceramics, e.g. Li 2 O, Li 4 SiO 4 etc., candidate of breeder materials exposed to severe irradiation environment, an in-situ experiment technique for the ionic conductivity measurement, which allows the specimen temperature control and the beam current monitoring, have been developed. This paper describes the features of an apparatus to measure in situ the ionic conductivity under the irradiation environment and presents some results of ionic conductivity measured for typical ceramic breeders using this apparatus. (J.P.N.)

  9. On the extraction of ion association data and transference numbers from ionic diffusivity and conductivity data in polymer electrolytes

    International Nuclear Information System (INIS)

    Stolwijk, Nicolaas A.; Kösters, Johannes; Wiencierz, Manfred; Schönhoff, Monika

    2013-01-01

    The degree of ion association in polymer electrolytes is often characterized by the Nernst–Einstein deviation parameter Δ, which quantifies the relative difference between the true ionic conductivity directly measured by electrical methods and the hypothetical maximum conductivity calculated from the individual ionic self-diffusion coefficients. Despite its unambiguous definition, the parameter Δ is a global quantity with limited explanatory power. Similar is true for the cation transport number t cat * , which relies on the same ionic diffusion coefficients usually measured by nuclear magnetic resonance or radiotracer methods. Particularly in cases when neutral ion pairs dominate over higher-order aggregates, more specific information can be extracted from the same body of experimental data that is used for the calculation of Δ and t cat * . This information concerns the pair contributions to the diffusion coefficient of cations and anions. Also the true cation transference number based on charged species only can be deduced. We present the basic theoretical framework and some pertinent examples dealing with ion pairing in polymer electrolytes

  10. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  11. Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells: Physicochemical and electrochemical properties

    Science.gov (United States)

    Zhang, Heng; Han, Hongbo; Cheng, Xiaorong; Zheng, Liping; Cheng, Pengfei; Feng, Wenfang; Nie, Jin; Armand, Michel; Huang, Xuejie; Zhou, Zhibin

    2015-11-01

    Lithium salt with a super-delocalized imide anion, namely (trifluoromethane(S-trifluoromethanesulfonylimino)sulfonyl) (trifluoromethanesulfonyl)imide ([CF3SO(=NSO2CF3)2]-), [sTFSI]-), has been prepared and studied as conducting salt for Li-ion cells. The fundamental physicochemical and electrochemical properties of neat Li[sTFSI] and its carbonate-based liquid electrolyte have been characterized with various chemical and electrochemical tools. Li[sTFSI] shows a low melting point at 118 °C, and is thermally stable up to 300 °C without decomposition on the spectra of differential scanning calorimetry-thermogravimetry-mass spectrometry (DSC-TG-MS). The electrolyte of 1.0 M (mol dm-3) Li[sTFSI] in ethylene carbonate (EC)/ethyl-methyl-carbonate (EMC) (3:7, v/v) containing 0.3% water does not show any hydrolytic decomposition on the spectra of 1H and 19F NMR, after storage at 85 °C for 10 days. The conductivities of 1.0 M Li[sTFSI]-EC/EMC (3:7, v/v) are slightly lower than those of Li[(CF3SO2)2N] (LiTFSI), but higher than those of Li[(C2F5SO2)2N] (LiBETI). The electrochemical behavior of Al foil in the Li[sTFSI]-based electrolyte has been investigated by using cyclic voltammetry and chronoamperometry, and scanning electron microscope (SEM). It is illustrated that Al metal does not corrode in the high potential region (3-5 V vs. Li/Li+) in the Li[sTFSI]-based electrolyte. On Pt electrode, the Li[sTFSI]-based electrolyte is highly resistant to oxidation (ca. 5 V vs. Li/Li+), and is also resistant to reduction to allow Li deposition and stripping. The applicability of Li[sTFSI] as conducting salt for Li-ion cells has been tested using graphite/LiCoO2 cells. It shows that the cell with Li[sTFSI] displays better cycling performance than that with LiPF6.

  12. Helicity, membrane incorporation, orientation and thermal stability of the large conductance mechanosensitive ion channel from E. coli

    Science.gov (United States)

    Arkin, I. T.; Sukharev, S. I.; Blount, P.; Kung, C.; Brunger, A. T.

    1998-01-01

    In this report, we present structural studies on the large conductance mechanosensitive ion channel (MscL) from E. coli in detergent micelles and lipid vesicles. Both transmission Fourier transform infrared spectroscopy and circular dichroism (CD) spectra indicate that the protein is highly helical in detergents as well as liposomes. The secondary structure of the proteins was shown to be highly resistant towards denaturation (25-95 degrees C) based on an ellipticity thermal profile. Amide H+/D+ exchange was shown to be extensive (ca. 66%), implying that two thirds of the protein are water accessible. MscL, reconstituted in oriented lipid bilayers, was shown to possess a net bilayer orientation using dichroic ratios measured by attenuated total-reflection Fourier transform infrared spectroscopy. Here, we present and discuss this initial set of structural data on this new family of ion-channel proteins.

  13. Influence of both ion bombardment and chemical treatment processes on the electrical conductivity of PVC/poly aniline composites

    International Nuclear Information System (INIS)

    Gad, E.A.M.; Ashour, A.H.; Abdel-Hamid, H.M.; Sayed, W.M.

    1999-01-01

    In this article the changes in the electrical conductivity of PVC/poly aniline composites, as temperature consecutively increases, have been measured. The measurement were taken with correspondence to a control series of the composites under two processes:A. Composite samples bombarded with Ar + ions with fluence 2.44 x 10 13 beam ions /cm 2 ., sec 4 of 4 ke V beam energy where argon atoms can induce defects in the surface layer take place. Composite samples treated chemically with concentrated H 2 SO 4 as dopant which reacts with nitrogen atom in aniline. The measurements were also, done with the composites as the ratio of poly(aniline) stepped upward

  14. Electrical conductivity, differential scanning calorimetry, X-ray diffraction, and 7Li nuclear magnetic resonance studies of n-CxH(2x+1)OSO3Li (x = 12, 14, 16, 18, and 20)

    International Nuclear Information System (INIS)

    Hirakawa, Satoru; Morimoto, Yoshiaki; Honda, Hisashi

    2015-01-01

    Electrical conductivity (σ), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) measurements of n-C x H (2x+1) OSO 3 Li (x= 12, 14, 16, 18, and 20) crystals were performed as a function of temperature. In addition, σ, DSC, and XRD observations of n-C x H (2x+1) OSO 3 Na and n-C x H (2x+1) OSO 3 K (x= 12, 14, 16, 18, and 20) crystals were carried out for comparison. DSC results of the salts revealed several solid-solid phase transitions with large entropy changes (ΔS). For n-C 18 H 37 OSO 3 Li and n-C 20 H 41 OSO 3 Li salts, each melting point produced a small ΔS mp value compared with the total entropy change in the solid phases (ΔS tr1 +ΔS tr2 ). Additionally, Li + ion diffusion was detected in the highest temperature solid phases. For K salts, larger σ values were detected for potassium alkylsulfates compared with those reported for alkyl carboxylate. 7 Li NMR spectra of n-C 18 H 37 OSO 3 Li crystals recorded in the low-temperature phase showed large asymmetry parameters, suggesting the Li + ions are localized at asymmetric sites in the crystals

  15. Electrical conductivity, differential scanning calorimetry, X-ray diffraction, and 7Li nuclear magnetic resonance studies of n-C x H(2 x+1)OSO3Li ( x = 12, 14, 16, 18, and 20)

    Science.gov (United States)

    Hirakawa, Satoru; Morimoto, Yoshiaki; Honda, Hisashi

    2015-04-01

    Electrical conductivity ( σ), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) measurements of n-C x H (2 x+1) OSO 3Li ( x= 12, 14, 16, 18, and 20) crystals were performed as a function of temperature. In addition, σ, DSC, and XRD observations of n-C x H (2 x+1) OSO 3Na and n-C x H (2 x+1) OSO 3K ( x= 12, 14, 16, 18, and 20) crystals were carried out for comparison. DSC results of the salts revealed several solid-solid phase transitions with large entropy changes (Δ S). For n-C 18 H 37 OSO 3Li and n-C 20 H 41 OSO 3Li salts, each melting point produced a small Δ S mp value compared with the total entropy change in the solid phases (Δ S tr1+Δ S tr2). Additionally, Li + ion diffusion was detected in the highest temperature solid phases. For K salts, larger σ values were detected for potassium alkylsulfates compared with those reported for alkyl carboxylate. 7Li NMR spectra of n-C 18 H 37 OSO 3Li crystals recorded in the low-temperature phase showed large asymmetry parameters, suggesting the Li + ions are localized at asymmetric sites in the crystals.

  16. Possible Time-Dependent Effect of Ions and Hydrophilic Surfaces on the Electrical Conductivity of Aqueous Solutions

    Science.gov (United States)

    Verdel, Nada; Jerman, Igor; Krasovec, Rok; Bukovec, Peter; Zupancic, Marija

    2012-01-01

    The purpose of this work was to determine the influence of mechanical and electrical treatment on the electrical conductivity of aqueous solutions. Solutions were treated mechanically by iteration of two steps: 1:100 dilution and vigorous shaking. These two processes were repeated until extremely dilute solutions were obtained. For electrical treatment the solutions were exposed to strong electrical impulses. Effects of mechanical (as well as electrical) treatment could not be demonstrated using electrical conductivity measurements. However, significantly higher conductivity than those of the freshly prepared chemically analogous solutions was found in all aged solutions except for those samples stored frozen. The results surprisingly resemble a previously observed weak gel-like behavior in water stored in closed flasks. We suggest that ions and contact with hydrophilic glass surfaces could be the determinative conditions for the occurrence of this phenomenon. PMID:22605965

  17. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio

    2012-11-21

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon additive, the irreversible capacity during galvanostatic cycling between 2.75 and 5.25 V versus Li/Li+ could be as high as 700 mAh g-1 (of carbon). In the potential region below 5 V versus Li/Li+, high surface carbon additives also showed irreversible plateaus at about 4.1-4.2 and 4.6 V versus Li/Li+. These plateaus disappeared after thermal treatments at or above 150 °C in inert gas. The influence of the irreversible capacity of carbon additives on the overall performances of positive electrodes was discussed. © 2012 Springer Science+Business Media Dordrecht.

  18. Charge state analysis of heavy ions after penetration of uncleaned and sputter cleaned conducting surfaces

    International Nuclear Information System (INIS)

    Jung, M.; Schosnig, M.; Kroneberger, K.; Tobisch, M.; Maier, R.; Kuzel, M.; Fiedler, C.; Hofmann, D.; Groeneveld, K.O.

    1994-01-01

    The evolution of the charge state distribution of fast ions inside a solid is of basic interest in various research fields as stopping power measurements etc. The existing models for the charge state evolution differ in the treatment of the projectile-exit-surface interaction, which has a strong influence on the final charge state distributions. We measured the charge state distributions for C + , N + , and O + (30≤E/M≤130 keV/u) impact on thin C, Cu, and Au foils, where the surface properties were modified by sputter cleaning. The mesurements show a pronounced change of the mean projectile charge state to lower values in the case of sputter cleaned surfaces. This result underlines the importance of the projectile-surface interaction for the generation of the outcoming charge state distribution. (orig.)

  19. Observation of Dynamic Interfacial Layers in Li-Ion and Li-O_2 Batteries by Scanning Electrochemical Microscopy

    International Nuclear Information System (INIS)

    Bülter, Heinz; Schwager, Patrick; Fenske, Daniela; Wittstock, Gunther

    2016-01-01

    Highlights: • Imaging changes of solid electrolyte interphases on rinsed lithiated graphite. • Strongly non-uniform changes of SEI passivation properties. • In situ imaging of clogged gas diffusion electrodes of Li/O_2 batteries. - Abstract: The requirements of high energy density in modern batteries dictate the use of very high (oxidizing) or very low (reducing) potential for negative and positive electrode materials. These extreme potentials can cause molecular compounds to undergo electron transfer reactions at the interfaces. This is well documented for lithium-ion batteries, where a solid electrolyte interphase (SEI) between the lithiated graphite electrode and the electrolyte is formed by the decomposition of electrolyte components mainly during the first charging process. Characterization of the SEI is a challenge because of the variety of chemically similar components and enclosed electrolyte species. Furthermore, ex situ analysis of the SEI requires separation and isolation of the SEI, which may change the content and the structure of the SEI. Scanning electrochemical microscopy (SECM) provides in situ analysis of passivating layers formed at battery electrodes. Such approaches must deal with continuous changes of the studied interfaces. This is illustrated for the in situ investigation of the electron transport at SEI-covered lithiated graphite using 2,5-di-tert-butyl-1,4-dimethoxy benzene as SECM mediator in an inert atmosphere. With this setup, the influence of rinsing protocols on the passivating properties of the SEI was studied. An extensive rinsing compared to our previous studies [DOI 10.1002/anie.201403935] leads to much higher local variation of the SEI passivation properties which continue over the entire observation time of 54 h. The second example uses a SECM generation-collection experiment to detect gas permeation through a gas-diffusion electrode (GDE) of a Li-O_2 cell into a Li"+-containing organic electrolyte. The passivation of the

  20. 3D imaging of cells and tissues by focused ion beam/scanning electron microscopy (FIB/SEM).

    Science.gov (United States)

    Drobne, Damjana

    2013-01-01

    Integration of a scanning electron microscope (SEM) and focused ion beam (FIB) technology into a single FIB/SEM system permits use of the FIB as a nano-scalpel to reveal site-specific subsurface microstructures which can be examined in great detail by SEM. The FIB/SEM technology is widely used in the semiconductor industry and material sciences, and recently its use in the life sciences has been initiated. Samples for FIB/SEM investigation can be either embedded in a plastic matrix, the traditional means of preparation of transmission electron microscopy (TEM) specimens, or simply dried as in samples prepared for SEM imaging. Currently, FIB/SEM is used in the life sciences for (a) preparation by the lift-out technique of lamella for TEM analysis, (b) tomography of samples embedded in a matrix, and (c) in situ site-specific FIB milling and SEM imaging using a wide range of magnifications. Site-specific milling and imaging has attracted wide interest as a technique in structural research of single eukaryotic and prokaryotic cells, small animals, and different animal tissue, but it still remains to be explored more thoroughly. In the past, preparation of samples for site-specific milling and imaging by FIB/SEM has typically adopted the embedding techniques used for TEM samples, and which have been very well described in the literature. Sample preparation protocols for the use of dried samples in FIB/SEM have been less well investigated. The aim of this chapter is to encourage application of FIB/SEM on dried biological samples. A detailed description of conventional dried sample preparation and FIB/SEM investigation of dried biological samples is presented. The important steps are described and illustrated, and direct comparison between embedded and dried samples of same tissues is provided. The ability to discover links between gross morphology of the tissue or organ, surface characteristics of any selected region, and intracellular structural details on the nanometer

  1. Conductivity of Cellulose Acetate Membranes from Pandan Duri Leaves (Pandanus tectorius for Li-ion Battery

    Directory of Open Access Journals (Sweden)

    Laksono Endang W.

    2016-01-01

    Full Text Available The purpose of this research is to know the influence of lithium chloride composition on membrane conductivity. Cellulose was extracted from pandan duri leaves (P. tectorius by dilute alkaline and bleaching with 0.5% NaOCl followed by synthesis of cellulose acetate using acetic anhydride as acetylating agent, acetic acid as solvent and sulfuric acid as catalyst. The membranes were prepared by casting polymer solution method and the composition of CA/LiCl were 60/40, 65/35, 70/30, 75/25, 80/20 and 100/0. Structural analysis was carried out by FTIR and X-ray diffraction. The conductivity was measured using Elkahfi 100. The highest conductivity of cellulose acetate membrane was 2.20 × 10-4 S cm-1 that measured at room temperature for 65/35 composition

  2. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid

  3. Lithium ion conducting biopolymer electrolyte based on pectin doped with Lithium nitrate

    Science.gov (United States)

    Manjuladevi, R.; Selvin, P. Christopher; Selvasekarapandian, S.; Shilpa, R.; Moniha, V.

    2018-04-01

    The Biopolymer electrolyte based on pectin doped with lithium nitrate of different concentrations have been prepared by solution casting technique. The decrease in crystalline nature of the biopolymer has been identified by XRD analyses. The complex formation between the polymer and the salt has been revealed using FTIR analysis. The ionic conductivity has been explored using A.C. impedance spectroscopy which reveals that the biopolymer containing 30 wt% Pectin: 70wt%LiNO3 has highest ionic conductivity of 3.97 × 10-3 Scm-1.

  4. Conduction Mechanism by Using CBH Model in Fe3+ and Mn3+ Ion Modified Pb(Zr0.65−xAxTi0.35O3 (A = Mn3+/Fe3+ Ceramics

    Directory of Open Access Journals (Sweden)

    Niranjan Sahu

    2013-01-01

    Full Text Available Polycrystalline samples of manganese and iron substituted lead zirconium titanate (PZT with general formula Pb(Zr0.65−xAxTi0.35O3 (A = Mn3+ and Fe3+ ceramics have been synthesized by high temperature solid state reaction technique. X-ray diffraction (XRD patterns were recorded at room temperature to study the crystal structure. All the patterns could be refined by employing the Rietveld method to R3c space group with rhombohedral symmetry. Microstructural properties of the materials were analyzed by scanning electron microscope (SEM, and compositional analysis was carried out by energy dispersive spectrum (EDS measurements. All the materials exhibit ferroelectric to paraelectric transition. The variation of dielectric constant and loss tangent with temperature and frequency is investigated. The decrease of activation energy and increases of AC conductivity with the Fe3+ or Mn3+ ion concentration have been observed. The AC conductivity has been analyzed by the power law. The frequency exponent with the function of temperature has been analyzed by assuming that the AC conduction mechanism is the correlated barrier hopping (CBH model. The conduction in the present sample is found to be of bipolaron type for Mn3+ ion-doped sample. However, the conduction mechanism could not be explained by CBH model for Fe3+ ion-doped sample.

  5. Lithium ion conduction in sol-gel synthesized LiZr2(PO4)3 polymorphs

    Science.gov (United States)

    Kumar, Milind; Yadav, Arun Kumar; Anita, Sen, Somaditya; Kumar, Sunil

    2018-04-01

    Safety issue associated with the high flammability and volatility of organic electrolytes used in commercial rechargeable lithium ion batteries has led to significant attention to ceramic-based solid electrolytes. In the present study, lithium ion conduction in two polymorphs of LiZr2(PO4)3 synthesized via the sol-gel route has been investigated. Rietveld refinement of room temperature X-ray diffraction data of LiZr2(PO4)3 powders calcined at 900 °C and 1300 °C confirmed these to be the monoclinic phase with P21/n structure and rhombohedral phase with R3¯c structure, respectively. Increase in calcination temperature and resultant phase transformation improved the room temperature conductivity from 2.27×10-6 ohm-1m-1 for the monoclinic phase to 1.41×10-4 ohm-1m-1 for rhombohedral phase. Temperature dependence of conductivity was modeled using Arrhenius law and activation energy of ˜ 0.59 eV (for monoclinic phase) and ˜0.50 eV (for rhombohedral phase) were obtained.

