WorldWideScience

Sample records for scanners image

  1. Biomedical imaging and sensing using flatbed scanners.

    Science.gov (United States)

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-09-07

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600-700 cm(2)) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings.

  2. Biomedical Imaging and Sensing using Flatbed Scanners

    Science.gov (United States)

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-01-01

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600–700 cm2) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings. PMID:24965011

  3. Improved Scanners for Microscopic Hyperspectral Imaging

    Science.gov (United States)

    Mao, Chengye

    2009-01-01

    Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version

  4. In vivo cellular imaging with microscopes enabled by MEMS scanners

    Science.gov (United States)

    Ra, Hyejun

    High-resolution optical imaging plays an important role in medical diagnosis and biomedical research. Confocal microscopy is a widely used imaging method for obtaining cellular and sub-cellular images of biological tissue in reflectance and fluorescence modes. Its characteristic optical sectioning capability also enables three-dimensional (3-D) image reconstruction. However, its use has mostly been limited to excised tissues due to the requirement of high numerical aperture (NA) lenses for cellular resolution. Microscope miniaturization can enable in vivo imaging to make possible early cancer diagnosis and biological studies in the innate environment. In this dissertation, microscope miniaturization for in vivo cellular imaging is presented. The dual-axes confocal (DAC) architecture overcomes limitations of the conventional single-axis confocal (SAC) architecture to allow for miniaturization with high resolution. A microelectromechanical systems (MEMS) scanner is the central imaging component that is key in miniaturization of the DAC architecture. The design, fabrication, and characterization of the two-dimensional (2-D) MEMS scanner are presented. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer and is actuated by self-aligned vertical electrostatic combdrives. The imaging performance of the MEMS scanner in a DAC configuration is shown in a breadboard microscope setup, where reflectance and fluorescence imaging is demonstrated. Then, the MEMS scanner is integrated into a miniature DAC microscope. The whole imaging system is integrated into a portable unit for research in small animal models of human biology and disease. In vivo 3-D imaging is demonstrated on mouse skin models showing gene transfer and siRNA silencing. The siRNA silencing process is sequentially imaged in one mouse over time.

  5. Photoacoustic imaging using an 8-beam Fabry-Perot scanner

    Science.gov (United States)

    Huynh, Nam; Ogunlade, Olumide; Zhang, Edward; Cox, Ben; Beard, Paul

    2016-03-01

    The planar Fabry Perot (FP) photoacoustic scanner has been shown to provide exquisite high resolution 3D images of soft tissue structures in vivo to depths up to approximately 10mm. However a significant limitation of current embodiments of the concept is low image acquisition speed. To increase acquisition speed, a novel multi-beam scanner architecture has been developed. This enables a line of equally spaced 8 interrogation beams to be scanned simultaneously across the FP sensor and the photoacoustic signals detected in parallel. In addition, an excitation laser operating at 200Hz was used. The combination of parallelising the detection and the high pulse repetition frequency (PRF) of the excitation laser has enabled dramatic reductions in image acquisition time to be achieved. A 3D image can now be acquired in 10 seconds and 2D images at video rates are now possible.

  6. Novel Multiwavelength Microscopic Scanner for Mouse Imaging

    Directory of Open Access Journals (Sweden)

    Herlen Alencar

    2005-11-01

    Full Text Available Real-time in vivo imaging of molecular targets at (subcellular resolution is essential in better understanding complex biology. Confocal microscopy and multiphoton microscopy have been used in the past to achieve this goal, but their true capabilities have often been limited by bulky optics and difficult experimental set-ups requiring exteriorized organs. We describe here the development and validation of a unique nearinfrared laser scanning microscope system that uses novel optics with a millimeter footprint. Optimized for use in the far red and near-infrared ranges, the system allows an imaging depth that extends up to 500 Mm from a 1.3-mm-diameter stick objective, which is up to 2 cm in length. We show exceptionally high spatial, temporal, and multiwavelength resolutions of the system and show that it can be applied to virtually any internal organ through a keyhole surgical access. We demonstrate that, when combined with novel far red imaging probes, it is possible to image the cellular details of many organs and disease processes. The new optics, coupled with the use of near-infrared probes, should prove immensely valuable for in vivo cancer imaging.

  7. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner.

    Science.gov (United States)

    Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R; Badawi, Ramsey D; Qi, Jinyi

    2017-03-21

    The EXPLORER project aims to build a 2 meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20 min whole-body PET scan with an injection of 25 MBq 18 F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner.

  8. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner

    Science.gov (United States)

    Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R.; Badawi, Ramsey D.; Qi, Jinyi

    2017-03-01

    The EXPLORER project aims to build a 2 meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20 min whole-body PET scan with an injection of 25 MBq 18F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner.

  9. Computed tomography image source identification by discriminating CT-scanner image reconstruction process.

    Science.gov (United States)

    Duan, Y; Coatrieux, G; Shu, H Z

    2015-08-01

    In this paper, we focus on the identification of the Computed Tomography (CT) scanner that has produced a CT image. To do so, we propose to discriminate CT-Scanner systems based on their reconstruction process, the footprint or the signature of which can be established based on the way they modify the intrinsic sensor noise of X-ray detectors. After having analyzed how the sensor noise is modified in the reconstruction process, we define a set of image features so as to serve as CT acquisition system footprint. These features are used to train a SVM based classifier. Experiments conducted on images issued from 15 different CT-Scanner models of 4 distinct manufacturers show it is possible to identify the origin of one CT image with high accuracy.

  10. Imaging mouse cerebellum with serial optical coherence scanner (Conference Presentation)

    Science.gov (United States)

    Liu, Chao J.; Williams, Kristen; Orr, Harry; Taner, Akkin

    2017-02-01

    We present the serial optical coherence scanner (SOCS), which consists of a polarization sensitive optical coherence tomography and a vibratome with associated controls for serial imaging, to visualize the cerebellum and adjacent brainstem of mouse. The cerebellar cortical layers and white matter are distinguished by using intrinsic optical contrasts. Images from serial scans reveal the large-scale anatomy in detail and map the nerve fiber pathways in the cerebellum and adjacent brainstem. The optical system, which has 5.5 μm axial resolution, utilizes a scan lens or a water-immersion microscope objective resulting in 10 μm or 4 μm lateral resolution, respectively. The large-scale brain imaging at high resolution requires an efficient way to collect large datasets. It is important to improve the SOCS system to deal with large-scale and large number of samples in a reasonable time. The imaging and slicing procedure for a section took about 4 minutes due to a low speed of the vibratome blade to maintain slicing quality. SOCS has potential to investigate pathological changes and monitor the effects of therapeutic drugs in cerebellar diseases such as spinocerebellar ataxia 1 (SCA1). The SCA1 is a neurodegenerative disease characterized by atrophy and eventual loss of Purkinje cells from the cerebellar cortex, and the optical contrasts provided by SOCS is being evaluated for biomarkers of the disease.

  11. A High Spatial Resolution CT Scanner for Small Animal Imaging

    Science.gov (United States)

    Cicalini, E.; Baldazzi, G.; Belcari, N.; Del Guerra, A.; Gombia, M.; Motta, A.; Panetta, D.

    2006-01-01

    We have built a micro-CT system that will be integrated with a small animal PET scanner. The components are: an X-ray source with a peak voltage of up to 60 kV, a power of 10 W and a focal spot size of 30 μm; a CCD coupled to CsI(Tl) scintillator, subdivided into 128×3072 square pixels, each with a size of 48 μm; stepping motors for the sample roto-translation; a PCI acquisition board; electronic boards to control and read-out the CCD. A program in Lab VIEW controls the data acquisition. Reconstruction algorithms have been implemented for fan-beam and cone-beam configurations. Images of a bar pattern have been acquired to evaluate the detector performance: the CTF curve has been extracted from the data, obtaining a value of 10 % at 5 lp/mm and about 3 % at 10 lp/mm. Tomographic acquisitions have been performed with a test phantom consisting of a Plexiglas cylinder, 3 cm in diameter, with holes ranging from 3 mm down to 0.6 mm in diameter, filled with different materials. The contrast resolution has been extracted from the reconstructed images: a value of 6 % (in water) for a cubic voxel size of 80 μm has been obtained.

  12. Evaluation of scanners for C-scan imaging in nondestructive inspection of aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Gieske, J.H.

    1994-04-01

    The goal of this project was to produce a document that contains information on the usability and performance of commercially available, fieldable, and portable scanner systems as they apply to aircraft NDI inspections. In particular, the scanners are used to generate images of eddy current, ultrasonic, or bond tester inspection data. The scanner designs include manual scanners, semiautomated scanners, and fully automated scanners. A brief description of the functionality of each scanner type, a sketch, and a fist of the companies that support the particular design are provided. Vendors of each scanner type provided hands-on demonstrations of their equipment on real aircraft samples in the FAA Aging Aircraft Nondestructive Inspection Validation Center (AANC) in Albuquerque, NM. From evaluations recorded during the demonstrations, a matrix of scanner features and factors and ranking of the capabilities and limitations of the design, portability, articulation, performance, usability, and computer hardware/software was constructed to provide a quick reference for comparing the different scanner types. Illustrations of C-scan images obtained during the demonstration are shown.

  13. Does the Use of Body Scanners Discriminate Overweight Flight Passengers? The Effect of Body Scanners on Body Image

    Directory of Open Access Journals (Sweden)

    Magdalena Laib

    2016-06-01

    Full Text Available Whereas the introduction of body scanners at airports has been accompanied by critical voices raising concerns that body scanners might have a negative impact on different minority groups, it has not been investigated thus far whether they might also have negative impacts on the average flight passenger and if the provision of adequate information might attenuate such negative impacts. Using a pre/post-design the current study examines the effect of a body scan in a controlled laboratory setting on the explicit and implicit body image of normal-weight and overweight people as assessed by questionnaires and an Implicit Association Test. Half of the sample received an information sheet concerning body scanners before they were scanned. While there was a negative impact of the body scan on the implicit body image of overweight participants, there was a positive impact on their explicit body image. The negative effect of the body scan was unaffected by receiving information. This study demonstrates that body scans do not only have negative effects on certain minority groups but potentially on a large proportion of the general public which suggests a critical reconsideration of the control procedures at airports, the training of the airport staff who is in charge of these procedures and the information flight passengers get about these procedures.

  14. The 3D scanner prototype utilize object profile imaging using line laser and octave software

    Science.gov (United States)

    Nurdini, Mugi; Manunggal, Trikarsa Tirtadwipa; Samsi, Agus

    2016-11-01

    Three-dimensional scanner or 3D Scanner is a device to reconstruct the real object into digital form on a computer. 3D Scanner is a technology that is being developed, especially in developed countries, where the current 3D Scanner devices is the advanced version with a very expensive prices. This study is basically a simple prototype of 3D Scanner with a very low investment costs. 3D Scanner prototype device consists of a webcam, a rotating desk system controlled by a stepper motor and Arduino UNO, and a line laser. Objects that limit the research is the object with same radius from its center point (object pivot). Scanning is performed by using object profile imaging by line laser which is then captured by the camera and processed by a computer (image processing) using Octave software. On each image acquisition, the scanned object on a rotating desk rotated by a certain degree, so for one full turn multiple images of a number of existing side are finally obtained. Then, the profile of the entire images is extracted in order to obtain digital object dimension. Digital dimension is calibrated by length standard, called gage block. Overall dimensions are then digitally reconstructed into a three-dimensional object. Validation of the scanned object reconstruction of the original object dimensions expressed as a percentage error. Based on the results of data validation, horizontal dimension error is about 5% to 23% and vertical dimension error is about +/- 3%.

  15. A PC-controlled microwave tomographic scanner for breast imaging

    Science.gov (United States)

    Padhi, Shantanu; Howard, John; Fhager, A.; Bengtsson, Sebastian

    2011-01-01

    This article presents the design and development of a personal computer based controller for a microwave tomographic system for breast cancer detection. The system uses motorized, dual-polarized antennas and a custom-made GUI interface to control stepper motors, a wideband vector network analyzer (VNA) and to coordinate data acquisition and archival in a local MDSPlus database. Both copolar and cross-polar scattered field components can be measured directly. Experimental results are presented to validate the various functionalities of the scanner.

  16. Rock-type discrimination from ratioed infrared scanner images of Pisgah Crater, California.

    Science.gov (United States)

    Vincent, R. K.; Thomson, F. J.

    1972-01-01

    The radiances in two thermal infrared channels of an airborne scanner system were ratioed to produce images that recorded compositionally diagnostic emittance variations for several silicate rock types near Pisgah Crater, California. The images demonstrate that the ratio method is capable of enhancing emittance variations in the presence of temperature extremes that differ by no more than 25 C, with no temperature corrections.

  17. AN AUTOMATIC PROCEDURE FOR COMBINING DIGITAL IMAGES AND LASER SCANNER DATA

    Directory of Open Access Journals (Sweden)

    W. Moussa

    2012-07-01

    Full Text Available Besides improving both the geometry and the visual quality of the model, the integration of close-range photogrammetry and terrestrial laser scanning techniques directs at filling gaps in laser scanner point clouds to avoid modeling errors, reconstructing more details in higher resolution and recovering simple structures with less geometric details. Thus, within this paper a flexible approach for the automatic combination of digital images and laser scanner data is presented. Our approach comprises two methods for data fusion. The first method starts by a marker-free registration of digital images based on a point-based environment model (PEM of a scene which stores the 3D laser scanner point clouds associated with intensity and RGB values. The PEM allows the extraction of accurate control information for the direct computation of absolute camera orientations with redundant information by means of accurate space resection methods. In order to use the computed relations between the digital images and the laser scanner data, an extended Helmert (seven-parameter transformation is introduced and its parameters are estimated. Precedent to that, in the second method, the local relative orientation parameters of the camera images are calculated by means of an optimized Structure and Motion (SaM reconstruction method. Then, using the determined transformation parameters results in having absolute oriented images in relation to the laser scanner data. With the resulting absolute orientations we have employed robust dense image reconstruction algorithms to create oriented dense image point clouds, which are automatically combined with the laser scanner data to form a complete detailed representation of a scene. Examples of different data sets are shown and experimental results demonstrate the effectiveness of the presented procedures.

  18. Digital data storage of core image using high resolution full color core scanner; Kokaizodo full color scanner wo mochiita core image no digital ka

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, W.; Ujo, S.; Osato, K.; Takasugi, S. [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan)

    1996-05-01

    This paper reports on digitization of core images by using a new type core scanner system. This system consists of a core scanner unit (equipped with a CCD camera), a personal computer and ancillary devices. This is a modification of the old type system, with measurable core length made to 100 cm/3 scans, and resolution enhanced to 5100 pixels/m (1024 pixels/m in the old type). The camera was changed to that of a color specification, and the A/D conversion was improved to 24-bit full color. As a result of carrying out a detail reproduction test on digital images of this core scanner, it was found that objects can be identified at a level of about the size of pixels constituting the image in the case when the best contrast is obtained between the objects and the background, and that in an evaluation test on visibility of concaves and convexes on core surface, reproducibility is not very good in large concaves and convexes. 2 refs., 6 figs.

  19. Lensless high-resolution photoacoustic imaging scanner for in vivo skin imaging

    Science.gov (United States)

    Ida, Taiichiro; Iwazaki, Hideaki; Omuro, Toshiyuki; Kawaguchi, Yasushi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Sato, Shunichi

    2017-10-01

    We previously launched a high-resolution photoacoustic (PA) imaging scanner based on a unique lensless design for in vivo skin imaging. The design, imaging algorithm and characteristics of the system are described in this paper. Neither an optical lens nor an acoustic lens is used in the system. In the imaging head, four sensor elements are arranged quadrilaterally, and by checking the phase differences for PA waves detected with these four sensors, a set of PA signals only originating from a chromophore located on the sensor center axis is extracted for constructing an image. A phantom study using a carbon fiber showed a depth-independent horizontal resolution of 84.0 ± 3.5 µm, and the scan direction-dependent variation of PA signals was about ± 20%. We then performed imaging of vasculature phantoms: patterns of red ink lines with widths of 100 or 200 μm formed in an acrylic block co-polymer. The patterns were visualized with high contrast, showing the capability for imaging arterioles and venues in the skin. Vasculatures in rat burn models and healthy human skin were also clearly visualized in vivo.

  20. Weighting training images by maximizing distribution similarity for supervised segmentation across scanners

    DEFF Research Database (Denmark)

    van Opbroek, Annegreet; Vernooij, Meike W; Ikram, M.Arfan

    2015-01-01

    Many automatic segmentation methods are based on supervised machine learning. Such methods have proven to perform well, on the condition that they are trained on a sufficiently large manually labeled training set that is representative of the images to segment. However, due to differences between...... scanners, scanning parameters, and patients such a training set may be difficult to obtain. We present a transfer-learning approach to segmentation by multi-feature voxelwise classification. The presented method can be trained using a heterogeneous set of training images that may be obtained with different...... scanners than the target image. In our approach each training image is given a weight based on the distribution of its voxels in the feature space. These image weights are chosen as to minimize the difference between the weighted probability density function (PDF) of the voxels of the training images...

  1. Scanner image methodology (SIM) to measure dimensions of leaves ...

    African Journals Online (AJOL)

    In the image processing method, the color image was converted to gray scale over the green band and it was segmented using Otsu methodology. The noise produced was cleaned with a median filter. ... width and length were obtained and recorded. Key words: Leaf area, width, length, digital image analysis, segmentation.

  2. A Hybrid Soft-computing Method for Image Analysis of Digital Plantar Scanners

    OpenAIRE

    Razjouyan, Javad; Khayat, Omid; Siahi, Mehdi; Mansouri, Ali Alizadeh

    2013-01-01

    Digital foot scanners have been developed in recent years to yield anthropometrists digital image of insole with pressure distribution and anthropometric information. In this paper, a hybrid algorithm containing gray level spatial correlation (GLSC) histogram and Shanbag entropy is presented for analysis of scanned foot images. An evolutionary algorithm is also employed to find the optimum parameters of GLSC and transform function of the membership values. Resulting binary images as the thres...

  3. An estimation method of MR signal parameters for improved image reconstruction in unilateral scanner.

    Science.gov (United States)

    Bergman, Elad; Yeredor, Arie; Nevo, Uri

    2013-12-01

    Unilateral NMR devices are used in various applications including non-destructive testing and well logging, but are not used routinely for imaging. This is mainly due to the inhomogeneous magnetic field (B0) in these scanners. This inhomogeneity results in low sensitivity and further forces the use of the slow single point imaging scan scheme. Improving the measurement sensitivity is therefore an important factor as it can improve image quality and reduce imaging times. Short imaging times can facilitate the use of this affordable and portable technology for various imaging applications. This work presents a statistical signal-processing method, designed to fit the unique characteristics of imaging with a unilateral device. The method improves the imaging capabilities by improving the extraction of image information from the noisy data. This is done by the use of redundancy in the acquired MR signal and by the use of the noise characteristics. Both types of data were incorporated into a Weighted Least Squares estimation approach. The method performance was evaluated with a series of imaging acquisitions applied on phantoms. Images were extracted from each measurement with the proposed method and were compared to the conventional image reconstruction. All measurements showed a significant improvement in image quality based on the MSE criterion - with respect to gold standard reference images. An integration of this method with further improvements may lead to a prominent reduction in imaging times aiding the use of such scanners in imaging application. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A modified commercial scanner as an image plate for table-top optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Casado-Rojo, S; Lorenzana, H E; Baonza, V G

    2008-12-09

    A reliable, accurate, and inexpensive optical detector for table-top applications is described here. Based on a commercial high resolution office scanner coupled to a projection on plate, it enables a large image plate surface, allowing recording of large images without systematic errors associated to coupling optics' aberrations. Several tests on distance-dependent and steady interference patterns will be presented and discussed. The extension to other types of optical measurement by substituting the projection on plate is proposed.

  5. Characteristics of active and passive 2-D holographic scanner imaging systems for the middle infrared.

    Science.gov (United States)

    Ih, C S; Kopeika, N S; Ledet, E

    1980-06-15

    Holographic scanners are suggested for imaging in the 8-13-Mm spectral region. Advantages in refrigeration and reliability are pointed out. The narrow linewidth of received irradiance may limit passive systems to applications such as thermography, where multispectral imaging should be a useful diagnostic tool. Active systems, which do not suffer from this range limitation, offer inherent advantages with regard to resolution improvement via background discrimination and also with respect to countermeasures.

  6. Weighting training images by maximizing distribution similarity for supervised segmentation across scanners.

    Science.gov (United States)

    van Opbroek, Annegreet; Vernooij, Meike W; Ikram, M Arfan; de Bruijne, Marleen

    2015-08-01

    Many automatic segmentation methods are based on supervised machine learning. Such methods have proven to perform well, on the condition that they are trained on a sufficiently large manually labeled training set that is representative of the images to segment. However, due to differences between scanners, scanning parameters, and patients such a training set may be difficult to obtain. We present a transfer-learning approach to segmentation by multi-feature voxelwise classification. The presented method can be trained using a heterogeneous set of training images that may be obtained with different scanners than the target image. In our approach each training image is given a weight based on the distribution of its voxels in the feature space. These image weights are chosen as to minimize the difference between the weighted probability density function (PDF) of the voxels of the training images and the PDF of the voxels of the target image. The voxels and weights of the training images are then used to train a weighted classifier. We tested our method on three segmentation tasks: brain-tissue segmentation, skull stripping, and white-matter-lesion segmentation. For all three applications, the proposed weighted classifier significantly outperformed an unweighted classifier on all training images, reducing classification errors by up to 42%. For brain-tissue segmentation and skull stripping our method even significantly outperformed the traditional approach of training on representative training images from the same study as the target image. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Non-linear Imaging using an Experimental Synthetic Aperture Real Time Ultrasound Scanner

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    This paper presents the first non-linear B-mode image of a wire phantom using pulse inversion attained via an experimental synthetic aperture real-time ultrasound scanner (SARUS). The purpose of this study is to implement and validate non-linear imaging on SARUS for the further development of new...... non-linear techniques. This study presents non-linear and linear B-mode images attained via SARUS and an existing ultrasound system as well as a Field II simulation. The non-linear image shows an improved spatial resolution and lower full width half max and -20 dB resolution values compared to linear...

  8. Quantitative, Simultaneous PET/MRI for Intratumoral Imaging with an MRI-Compatible PET Scanner

    Science.gov (United States)

    Ng, Thomas S.C.; Bading, James R.; Park, Ryan; Sohi, Hargun; Procissi, Daniel; Colcher, David; Conti, Peter S.; Cherry, Simon R.; Raubitschek, Andrew A.; Jacobs, Russell E.

    2012-01-01

    Noninvasive methods are needed to explore the heterogeneous tumor microenvironment and its modulation by therapy. Hybrid PET/MRI systems are being developed for small-animal and clinical use. The advantage of these integrated systems depends on their ability to provide MR images that are spatially coincident with simultaneously acquired PET images, allowing combined functional MRI and PET studies of intratissue heterogeneity. Although much effort has been devoted to developing this new technology, the issue of quantitative and spatial fidelity of PET images from hybrid PET/MRI systems to the tissues imaged has received little attention. Here, we evaluated the ability of a first-generation, small-animal MRI-compatible PET scanner to accurately depict heterogeneous patterns of radiotracer uptake in tumors. Methods Quantitative imaging characteristics of the MRI-compatible PET (PET/MRI) scanner were evaluated with phantoms using calibration coefficients derived from a mouse-sized linearity phantom. PET performance was compared with a commercial small-animal PET system and autoradiography in tumor-bearing mice. Pixel and structure-based similarity metrics were used to evaluate image concordance among modalities. Feasibility of simultaneous PET/MRI functional imaging of tumors was explored by following 64Cu-labeled antibody uptake in relation to diffusion MRI using cooccurrence matrix analysis. Results The PET/MRI scanner showed stable and linear response. Activity concentration recovery values (measured and true activity concentration) calculated for 4-mm-diameter rods within linearity and uniform activity rod phantoms were near unity (0.97 ± 0.06 and 1.03 ± 0.03, respectively). Intratumoral uptake patterns for both 18F-FDG and a 64Cu-antibody acquired using the PET/MRI scanner and small-animal PET were highly correlated with autoradiography (r > 0.99) and with each other (r = 0.97 ± 0.01). On the basis of these data, we performed a preliminary study comparing

  9. A laser scanner for imaging fluorophore labeled molecules in electrophoretic gels

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, D.J.; Sutherland, J.C. [Brookhaven National Lab., Upton, NY (United States). Biology Dept.