  6. Ion-bombardment-induced reduction in vacancies and its enhanced effect on conductivity and reflectivity in hafnium nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhiqing; Wang, Jiafu; Hu, Chaoquan; Zhang, Xiaobo; Dang, Jianchen; Gao, Jing; Zheng, Weitao [Jilin University, School of Materials Science and Engineering, Key Laboratory of Mobile Materials, MOE, and State Key Laboratory of Superhard Materials, Changchun (China); Zhang, Sam [Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Wang, Xiaoyi [Chinese Academy of Sciences, Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun (China); Chen, Hong [Jilin University, Department of Control Science and Engineering, Changchun (China)

    2016-08-15

    Although the role of ion bombardment on electrical conductivity and optical reflectivity of transition metal nitrides films was reported previously, the results were controversial and the mechanism was not yet well explored. Here, we show that proper ion bombardment, induced by applying the negative bias voltage (V{sub b}), significantly improves the electrical conductivity and optical reflectivity in rocksalt hafnium nitride films regardless of level of stoichiometry (i.e., in both near-stoichiometric HfN{sub 1.04} and over-stoichiometric HfN{sub 1.17} films). The observed improvement arises from the increase in the concentration of free electrons and the relaxation time as a result of reduction in nitrogen and hafnium vacancies in the films. Furthermore, HfN{sub 1.17} films have always much lower electrical conductivity and infrared reflectance than HfN{sub 1.04} films for a given V{sub b}, owing to more hafnium vacancies because of larger composition deviation from HfN exact stoichiometry (N:Hf = 1:1). These new insights are supported by good agreement between experimental results and theoretical calculations. (orig.)

  7. Crystal structure and ion conducting properties of La5NbMo2O16

    KAUST Repository

    Vu, T.D.; Krichen, F.; Barre, M.; Busselez, R.; Adil, Karim; Jouanneaux, A.; Suard, E.; Goutenoire, F.

    2016-01-01

    .2250(1) Å. La5NbMo2O16 is a new analogue of the R5Mo3O16 series (R=Pr, Nd). The structure was refined from a combined data X-ray and neutron powder diffraction. The ionic conductivity of the compound is then measured on sintered pellets, by means of complex

  8. Modulation of the conductance of a 2,2′-bipyridine-functionalized peptidic ion channel by Ni2+

    Science.gov (United States)

    Pilz, Claudia S.

    2008-01-01

    An α-helical amphipathic peptide with the sequence H2N-(LSSLLSL)3-CONH2 was obtained by solid phase synthesis and a 2,2′-bipyridine was coupled to its N-terminus, which allows complexation of Ni2+. Complexation of the 2,2′-bipyridine residues was proven by UV/Vis spectroscopy. The peptide helices were inserted into lipid bilayers (nano black lipid membranes, nano-BLMs) that suspend the pores of porous alumina substrates with a pore diameter of 60 nm by applying a potential difference. From single channel recordings, we were able to distinguish four distinct conductance states, which we attribute to an increasing number of peptide helices participating in the conducting helix bundle. Addition of Ni2+ in micromolar concentrations altered the conductance behaviour of the formed ion channels in nano-BLMs considerably. The first two conductance states appear much more prominent demonstrating that the complexation of bipyridine by Ni2+ results in a considerable confinement of the observed multiple conductance states. However, the conductance levels were independent of the presence of Ni2+. Moreover, from a detailed analysis of the open lifetimes of the channels, we conclude that the complexation of Ni2+ diminishes the frequency of channel events with larger open times. Electronic supplementary material The online version of this article (doi:10.1007/s00249-008-0298-8) contains supplementary material, which is available to authorized users. PMID:18347789

  9. Sol-gel preparation of ion-conducting ceramics for use in thin films

    International Nuclear Information System (INIS)

    Steinhauser, M.I.

    1992-12-01

    A metal alkoxide sol-gel solution suitable for depositing a thin film of La 0.6 Sr 0.4 CoO 3 on a porous substrate has been developed; such films should be useful in fuel cell electrode and oxygen separation membrane manufacture. Crack-free films have been deposited on both dense and porous substrates by dip-coating and spin-coating techniques followed by a heat treatment in air. Fourier transform infrared spectroscopy was used to determine the chemical structure of metal alkoxide solution system. X-ray diffraction was used to determine crystalline phases formed at various temperatures, while scanning electron microscopy was used to determine physical characteristics of the films. Surface coatings have been successfully applied to porous substrates through the control of the substrate pore size, deposition parameters, and firing parameters. Conditions have been defined for which films can be deposited, and for which the physical and chemical characteristics of the film can be improved. A theoretical discussion of the chemical reactions taking place before and after hydrolysis in the mixed alkoxide solutions is presented, and the conditions necessary for successful synthesis are defined. Applicability of these films as ionic and electronic conductors is discussed

  10. Comparison of single and mixed ion implantation effects on the changes of the surface hardness, light transmittance, and electrical conductivity of polymeric materials

    International Nuclear Information System (INIS)

    Park, J. W.; Lee, J. H.; Lee, J. S.; Kil, J. G.; Choi, B. H.; Han, Z. H.

    2001-01-01

    Single or mixed ions of N, He, C were implanted onto the transparent PET(Polyethylen Terephtalate) with the ion energies of less than 100 keV and the surface hardness, light transmittance and electrical conductivity were examined. As measured with nanoindentation, mixed ion implantations such as N + +He + or N + + C + exhibited more increase in the surface hardness than the single ion implantation. Especially, implantation of C+N ions increased the surface hardness by about three times as compared to the implantation of N ion alone, which means more than 10 times increase than the untreated PET. Surface electrical conductivity was increased along with the hardness increase. The conductivity increase was more proportional to the hardness when used the higher ion energy and ion dose, while it did not show any relationship at as low as 50 keV of ion energy. The light at the 550 nm wavelength (visual range) transmitted more than 85%, which is close to that of as-received PET, and at the wavelength below 300 nm(UV range) the rays were absorbed more than 95% as traveling through the sheet, implying that there are processing parameters which the ion implanted PET maintains the transparency and absorbs the UV rays

  11. Crystal structure and ion conducting properties of La5NbMo2O16

    KAUST Repository

    Vu, T.D.

    2016-01-29

    The new compound La5NbMo2O16 with high ionic conduction has been discovered during the study of the ternary phase diagram of La2O3-MoO3-Nb2O5. The material crystallizes in the cubic space group Pn 3n (no 222) with the unit cell parameter a=11.2250(1) Å. La5NbMo2O16 is a new analogue of the R5Mo3O16 series (R=Pr, Nd). The structure was refined from a combined data X-ray and neutron powder diffraction. The ionic conductivity of the compound is then measured on sintered pellets, by means of complex impedance spectroscopy. © 2016 Elsevier Inc. All rights reserved.

  12. Sulfonation degree effect on ion-conducting SPEEK-titanium oxide membranes properties

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Jacqueline Costa; Gomes, Ailton de Souza; Dutra Filho, José Carlos, E-mail: jacquecosta@gmail.com [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Instituto de Macromoléculas Professora Eloisa Mano; Hui, Wang Shu [Universidade de São Paulo (USP), São Paulo, SP (Brazil). Departamento de Engenharia Metalúrgica e de Materiais; Oliveira, Vivianna Silva de [Escola Técnica Rezende Rammel (ETRR), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Polymeric membranes were developed using a SPEEK (sulfonated poly(ether ether ketone)) polymer matrix, containing titanium oxide (TiO{sub 2}) (incorporated by sol-gel method). SPEEK with different sulfonation degrees (SD): 63% and 50% were used. The influence of sulfonation degree on membrane properties was investigated. The thermal analysis (TGA and DTGA) and X-ray diffraction (XRD) were carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluate the proton conductivity of the membranes. The proton conductivities in water were of 3.25 to 37.08 mS.cm{sup -1}. Experimental data of impedance spectroscopy were analyzed with equivalent circuits using the Zview software, and the results showed that, the best fitted was at 80 °C. (author)

  13. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique

    Science.gov (United States)

    Harshlata, Mishra, Kuldeep; Rai, D. K.

    2018-04-01

    A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.

  14. Observation of He bubbles in ion irradiated fusion materials by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Li, Ruihuan [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Yang, Deming [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Wu, Yunfeng; Niu, Jinhai; Yang, Qi [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Zhao, Jijun [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electronic Science, Aeronautics, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-10-15

    Using a non-destructive conductive atomic force microscope combined with the Ar{sup +} etching technique, we demonstrate that nanoscale and conductive He bubbles are formed in the implanted layer of single-crystalline 6H-SiC irradiated with 100 keV He{sup +}. We find that the surface swelling of irradiated SiC samples is well correlated with the growth of elliptic He bubbles in the implanted layer. First-principle calculations are performed to estimate the internal pressure of the He bubble in the void of SiC. Analysis indicates that nanoscale He bubbles acting as a captor capture the He atoms diffusing along the implanted layer at an evaluated temperature and result in the surface swelling of irradiated SiC materials.

  15. Electrochemical Investigations of the Interface at Li/Li+ Ion Conducting Channel

    Science.gov (United States)

    2006-10-04

    range of applications.1 Presently, these molecules are of particular interest in non-linear optics, as liquid crystals, as Langmuir - Blodgett films, for...cathode material in non-aqueous liquid electrolyte medium Since Li2Pc is a mixed ionic and electronic conductor, and some metal phthalocyanines are...14. ABSTRACT Dilithium phthalocyanine (Li2Pc) possesses mixed electronic- ionic conductivity due to overlap of - orbitals (electronic

  16. Beltless Translocation Domain of Botulinum Neurotoxin A Embodies a Minimum Ion-conductive Channel*

    OpenAIRE

    Fischer, Audrey; Sambashivan, Shilpa; Brunger, Axel T.; Montal, Mauricio

    2011-01-01

    Botulinum neurotoxin, the causative agent of the paralytic disease botulism, is an endopeptidase composed of a catalytic domain (or light chain (LC)) and a heavy chain (HC) encompassing the translocation domain (TD) and receptor-binding domain. Upon receptor-mediated endocytosis, the LC and TD are proposed to undergo conformational changes in the acidic endocytic environment resulting in the formation of an LC protein-conducting TD channel. The mechanism of channel formation and the conformat...

  17. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia.

    Science.gov (United States)

    Ma, Liqun; Zhang, Xuexin; Chen, Haijun

    2011-06-07

    Background potassium (K+) channels, which are normally selectively permeable to K+, maintain the cardiac resting membrane potential at around -80 mV. In subphysiological extracellular K+ concentrations ([K+]o), which occur in pathological hypokalemia, the resting membrane potential of human cardiomyocytes can depolarize to around -50 mV, whereas rat and mouse cardiomyocytes become hyperpolarized, consistent with the Nernst equation for K+. This paradoxical depolarization of cardiomyocytes in subphysiological [K+]o, which may contribute to cardiac arrhythmias, is thought to involve an inward leak sodium (Na+) current. Here, we show that human cardiac TWIK-1 (also known as K2P1) two-pore domain K+ channels change ion selectivity, becoming permeable to external Na+, and conduct inward leak Na+ currents in subphysiological [K+]o. A specific threonine residue (Thr118) within the pore selectivity sequence TxGYG was required for this altered ion selectivity. Mouse cardiomyocyte-derived HL-1 cells exhibited paradoxical depolarization with ectopic expression of TWIK-1 channels, whereas TWIK-1 knockdown in human spherical primary cardiac myocytes eliminated paradoxical depolarization. These findings indicate that ion selectivity of TWIK-1 K+ channels changes during pathological hypokalemia, elucidate a molecular basis for inward leak Na+ currents that could trigger or contribute to cardiac paradoxical depolarization in lowered [K+]o, and identify a mechanism for regulating cardiac excitability.

  18. Determination of Cd2+ in aqueous solution using polyindole-Ce(IV) vanadophosphate conductive nanocomposite ion-selective membrane electrode

    Science.gov (United States)

    Khan, Asif Ali; Quasim Khan, Mohd; Hussain, Rizwan

    2017-09-01

    In the present study an organic-inorganic nanocomposite ion exchanger Polyindole-Ce(IV) vanadophosphate (PIn-CVP) was synthesized via sol-gel process showing excellent ion exchange capacity (IEC‒1.90 meqg-1). The material was characterized by SEM, TEM, XRD, FTIR, and TGA. A heterogeneous ion exchange membrane of PIn-CVP (IEC‒0.90 meqg-1) was also prepared by solution casting method. PIn-CVP shows high electrical conductivity (5.5  ×  10-2 S cm-1) and it is stable up to 120 °C under ambient conditions. Cd2+ selective membrane electrode was fabricated and its linear working range (3.98  ×  10-7 M to 1.0  ×  10-1 M), response time (25 s), Nerstian slope 25.00 mV dec-1 and working pH range (4-7) were calculated. It was employed as an indicator electrode in the potentiometric titration of Cd2+.

  19. Effectiveness of respiratory-gated radiotherapy with audio-visual biofeedback for synchrotron-based scanned heavy-ion beam delivery

    Science.gov (United States)

    He, Pengbo; Li, Qiang; Zhao, Ting; Liu, Xinguo; Dai, Zhongying; Ma, Yuanyuan

    2016-12-01

    A synchrotron-based heavy-ion accelerator operates in pulse mode at a low repetition rate that is comparable to a patient’s breathing rate. To overcome inefficiencies and interplay effects between the residual motion of the target and the scanned heavy-ion beam delivery process for conventional free breathing (FB)-based gating therapy, a novel respiratory guidance method was developed to help patients synchronize their breathing patterns with the synchrotron excitation patterns by performing short breath holds with the aid of personalized audio-visual biofeedback (BFB) system. The purpose of this study was to evaluate the treatment precision, efficiency and reproducibility of the respiratory guidance method in scanned heavy-ion beam delivery mode. Using 96 breathing traces from eight healthy volunteers who were asked to breathe freely and guided to perform short breath holds with the aid of BFB, a series of dedicated four-dimensional dose calculations (4DDC) were performed on a geometric model which was developed assuming a linear relationship between external surrogate and internal tumor motions. The outcome of the 4DDCs was quantified in terms of the treatment time, dose-volume histograms (DVH) and dose homogeneity index. Our results show that with the respiratory guidance method the treatment efficiency increased by a factor of 2.23-3.94 compared with FB gating, depending on the duty cycle settings. The magnitude of dose inhomogeneity for the respiratory guidance methods was 7.5 times less than that of the non-gated irradiation, and good reproducibility of breathing guidance among different fractions was achieved. Thus, our study indicates that the respiratory guidance method not only improved the overall treatment efficiency of respiratory-gated scanned heavy-ion beam delivery, but also had the advantages of lower dose uncertainty and better reproducibility among fractions.

  20. Ionic conduction studies in Li3+ ion irradiated P(VDF-HFP)-(PC + DEC)-LiCF3SO3 gel polymer electrolyte

    International Nuclear Information System (INIS)

    Saikia, D.; Hussain, A.M.P.; Kumar, A.; Singh, F.; Avasthi, D.K.

    2006-01-01

    In an attempt to increase the Li ion diffusivity in gel polymer electrolytes, the effects of Li 3+ ion irradiation in P(VDF-HFP)-(PC + DEC)-LiCF 3 SO 3 electrolyte system, with five different fluences, is studied. Irradiation with swift heavy ions shows enhancement in conductivity at low fluences and decreased in conductivity at higher fluences with respect to pristine polymer electrolyte films. Maximum room temperature ionic conductivity after irradiation is found to be 2.6 x 10 -3 S/cm. This interesting result could be attributed to the fact that, higher fluence provides critical activation energy for cross-linking and crystallization to occur, which results in decrease in ionic conductivity. XRD results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤10 11 ions/cm 2 ) and increase in crystallinity at high fluences (>10 11 ions/cm 2 ). In FTIR spectra the absorption band intensities around 3025 cm -1 and 2985 cm -1 decrease upon irradiation with a fluence of 5 x 10 1 ions/cm 2 suggesting chain scission and increase upon irradiation with a fluence of 5 x 10 12 ions/cm 2 indicating cross-linking. FTIR analyses corroborate the conductivity and XRD results

  1. Effect of minimum strength of mirror magnetic field (Bmin) on production of highly charged heavy ions from RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source (RAMSES)

    International Nuclear Information System (INIS)

    Arai, Hideyuki; Imanaka, Masashi; Lee, S.-M.Sang-Moo; Higurashi, Yoshihide; Nakagawa, Takahide; Kidera, Masanori; Kageyama, Tadashi; Kase, Masayuki; Yano, Yasushige; Aihara, Toshimitsu

    2002-01-01

    We measured the beam intensity of highly charged heavy ions (O, Ar and Kr ions) as a function of the minimum strength of mirror magnetic field (B min ) of the RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source. In this experiment, we found that the optimum value of B min exists to maximize the beam intensity of highly charged heavy ions and the value was almost the same (∼0.49 T) for various charge state heavy ions

  2. Highly conductive cathode materials for Li-ion batteries prepared by thermal nanocrystallization of selected oxide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pietrzak, T.K.; Wasiucionek, M.; Michalski, P.P.; Kaleta, A.; Garbarczyk, J.E., E-mail: garbar@if.pw.edu.pl

    2016-11-15

    Glassy analogs of two important cathode materials for Li-ion cells: V{sub 2}O{sub 5} and phosphoolivine LiFePO{sub 4} were heat-treated in order to prepare nanocrystallized materials with high electronic conductivity of up to 7 × 10{sup −2} S cm{sup −1} and ca 7 × 10{sup −3} S cm{sup −1} at 25 °C, respectively. There is a clear correlation between the crystallization phenomena and the increase in the electrical conductivity for both groups of glasses. Electrochemical tests of heat-treated glasses of the V{sub 2}O{sub 5}–P{sub 2}O{sub 5} system, used as cathodes in lithium cells confirm their good gravimetric capacity and reversibility. Heat-treatment of glasses of the Li{sub 2}O–FeO–V{sub 2}O{sub 5}–P{sub 2}O{sub 5} system also leads to a high increase in the conductivity and to formation of nanocrystalline grains in the glassy matrix, evidenced by HR-TEM images. The temperature dependence of the conductivity of these materials follows the Arrhenius formula. The presented results indicate that the overall increase in conductivity in nanocrystallized materials is due to good charge transport properties of their interfacial regions.

  3. Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating reflector using electron conducting polymer

    KAUST Repository

    Alias, Mohd Sharizal; Liao, Hsien-Yu; Ng, Tien Khee; Ooi, Boon S.

    2015-01-01

    Nanoscale periodic patterning on insulating materials using focused-ion beam (FIB) is challenging because of charging effect, which causes pattern distortion and resolution degradation. In this paper, the authors used a charging suppression scheme using electron conducting polymer for the implementation of FIB patterned dielectric subwavelength grating (SWG) reflector. Prior to the FIB patterning, the authors numerically designed the optimal structure and the fabrication tolerance for all grating parameters (period, grating thickness, fill-factor, and low refractive index layer thickness) using the rigorous-coupled wave analysis computation. Then, the authors performed the FIB patterning on the dielectric SWG reflector spin-coated with electron conducting polymer for the anticharging purpose. They also performed similar patterning using thin conductive film anticharging scheme (30 nm Cr coating) for comparison. Their results show that the electron conducting polymer anticharging scheme effectively suppressing the charging effect during the FIB patterning of dielectric SWG reflector. The fabricated grating exhibited nanoscale precision, high uniformity and contrast, constant patterning, and complied with fabrication tolerance for all grating parameters across the entire patterned area. Utilization of electron conducting polymer leads to a simpler anticharging scheme with high precision and uniformity for FIB patterning on insulator materials.

  4. Identification of an Actual Strain-Induced Effect on Fast Ion Conduction in a Thin-Film Electrolyte.

    Science.gov (United States)

    Ahn, Junsung; Jang, Ho Won; Ji, Hoil; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Kim, Byung-Kook; Lee, Hae-Weon; Lee, Jong-Ho

    2018-05-09

    Strain-induced fast ion conduction has been a research area of interest for nanoscale energy conversion and storage systems. However, because of significant discrepancies in the interpretation of strain effects, there remains a lack of understanding of how fast ionic transport can be achieved by strain effects and how strain can be controlled in a nanoscale system. In this study, we investigated strain effects on the ionic conductivity of Gd 0.2 Ce 0.8 O 1.9-δ (100) thin films under well controlled experimental conditions, in which errors due to the external environment could not intervene during the conductivity measurement. In order to avoid any interference from perpendicular-to-surface defects, such as grain boundaries, the ionic conductivity was measured in the out-of-plane direction by electrochemical impedance spectroscopy analysis. With varying film thickness, we found that a thicker film has a lower activation energy of ionic conduction. In addition, careful strain analysis using both reciprocal space mapping and strain mapping in transmission electron microscopy shows that a thicker film has a higher tensile strain than a thinner film. Furthermore, the tensile strain of thicker film was mostly developed near a grain boundary, which indicates that intrinsic strain is dominant rather than epitaxial or thermal strain during thin-film deposition and growth via the Volmer-Weber (island) growth mode.

  5. Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating reflector using electron conducting polymer

    KAUST Repository

    Alias, Mohd Sharizal

    2015-08-19

    Nanoscale periodic patterning on insulating materials using focused-ion beam (FIB) is challenging because of charging effect, which causes pattern distortion and resolution degradation. In this paper, the authors used a charging suppression scheme using electron conducting polymer for the implementation of FIB patterned dielectric subwavelength grating (SWG) reflector. Prior to the FIB patterning, the authors numerically designed the optimal structure and the fabrication tolerance for all grating parameters (period, grating thickness, fill-factor, and low refractive index layer thickness) using the rigorous-coupled wave analysis computation. Then, the authors performed the FIB patterning on the dielectric SWG reflector spin-coated with electron conducting polymer for the anticharging purpose. They also performed similar patterning using thin conductive film anticharging scheme (30 nm Cr coating) for comparison. Their results show that the electron conducting polymer anticharging scheme effectively suppressing the charging effect during the FIB patterning of dielectric SWG reflector. The fabricated grating exhibited nanoscale precision, high uniformity and contrast, constant patterning, and complied with fabrication tolerance for all grating parameters across the entire patterned area. Utilization of electron conducting polymer leads to a simpler anticharging scheme with high precision and uniformity for FIB patterning on insulator materials.

  6. Ion conducting behavior in secondary battery materials detected by quasi-elastic neutron scattering measurements

    International Nuclear Information System (INIS)

    Nozaki, Hiroshi

    2014-01-01

    Ionic conducting behaviors in secondary battery materials, i.e. cathode and solid electrolyte, were studied with quasi-elastic neutron scattering (QENS) measurements. Although the incoherent scattering length for Li and Na is lower by two orders of magnitude than that for H, the QENS spectra were clearly detected using the combination of an intense neutron source and a low background spectrometer. The fundamental parameters, such as, the activation energy, the jump distance, and the diffusion coefficient were obtained by analyzing QENS spectra. These parameters are consistent with the previous results estimated by muon-spin relaxation (μSR) measurements and first principles calculations. (author)

  7. Elastic flexibility, fast-ion conduction, boson and floppy modes in AgPO3-AgI glasses

    Science.gov (United States)

    Novita, Deassy I.; Boolchand, P.; Malki, M.; Micoulaut, Matthieu

    2009-05-01

    Raman scattering, IR reflectance and modulated-DSC measurements are performed on specifically prepared dry (AgI)x(AgPO3)1-x glasses over a wide range of compositions 0%37.8% are elastically flexible. Raman optical elasticity power laws, trends in the nature of the glass transition endotherms, corroborate the three elastic phase assignments. Ionic conductivities reveal a step-like increase when glasses become stress-free at x>xc(1) = 9.5% and a logarithmic increase in conductivity (σ~(x-xc(2))μ) once they become flexible at x>xc(2) = 37.8% with a power law μ = 1.78. The power law is consistent with percolation of 3D filamentary conduction pathways. Traces of water doping lower Tg and narrow the reversibility window, and can also completely collapse it. Ideas on network flexibility promoting ion conduction are in harmony with the unified approach of Ingram et al (2008 J. Phys. Chem. B 112 859), who have emphasized the similarity of process compliance or elasticity relating to ion transport and structural relaxation in decoupled systems. Boson mode frequency and scattering strength display thresholds that coincide with the two elastic phase boundaries. In particular, the scattering strength of the boson mode increases almost linearly with glass composition x, with a slope that tracks the floppy mode fraction as a function of mean coordination number r predicted by mean-field rigidity theory. These data suggest that the excess low frequency vibrations contributing to the boson mode in flexible glasses come largely from floppy modes.

  8. Li2 NH-LiBH4 : a Complex Hydride with Near Ambient Hydrogen Adsorption and Fast Lithium Ion Conduction.

    Science.gov (United States)

    Wang, Han; Cao, Hujun; Zhang, Weijin; Chen, Jian; Wu, Hui; Pistidda, Claudio; Ju, Xiaohua; Zhou, Wei; Wu, Guotao; Etter, Martin; Klassen, Thomas; Dornheim, Martin; Chen, Ping

    2018-01-26

    Complex hydrides have played important roles in energy storage area. Here a complex hydride made of Li 2 NH and LiBH 4 was synthesized, which has a structure tentatively indexed using an orthorhombic cell with a space group of Pna2 1 and lattice parameters of a=10.121, b=6.997, and c=11.457 Å. The Li 2 NH-LiBH 4 sample (in a molar ratio of 1:1) shows excellent hydrogenation kinetics, starting to absorb H 2 at 310 K, which is more than 100 K lower than that of pristine Li 2 NH. Furthermore, the Li + ion conductivity of the Li 2 NH-LiBH 4 sample is about 1.0×10 -5  S cm -1 at room temperature, and is higher than that of either Li 2 NH or LiBH 4 at 373 K. Those unique properties of the Li 2 NH-LiBH 4 complex render it a promising candidate for hydrogen storage and Li ion conduction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Scanned ion beam therapy for prostate carcinoma. Comparison of single plan treatment and daily plan-adapted treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hild, Sebastian [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Department of Biophysics, Darmstadt (Germany); University Clinic Erlangen and Friedrich- Alexander-University Erlangen-Nuernberg (FAU), Department of Radiation Oncology, Erlangen (Germany); Graeff, Christian [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Department of Biophysics, Darmstadt (Germany); Rucinski, Antoni [University Clinic Heidelberg, Heidelberg Ion-Beam Therapy Center (HIT) and Department of Radiation Oncology, Heidelberg (Germany); Sapienza Universit' a di Roma, Dipartimento di Scienze di Base e Applicate per Ingegneria, Roma (Italy); INFN, Roma (Italy); Zink, Klemens [University of Applied Sciences, Institute for Medical Physics and Radiation Protection, Giessen (Germany); University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiooncology, Marburg (Germany); Habl, Gregor [University Clinic Heidelberg, Heidelberg Ion-Beam Therapy Center (HIT) and Department of Radiation Oncology, Heidelberg (Germany); Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Durante, Marco [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Department of Biophysics, Darmstadt (Germany); Technische Universitaet Darmstadt, Faculty of Physics, Darmstadt (Germany); Herfarth, Klaus [University Clinic Heidelberg, Heidelberg Ion-Beam Therapy Center (HIT) and Department of Radiation Oncology, Heidelberg (Germany); Bert, Christoph [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Department of Biophysics, Darmstadt (Germany); University Clinic Erlangen and Friedrich- Alexander-University Erlangen-Nuernberg (FAU), Department of Radiation Oncology, Erlangen (Germany); University Hospital Erlangen, Radiation Oncology, Erlangen (Germany)

    2016-02-15

    Intensity-modulated particle therapy (IMPT) for tumors showing interfraction motion is a topic of current research. The purpose of this work is to compare three treatment strategies for IMPT to determine potential advantages and disadvantages of ion prostate cancer therapy. Simulations for three treatment strategies, conventional one-plan radiotherapy (ConvRT), image-guided radiotherapy (IGRT), and online adaptive radiotherapy (ART) were performed employing a dataset of 10 prostate cancer patients with six CT scans taken at one week intervals. The simulation results, using a geometric margin concept (7-2 mm) as well as patient-specific internal target volume definitions for IMPT were analyzed by target coverage and exposure of critical structures on single fraction dose distributions. All strategies led to clinically acceptable target coverage in patients exhibiting small prostate motion (mean displacement < 4 mm), but IGRT and especially ART led to significant sparing of the rectum. In 20 % of the patients, prostate motion exceeded 4 mm causing insufficient target coverage for ConvRT (V95{sub mean} = 0.86, range 0.63-0.99) and IGRT (V95{sub mean} = 0.91, range 0.68-1.00), while ART maintained acceptable target coverage. IMPT of prostate cancer demands consideration of rectal sparing and adaptive treatment replanning for patients exhibiting large prostate motion. (orig.) [German] Adaptive Therapieansaetze fuer sich interfraktionell bewegende Zielvolumina in der intensitaetsmodulierten Partikeltherapie (IMPT) befinden sich zurzeit in der Entwicklung. In dieser Arbeit werden drei Behandlungsstrategien auf moegliche Vor- und Nachteile in der IMPT des Prostatakarzinoms hin untersucht. Auf Basis eines anonymisierten Datensatzes aus 10 Patienten mit Prostatakarzinom wurden die drei Bestrahlungsstrategien, konventionelle Ein-Plan-Strahlentherapie (ConvRT), bildunterstuetzte Strahlentherapie (IGRT) und tagesaktuelle Strahlentherapie (adaptive radiotherapy,ART), simuliert

  10. Anisotropic Proton and Oxygen Ion Conductivity in Epitaxial Ba2In2O5 Thin Films

    DEFF Research Database (Denmark)

    Fluri, Aline; Gilardi, Elisa; Karlsson, Maths

    2017-01-01

    Solid oxide oxygen ion and proton conductors are a highly important class of materials for renewable energy conversion devices like solid oxide fuel cells. Ba2In2O5 (BIO) exhibits both oxygen ion and proton conduction, in a dry and humid environment, respectively. In a dry environment...

  11. Thermal Conductivity Changes Due to Degradation of Cathode Film Subjected to Charge-Discharge Cycles in a Li Ion Battery

    Science.gov (United States)

    Jagannadham, K.

    2018-05-01

    A battery device with graphene platelets as anode, lithium nickel manganese oxide as cathode, and solid-state electrolyte consisting of layers of lithium phosphorous oxynitride and lithium lanthanum titanate is assembled on the stainless steel substrate. The battery in a polymer enclosure is subjected to several electrical tests consisting of charge and discharge cycles at different current and voltage levels. Thermal conductivity of the cathode layer is determined at the end of charge-discharge cycles using transient thermoreflectance. The microstructure and composition of the cathode layer and the interface between the cathode, the anode, and the electrolyte are characterized using scanning electron microscopy and elemental mapping. The decrease in the thermal conductivity of the same cathode observed after each set of electrical test cycles is correlated with the volume changes and formation of low ionic and thermal conductivity lithium oxide and lithium oxychloride at the interface and along porous regions. The interface between the metal current collector and the cathode is also found to be responsible for the increase in thermal resistance. The results indicate that changes in the thermal conductivity of the electrodes provide a measure of the resistance to heat transfer and degradation of ionic transport in the cathode accompanying the charge-discharge cycles in the batteries.

  12. Silver modified platinum surface/H{sup +} conducting Nafion membrane for cathodic reduction of nitrate ions

    Energy Technology Data Exchange (ETDEWEB)

    Hasnat, M.A., E-mail: mahtazim@yahoo.com [Department of Chemistry, Graduate School of Physical Sciences, Shahajalal University of Science and Technology, Sylhet 3114 (Bangladesh); School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia); Ahamad, N.; Nizam Uddin, S.M. [Department of Chemistry, Graduate School of Physical Sciences, Shahajalal University of Science and Technology, Sylhet 3114 (Bangladesh); Mohamed, Norita [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia)

    2012-01-15

    Electrocatalytic reduction of NO{sub 3}{sup -} was performed at an Ag modified Pt electrodes supported on a H{sup +} conducting Nafion-117 polymer electrolyte. The cyclic voltammetric and electrolysis experiments showed that the reduction process was a two-electron transfer reaction. The conversion of nitrate to nitrite follows first order kinetics. Controlled potential electrolysis experiments revealed that the highest reduction rate (k{sub 1}; 95.1 Multiplication-Sign 10{sup -3} min{sup -1}) could be obtained at -1.3 V versus Ag/AgCl (std. KCl) reference electrode. Meanwhile, substantial nitrate removal (ca. 89%) could be attained by a flow system when the flow rate is as low as 0.1 ml min{sup -1}. The Ag particles on the Pt film were a in polycrystalline state having roughness value of 0.45 {mu}m, which was reduced to 0.30 {mu}m after 270 min of undergoing electrolysis.

  13. METHOD 332.0: DETERMINATION OF PERCHLORATE IN DRINKING WATER BY ION CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY AND ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    Science.gov (United States)

    This method is applicable to the identification and quantitation of perchlorate in raw and finished drinking waters. The approach used is ion chromatography with suppressed conductivity and electrospray ionization mass spectrometry (IC-ESI/MS)

  14. Studies on third-order optical nonlinearity and power limiting of conducting polymers using the z-scan technique for nonlinear optical applications

    Science.gov (United States)

    Pramodini, S.; Sudhakar, Y. N.; SelvaKumar, M.; Poornesh, P.

    2014-04-01

    We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He-Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm W-1, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications.

  15. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  16. In vitro evaluation of photon and raster-scanned carbon ion radiotherapy in combination with gemcitabine in pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Shafie, Rami A. El; Habermehl, Daniel; Rieken, Stefan

    2013-01-01

    Pancreatic cancer is the fourth leading cause of cancer deaths, being responsible for 6% of all cancer-related deaths. Conventional radiotherapy with or without additional chemotherapy has been applied in the past in the context of neoadjuvant or adjuvant therapy concepts with only modest results, however new radiation modalities, such as particle therapy with promising physical and biological characteristics, present an alternative treatment option for patients with pancreatic cancer. Up until now the raster scanning technique employed at our institution for the application of carbon ions has been unique, and no radiobiological data using pancreatic cancer cells has been available yet. The aim of this study was to evaluate cytotoxic effects that can be achieved by treating pancreatic cancer cell lines with combinations of X-rays and gemcitabine, or alternatively with carbon ion irradiation and gemcitabine, respectively. Human pancreatic cancer cell lines AsPC-1, BxPC-3 and Panc-1 were irradiated with photons and carbon ions at various doses and treated with gemcitabine. Photon irradiation was applied with a biological cabin X-ray irradiator, and carbon ion irradiation was applied with an extended Bragg peak (linear energy transfer (LET) 103 keV/μm) using the raster scanning technique at the Heidelberg Ion Therapy Center (HIT). Responsiveness of pancreatic cancer cells to the treatment was measured by clonogenic survival. Clonogenic survival curves were then compared to predicted curves that were calculated employing the local effect model (LEM). Cell survival curves were calculated from the surviving fractions of each combination experiment and compared to a drug control that was only irradiated with X-rays or carbon ions, without application of gemcitabine. In terms of cytotoxicity, additive effects were achieved for the cell lines Panc-1 and BxPC-3, and a slight radiosensitizing effect was observed for AsPC-1. Relative biological effectiveness (RBE) of carbon

  17. In-line monitoring of Li-ion battery electrode porosity and areal loading using active thermal scanning - modeling and initial experiment

    Science.gov (United States)

    Rupnowski, Przemyslaw; Ulsh, Michael; Sopori, Bhushan; Green, Brian G.; Wood, David L.; Li, Jianlin; Sheng, Yangping

    2018-01-01

    This work focuses on a new technique called active thermal scanning for in-line monitoring of porosity and areal loading of Li-ion battery electrodes. In this technique a moving battery electrode is subjected to thermal excitation and the induced temperature rise is monitored using an infra-red camera. Static and dynamic experiments with speeds up to 1.5 m min-1 are performed on both cathodes and anodes and a combined micro- and macro-scale finite element thermal model of the system is developed. It is shown experimentally and through simulations that during thermal scanning the temperature profile generated in an electrode depends on both coating porosity (or area loading) and thickness. It is concluded that by inverting this relation the porosity (or areal loading) can be determined, if thermal response and thickness are simultaneously measured.

  18. Helium ion microscopy and ultra-high-resolution scanning electron microscopy analysis of membrane-extracted cells reveals novel characteristics of the cytoskeleton of Giardia intestinalis.

    Science.gov (United States)

    Gadelha, Ana Paula Rocha; Benchimol, Marlene; de Souza, Wanderley

    2015-06-01

    Giardia intestinalis presents a complex microtubular cytoskeleton formed by specialized structures, such as the adhesive disk, four pairs of flagella, the funis and the median body. The ultrastructural organization of the Giardia cytoskeleton has been analyzed using different microscopic techniques, including high-resolution scanning electron microscopy. Recent advances in scanning microscopy technology have opened a new venue for the characterization of cellular structures and include scanning probe microscopy techniques such as ultra-high-resolution scanning electron microscopy (UHRSEM) and helium ion microscopy (HIM). Here, we studied the organization of the cytoskeleton of G. intestinalis trophozoites using UHRSEM and HIM in membrane-extracted cells. The results revealed a number of new cytoskeletal elements associated with the lateral crest and the dorsal surface of the parasite. The fine structure of the banded collar was also observed. The marginal plates were seen linked to a network of filaments, which were continuous with filaments parallel to the main cell axis. Cytoplasmic filaments that supported the internal structures were seen by the first time. Using anti-actin antibody, we observed a labeling in these filamentous structures. Taken together, these data revealed new surface characteristics of the cytoskeleton of G. intestinalis and may contribute to an improved understanding of the structural organization of trophozoites. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Analysis of shape and spatial interaction of synaptic vesicles using data from focused ion beam scanning electron microscopy (FIB-SEM)

    DEFF Research Database (Denmark)

    Khanmohammadi, Mahdieh; Waagepetersen, Rasmus Plenge; Sporring, Jon

    2015-01-01

    deviations from spherical shape and systematic trends in their orientation. We studied three-dimensional representations of synapses obtained by manual annotation of focused ion beam scanning electron microscopy (FIB-SEM) images of male mouse brain. The configurations of synaptic vesicles were regarded...... in excitatory synapses appeared to be of oblate ellipsoid shape and in inhibitory synapses appeared to be of cigar ellipsoid shape, and followed a systematic pattern regarding their orientation towards the active zone. Moreover, there was strong evidence of spatial alignment in the orientations of pairs...