    1995-08-01

    A laser scanner for imaging electrophoretic gels was constructed and tested. The scanner incorporates a green helium-neon (HeNe) laser (543.5nm wavelength) and can achieve a spatial resolution of 19{micro}m. The instrument can function in two modes : snap-shot and finish-line. In snapshot mode, all samples are electrophoresed for the same time and the gel is scanned after completion of electrophoresis, while in finish-line mode, fluorophore labeled samples are electrophoresed for a constant distance and the image is formed as the samples pass under the detector. The resolving power of the finish-line mode of imaging is found to be greater than that of the snapshot mode of imaging. This laser scanner is also compared with a Charge Coupled Device (CCD) camera and in terms of resolving power is found to be superior. Sensitivity of the instrument is presented in terms of the minimum amount of DNA that can be detected verses its molecular length.

  10. Modular Optoelectronic Multispectral Scanner (MOMS). Digital image storage

    Science.gov (United States)

    Hoffmann, M.; Listmann, H.; Meissner, D.

    1982-05-01

    An imaging instrument for remote sensing to be used on space platforms (Shuttle Pallet Satellite-SPAS, Spacelab, satellites) is presented. The mapping principle is based on electrical scanning with high resolution linear photoarrays (push broom principle, charge coupled devices technology). The scanning is done in several pixel-coincide spectral channels between 0.45 and 1.05 microns by combining several similar modules. Almost any line length can be obtained using the double-lens principle (at present 6912 pixels). The signals are real-time corrected for the different dark signals, for the different sensitivities of the single elements, and for each lens transmittance. The digitized and corrected data are stored on a high density digital recorder.

  11. Method for reducing Newton's rings pattern in the scanned image reproduced with film scanners

    Science.gov (United States)

    Lu, Ming-feng; Ni, Guo-qiang; Wang, Tao; Zhang, Feng; Tao, Ran; Yuan, Jun

    2013-12-01

    Newton's rings pattern always blurs the scanned image when scanning a film using a film scanner. Such phenomenon is a kind of equal thickness interference, which is caused by the air layer between the film and the glass of the scanner. A lot of methods were proposed to prevent the interference, such as film holder, anti-Newton's rings glass and emulsion direct imaging technology, etc. Those methods are expensive and lack of flexibility. In this paper, Newton's rings pattern is proved to be a 2-D chirp signal. Then, the fractional Fourier transform, which can be understood as the chirp-based decomposition, is introduced to process Newton's rings pattern. A digital filtering method in the fractional Fourier domain is proposed to reduce the Newton's rings pattern. The effectiveness of the proposed method is verified by simulation. Compared with the traditional optical method, the proposed method is more flexible and low cost.

  12. Ultra-compact imaging plate scanner module using a MEMS mirror and specially designed MPPC

    Science.gov (United States)

    Miyamoto, Yuichi; Sasaki, Kensuke; Takasaka, Masaomi; Fujimoto, Masatoshi; Yamamoto, Koei

    2017-02-01

    Computed radiography (CR), which is one of the most useful methods for dental imaging and nondestructive testing, uses a phosphor imaging plate (IP) because it is flexible, reusable, and inexpensive. Conventional IP scanners utilize a galvanometer or a polygon mirror as a scanning device and a photomultiplier as an optical sensor. Microelectromechanical systems (MEMS) technology currently provides silicon-based devices and has the potential to replace such discrete devices and sensors. Using these devices, we constructed an ultra-compact IP scanner. Our extremely compact plate scanner utilizes a module that is composed of a one-dimensional MEMS mirror and a long multi-pixel photon counter (MPPC) that is combined with a specially designed wavelength filter and a rod lens. The MEMS mirror, which is a non-resonant electromagnetic type, is 2.6 mm in diameter with a recommended optical scanning angle up to +/-15°. The CR's wide dynamic range is maintained using a newly developed MPPC. The MPPC is a sort of silicon photomultiplier and is a high-sensitivity photon-counting device. To achieve such a wide dynamic range, we developed a long MPPC that has over 10,000 pixels. For size reduction and high optical efficiency, we set the MPPC close to an IP across the rod lens. To prevent the MPPC from detecting excitation light, which is much more intense than photo-stimulated light, we produced a sharp-cut wavelength filter that has a wide angle (+/-60°) of tolerance. We evaluated our constructed scanner module through gray chart and resolution chart images.

  13. Neonatal imaging using an on-site small footprint MR scanner

    Energy Technology Data Exchange (ETDEWEB)

    Merhar, Stephanie L. [Perinatal Institute, Division of Neonatology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Tkach, Jean A.; Dumoulin, Charles L. [Cincinnati Children' s Hospital Medical Center, Imaging Research Center, Cincinnati, OH (United States); Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Woods, Jason C. [Cincinnati Children' s Hospital Medical Center, Imaging Research Center, Cincinnati, OH (United States); Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Cincinnati Children' s Hospital Medical Center, Division of Pulmonary Medicine, Cincinnati, OH (United States); South, Andrew P.; Wiland, Emily L. [Children' s Hospital Medical Center of Akron, Division of Neonatology, Akron, OH (United States); Rattan, Mantosh S.; Kline-Fath, Beth M. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2017-07-15

    With its soft-tissue definition, multiplanar capabilities and advanced imaging techniques, magnetic resonance imaging (MRI) for neonatal care can provide better understanding of pathology, allowing for improved care and counseling to families. However, MR imaging in neonates is often difficult due to patient instability and the complex support necessary for survival. In our institution, we have installed a small footprint magnet in the neonatal intensive care unit (NICU) to minimize patient risks and provide the ability to perform MR imaging safely in this population. With this system, we have been able to provide more information with regard to central nervous system disorders, abdominal pathology, and pulmonary and airway abnormalities, and have performed postmortem imaging as an alternative or supplement to pathological autopsy. In our experience, an MR scanner situated within the NICU has allowed for safer and more expedited imaging of this vulnerable population. (orig.)

  14. Simultaneous grayscale and subharmonic ultrasound imaging on a modified commercial scanner.

    Science.gov (United States)

    Eisenbrey, J R; Dave, J K; Halldorsdottir, V G; Merton, D A; Machado, P; Liu, J B; Miller, C; Gonzalez, J M; Park, S; Dianis, S; Chalek, C L; Thomenius, K E; Brown, D B; Navarro, V; Forsberg, F

    2011-12-01

    To demonstrate the feasibility of simultaneous dual fundamental grayscale and subharmonic imaging on a modified commercial scanner. The ability to generate signals at half the insonation frequency is exclusive to ultrasound contrast agents (UCA). Thus, subharmonic imaging (SHI; transmitting at f(0) and receiving at f(0)/2) provides improved visualization of UCA within the vasculature via suppression of the surrounding tissue echoes. While this capability has proven useful in a variety of clinical applications, the SHI suppression of surrounding tissue landmarks (which are needed for sonographic navigation) also limits it use as a primary imaging modality. In this paper we present results using a commercial ultrasound scanner modified to allow imaging in both grayscale (f(0)=4.0 MHz) and SHI (f(0)=2.5 MHz, f(0)/2=1.25 MHz) modes in real time. A Logiq 9 ultrasound scanner (GE Healthcare, Milwaukee, WI) with a 4C curvilinear probe was modified to provide this capability. Four commercially available UCA (Definity, Lantheus Medical Imaging, North Billerica, MA; Optison, GE Healthcare, Princeton, NJ; SonoVue, Bracco Imaging, Milan, Italy; and Sonazoid, GE Healthcare, Oslo, Norway) were all investigated in vitro over an acoustic output range of 3.34 MPa. In vivo the subharmonic response of Sonazoid was investigated in the portal veins of four canines (open abdominal cavity) and four patients with suspected portal hypertension. In vitro, the four UCA showed an average maximum subharmonic amplitude of 44.1±5.4 dB above the noise floor with a maximum subharmonic amplitude of 48.6±1.6 dB provided by Sonazoid. The average in vivo maximum signal above the noise floor from Sonazoid was 20.8±2.3 dB in canines and 33.9±5.2 dB in humans. Subharmonic amplitude as a function of acoustic output in both groups matched the S-curve behavior of the agent observed in vitro. The dual grayscale imaging provided easier sonographic navigation, while the degree of tissue suppression in SHI

  15. Frequency Mixing Magnetic Detection Scanner for Imaging Magnetic Particles in Planar Samples.

    Science.gov (United States)

    Hong, Hyobong; Lim, Eul-Gyoon; Jeong, Jae-Chan; Chang, Jiho; Shin, Sung-Woong; Krause, Hans-Joachim

    2016-06-09

    The setup of a planar Frequency Mixing Magnetic Detection (p-FMMD) scanner for performing Magnetic Particles Imaging (MPI) of flat samples is presented. It consists of two magnetic measurement heads on both sides of the sample mounted on the legs of a u-shaped support. The sample is locally exposed to a magnetic excitation field consisting of two distinct frequencies, a stronger component at about 77 kHz and a weaker field at 61 Hz. The nonlinear magnetization characteristics of superparamagnetic particles give rise to the generation of intermodulation products. A selected sum-frequency component of the high and low frequency magnetic field incident on the magnetically nonlinear particles is recorded by a demodulation electronics. In contrast to a conventional MPI scanner, p-FMMD does not require the application of a strong magnetic field to the whole sample because mixing of the two frequencies occurs locally. Thus, the lateral dimensions of the sample are just limited by the scanning range and the supports. However, the sample height determines the spatial resolution. In the current setup it is limited to 2 mm. As examples, we present two 20 mm × 25 mm p-FMMD images acquired from samples with 1 µm diameter maghemite particles in silanol matrix and with 50 nm magnetite particles in aminosilane matrix. The results show that the novel MPI scanner can be applied for analysis of thin biological samples and for medical diagnostic purposes.

  16. Ultrasonic Shear Wave Elasticity Imaging (SWEI) Sequencing and Data Processing Using a Verasonics Research Scanner.

    Science.gov (United States)

    Deng, Yufeng; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R

    2016-10-03

    Ultrasound elasticity imaging has been developed over the last decade to estimate tissue stiffness. Shear wave elasticity imaging (SWEI) quantifies tissue stiffness by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work presents the sequencing and data processing protocols of SWEI using a Verasonics system. The selection of the sequence parameters in a Verasonics programming script is discussed in detail. The data processing pipeline to calculate group shear wave speed (SWS), including tissue motion estimation, data filtering, and SWS estimation is demonstrated. In addition, the procedures for calibration of beam position, scanner timing, and transducer face heating are provided to avoid SWS measurement bias and transducer damage.

  17. Ultrasonic Shear Wave Elasticity Imaging Sequencing and Data Processing Using a Verasonics Research Scanner.

    Science.gov (United States)

    Deng, Yufeng; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R

    2017-01-01

    Ultrasound elasticity imaging has been developed over the last decade to estimate tissue stiffness. Shear wave elasticity imaging (SWEI) quantifies tissue stiffness by measuring the speed of propagating shear waves following acoustic radiation force excitation. This paper presents the sequencing and data processing protocols of SWEI using a Verasonics system. The selection of the sequence parameters in a Verasonics programming script is discussed in detail. The data processing pipeline to calculate group shear wave speed (SWS), including tissue motion estimation, data filtering, and SWS estimation, is demonstrated. In addition, the procedures for calibration of beam position, scanner timing, and transducer face heating are provided to avoid SWS measurement bias and transducer damage.

  18. X-ray micro-CT scanner for small animal imaging based on Timepix detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Dudak, Jan, E-mail: jan.dudak@utef.cvut.cz [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Faculty of Biomedical Engineering, Czech Technical University in Prague, Nam. Sitna 3105, 272 00 Kladno (Czech Republic); Zemlicka, Jan; Krejci, Frantisek; Polansky, Stepan; Jakubek, Jan [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Mrzilkova, Jana; Patzelt, Matej; Trnka, Jan [Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00 Prague (Czech Republic)

    2015-02-11

    We describe a newly developed compact micro-CT scanner with rotating gantry equipped with a Timepix Quad hybrid pixel semiconductor detector and a micro-focus X-ray tube providing spatial resolution down to 30 µm. The resolving power of the device in relation to soft tissue sensitivity is demonstrated using a tissue-equivalent phantom and different types of biological samples. The results demonstrate that the use of noiseless particle counting detectors is a promising way to achieve sufficient soft tissue contrast even without any contrast agents. - Highlights: • We developed a new micro-CT scanner for small animal imaging. • Application of Timepix technology to obtain enhanced soft tissue contrast. • Spatial resolution below 30 µm achieved. • Performance demonstrated using a tissue equivalent phantom and biological samples.

  19. A standardization model based on image recognition for performance evaluation of an oral scanner.

    Science.gov (United States)

    Seo, Sang-Wan; Lee, Wan-Sun; Byun, Jae-Young; Lee, Kyu-Bok

    2017-12-01

    Accurate information is essential in dentistry. The image information of missing teeth is used in optically based medical equipment in prosthodontic treatment. To evaluate oral scanners, the standardized model was examined from cases of image recognition errors of linear discriminant analysis (LDA), and a model that combines the variables with reference to ISO 12836:2015 was designed. The basic model was fabricated by applying 4 factors to the tooth profile (chamfer, groove, curve, and square) and the bottom surface. Photo-type and video-type scanners were used to analyze 3D images after image capture. The scans were performed several times according to the prescribed sequence to distinguish the model from the one that did not form, and the results confirmed it to be the best. In the case of the initial basic model, a 3D shape could not be obtained by scanning even if several shots were taken. Subsequently, the recognition rate of the image was improved with every variable factor, and the difference depends on the tooth profile and the pattern of the floor surface. Based on the recognition error of the LDA, the recognition rate decreases when the model has a similar pattern. Therefore, to obtain the accurate 3D data, the difference of each class needs to be provided when developing a standardized model.

  20. Electrodynamic headphones and woofers for application in magnetic resonance imaging scanners.

    Science.gov (United States)

    Baumgart, F; Kaulisch, T; Tempelmann, C; Gaschler-Markefski, B; Tegeler, C; Schindler, F; Stiller, D; Scheich, H

    1998-10-01

    Electrodynamic speakers compatible with (functional) magnetic resonance imaging (MRI) are described. The speakers magnets are removed, their function is replaced by the scanner's magnetic field, resulting in an uncommon but efficient operation. The method can be used with headphones as well as woofers. Functional MRI is not associated with any known biological risks, but as a method for visualization of task-specific activation of brain regions it is undesirably noisy. Thus, it requires both noise protection and efficient sound transmission systems for delivering acoustic stimuli to subjects. Woofers could possibly be used in active noise-control systems. The speakers described in this paper can be used for either task.

  1. Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET

    Directory of Open Access Journals (Sweden)

    Christopher J Thompson

    2014-08-01

    Full Text Available Recently, positron emission tomography (PET is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs and more recently silicon photo-multipliers (SiPMs are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution.

  2. Asymmetric gradient coil design for use in a short, open bore magnetic resonance imaging scanner

    Science.gov (United States)

    Wang, Yaohui; Liu, Feng; Li, Yu; Tang, Fangfang; Crozier, Stuart

    2016-08-01

    A conventional cylindrical whole-body MRI scanner has a long bore that may cause claustrophobia for some patients in addition to being inconvenient for healthcare workers accessing the patient. A short-bore scanner usually offers a small sized imaging area, which is impractical for imaging some body parts, such as the torso. This work proposes a novel asymmetric gradient coil design that offers a full-sized imaging area close to one end of the coil. In the new design, the primary and shielding coils are connected at one end whilst separated at the other, allowing the installation of the cooling system and shim trays. The proposed coils have a larger wire gap, higher efficiency, lower inductance, less resistance and a higher figure of merit than the non-connected coils. This half-connected coil structure not only improves the coils' electromagnetic performance, but also slightly attenuates acoustic radiation at most frequencies when compared to a non-connected gradient coil. It is also quieter in some frequency bands than a conventional symmetric gradient coil.

  3. In vivo photoacoustic imaging of nude mice vasculature using a photoacoustic imaging system based on a commercial ultrasound scanner

    Science.gov (United States)

    Jankovic, Ladislav; Shahzad, Khalid; Wang, Yao; Burcher, Michael; Scholle, Frank-Detlef; Hauff, Peter; Mofina, Sabine; Skobe, Mihaela

    2008-02-01

    In-vivo photoacoustic/ultrasound (PA/US) imaging of nude mice was investigated using a photoacoustic imaging system based on a commercial ultrasound scanner HDI-5000. Raw per-channel data was captured and beamformed to generate each individual photoacoustic image with a single laser shot. An ultra-broadband CL15-7 linear array with a center frequency of 8 MHz, combined with a Schott Glass fiber bundle, was used as a compact high resolution imaging probe, with lateral and axial PA resolutions of about 300µm and 200µm, respectively. The imaging system worked in a dual PA-US mode, with the ultrasound outlining the tissue structure and the photoacoustic image showing the blood vessels. PA signals were generated by exposing mice to ultra-short optical pulses from a Nd:YAG-pumped OPO laser operating in a wavelength range of 700-950nm. The corresponding ultrasound images were generated in the regular B-mode with standard delay-and-sum beamforming algorithm. The system resolution was sufficiently high to identify and clearly distinguish the dorsal artery and the two lateral veins in the mouse tail. Both the saphena artery and the ischiatic vein on the cross-section of the mouse leg were clearly outlined in the PA images and correctly overlaid on the ultrasound image of the tissue structure. Similarly, cross-section PA images of the mouse abdomen revealed mesenteric vasculatures located below the abdominal wall. Finally, a successful PA imaging of the mouse thoracic cavity unveiled the ascending and descending aorta. These initial results demonstrate a great potential for a dual photoacoustic/ultrasound imaging modality implemented on a commercial ultrasound imaging scanner.

  4. Imaging features of automated breast volume scanner: Correlation with molecular subtypes of breast cancer.

    Science.gov (United States)

    Zheng, Feng-Yang; Lu, Qing; Huang, Bei-Jian; Xia, Han-Sheng; Yan, Li-Xia; Wang, Xi; Yuan, Wei; Wang, Wen-Ping

    2017-01-01

    To investigate the correlation between the imaging features obtained by an automated breast volume scanner (ABVS) and molecular subtypes of breast cancer. We examined 303 malignant breast tumours by ABVS for specific imaging features and by immunohistochemical analysis to determine the molecular subtype. ABVS imaging features, including retraction phenomenon, shape, margins, echogenicity, post-acoustic features, echogenic halo, and calcifications were analysed by univariate and multivariate logistic regression analyses to determine the significant predictive factors of the molecular subtypes. By univariate logistic regression analysis, the predictive factors of the Luminal-A subtype (n=128) were retraction phenomenon (odds ratio [OR]=10.188), post-acoustic shadowing (OR=5.112), and echogenic halo (OR=3.263, Pimaging features, especially retraction phenomenon, have a strong correlation with the molecular subtypes, expanding the scope of ultrasound in identifying breast cancer subtypes with confidence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Surround 3-Dimensional Scanner

    Directory of Open Access Journals (Sweden)

    Karbowski Krzysztof

    2017-06-01

    Full Text Available The paper describes original 3-dimensional structured light scanner used for medical application. Scanner kinematics is similar to the gantry mechanism of computed tomography apparatus. The unique feature of the presented scanner is a glass table for capturing image of a human body part. The scanner can acquire an object through the table. It gives the chance for surround scanning of the human body, using only one scanning head, without changing the body position. It is more cost effective scanner solution than multihead scanner configuration.

  6. A new markerless patient-to-image registration method using a portable 3D scanner.

    Science.gov (United States)

    Fan, Yifeng; Jiang, Dongsheng; Wang, Manning; Song, Zhijian

    2014-10-01

    Patient-to-image registration is critical to providing surgeons with reliable guidance information in the application of image-guided neurosurgery systems. The conventional point-matching registration method, which is based on skin markers, requires expensive and time-consuming logistic support. Surface-matching registration with facial surface scans is an alternative method, but the registration accuracy is unstable and the error in the more posterior parts of the head is usually large because the scan range is limited. This study proposes a new surface-matching method using a portable 3D scanner to acquire a point cloud of the entire head to perform the patient-to-image registration. A new method for transforming the scan points from the device space into the patient space without calibration and tracking was developed. Five positioning targets were attached on a reference star, and their coordinates in the patient space were measured prior. During registration, the authors moved the scanner around the head to scan its entire surface as well as the positioning targets, and the scanner generated a unique point cloud in the device space. The coordinates of the positioning targets in the device space were automatically detected by the scanner, and a spatial transformation from the device space to the patient space could be calculated by registering them to their coordinates in the patient space that had been measured prior. A three-step registration algorithm was then used to register the patient space to the image space. The authors evaluated their method on a rigid head phantom and an elastic head phantom to verify its practicality and to calculate the target registration error (TRE) in different regions of the head phantoms. The authors also conducted an experiment with a real patient's data to test the feasibility of their method in the clinical environment. In the phantom experiments, the mean fiducial registration error between the device space and the patient

  7. ORIS: the Oak Ridge Imaging System program listings. [Nuclear medicine imaging with rectilinear scanner and gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Bell, P. R.; Dougherty, J. M.

    1978-04-01

    The Oak Ridge Imaging System (ORIS) is a general purpose access, storage, processing and display system for nuclear medicine imaging with rectilinear scanner and gamma camera. This volume contains listings of the PDP-8/E version of ORIS Version 2. The system is designed to run under the Digital Equipment Corporation's OS/8 monitor in 16K or more words of core. System and image file mass storage is on RK8E disk; longer-time image file storage is provided on DECtape. Another version of this program exists for use with the RF08 disk, and a more limited version is for DECtape only. This latter version is intended for non-medical imaging.

  8. CT imaging of the internal human ear: Test of a high resolution scanner

    Science.gov (United States)

    Bettuzzi, M.; Brancaccio, R.; Morigi, M. P.; Gallo, A.; Strolin, S.; Casali, F.; Lamanna, Ernesto; Ariù, Marilù

    2011-08-01

    During the course of 2009, in the framework of a project supported by the National Institute of Nuclear Physics, a number of tests were carried out at the Department of Physics of the University of Bologna in order to achieve a good quality CT scan of the internal human ear. The work was carried out in collaboration with the local “S. Orsola” Hospital in Bologna and a company (CEFLA) already involved in the production and commercialization of a CT scanner dedicated to dentistry. A laboratory scanner with a simple concept detector (CCD camera-lens-mirror-scintillator) was used to see to what extent it was possible to enhance the quality of a conventional CT scanner when examining the internal human ear. To test the system, some conventional measurements were made, such as the spatial resolution calculation with the MTF and dynamic range evaluation. Different scintillators were compared to select the most suitable for the purpose. With 0.5 mm thick structured cesium iodide and a field of view of 120×120 mm2, a spatial resolution of 6.5l p/mm at 5% MTF was obtained. The CT of a pair of human head phantoms was performed at an energy of 120 kVp. The first phantom was a rough representation of the human head shape, with soft tissue made of coarse slabs of Lucite. Some inserts, like small aluminum cylinders and cubes, with 1 mm diameter drilled holes, were used to simulate the channels that one finds inside the human inner ear. The second phantom is a plastic PVC fused head with a real human cranium inside. The bones in the cranium are well conserved and the inner ear features, such as the cochlea and semicircular channels, are clearly detectable. After a number of CT tests we obtained good results as far as structural representation and channel detection are concerned. Some images of the 3D rendering of the CT volume are shown below. The doctors of the local hospital who followed our experimentation expressed their satisfaction. The CT was compared to a virtual

  9. Impact of functional magnetic resonance imaging (fMRI) scanner noise on affective state and attentional performance.

    Science.gov (United States)

    Jacob, Shawna N; Shear, Paula K; Norris, Matthew; Smith, Matthew; Osterhage, Jeff; Strakowski, Stephen M; Cerullo, Michael; Fleck, David E; Lee, Jing-Huei; Eliassen, James C

    2015-01-01

    Previous research has shown that performance on cognitive tasks administered in the scanner can be altered by the scanner environment. There are no previous studies that have investigated the impact of scanner noise using a well-validated measure of affective change. The goal of this study was to determine whether performance on an affective attentional task or emotional response to the task would change in the presence of distracting acoustic noise, such as that encountered in a magnetic resonance imaging (MRI) environment. Thirty-four young adults with no self-reported history of neurologic disorder or mental illness completed three blocks of the affective Posner task outside of the scanner. The task was meant to induce frustration through monetary contingencies and rigged feedback. Participants completed a Self-Assessment Manikin at the end of each block to rate their mood, arousal level, and sense of dominance. During the task, half of the participants heard noise (recorded from a 4T MRI system), and half heard no noise. The affective Posner task led to significant reductions in mood and increases in arousal in healthy participants. The presence of scanner noise did not impact task performance; however, individuals in the noise group did report significantly poorer mood throughout the task. The results of the present study suggest that the acoustic qualities of MRI enhance frustration effects on an affective attentional task and that scanner noise may influence mood during similar functional magnetic resonance imaging (fMRI) tasks.