  20. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    Science.gov (United States)

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  1. In situ investigation of ion-induced dewetting of a thin iron-oxide film on silicon by high resolution scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Amirthapandian, S. [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart, 70569 Stuttgart (Germany); Material Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Schuchart, F.; Garmatter, D.; Bolse, W. [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart, 70569 Stuttgart (Germany)

    2012-11-15

    Using our new in situ high resolution scanning electron microscope, which is integrated into the UNILAC ion beamline at the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt, Germany, we investigated the swift heavy ion induced dewetting of a thin iron oxide layer on Si. Besides heterogeneous hole nucleation at defects and spontaneous (homogeneous) hole nucleation, we could clearly identify a dewetting mechanism, which is similar to the spinodal dewetting observed for liquid films. Instead of being due to capillary waves, it is based on a stress induced surface instability. The latter results in the formation of a wavy surface with constant dominant wave-length and increasing amplitude during ion irradiation. Dewetting sets in as soon as the wave-troughs reach the film-substrate interface. Inspection of the hole radii and rim shapes indicates that removal of the material from the hole area occurs mainly by plastic deformation at the inner boundary and ion induced viscous flow in the peripheral zone due to surface tension.

  2. Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Ruiyi, Li; Tengyuan, Chen; Beibei, Sun [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Zaijun, Li [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122 (China); Zhiquo, Gu; Guangli, Wang; Junkang, Liu [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-10-15

    Graphical abstract: We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. - Highlights: • We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks. • One graphene framework greatly improves the electrical conductivity of LTO crystal. • Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport. • The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport. • The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. - ABSTRACT: The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2 mA h g{sup −1} and 293.5 mA cm{sup −3}), outstanding rate capability (155.7 mAh g{sup −1} at 10C) and intriguing cycling

  3. Comparative study of 150 keV Ar+ and O+ ion implantation induced structural modification on electrical conductivity in Bakelite polymer

    Science.gov (United States)

    Aneesh Kumar, K. V.; Krishnaveni, S.; Asokan, K.; Ranganathaiah, C.; Ravikumar, H. B.

    2018-02-01

    A comparative study of 150 keV argon (Ar+) and oxygen (O+) ion implantation induced microstructural modifications in Bakelite Resistive Plate Chamber (RPC) detector material at different implantation fluences have been studied using Positron Annihilation Lifetime Spectroscopy (PALS). Positron lifetime parameters viz., o-Ps lifetime (τ3) and its intensity (I3) upon lower implantation fluences can be interpreted as the cross-linking and the increased local temperature induced diffusion followed by trapping of ions in the interior polymer voids. The increased o-Ps lifetime (τ3) at higher O+ ion implantation fluences indicates chain scission owing to the oxidation and track formation. This is also justified by the X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) results. The modification in the microstructure and electrical conductivity of Bakelite materials are more upon implantation of O+ ions than Ar+ ions of same energy and fluences. The reduced electrical conductivity of Bakelite polymer material upon ion implantation of both the ions is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate energy and fluence of implanting ions might reduce the leakage current and hence improve the performance of Bakelite RPC detectors.

  4. Atomic Layer Deposition of Stable LiAlF4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling.

    Science.gov (United States)

    Xie, Jin; Sendek, Austin D; Cubuk, Ekin D; Zhang, Xiaokun; Lu, Zhiyi; Gong, Yongji; Wu, Tong; Shi, Feifei; Liu, Wei; Reed, Evan J; Cui, Yi

    2017-07-25

    Modern lithium ion batteries are often desired to operate at a wide electrochemical window to maximize energy densities. While pushing the limit of cutoff potentials allows batteries to provide greater energy densities with enhanced specific capacities and higher voltage outputs, it raises key challenges with thermodynamic and kinetic stability in the battery. This is especially true for layered lithium transition-metal oxides, where capacities can improve but stabilities are compromised as wider electrochemical windows are applied. To overcome the above-mentioned challenges, we used atomic layer deposition to develop a LiAlF 4 solid thin film with robust stability and satisfactory ion conductivity, which is superior to commonly used LiF and AlF 3 . With a predicted stable electrochemical window of approximately 2.0 ± 0.9 to 5.7 ± 0.7 V vs Li + /Li for LiAlF 4 , excellent stability was achieved for high Ni content LiNi 0.8 Mn 0.1 Co 0.1 O 2 electrodes with LiAlF 4 interfacial layer at a wide electrochemical window of 2.75-4.50 V vs Li + /Li.

  5. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells

    Science.gov (United States)

    Saung, Wint Thu; Foskett, J. Kevin

    2017-01-01

    Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na+ currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na+ and K+ channels but contributed modestly to the kinetics of action potentials. PMID:28202574

  6. PEMODELAN KONDUKTIVITAS ION DALAM STRUKTUR Li2Sc3(PO43 (Modeling Ionic Conductivity in Li2Sc3(PO43 Structure

    Directory of Open Access Journals (Sweden)

    Akram La Kilo

    2011-11-01

    Full Text Available ABSTRAK Fasa Li2Sc3(PO43 merupakan material konduktor superionik yang dapat diaplikasikan sebagai baterai yang dapat diisi ulang (rechargeable. Ion Li+ dalam struktur Li2Sc3(PO4 dapat mengalami migrasi dari posisi terisi ke posisi kosong. Penelitian ini telah memodelkan migrasi ion Li+ dalam struktur Li2Sc3(PO4 dengan menggunakan metode bond valence sum (BVS. Metode ini dapat memprediksi bilangan oksidasi suatu atom berdasarkan jarak dengan atom-atom tetangga. Source code berbasis BVS yang digunakan adalah JUMPITER yang mensimulasi efek gaya listrik eksternal yang bertindak pada ion litium sehingga nilai BVS litium dapat dipetakan terhadap jarak. Hasil simulasi menunjukkan bahwa konduksi ion Li+ dapat terjadi pada arah [010], [101], dan [120]. Namun, lintasan konduksi ion Li+ lebih mudah terjadi pada arah [120] atau bidang ab dengan nilai maksimum BVS adalah 0,982. ABSTRACT g-phase of Li2Sc3(PO43 is a lithium super ionic conductor which can be applied as a rechargeable lithium battery. Lithium ions of g-Li2Sc3(PO43 can migrate from occupied site to vacant site. In this research, simulation of Li+ ions migration in the structure of g-Li2Sc3(PO43 carried out using bond valence sum (BVS to predict the oxidation state of Li+ion based on the distance of the ion to neighboring atoms. BVS-based code used JUMPITER to simulate the effect of external electrical force acting on the lithium ions to produce the lithium BVS value which can be mapped to the distance. The simulation results shows that Li+ ion conduction can be occurred on [010], [101], and [120] directions. However, the Li ion conduction pathway occur more easily in the direction of [120] or ab plane with the BVS maximum value is 0.982.

  7. SU-G-TeP1-12: Random Repainting as Mitigation for Scanned Ion Beam Interplay Effects

    International Nuclear Information System (INIS)

    Bach, M; Wulff, J

    2016-01-01

    Purpose: Interference of dose application in scanned beam particle therapy and organ motion may lead to interplay effects with distorted dose to target volumes. Interplay effects depend on the speed and direction of the scanning beam, leading to fringed field edges (scanning parallel to organ motion direction) or over- and under-dosed regions (both directions are orthogonal). Current repainting methods can mitigate interplay effects, but are susceptible to artefacts when only a limited number of repaints are applied. In this study a random layered-repainting strategy was investigated. Methods: Mono-energetic proton beams were irradiated to a 10 ×10 cm"2 scanned field at a Varian ProBeam facility. Applied dose was measured with a 2D amorphous silicon detector mounted on a motion platform (CIRS dynamic platform). Motion was considered with different cycles, directions and translations up to ±8 mm. Dose distributions were measured for a static case, regular repainting (repeated meander-like path) and random repainting. Latter was realized by randomly distributing single spot locations during irradiation for a given number of repaints. Efficiency of repainting was analyzed by comparison to the static case. A simulation tool based on treatment logs and motion information was developed to compare measurement results to expected dose distributions. Results: Regular repainting could reduce motion artefacts, but dose distortion was strongly dependent on motion direction. Random repainting with same number of repaints (N=4) showed superior results, independent of target movement direction, while introducing slight penalty on delivery times, caused by an increase of overall scanning travel distance. The simulation tool showed good agreement to measured results. Conclusion: The results demonstrate significant improvement in terms of dose conformity when layered repainting is applied in a randomized fashion. This allows for reduced target margins during treatment planning and

  8. SU-G-TeP1-12: Random Repainting as Mitigation for Scanned Ion Beam Interplay Effects

    Energy Technology Data Exchange (ETDEWEB)

    Bach, M; Wulff, J [Varian Medical Systems Particle Therapy GmbH, Troisdorf, NRW (Germany)

    2016-06-15

    Purpose: Interference of dose application in scanned beam particle therapy and organ motion may lead to interplay effects with distorted dose to target volumes. Interplay effects depend on the speed and direction of the scanning beam, leading to fringed field edges (scanning parallel to organ motion direction) or over- and under-dosed regions (both directions are orthogonal). Current repainting methods can mitigate interplay effects, but are susceptible to artefacts when only a limited number of repaints are applied. In this study a random layered-repainting strategy was investigated. Methods: Mono-energetic proton beams were irradiated to a 10 ×10 cm{sup 2} scanned field at a Varian ProBeam facility. Applied dose was measured with a 2D amorphous silicon detector mounted on a motion platform (CIRS dynamic platform). Motion was considered with different cycles, directions and translations up to ±8 mm. Dose distributions were measured for a static case, regular repainting (repeated meander-like path) and random repainting. Latter was realized by randomly distributing single spot locations during irradiation for a given number of repaints. Efficiency of repainting was analyzed by comparison to the static case. A simulation tool based on treatment logs and motion information was developed to compare measurement results to expected dose distributions. Results: Regular repainting could reduce motion artefacts, but dose distortion was strongly dependent on motion direction. Random repainting with same number of repaints (N=4) showed superior results, independent of target movement direction, while introducing slight penalty on delivery times, caused by an increase of overall scanning travel distance. The simulation tool showed good agreement to measured results. Conclusion: The results demonstrate significant improvement in terms of dose conformity when layered repainting is applied in a randomized fashion. This allows for reduced target margins during treatment

  9. Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon

    International Nuclear Information System (INIS)

    Hopman, Wico C L; Ay, Feridun; Hu, Wenbin; Gadgil, Vishwas J; Kuipers, Laurens; Pollnau, Markus; Ridder, Rene M de

    2007-01-01

    Focused ion beam (FIB) milling is receiving increasing attention for nanostructuring in silicon (Si). These structures can for example be used for photonic crystal structures in a silicon-on-insulator (SOI) configuration or for moulds which can have various applications in combination with imprint technologies. However, FIB fabrication of submicrometre holes having perfectly vertical sidewalls is still challenging due to the redeposition effect in Si. In this study we show how the scan routine of the ion beam can be used as a sidewall optimization parameter. The experiments have been performed in Si and SOI. Furthermore, we show that sidewall angles as small as 1.5 0 are possible in Si membranes using a spiral scan method. We investigate the effect of the dose, loop number and dwell time on the sidewall angle, interhole milling and total milling depth by studying the milling of single and multiple holes into a crystal. We show that the sidewall angles can be as small as 5 0 in (bulk) Si and SOI when applying a larger dose. Finally, we found that a relatively large dwell time of 1 ms and a small loop number is favourable for obtaining vertical sidewalls. By comparing the results with those obtained by others, we conclude that the number of loops at a fixed dose per hole is the parameter that determines the sidewall angle and not the dwell time by itself

  10. Development of digital reconstructed radiography software at new treatment facility for carbon-ion beam scanning of National Institute of Radiological Sciences.

    Science.gov (United States)

    Mori, Shinichiro; Inaniwa, Taku; Kumagai, Motoki; Kuwae, Tsunekazu; Matsuzaki, Yuka; Furukawa, Takuji; Shirai, Toshiyuki; Noda, Koji

    2012-06-01

    To increase the accuracy of carbon ion beam scanning therapy, we have developed a graphical user interface-based digitally-reconstructed radiograph (DRR) software system for use in routine clinical practice at our center. The DRR software is used in particular scenarios in the new treatment facility to achieve the same level of geometrical accuracy at the treatment as at the imaging session. DRR calculation is implemented simply as the summation of CT image voxel values along the X-ray projection ray. Since we implemented graphics processing unit-based computation, the DRR images are calculated with a speed sufficient for the particular clinical practice requirements. Since high spatial resolution flat panel detector (FPD) images should be registered to the reference DRR images in patient setup process in any scenarios, the DRR images also needs higher spatial resolution close to that of FPD images. To overcome the limitation of the CT spatial resolution imposed by the CT voxel size, we applied image processing to improve the calculated DRR spatial resolution. The DRR software introduced here enabled patient positioning with sufficient accuracy for the implementation of carbon-ion beam scanning therapy at our center.

  11. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Federičová, P.; Harlenderová, A.; Kocmánek, Martin; Kvapil, J.; Lidrych, J.; Rusňák, Jan; Rusňáková, O.; Šaur, Miroslav; Šimko, Miroslav; Šumbera, Michal; Trzeciak, B. A.

    2017-01-01

    Roč. 96, č. 4 (2017), č. článku 044904. ISSN 2469-9985 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * RHIC * Beam Energy Scan Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 3.820, year: 2016

  12. Study on lithium/air secondary batteries - Stability of NASICON-type lithium ion conducting glass-ceramics with water

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Satoshi; Imanishi, Nobuyuki; Zhang, Tao; Xie, Jian; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan)

    2009-04-01

    The water stability of the fast lithium ion conducting glass-ceramic electrolyte, Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} (LATP), has been examined in distilled water, and aqueous solutions of LiNO{sub 3}, LiCl, LiOH, and HCl. This glass-ceramics are stable in aqueous LiNO{sub 3} and aqueous LiCl, and unstable in aqueous 0.1 M HCl and 1 M LiOH. In distilled water, the electrical conductivity slightly increases as a function of immersion time in water. The Li-Al/Li{sub 3-x}PO{sub 4-y}N{sub y}/LATP/aqueous 1 M LiCl/Pt cell, where lithium phosphors oxynitrides Li{sub 3-x}PO{sub 4-y}N{sub y} (LiPON) are used to protect the direct reaction of Li and LATP, shows a stable open circuit voltage (OCV) of 3.64 V at 25 C, and no cell resistance change for 1 week. Lithium phosphors oxynitride is effectively used as a protective layer to suppress the reaction between the LATP and Li metal. The water-stable Li/LiPON/LATP system can be used in Li/air secondary batteries with the air electrode containing water. (author)

  13. An Anion Conductance, the Essential Component of the Hydroxyl-Radical-Induced Ion Current in Plant Roots

    Directory of Open Access Journals (Sweden)

    Igor Pottosin

    2018-03-01

    Full Text Available Oxidative stress signaling is essential for plant adaptation to hostile environments. Previous studies revealed the essentiality of hydroxyl radicals (HO•-induced activation of massive K+ efflux and a smaller Ca2+ influx as an important component of plant adaptation to a broad range of abiotic stresses. Such activation would modify membrane potential making it more negative. Contrary to these expectations, here, we provide experimental evidence that HO• induces a strong depolarization, from −130 to −70 mV, which could only be explained by a substantial HO•-induced efflux of intracellular anions. Application of Gd3+ and NPPB, non-specific blockers of cation and anion conductance, respectively, reduced HO•-induced ion fluxes instantaneously, implying a direct block of the dual conductance. The selectivity of an early instantaneous HO•-induced whole cell current fluctuated from more anionic to more cationic and vice versa, developing a higher cation selectivity at later times. The parallel electroneutral efflux of K+ and anions should underlie a substantial leak of the cellular electrolyte, which may affect the cell’s turgor and metabolic status. The physiological implications of these findings are discussed in the context of cell fate determination, and ROS and cytosolic K+ signaling.

  14. The effect of metal ion exchange and alkali metal doping on the electrical conductivity of the Faujasite-type zeolite 13X

    International Nuclear Information System (INIS)

    Swart, S.

    1983-12-01

    Zeolite 13X was synthesized in the sodium form. Some transition metal cations were introduced into the zeolite framework by ion exchange reactions. These different cationic zeolite forms were doped or impregnated with sodium metal, utilizing the adsorptive properties of the zeolite. An A.C. technique was used to determine the electrical conductivity of the dehydrated ion exchanged zeolites and the sodium impregnated zeolite samples as a function of temperature. The conductivity value obtained was used to determine some thermodynamic parameters relating to the conduction process. For the dehydrated ion exchanged zeolites the electrical conductivity showed a general decrease with a decreasing ion exchange capacity. The sodium impregnated zeolites showed an increase in conductivity with respect to the dehydrated unimpregnated samples. This was attributed to the presence of Na 6 5 + centres in the impregnated zeolites. The reduction of some of the metal cations by the sodium on impregnation did not appear to have any significant effect on the overall ionic conductivity of the samples. The conductivity as a function of temperature and pressure for the dehydrated sodium form of zeolite 13X and its impregnated counterpart was determined. The conductivity was found to increase with increasing pressure and temperature

  15. Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass.

    Science.gov (United States)

    Ummadi, Jyothir Ganesh; Downs, Corey J; Joshi, Vrushali S; Ferracane, Jack L; Koley, Dipankar

    2016-03-15

    Solid-state ion-selective electrodes are used as scanning electrochemical microscope (SECM) probes because of their inherent fast response time and ease of miniaturization. In this study, we report the development of a solid-state, low-poly(vinyl chloride), carbon-based calcium ion-selective microelectrode (Ca(2+)-ISME), 25 μm in diameter, capable of performing an amperometric approach curve and serving as a potentiometric sensor. The Ca(2+)-ISME has a broad linear response range of 5 μM to 200 mM with a near Nernstian slope of 28 mV/log[a(Ca(2+))]. The calculated detection limit for Ca(2+)-ISME is 1 μM. The selectivity coefficients of this Ca(2+)-ISME are log K(Ca(2+),A) = -5.88, -5.54, and -6.31 for Mg(2+), Na(+), and K(+), respectively. We used this new type of Ca(2+)-ISME as an SECM probe to quantitatively map the chemical microenvironment produced by a model substrate, bioactive glass (BAG). In acidic conditions (pH 4.5), BAG was found to increase the calcium ion concentration from 0.7 mM ([Ca(2+)] in artificial saliva) to 1.4 mM at 20 μm above the surface. In addition, a solid-state dual SECM pH probe was used to correlate the release of calcium ions with the change in local pH. Three-dimensional pH and calcium ion distribution mapping were also obtained by using these solid-state probes. The quantitative mapping of pH and Ca(2+) above the BAG elucidates the effectiveness of BAG in neutralizing and releasing calcium ions in acidic conditions.