  10. Simulation study of a D-shape PET scanner for improved sensitivity and reduced cost in whole-body imaging

    Science.gov (United States)

    Ahmed, Abdella M.; Tashima, Hideaki; Yamaya, Taiga

    2017-05-01

    Much research effort is being made to increase the sensitivity and improve the imaging performance of positron emission tomography (PET) scanners. Conventionally, sensitivity can be increased by increasing the number of detector rings in the axial direction (but at high cost) or reducing the diameter of the scanner (with the disadvantages of reducing the space for patients and degrading the spatial resolution due to the parallax error). In this study, we proposed a PET scanner with a truncated ring and an array of detectors that can be arranged in a straight line below the bed. We called this system ‘D-PET’ as it resembles the letter ‘D’ when it is rotated by 90° in the counterclockwise direction. The basic design idea was to cut the unused space under the patient’s bed; this area is usually not in use in clinical diagnosis. We conducted Monte Carlo simulations of the D-PET scanner and compared its performance with a cylindrical PET scanner. The scanners were constructed from 4-layer depth-of-interaction detectors which consisted of a 16  ×  16  ×  4 LYSO crystal array with dimensions of 2.85  ×  2.85  ×  5 mm3. The results showed that the D-PET had an increase in sensitivity and peak-NECR of 30% and 18%, respectively. The D-PET had low noise in the reconstructed images throughout the field-of-view compared to the cylindrical PET. These were achieved while keeping sufficient space for the patient, and also without a severe effect on the spatial resolution. Furthermore, the number of detectors (and hence the cost) of the D-PET scanner was reduced by 12% compared to the cylindrical PET scanner.

  11. Image quality assesment using NEMA NU 4/2008 standards in small animal PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Gontijo, Rodrigo M.G.; Ferreira, Andréa V.; Silva, Juliana B.; Mamede, Marcelo, E-mail: rodrigo.gontijo@cdtn.br, E-mail: rodrigogadelhagontijo1@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    In Brazil, there are few micro PET in use and a quality control protocols standardization are needed to harmonize their use in the research field. Thus, the purpose of this study is to characterize the image quality performance of the micro PET scanner (Lab PET 4, GE healthcare Technologies, Waukesha, WI) using the NEMA NU 4/ 2008 standards and specific phantom. The NEMA image-quality (IQ) phantom consists of 3 different regions to analyze distinct characteristics: image noise (%SD), expressed as percentage SD in a uniform region (%SD), recovery coefficient (RC) and Spill-over (SOR) in air and water. The IQ phantom was filled with {sup 18}F-FDG calibrated at the beginning of acquisition, placed in the center of the field-of-view (FOV) and measured with the typical whole body imaging protocol. The images were reconstructed with different reconstruction methods (FBP-2D; MLEM-3D and OSEM-3D); with and without high resolution (HR) when possible. The results were compared. The LabPET 4 system produces appropriate image and with performance according to the literature. The present study is an initial step to verify the NEMA NU 4/2008 use in the Brazilian scenario for further standardization. (author)

  12. Errors in MR-based attenuation correction for brain imaging with PET/MR scanners

    Science.gov (United States)

    Rota Kops, Elena; Herzog, Hans

    2013-02-01

    AimAttenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methodsAn anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). ResultsError A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled nasal

  13. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner

    Directory of Open Access Journals (Sweden)

    Ivan Pelivanov

    2016-06-01

    Full Text Available Damage induced in polymer composites by various impacts must be evaluated to predict a component’s post-impact strength and residual lifetime, especially when impacts occur in structures related to human safety (in aircraft, for example. X-ray tomography is the conventional standard to study an internal structure with high resolution. However, it is of little use when the impacted area cannot be extracted from a structure. In addition, X-ray tomography is expensive and time-consuming. Recently, we have demonstrated that a kHz-rate laser-ultrasound (LU scanner is very efficient both for locating large defects and evaluating the material structure. Here, we show that high-quality images of damage produced by the LU scanner in impacted carbon-fiber reinforced polymer (CFRP composites are similar to those produced by X-ray tomograms; but they can be obtained with only single-sided access to the object under study. Potentially, the LU method can be applied to large components in-situ.

  14. Cardiac Imaging Using Clinical 1.5 T MRI Scanners in a Murine Ischemia/Reperfusion Model

    Directory of Open Access Journals (Sweden)

    Jakob G. J. Voelkl

    2011-01-01

    Full Text Available To perform cardiac imaging in mice without having to invest in expensive dedicated equipment, we adapted a clinical 1.5 Tesla (T magnetic resonance imaging (MRI scanner for use in a murine ischemia/reperfusion model. Phase-sensitive inversion recovery (PSIR sequence facilitated the determination of infarct sizes in vivo by late gadolinium enhancement. Results were compared to histological infarct areas in mice after ischemia/reperfusion procedure with a good correlation (=0.807, <.001. In addition, fractional area change (FAC was assessed with single slice cine MRI and was matched to infarct size (=−0.837 and fractional shortening (FS measured with echocardiography (=0.860; both <.001. Here, we demonstrate the use of clinical 1.5 MRI scanners as a feasible method for basic phenotyping in mice. These widely available scanners are capable of investigating in vivo infarct dimensions as well as assessment of cardiac functional parameters in mice with reasonable throughput.

  15. Dosimetric impact of image artifact from a wide-bore CT scanner in radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Vincent; Podgorsak, Matthew B.; Tran, Tuan-Anh; Malhotra, Harish K.; Wang, Iris Z. [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

    2011-07-15

    Purpose: Traditional computed tomography (CT) units provide a maximum scan field-of-view (sFOV) diameter of 50 cm and a limited bore size, which cannot accommodate a large patient habitus or an extended simulation setup in radiation therapy (RT). Wide-bore CT scanners with increased bore size were developed to address these needs. Some scanners have the capacity to reconstruct the CT images at an extended FOV (eFOV), through data interpolation or extrapolation, using projection data acquired with a conventional sFOV. Objects that extend past the sFOV for eFOV reconstruction may generate image artifacts resulting from truncated projection data; this may distort CT numbers and structure contours in the region beyond the sFOV. The purpose of this study was to evaluate the dosimetric impact of image artifacts from eFOV reconstruction with a wide-bore CT scanner in radiotherapy (RT) treatment planning. Methods: Testing phantoms (i.e., a mini CT phantom with equivalent tissue inserts, a set of CT normal phantoms and anthropomorphic phantoms of the thorax and the pelvis) were used to evaluate eFOV artifacts. Reference baseline images of these phantoms were acquired with the phantom centrally positioned within the sFOV. For comparison, the phantoms were then shifted laterally and scanned partially outside the sFOV, but still within the eFOV. Treatment plans were generated for the thoracic and pelvic anthropomorphic phantoms utilizing the Eclipse treatment planning system (TPS) to study the potential effects of eFOV artifacts on dose calculations. All dose calculations of baseline and test treatment plans were carried out using the same MU. Results: Results show that both body contour and CT numbers are altered by image artifacts in eFOV reconstruction. CT number distortions of up to -356 HU for bone tissue and up to 323 HU for lung tissue were observed in the mini CT phantom. Results from the large body normal phantom, which is close to a clinical patient size, show

  16. Design and performance evaluation of a coplanar multimodality scanner for rodent imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lage, E; Vaquero, J J; Sisniega, A; Tapias, G; Abella, M; Rodriguez-Ruano, A; Desco, M [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Espana, S [Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense, Madrid (Spain); Ortuno, J E [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza (Spain); Udias, A [Departamento de Estadistica e Investigacion Operativa, Universidad Rey Juan Carlos, Fuenlabrada (Spain)], E-mail: elage@mce.hggm.es

    2009-09-21

    This work reports on the development and performance evaluation of the VrPET/CT, a new multimodality scanner with coplanar geometry for in vivo rodent imaging. The scanner design is based on a partial-ring PET system and a small-animal CT assembled on a rotatory gantry without axial displacement between the geometric centers of both fields of view (FOV). We report on the PET system performance based on the NEMA NU-4 protocol; the performance characteristics of the CT component are not included herein. The accuracy of inter-modality alignment and the imaging capability of the whole system are also evaluated on phantom and animal studies. Tangential spatial resolution of PET images ranged between 1.56 mm at the center of the FOV and 2.46 at a radial offset of 3.5 cm. The radial resolution varies from 1.48 mm to 1.88 mm, and the axial resolution from 2.34 mm to 3.38 mm for the same positions. The energy resolution was 16.5% on average for the entire system. The absolute coincidence sensitivity is 2.2% for a 100-700 keV energy window with a 3.8 ns coincident window. The scatter fraction values for the same settings were 11.45% for a mouse-sized phantom and 23.26% for a rat-sized phantom. The peak noise equivalent count rates were also evaluated for those phantoms obtaining 70.8 kcps at 0.66 MBq/cc and 31.5 kcps at 0.11 MBq/cc, respectively. The accuracy of inter-modality alignment is below half the PET resolution, and the image quality of biological specimens agrees with measured performance parameters. The assessment presented in this study shows that the VrPET/CT system is a good performance small-animal imager, while the cost derived from a partial ring detection system is substantially reduced as compared with a full-ring PET tomograph.

  17. High-resolution label-free vascular imaging using a commercial, clinically approved dermatological OCT scanner

    Science.gov (United States)

    Byers, R. A.; Tozer, G.; Brown, N. J.; Matcher, S. J.

    2016-02-01

    Background and Aim: Recently developed decorrelative techniques such as speckle-variance optical coherence tomography (svOCT) have demonstrated non-invasive depth-resolved imaging of the microcirculation in-vivo. However, bulk tissue motion (BTM) originating from the subject's breathing or heartbeat remains problematic at low imaging speeds, often resulting in full frame decorrelation and a loss of vascular contrast. The aim of this study was to build upon existing svOCT techniques through utilisation of a commercially available, probe-based VivoSight OCT system running at 20 kHz Axial-scan rate. Methods and results: Custom four-dimensional scanning strategies were developed and utilised in order to maximise the interframe correlation during image acquisition. Volumes of structural OCT data were collected from various anatomical regions and processed using the aforementioned svOCT algorithm to reveal angiographic information. Following data collection, three dimensional image registration and novel filtering algorithms were applied to each volume in order to ensure that BTM artefacts were sufficiently suppressed. This enabled accurate visualisation of the microcirculation within the papillary dermis, to a depth of approximately 2mm. Applications of this technique, including quantitative capillary loop density measurement and visualisation of wound healing are demonstrated and enhanced through widefield mosaicing of the svOCT data. Conclusions: Non-invasive microcirculation imaging using an FDA 510(k) approved OCT scanner such as the VivoSight allows direct clinical utilisation of these techniques, in particular for the pathological analysis of skin diseases. This research was supported by BBSRC Doctoral Training Grant: BB/F016840/1. The authors also gratefully acknowledge the use of equipment funded by MRC grant: MR/L012669/1.

  18. Parametric subharmonic imaging using a commercial intravascular ultrasound scanner: an in vivo feasibility study.

    Science.gov (United States)

    Eisenbrey, John R; Sridharan, Anush; deMuinck, Ebo D; Doyley, Marvin M; Forsberg, Flemming

    2012-03-01

    The feasibility of visualizing atherosclerotic plaque using parametric subharmonic intravascular ultrasound (IVUS) was investigated in vivo. Atherosclerosis was induced in the aorta of 2 rabbits. Following injection of Definity (Lantheus Medical Imaging, North Billerica, MA), radiofrequency IVUS signals were acquired at 40 MHz with a Galaxy IVUS scanner (Boston Scientific/Scimed, Natick, MA). Subharmonic imaging (SHI; receiving at 20 MHz) was performed offline by applying an 8-order equalization filter. Contrast-to-tissue ratios (CTRs) were computed for the vessel relative to the plaque area over 4 time points. Contrast-to-tissue ratios were also calculated for the plaque-tissue and vessel-tissue from 4 tissue regions of interest at 4 time points. Finally, parametric images showing the cumulative maximum intensity (CMI), time to peak, perfusion (PER), and time-integrated intensity (TII) were generated for the fundamental and subharmonic data sets, and CTR measurements were repeated. Injection of the contrast agent resulted in improved delineation between plaque and the vessel lumen. Subharmonic imaging resulted in noticeable tissue suppression, although the intensity from the contrast agent was reduced. No significant improvement in the plaque to vessel lumen CTR was observed between the subharmonic and fundamental IVUS (2.1 ± 3.64 versus 2.2 ± 4.20; P = .5). However, the CTR for plaque-tissue was improved (11.8 ± 7.32 versus 9.9 ± 7.06; P < .0001) for SHI relative to fundamental imaging. Cumulative-maximum-intensity and TII maps of both fundamental and subharmonic data provided increased CTRs relative to nonparametric data sets (P < .002). Additionally, the CMI, PER, and TII of SHI IVUS showed significantly improved vessel-plaque CTRs for SHI relative to the fundamental (P < .04). Parametric SHI IVUS of atherosclerotic plaque is feasible and improves the visualization of the plaque.

  19. Parametric Subharmonic Imaging Using a Commercial Intravascular Ultrasound Scanner An In Vivo Feasibility Study

    Science.gov (United States)

    Eisenbrey, John R.; Sridharan, Anush; deMuinck, Ebo D.; Doyley, Marvin M.; Forsberg, Flemming

    2013-01-01

    Objectives The feasibility of visualizing atherosclerotic plaque using parametric subharmonic intravascular ultrasound (IVUS) was investigated in vivo. Methods Atherosclerosis was induced in the aorta of 2 rabbits. Following injection of Definity (Lantheus Medical Imaging, North Billerica, MA), radiofrequency IVUS signals were acquired at 40 MHz with a Galaxy IVUS scanner (Boston Scientific/Scimed, Natick, MA). Subharmonic imaging (SHI; receiving at 20 MHz) was performed offline by applying an 8-order equalization filter. Contrast-to-tissue ratios (CTRs) were computed for the vessel relative to the plaque area over 4 time points. Contrast-to-tissue ratios were also calculated for the plaque-tissue and vessel-tissue from 4 tissue regions of interest at 4 time points. Finally, parametric images showing the cumulative maximum intensity (CMI), time to peak, perfusion (PER), and time-integrated intensity (TII) were generated for the fundamental and subharmonic data sets, and CTR measurements were repeated. Results Injection of the contrast agent resulted in improved delineation between plaque and the vessel lumen. Subharmonic imaging resulted in noticeable tissue suppression, although the intensity from the contrast agent was reduced. No significant improvement in the plaque to vessel lumen CTR was observed between the subharmonic and fundamental IVUS (2.1 ± 3.64 versus 2.2 ± 4.20; P = .5). However, the CTR for plaque-tissue was improved (11.8 ± 7.32 versus 9.9 ± 7.06; P < .0001) for SHI relative to fundamental imaging. Cumulative-maximum-intensity and TII maps of both fundamental and subharmonic data provided increased CTRs relative to nonparametric data sets (P< .002). Additionally, the CMI, PER, and TII of SHI IVUS showed significantly improved vessel-plaque CTRs for SHI relative to the fundamental (P < .04). Conclusions Parametric SHI IVUS of atherosclerotic plaque is feasible and improves the visualization of the plaque. PMID:22368126

  20. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3Tesla clinical MRI scanner.

    Science.gov (United States)

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W; Chen, Nan-kuei

    2015-09-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167-181), showing that white matter fiber tracts can be much more accurately detected in data at a submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at a submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85×0.85×0.85mm(3)) in vivo human brain DTI on a 3Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2×2×2mm(3)). Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Low-echo sphere phantoms and methods for assessing imaging performance of medical ultrasound scanners.

    Science.gov (United States)

    Madsen, Ernest L; Song, Chihwa; Frank, Gary R

    2014-07-01

    Tissue-mimicking phantoms and software for quantifying the ability of human observers to detect small low-echo spheres as a function of depth have been developed. Detectability is related to the imager's ability to delineate the boundary of a 3-D object such as a spiculated tumor. The phantoms accommodate a broad range of transducer shapes and sizes. Three phantoms are described: one with 2-mm-diameter spheres (for higher frequencies), one with 3.2-mm-diameter spheres (for lower frequencies) and one with 4-mm-diameter spheres (for lower frequencies). The spheres are randomly distributed in each phantom. The attenuation coefficients of spheres and surroundings are nearly identical; thus, compromising shadowing or enhancement distal to spheres does not occur. Reproducibility results are given for pairs of independent data sets involving eight different combinations of scanner, transducer and console settings. The following comparison results are also reported: (i) only the selected frequency differs; (ii) transducers and scan parameters are nearly the same but manufacturers differ; (iii) ordinary B-scanning, spatial compounding and tissue harmonic imaging are addressed. The phantoms and software promise to be valuable tools for scanning system and setup comparisons and for acceptance testing. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Dedicated scanner for laboratory investigations on cone-beam CT/SPECT imaging of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Mettivier, Giovanni, E-mail: mettivier@na.infn.i [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, I-80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy); Russo, Paolo, E-mail: russo@na.infn.i [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, I-80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy); Cesarelli, Mario; Ospizio, Roberto [Dipartimento di Ingegneria Biomedica, Elettronica e delle Telecomunicazioni, Universita di Napoli Federico II, I-80125 Napoli (Italy); Passeggio, Giuseppe; Roscilli, Lorenzo; Pontoriere, Giuseppe; Rocco, Raffaele [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy)

    2011-02-11

    We describe the design, realization and basic tests of a prototype Cone-Beam Breast Computed Tomography (CBBCT) scanner, combined with a SPECT head consisting of a compact pinhole gamma camera based on a photon counting CdTe hybrid pixel detector. The instrument features a 40 {mu}m focal spot X-ray tube, a 50 {mu}m pitch flat panel detector and a 1-mm-thick, 55 {mu}m pitch CdTe pixel detector. Preliminary imaging tests of the separate CT and gamma-ray units are presented showing a resolution in CT of 3.2 mm{sup -1} at a radial distance of 50 mm from the rotation axis and that the 5 and 8 mm hot masses ({sup 99m}Tc labeled with a 15:1 activity ratio with respect to the background) can be detected in planar gamma-ray imaging with a contrast-to-noise ratio of about 4.

  3. Airborne Thermal Infrared Multispectral Scanner (TIMS) images over disseminated gold deposits, Osgood Mountains, Humboldt County, Nevada

    Science.gov (United States)

    Krohn, M. Dennis

    1986-01-01

    The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.

  4. Accuracy and reproducibility of the DAVID SLS-2 scanner in three-dimensional facial imaging

    DEFF Research Database (Denmark)

    Jared Olsen, Jesper; Darvann, Tron Andre; Pinholt, Else Marie

    2017-01-01

    PURPOSE: A prospective study was performed to test the accuracy and reproducibility of the DAVID-SLS-2 scanner (SLS-2) [DAVID Vision Systems GmbH], compared to the validated 3dMDtrio scanner (3dMD) [3dMD, LLC, Atlanta, GA, USA]. MATERIALS AND METHODS: The accuracy of the SLS-2 was determined...

  5. Limited Evaluation of Image Quality Produced by a Portable Head CT Scanner (CereTom) in a Neurosurgery Centre.

    Science.gov (United States)

    Abdullah, Ariz Chong; Adnan, Johari Siregar; Rahman, Noor Azman A; Palur, Ravikant

    2017-03-01

    Computed tomography (CT) is the preferred diagnostic toolkit for head and brain imaging of head injury. A recent development is the invention of a portable CT scanner that can be beneficial from a clinical point of view. To compare the quality of CT brain images produced by a fixed CT scanner and a portable CT scanner (CereTom). This work was a single-centre retrospective study of CT brain images from 112 neurosurgical patients. Hounsfield units (HUs) of the images from CereTom were measured for air, water and bone. Three assessors independently evaluated the images from the fixed CT scanner and CereTom. Streak artefacts, visualisation of lesions and grey-white matter differentiation were evaluated at three different levels (centrum semiovale, basal ganglia and middle cerebellar peduncles). Each evaluation was scored 1 (poor), 2 (average) or 3 (good) and summed up to form an ordinal reading of 3 to 9. HUs for air, water and bone from CereTom were within the recommended value by the American College of Radiology (ACR). Streak artefact evaluation scores for the fixed CT scanner was 8.54 versus 7.46 ( Z = -5.67) for CereTom at the centrum semiovale, 8.38 (SD = 1.12) versus 7.32 (SD = 1.63) at the basal ganglia and 8.21 (SD = 1.30) versus 6.97 (SD = 2.77) at the middle cerebellar peduncles. Grey-white matter differentiation showed scores of 8.27 (SD = 1.04) versus 7.21 (SD = 1.41) at the centrum semiovale, 8.26 (SD = 1.07) versus 7.00 (SD = 1.47) at the basal ganglia and 8.38 (SD = 1.11) versus 6.74 (SD = 1.55) at the middle cerebellar peduncles. Visualisation of lesions showed scores of 8.86 versus 8.21 ( Z = -4.24) at the centrum semiovale, 8.93 versus 8.18 ( Z = -5.32) at the basal ganglia and 8.79 versus 8.06 ( Z = -4.93) at the middle cerebellar peduncles. All results were significant with P -value < 0.01. Results of the study showed a significant difference in image quality produced by the fixed CT scanner and CereTom, with the latter being more inferior than the

  6. Analysis of in-situ rock joint strength using digital borehole scanner images

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, Bhaskar Bahadur [Univ. of California, Berkeley, CA (United States)

    1994-09-01

    The availability of high resolution digital images of borehole walls using the Borehole Scanner System has made it possible to develop new methods of in-situ rock characterization. This thesis addresses particularly new approaches to the characterization of in-situ joint strength arising from surface roughness. An image processing technique is used to extract the roughness profile from joints in the unrolled image of the borehole wall. A method for estimating in-situ Rengers envelopes using this data is presented along with results from using the method on joints in a borehole in porphyritic granite. Next, an analysis of the joint dilation angle anisotropy is described and applied to the porphyritic granite joints. The results indicate that the dilation angle of the joints studied are anisotropic at small scales and tend to reflect joint waviness as scale increases. A procedure to unroll the opposing roughness profiles to obtain a two dimensional sample is presented. The measurement of apertures during this process is shown to produce an error which increases with the dip of the joint. The two dimensional sample of opposing profiles is used in a new kinematic analysis of the joint shear stress-shear deformation behavior. Examples of applying these methods on the porphyritic granite joints are presented. The unrolled opposing profiles were used in a numerical simulation of a direct shear test using Discontinuous Deformation Analysis. Results were compared to laboratory test results using core samples containing the same joints. The simulated dilatancy and shear stress-shear deformation curves were close to the laboratory curves in the case of a joint in porphyritic granite.

  7. Development of a versatile XRF scanner for the elemental imaging of paintworks

    Energy Technology Data Exchange (ETDEWEB)

    Ravaud, E.; Pichon, L.; Laval, E.; Eveno, M. [Centre de recherche et de restauration des musees de France, C2RMF, Paris (France); Gonzalez, V.; Calligaro, T. [Centre de recherche et de restauration des musees de France, C2RMF, Paris (France); PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche Chimie Paris, UMR8247, Paris (France)

    2016-01-15

    Scanning XRF is a powerful elemental imaging technique introduced at the synchrotron that has recently been transposed to laboratory. The growing interest in this technique stems from its ability to collect images reflecting pigment distribution within large areas on artworks by means of their elemental signature. In that sense, scanning XRF appears highly complementary to standard imaging techniques (Visible, UV, IR photography and X-ray radiography). The versatile XRF scanner presented here has been designed and built at the C2RMF in response to specific constraints: transportability, cost-effectiveness and ability to scan large areas within a single working day. The instrument is based on a standard X-ray generator with sub-millimetre collimated beam and a SDD-based spectrometer to collected X-ray spectra. The instrument head is scanned in front of the painting by means of motorised movements to cover an area up to 300 x 300 mm{sup 2} with a resolution of 0.5 mm (600 x 600 pixels). The 15-kg head is mounted on a stable photo stand for rapid positioning on paintworks and maintains a free side-access for safety; it can also be attached to a lighter tripod for field measurements. Alignment is achieved with a laser pointer and a micro-camera. With a scanning speed of 5 mm/s and 0.1 s/point, elemental maps are collected in 10 h, i.e. a working day. The X-ray spectra of all pixels are rapidly processed using an open source program to derive elemental maps. To illustrate the capabilities of this instrument, this contribution presents the results obtained on the Belle Ferronniere painted by Leonardo da Vinci (1452-1519) and conserved in the Musee du Louvre, prior to its restoration at the C2RMF. (orig.)

  8. A SPECT Scanner for Rodent Imaging Based on Small-Area Gamma Cameras

    Science.gov (United States)

    Lage, Eduardo; Villena, José L.; Tapias, Gustavo; Martinez, Naira P.; Soto-Montenegro, Maria L.; Abella, Mónica; Sisniega, Alejandro; Pino, Francisco; Ros, Domènec; Pavia, Javier; Desco, Manuel; Vaquero, Juan J.

    2010-10-01

    We developed a cost-effective SPECT scanner prototype (rSPECT) for in vivo imaging of rodents based on small-area gamma cameras. Each detector consists of a position-sensitive photomultiplier tube (PS-PMT) coupled to a 30 x 30 Nal(Tl) scintillator array and electronics attached to the PS-PMT sockets for adapting the detector signals to an in-house developed data acquisition system. The detector components are enclosed in a lead-shielded case with a receptacle to insert the collimators. System performance was assessed using 99mTc for a high-resolution parallel-hole collimator, and for a 0.75-mm pinhole collimator with a 60° aperture angle and a 42-mm collimator length. The energy resolution is about 10.7% of the photopeak energy. The overall system sensitivity is about 3 cps/μCi/detector and planar spatial resolution ranges from 2.4 mm at 1 cm source-to-collimator distance to 4.1 mm at 4.5 cm with parallel-hole collimators. With pinhole collimators planar spatial resolution ranges from 1.2 mm at 1 cm source-to-collimator distance to 2.4 mm at 4.5 cm; sensitivity at these distances ranges from 2.8 to 0.5 cps/μCi/detector. Tomographic hot-rod phantom images are presented together with images of bone, myocardium and brain of living rodents to demonstrate the feasibility of preclinical small-animal studies with the rSPECT.

  9. Analysis of image sharpness reproducibility on a novel engineered micro-CT scanner with variable geometry and embedded recalibration software.

    Science.gov (United States)

    Panetta, D; Belcari, N; Del Guerra, A; Bartolomei, A; Salvadori, P A

    2012-04-01

    This study investigates the reproducibility of the reconstructed image sharpness, after modifications of the geometry setup, for a variable magnification micro-CT (μCT) scanner. All the measurements were performed on a novel engineered μCT scanner for in vivo imaging of small animals (Xalt), which has been recently built at the Institute of Clinical Physiology of the National Research Council (IFC-CNR, Pisa, Italy), in partnership with the University of Pisa. The Xalt scanner is equipped with an integrated software for on-line geometric recalibration, which will be used throughout the experiments. In order to evaluate the losses of image quality due to modifications of the geometry setup, we have made 22 consecutive acquisitions by changing alternatively the system geometry between two different setups (Large FoV - LF, and High Resolution - HR). For each acquisition, the tomographic images have been reconstructed before and after the on-line geometric recalibration. For each reconstruction, the image sharpness was evaluated using two different figures of merit: (i) the percentage contrast on a small bar pattern of fixed frequency (f = 5.5 lp/mm for the LF setup and f = 10 lp/mm for the HR setup) and (ii) the image entropy. We have found that, due to the small-scale mechanical uncertainty (in the order of the voxel size), a recalibration is necessary for each geometric setup after repositioning of the system's components; the resolution losses due to the lack of recalibration are worse for the HR setup (voxel size = 18.4 μm). The integrated on-line recalibration algorithm of the Xalt scanner allowed to perform the recalibration quickly, by restoring the spatial resolution of the system to the reference resolution obtained after the initial (off-line) calibration. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Design of a coincidence processing board for a dual-head PET scanner for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.D. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain)]. E-mail: jormarp1@doctor.upv.es; Toledo, J. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Esteve, R. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Sebastia, A. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Mora, F.J. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Benlloch, J.M. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Fernandez, M.M. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Gimenez, M. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Gimenez, E.N. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Lerche, Ch.W. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Pavon, N. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Sanchez, F. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain)

    2005-07-01

    This paper describes the design of a coincidence processing board for a dual-head Positron Emission Tomography (PET) scanner for breast imaging. The proposed block-oriented data acquisition system relies on a high-speed DSP processor for fully digital trigger and on-line event processing that surpasses the performance of traditional analog coincidence detection systems. A mixed-signal board has been designed and manufactured. The analog section comprises 12 coaxial inputs (six per head) which are digitized by means of two 8-channel 12-bit 40-MHz ADCs in order to acquire the scintillation pulse, the charge division signals and the depth of interaction within the scintillator. At the digital section, a state-of-the-art FPGA is used as deserializer and also implements the DMA interface to the DSP processor by storing each digitized channel into a fast embedded FIFO memory. The system incorporates a high-speed USB 2.0 interface to the host computer.

  11. Magnetic particle imaging an introduction to imaging principles and scanner instrumentation

    CERN Document Server

    Knopp, Tobias

    2012-01-01

    This is an overview of recent progress in magnetic particle imaging, which uses various static and oscillating magnetic fields and tracer materials made from iron oxide nanoparticles to perform background-free measurements of the particles' local concentration.

  12. Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner

    Science.gov (United States)

    Dunham, G.; Harding, E. C.; Loisel, G. P.; Lake, P. W.; Nielsen-Weber, L. B.

    2016-11-01

    Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.

  13. SU-E-I-21: Dosimetric Characterization and Image Quality Evaluation of the AIRO Mobile CT Scanner

    Energy Technology Data Exchange (ETDEWEB)

    Weir, V; Zhang, J; Bruner, A [University of Kentucky, Lexington, KY (United States)

    2015-06-15

    Purpose: The AIRO Mobile CT system was recently introduced which overcomes the limitations from existing CT, CT fluoroscopy, and intraoperative O-arm. With an integrated table and a large diameter bore, the system is suitable for cranial, spine and trauma procedures, making it a highly versatile intraoperative imaging system. This study is to investigate radiation dose and image quality of the AIRO and compared with those from a routine CT scanner. Methods: Radiation dose was measured using a conventional 100mm pencil ionization chamber and CT polymethylmetacrylate (PMMA) body and head phantoms. Image quality was evaluated with a CATPHAN 500 phantom. Spatial resolution, low contrast resolution (CNR), Modulation Transfer Function (MTF), and Normalized Noise Power Spectrum (NNPS) were analyzed. Results: Under identical technique conditions, radiation dose (mGy/mAs) from the AIRO mobile CT system (AIRO) is higher than that from a 64 slice CT scanner. MTFs show that both Soft and Standard filters of the AIRO system lost resolution quickly compared to the Sensation 64 slice CT. With the Standard kernel, the spatial resolutions of the AIRO system are 3lp/cm and 4lp/cm for the body and head FOVs, respectively. NNPSs show low frequency noise due to ring-like artifacts. Due to a higher dose in terms of mGy/mAs at both head and body FOV, CNR of the AIRO system is higher than that of the Siemens scanner. However detectability of the low contrast objects is poorer in the AIRO due to the presence of ring artifacts in the location of the targets. Conclusion: For image guided surgery applications, the AIRO has some advantages over a routine CT scanner due to its versatility, large bore size, and acceptable image quality. Our evaluation of the physical performance helps its future improvements.

  14. Imaging of the Finger Vein and Blood Flow for Anti-Spoofing Authentication Using a Laser and a MEMS Scanner.

    Science.gov (United States)

    Lee, Jaekwon; Moon, Seunghwan; Lim, Juhun; Gwak, Min-Joo; Kim, Jae Gwan; Chung, Euiheon; Lee, Jong-Hyun

    2017-04-22

    A new authentication method employing a laser and a scanner is proposed to improve image contrast of the finger vein and to extract blood flow pattern for liveness detection. A micromirror reflects a laser beam and performs a uniform raster scan. Transmissive vein images were obtained, and compared with those of an LED. Blood flow patterns were also obtained based on speckle images in perfusion and occlusion. Curvature ratios of the finger vein and blood flow intensities were found to be nearly constant, regardless of the vein size, which validated the high repeatability of this scheme for identity authentication with anti-spoofing.

  15. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner

    Science.gov (United States)

    Surti, S.; Karp, J. S.

    2015-07-01

    Current generation of commercial time-of-flight (TOF) PET scanners utilize 20-25 mm thick LSO or LYSO crystals and have an axial FOV (AFOV) in the range of 16-22 mm. Longer AFOV scanners would provide increased intrinsic sensitivity and require fewer bed positions for whole-body imaging. Recent simulation work has investigated the sensitivity gains that can be achieved with these long AFOV scanners, and has motivated new areas of investigation such as imaging with a very low dose of injected activity as well as providing whole-body dynamic imaging capability in one bed position. In this simulation work we model a 72 cm long scanner and prioritize the detector design choices in terms of timing resolution, crystal size (spatial resolution), crystal thickness (detector sensitivity), and depth-of-interaction (DOI) measurement capability. The generated list data are reconstructed with a list-mode OSEM algorithm using a Gaussian TOF kernel that depends on the timing resolution and blob basis functions for regularization. We use lesion phantoms and clinically relevant metrics for lesion detectability and contrast measurement. The scan time was fixed at 10 min for imaging a 100 cm long object assuming a 50% overlap between adjacent bed positions. Results show that a 72 cm long scanner can provide a factor of ten reduction in injected activity compared to an identical 18 cm long scanner to get equivalent lesion detectability. While improved timing resolution leads to further gains, using 3 mm (as opposed to 4 mm) wide crystals does not show any significant benefits for lesion detectability. A detector providing 2-level DOI information with equal crystal thickness also does not show significant gains. Finally, a 15 mm thick crystal leads to lower lesion detectability than a 20 mm thick crystal when keeping all other detector parameters (crystal width, timing resolution, and DOI capability) the same. However, improved timing performance with 15

  16. Evaluations of UltraiQ software for objective ultrasound image quality assessment using images from a commercial scanner.

    Science.gov (United States)

    Long, Zaiyang; Tradup, Donald J; Stekel, Scott F; Gorny, Krzysztof R; Hangiandreou, Nicholas J

    2018-01-16

    We evaluated a commercially available software package that uses B-mode images to semi-automatically measure quantitative metrics of ultrasound image quality, such as contrast response, depth of penetration (DOP), and spatial resolution (lateral, axial, and elevational). Since measurement of elevational resolution is not a part of the software package, we achieved it by acquiring phantom images with transducers tilted at 45 degrees relative to the phantom. Each measurement was assessed in terms of measurement stability, sensitivity, repeatability, and semi-automated measurement success rate. All assessments were performed on a GE Logiq E9 ultrasound system with linear (9L or 11L), curved (C1-5), and sector (S1-5) transducers, using a CIRS model 040GSE phantom. In stability tests, the measurements of contrast, DOP, and spatial resolution remained within a ±10% variation threshold in 90%, 100%, and 69% of cases, respectively. In sensitivity tests, contrast, DOP, and spatial resolution measurements followed the expected behavior in 100%, 100%, and 72% of cases, respectively. In repeatability testing, intra- and inter-individual coefficients of variations were equal to or less than 3.2%, 1.3%, and 4.4% for contrast, DOP, and spatial resolution (lateral and axial), respectively. The coefficients of variation corresponding to the elevational resolution test were all within 9.5%. Overall, in our assessment, the evaluated package performed well for objective and quantitative assessment of the above-mentioned image qualities under well-controlled acquisition conditions. We are finding it to be useful for various clinical ultrasound applications including performance comparison between scanners from different vendors. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  17. Cardiac magnetic resonance imaging in small rodents using clinical 1.5 T and 3.0 T scanners.

    Science.gov (United States)

    Gilson, Wesley D; Kraitchman, Dara L

    2007-09-01

    Cardiac magnetic resonance (CMR) imaging can provide noninvasive, high resolution images of heart anatomy, viability, perfusion, and function. However, the adoption of clinical CMR imaging protocols for small rodents has been limited due to the small heart size and rapid heart rates. Therefore, most CMR studies in small rodents have been performed on non-clinical, high-field MR magnets. Because such high-field systems are not readily available at most institutions, the technical aspects that are needed to perform CMR on clinical 1.5 T and 3.0 T MR scanners are presented in this paper. Equipment requirements are presented, and a comprehensive description of the methods needed to complete a CMR exam including the animal preparation, imaging, and image analysis are discussed. In addition, the advanced applications of myocardial tagging and delayed-contrast-enhanced imaging are reviewed for the assessment of regional contractile function and myocardial viability, respectively.

  18. Image - Rice Grain Scanner: a three-dimensional fully automated assessment of grain size and quality traits

    Directory of Open Access Journals (Sweden)

    Rubens Marschalek

    2016-12-01

    Full Text Available The Image is a scanner developed as a grain classifier for quality control at the rice industry based on Brazilian official norms. It orders the dehulled grains ensuring that each grain would pass individually, in free fall, while the grain is analysed from different sides, covering its whole surface. It ensures a precise three-dimensional measurement of grain size, chalkiness, defects of the grain, milling quality, given out a total of 39 traits/classes/defects/values, which are sent to a excel Microsoft spreadsheet. This is managed through a digital platform which analysis routine and layout were developed and designed by Selgron and Epagri to fit the needs of research. The scanner and its software reach outputs that enhance rice breeding efficiency for grain quality, performing it faster, precisely and with a high-throughput phenotyping than ever before, especially interesting in very early breeding generations.

  19. Quantitative PET/CT scanner performance characterization based upon the society of nuclear medicine and molecular imaging clinical trials network oncology clinical simulator phantom.

    Science.gov (United States)

    Sunderland, John J; Christian, Paul E

    2015-01-01

    The Clinical Trials Network (CTN) of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) operates a PET/CT phantom imaging program using the CTN's oncology clinical simulator phantom, designed to validate scanners at sites that wish to participate in oncology clinical trials. Since its inception in 2008, the CTN has collected 406 well-characterized phantom datasets from 237 scanners at 170 imaging sites covering the spectrum of commercially available PET/CT systems. The combined and collated phantom data describe a global profile of quantitative performance and variability of PET/CT data used in both clinical practice and clinical trials. Individual sites filled and imaged the CTN oncology PET phantom according to detailed instructions. Standard clinical reconstructions were requested and submitted. The phantom itself contains uniform regions suitable for scanner calibration assessment, lung fields, and 6 hot spheric lesions with diameters ranging from 7 to 20 mm at a 4:1 contrast ratio with primary background. The CTN Phantom Imaging Core evaluated the quality of the phantom fill and imaging and measured background standardized uptake values to assess scanner calibration and maximum standardized uptake values of all 6 lesions to review quantitative performance. Scanner make-and-model-specific measurements were pooled and then subdivided by reconstruction to create scanner-specific quantitative profiles. Different makes and models of scanners predictably demonstrated different quantitative performance profiles including, in some cases, small calibration bias. Differences in site-specific reconstruction parameters increased the quantitative variability among similar scanners, with postreconstruction smoothing filters being the most influential parameter. Quantitative assessment of this intrascanner variability over this large collection of phantom data gives, for the first time, estimates of reconstruction variance introduced into trials from allowing

  20. Image quality in low-dose coronary computed tomography angiography with a new high-definition CT scanner.

    Science.gov (United States)

    Kazakauskaite, Egle; Husmann, Lars; Stehli, Julia; Fuchs, Tobias; Fiechter, Michael; Klaeser, Bernd; Ghadri, Jelena R; Gebhard, Catherine; Gaemperli, Oliver; Kaufmann, Philipp A

    2013-02-01

    A new generation of high definition computed tomography (HDCT) 64-slice devices complemented by a new iterative image reconstruction algorithm-adaptive statistical iterative reconstruction, offer substantially higher resolution compared to standard definition CT (SDCT) scanners. As high resolution confers higher noise we have compared image quality and radiation dose of coronary computed tomography angiography (CCTA) from HDCT versus SDCT. Consecutive patients (n = 93) underwent HDCT, and were compared to 93 patients who had previously undergone CCTA with SDCT matched for heart rate (HR), HR variability and body mass index (BMI). Tube voltage and current were adapted to the patient's BMI, using identical protocols in both groups. The image quality of all CCTA scans was evaluated by two independent readers in all coronary segments using a 4-point scale (1, excellent image quality; 2, blurring of the vessel wall; 3, image with artefacts but evaluative; 4, non-evaluative). Effective radiation dose was calculated from DLP multiplied by a conversion factor (0.014 mSv/mGy × cm). The mean image quality score from HDCT versus SDCT was comparable (2.02 ± 0.68 vs. 2.00 ± 0.76). Mean effective radiation dose did not significantly differ between HDCT (1.7 ± 0.6 mSv, range 1.0-3.7 mSv) and SDCT (1.9 ± 0.8 mSv, range 0.8-5.5 mSv; P = n.s.). HDCT scanners allow low-dose 64-slice CCTA scanning with higher resolution than SDCT but maintained image quality and equally low radiation dose. Whether this will translate into higher accuracy of HDCT for CAD detection remains to be evaluated.

  1. Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging.

    Science.gov (United States)

    Moon, Sucbei; Lee, Sang-Won; Rubinstein, Marc; Wong, Brian J F; Chen, Zhongping

    2010-09-27

    A forward-view optical coherence tomography (OCT) scanning catheter has been developed based on a fiber-cantilever piezotube scanner by using a semi-resonant scan strategy for a better scan performance. A compact endoscope catheter was fabricated by using a tubular piezoelectric actuator with quartered electrodes in combination with a resonant fiber cantilever. A cantilever weight was attached to the fiber cantilever to reduce the resonance frequency down to 63 Hz, well in the desirable range for Fourier-domain OCT. The resonant-cantilever scanner was driven at semi-resonance frequencies that were well out of the resonance peak but within a range of partial resonance. This driving strategy has been found to minimize the phase difference between the two scan axes for a better scan stability against environmental perturbations as well as for a driving simplicity. By driving the two axes at slightly different frequencies, a low-order Lissajous pattern has been obtained for a 2D area scan. 3D OCT images have been successfully acquired in an acquisition time of 1.56 seconds for a tomogram volume of 2.2 × 2.2 × 2.1 mm(3). They were reconstructed without any scan calibration by extracting the scan timing from the image data. In addition, it has been found that the Lissajous scan strategy provides a means to compensate the relative axial motion of a sample for a correct imaged morphology.

  2. A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography.

    Science.gov (United States)

    Darne, Chinmay D; Lu, Yujie; Tan, I-Chih; Zhu, Banghe; Rasmussen, John C; Smith, Anne M; Yan, Shikui; Sevick-Muraca, Eva M

    2012-12-21

    The work presented herein describes the system design and performance evaluation of a miniaturized near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system with non-contact excitation and homodyne detection capability for small animal fluorescence tomography. The FDPM system was developed specifically for incorporation into a Siemens micro positron emission tomography/computed tomography (microPET/CT) commercial scanner for hybrid small animal imaging, but could be adapted to other systems. Operating at 100 MHz, the system noise was minimized and the associated amplitude and phase errors were characterized to be ±0.7% and ±0.3°, respectively. To demonstrate the tomographic ability, a commercial mouse-shaped phantom with 50 µM IRDye800CW and ⁶⁸Ga containing inclusion was used to associate PET and NIRF tomography. Three-dimensional mesh generation and anatomical referencing was accomplished through CT. A third-order simplified spherical harmonics approximation (SP₃) algorithm, for efficient prediction of light propagation in small animals, was tailored to incorporate the FDPM approach. Finally, the PET-NIRF target co-localization accuracy was analyzed in vivo with a dual-labeled imaging agent targeting orthotopic growth of human prostate cancer. The obtained results validate the integration of time-dependent fluorescence tomography system within a commercial microPET/CT scanner for multimodality small animal imaging.

  3. a Laboratory-Based X-Ray Phase Contrast Imaging Scanner with Applications in Biomedical and Non-Medical Disciplines

    Science.gov (United States)

    Hagen, C. K.; Diemoz, P. C.; Endrizzi, M.; Munro, P. R. T.; Szafraniec, M. B.; Millard, T. P.; Speller, R.; Olivo, D. A.

    2014-02-01

    X-ray phase contrast imaging (XPCi) provides a much higher visibility of low-absorbing details than conventional, attenuation-based radiography. This is due to the fact that image contrast is determined by the unit decrement of the real part of the complex refractive index of an object rather than by its imaginary part (the absorption coefficient), which can be up to 1000 times larger for energies in the X-ray regime. This finds applications in many areas, including medicine, biology, material testing, and homeland security. Until lately, XPCi has been restricted to synchrotron facilities due to its demanding coherence requirements on the radiation source. However, edge illumination XPCi, first developed by one of the authors at the ELETTRA Synchrotron in Italy, substantially relaxes these requirements and therefore provides options to overcome this problem. Our group has built a prototype scanner that adapts the edge-illumination concept to standard laboratory conditions and extends it to large fields of view. This is based on X-ray sources and detectors available off the shelf, and its use has led to impressive results in mammography, cartilage imaging, testing of composite materials and security inspection. This article presents the method and the scanner prototype, and reviews its applications in selected biomedical and non-medical disciplines.

  4. Coronary Computed Tomography Angiography: Patient-related factors determining image quality using a second-generation 320-slice CT scanner.

    Science.gov (United States)

    Ghekiere, Olivier; Nchimi, Alain; Djekic, Julien; El Hachemi, Mounia; Mancini, Isabelle; Hansen, Dominique; Vanhoenacker, Piet; de Roos, Albert; Dendale, Paul

    2016-10-15

    To investigate the diagnostic confidence of Coronary Computed Tomography Angiography (CCTA) and the effect of patient-related factors on CCTA image quality using a second-generation 320-slice scanner. 200 consecutive patients (mean age 60±12years; 109 men) prospectively underwent CCTA. The mean body mass index (BMI) was 27.1±4.9kg/m(2); the median heart rate (HR) was 60.0 (interquartile range (IQR), 53.9-66.1) beats per minute (bpm). The median segment's diameter was 2.8 (IQR, 2.2-3.4) mm. For each coronary segment ≥1.5mm in diameter, two readers scored: diameter narrowing as confidence and motion-related image quality, with interobserver agreement kappa-values of 0.89, 0.91 and 0.61 respectively. Seventy-nine of the 2505 evaluated segments (3.2%) had non-diagnostic image quality because of coronary calcifications (66/79; 83.5%), stent- (6/79; 7.5%), pacemaker- (2/79; 2.5%) or motion-related artifacts (5/79; 6.5%). The effect of patient-related factors on motion-related image quality was investigated by multinomial logistic regression in 181 patients with calcium score (IQR, 0-446.5). Increasing coronary diameter was the most improving image quality factor (odds ratio (OR), 1.8637; pimage quality. Using a second-generation 320-slice scanner, CCTA diagnostic confidence is predominantly affected by coronary calcifications, whereas motion-related image quality is non-diagnostic only in exceptional cases and mainly influenced by the coronary diameter. For future developments, our study findings therefore suggest greater requirements concerning spatial resolution and calcium-related artifact removal than concerning temporal resolution, especially to improve diagnostic confidence in patient groups with smaller coronary diameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Feasibility of low-tube-voltage excretory phase images during CT urography: assessment using a dual-energy CT scanner.

    Science.gov (United States)

    Shinagare, Atul B; Sahni, V Anik; Sadow, Cheryl A; Erturk, Sukru M; Silverman, Stuart G

    2011-11-01

    The purpose of this study is to assess the feasibility of low-tube-voltage images during excretory phase CT urography. In this retrospective study, we examined 70 consecutive CT urograms (35 men and 35 women; mean age, 58.5 years) performed on a dual-energy CT scanner and compared excretory phase images obtained at 80 kVp and 340 mAs with blended images (0.3 × 140 kVp and 80 mAs; and 0.7 × 80 kVp and 340 mAs). Quantitative measurements of urinary system opacification (Hounsfield units), image noise (Hounsfield units), and effective dose (millisieverts) were compared using Student paired t test. Image noise was correlated with patient thickness. Two independent blinded readers qualitatively assessed opacification, image quality (both compared using Wilcoxon test), overall acceptability (compared using McNemar test), and detectability of urinary and extraurinary findings. The 80-kVp images yielded significantly higher opacification of renal pelvis (p excretory phase CT urography is feasible, with improved urinary system opacification, acceptable image quality, and lower radiation dose.