  16. Ion Prostate Irradiation (IPI) – a pilot study to establish the safety and feasibility of primary hypofractionated irradiation of the prostate with protons and carbon ions in a raster scan technique

    International Nuclear Information System (INIS)

    Habl, Gregor; Herfarth, Klaus; Hatiboglu, Gencay; Edler, Lutz; Uhl, Matthias; Krause, Sonja; Roethke, Matthias; Schlemmer, Heinz P; Hadaschik, Boris; Debus, Juergen

    2014-01-01

    Due to physical characteristics, ions like protons or carbon ions can administer the dose to the target volume more efficiently than photons since the dose can be lowered at the surrounding normal tissue. Radiation biological considerations are based on the assumption that the α/β value for prostate cancer cells is 1.5 Gy, so that a biologically more effective dose could be administered due to hypofractionation without increasing risks of late effects of bladder (α/β = 4.0) and rectum (α/β = 3.9). The IPI study is a prospective randomized phase II study exploring the safety and feasibility of primary hypofractionated irradiation of the prostate with protons and carbon ions in a raster scan technique. The study is designed to enroll 92 patients with localized prostate cancer. Primary aim is the assessment of the safety and feasibility of the study treatment on the basis of incidence grade III and IV NCI-CTC-AE (v. 4.02) toxicity and/or the dropout of the patient from the planned therapy due to any reason. Secondary endpoints are PSA-progression free survival (PSA-PFS), overall survival (OS) and quality-of-life (QoL). This pilot study aims at the evaluation of the safety and feasibility of hypofractionated irradiation of the prostate with protons and carbon ions in prostate cancer patients in an active beam technique. Additionally, the safety results will be compared with Japanese results recently published for carbon ion irradiation. Due to the missing data of protons in this hypofractionated scheme, an in depth evaluation of the toxicity will be created to gain basic data for a following comparison study with carbon ion irradiation. Clinical Trial Identifier: http://clinicaltrials.gov/show/NCT01641185 (clinicaltrials.gov)

  17. The relative biological effectiveness for carbon and oxygen ion beams using the raster-scanning technique in hepatocellular carcinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Daniel Habermehl

    Full Text Available BACKGROUND: Aim of this study was to evaluate the relative biological effectiveness (RBE of carbon (12C and oxygen ion (16O-irradiation applied in the raster-scanning technique at the Heidelberg Ion beam Therapy center (HIT based on clonogenic survival in hepatocellular carcinoma cell lines compared to photon irradiation. METHODS: Four human HCC lines Hep3B, PLC, HepG2 and HUH7 were irradiated with photons, 12C and 16O using a customized experimental setting at HIT for in-vitro trials. Cells were irradiated with increasing physical photon single doses of 0, 2, 4 and 6 Gy and heavy ion-single doses of 0, 0.125, 0.5, 1, 2, 3 Gy (12C and 16O. SOBP-penetration depth and extension was 35 mm +/-4 mm and 36 mm +/-5 mm for carbon ions and oxygen ions respectively. Mean energy level and mean linear energy transfer (LET were 130 MeV/u and 112 keV/um for 12C, and 154 MeV/u and 146 keV/um for 16O. Clonogenic survival was computated and relative biological effectiveness (RBE values were defined. RESULTS: For all cell lines and both particle modalities α- and β-values were determined. As expected, α-values were significantly higher for 12C and 16O than for photons, reflecting a steeper decline of the initial slope of the survival curves for high-LET beams. RBE-values were in the range of 2.1-3.3 and 1.9-3.1 for 12C and 16O, respectively. CONCLUSION: Both irradiation with 12C and 16O using the raster-scanning technique leads to an enhanced RBE in HCC cell lines. No relevant differences between achieved RBE-values for 12C and 16O were found. Results of this work will further influence biological-adapted treatment planning for HCC patients that will undergo particle therapy with 12C or 16O.

  18. Influence of SiO{sub 2} on conduction and relaxation mechanism of Li{sup +} ions in binary network former lead silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Navneet [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India); Ahlawat, Neetu, E-mail: neetugju@yahoo.co.in [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India); Aghamkar, Praveen [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India); Agarwal, Ashish; Sanghi, Sujata; Sindhu, Monica [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India)

    2013-04-01

    Ion conducting glasses having composition 30Li{sub 2}O·(70−x)PbO·xSiO{sub 2} were prepared by the normal melt quench technique. The compositional variations in density, molar volume and glass transition temperature confirm the dual role of PbO acting as a network modifying oxide as well as a network forming oxide. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in the frequency range from 1 Hz to 7 MHz and in a temperature range below glass transition temperature. The ac and dc conductivities, activation energy of the dc conductivity and relaxation frequency were extracted from the impedance spectra. Similar values of activation energy for dc conduction and for conductivity relaxation time indicate that the ions have to overcome the same energy barrier while conducting and relaxing. The increase in dc conductivity for silica rich compositions is attributed to the presence of mixed former effect in the studied glasses. The study of conductivity spectra reveals a transition from non-random to random hopping motion of lithium ions on successive replacement of PbO by SiO{sub 2} in glass matrix. The conduction and relaxation mechanism in the studied glasses are well explained with the concept of mismatch and relaxation (CMR) model.

  19. Studies on third-order optical nonlinearity and power limiting of conducting polymers using the z-scan technique for nonlinear optical applications

    International Nuclear Information System (INIS)

    Pramodini, S; Poornesh, P; Sudhakar, Y N; SelvaKumar, M

    2014-01-01

    We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He–Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of β eff , n 2 and χ (3) were found to be of the order of 10 −2  cm W −1 , 10 -5  esu and 10 −7  esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications. (paper)

  20. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity.

    Science.gov (United States)

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina

    2017-12-01

    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  1. Inwardly Rectifying Potassium (Kir) Channels Represent a Critical Ion Conductance Pathway in the Nervous Systems of Insects.

    Science.gov (United States)

    Chen, Rui; Swale, Daniel R

    2018-01-25

    A complete understanding of the physiological pathways critical for proper function of the insect nervous system is still lacking. The recent development of potent and selective small-molecule modulators of insect inward rectifier potassium (Kir) channels has enabled the interrogation of the physiological role and toxicological potential of Kir channels within various insect tissue systems. Therefore, we aimed to highlight the physiological and functional role of neural Kir channels the central nervous system, muscular system, and neuromuscular system through pharmacological and genetic manipulations. Our data provide significant evidence that Drosophila neural systems rely on the inward conductance of K + ions for proper function since pharmacological inhibition and genetic ablation of neural Kir channels yielded dramatic alterations of the CNS spike discharge frequency and broadening and reduced amplitude of the evoked EPSP at the neuromuscular junction. Based on these data, we conclude that neural Kir channels in insects (1) are critical for proper function of the insect nervous system, (2) represents an unexplored physiological pathway that is likely to shape the understanding of neuronal signaling, maintenance of membrane potentials, and maintenance of the ionic balance of insects, and (3) are capable of inducing acute toxicity to insects through neurological poisoning.

  2. Correlation between the structure modification and conductivity of 3 MeV Si ion-irradiated polyimide

    International Nuclear Information System (INIS)

    Sun Youmei; Zhu Zhiyong; Li Changlin

    2002-01-01

    The surface modification of the polyimide (PI/Kapton) films was carried out by 3 MeV Si + implantation to fluences ranging from 1x10 12 to 1.25x10 15 ions/cm 2 . Fourier transform infrared (FTIR), Raman and ultraviolet/visible (UV/Vis) spectroscopes were employed to investigate the chemical degradation of function groups in the irradiated layer. FTIR results show that the absorbance of typical function group decreases exponentially as a function of fluence. The damage cross-section of typical bonds of PI was evaluated from the FTIR spectra. Raman analysis shows the absorbed dose for destruction of all function groups is above 218 MGy. The red shifting of the absorption edge from UV to visible reveals the band gap closing which results from increase of the cluster size. The production efficiency of the chromophores was discussed according to UV/Vis analysis. Irradiation dramatically enhances the electrical conductivity and the sheet resistivity in our experiment descends nearly 10 orders of magnitude compared with its intrinsic value

  3. A solid phase extraction-ion chromatography with conductivity detection procedure for determining cationic surfactants in surface water samples.

    Science.gov (United States)

    Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek

    2013-11-15

    A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry). Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds.

    Science.gov (United States)

    Obadia, Mona M; Mudraboyina, Bhanu P; Serghei, Anatoli; Montarnal, Damien; Drockenmuller, Eric

    2015-05-13

    Exploiting exchangeable covalent bonds as dynamic cross-links recently afforded a new class of polymer materials coined as vitrimers. These permanent networks are insoluble and infusible, but the network topology can be reshuffled at high temperatures, thus enabling glasslike plastic deformation and reprocessing without depolymerization. We disclose herein the development of functional and high-value ion-conducting vitrimers that take inspiration from poly(ionic liquid)s. Tunable networks with high ionic content are obtained by the solvent- and catalyst-free polyaddition of an α-azide-ω-alkyne monomer and simultaneous alkylation of the resulting poly(1,2,3-triazole)s with a series of difunctional cross-linking agents. Temperature-induced transalkylation exchanges of C-N bonds between 1,2,3-triazolium cross-links and halide-functionalized dangling chains enable recycling and reprocessing of these highly cross-linked permanent networks. They can also be recycled by depolymerization with specific solvents able to displace the transalkylation equilibrium, and they display a great potential for applications that require solid electrolytes with excellent mechanical performances and facile processing such as supercapacitors, batteries, fuel cells, and separation membranes.

  5. A conductance study of guanidinium chloride, thiocyanate, sulfate, and carbonate in dilute aqueous solutions: ion-association and carbonate hydrolysis effects.

    Science.gov (United States)

    Hunger, Johannes; Neueder, Roland; Buchner, Richard; Apelblat, Alexander

    2013-01-17

    We study the conductance of dilute aqueous solutions for a series of guandinium salts at 298.15 K. The experimental molar conductivities were analyzed within the framework of the Quint-Viallard theory in combination with Debye-Hückel activity coefficients. From this analysis, we find no evidence for significant ion association in aqueous solutions of guanidinium chloride (GdmCl) and guanidinium thiocyanate (GdmSCN), and the molar conductivity of these electrolytes can be modeled assuming a complete dissociation. The limiting ionic conductivity of the guanidinium ion (Gdm(+)) is accurately determined to λ(Gdm(+)) = 51.45 ± 0.10 S cm(2) mol(-1). For the bivalent salts guanidinium sulfate (Gdm(2)SO(4)) and guanidinium carbonate (Gdm(2)CO(3)), the molar conductivities show small deviations from ideal (fully dissociated electrolyte) behavior, which are related to weak ion association in solution. Furthermore, for solutions of Gdm(2)CO(3), the hydrolysis of the carbonate anion leads to distinctively increased molar conductivities at high dilutions. The observed ion association is rather weak for all studied electrolytes and cannot explain the different protein denaturing activities of the studied guanidinium salts, as has been proposed previously.

  6. Qualitative and Quantitative Characterization of Porosity in a Low Porous and Low Permeable Organic Rich Shale by Combining Broad Ion Beam and Scanning Electron Microscopy (BIB-SEM)

    International Nuclear Information System (INIS)

    Klaver, Jop; Desbois, Guillaume; Urai, Janos L.

    2013-01-01

    This contribution focuses on the characterization of porosity in low porous shale using a broad ion beam (BIB) polishing technique combined with a conventional scanning electron microscopy (SEM). Porosity was traced in certain representative elementary areas (REA) and pores detected are segmented from mosaics of secondary electron (SE) images. Traced pores could be classified into two major pore-size classes. Relative large pores (> 0.5 μm 2 ) were found in the organic matter and matrix. They contribute strongly to the overall porosity con-tent of the shale. Nevertheless the far majority of the pores traced have equivalent radius less than 400 nm. Including the latter pore class, the imaged porosity from both samples gives similar results in the order of < 1 %. (authors)

  7. Li-ion site disorder driven superionic conductivity in solid electrolytes: a first-principles investigation of β-Li3PS4

    International Nuclear Information System (INIS)

    Phani Dathar, Gopi Krishna; Balachandran, Janakiraman; Kent, Paul R. C.; Rondinone, Adam J.; Ganesh, P.

    2016-01-01

    The attractive safety and long-term stability of all solid-state batteries has added a new impetus to the discovery and development of solid electrolytes for lithium batteries. Recently several superionic lithium conducting solid electrolytes have been discovered. All the superionic lithium containing compounds (β-Li 3 PS 4 and Li 10 GeP 2 S 12 and oxides, predominantly in the garnet phase) have partially occupied sites. This naturally begs the question of understanding the role of partial site occupancies (or site disorder) in optimizing ionic conductivity in these family of solids. In this paper, we find that for a given topology of the host lattice, maximizing the number of sites with similar Li-ion adsorption energies, which gives partial site occupancy, is a natural way to increase the configurational entropy of the system and optimize the conductivity. For a given topology and density of Li-ion adsorption sites, the ionic conductivity is maximal when the number of mobile Li-ions are equal to the number of mobile vacancies, also the very condition for achieving maximal configurational entropy. We demonstrate applicability of this principle by elucidating the role of Li-ion site disorder and the local chemical environment in the high ionic conductivity of β-Li 3 PS 4 . In addition, for β-Li 3 PS 4 we find that a significant density of vacancies in the Li-ion sub-lattice (~25%) leads to sub-lattice melting at (~600 K) leading to a molten form for the Li-ions in an otherwise solid anionic host. This gives a lithium site occupancy that is similar to what is measured experimentally. We further show that quenching this disorder can improve conductivity at lower temperatures. As a consequence, we discover that (a) one can optimize ionic conductivity in a given topology by choosing a chemistry/composition that maximizes the number of mobile-carriers i.e. maximizing both mobile Li-ions and vacancies, and (b) when the concentration of vacancies becomes significant in

  8. Preparation and characterization of electrically conducting polypyrrole Sn(IV phosphate cation-exchanger and its application as Mn(II ion selective membrane electrode

    Directory of Open Access Journals (Sweden)

    A.A. Khan

    2011-10-01

    Full Text Available Polypyrrole Sn(IV phosphate, an organic–inorganic composite cation-exchanger was synthesized via sol-gel mixing of an organic polymer, polypyrrole, into the matrices of the inorganic precipitate of Sn(IV phosphate. The physico-chemical properties of the material were determined using Atomic Absorption Spectrometry (AAS, CHN elemental analysis (inductively coupled plasma mass spectrometry, ICP-MS, UV–VIS spectrophotometry, FTIR (Fourier Transform Infra-Red, SEM (Scanning Electron Microscopy, TGA–DTA (Thermogravimetric Analysis–Differential Thermal Analysis, and XRD (X-ray diffraction. Ion-exchange behavior was observed to characterize the material. On the basis of distribution studies, the material was found to be highly selective for toxic heavy metal ion Mn2+. Due to its selective nature, the material was used as an electroactive component for the construction of an ion-selective membrane electrode. The proposed electrode shows fairly good discrimination of mercury ion over several other inorganic ions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations for Mn(II in water.

  9. Characterization of ion heat conduction in JET and ASDEX Upgrade plasmas with and without internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, R C [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM/FZJ, Trilateral Euregio Cluster, D-52425 Juelich (Germany); Baranov, Y [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Garbet, X [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Hawkes, N [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Peeters, A G [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Challis, C [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Baar, M de [FOM Instituut voor Plasmafyisica Rijnhuizen, Association EURATO-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Giroud, C [FOM Instituut voor Plasmafyisica Rijnhuizen, Association EURATO-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Joffrin, E [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Mantsinen, M [Helsinki University of Technology, Association-EURATOM Tekes, FIN-02015 HUT (Finland); Mazon, D [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Meister, H [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Suttrop, W [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Zastrow, K-D [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2003-09-01

    In ASDEX Upgrade and JET, the ion temperature profiles can be described by R/L{sub Ti} which exhibits only little variations, both locally, when comparing different discharges, and radially over a wide range of the poloidal cross-section. Considering a change of the local ion heat flux of more than a factor of two, this behaviour indicates some degree of profile stiffness. In JET, covering a large ion temperature range from 1 to 25 keV, the normalized ion temperature gradient, R/L{sub Ti}, shows a dependence on the electron to ion temperature ratio or toroidal rotational shear. In particular, in hot ion plasmas, produced predominantly by neutral beam heating at low densities, in which large T{sub i}/T{sub e} is coupled to strong toroidal rotation, the effect of the two quantities cannot be distinguished. Both in ASDEX Upgrade and JET, plasmas with internal transport barriers (ITBs), including the PEP mode in JET, are characterized by a significant increase of R/L{sub Ti} above the value of L- and H-mode plasmas. In agreement with previous ASDEX Upgrade results, no increase of the ion heat transport in reversed magnetic shear ITB plasmas is found in JET when raising the electron heating. Evidence is presented that magnetic shear directly influences R/L{sub Ti}, namely decreasing the ion heat transport when going from weakly positive to negative magnetic shear.

  10. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides.

    Science.gov (United States)

    Nakayama, Masanobu; Kotobuki, Masashi; Munakata, Hirokazu; Nogami, Masayuki; Kanamura, Kiyoshi

    2012-07-28

    The research and development of rechargeable all-ceramic lithium batteries are vital to realize their considerable advantages over existing commercial lithium ion batteries in terms of size, energy density, and safety. A key part of such effort is the development of solid-state electrolyte materials with high Li(+) conductivity and good electrochemical stability; lithium-containing oxides with a garnet-type structure are known to satisfy the requirements to achieve both features. Using first-principles density functional theory (DFT), we investigated the electrochemical stability of garnet-type Li(x)La(3)M(2)O(12) (M = Ti, Zr, Nb, Ta, Sb, Bi; x = 5 or 7) materials against Li metal. We found that the electrochemical stability of such materials depends on their composition and structure. The electrochemical stability against Li metal was improved when a cation M was chosen with a low effective nuclear charge, that is, with a high screening constant for an unoccupied orbital. In fact, both our computational and experimental results show that Li(7)La(3)Zr(2)O(12) and Li(5)La(3)Ta(2)O(12) are inert to Li metal. In addition, the linkage of MO(6) octahedra in the crystal structure affects the electrochemical stability. For example, perovskite-type La(1/3)TaO(3) was found, both experimentally and computationally, to react with Li metal owing to the corner-sharing MO(6) octahedral network of La(1/3)TaO(3), even though it has the same constituent elements as garnet-type Li(5)La(3)Ta(2)O(12) (which is inert to Li metal and features isolated TaO(6) octahedra).

  11. Conductivity, XRD, and FTIR studies of New Mg2+-ion-conducting solid polymer electrolytes: [PEG: Mg(CH3COO)2

    International Nuclear Information System (INIS)

    Polu, Anji Reddy; Kumar, Ranveer; Causin, Valerio; Neppalli, Ramesh

    2011-01-01

    Solid polymer electrolytes based on poly (ethylene glycol) (PEG) doped with Mg(CH 3 COO) 2 have been prepared by using the solution-casting method. The X-ray diffraction patterns of PEG with Mg(CH 3 COO) 2 salt indicated a decrease in the degree of crystallinity with increasing concentration of the salt. The complexation of Mg(CH 3 COO) 2 salt with the polymer was confirmed by using Fourier transform infrared spectroscopy (FTIR) studies. The ionic conductivity was measured for the [PEG: Mg(CH 3 COO) 2 ] system in the frequency range 50 Hz - 1 MHz. The addition of Mg salt was found to improve the ionic conductivity significantly. The 15-wt-% Mg(CH 3 COO) 2 -doped system had a maximum conductivity of 1.07 x 10 -6 S/cm at 303 K. The conductance spectrum shows two distinct regions: a dc plateau and a dispersive region. The temperature dependence of the ionic conductivity reveals the conduction mechanism to be an Arrhenius-type thermally activated process.

  12. Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3-Ln2O3 (Ln = La-Yb)

    International Nuclear Information System (INIS)

    Iwahara, H.; Esaka, T.; Sato, T.; Takahashi, T.