  6. Scanner Art

    Science.gov (United States)

    Jaworski, Joy; Murphy, Kris

    2009-01-01

    In this article, the authors describe how they incorporated environmental awareness into their art curriculum. Here, they describe a digital photography project in which their students used flatbed scanners as cameras. Their students composed their objects directly on the scanner. The lesson enabled students to realize that artists have voices…

  7. X-ray micro-CT scanner for small animal imaging based on Timepix detector technology

    Science.gov (United States)

    Dudak, Jan; Zemlicka, Jan; Krejci, Frantisek; Polansky, Stepan; Jakubek, Jan; Mrzilkova, Jana; Patzelt, Matej; Trnka, Jan

    2015-02-01

    We describe a newly developed compact micro-CT scanner with rotating gantry equipped with a Timepix Quad hybrid pixel semiconductor detector and a micro-focus X-ray tube providing spatial resolution down to 30 μm. The resolving power of the device in relation to soft tissue sensitivity is demonstrated using a tissue-equivalent phantom and different types of biological samples. The results demonstrate that the use of noiseless particle counting detectors is a promising way to achieve sufficient soft tissue contrast even without any contrast agents.

  8. A comparative study for image quality and radiation dose of a cone beam computed tomography scanner and a multislice computed tomography scanner for paranasal sinus imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cock, Jens de; Canning, John [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Zanca, Federica; Hermans, Robert [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); KU Leuven, Imaging and Pathology Department, Leuven (Belgium); Pauwels, Ruben [KU Leuven, Imaging and Pathology Department, Leuven (Belgium)

    2015-07-15

    To evaluate image quality and radiation dose of a state of the art cone beam computed tomography (CBCT) system and a multislice computed tomography (MSCT) system in patients with sinonasal poliposis. In this retrospective study two radiologists evaluated 57 patients with sinonasal poliposis who underwent a CBCT or MSCT sinus examination, along with a control group of 90 patients with normal radiological findings. Tissue doses were measured using a phantom model with thermoluminescent dosimeters (TLD). Overall image quality in CBCT was scored significantly higher than in MSCT in patients with normal radiologic findings (p-value: 0.00001). In patients with sinonasal poliposis, MSCT scored significantly higher than CBCT (p-value: 0.00001). The average effective dose for MSCT was 42 % higher compared to CBCT (108 μSv vs 63 μSv). CBCT and MSCT are both suited for the evaluation of sinonasal poliposis. In patients with sinonasal poliposis, clinically important structures of the paranasal sinuses can be better delineated with MSCT, whereas in patients without sinonasal poliposis, CBCT turns out to define the important structures of the sinonasal region better. However, given the lower radiation dose, CBCT can be considered for the evaluation of the sinonasal structures in patients with sinonasal poliposis. (orig.)

  9. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi; Wang, Junting; Lu, Qingyou, E-mail: qxl@ustc.edu.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hou, Yubin [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2013-11-15

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d{sub 31} coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  10. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    Science.gov (United States)

    Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou

    2013-11-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  11. Clinical evaluation of 2D versus 3D whole-body PET image quality using a dedicated BGO PET scanner.

    Science.gov (United States)

    Visvikis, D; Griffiths, D; Costa, D C; Bomanji, J; Ell, P J

    2005-09-01

    Three-dimensional positron emission tomography (3D PET) results in higher system sensitivity, with an associated increase in the detection of scatter and random coincidences. The objective of this work was to compare, from a clinical perspective, 3D and two-dimensional (2D) acquisitions in terms of whole-body (WB) PET image quality with a dedicated BGO PET system. 2D and 3D WB emission acquisitions were carried out in 70 patients. Variable acquisition parameters in terms of time of emission acquisition per axial field of view (aFOV) and slice overlap between sequential aFOVs were used during the 3D acquisitions. 3D and 2D images were reconstructed using FORE+WLS and OSEM respectively. Scatter correction was performed by convolution subtraction and a model-based scatter correction in 2D and 3D respectively. All WB images were attenuation corrected using segmented transmission scans. Images were blindly assessed by three observers for the presence of artefacts, confidence in lesion detection and overall image quality using a scoring system. Statistically significant differences between 2D and 3D image quality were only obtained for 3D emission acquisitions of 3 min. No statistically significant differences were observed for image artefacts or lesion detectability scores. Image quality correlated significantly with patient weight for both modes of operation. Finally, no differences were seen in image artefact scores for the different axial slice overlaps considered, suggesting the use of five slice overlaps in 3D WB acquisitions. 3D WB imaging using a dedicated BGO-based PET scanner offers similar image quality to that obtained in 2D considering similar overall times of acquisitions.

  12. Clinical evaluation of 2D versus 3D whole-body PET image quality using a dedicated BGO PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Visvikis, D. [CHU Morvan, U650 INSERM, Laboratoire de Traitement de l' Information Medicale (LaTIM), Brest (France); Griffiths, D. [Lister Healthcare, London PET Centre, London (United Kingdom); Costa, D.C. [Middlesex Hospital, Institute of Nuclear Medicine, Royal Free and University College Medical School, London (United Kingdom); HPP Medicina Molecular, SA Porto (Portugal); Bomanji, J.; Ell, P.J. [Middlesex Hospital, Institute of Nuclear Medicine, Royal Free and University College Medical School, London (United Kingdom)

    2005-09-01

    Three-dimensional positron emission tomography (3D PET) results in higher system sensitivity, with an associated increase in the detection of scatter and random coincidences. The objective of this work was to compare, from a clinical perspective, 3D and two-dimensional (2D) acquisitions in terms of whole-body (WB) PET image quality with a dedicated BGO PET system. 2D and 3D WB emission acquisitions were carried out in 70 patients. Variable acquisition parameters in terms of time of emission acquisition per axial field of view (aFOV) and slice overlap between sequential aFOVs were used during the 3D acquisitions. 3D and 2D images were reconstructed using FORE+WLS and OSEM respectively. Scatter correction was performed by convolution subtraction and a model-based scatter correction in 2D and 3D respectively. All WB images were attenuation corrected using segmented transmission scans. Images were blindly assessed by three observers for the presence of artefacts, confidence in lesion detection and overall image quality using a scoring system. Statistically significant differences between 2D and 3D image quality were only obtained for 3D emission acquisitions of 3 min. No statistically significant differences were observed for image artefacts or lesion detectability scores. Image quality correlated significantly with patient weight for both modes of operation. Finally, no differences were seen in image artefact scores for the different axial slice overlaps considered, suggesting the use of five slice overlaps in 3D WB acquisitions. 3D WB imaging using a dedicated BGO-based PET scanner offers similar image quality to that obtained in 2D considering similar overall times of acquisitions. (orig.)

  13. Coincidence measurements on detectors for microPET II: A 1 mm3 resolution PET scanner for small animal imaging

    CERN Document Server

    Chatziioannou, A; Shao, Y; Doshi, N K; Silverman, B; Meadors, K; Cherry, SR

    2000-01-01

    We are currently developing a small animal PET scanner with a design goal of 1 mm3 image resolution. We have built three pairs of detectors and tested performance in terms of crystal identification, spatial, energy and timing resolution. The detectors consisted of 12 multiplied by 12 arrays of 1 multiplied by 1 multiplied by 10mm LSO crystals (1.15 mm pitch) coupled to Hamamatsu H7546 64 channel PMTs via 5cm long coherent glass fiber bundles. Optical fiber connection is necessary to allow high packing fraction in a ring geometry scanner. Fiber bundles with and without extramural absorber (EMA) were tested. The results demonstrated an intrinsic spatial resolution of 1.12 mm (direct coupled LSO array), 1.23 mm (bundle without EMA) and 1.27 mm (bundle with EMA) using a similar to 500 micron diameter Na-22 source. Using a 330 micron line source filled with F-18, intrinsic resolution for the EMA bundle improved to 1.05 mm. The respective timing and energy resolution values were 1.96 ns, 21% (direct coupled), 2.20 ...

  14. INTERPRETATION OF THERMAL-INFRARED MULTISPECTRAL SCANNER IMAGES OF THE OSGOOD MOUNTAINS, NEVADA.

    Science.gov (United States)

    Krohn, M. Dennis

    1984-01-01

    Data from the Thermal-Infrared Multispectral Scanner (TIMS) were collected over the Osgood Mountains in northern Nevada midmorning on 27 August 1983. The area includes gold-producing properties of the Getchell Mine, the Prinson Mine, and a prospect being developed near Preble, Nevada. Tungsten-bearing tactite deposits, barite deposits, and some minor lead-zinc deposits are also present. The area was surveyed to determine if multichannel, mid-infrared data could detect the effects of hydrothermal alteration in the sediment-hosted disseminated gold deposits. Because the gold in the deposits is generally microscopic and the effects of alteration are difficult to observe, the deposits present a difficult challenge for geological remote sensing.

  15. Development and clinical translation of a cone-beam CT scanner for high-quality imaging of intracranial hemorrhage

    Science.gov (United States)

    Sisniega, A.; Xu, J.; Dang, H.; Zbijewski, W.; Stayman, J. W.; Mow, M.; Koliatsos, V. E.; Aygun, N.; Wang, X.; Foos, D. H.; Siewerdsen, J. H.

    2017-03-01

    Purpose: Prompt, reliable detection of intracranial hemorrhage (ICH) is essential for treatment of stroke and traumatic brain injury, and would benefit from availability of imaging directly at the point-of-care. This work reports the performance evaluation of a clinical prototype of a cone-beam CT (CBCT) system for ICH imaging and introduces novel algorithms for model-based reconstruction with compensation for data truncation and patient motion. Methods: The tradeoffs in dose and image quality were investigated as a function of analytical (FBP) and model-based iterative reconstruction (PWLS) algorithm parameters using phantoms with ICH-mimicking inserts. Image quality in clinical applications was evaluated in a human cadaver imaged with simulated ICH. Objects outside of the field of view (FOV), such as the head-holder, were found to introduce challenging truncation artifacts in PWLS that were mitigated with a novel multi-resolution reconstruction strategy. Following phantom and cadaver studies, the scanner was translated to a clinical pilot study. Initial clinical experience indicates the presence of motion in some patient scans, and an image-based motion estimation method that does not require fiducial tracking or prior patient information was implemented and evaluated. Results: The weighted CTDI for a nominal scan technique was 22.8 mGy. The high-resolution FBP reconstruction protocol achieved function (PSF). The PWLS soft-tissue reconstruction showed cranial sutures, and the cochlea as well as subtle low-contrast structures in the brain parenchyma. Conclusion: The imaging performance of the prototype suggests sufficient quality for ICH imaging and motivates continued clinical studies to assess the diagnosis utility of the CBCT system in realistic clinical scenarios at the point of care.

  16. Intensity correction method customized for multi-animal abdominal MR imaging with 3T clinical scanner and multi-array coil.

    Science.gov (United States)

    Mitsuda, Minoru; Yamaguchi, Masayuki; Nakagami, Ryutaro; Furuta, Toshihiro; Sekine, Norio; Niitsu, Mamoru; Moriyama, Noriyuki; Fujii, Hirofumi

    2013-01-01

    Simultaneous magnetic resonance (MR) imaging of multiple small animals in a single session increases throughput of preclinical imaging experiments. Such imaging using a 3-tesla clinical scanner with multi-array coil requires correction of intensity variation caused by the inhomogeneous sensitivity profile of the coil. We explored a method for correcting intensity that we customized for multi-animal MR imaging, especially abdominal imaging. Our institutional committee for animal experimentation approved the protocol. We acquired high resolution T₁-, T₂-, and T₂*-weighted images and low resolution proton density-weighted images (PDWIs) of 4 rat abdomens simultaneously using a 3T clinical scanner and custom-made multi-array coil. For comparison, we also acquired T₁-, T₂-, and T₂*-weighted volume coil images in the same rats in 4 separate sessions. We used software created in-house to correct intensity variation. We applied thresholding to the PDWIs to produce binary images that displayed only a signal-producing area, calculated multi-array coil sensitivity maps by dividing low-pass filtered PDWIs by low-pass filtered binary images pixel by pixel, and divided uncorrected T₁-, T₂-, or T₂*-weighted images by those maps to obtain intensity-corrected images. We compared tissue contrast among the liver, spinal canal, and muscle between intensity-corrected multi-array coil images and volume coil images. Our intensity correction method performed well for all pulse sequences studied and corrected variation in original multi-array coil images without deteriorating the throughput of animal experiments. Tissue contrasts were comparable between intensity-corrected multi-array coil images and volume coil images. Our intensity correction method customized for multi-animal abdominal MR imaging using a 3T clinical scanner and dedicated multi-array coil could facilitate image interpretation.

  17. Intensity-based dual model method for generation of synthetic CT images from standard T2-weighted MR images - Generalized technique for four different MR scanners.

    Science.gov (United States)

    Koivula, Lauri; Kapanen, Mika; Seppälä, Tiina; Collan, Juhani; Dowling, Jason A; Greer, Peter B; Gustafsson, Christian; Gunnlaugsson, Adalsteinn; Olsson, Lars E; Wee, Leonard; Korhonen, Juha

    2017-12-01

    Recent studies have shown that it is possible to conduct entire radiotherapy treatment planning (RTP) workflow using only MR images. This study aims to develop a generalized intensity-based method to generate synthetic CT (sCT) images from standard T2-weighted (T2 w ) MR images of the pelvis. This study developed a generalized dual model HU conversion method to convert standard T2 w MR image intensity values to synthetic HU values, separately inside and outside of atlas-segmented bone volume contour. The method was developed and evaluated with 20 and 35 prostate cancer patients, respectively. MR images with scanning sequences in clinical use were acquired with four different MR scanners of three vendors. For the generated synthetic CT (sCT) images of the 35 prostate patients, the mean (and maximal) HU differences in soft and bony tissue volumes were 16 ± 6 HUs (34 HUs) and -46 ± 56 HUs (181 HUs), respectively, against the true CT images. The average of the PTV mean dose difference in sCTs compared to those in true CTs was -0.6 ± 0.4% (-1.3%). The study provides a generalized method for sCT creation from standard T2 w images of the pelvis. The method produced clinically acceptable dose calculation results for all the included scanners and MR sequences. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. 2D MEMS electrostatic cantilever waveguide scanner for potential image display application

    Directory of Open Access Journals (Sweden)

    Gu Kebin

    2015-01-01

    Full Text Available This paper presents the current status of our micro-fabricated SU-8 2D electrostatic cantilever waveguide scanner. The current design utilizes a monolithically integrated electrostatic push-pull actuator. A 4.0 μm SU-8 rib waveguide design allows a relatively large core cross section (4μm in height and 20 μm in width to couple with existing optical fiber and a broad band single mode operation (λ= 0.7μm to 1.3μm with minimal transmission loss (85% to 87% output transmission efficiency with Gaussian beam profile input. A 2D scanning motion has been successfully demonstrated with two fundamental resonances found at 202 and 536 Hz in vertical and horizontal directions. A 130 μm and 19 μm, corresponding displacement and 0.062 and 0.009 rad field of view were observed at a +150V input. Beam divergence from the waveguide was corrected by a focusing GRIN lens and a 5μm beam diameter is observed at the focal plane. The transmission efficiency is low (~10% and cantilever is slightly under tensile residual stress due to inherent imperfection in the process and tooling in fabrication. However, 2D light scanning pattern was successfully demonstrated using 1-D push-pull actuation.

  19. Experimental evaluation and basis function optimization of the spatially variant image-space PSF on the Ingenuity PET/MR scanner

    NARCIS (Netherlands)

    Kotasidis, Fotis A.; Zaidi, Habib

    Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its

  20. A device to measure the effects of strong magnetic fields on the image resolution of PET scanners

    CERN Document Server

    Burdette, D; Chesi, E; Clinthorne, N H; Cochran, E; Honscheid, K; Huh, S S; Kagan, H; Knopp, M; Lacasta, C; Mikuz, M; Schmalbrock, P; Studen, A; Weilhammer, P

    2009-01-01

    Very high resolution images can be achieved in small animal PET systems utilizing solid state silicon pad detectors. As these systems approach sub-millimeter resolutions, the range of the positron is becoming the dominant contribution to image blur. The size of the positron range effect depends on the initial positron energy and hence the radioactive tracer used. For higher energy positron emitters, such as and , which are gaining importance in small animal studies, the width of the annihilation point distribution dominates the spatial resolution. This positron range effect can be reduced by embedding the field of view of the PET scanner in a strong magnetic field. In order to confirm this effect experimentally, we developed a high resolution PET instrument based on silicon pad detectors that can operate in a 7 T magnetic field. In this paper, we describe the instrument and present initial results of a study of the effects of magnetic fields up to 7 T on PET image resolution for and point sources.

  1. An inter-laboratory comparison study of image quality of PET scanners using the NEMA NU 2-2001 procedure for assessment of image quality

    Science.gov (United States)

    Bergmann, Helmar; Dobrozemsky, Georg; Minear, Gregory; Nicoletti, Rudolf; Samal, Martin

    2005-05-01

    An inter-laboratory comparison study was conducted to assess the image quality of PET scanners in Austria. The survey included both dedicated PET scanners (D-PET, n = 8) and coincidence cameras (GC-PET, n = 7). Measurement of image quality was based on the NEMA (National Electrical Manufacturers Association) NU 2-2001 protocol and the IEC (International Electrotechnical Commission) body phantom. The latter contains six fillable spheres ranging in diameter from 37 mm down to 10 mm and a 'lung' insert. The two largest lesions L1-2 simulate cold lesions, the four smaller ones (L3-6) are filled with 18F and activity concentration ratios relative to background of 8:1 and 4:1, respectively. Acquisition and reconstruction in the study employed the participating institutes' standard oncological processing protocol. Calculation of contrast of the spheres was performed with a fully automated procedure. Contrast quality indices (CQIs) reflecting global performance were obtained by summing individual contrast values. Other image quality parameters calculated according to the NEMA protocol were background variability and relative error for correction of attenuation and scatter. Contrast values obtained were 61 ± 16 and 37 ± 14 for L1 (per cent contrast ± SD for D-PET and GC-PET, respectively), 57 ± 16 and 29 ± 16 for L2, 46 ± 10 and 26 ± 6.3 for L3, 37 ± 10 and 15 ± 4.3 for L4, 26 ± 11.5 and 6.1 ± 2.5 for L5, 14 ± 7.1 and 2.6 ± 2.6 for L6, with D-PET systems consistently being superior to GC-PET systems. CQIs permitted ranking of the scanners, also demonstrating a clear distinction between D-PET and GC-PET systems. Background variability was largest for GC-PET systems; the relative error of attenuation and scatter correction was significantly correlated with image quality for D-PET systems only. The study demonstrated considerable differences in image quality not only between GC-PET and D-PET systems but also between individual D-PET systems with possible

  2. (Don't) panic in the scanner! How panic patients with agoraphobia experience a functional magnetic resonance imaging session.

    Science.gov (United States)

    Lueken, Ulrike; Muehlhan, Markus; Wittchen, Hans-Ulrich; Kellermann, Thilo; Reinhardt, Isabelle; Konrad, Carsten; Lang, Thomas; Wittmann, André; Ströhle, Andreas; Gerlach, Alexander L; Ewert, Adrianna; Kircher, Tilo

    2011-07-01

    Although functional magnetic resonance imaging (fMRI) has gained increasing importance in investigating neural substrates of anxiety disorders, less is known about the stress eliciting properties of the scanner environment itself. The aim of the study was to investigate feasibility, self-reported distress and anxiety management strategies during an fMRI experiment in a comprehensive sample of patients with panic disorder and agoraphobia (PD/AG). Within the national research network PANIC-NET, n=89 patients and n=90 controls participated in a multicenter fMRI study. Subjects completed a retrospective questionnaire on self-reported distress, including a habituation profile and exploratory questions about helpful strategies. Drop-out rates and fMRI quality parameters were employed as markers of study feasibility. Different anxiety measures were used to identify patients particularly vulnerable to increased scanner anxiety and impaired data quality. Three (3.5%) patients terminated the session prematurely. While drop-out rates were comparable for patients and controls, data quality was moderately impaired in patients. Distress was significantly elevated in patients compared to controls; claustrophobic anxiety was furthermore associated with pronounced distress and lower fMRI data quality in patients. Patients reported helpful strategies, including motivational factors and cognitive coping strategies. The feasibility of large-scale fMRI studies on PD/AG patients could be proved. Study designs should nevertheless acknowledge that the MRI setting may enhance stress reactions. Future studies are needed to investigate the relationship between self-reported distress and fMRI data in patient groups that are subject to neuroimaging research. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Comparison and use of 3D scanners to improve the quantification of medical images (surface structures and volumes) during follow up of clinical (surgical) procedures

    Science.gov (United States)

    Tokkari, Niki; Verdaasdonk, Rudolf M.; Liberton, Niels; Wolff, Jan; den Heijer, Martin; van der Veen, Albert; Klaessens, John H.

    2017-02-01

    It is difficult to obtain quantitative measurements as to surface areas and volumes from standard photos of the body parts of patients which is highly desirable for objective follow up of treatments in e.g. dermatology. plastic, aesthetic and reconstructive surgery. Recently, 3-D scanners have become available to provide quantification. Phantoms (3-D printed hand, nose and ear, colored bread sculpture) were developed to compare a range from low-cost (Sense), medium (HP Sprout) to high end (Artec Spider, Vectra M3) scanners using different 3D imaging technologies, as to resolution, working range, surface color representation, user friendliness. The 3D scans files (STL, OBJ) were processed with Artec studio and GOM software as to deviation compared to the high resolution Artec Spider scanner taken as `golden' standard. The HP Spout, which uses a fringe projection, proved to be nearly as good as the Artec, however, needs to be converted for clinical use. Photogrammetry as used by the Vectra M3 scanner is limited to provide sufficient data points for accurate surface mapping however provides good color/structure representation. The low performance of the Sense is not recommended for clinical use. The Artec scanner was successfully used to measure the structure/volume changes in the face after hormone treatment in transgender patients. 3D scanners can greatly improve quantitative measurements of surfaces and volumes as objective follow up in clinical studies performed by various clinical specialisms (dermatology, aesthetic and reconstructive surgery). New scanning technologies, like fringe projection, are promising for development of low-cost, high precision scanners.

  4. Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue.

    Science.gov (United States)

    Davis, Scott C; Pogue, Brian W; Springett, Roger; Leussler, Christoph; Mazurkewitz, Peter; Tuttle, Stephen B; Gibbs-Strauss, Summer L; Jiang, Shudong S; Dehghani, Hamid; Paulsen, Keith D

    2008-06-01

    A multichannel spectrally resolved optical tomography system to image molecular targets in small animals from within a clinical MRI is described. Long source/detector fibers operate in contact mode and couple light from the tissue surface in the magnet bore to 16 spectrometers, each containing two optical gratings optimized for the near infrared wavelength range. High sensitivity, cooled charge coupled devices connected to each spectrograph provide detection of the spectrally resolved signal, with exposure times that are automated for acquisition at each fiber. The design allows spectral fitting of the remission light, thereby separating the fluorescence signal from the nonspecific background, which improves the accuracy and sensitivity when imaging low fluorophore concentrations. Images of fluorescence yield are recovered using a nonlinear reconstruction approach based on the diffusion approximation of photon propagation in tissue. The tissue morphology derived from the MR images serves as an imaging template to guide the optical reconstruction algorithm. Sensitivity studies show that recovered values of indocyanine green fluorescence yield are linear to concentrations of 1 nM in a 70 mm diameter homogeneous phantom, and detection is feasible to near 10 pM. Phantom data also demonstrate imaging capabilities of imperfect fluorophore uptake in tissue volumes of clinically relevant sizes. A unique rodent MR coil provides optical fiber access for simultaneous optical and MR data acquisition of small animals. A pilot murine study using an orthotopic glioma tumor model demonstrates optical-MRI imaging of an epidermal growth factor receptor targeted fluorescent probe in vivo.

  5. Experimental evaluation and basis function optimization of the spatially variant image-space PSF on the Ingenuity PET/MR scanner.

    Science.gov (United States)

    Kotasidis, Fotis A; Zaidi, Habib

    2014-06-01

    The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailed investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (~4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis function superposition and keeping the image

  6. A control approach to cross-coupling compensation of piezotube scanners in tapping-mode atomic force microscope imaging

    Science.gov (United States)

    Wu, Ying; Shi, Jian; Su, Chanmin; Zou, Qingze

    2009-04-01

    In this article, an approach based on the recently developed inversion-based iterative control (IIC) to cancel the cross-axis coupling effect of piezoelectric tube scanners (piezoscanners) in tapping-mode atomic force microscope (AFM) imaging is proposed. Cross-axis coupling effect generally exists in piezoscanners used for three-dimensional (x-y-z axes) nanopositioning in applications such as AFM, where the vertical z-axis movement can be generated by the lateral x-y axes scanning. Such x /y-to-z cross-coupling becomes pronounced when the scanning is at large range and/or at high speed. In AFM applications, the coupling-caused position errors, when large, can generate various adverse effects, including large imaging and topography distortions, and damage of the cantilever probe and/or the sample. This paper utilizes the IIC technique to obtain the control input to precisely track the coupling-caused x /y-to-z displacement (with sign-flipped). Then the obtained input is augmented as a feedforward control to the existing feedback control in tapping-mode imaging, resulting in the cancellation of the coupling effect. The proposed approach is illustrated through two exemplary applications in industry, the pole-tip recession examination, and the nanoasperity measurement on hard-disk drive. Experimental results show that the x /y-to-z coupling effect in large-range (20 and 45 μm) tapping-mode imaging at both low to high scan rates (2, 12.2 to 24.4 Hz) can be effectively removed.

  7. Single-step scanner-based digital image correlation (SB-DIC) method for large deformation mapping in rubber

    Science.gov (United States)

    Goh, C. P.; Ismail, H.; Yen, K. S.; Ratnam, M. M.

    2017-01-01

    The incremental digital image correlation (DIC) method has been applied in the past to determine strain in large deformation materials like rubber. This method is, however, prone to cumulative errors since the total displacement is determined by combining the displacements in numerous stages of the deformation. In this work, a method of mapping large strains in rubber using DIC in a single-step without the need for a series of deformation images is proposed. The reference subsets were deformed using deformation factors obtained from the fitted mean stress-axial stretch ratio curve obtained experimentally and the theoretical Poisson function. The deformed reference subsets were then correlated with the deformed image after loading. The recently developed scanner-based digital image correlation (SB-DIC) method was applied on dumbbell rubber specimens to obtain the in-plane displacement fields up to 350% axial strain. Comparison of the mean axial strains determined from the single-step SB-DIC method with those from the incremental SB-DIC method showed an average difference of 4.7%. Two rectangular rubber specimens containing circular and square holes were deformed and analysed using the proposed method. The resultant strain maps from the single-step SB-DIC method were compared with the results of finite element modeling (FEM). The comparison shows that the proposed single-step SB-DIC method can be used to map the strain distribution accurately in large deformation materials like rubber at much shorter time compared to the incremental DIC method.

  8. A case study in scanner optimisation.

    Science.gov (United States)

    Dudley, N J; Gibson, N M

    2014-02-01

    Ultrasound scanner preset programmes are factory set or tailored to user requirements. Scanners may, therefore, have different settings for the same application, even on similar equipment in a single department. The aims of this study were: (1) to attempt to match the performance of two scanners, where one was preferred and (2) to assess differences between six scanners used for breast ultrasound within our organisation. The Nottingham Ultrasound Quality Assurance software was used to compare imaging performance. Images of a Gammex RMI 404GS test object were collected from six scanners, using default presets, factory presets and settings matched to a preferred scanner. Resolution, low contrast performance and high contrast performance were measured. The performance of two scanners was successfully matched, where one had been preferred. Default presets varied across the six scanners, three different presets being used. The most used preset differed in settings across the scanners, most notably in the use of different frequency modes. The factory preset was more consistent across the scanners, the main variation being in dynamic range (55-70 dB). Image comparisons showed significant differences, which were reduced or eliminated by adjustment of settings to match a reference scanner. It is possible to match scanner performance using the Nottingham Ultrasound Quality Assurance software as a verification tool. Ultrasound users should be aware that scanners may not behave in a similar fashion, even with apparently equivalent presets. It should be possible to harmonise presets by consensus amongst users.

  9. A Continuous Millimeter-Wave Imaging Scanner for Art Conservation Science

    Directory of Open Access Journals (Sweden)

    Ayesha Younus

    2011-01-01

    Full Text Available A monochromatic continuous millimeter-wave imaging system coupled with an infrared temperature sensor has been used to investigate artistic objects such as painting artworks or antiquities preserved at the museum of Aquitaine. Especially, 2D and 3D analyses have been performed in order to reveal the internal structure of a nearly 3500-year-old sealed Egyptian jar.

  10. A Continuous Millimeter-Wave Imaging Scanner for Art Conservation Science

    OpenAIRE

    Ayesha Younus; Jean-Pascal Caumes; Simon Salort; Bruno Chassagne; Christophe Pradère; Alain Dautant; Anne Ziéglé; Emmanuel Abraham

    2011-01-01

    International audience; A monochromatic continuous millimeter-wave imaging system coupled with an infrared temperature sensor has been used to investigate artistic objects such as painting artworks or antiquities preserved at the museum of Aquitaine. Especially, 2D and 3D analyses have been performed in order to reveal the internal structure of a nearly 3500-year-old sealed Egyptian jar.

  11. Feasibility of functional cardiac MR imaging in mice using a clinical 3 Tesla whole body scanner.

    Science.gov (United States)

    Bunck, Alexander C; Engelen, Markus A; Schnackenburg, Bernhard; Furkert, Juliane; Bremer, Christoph; Heindel, Walter; Stypmann, Jörg; Maintz, David

    2009-12-01

    To test the feasibility of cardiac MR imaging in mice using a clinical 3 Tesla whole body MR system for structural and functional analysis. Standard protocols for bright blood cine imaging were adapted for murine dimensions. To validate measurements of functional parameters the MR data were compared with high-resolution echocardiographic measurements. Cardiac imaging was carried out in CD 1 wild-type mice (n = 8). MR imaging studies were performed using a clinical 3 Tesla MR system (Achieva, Philips). All mice received 2 MR scans and 1 echocardiographic evaluation. For optimal MR signal detection a dedicated solenoid receive-only coil was used. Electrocardiogram signal was recorded using a dedicated small animal electrocardiogram monitoring unit. For imaging we used a retrospectively triggered TFE sequence with a repetition time of 12 ms and an echo time of 4 ms. A dedicated software patch allowed for triggering of cardiac frequency of up to 600 BPM. Doppler-echocardiography was performed using a VisualSonics Vevo 770 high-resolution imaging system with a 30 MHz scanhead. Axial/lateral resolution was 40 of 100 microm and temporal resolution was 150 to 300 frames/s (B-mode) and 1000 frames/s (M-mode) depending on the setting. MR imaging was successfully carried out in all mice with a sufficient temporal resolution and good signal-to-noise ratio and contrast-to-noise ratio levels allowing for identification of all relevant structures. Accordingly, there was a good scan-rescan reproducibility of MR measurements: Interassay coefficients of variance ranged from 4% for ejection fraction to 12% for endsystolic volume (ESV). Magnetic resonance imaging and echocardiography gave comparable results when using the same geometric model (Teichholz method): EDV: 60.2 +/- 6.1 microL/59.1 +/- 12.3 microL, ESV: 20.0 +/- 2.6 microL/20.7 +/- 7.7 microL, EF: 66.7% +/- 4.0%/65.2% +/- 9.9%, CO 19.5 +/- 3.6 mL/17.9 +/- 2.9 mL. Bland-Altman analysis gave acceptable limits of agreement

  12. A transfer-learning approach to image segmentation across scanners by maximizing distribution similarity

    DEFF Research Database (Denmark)

    van Opbroek, Annegreet; Ikram, M. Arfan; Vernooij, Meike W.

    2013-01-01

    Many successful methods for biomedical image segmentation are based on supervised learning, where a segmentation algorithm is trained based on manually labeled training data. For supervised-learning algorithms to perform well, this training data has to be representative for the target data...... different studies than the target data. The algorithm assigns an importance weight to all training images, in such a way that the Kullback-Leibler divergence between the resulting distribution of the training data and the distribution of the target data is minimized. In a set of experiments on MRI brain......-tissue segmentation with training and target data from four substantially different studies our method improved mean classification errors with up to 25% compared to common supervised-learning approaches....

  13. A combined solenoid-surface RF coil for high-resolution whole-brain rat imaging on a 3.0 Tesla clinical MR scanner.

    Science.gov (United States)

    Underhill, Hunter R; Yuan, Chun; Hayes, Cecil E

    2010-09-01

    Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition. 2010 Wiley-Liss, Inc.

  14. Imaging of Blood Flow in Cerebral Arteries with Dynamic Helical Computed Tomography Angiography (DHCTA) Using a 64-Row CT Scanner

    Energy Technology Data Exchange (ETDEWEB)

    Pekkola, J.; Kangasniemi, M. (Helsinki Medical Imaging Center, Helsinki Univ. Central Hospital, Helsinki (Finland))

    2009-08-15

    Background: Cerebral computed tomography angiography (CTA) depicts a structural image of intracranial arteries without providing much time-resolved information on blood flow dynamics. Current CT technology allows obtaining of rapidly repeated helical scans during the arterial contrast filling phase after an intravenous contrast injection. Purpose: To report our experience on dynamic CT imaging in determining the direction of contrast filling within proximal intracranial arteries of operated cerebral artery aneurysm patients. Such dynamic information can help detect vascular occlusion or severe spasm. The method is here referred to as dynamic helical CT angiography (DHCTA). Material and Methods: We retrospectively collected image and related technical data for 23 patients who underwent DHCTA and CTA during their first postoperative day after cerebral artery aneurysm surgery. For DHCTA, we had helically scanned a 4-cm tissue volume three times in succession with a 64-row CT scanner at intervals of 2.6 s during arterial contrast filling after an intravenous contrast injection. We assessed how well DHCTA succeeded in demonstrating the direction of contrast filling in the proximal intracranial arteries, evaluated clinically relevant structural information provided by DHCTA and CTA, and compared radiation doses for the two methods. Results: For 21 patients, DHCTA outlined the direction of contrast filling in proximal intracranial arteries. As to arterial spasm and residual filling of the operated aneurysm, CTA and DHCTA gave similar information. Radiation doses were higher (P<0.000001) for DHCTA than for CTA at 120 kV tube voltage. At 100 kV, the difference was smaller, but doses for DHCTA still exceeded (P<0.05) those for CTA. Conclusion: DHCTA gave dynamic information unobtainable with CTA and could prove useful in selected clinical settings

  15. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sajedi, Salar; Zeraatkar, Navid [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Moji, Vahideh; Farahani, Mohammad Hossein [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Parto Negar Persia Co, Tehran (Iran, Islamic Republic of); Sarkar, Saeed [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Arabi, Hossein [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Teymoorian, Behnoosh [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Parto Negar Persia Co, Tehran (Iran, Islamic Republic of); Ghafarian, Pardis [Chronic Respiratory Disease Research Center, NRITLD, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahmim, Arman [Department of Radiology, Johns Hopkins University, Baltimore, MD (United States); Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD (United States); Reza Ay, Mohammad, E-mail: mohammadreza_ay@sina.tums.ac.ir [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-03-21

    A dedicated small-animal SPECT system, HiReSPECT, was designed and developed to provide a high resolution molecular imaging modality in response to growing research demands. HiReSPECT is a dual-head system mounted on a rotating gantry. The detection system is based on pixelated CsI(Na) scintillator crystals coupled to two Hamamatsu H8500 Position Sensitive Photomultiplier Tubes in each head. Also, a high resolution parallel-hole collimator is applied to every head. The dimensions of each head are 50 mm×100 mm, enabling sufficient transaxial and axial fields-of-view (TFOV and AFOV), respectively, for coverage of the entire mouse in single-bed position imaging. However, a 50 mm TFOV is not sufficient for transaxial coverage of rats. To address this, each head can be rotated by 90 degrees in order to align the larger dimension of the heads with the short body axis, allowing tomographic data acquisition for rats. An innovative non-linear recursive filter was used for signal processing/detection. Resolution recovery was also embedded in the modified Maximum-Likelihood Expectation Maximization (MLEM) image reconstruction code to compensate for Collimator-Detector Response (CDR). Moreover, an innovative interpolation algorithm was developed to speed up the reconstruction code. The planar spatial resolution at the head surface and the image spatial resolutions were 1.7 mm and 1.2–1.6 mm, respectively. The measurements followed by post-processing showed that the observed count rate at 20% count loss is about 42 kcps. The system sensitivity at the collimator surface for heads 1 and 2 were 1.32 cps/µCi and 1.25 cps/µCi, respectively. The corresponding values were 1.18 cps/µCi and 1.02 cps/µCi at 8 cm distance from the collimator surfaces. In addition, whole-body scans of mice demonstrated appropriate imaging capability of the HiReSPECT.

  16. SPECT {sup 99m}Tc-sestamibi/{sup 123}I subtraction images merged to the scanner: interest of patients with hyperparathyroidism, candidates to surgery; Images de soustraction SPECT 99mTc-Sestamibi/123 I fusionnees au scanner: interet chez des patients avec hyperparathyroidie, candidats a la chirurgie

    Energy Technology Data Exchange (ETDEWEB)

    Poullias, X.; Hapdey, S.; Salles, A.; Vera, P.; Edet-Sanson, A. [Centre Henri-Becquerel, 76 - Rouen (France); Guernou, M. [Centre cardiologique du Nord, 93 - Saint-Denis (France); Hitzel, A. [CHU de Toulouse, 31 (France)

    2010-07-01

    Purpose: the aim of this study is to evaluate the interest of SPECT subtraction images merged to the scanner (S/CT), compared to planar subtraction (S/PL) and to echography, in the framework of hyperparathyroidism. Conclusions: Although subtraction SPECT images merged on CT have a sensitivity close to planar subtraction images, making this modality often allows to visualize the lesion to define its size and anatomical reports. These elements are a help for surgical management. (N.C.)

  17. Mapping Forest Species Composition Using Imaging Spectrometry and Airborne Laser Scanner Data

    Science.gov (United States)

    Torabzadeh, H.; Morsdorf, F.; Leiterer, R.; Schaepman, M. E.

    2013-09-01

    Accurate mapping of forest species composition is an important aspect of monitoring and management planning related to ecosystem functions and services associated with water refinement, carbon sequestration, biodiversity, and wildlife habitats. Although different vegetation species often have unique spectral signatures, mapping based on spectral reflectance properties alone is often an ill-posed problem, since the spectral signature is as well influenced by age, canopy gaps, shadows and background characteristics. Thus, reducing the unknown variation by knowing the structural parameters of different species should improve determination procedures. In this study we combine imaging spectrometry (IS) and airborne laser scanning (ALS) data of a mixed needle and broadleaf forest to differentiate tree species more accurately as single-instrument data could do. Since forest inventory data in dense forests involve uncertainties, we tried to refine them by using individual tree crowns (ITC) position and shape, which derived from ALS data. Comparison of the extracted spectra from original field data and the modified one shows how ALS-derived shape and position of ITCs can improve separablity of the different species. The spatially explicit information layers containing both the spectral and structural components from the IS and ALS datasets were then combined by using a non-parametric support vector machine (SVM) classifier.

  18. Apparent diffusion coefficient normalization of normal liver: Will it improve the reproducibility of diffusion-weighted imaging at different MR scanners as a new biomarker?

    Science.gov (United States)

    Zhu, Jie; Zhang, Jie; Gao, Jia-Yin; Li, Jin-Ning; Yang, Da-Wei; Chen, Min; Zhou, Cheng; Yang, Zheng-Han

    2017-01-01

    Apparent diffusion coefficient (ADC) measurement in diffusion-weighted imaging (DWI) has been reported to be a helpful biomarker for detection and characterization of lesion. In view of the importance of ADC measurement reproducibility, the aim of this study was to probe the variability of the healthy hepatic ADC values measured at 3 MR scanners from different vendors and with different field strengths, and to investigate the reproducibility of normalized ADC (nADC) value with the spleen as the reference organ. Thirty enrolled healthy volunteers received DWI with GE 1.5T, Siemens 1.5T, and Philips 3.0T magnetic resonance (MR) systems on liver and spleen (session 1) and were imaged again after 10 to 14 days using only GE 1.5T MR and Philips 3.0T MR systems (session 2). Interscan agreement and reproducibility of ADC measurements of liver and the calculated nADC values (ADCliver/ADCspleen) were statistically evaluated between 2 sessions. In session 1, ADC and nADC values of liver were evaluated for the scanner-related variability by 2-way analysis of variance and intraclass correlation coefficients (ICCs). Coefficients of variation (CVs) of ADCs and nADCs of liver were calculated for both 1.5 and 3.0-T MR system. Interscan agreement and reproducibility of ADC measurements of liver and related nADCs between 2 sessions were found to be satisfactory with ICC values of 0.773 to 0.905. In session 1, the liver nADCs obtained from different scanners were consistent (P = 0.112) without any significant difference in multiple comparison (P = 0.117 to >0.99) by using 2-way analysis of variance with post-hoc analysis of Bonferroni method, although the liver ADCs varied significantly (P < 0.001). nADCs measured by 3 scanners were in good interscanner agreements with ICCs of 0.685 to 0.776. The mean CV of nADCs of both 1.5T MR scanners (9.6%) was similar to that of 3.0T MR scanner (8.9%). ADCs measured at 3 MR scanners with different field strengths and vendors could

  19. Dynamic comparison of PET imaging performance between state-of-the-art ToF-PET/CT and ToF-PET/MR scanners

    Energy Technology Data Exchange (ETDEWEB)

    Delso, Gaspar; Deller, Tim; Khalighi, Mehdi [GE Healthcare (Switzerland); Veit-Haibach, Patrick; Schulthess, Gustav von [University Hospital of Zurich (Switzerland)

    2014-07-29

    The goal of the present work was to determine the potential for dose reduction in a new clinical ToF-PET/MR scanner. This was achieved by means of long dynamic phantom acquisitions designed to provide a fair comparison of image quality and lesion detectability, as a function of activity, between the new PET/MR system and a state-of-the art PET/CT.

  20. Paul Lecoq assembles a read head made with special crystals for a PET (positron emission tomography) scanner. He is the initiator of the Crystal Clear collaboration, which aims to transfer crystals developed at CERN to applications in medical imaging.

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Paul Lecoq assembles a read head made with special crystals for a PET (positron emission tomography) scanner. He is the initiator of the Crystal Clear collaboration, which aims to transfer crystals developed at CERN to applications in medical imaging.

  1. Laboratory measurements to determine the grain size distribution of a sand-gravel bed surface and substrate: image analysis and CT scanner analysis

    Science.gov (United States)

    Orru, C.; Blom, A.; Uijttewaal, W.

    2012-12-01

    Spatial and temporal changes in the grain size distribution are crucial to describe sediment transport and the related grain size selective processes. Two complimentary laboratory techniques are presented to determine such variations of the grain size distribution of the bed surface and substrate: (1) particle coloring in combination with photogrammetric analysis, and (2) core sampling combined with three-dimensional imaging. The two techniques will be used in later flume experiments that are aimed at studying the response of the river bed to nonsteady boundary conditions. In these flume experiments, the bed surface and substrate grain size distribution needs to be measured using reliable and preferentially rapid techniques. The techniques were evaluated conducting an experiment that partially reproduced the conditions of the later flume experiments. Three nonoverlapping grain size fractions (i.e. within the range of coarse sand to fine gravel) were used and they were painted in different colors. Various mixtures of the three grain size fractions were composed of various color combinations. Patches of the mixtures were installed in a pool. Images were taken of the bed surface and the images were analyzed using an algorithm based on color segmentation. The algorithm provides values of the surface fraction of the bed covered by a certain color (i.e. a size fraction). The influence of water depth on the results of the image analysis was studied. To this end pictures were taken without water and for three water depths. The image analysis results shows that the technique can be used effectively for images of the bed in a flume filled with water. This is beneficiary in applying the technique in the later flume experiments. The second technique comprises core sampling in combination with three-dimensional imaging. Samples taken with tube cores were fixed with wallpaper glue and analyzed using a micro computed tomography scanner (micro CT scanner). The scans provide a

  2. Experimental evaluation and basis function optimization of the spatially variant image-space PSF on the Ingenuity PET/MR scanner

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A., E-mail: Fotis.Kotasidis@unige.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB (Netherlands)

    2014-06-15

    Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailed investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis

  3. Comprehensive small animal imaging strategies on a clinical 3 T dedicated head MR-scanner; adapted methods and sequence protocols in CNS pathologies.

    Directory of Open Access Journals (Sweden)

    Deepu R Pillai

    Full Text Available BACKGROUND: Small animal models of human diseases are an indispensable aspect of pre-clinical research. Being dynamic, most pathologies demand extensive longitudinal monitoring to understand disease mechanisms, drug efficacy and side effects. These considerations often demand the concomitant development of monitoring systems with sufficient temporal and spatial resolution. METHODOLOGY AND RESULTS: This study attempts to configure and optimize a clinical 3 Tesla magnetic resonance scanner to facilitate imaging of small animal central nervous system pathologies. The hardware of the scanner was complemented by a custom-built, 4-channel phased array coil system. Extensive modification of standard sequence protocols was carried out based on tissue relaxometric calculations. Proton density differences between the gray and white matter of the rodent spinal cord along with transverse relaxation due to magnetic susceptibility differences at the cortex and striatum of both rats and mice demonstrated statistically significant differences. The employed parallel imaging reconstruction algorithms had distinct properties dependent on the sequence type and in the presence of the contrast agent. The attempt to morphologically phenotype a normal healthy rat brain in multiple planes delineated a number of anatomical regions, and all the clinically relevant sequels following acute cerebral ischemia could be adequately characterized. Changes in blood-brain-barrier permeability following ischemia-reperfusion were also apparent at a later time. Typical characteristics of intra-cerebral haemorrhage at acute and chronic stages were also visualized up to one month. Two models of rodent spinal cord injury were adequately characterized and closely mimicked the results of histological studies. In the employed rodent animal handling system a mouse model of glioblastoma was also studied with unequivocal results. CONCLUSIONS: The implemented customizations including extensive

  4. Simplificando a obtenção e a utilização de imagens digitais: scanners e câmeras digitais How to easily acquire and use digital images: scanners and digital cameras

    Directory of Open Access Journals (Sweden)

    André Wilson Machado

    2004-08-01

    Full Text Available Um dos grandes benefícios que a evolução tecnológica proporcionou à Ortodontia foi a utilização das imagens digitais. O uso dessa nova tecnologia em Odontologia, e especificamente em Ortodontia, aliada à introdução da Fotografia Digital, permite aos profissionais desta área utilizar recursos, antes inimagináveis, facilitando a elaboração do diagnóstico ortodôntico, auxiliando a comunicação entre profissionais, bem como com os pacientes, além de ilustrar comunicações científicas, em conferências, cursos e publicações, sendo uma excelente ferramenta para o ensino e pesquisa. Com o objetivo de lançar mão dessa nova tecnologia, o ortodontista pode obter imagens digitais por meio da digitalização da documentação ortodôntica convencional composta basicamente de fotografias analógicas (em papel ou em slide, modelos de estudo e radiografias ou pela obtenção de imagens digitais com câmeras fotográficas digitais. Desta forma, o objetivo desse trabalho é esclarecer alguns conceitos básicos relacionados às imagens digitais e tentar responder às perguntas mais freqüentes em relação ao tema: Como digitalizar as minhas documentações ortodônticas com um scanner? Como obter imagens digitais com uma câmera fotográfica digital? Que tipo de resolução em DPI (dots per inch, ou pontos por polegada ou em Megapixel (MP, tamanho e formato de arquivo devo utilizar para as minhas necessidades ortodônticas de rotina? A obtenção de imagens com finalidade apenas de visualização no monitor do computador é diferenciada daquela para outros fins, como impressão de relatórios, banners ou apresentações com recurso de multimídia? E por fim, qual resolução deve ser utilizada para obter imagens digitais que serão encaminhadas para publicações científicas?The use of digital images is one of the fastest-growing new technologies in the contemporary society. The use of this new technology in Dentistry, and especially in

  5. 3D ultrafast laser scanner

    Science.gov (United States)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  6. Repeatability of Brain Volume Measurements Made with the Atlas-based Method from T1-weighted Images Acquired Using a 0.4 Tesla Low Field MR Scanner.