    1981-01-01

    The electrical conduction in various phases of the system Bi 2 O 3 -Ln 2 O 3 (Ln = La, Nd, Sm, Dy, Er, or Yb) was investigated by measuring ac conductivity and the emf of the oxygen gas concentration cell. High-oxide-ion conduction was observed in the rhombohedral and face-centered cubic (fcc) phase in these systems. The fcc phase could be stabilized over a wide range of temperature by adding a certain amount of Ln 2 O 3 . In these cases, the larger the atomic number of Ln, the lower the content of Ln 2 O 3 required to form the fcc solid solution, except in the case of Yb 2 O 3 . The oxide ion conductivity of this phase decreased with increasing content of Ln 2 O 3 . Maximum conductivity was obtained at the lower limit of the fcc solid solution formation range in each system, which was more than one order of magnitude higher than those of conventional stabilized zirconias. Lattice parameters of the fcc phase were calculated from the x-ray diffraction patterns. The relationship between the oxide ion conductivity and the lattice parameter was also discussed

  13. A laser microsurgical method of cell wall removal allows detection of large-conductance ion channels in the guard cell plasma membrane

    Science.gov (United States)

    Miedema, H.; Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts of Vicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. "Laser-assisted" patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.

  14. Electrical Conductivity.

    Science.gov (United States)

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  15. Ion conduction mechanisms and thermal properties of hydrated and anhydrous phosphoric acids studied with 1H, 2H, and 31P NMR.

    Science.gov (United States)

    Aihara, Yuichi; Sonai, Atsuo; Hattori, Mineyuki; Hayamizu, Kikuko

    2006-12-14

    To understand the behaviors of phosphoric acids in fuel cells, the ion conduction mechanisms of phosphoric acids in condensed states without free water and in a monomer state with water were studied by measuring the ionic conductivity (sigma) using AC impedance, thermal properties, and self-diffusion coefficients (D) and spin-lattice relaxation times (T1) with multinuclear NMR. The self-diffusion coefficient of the protons (H+ or H3O+), H2O, and H located around the phosphate were always larger than the diffusion coefficients of the phosphates and the disparity increased with increasing phosphate concentration. The diffusion coefficients of the samples containing D2O paralleled those in the protonated samples. Since the 1H NMR T1 values exhibited a minimum with temperature, it was possible to determine the correlation times and they were found to be of nanosecond order for a distance of nanometer order for a flip. The agreement of the ionic conductivities measured directly and those calculated from the diffusion coefficients indicates that the ion conduction obeys the Nernst-Einstein equation in the condensed phosphoric acids. The proton diffusion plays a dominant role in the ion conduction, especially in the condensed phosphoric acids.

  16. Crystal structure and lithium ion conductivity of A-site deficient perovskites La1/3-xLi3xTaO3

    International Nuclear Information System (INIS)

    Mizumoto, Katsuyoshi; Hayashi, Shinsuke

    1997-01-01

    The crystal structure and lithium ion conductivity of La 1/3-x Li 3x TaO 3 solid solutions with the A-site deficient perovskite structure have been studied. Single phase solid solutions were obtained in the range of x=0 to 1/6. Change from tetragonal to cubic structure and decrease in the lattice volume were observed with increasing the x value. The maximum conductivity obtained was 7 x 10 -3 S·m -1 at x=0.06. The composition-dependence on the carrier concentration was calculated and compared with conductivity data. (author)

  17. Using precursor ion scan of 184 with liquid chromatography-electrospray ionization-tandem mass spectrometry for concentration normalization in cellular lipidomic studies.

    Science.gov (United States)

    Chao, Hsi-Chun; Chen, Guan-Yuan; Hsu, Lih-Ching; Liao, Hsiao-Wei; Yang, Sin-Yu; Wang, San-Yuan; Li, Yu-Liang; Tang, Sung-Chun; Tseng, Yufeng Jane; Kuo, Ching-Hua

    2017-06-08

    Cellular lipidomic studies have been favored approaches in many biomedical research areas. To provide fair comparisons of the studied cells, it is essential to perform normalization of the determined concentration before lipidomic analysis. This study proposed a cellular lipidomic normalization method by measuring the phosphatidylcholine (PC) and sphingomyelin (SM) contents in cell extracts. To provide efficient analysis of PC and SM in cell extracts, flow injection analysis-electrospray ionization-tandem mass spectrometry (FIA-ESI-MS/MS) with a precursor ion scan (PIS) of m/z 184 was used, and the parameters affecting the performance of the method were optimized. Good linearity could be observed between the cell extract dilution factor and the reciprocal of the total ion chromatogram (TIC) area in the PIS of m/z 184 within the dilution range of 1- to 16-fold (R 2  = 0.998). The calibration curve could be used for concentration adjustment of the unknown concentration of a cell extract. The intraday and intermediate precisions were below 10%. The accuracy ranged from 93.0% to 105.6%. The performance of the new normalization method was evaluated using different numbers of HCT-116 cells. Sphingosine, ceramide (d18:1/18:0), SM (d18:1/18:0) and PC (16:1/18:0) were selected as the representative test lipid species, and the results showed that the peak areas of each lipid species obtained from different cell numbers were within a 20% variation after normalization. Finally, the PIS of 184 normalization method was applied to study ischemia-induced neuron injury using oxygen and glucose deprivation (OGD) on primary neuronal cultured cells. Our results showed that the PIS of 184 normalization method is an efficient and effective approach for concentration normalization in cellular lipidomic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Conductive polymer and Si nanoparticles composite secondary particles and structured current collectors for high loading lithium ion negative electrode application

    Science.gov (United States)

    Liu, Gao

    2017-07-11

    Embodiments of the present invention disclose a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer. Another embodiment discloses a method for preparing a composition of matter comprising a plurality of silicon (Si) nanoparticles coated with a conductive polymer comprising providing Si nanoparticles, providing a conductive polymer, preparing a Si nanoparticle, conductive polymer, and solvent slurry, spraying the slurry into a liquid medium that is a non-solvent of the conductive polymer, and precipitating the silicon (Si) nanoparticles coated with the conductive polymer. Another embodiment discloses an anode comprising a current collector, and a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer.

  19. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs.

    Science.gov (United States)

    Zhang, Ye; Bai, Wenyu; Cheng, Xunliang; Ren, Jing; Weng, Wei; Chen, Peining; Fang, Xin; Zhang, Zhitao; Peng, Huisheng

    2014-12-22

    The construction of lightweight, flexible and stretchable power systems for modern electronic devices without using elastic polymer substrates is critical but remains challenging. We have developed a new and general strategy to produce both freestanding, stretchable, and flexible supercapacitors and lithium-ion batteries with remarkable electrochemical properties by designing novel carbon nanotube fiber springs as electrodes. These springlike electrodes can be stretched by over 300 %. In addition, the supercapacitors and lithium-ion batteries have a flexible fiber shape that enables promising applications in electronic textiles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Low frequency alternating current conduction and dielectric relaxation in polypyrrole irradiated with 100 MeV swift heavy ions of silver (Ag{sup 8+})

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Amarjeet, E-mail: amarkaur@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Dhillon, Anju [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Avasthi, D.K. [Inter University Accelerator Center (IUAC), Aruna Asaf Ali Road, New Delhi 110067 (India)

    2013-07-15

    Polypyrrole (PPY) films were prepared by electrochemical polymerization technique. The fully undoped samples were irradiated with different radiation fluences ranging from 10{sup 10} to 10{sup 12} ions cm{sup −2} of 100 MeV silver (Ag{sup 8+}) ions. The temperature dependence of ac conductivity [σ{sub m}(ω)], dielectric constant (ε′) and dielectric loss (ε′′) of both irradiated as well as unirradiated samples have been investigated in 77–300 K. There exists typical Debye type dispersion. Giant increase in dielectric constant has been observed for irradiated samples which is attributed to polaronic defects produced during irradiation. - Graphical abstract: Display Omitted - Highlights: • Polypyrrole samples were prepared by electrochemical technique. • The fully undoped samples were irradiated with 100 MeV silver (Ag{sup 8+}) ions. • Giant increase in dielectric constant in irradiated samples is observed. • Dielectric behaviour is attributed to polaronic defects produced during irradiation.

  1. Low frequency alternating current conduction and dielectric relaxation in polypyrrole irradiated with 100 MeV swift heavy ions of silver (Ag8+)

    International Nuclear Information System (INIS)

    Kaur, Amarjeet; Dhillon, Anju; Avasthi, D.K.

    2013-01-01

    Polypyrrole (PPY) films were prepared by electrochemical polymerization technique. The fully undoped samples were irradiated with different radiation fluences ranging from 10 10 to 10 12 ions cm −2 of 100 MeV silver (Ag 8+ ) ions. The temperature dependence of ac conductivity [σ m (ω)], dielectric constant (ε′) and dielectric loss (ε′′) of both irradiated as well as unirradiated samples have been investigated in 77–300 K. There exists typical Debye type dispersion. Giant increase in dielectric constant has been observed for irradiated samples which is attributed to polaronic defects produced during irradiation. - Graphical abstract: Display Omitted - Highlights: • Polypyrrole samples were prepared by electrochemical technique. • The fully undoped samples were irradiated with 100 MeV silver (Ag 8+ ) ions. • Giant increase in dielectric constant in irradiated samples is observed. • Dielectric behaviour is attributed to polaronic defects produced during irradiation

  2. Determination of Trace Anions in Concentrated Hydrogen Peroxide by Direct Injection Ion Chromatography with Conductivity Detection after Pt-Catalyzed On-Line Decomposition

    International Nuclear Information System (INIS)

    Kim, Do Hee; Lee, Bo Kyung; Lee, Dong Soo

    1999-01-01

    A method has been developed for the determination of trace anion impurities in concentrated hydrogen peroxide. The method involves on-line decomposition of hydrogen peroxide, ion chromatographic separation and subsequent suppressed-type conductivity detection. H 2 O 2 is decomposed in Pt-catalyst filled Gore-Tex membrane tubing and the resulting aqueous solution containing analytes is introduced to the injection valve of an ion chromatograph for periodic determinations. The oxygen gas evolving within the membrane tubing escapes freely through the membrane wall causing no problem in ion chromatographic analysis. Decomposition efficiency is above 99.99% at a flow rate of 0.4mL/min for a 30% hydrogen peroxide concentration. Analytes are quantitatively retained. The analysis results for several brands of commercial hydrogen peroxides are reported

  3. Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte

    Science.gov (United States)

    Hallopeau, Leopold; Bregiroux, Damien; Rousse, Gwenaëlle; Portehault, David; Stevens, Philippe; Toussaint, Gwenaëlle; Laberty-Robert, Christel

    2018-02-01

    Li1.3Al0.3Ti1.7(PO4)3 (LATP) materials are made of a three-dimensional framework of TiO6 octahedra and PO4 tetrahedra, which provides several positions for Li+ ions. The resulting high ionic conductivity is promising to yield electrolytes for all-solid-state Li-ion batteries. In order to elaborate dense ceramics, conventional sintering methods often use high temperature (≥1000 °C) with long dwelling times (several hours) to achieve high relative density (∼90%). In this work, an innovative synthesis and processing approach is proposed. A fast and easy processing technique called microwave-assisted reactive sintering is used to both synthesize and sinter LATP ceramics with suitable properties in one single step. Pure and crystalline LATP ceramics can be achieved in only 10 min at 890 °C starting from amorphous, compacted LATP's precursors powders. Despite a relative density of 88%, the ionic conductivity measured at ambient temperature (3.15 × 10-4 S cm-1) is among the best reported so far. The study of the activation energy for Li+ conduction confirms the high quality of the ceramic (purity and crystallinity) achieved by using this new approach, thus emphasizing its interest for making ion-conducting ceramics in a simple and fast way.

  4. The Cystic Fibrosis Transmembrane Conductance Regulator and Chloride-Dependent Ion Fluxes of Ovine Vocal Fold Epithelium

    Science.gov (United States)

    Leydon, Ciara; Fisher, Kimberly V.; Lodewyck-Falciglia, Danielle

    2009-01-01

    Purpose: Ion-driven transepithelial water fluxes participate in maintaining superficial vocal fold hydration, which is necessary for normal voice production. The authors hypothesized that Cl[superscript -] channels are present in vocal fold epithelial cells and that transepithelial Cl[superscript -] fluxes can be manipulated pharmacologically.…

  5. Characteristics of NH4+ and NO3− fluxes in tea (Camellia sinensis) roots measured by scanning ion-selective electrode technique

    Science.gov (United States)

    Ruan, Li; Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Fen; Wu, Liyun; Bai, Peixian; Zhang, Chengcai

    2016-01-01

    As a vital beverage crop, tea has been extensively planted in tropical and subtropical regions. Nitrogen (N) levels and forms are closely related to tea quality. Based on different N levels and forms, we studied changes in NO3− and NH4+ fluxes in tea roots utilizing scanning ion-selective electrode technique. Our results showed that under both single and mixed N forms, influx rates of NO3− were much lower than those of NH4+, suggesting a preference for NH4+ in tea. With the increase in N concentration, the influx rate of NO3− increased more than that of NH4+. The NH4+ influx rates in a solution without NO3− were much higher than those in a solution with NO3−, while the NO3− influx rates in a solution without NH4+ were much lower than those in a solution with NH4+. We concluded that (1) tea roots showed a preference for NH4+, (2) presence of NO3− had a negative effect on NH4+ influx, and (3) NH4+ had a positive effect on NO3− influx. Our findings not only may help advance hydroponic tea experiments but also may be used to develop efficient fertilization protocols for soil-grown tea in the future. PMID:27918495

  6. Complementary microanalysis of Zn, Mn and Fe in the chelicera of spiders and scorpions using scanning MeV-ion and electron microprobes

    International Nuclear Information System (INIS)

    Schofield, R.; Lefevre, H.; Shaffer, M.

    1989-01-01

    Energy-loss scanning transmission ion microscopy (ELSTIM or just STIM), PIXE and electron microprobe techniques are used to investigate certain minor element accumulations in a few spiders and scorpions. STIM and PIXE are used to survey the unsectioned specimens, while electron microprobe techniques are used for higher resolution investigations of several sections of the specimens. Concentration values measured using STIM and PIXE are found to be in satisfactory agreement with those measured using electron probe microanalysis. A garden spider Araneous diadematus is found to contain high concentrations of zinc in a thin layer near the surface of its fangs (reaching 23% of dry weight), and manganese in its marginal teeth (about 5% of dry weight). A wolf spider Alopecosa kochi is found to have similar concentrations of zinc in a layer near the surface of it's fang, and concentrations of manganese reaching 1.5% in a layer beneath the zinc containing layer. A scorpion Centruroides sp. is found to contain high concentrations of iron (reaching 8%) and zinc (reaching 24%) in the tips of teeth on the cheliceral fingers, and manganese (about 5%) in the stinger. The hypothesis that these elements simply harden the cuticle does not appear to explain their segregation patterns. (orig.)

  7. In-situ investigation of crack propagation in {gamma}-TiAl alloys using atomic force, focus ion beam and scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Farasat; Goeken, Mathias [Lehrstuhl Allgemeine Werkstoffeigenschaften, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany); Pyczak, Florian [GKSS Research Centre Geesthacht, Geesthacht (Germany)

    2009-07-01

    The present study is focused on crack propagation mechanism in Ti-45Al-1Cr and Ti-45Al-5Nb alloys with lamellar microstructure. Atomic force microscopy (AFM) is a versatile technique to study the crack propagation in-situ. AFM was employed to investigate the local deformations near the crack tip. Scanning electron microscopy (SEM) supplements the in-situ observations and was used to get a basic understanding of the crack propagation path over larger distances.A focused ion beam (FIB) was used to investigate the structures and deformation traces underneath the surface. It is concluded that the {gamma}/{alpha}2 interfaces act as favorable sites for new interfacial crack nucleation and also for interlamellar crack propagation. Nucleation of new cracks was often preceded by the interaction of deformation twins with interfaces and also by strong shear band activity in the {gamma}-TiAl lamellae visible as significant surface topography in AFM.Mostly the underneath crack path follows the {gamma}/{alpha}2 interface similar to the situation observed at the surface. The local misorientation measured with electron backscattered diffraction (EBSD) shows {gamma}-lamellae as the region of high deformation as compare to neighboring {alpha}2 -lamellae around the crack tip and its surroundings.

  8. Characteristics of NH4+ and NO3- fluxes in tea (Camellia sinensis) roots measured by scanning ion-selective electrode technique.

    Science.gov (United States)

    Ruan, Li; Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Fen; Wu, Liyun; Bai, Peixian; Zhang, Chengcai

    2016-12-05

    As a vital beverage crop, tea has been extensively planted in tropical and subtropical regions. Nitrogen (N) levels and forms are closely related to tea quality. Based on different N levels and forms, we studied changes in NO 3 - and NH 4 + fluxes in tea roots utilizing scanning ion-selective electrode technique. Our results showed that under both single and mixed N forms, influx rates of NO 3 - were much lower than those of NH 4 + , suggesting a preference for NH 4 + in tea. With the increase in N concentration, the influx rate of NO 3 - increased more than that of NH 4 + . The NH 4 + influx rates in a solution without NO 3 - were much higher than those in a solution with NO 3 - , while the NO 3 - influx rates in a solution without NH 4 + were much lower than those in a solution with NH 4 + . We concluded that (1) tea roots showed a preference for NH 4 + , (2) presence of NO 3 - had a negative effect on NH 4 + influx, and (3) NH 4 + had a positive effect on NO 3 - influx. Our findings not only may help advance hydroponic tea experiments but also may be used to develop efficient fertilization protocols for soil-grown tea in the future.

  9. Scanning transmission ion microscopy mass measurements for quantitative trace element analysis within biological samples and validation using atomic force microscopy thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Deves, Guillaume [Laboratoire de chimie nucleaire analytique et bioenvironnementale, UMR 5084, CNRS-Universite de Bordeaux 1, BP 120 Chemin du solarium, F33175 Gradignan cedex (France)]. E-mail: deves@cenbg.in2p3.fr; Cohen-Bouhacina, Touria [Centre de Physique Moleculaire Optique et Hertzienne, Universite de Bordeaux 1, 351, cours de la Liberation, F33405 Talence cedex (France); Ortega, Richard [Laboratoire de chimie nucleaire analytique et bioenvironnementale, UMR 5084, CNRS-Universite de Bordeaux 1, BP 120 Chemin du solarium, F33175 Gradignan cedex (France)

    2004-10-08

    We used the nuclear microprobe techniques, micro-PIXE (particle-induced X-ray emission), micro-RBS (Rutherford backscattering spectrometry) and scanning transmission ion microscopy (STIM) in order to perform the characterization of trace element content and spatial distribution within biological samples (dehydrated cultured cells, tissues). The normalization of PIXE results was usually expressed in terms of sample dry mass as determined by micro-RBS recorded simultaneously to micro-PIXE. However, the main limit of RBS mass measurement is the sample mass loss occurring during irradiation and which could be up to 30% of the initial sample mass. We present here a new methodology for PIXE normalization and quantitative analysis of trace element within biological samples based on dry mass measurement performed by mean of STIM. The validation of STIM cell mass measurements was obtained in comparison with AFM sample thickness measurements. Results indicated the reliability of STIM mass measurement performed on biological samples and suggested that STIM should be performed for PIXE normalization. Further information deriving from direct confrontation of AFM and STIM analysis could as well be obtained, like in situ measurements of cell specific gravity within cells compartment (nucleolus and cytoplasm)

  10. Microphase separation and the formation of ion conductivity channels in poly(ionic liquid)s: A coarse-grained molecular dynamics study

    Science.gov (United States)

    Weyman, Alexander; Bier, Markus; Holm, Christian; Smiatek, Jens

    2018-05-01

    We study generic properties of poly(ionic liquid)s (PILs) via coarse-grained molecular dynamics simulations in bulk solution and under confinement. The influence of different side chain lengths on the spatial properties of the PIL systems and on the ionic transport mechanism is investigated in detail. Our results reveal the formation of apolar and polar nanodomains with increasing side chain length in good agreement with previous results for molecular ionic liquids. The ion transport numbers are unaffected by the occurrence of these domains, and the corresponding values highlight the potential role of PILs as single-ion conductors in electrochemical devices. In contrast to bulk behavior, a pronounced formation of ion conductivity channels in confined systems is initiated in close vicinity to the boundaries. We observe higher ion conductivities in these channels for increasing PIL side chain lengths in comparison with bulk values and provide an explanation for this effect. The appearance of these domains points to an improved application of PILs in modern polymer electrolyte batteries.

  11. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy.

    Science.gov (United States)

    Held, Kathryn D; Blakely, Eleanor A; Story, Michael D; Lowenstein, Derek I

    2016-06-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities.

  12. Quantitative profiling of PE, MMPE, DMPE, and PC lipid species by multiple precursor ion scanning: A tool for monitoring PE metabolism

    DEFF Research Database (Denmark)

    Bilgin, Mesut; Markgraf, Daniel F; Duchoslav, Eva

    2011-01-01

    We report a method for the simultaneous identification and quantification of phosphatidylethanolamine (PE), monomethyl-phosphatidylethanolamine (MMPE), dimethyl-phosphatidylethanolamine (DMPE), and phosphatidylcholine (PC) species in lipid extracts. The method employs a specific "mass-tag" strategy...... where DMPE, MMPE, and PE species are chemically methylated with deuterated methyliodide (CD(3)I) to produce PC molecules having class-specific mass offsets of 3, 6 and 9Da, respectively. The derivatized aminoglycerophospholipids release characteristic phosphorylcholine-like fragment ions having specific...... and DMPE, and abundant PE and PC species in a single mass spectrometric analysis. We demonstrated the efficacy of the methodology by conducting a series of biochemical experiments using stable isotope labeled ethanolamine to survey the activities and substrate specificities of enzymes involved in PE...

  13. Ion conductivity and phase transitions in the Na3Sc2(PO4)3 - NaGe2(PO4)3 system

    International Nuclear Information System (INIS)

    Nogaj, A.S.

    2002-01-01

    Influence of heteropolyvalent substitution on dipole ordering of sodium-scandium phosphate, as well as on ion conductivity and phase transitions in the system Na 3 Sc 2 (PO 4 ) 3 - NaGe 2 (PO 4 ) 3 , was studied using the methods of solid phase synthesis, X-ray diffraction, laser spectroscopy and measurement of electric conductivity. Boundaries of the dipole-ordered and superionic phases existence ranges in the given system were identified. It is shown that expansion of the dipole-ordered phase existence range with increase in substituent cation concentration is characteristic of the phase on the basis of α-Na 3 Sc 2 (PO 4 ) 3 [ru

  14. Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries

    Science.gov (United States)

    Zhong, Haoxiang; He, Aiqin; Lu, Jidian; Sun, Minghao; He, Jiarong; Zhang, Lingzhi

    2016-12-01

    A water-soluble conductive composite binder consisting of carboxymethyl chitosan (CCTS) as a binder and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a conduction-promoting agent is reported for the LiFePO4 (LFP) cathode in Li-ion batteries. The introduction of conductive PEDOT:PSS as a conductive composite binder facilitates the formation of homogeneous and continuous conducting bridges throughout the electrode and raises the compaction density of the electrode sheet by decreasing the amounts of the commonly used conducting agent of acetylene black. The optimized replacement ratios of acetylene black with PEDOT:PSS (acetylene black/PEDOT:PSS = 1:1, by weight) are obtained by measuring electrical conductivity, peel strength and compaction density of the electrode sheets. The LFP half-cell with the optimized conductive binder exhibits better cycling and rate performance and more favorable electrochemical kinetics than that using only acetylene black conducting agent. The pilot application of PEDOT:PSS/CCTS binder in 10 Ah CCTS-LFP prismatic cell exhibits a comparable cycling performance, retaining 89.7% of capacity at 1 C/2 C (charge/discharge) rate as compared with 90% for commercial PVDF-LFP over 1000 cycles, and better rate capability than that of commercial PVDF-LFP, retaining 98% capacity of 1 C at 7 C rate as compared with 95.4% for PVDF-LFP.

  15. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    Science.gov (United States)

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Li_4Ti_5O_1_2/Ketjen Black with open conductive frameworks for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Yang; Dong, Hui; Zhang, Huang; Liu, Yijun; Ji, Mandi; Xu, Yunlong; Wang, Qingqing; Luo, Lei

    2016-01-01

    Graphical abstract: The Li_4Ti_5O_1_2/Ketjen Black composites are synthesized via a simple hydrothermal method. As an anode for lithium ion battery, the composite exhibits ultrahigh capacity and excellent low temperature performance. - Highlights: • Mesoporous LTO/KB composites were synthesized via hydrothermal method. • KB is used as carbon template and conductive additive. • The LTO/KB electrode without carbon black was fabricated. • This as-prepared electrode shows excellent rate capacity performance. • LTO/KB composite exhibits ultrahigh cycle performance at low temperature. - Abstract: The Li_4Ti_5O_1_2/Ketjen Black composites are synthesized via a simple hydrothermal method. The materials are characterized by XRD, SEM, HR-TEM, EDS, galvanostatic charge/discharge test, CV and EIS. The results indicate that Li_4Ti_5O_1_2 (LTO) particles grow both in the pores and on the surface of mesoporous Ketjen Black (KB) forming open conductive frameworks and the Ketjen Black works as host forthe growth of Li_4Ti_5O_1_2 primary nanoparticles. The LTO/KB electrode is fabricated without extra carbon black conductive agents and exhibits excellent electrochemical performances, especially at low temperature. The improved performances can be attributed to the presence of mesoporous Ketjen Black conductive templates with high electronic conductivity and formed 3D frameworks beneficial to the lithium ion diffusion.

  17. Synthesis of hierarchical conductive C/LiFePO_4/carbon nanotubes composite with less antisite defects for high power lithium-ion batteries

    International Nuclear Information System (INIS)

    Song, Jianjun; Shao, Guangjie; Ma, Zhipeng; Wang, Guiling; Yang, Jing

    2015-01-01

    Graphical abstract: The hierarchical conductive C/LiFePO4/CNTs composite with less antisite defects is synthesized by a modified solvothemal process and delivers superior electrochemical performance with high rate capability and good capacity retention. - Abstract: The low electronic conductivity and Li ion diffusion ability are two major obstacles to realize its wide application for LiFePO_4 materials. The material with hierarchical conductive structure and lower antisite defects concentration can effectively enhance the electronic conductivity and Li ion diffusion ability. We firstly report here a modified solvothemal process for the fabrication of hierarchical conductive C/LiFePO_4/CNTs composite with less antisite defects. It is found that the modified solvothemal process is facilitated to decrease Fe_L_i antisite defects and enhance the electronic continuity between LFP and CNTs. In favor of its unique properties, the C/LFP/CNTs composites can deliver superior rate capability and cycling stability. Remarkably, even at a high rate of 20C (3400 mA g"−"1), a high initial discharge capacity of 91.6 mAh g"−"1 and good cycle retention of 95% with almost 100% coulombic efficiency are still obtained after 100 cycles.

  18. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  19. Extremely thin layer plastification for focused-ion beam scanning electron microscopy: an improved method to study cell surfaces and organelles of cultured cells.

    Science.gov (United States)

    VAN Donselaar, E G; Dorresteijn, B; Popov-Čeleketić, D; VAN DE Wetering, W J; Verrips, T C; Boekhout, T; Schneijdenberg, C T W M; Xenaki, A T; VAN DER Krift, T P; Müller, W H

    2018-03-25

    Since the recent boost in the usage of electron microscopy in life-science research, there is a great need for new methods. Recently minimal resin embedding methods have been successfully introduced in the sample preparation for focused-ion beam scanning electron microscopy (FIB-SEM). In these methods several possibilities are given to remove as much resin as possible from the surface of cultured cells or multicellular organisms. Here we introduce an alternative way in the minimal resin embedding method to remove excess of resin from two widely different cell types by the use of Mascotte filter paper. Our goal in correlative light and electron microscopic studies of immunogold-labelled breast cancer SKBR3 cells was to visualise gold-labelled HER2 plasma membrane proteins as well as the intracellular structures of flat and round cells. We found a significant difference (p flat cell contained 2.46 ± 1.98 gold particles, and a round cell 5.66 ± 2.92 gold particles. Moreover, there was a clear difference in the subcellular organisation of these two cells. The round SKBR3 cell contained many organelles, such as mitochondria, Golgi and endoplasmic reticulum, when compared with flat SKBR3 cells. Our next goal was to visualise crosswall associated organelles, septal pore caps, of Rhizoctonia solani fungal cells by the combined use of a heavy metal staining and our extremely thin layer plastification (ETLP) method. At low magnifications this resulted into easily finding septa which appeared as bright crosswalls in the back-scattered electron mode in the scanning electron microscope. Then, a septum was selected for FIB-SEM. Cross-sectioned views clearly revealed the perforate septal pore cap of R. solani next to other structures, such as mitochondria, endoplasmic reticulum, lipid bodies, dolipore septum, and the pore channel. As the ETLP method was applied on two widely different cell types, the use of the ETLP method will be beneficial to correlative studies of other cell

  20. Soft-contact conductive carbon enabling depolarization of LiFePO4 cathodes to enhance both capacity and rate performances of lithium ion batteries

    Science.gov (United States)

    Ren, Wenju; Wang, Kai; Yang, Jinlong; Tan, Rui; Hu, Jiangtao; Guo, Hua; Duan, Yandong; Zheng, Jiaxin; Lin, Yuan; Pan, Feng

    2016-11-01

    Conductive nanocarbons generally are used as the electronic conductive additives to contact with active materials to generate conductive network for electrodes of commercial Li-ion batteries (LIBs). A typical of LiFePO4 (LFP), which has been widely used as cathode material for LIBs with low electronic conductivity, needs higher quantity of conductive nanocarbons to enhance the performance for cathode electrodes. In this work, we systematically studied three types of conductive nanocarbons and related performances in the LFP electrodes, and classify them as hard/soft-contact conductive carbon (named as H/SCC), respectively, according to their crystallite size, surface graphite-defect, specific surface area and porous structure, in which SCC can generate much larger contact area with active nano-particles of cathode materials than that of HCC. It is found that LFP nanocrystals wrapped in SCC networks perform significantly enhanced both capacity and rate performance than that in HCC. Combined experiments with multiphysics simulation, the mechanism is that LFP nanoparticles embedded in SCC with large contact area enable to generate higher depolarized effects with a relatively uniform current density vector (is) and lithium flux vector (NLi) than that in HCC. This discovery will guide us to how to design LIBs by selective using conductive carbon for high-performance LIBs.

  1. Carbon-ion scanning lung treatment planning with respiratory-gated phase-controlled rescanning: simulation study using 4-dimensional CT data.

    Science.gov (United States)

    Takahashi, Wataru; Mori, Shinichiro; Nakajima, Mio; Yamamoto, Naoyoshi; Inaniwa, Taku; Furukawa, Takuji; Shirai, Toshiyuki; Noda, Koji; Nakagawa, Keiichi; Kamada, Tadashi

    2014-11-11

    To moving lung tumors, we applied a respiratory-gated strategy to carbon-ion pencil beam scanning with multiple phase-controlled rescanning (PCR). In this simulation study, we quantitatively evaluated dose distributions based on 4-dimensional CT (4DCT) treatment planning. Volumetric 4DCTs were acquired for 14 patients with lung tumors. Gross tumor volume, clinical target volume (CTV) and organs at risk (OARs) were delineated. Field-specific target volumes (FTVs) were calculated, and 48Gy(RBE) in a single fraction was prescribed to the FTVs delivered from four beam angles. The dose assessment metrics were quantified by changing the number of PCR and the results for the ungated and gated scenarios were then compared. For the ungated strategy, the mean dose delivered to 95% of the volume of the CTV (CTV-D95) was in average 45.3 ± 0.9 Gy(RBE) even with a single rescanning (1 × PCR). Using 4 × PCR or more achieved adequate target coverage (CTV-D95 = 46.6 ± 0.3 Gy(RBE) for ungated 4 × PCR) and excellent dose homogeneity (homogeneity index =1.0 ± 0.2% for ungated 4 × PCR). Applying respiratory gating, percentage of lung receiving at least 20 Gy(RBE) (lung-V20) and heart maximal dose, averaged over all patients, significantly decreased by 12% (p lung tumors without gating. The use of a respiratory-gated strategy in combination with PCR reduced excessive doses to OARs.

  2. Characterization of stainless steel through Scanning Electron Microscopy, nitrided in the process of implantation of immersed ions in plasma; Caracterizacion de acero inoxidable mediante Microscopia Electronica de Barrido nitrurado en el proceso de implantacion de iones inmersos en plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Moreno S, H

    2003-07-01

    The present project carries out the investigation of the nitridation of the austenitic stainless steel schedule 304, applying the novel technology of installation of nitrogen ions in immersed materials in plasma (Plll), by means of which they modify those properties of the surface of the steel. The obtained results by means of tests of Vickers microhardness, shows that the hardness was increment from 266 to 740 HV (microhardness units). It was determined by means of scanning electron microscopy, the one semiquantitative chemical analysis of the elements that constitute the austenitic stainless steel schedule 304; the obtained results, show to the nitrogen like an element of their composition in the pieces where carried out to end the PIII technology. The parameters of the plasma with which carried out the technology Plll, were monitored and determined by means of electric probes, and with which it was determined that the density of particles is stable in the interval of 1x10{sup -1} at 3x10{sup -1}Torr, and it is where better results of hardness were obtained. That reported in this work, they are the first results obtained when applying the technology Plll in Mexico, and with base in these, it is even necessary to investigate and to deepen until to dominate the process and to be in possibilities of proposing it to be carried out and exploited in an industrial way. (Author)

  3. A novel durable double-conductive core-shell structure applying to the synthesis of silicon anode for lithium ion batteries

    Science.gov (United States)

    Xing, Yan; Shen, Tong; Guo, Ting; Wang, Xiuli; Xia, Xinhui; Gu, Changdong; Tu, Jiangping

    2018-04-01

    Si/C composites are currently the most commercially viable next-generation lithium-ion battery anode materials due to their high specific capacity. However, there are still many obstacles need to be overcome such as short cycle life and poor conductivity. In this work, we design and successfully synthesis an excellent durable double-conductive core-shell structure p-Si-Ag/C composites. Interestingly, this well-designed structure offers remarkable conductivity (both internal and external) due to the introduction of silver particles and carbon layer. The carbon layer acts as a protective layer to maintain the integrity of the structure as well as avoids the direct contact of silicon with electrolyte. As a result, the durable double-conductive core-shell structure p-Si-Ag/C composites exhibit outstanding cycling stability of roughly 1000 mAh g-1 after 200 cycles at a current density of 0.2 A g-1 and retain 765 mAh g-1 even at a high current density of 2 A g-1, indicating a great improvement in electrochemical performance compared with traditional silicon electrode. Our research results provide a novel pathway for production of high-performance Si-based anodes to extending the cycle life and specific capacity of commercial lithium ion batteries.

  4. Mechanism of conductivity type conversion in p-Hg1-xCdxTe crystals under low energy ion bombardment

    International Nuclear Information System (INIS)

    Bogoboyashchij, V.V.; Izhnin, I.I.

    2000-01-01

    Conditions giving rise to accelerated diffusion of Hg under bombardment of p-Hg 1-x Cd x Te by low-energy particles are analyzed and probable mechanisms of the phenomenon are suggested, permitting qualitative and quantitative agreement with experimental data. Analysis indicates that basic regularities of p-n-conversion during Hg 0.8 Cd 0.2 Te crystal bombardment by neutralized ions can be easily explained in the framework of traditional notions of mercury chemical diffusion in this material. The regularities stem from specific features of defect formation in Hg 0.8 Cd 0.2 Te, on the one hand, and from a high concentration of intrinsic electrons and holes, screening effectively the defective layer electric field, on the other hand. The high rate of conversion during ion bombardment compared with the rate of conversion during annealing in mercury vapors can be explained by the fact that a great number of nonequilibrium interstitial atoms of mercury, by far exceeding the value during thermal annealing, is crated near the surface of the crystal bombarded [ru

  5. N-doped graphene/graphite composite as a conductive agent-free anode material for lithium ion batteries with greatly enhanced electrochemical performance

    International Nuclear Information System (INIS)

    Guanghui, Wu; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Zhiguo, Gu; Guangli, Wang

    2015-01-01

    Graphical abstract: The study reported a novel N-doped graphene/graphite anode material for lithium ion batteries. The composite exhibits a largely enhanced electrochemical performance. The study also provides an attractive approach for the fabrication of various graphite-based materials for high power batteries. Display Omitted -- Highlights: • The paper developed a new N-doped graphene/graphite composite for lithium ion battery • The composite contains a three-dimensional graphene framework with rich of open pores • The hybrid offers a higher electrical conductivity when compared with pristine graphite • The hybrid electrode provides a greatly enhanced electrochemical performance • The study provides a prominent approach for fabrication of graphite-based materials -- ABSTRACT: Present graphite anode cannot meet the increasing requirement of electronic devices and electric vehicles due to its low specific capacity, poor cycle stability and low rate capability. The study reported a promising N-doped graphene/graphite composite as a conductive agent-free anode material for lithium ion batteries. Herein, graphite oxide and urea were dispersed in ultrapure water and partly reduced by ascorbic acid. Followed by mixing with graphite and hydrothermal treatment to produce graphene oxide/graphite hydrogel. The hydrogel was dried and finally annealed in Ar/H 2 to obtain N-doped graphene/graphite composite. The result shows that all of graphite particles was dispersed in three-dimensional graphene framework with a rich of open pores. The open pore accelerates the electrolyte transport. The graphene framework works as a conductive agent and graphite particle connector and improves the electron transfer. Electrical conductivity of the composite reaches 5912 S m −1 , which is much better than that of the pristine graphite (4018 S m −1 ). The graphene framework also acts as an expansion absorber in the anodes of lithium ion battery to relieve the large strains

  6. Anisotropy of electrical conductivity in dc due to intrinsic defect formation in α-Al{sub 2}O{sub 3} single crystal implanted with Mg ions

    Energy Technology Data Exchange (ETDEWEB)

    Tardío, M., E-mail: mtardio@fis.uc3m.es [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III, Avda. de la Universidad, 30, 28911 Leganés (Madrid) (Spain); Egaña, A.; Ramírez, R.; Muñoz-Santiuste, J.E. [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III, Avda. de la Universidad, 30, 28911 Leganés (Madrid) (Spain); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela (Portugal)

    2016-07-15

    The electrical conductivity in α-Al{sub 2}O{sub 3} single crystals implanted with Mg ions in two different crystalline orientations, parallel and perpendicular to c axis, was investigated. The samples were implanted at room temperature with energies of 50 and 100 keV and fluences of 1 × 10{sup 15}, 5 × 10{sup 15} and 5 × 10{sup 16} ions/cm{sup 2}. Optical characterization reveals slight differences in the absorption bands at 6.0 and 4.2 eV, attributed to F type centers and Mie scattering from Mg precipitates, respectively. DC electrical measurements using the four and two-point probe methods, between 295 and 490 K, were used to characterize the electrical conductivity of the implanted area (Meshakim and Tanabe, 2001). Measurements in this temperature range indicate that: (1) the electrical conductivity is thermally activated independently of crystallographic orientation, (2) resistance values in the implanted region decrease with fluence levels, and (3) the I–V characteristic of electrical contacts in samples with perpendicular c axis orientation is clearly ohmic, whereas contacts are blocking in samples with parallel c axis. When thin layers are sequentially removed from the implanted region by immersing the sample in a hot solution of nitric and fluorhydric acids the electrical resistance increases until reaching the values of non-implanted crystal (Jheeta et al., 2006). We conclude that the enhancement in conductivity observed in the implanted regions is related to the intrinsic defects created by the implantation rather than to the implanted Mg ions (da Silva et al., 2002; Tardío et al., 2001; Tardío et al., 2008).