    Science.gov (United States)

    Goto, Masami; Suzuki, Makoto; Mizukami, Shinya; Abe, Osamu; Aoki, Shigeki; Miyati, Tosiaki; Fukuda, Michinari; Gomi, Tsutomu; Takeda, Tohoru

    2016-10-11

    An understanding of the repeatability of measured results is important for both the atlas-based and voxel-based morphometry (VBM) methods of magnetic resonance (MR) brain volumetry. However, many recent studies that have investigated the repeatability of brain volume measurements have been performed using static magnetic fields of 1-4 tesla, and no study has used a low-strength static magnetic field. The aim of this study was to investigate the repeatability of measured volumes using the atlas-based method and a low-strength static magnetic field (0.4 tesla). Ten healthy volunteers participated in this study. Using a 0.4 tesla magnetic resonance imaging (MRI) scanner and a quadrature head coil, three-dimensional T1-weighted images (3D-T1WIs) were obtained from each subject, twice on the same day. VBM8 software was used to construct segmented normalized images [gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) images]. The regions-of-interest (ROIs) of GM, WM, CSF, hippocampus (HC), orbital gyrus (OG), and cerebellum posterior lobe (CPL) were generated using WFU PickAtlas. The percentage change was defined as[100 × (measured volume with first segmented image - mean volume in each subject)/(mean volume in each subject)]The average percentage change was calculated as the percentage change in the 6 ROIs of the 10 subjects. The mean of the average percentage changes for each ROI was as follows: GM, 0.556%; WM, 0.324%; CSF, 0.573%; HC, 0.645%; OG, 1.74%; and CPL, 0.471%. The average percentage change was higher for the orbital gyrus than for the other ROIs. We consider that repeatability of the atlas-based method is similar between 0.4 and 1.5 tesla MR scanners. To our knowledge, this is the first report to show that the level of repeatability with a 0.4 tesla MR scanner is adequate for the estimation of brain volume change by the atlas-based method.

  7. Development and analytical validation of a simple multivariate calibration method using digital scanner images for sunset yellow determination in soft beverages.

    Science.gov (United States)

    Botelho, Bruno G; de Assis, Luciana P; Sena, Marcelo M

    2014-09-15

    This paper proposed a novel methodology for the quantification of an artificial dye, sunset yellow (SY), in soft beverages, using image analysis (RGB histograms) and partial least squares regression. The developed method presented many advantages if compared with alternative methodologies, such as HPLC and UV/VIS spectrophotometry. It was faster, did not require sample pretreatment steps or any kind of solvents and reagents, and used a low cost equipment, a commercial flatbed scanner. This method was able to quantify SY in isotonic drinks and orange sodas, in the range of 7.8-39.7 mg L(-1), with relative prediction errors lower than 10%. A multivariate validation was also performed according to the Brazilian and international guidelines. Linearity, accuracy, sensitivity, bias, prediction uncertainty and a recently proposed tool, the β-expectation tolerance intervals, were estimated. The application of digital images in food analysis is very promising, opening the possibility for automation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. How Much Is the Dose Varying between Follow-Up CT-Examinations Performed on the Same Scanner with the Same Imaging Protocol?

    Directory of Open Access Journals (Sweden)

    Saravanabavaan Suntharalingam

    Full Text Available To investigate the dose variation between follow-up CT examinations, when a patient is examined several times on the same scanner with the identical scan protocol which comprised automated exposure control.This retrospective study was approved by the local ethics committee. The volume computed tomography dose index (CTDIvol and the dose-length-product (DLP were recorded for 60 cancer patients (29 male, 31 female, mean age 60.1 years, who received 3 follow-up CT examinations each composed of a non-enhanced scan of the liver (LI-CT and a contrast-enhanced scan of chest (CH-CT and abdomen (AB-CT. Each examination was performed on the same scanner (Siemens Definition FLASH equipped with automated exposure control (CARE Dose 4D and CARE KV using the identical scan protocol.The median percentage difference in DLP between follow-up examinations was 9.6% for CH-CT, 10.3% for LI-CT, and 10.1% for AB-CT; the median percentage difference in CTDIvol 8.3% for CH-CT, 7.4% for LI-CT and 7.7% for AB-CT (p<0.0001 for all values. The maximum difference in DLP between follow-up examinations was 67.5% for CH-CT, 50.8% for LI-CT and 74.3% for AB-CT; the maximum difference in CTDIvol 62.9% for CH-CT, 47.2% for LI-CT, and 49% for AB-CT.A significant variance in the radiation dose occurs between follow-up CT examinations when the same CT scanner and the identical imaging protocol are used in combination with automated exposure control.

  9. How Much Is the Dose Varying between Follow-Up CT-Examinations Performed on the Same Scanner with the Same Imaging Protocol?

    Science.gov (United States)

    Suntharalingam, Saravanabavaan; Stecker, Franz Ferdinand; Guberina, Nika; Ringelstein, Adrian; Schlosser, Thomas; Theysohn, Jens Matthias; Forsting, Michael; Nassenstein, Kai

    2016-01-01

    To investigate the dose variation between follow-up CT examinations, when a patient is examined several times on the same scanner with the identical scan protocol which comprised automated exposure control. This retrospective study was approved by the local ethics committee. The volume computed tomography dose index (CTDIvol) and the dose-length-product (DLP) were recorded for 60 cancer patients (29 male, 31 female, mean age 60.1 years), who received 3 follow-up CT examinations each composed of a non-enhanced scan of the liver (LI-CT) and a contrast-enhanced scan of chest (CH-CT) and abdomen (AB-CT). Each examination was performed on the same scanner (Siemens Definition FLASH) equipped with automated exposure control (CARE Dose 4D and CARE KV) using the identical scan protocol. The median percentage difference in DLP between follow-up examinations was 9.6% for CH-CT, 10.3% for LI-CT, and 10.1% for AB-CT; the median percentage difference in CTDIvol 8.3% for CH-CT, 7.4% for LI-CT and 7.7% for AB-CT (p<0.0001 for all values). The maximum difference in DLP between follow-up examinations was 67.5% for CH-CT, 50.8% for LI-CT and 74.3% for AB-CT; the maximum difference in CTDIvol 62.9% for CH-CT, 47.2% for LI-CT, and 49% for AB-CT. A significant variance in the radiation dose occurs between follow-up CT examinations when the same CT scanner and the identical imaging protocol are used in combination with automated exposure control.

  10. Quality of routine diagnostic abdominal images generated from a novel detector-based spectral CT scanner: a technical report on a phantom and clinical study.

    Science.gov (United States)

    Hojjati, Mojgan; Van Hedent, Steven; Rassouli, Negin; Tatsuoka, Curtis; Jordan, David; Dhanantwari, Amar; Rajiah, Prabhakar

    2017-11-01

    To evaluate the image quality of routine diagnostic images generated from a novel detector-based spectral detector CT (SDCT) and compare it with CT images obtained from a conventional scanner with an energy-integrating detector (Brilliance iCT), Routine diagnostic (conventional/polyenergetic) images are non-material-specific images that resemble single-energy images obtained at the same radiation, METHODS: ACR guideline-based phantom evaluations were performed on both SDCT and iCT for CT adult body protocol. Retrospective analysis was performed on 50 abdominal CT scans from each scanner. Identical ROIs were placed at multiple locations in the abdomen and attenuation, noise, SNR, and CNR were measured. Subjective image quality analysis on a 5-point Likert scale was performed by 2 readers for enhancement, noise, and image quality. On phantom studies, SDCT images met the ACR requirements for CT number and deviation, CNR and effective radiation dose. In patients, the qualitative scores were significantly higher for the SDCT than the iCT, including enhancement (4.79 ± 0.38 vs. 4.60 ± 0.51, p = 0.005), noise (4.63 ± 0.42 vs. 4.29 ± 0.50, p = 0.000), and quality (4.85 ± 0.32, vs. 4.57 ± 0.50, p = 0.000). The SNR was higher in SDCT than iCT for liver (7.4 ± 4.2 vs. 7.2 ± 5.3, p = 0.662), spleen (8.6 ± 4.1 vs. 7.4 ± 3.5, p = 0.152), kidney (11.1 ± 6.3 vs. 8.7 ± 5.0, p = 0.033), pancreas (6.90 ± 3.45 vs 6.11 ± 2.64, p = 0.303), aorta (14.2 ± 6.2 vs. 11.0 ± 4.9, p = 0.007), but was slightly lower in lumbar-vertebra (7.7 ± 4.2 vs. 7.8 ± 4.5, p = 0.937). The CNR of the SDCT was also higher than iCT for all abdominal organs. Image quality of routine diagnostic images from the SDCT is comparable to images of a conventional CT scanner with energy-integrating detectors, making it suitable for diagnostic purposes.

  11. Architecture of a Dual-Modality, High-Resolution, Fully Digital Positron Emission Tomography/Computed Tomography (PET/CT) Scanner for Small Animal Imaging

    Science.gov (United States)

    Fontaine, R.; Belanger, F.; Cadorette, J.; Leroux, J.-D.; Martin, J.-P.; Michaud, J.-B.; Pratte, J.-F.; Robert, S.; Lecomte, R.

    2005-06-01

    Contemporary positron emission tomography (PET) scanners are commonly implemented with very large scale integration analog front-end electronics to reduce power consumption, space, noise, and cost. Analog processing yields excellent results in dedicated applications, but offers little flexibility for sophisticated signal processing or for more accurate measurements with newer, fast scintillation crystals. Design goals of the new Sherbrooke PET/computed tomography (CT) scanner are: 1) to achieve 1 mm resolution in both emission (PET) and transmission (CT) imaging using the same detector channels; 2) to be able to count and discriminate individual X-ray photons in CT mode. These requirements can be better met by sampling the analog signal from each individual detector channel as early as possible, using off-the-shelf, 8-b, 100-MHz, high-speed analog-to-digital converters (ADC) and digital processing in field programmable gate arrays (FPGAs). The core of the processing units consists of Xilinx SpartanIIe that can hold up to 16 individual channels. The initial architecture is designed for 1024 channels, but modularity allows extending the system up to 10 K channels or more. This parallel architecture supports count rates in excess of a million hits/s/scintillator in CT mode and up to 100 K events/s/scintillator in PET mode, with a coincidence time window of less than 10 ns full-width at half-maximum.

  12. Tube Current Modulation Between Single- and Dual-Energy CT With a Second-Generation Dual-Source Scanner: Radiation Dose and Image Quality.

    Science.gov (United States)

    Matsubara, Kosuke; Takata, Tadanori; Kobayashi, Masanao; Kobayashi, Satoshi; Koshida, Kichiro; Gabata, Toshifumi

    2016-08-01

    The purpose of this study was to compare the effects of tube current modulation between single- and dual-energy CT with a second-generation dual-source scanner. Custom-made elliptic polymethylmethacrylate phantoms for slim and large patients were used. Absorbed radiation dose at the central point of the phantoms was measured with a solid-state detector while the phantoms were scanned in single-energy (120 kV) and dual-energy (100/Sn140, 80/Sn140, and 140/80 kV) modes with a second-generation dual-source CT scanner. Tube current modulation was activated in both modes, and quality reference tube current-time settings of 150, 300, 450, and 600 mAs were selected. Scanning was performed three times under the same conditions, and image noise was evaluated by measuring the SD of CT numbers in four separate regions of three adjacent images of the phantoms. Absorbed dose increased and image noise decreased with an increase in quality reference tube current-time setting when the slim phantom was scanned. For the large phantom, the radiation dose and noise level reached a plateau above quality reference tube current-time settings of 300 mAs for 100/Sn140 kV and 450 mAs for 120 kV. The radiation dose was small and the noise level was large with 80/Sn140 kV compared with that obtained with 120 and 100/Sn140 kV at all quality reference tube current-time settings. When a large phantom is scanned with 100/Sn140 kV, exposure demand for tube current modulation exceeds system limits at a lower quality reference tube current-time setting than for scanning 120 kV.

  13. MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging

    Science.gov (United States)

    Tai, Yuan-Chuan; Chatziioannou, Arion F.; Yang, Yongfeng; Silverman, Robert W.; Meadors, Ken; Siegel, Stefan; Newport, Danny F.; Stickel, Jennifer R.; Cherry, Simon R.

    2003-06-01

    MicroPET II is a second-generation animal PET scanner designed for high-resolution imaging of small laboratory rodents. The system consists of 90 scintillation detector modules arranged in three contiguous axial rings with a ring diameter of 16.0 cm and an axial length of 4.9 cm. Each detector module consists of a 14 × 14 array of lutetium oxyorthosilicate (LSO) crystals coupled to a multi-channel photomultiplier tube (MC-PMT) through a coherent optical fibre bundle. Each LSO crystal element measures 0.975 mm × 0.975 mm in cross section by 12.5 mm in length. A barium sulphate reflector material was used between LSO elements leading to a detector pitch of 1.15 mm in both axial and transverse directions. Fused optical fibre bundles were made from 90 µm diameter glass fibres with a numerical aperture of 0.56. Interstitial extramural absorber was added between the fibres to reduce optical cross talk. A charge-division readout circuit was implemented on printed circuit boards to decode the 196 crystals in each array from the outputs of the 64 anode signals of the MC-PMT. Electronics from Concorde Microsystems Inc. (Knoxville, TN) were used for signal amplification, digitization, event qualification, coincidence processing and data capture. Coincidence data were passed to a host PC that recorded events in list mode. Following acquisition, data were sorted into sinograms and reconstructed using Fourier rebinning and filtered backprojection algorithms. Basic evaluation of the system has been completed. The absolute sensitivity of the microPET II scanner was 2.26% at the centre of the field of view (CFOV) for an energy window of 250-750 keV and a timing window of 10 ns. The intrinsic spatial resolution of the detectors in the system averaged 1.21 mm full width at half maximum (FWHM) when measured with a 22Na point source 0.5 mm in diameter. Reconstructed image resolution ranged from 0.83 mm FWHM at the CFOV to 1.47 mm FWHM in the radial direction, 1.17 mm FWHM in the

  14. Improving magnetic resonance imaging (MRI) examinations: Development and evaluation of an intervention to reduce movement in scanners and facilitate scan completion.

    Science.gov (United States)

    Powell, Rachael; Ahmad, Mahadir; Gilbert, Fiona J; Brian, David; Johnston, Marie

    2015-09-01

    The movement of patients in magnetic resonance imaging (MRI) scanners results in motion artefacts which impair image quality. Non-completion of scans leads to delay in diagnosis and increased costs. This study aimed to develop and evaluate an intervention to enable patients to stay still in MRI scanners (reducing motion artefacts) and to enhance scan completion. Successful scan outcome was deemed to be completing the scan with no motion artefacts. Previous research indicated self-efficacy to predict successful scan outcome, and interviews with patients identified a need for procedural and sensory information to facilitate successful scan behaviour. A DVD intervention was developed which targeted self-efficacy and included procedural and sensory information. It was successfully piloted with 10 patients and then evaluated in a randomized controlled trial compared with the standard hospital information leaflet (intervention group N = 41; control group N = 42). The clinic radiographer, who was blind to group allocation, rated MRI scans for motion artefact and recorded whether the participant completed the scan; participants completed MRI self-efficacy and anxiety measures. Only one participant reported not finding the DVD useful. Thirty-five participants in the intervention group and 23 in the control group completed scans and had no motion artefacts, χ(2) (1, 83) = 7.84, p < .001 (relative risk of an unsatisfactory outcome in the control group/intervention group = 3.09). The intervention effect was mediated by self-efficacy. The DVD intervention was efficacious and warrants further research to examine generalizability. © 2015 The British Psychological Society.

  15. A Cross-Platform Smartphone Brain Scanner

    DEFF Research Database (Denmark)

    Larsen, Jakob Eg; Stopczynski, Arkadiusz; Stahlhut, Carsten

    We describe a smartphone brain scanner with a low-costwireless 14-channel Emotiv EEG neuroheadset interfacingwith multiple mobile devices. This personal informaticssystem enables minimally invasive and continuouscapturing of brain imaging data in natural settings. Thesystem applies an inverse...

  16. Electronic Focusing In The Scophony Scanner

    Science.gov (United States)

    Johnson, Richard V.

    1980-09-01

    The Scophony Light Valve when used in a laser scanner exhibits a coherent imaging response. Because of this coherent response, electronic manipulation of the acoustooptic modulator's drive signal can produce unique optical imaging effects, effects which cannot be achieved with the flying spot scanner architecture. An example of this electronic processing is a shift in the plane of best focus of the scanner which is achieved by passing the modulator's drive signal through a chirp filter. This electronic focus shift can enable a three dimensional television display.

  17. Impact of image noise levels, scout scan dose and lens shield on image quality and radiation exposure in z-axis dose-modulated neck MSCT on 16- and 64-slice Toshiba Aquilion scanners.

    Science.gov (United States)

    Bauknecht, Hans-Christian; Jach, Cornelia; Bohner, Georg; Meyer, Henning; Scheurig, Christian; Siebert, Eberhard; Klingebiel, Randolf

    2010-02-01

    Assessing the impact of image noise (IN) levels, scout scan dose and lens shield use on image quality and radiation exposure in neck multislice CT (MSCT) when using z-axis dose modulation (DM). Neck MSCT phantom studies with/without z-axis DM were performed by using different IN levels (S.D. 7.5-30HU) and scout scan tube currents (7.5-50mA) on Toshiba Aquilion scanners (16-/64-slice). Image quality indices were evaluated by two radiologists and radiation exposure parameters calculated. Cadaveric phantom measurements elucidated lens shield interactions with DM efficacy. The lowest dose scan protocol with diagnostic image quality was introduced into the clinical imaging routine and retrospectively evaluated in 20 age-matched patients undergoing neck MSCT with/without DM. The highest image noise level in DM neck studies with comparable image quality to standard neck CT amounted to 20HU, resulting in a mean tube current of 50mAs (CTDI(w) 6.3mGy). DM reduced effective dose by 35% and organ dose figures (lens, thyroid) by 33%. Scout scan dose lowering to 20mA resulted in an effective dose (ED) decrease of 0.06mSv (5%). Avoiding lens shield placement during scout scan effected an organ dose decrease of 20%. Overall contour sharpness and image contrast did not differ significantly (DM/without DM) whereas image noise was rated higher in DM neck CT studies (pToshiba Aquilion scanners, is effective and mandatory in neck MSCT. DM efficacy can be enhanced by optimising scout scan doses and lens shield use. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.

  18. Contrast-enhanced near-infrared laser mammography with a prototype breast scanner: feasibility study with tissue phantoms and preliminary results of imaging experimental tumors.

    Science.gov (United States)

    Boehm, T; Hochmuth, A; Malich, A; Reichenbach, J R; Fleck, M; Kaiser, W A

    2001-10-01

    Near-infrared (NIR) optical mammography without contrast has a low specificity. The application of optical contrast medium may improve the performance. The concentration-dependent detectability of a new NIR contrast medium was determined with a prototype optical breast scanner. In vivo imaging of experimental tumors was performed. The NIR contrast agent NIR96010 is a newly synthesized, hydrophilic contrast agent for NIR mammography. A concentration-dependent contrast resolution was determined for tissue phantoms consisting of whole milk powder and gelatin. A central part of the phantoms measuring 2 x 2 cm2 without contrast was replaced with phantom material containing 1 micromol/L to 25 nmol/L NIR96010. The composite phantoms were measured with a prototype NIR breast scanner with lasers of lambda1 = 785 nm and lambda2 = 850 nm wavelength. Intensity profiles and standard deviations of the transmission signal in areas with and without contrast were determined by linear fit procedures. Signal-to-noise ratios and spatial resolution as a function of contrast concentration were determined. Near-infrared imaging of five tumor-bearing SCID mice (MX1 breast adenocarcinoma, tumor diameter 5-10 mm) was performed before and after intravenous application of 2 micromol/kg NIR96010. Spectrometry showed an absorption maximum of the contrast agent at 755 nm. No spectral shifts occurred in protein-containing solution. Signal-to-noise ratio in the transmission intensity profiles ranged from 1.1 at 25 nmol/L contrast to 28 at 1 micromol/L. At concentrations <40 nmol/L, no differentiation from the background was possible. The transitional area between the contrast-free edge of the phantom and the central contrast-containing part appeared in the profiles as a steep increase with a width of 4.2 +/- 1.8 mm. The experimental tumors were detectable in nonenhanced images as well as contrast-enhanced images, with better delineation after contrast administration. In postcontrast absorption

  19. Compensation strategies for PET scanners with unconventional scanner geometry

    CERN Document Server

    Gundlich, B; Oehler, M

    2006-01-01

    The small animal PET scanner ClearPET®Neuro, developed at the Forschungszentrum Julich GmbH in cooperation with the Crystal Clear Collaboration (CERN), represents scanners with an unconventional geometry: due to axial and transaxial detector gaps ClearPet®Neuro delivers inhomogeneous sinograms with missing data. When filtered backprojection (FBP) or Fourier rebinning (FORE) are applied, strong geometrical artifacts appear in the images. In this contribution we present a method that takes the geometrical sensitivity into account and converts the measured sinograms into homogeneous and complete data. By this means artifactfree images are achieved using FBP or FORE. Besides an advantageous measurement setup that reduces inhomogeneities and data gaps in the sinograms, a modification of the measured sinograms is necessary. This modification includes two steps: a geometrical normalization and corrections for missing data. To normalize the measured sinograms, computed sinograms are used that describe the geometric...

  20. Simultaneous imaging of hyperpolarized [1,4-13 C2 ]fumarate, [1-13 C]pyruvate and 18 F-FDG in a rat model of necrosis in a clinical PET/MR scanner

    DEFF Research Database (Denmark)

    Eldirdiri, Abubakr; Clemmensen, Andreas; Bowen, Sean

    2017-01-01

    positron emission tomography (PET) and MR of small animals with a clinical PET/MR scanner is demonstrated. The hyperpolarized metabolic MR and PET was demonstrated in a rat model of necrosis. The polarization and T1 of the co-polarized [1,4-13 C2 ]fumarate and [1-13 C]pyruvate substrates were measured....... The proposed co-polarization scheme provides a means to utilize multiple imaging agents simultaneously, and thus to probe various metabolic pathways in a single examination. Moreover, it demonstrates the feasibility of small animal research on a clinical PET/MR scanner for combined PET and hyperpolarized...

  1. Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice X-ray CT scanners.