  7. Low Conductive Thermal Barrier Coatings Produced by Ion Beam Assisted EB-PVD with Controlled Porosity, Microstructure Refinement and Alloying Additions for High Temperature Applications

    Science.gov (United States)

    Wolfe, Douglas E.; Singh, Jogender

    2005-01-01

    Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.

  8. Highly flexible transparent and conductive ZnS/Ag/ZnS multilayer films prepared by ion beam assisted deposition

    Science.gov (United States)

    Yu, Zhinong; Leng, Jian; Xue, Wei; Zhang, Ting; Jiang, Yurong; Zhang, Jie; Zhang, Dongpu

    2012-01-01

    ZnS/Ag/ZnS (ZAZ) multilayer films were prepared on polyethene terephthalate (PET) by ion beam assisted deposition at room temperature. The structural, optical and electrical characteristics of ZAZ multilayers dependent on the thickness of silver layer were investigated. The ZAZ multilayers exhibit a low sheet resistance of about 10 Ω/sq., a high transmittance of 92.1%, and the improved resistance stabilities when subjected to bending. When the inserted Ag thickness is over 12 nm, the ZAZ multilayers show good resistance stabilities due to the existence of a ductile Ag metal layer. The results suggest that ZAZ film has better optoelectrical and anti-deflection characteristics than conventional indium tin oxide (ITO) single layer.

  9. Binary conductive network for construction of Si/Ag nanowires/rGO integrated composite film by vacuum-filtration method and their application for lithium ion batteries

    International Nuclear Information System (INIS)

    Tang, H.; Xia, X.H.; Zhang, Y.J.; Tong, Y.Y.; Wang, X.L.; Gu, C.D.; Tu, J.P.

    2015-01-01

    Construction of high-capacity anode is highly important for the development of next-generation high-performance lithium ion batteries (LIBs). Herein we fabricate Si/Ag nanowires/reduced graphene oxide (Si/Ag NWs/rGO) integrated composite film by introducing binary conductive networks (Ag NWs and rGO) into Si active materials with the help of a facile vacuum-filtration method. Active Si nanoparticles are homogeneously encapsulated by binary Ag NWs-rGO conductive network, in which Ag NWs are interwoven among the rGO sheets. The electrochemical properties of the integrated Si/Ag NWs/rGO composite film are thoroughly characterized as anode of LIBs. Compared to the Si/rGO composite film, the integrated Si/Ag NWs/rGO composite film exhibits enhanced electrochemical performances with higher capacity, better high-rate capability and cycling stability (1269 mAh g"−"1 at 50 mA g"−"1 up to 50 cycles). The binary conductive network plays a positive role in the enhancement of performance due to its faster ion/electron transfer, and better anti-structure degradation caused by volume expansion during the cycling process.

  10. Conductive scanning probe microscopy of the semicontinuous gold film and its SERS enhancement toward two-step photo-induced charge transfer and effect of the supportive layer

    Science.gov (United States)

    Sinthiptharakoon, K.; Sapcharoenkun, C.; Nuntawong, N.; Duong, B.; Wutikhun, T.; Treetong, A.; Meemuk, B.; Kasamechonchung, P.; Klamchuen, A.

    2018-05-01

    The semicontinuous gold film, enabling various electronic applications including development of surface-enhanced Raman scattering (SERS) substrate, is investigated using conductive atomic force microscopy (CAFM) and Kelvin probe force microscopy (KPFM) to reveal and investigate local electronic characteristics potentially associated with SERS generation of the film material. Although the gold film fully covers the underlying silicon surface, CAFM results reveal that local conductivity of the film is not continuous with insulating nanoislands appearing throughout the surface due to incomplete film percolation. Our analysis also suggests the two-step photo-induced charge transfer (CT) play the dominant role in the enhancement of SERS intensity with strong contribution from free electrons of the silicon support. Silicon-to-gold charge transport is illustrated by KPFM results showing that Fermi level of the gold film is slightly inhomogeneous and far below the silicon conduction band. We propose that inhomogeneity of the film workfunction affecting chemical charge transfer between gold and Raman probe molecule is associated with the SERS intensity varying across the surface. These findings provide deeper understanding of charge transfer mechanism for SERS which can help in design and development of the semicontinuous gold film-based SERS substrate and other electronic applications.

  11. Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hideki [Hyogo Prefectural Institute of Technology, 3-1-12 Yukihira-cho, Suma-ku, Kobe 654-0037 (Japan); Nojiri, Yoshihiro [Kyushu University, Department of Mechanical Engineering Science, Faculty of Engineering, Motooka 744, Nishi-ku, Fukuoka 819-0935 (Japan); Tanase, Shigeo [National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2008-11-30

    Enhancement of the ionic conductivity of lanthanum silicate-based apatites is examined with emphasis on optimizing the La composition and the Mg doping level at the same time. La{sub 10}Si{sub 5.8}Mg{sub 0.2}O{sub 26.8} and La{sub 9.8}Si{sub 5.7}Mg{sub 0.3}O{sub 26.4} show the highest level of the ionic conductivities among apatite silicates, 8.8 and 7.4 x 10{sup -} {sup 2} S cm{sup -} {sup 1} at 800 C, respectively, with a very low level of activation energy (0.42-0.43 eV). Their conductivities are higher than yttria stabilized zirconia (YSZ) below 900 C and even comparable to Sr and Mg doped lanthanum gallate (LSGM) below 550 C. A solid oxide fuel cell using La{sub 9.8}Si{sub 5.7}Mg{sub 0.3}O{sub 26.4} as an electrolyte with Ni-ceria cermet anode and Sr doped lanthanum cobaltite cathode exhibits a remarkable improvement in power generation compared to previous data using Pt electrodes. Structural investigation by the Rietveld analysis on the powder X-ray diffraction pattern shows significant enlargement of the bottleneck triangle sizes of the conduction channel with the Mg doping. (author)

  12. Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem?

    NARCIS (Netherlands)

    Jansen, S.; Gortan, E.; Lens, F.; Assunta Lo Gullo, M.; Salleo, S.; Scholtz, A.; Stein, A.; Trifilò, P.; Nardini, A.

    2011-01-01

    • The hydraulic conductance of angiosperm xylem has been suggested to vary with changes in sap solute concentrations because of intervessel pit properties. • The magnitude of the ‘ionic effect’ was linked with vessel and pit dimensions in 20 angiosperm species covering 13 families including six

  13. Solid ion-conducting material, its use, and method for its manufacture. Festes Ionenleitermaterial, seine Verwendung und Verfahren zu dessen Herstellung

    Energy Technology Data Exchange (ETDEWEB)

    Wichelhaus, W; Weppner, W; Hartwig, P

    1984-04-19

    The invention concerns a solid ion conducting material for a battery. Lithium nitride and lithium halogen compounds are mixed in the required mol ratio under an inert gas, compressed and the compressed substance is quickly heated in a nitrogen atmosphere to 460 to 550 deg C, and then tempered at 350 to 450 deg C until the reaction is finished. The lithium halogen compound and lithium metal can also be mixed in the required mol ratio and heated under nitrogen. Here the required temperature is 150 to 500 deg C. The lithium nitride halogen compouhnds exist as crystals. They are suitable for use as the electrolyte in batteries.

  14. Versatile Coating of Lithium Conductive Li2TiF6 on Over-lithiated Layered Oxide in Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Choi, Wonchang; Benayard, Anass; Park, Jin-Hwan; Park, Junho; Doo, Seok-Gwang; Mun, Junyoung

    2014-01-01

    Highlights: • Li 2 TiF 6 coating was designed to grow surface lithium conductivity and stability. • We conducted an easy and versatile Li 2 TiF 6 lithium conductive coating on cathode. • The coating was performed very simply by ambient-temperature co-precipitation. • After the coating, rate capability, cycleability and thermal stability improved. - Abstract: We demonstrate an easy and versatile approach to modify a cathode-surface with a highly lithium–ion conductive layer by coating it with Li 2 TiF 6 . The thin and homogeneous Li 2 TiF 6 coating is introduced onto an over-lithiated layered oxide (OLO, namely Li 1.17 Ni 0.17 Co 0.1 Mn 0.56 O 2 ) surface via simple co-precipitation at ambient temperature by using Li 2 CO 3 and H 2 TiF 6 aqueous solutions. The lithium–conductive fluoride coating is expected to effectively suppress the undesired electrochemical and thermal interfacial reactions involving the OLO, which is critical in improving cycle performance and thermal stability. After Li 2 TiF 6 surface modification, the coated OLO materials showed high rate capability as well as long cyclability and improved thermal stability. The crystalline structure and surface microstructure of the prepared OLOs were investigated by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. Ultimately, the performances of the assembled lithium ion batteries were thoroughly investigated by electrochemical methods and thermal analysis

  15. Glassy carbon electrode modified by conductive polyaniline coating for determination of trace lead and cadmium ions in acetate buffer solution

    International Nuclear Information System (INIS)

    Wang Zhaomeng; Liu Erjia; Zhao Xing

    2011-01-01

    Polyaniline (PANI) coatings were electrodeposited on the surfaces of glassy carbon electrodes (GCEs) to form new electrodes, i.e. PANI/GCEs. It was found that with increased deposition time, the PANI coatings became more compact while the charge transfer resistance of the coatings became higher. The PANI/GCEs were used to detect Cd 2+ and Pb 2+ ions contained in 0.1 M acetate buffer solutions using square wave anodic stripping voltammetry (SWASV). It was found that the PANI/GCE had a highest anodic stripping peak current in a solution of pH 5.3. The study of the cleaning performance of the PANI/GCEs indicated that there were less remaining metals on the surfaces of the PANI/GCEs compared to the bare GCEs after cleaning at a potential of 0.4 V, which was probably due to that the PANI coatings could effectively prevent the deposition of the metals into the surface defects of the GCEs. The PANI coatings could also reduce the passivation effect of the GCEs, thus improving the repeatability of the electrodes.

  16. Highly Conductive In-SnO2/RGO Nano-Heterostructures with Improved Lithium-Ion Battery Performance

    Science.gov (United States)

    Liu, Ying; Palmieri, Alessandro; He, Junkai; Meng, Yongtao; Beauregard, Nicole; Suib, Steven L.; Mustain, William E.

    2016-01-01

    The increasing demand of emerging technologies for high energy density electrochemical storage has led many researchers to look for alternative anode materials to graphite. The most promising conversion and alloying materials do not yet possess acceptable cycle life or rate capability. In this work, we use tin oxide, SnO2, as a representative anode material to explore the influence of graphene incorporation and In-doping to increase the electronic conductivity and concomitantly improve capacity retention and cycle life. It was found that the incorporation of In into SnO2 reduces the charge transfer resistance during cycling, prolonging life. It is also hypothesized that the increased conductivity allows the tin oxide conversion and alloying reactions to both be reversible, leading to very high capacity near 1200 mAh/g. Finally, the electrodes show excellent rate capability with a capacity of over 200 mAh/g at 10C. PMID:27167615

  17. Analysis of packing microstructure and wall effects in a narrow-bore ultrahigh pressure liquid chromatography column using focused ion-beam scanning electron microscopy.

    Science.gov (United States)

    Reising, Arved E; Schlabach, Sabine; Baranau, Vasili; Stoeckel, Daniela; Tallarek, Ulrich

    2017-09-01

    Column wall effects are well recognized as major limiting factor in achieving high separation efficiency in HPLC. This is especially important for modern analytical columns packed with small particles, where wall effects dominate the band broadening. Detailed knowledge about the packing microstructure of packed analytical columns has so far not been acquired. Here, we present the first three-dimensional reconstruction protocol for these columns utilizing focused ion-beam scanning electron microscopy (FIB-SEM) on a commercial 2.1mm inner diameter×50mm length narrow-bore analytical column packed with 1.7μm bridged-ethyl hybrid silica particles. Two sections from the packed bed are chosen for reconstruction by FIB-SEM: one from the bulk packing region of the column and one from its critical wall region. This allows quantification of structural differences between the wall region and the center of the bed due to effects induced by the hard, confining column wall. Consequences of these effects on local flow velocity in the column are analyzed with flow simulations utilizing the lattice-Boltzmann method. The reconstructions of the bed structures reveal significant structural differences in the wall region (extending radially over approximately 62 particle diameters) compared to the center of the column. It includes the local reduction of the external porosity by up to 10% and an increase of the mean particle diameter by up to 3%, resulting in a decrease of the local flow velocity by up to 23%. In addition, four (more ordered) layers of particles in the direct vicinity of the column wall induce local velocity fluctuations by up to a factor of three regarding the involved velocity amplitudes. These observations highlight the impact of radial variations in packing microstructure on band migration and column performance. This knowledge on morphological peculiarities of column wall effects helps guiding us towards further optimization of the packing process for analytical

  18. SU-C-303-06: Treatment Planning Study for Non-Invasive Cardiac Arrhythmia Ablation with Scanned Carbon Ions in An Animal Model

    International Nuclear Information System (INIS)

    Eichhorn, A; Constantinescu, A; Prall, M; Kaderka, R; Durante, M; Graeff, C; Lehmann, H I; Takami, M; Packer, D L; Lugenbiel, P; Thomas, D; Richter, D; Bert, C

    2015-01-01

    Purpose: Scanned carbon ion beams might offer a non-invasive alternative treatment for cardiac arrhythmia, which are a major health-burden. We studied the feasibility of this procedure in an animal model. The underlying treatment planning and motion mitigation strategies will be presented. Methods: The study was carried out in 15 pigs, randomly distributed to 3 target groups: atrioventricular node (AVN, 8 animals with 25, 40, and 55 Gy target dose), left ventricular free-wall (LV, 4 animals with 40 Gy) and superior pulmonary vein (SPV, 3 animals with 40 Gy). Breathing motion was suppressed by repeated enforced breathholds at end exhale. Cardiac motion was mitigated by an inhomogeneous rescanning scheme with up to 15 rescans. The treatment planning was performed using the GSI in-house software TRiP4D on cardiac-gated 4DCTs, applying a range-considering ITV based on an extended CTV. For AVN and SPV isotropic 5 mm margins were applied to the CTV, while for the LV 2mm+2% range margins were used. The opposing fields for AVN and LV targets were optimized independently (SFUD), while SPV treatments were optimized as IMPT deliveries, including dose restrictions to the radiosensitive AVN. Results: Median value of D 95 over all rescanning simulations was 99.1% (AVN), 98.0% (SPV) and 98.3% (LV) for the CTV and 94.7% (AVN) and 92.7% (SPV) for the PTV, respectively. The median D 5 -D 95 was improved with rescanning compared to unmitigated delivery from 13.3 to 6.5% (CTV) and from 23.4 to 11.6% (PTV). ICRP dose limits for aorta, trachea, esophagus and skin were respected. The maximal dose in the coronary arteries was limited to 30 Gy. Conclusion: We demonstrated the feasibility of a homogeneous dose delivery to different cardiac structures in a porcine model using a time-optimized inhomogeneous rescanning scheme. The presented treatment planning strategies were applied in a pig study with the analysis ongoing. Funding: This work was supported in part by the Helmholtz Association

  19. SU-C-303-06: Treatment Planning Study for Non-Invasive Cardiac Arrhythmia Ablation with Scanned Carbon Ions in An Animal Model

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, A; Constantinescu, A; Prall, M; Kaderka, R; Durante, M; Graeff, C [GSI Helmholtz Center, Darmstadt, DE (Germany); Lehmann, H I; Takami, M; Packer, D L [Mayo Clinic, Rochester, Minnesota (United States); Lugenbiel, P; Thomas, D [University of Heidelberg, Heidelberg, DE (Germany); Richter, D; Bert, C [University Clinic Erlangen, Erlagen, DE (Germany)

    2015-06-15

    Purpose: Scanned carbon ion beams might offer a non-invasive alternative treatment for cardiac arrhythmia, which are a major health-burden. We studied the feasibility of this procedure in an animal model. The underlying treatment planning and motion mitigation strategies will be presented. Methods: The study was carried out in 15 pigs, randomly distributed to 3 target groups: atrioventricular node (AVN, 8 animals with 25, 40, and 55 Gy target dose), left ventricular free-wall (LV, 4 animals with 40 Gy) and superior pulmonary vein (SPV, 3 animals with 40 Gy). Breathing motion was suppressed by repeated enforced breathholds at end exhale. Cardiac motion was mitigated by an inhomogeneous rescanning scheme with up to 15 rescans. The treatment planning was performed using the GSI in-house software TRiP4D on cardiac-gated 4DCTs, applying a range-considering ITV based on an extended CTV. For AVN and SPV isotropic 5 mm margins were applied to the CTV, while for the LV 2mm+2% range margins were used. The opposing fields for AVN and LV targets were optimized independently (SFUD), while SPV treatments were optimized as IMPT deliveries, including dose restrictions to the radiosensitive AVN. Results: Median value of D{sub 95} over all rescanning simulations was 99.1% (AVN), 98.0% (SPV) and 98.3% (LV) for the CTV and 94.7% (AVN) and 92.7% (SPV) for the PTV, respectively. The median D{sub 5}-D{sub 95} was improved with rescanning compared to unmitigated delivery from 13.3 to 6.5% (CTV) and from 23.4 to 11.6% (PTV). ICRP dose limits for aorta, trachea, esophagus and skin were respected. The maximal dose in the coronary arteries was limited to 30 Gy. Conclusion: We demonstrated the feasibility of a homogeneous dose delivery to different cardiac structures in a porcine model using a time-optimized inhomogeneous rescanning scheme. The presented treatment planning strategies were applied in a pig study with the analysis ongoing. Funding: This work was supported in part by the

  20. Global Profiling and Novel Structure Discovery Using Multiple Neutral Loss/Precursor Ion Scanning Combined with Substructure Recognition and Statistical Analysis (MNPSS): Characterization of Terpene-Conjugated Curcuminoids in Curcuma longa as a Case Study.

    Science.gov (United States)

    Qiao, Xue; Lin, Xiong-hao; Ji, Shuai; Zhang, Zheng-xiang; Bo, Tao; Guo, De-an; Ye, Min

    2016-01-05

    To fully understand the chemical diversity of an herbal medicine is challenging. In this work, we describe a new approach to globally profile and discover novel compounds from an herbal extract using multiple neutral loss/precursor ion scanning combined with substructure recognition and statistical analysis. Turmeric (the rhizomes of Curcuma longa L.) was used as an example. This approach consists of three steps: (i) multiple neutral loss/precursor ion scanning to obtain substructure information; (ii) targeted identification of new compounds by extracted ion current and substructure recognition; and (iii) untargeted identification using total ion current and multivariate statistical analysis to discover novel structures. Using this approach, 846 terpecurcumins (terpene-conjugated curcuminoids) were discovered from turmeric, including a number of potentially novel compounds. Furthermore, two unprecedented compounds (terpecurcumins X and