    Science.gov (United States)

    Ay, Mohammad Reza; Mehranian, Abolfazl; Maleki, Asghar; Ghadiri, Hossien; Ghafarian, Pardis; Zaidi, Habib

    2013-05-01

    Beam hardening filters have long been employed in X-ray Computed Tomography (CT) to preferentially absorb soft and low-energy X-rays having no or little contribution to image formation, thus allowing the reduction of patient dose and beam hardening artefacts. In this work, we studied the influence of additional copper (Cu) and aluminium (Al) flat filters on patient dose and image quality and seek an optimum filter thickness for the GE LightSpeed VCT 64-slice CT scanner using experimental phantom measurements. Different thicknesses of Cu and Al filters (0.5-1.6mm Cu, 0.5-4mm Al) were installed on the scanner's collimator. A planar phantom consisting of 13 slabs of Cu having different thicknesses was designed and scanned to assess the impact of beam filtration on contrast in the intensity domain (CT detector's output). To assess image contrast and image noise, a cylindrical phantom consisting of a polyethylene cylinder having 16 holes filled with different concentrations of K2HPO4 solution mimicking different tissue types was used. The GE performance and the standard head CT dose index (CTDI) phantoms were also used to assess image resolution characterized by the modulation transfer function (MTF) and patient dose defined by the weighted CTDI. A 100mm pencil ionization chamber was used for CTDI measurement. Finally, an optimum filter thickness was determined from an objective figure of merit (FOM) metric. The results show that the contrast is somewhat compromised with filter thickness in both the planar and cylindrical phantoms. The contrast of the K2HPO4 solutions in the cylindrical phantom was degraded by up to 10% for a 0.68mm Cu filter and 6% for a 4.14mm Al filter. It was shown that additional filters increase image noise which impaired the detectability of low density K2HPO4 solutions. It was found that with a 0.48mm Cu filter the 50% MTF value is shifted by about 0.77lp/cm compared to the case where the filter is not used. An added Cu filter with approximately

  2. Single scan parameterization of space-variant point spread functions in image space via a printed array: the impact for two PET/CT scanners

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, F A; Matthews, J C; Angelis, G I; Noonan, P J; Jackson, A [Imaging, Genomics and Proteomics, Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester (United Kingdom); Price, P [Academic Department of Radiation Oncology, University of Manchester, Manchester (United Kingdom); Lionheart, W R [School of Mathematics, Alan Turing Building, University of Manchester, Manchester (United Kingdom); Reader, A J, E-mail: fotis.kotasidis@mmic.man.ac.uk [Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC (Canada)

    2011-05-21

    Incorporation of a resolution model during statistical image reconstruction often produces images of improved resolution and signal-to-noise ratio. A novel and practical methodology to rapidly and accurately determine the overall emission and detection blurring component of the system matrix using a printed point source array within a custom-made Perspex phantom is presented. The array was scanned at different positions and orientations within the field of view (FOV) to examine the feasibility of extrapolating the measured point source blurring to other locations in the FOV and the robustness of measurements from a single point source array scan. We measured the spatially-variant image-based blurring on two PET/CT scanners, the B-Hi-Rez and the TruePoint TrueV. These measured spatially-variant kernels and the spatially-invariant kernel at the FOV centre were then incorporated within an ordinary Poisson ordered subset expectation maximization (OP-OSEM) algorithm and compared to the manufacturer's implementation using projection space resolution modelling (RM). Comparisons were based on a point source array, the NEMA IEC image quality phantom, the Cologne resolution phantom and two clinical studies (carbon-11 labelled anti-sense oligonucleotide [{sup 11}C]-ASO and fluorine-18 labelled fluoro-l-thymidine [{sup 18}F]-FLT). Robust and accurate measurements of spatially-variant image blurring were successfully obtained from a single scan. Spatially-variant resolution modelling resulted in notable resolution improvements away from the centre of the FOV. Comparison between spatially-variant image-space methods and the projection-space approach (the first such report, using a range of studies) demonstrated very similar performance with our image-based implementation producing slightly better contrast recovery (CR) for the same level of image roughness (IR). These results demonstrate that image-based resolution modelling within reconstruction is a valid alternative to

  3. The impact of image reconstruction settings on 18F-FDG PET radiomic features. Multi-scanner phantom and patient studies

    Energy Technology Data Exchange (ETDEWEB)

    Shiri, Isaac; Abdollahi, Hamid [Iran University of Medical Sciences, Department of Medical Physics, School of Medicine, Tehran (Iran, Islamic Republic of); Rahmim, Arman [Johns Hopkins University, Department of Radiology, Baltimore, MD (United States); Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, MD (United States); Ghaffarian, Pardis [Shahid Beheshti University of Medical Sciences, Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Tehran (Iran, Islamic Republic of); Shahid Beheshti University of Medical Sciences, PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Tehran (Iran, Islamic Republic of); Geramifar, Parham [Tehran University of Medical Sciences, Research Center for Nuclear Medicine, Shariati Hospital, Tehran (Iran, Islamic Republic of); Bitarafan-Rajabi, Ahmad [Iran University of Medical Sciences, Department of Medical Physics, School of Medicine, Tehran (Iran, Islamic Republic of); Iran University of Medical Sciences, Department of Nuclear Medicine, Rajaei Cardiovascular, Medical and Research Center, Tehran (Iran, Islamic Republic of)

    2017-11-15

    The purpose of this study was to investigate the robustness of different PET/CT image radiomic features over a wide range of different reconstruction settings. Phantom and patient studies were conducted, including two PET/CT scanners. Different reconstruction algorithms and parameters including number of sub-iterations, number of subsets, full width at half maximum (FWHM) of Gaussian filter, scan time per bed position and matrix size were studied. Lesions were delineated and one hundred radiomic features were extracted. All radiomics features were categorized based on coefficient of variation (COV). Forty seven percent features showed COV ≤ 5% and 10% of which showed COV > 20%. All geometry based, 44% and 41% of intensity based and texture based features were found as robust respectively. In regard to matrix size, 56% and 6% of all features were found non-robust (COV > 20%) and robust (COV ≤ 5%) respectively. Variability and robustness of PET/CT image radiomics in advanced reconstruction settings is feature-dependent, and different settings have different effects on different features. Radiomic features with low COV can be considered as good candidates for reproducible tumour quantification in multi-center studies. (orig.)

  4. Automated tube voltage selection in thoracoabdominal computed tomography at high pitch using a third-generation dual-source scanner: image quality and radiation dose performance.

    Science.gov (United States)

    Lurz, Markus; Lell, Michael M; Wuest, Wolfgang; Eller, Achim; Scharf, Michael; Uder, Michael; May, Matthias Stefan

    2015-05-01

    The objective of this study was to evaluate the radiation dose and image quality performance of thoracoabdominal examinations with an automated tube voltage selection (tube voltage adaptation), tube current modulation, and high pitch using a third-generation dual-source computed tomography (CT) compared intraindividually with 120-kV examinations with tube current modulation with special attention on clinically relevant lesions in the liver, the lungs, and extrahepatic soft tissues. This study was approved by the institutional review board. Computed tomography of the body was performed using a third-generation dual-source system in 95 patients (mean body mass index, 25 kg/m²; range, 18-35 kg/m²). For 49 of these patients, all calculated tube settings and resulting dose values were recorded for each of the 12 gradual contrast weightings of the tube voltage adaptation algorithm. Spiral CT was performed for all patients with an intermediate weighting (grade 7) in a portal venous phase at 120 reference kV, 180 reference mAs, and pitch of 1.55. Objective image quality was assessed on the basis of contrast-to-noise ratio. Subjective image quality was assessed on the basis of clarity and sharpness of anatomical and pathological structures as well as interfering beam hardening and spiral and motion artifacts (heart, lungs, diaphragm). Previous examinations on a 64-slice scanner served as reference. All examinations were rated good or excellent for clinical diagnosis. Automated tube voltage selection resulted in significantly lower effective radiation dose (9.5 mSv) compared with the reference (12.0 mSv; P radiation dose reduction while substantially increasing the image quality, even at large-volume exposure.

  5. Empirical orthogonal function analysis of cloud-containing coastal zone color scanner images of northeastern North American coastal waters

    Science.gov (United States)

    Eslinger, David L.; O'Brien, James J.; Iverson, Richard L.

    1989-01-01

    Empirical-orthogonal-function (EOF) analyses were carried out on 36 images of the Mid-Atlantic Bight and the Gulf of Maine, obtained by the CZCS aboard Nimbus 7 for the time period from February 28 through July 9, 1979, with the purpose of determining pigment concentrations in coastal waters. The EOF procedure was modified so as to include images with significant portions of data missing due to cloud obstruction, making it possible to estimate pigment values in areas beneath clouds. The results of image analyses explained observed variances in pigment concentrations and showed a south-to-north pattern corresponding to an April Mid-Atlantic Bight bloom and a June bloom over Nantucket Shoals and Platts Bank.

  6. WE-AB-BRA-11: Improved Imaging of Permanent Prostate Brachytherapy Seed Implants by Combining an Endorectal X-Ray Sensor with a CT Scanner

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, J; Matthews, K; Jia, G [Louisiana State University, Baton Rouge, LA (United States)

    2016-06-15

    Purpose: To test feasibility of the use of a digital endorectal x-ray sensor for improved image resolution of permanent brachytherapy seed implants compared to conventional CT. Methods: Two phantoms simulating the male pelvic region were used to test the capabilities of a digital endorectal x-ray sensor for imaging permanent brachytherapy seed implants. Phantom 1 was constructed from acrylic plastic with cavities milled in the locations of the prostate and the rectum. The prostate cavity was filled a Styrofoam plug implanted with 10 training seeds. Phantom 2 was constructed from tissue-equivalent gelatins and contained a prostate phantom implanted with 18 strands of training seeds. For both phantoms, an intraoral digital dental x-ray sensor was placed in the rectum within 2 cm of the seed implants. Scout scans were taken of the phantoms over a limited arc angle using a CT scanner (80 kV, 120–200 mA). The dental sensor was removed from the phantoms and normal helical CT and scout (0 degree) scans using typical parameters for pelvic CT (120 kV, auto-mA) were collected. A shift-and add tomosynthesis algorithm was developed to localize seed plane location normal to detector face. Results: The endorectal sensor produced images with improved resolution compared to CT scans. Seed clusters and individual seed geometry were more discernable using the endorectal sensor. Seed 3D locations, including seeds that were not located in every projection image, were discernable using the shift and add algorithm. Conclusion: This work shows that digital endorectal x-ray sensors are a feasible method for improving imaging of permanent brachytherapy seed implants. Future work will consist of optimizing the tomosynthesis technique to produce higher resolution, lower dose images of 1) permanent brachytherapy seed implants for post-implant dosimetry and 2) fine anatomic details for imaging and managing prostatic disease compared to CT images. Funding: LSU Faculty Start-up Funding

  7. Medical facial surface scanner

    Science.gov (United States)

    Vannier, Michael W.; Bhatia, Gulab H.; Commean, Paul K.; Pilgram, Thomas K.; Brunsden, Barry S.

    1992-05-01

    Optical, non-contact three-dimensional range surface digitizers are employed in the 360-degree examination of object surfaces, especially the heads and faces of individuals. The resultant 3- D surface data is suitable for computer graphics display and manipulation, for numerically controlled object replications, or for further processing such as surface measurement extraction. We employed a scanner with a basic active sensor element consisting of a synchronized pattern projector employing flashtubes that illuminate a surface, with a CID camera to detect, digitize, and transmit the sequence of 24 images (per camera) to a digital image processor for surface triangulation, calibration, and fusion into a single surface description of the headform. A major feature of this unit is its use of multiple (typically 6) stationary active sensor elements, with efficient calibration algorithms that achieve nearly seamless superposition of overlapping surface segments seen by individual cameras. The result is accurate and complete coverage of complex contoured surfaces. Application of this system to digitization of the human head in the planning and evaluation of facial plastic surgery is presented.

  8. Intraoral 3D scanner

    Science.gov (United States)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  9. Get Mobile – The Smartphone Brain Scanner

    OpenAIRE

    Stahlhut, Carsten; Stopczynski, Arkadiusz; Petersen, Michael Kai; Larsen, Jakob Eg; Hansen, Lars Kai

    2012-01-01

    This demonstration will provide live-interaction with a smartphone brain scanner consisting of a low-cost wireless 14-channel EEG headset (Emotiv Epoc) and a mobile device. With our system it is possible to perform real-time functional brain imaging on a smartphone device, including stimulus delivery, data acquisition, logging, brain state decoding, and 3D visualization of the cortical EEG sources. Implementation of the smartphone brain scanner is based on the Qt framework and benefits from t...

  10. Evaluation of low back pain with low field open magnetic resonance imaging scanner in rural hospital of Southern India

    Directory of Open Access Journals (Sweden)

    Sadhanandham Shrinuvasan

    2016-01-01

    Full Text Available Background: Low back pain (LBP is the most common symptom which is associated with limitation of normal activities and work-related disability. Imaging techniques are often essential in making the correct diagnosis for prompt management. Plain Radiography though remain a first imaging modality, magnetic resonance imaging (MRI due to its inherent softtissue contrast resolution and lack of ionizing radiation remains invaluable modality in the evaluation of LBP. Aim: To find the common causes of LBP in different age groups and the role of MRI in detecting the spectrum of various pathological findings. Materials and Methods: This is a prospective study done in the Department of Radiodiagnosis during a period of 2 years from July 2013 to July 2015. The study population includes all the cases referred to our department with complaints of LBP. Patients with ferromagnetic metallic implants and uncooperative cases were excluded. HITACHI 0.4 Tesla open MRI machine was used for imaging. Results and Conclusion: This study involved a total of 235 cases. There were 121 males and 114 females. The age of the patient ranged from 21 to 68 years with an average of 41.3 years. Back pain was commonly observed in the third to fifth decade. The common causes for back pain are disc herniations (disc bulge - 35.3%, disc protrusion - 39.6%, disc extrusion - 7.2% accounting to 82.1%, followed by normal study (10.2%, vertebral collapse (traumatic - 2.1%, osteoporotic - 1.7%, infections (2.1%, and neoplasm (1.7%. MRI provides valuable information regarding the underlying causes of LBP, especially in disc and marrow pathology.

  11. Comparison of digital intraoral scanners by single-image capture system and full-color movie system.

    Science.gov (United States)

    Yamamoto, Meguru; Kataoka, Yu; Manabe, Atsufumi

    2017-01-01

    The use of dental computer-aided design/computer-aided manufacturing (CAD/CAM) restoration is rapidly increasing. This study was performed to evaluate the marginal and internal cement thickness and the adhesive gap of internal cavities comprising CAD/CAM materials using two digital impression acquisition methods and micro-computed tomography. Images obtained by a single-image acquisition system (Bluecam Ver. 4.0) and a full-color video acquisition system (Omnicam Ver. 4.2) were divided into the BL and OM groups, respectively. Silicone impressions were prepared from an ISO-standard metal mold, and CEREC Stone BC and New Fuji Rock IMP were used to create working models (n=20) in the BL and OM groups (n=10 per group), respectively. Individual inlays were designed in a conventional manner using designated software, and all restorations were prepared using CEREC inLab MC XL. These were assembled with the corresponding working models used for measurement, and the level of fit was examined by three-dimensional analysis based on micro-computed tomography. Significant differences in the marginal and internal cement thickness and adhesive gap spacing were found between the OM and BL groups. The full-color movie capture system appears to be a more optimal restoration system than the single-image capture system.

  12. Improvements in the imaging performance of a high volume manufacturing EUV scanner with a special emphasis on the added value of the new illuminator for increased pupil flexibility

    Science.gov (United States)

    Bilski, Bartosz; Wang, Ziyang; Wittebrood, Friso; McNamara, John; Oorschot, Dorothe; van de Kerkhof, Mark; Fliervoet, Timon

    2017-06-01

    With the introduction of the NXE:3400B EUV scanner, ASML brings to the market the next generation NXE system. In this paper we present the results of a subset of a larger investigation that aimed at assessing the imaging performance of the NXE:3400B in various scenarios. The use cases we chose for the presentation here are contact holes, which are typical building blocks for logic and memory applications. In this paper we evaluate typical lithographic metrics. Starting from the exposure latitude, we show that contact holes of already 17nm half-pitch can be printed. Next, we show that the full wafer CD uniformity improvement is mainly driven by a high reticle CD uniformity. After that, we explore the capabilities of the new NXE:3400B illuminator and investigate an improved illumination setting for relaxed staggered contact holes of half pitch >21nm, and show a 20% local CD uniformity improvement (from 4.6 to 3.6nm) for regular contact holes of 18nm half-pitch, without throughput loss.

  13. A flexible and wearable terahertz scanner

    Science.gov (United States)

    Suzuki, D.; Oda, S.; Kawano, Y.

    2016-12-01

    Imaging technologies based on terahertz (THz) waves have great potential for use in powerful non-invasive inspection methods. However, most real objects have various three-dimensional curvatures and existing THz technologies often encounter difficulties in imaging such configurations, which limits the useful range of THz imaging applications. Here, we report the development of a flexible and wearable THz scanner based on carbon nanotubes. We achieved room-temperature THz detection over a broad frequency band ranging from 0.14 to 39 THz and developed a portable THz scanner. Using this scanner, we performed THz imaging of samples concealed behind opaque objects, breakages and metal impurities of a bent film and multi-view scans of a syringe. We demonstrated a passive biometric THz scan of a human hand. Our results are expected to have considerable implications for non-destructive and non-contact inspections, such as medical examinations for the continuous monitoring of health conditions.

  14. Detection of various anatomic patterns of root canals in mandibular incisors using digital periapical radiography, 3 cone-beam computed tomographic scanners, and micro-computed tomographic imaging.

    Science.gov (United States)

    Paes da Silva Ramos Fernandes, Luciana Maria; Rice, Dwight; Ordinola-Zapata, Ronald; Alvares Capelozza, Ana Lucia; Bramante, Clovis Monteiro; Jaramillo, David; Christensen, Heidi

    2014-01-01

    The purpose of this study was to compare the accuracy of digital periapical (PA) radiography and 3 cone-beam computed tomographic (CBCT) scanners in the identification of various internal anatomic patterns in mandibular incisors. Forty mandibular incisors were scanned using micro-computed tomographic imaging as the gold standard to establish the internal anatomic pattern. The number of root canals and internal patterns were classified into type I (single canal, n = 12), type Ia (single oval canal, n = 12), and type III (2 canals, n = 16). The teeth were placed in a human mandible, and digital PA radiography and 3 CBCT scans (Kodak 9000 3D [Carestream Health, Rochester, NY], Veraviewepocs 3De [J Morita MFG Corp, Kyoto, Japan], NewTom 5G [QR Srl, Verona, Italy]) were performed. Two blinded examiners classified each tooth's anatomic pattern, which were then compared with the micro-computed tomographic determinations. Considering type I and type Ia, which both presented with 1 root canal, there was a high degree of accuracy for all methods used (P > .05). The same result was found for type III. When identifying the shape of single canals (type I), CBCT imaging was more accurate compared with PA radiography. Concerning oval canals (type Ia), there was a significant difference between PA radiography and NewTom CBCT (PA radiography = 44%, NewTom = 88%). However, there were no significant differences between the 3 CBCT units. Double-exposure digital PA radiography for mandibular incisors is sufficient for the identification of the number of root canals. All CBCT devices showed improved accuracy in the identification of single root canal anatomy when a narrow canal was present. However, the identification of oval canals was improved only with the NewTom CBCT device. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Quantitative Assay for Starch by Colorimetry Using a Desktop Scanner

    Science.gov (United States)

    Matthews, Kurt R.; Landmark, James D.; Stickle, Douglas F.

    2004-01-01

    The procedure to produce standard curve for starch concentration measurement by image analysis using a color scanner and computer for data acquisition and color analysis is described. Color analysis is performed by a Visual Basic program that measures red, green, and blue (RGB) color intensities for pixels within the scanner image.

  16. A PET scanner developed by CERN

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This image shows a Position Emission Tomography (PET) scanner at the Hopital Cantonal Universitaire de Genève. Development of the multiwire proportional chamber at CERN in the mid-1970s was soon seen as a potential device for medical imaging. It is much more sensitive than previous devices and greatly reduced the dose of radiation received by the patient.

  17. Input Scanners: A Growing Impact In A Diverse Marketplace

    Science.gov (United States)

    Marks, Kevin E.

    1989-08-01

    Just as newly invented photographic processes revolutionized the printing industry at the turn of the century, electronic imaging has affected almost every computer application today. To completely emulate traditionally mechanical means of information handling, computer based systems must be able to capture graphic images. Thus, there is a widespread need for the electronic camera, the digitizer, the input scanner. This paper will review how various types of input scanners are being used in many diverse applications. The following topics will be covered: - Historical overview of input scanners - New applications for scanners - Impact of scanning technology on select markets - Scanning systems issues

  18. A simple scanner for Compton tomography

    CERN Document Server

    Cesareo, R; Brunetti, A; Golosio, B; Castellano, A

    2002-01-01

    A first generation CT-scanner was designed and constructed to carry out Compton images. This CT-scanner is composed of a 80 kV, 5 mA X-ray tube and a NaI(Tl) X-ray detector; the tube is strongly collimated, generating a X-ray beam of 2 mm diameter, whilst the detector is not collimated to collect Compton photons from the whole irradiated cylinder. The performances of the equipment were tested contemporaneous transmission and Compton images.

  19. Development of a plug in for image j for the quality control of a scanner; Desarrollo de un Plug-in de Imagej para el control de calidad de un escaner

    Energy Technology Data Exchange (ETDEWEB)

    Otal Palacin, A.; Fuentemilla Urio, N.; Olasolo Alonso, J.; Martin Albina, M. L.; Miquelez Alonso, S.; Lozares Cordero, S.; Pellejero, S.; Maneru Camara, F.; Rubio Arroniz, A.; Soto Prados, P.

    2013-07-01

    The increase in the quality of radiology equipment requirements necessitates that give us tools efficient that they simplify the more possible tasks of analysis of the data obtained in the quality controls. We can choose by solutions based on commercial software or otherwise try to develop our own to measure of our needs. For this reason we have developed a plug-in for the ImageJ program that automates the work of analysis of image quality in the Navarro health service scanners. (Author)

  20. Development of an automatic image scanner for dosimetry analysis; Developpements d'une analyse automatique d'image pour le comptage de films dosimetriques

    Energy Technology Data Exchange (ETDEWEB)

    Berger, F. [Univ. de France Comte, Lab. de Microanalyses Nucleaires, U.F.R. des Sciences et de Techniques, Besancon (France); Klein, D. [Laboratoire de Metrologie des Interfaces Techniques, Belfort Cedex (France); Barillon, R.; Chambaudet, A. [Univ. de France Comte, Lab. de Microanalyses Nucleaires, U.F.R. des Sciences et de Techniques, Besancon (France)

    1992-07-01

    Solid nuclear track detector in dosimetry are necessary for numerous uses. We have developed image analysis for scanning and measuring nuclear tracks (alpha, proton and fission fragment) in various detectors. The track density makes it possible to calculate the activity concentration to which the detector has been exposed. Special computer programs enable us to count both low and high densities. (author)

  1. A Compact Vertical Scanner for Atomic Force Microscopes

    Directory of Open Access Journals (Sweden)

    Jae Hong Park

    2010-11-01

    Full Text Available A compact vertical scanner for an atomic force microscope (AFM is developed. The vertical scanner is designed to have no interference with the optical microscope for viewing the cantilever. The theoretical stiffness and resonance of the scanner are derived and verified via finite element analysis. An optimal design process that maximizes the resonance frequency is performed. To evaluate the scanner’s performance, experiments are performed to evaluate the travel range, resonance frequency, and feedback noise level. In addition, an AFM image using the proposed vertical scanner is generated.

  2. Feature-space transformation improves supervised segmentation across scanners

    DEFF Research Database (Denmark)

    van Opbroek, Annegreet; Achterberg, Hakim C.; de Bruijne, Marleen

    2015-01-01

    Image-segmentation techniques based on supervised classification generally perform well on the condition that training and test samples have the same feature distribution. However, if training and test images are acquired with different scanners or scanning parameters, their feature distributions...... can be very different, which can hurt the performance of such techniques. We propose a feature-space-transformation method to overcome these differences in feature distributions. Our method learns a mapping of the feature values of training voxels to values observed in images from the test scanner....... This transformation is learned from unlabeled images of subjects scanned on both the training scanner and the test scanner. We evaluated our method on hippocampus segmentation on 27 images of the Harmonized Hippocampal Protocol (HarP), a heterogeneous dataset consisting of 1.5T and 3T MR images. The results showed...

  3. Landsat 1-5 Multispectral Scanner V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract: The Landsat Multispectral Scanner (MSS) was a sensor onboard Landsats 1 through 5 and acquired images of the Earth nearly continuously from July 1972 to...

  4. Rail profile control using laser triangulation scanners

    Science.gov (United States)

    Boronahin, Ð. ńlexandr M.; Larionov, Daniil Yu.; Podgornaya, Liudmila N.; Shalymov, Roman V.; Filatov, Yuri V.; Bokhman, Evgueny D.

    2016-11-01

    Rail track geometric parameters measurement requires knowledge of left and right rail head location in each section. First of all displacement in transverse plane of rail head point located at a distance of 14 mm below the running surface, must be controlled [1]. It is carried out by detecting of each rail profile using triangulation laser scanners. Optical image recognition is carried out successfully in the laboratory, approaches used for this purpose are widely known. However, laser scanners operation has several features on railways leading to necessity of traditional approaches adaptation for solving these particular problems. The most significant problem is images noisiness due to the solar flashes and the effect of "Moon path" on the smooth rail surface. Using of optical filters gives inadequate result, because scanner laser diodes radiation frequency varies with temperature changes that forbid the use of narrow-band filters. Consideration of these features requires additional constructive and algorithmic solutions, including involvement of information from other sensors of the system. The specific usage of optical scanners for rail profiles control is the subject of the paper.

  5. Optical performance requirements for MEMS-scanner-based microdisplays

    Science.gov (United States)

    Urey, Hakan; Wine, David W.; Osborn, Thor D.

    2000-08-01

    High-resolution and high frame rate dynamic microdisplays can be implemented by scanning a photon beam in a raster format across the viewer's retina. Microvision is developing biaxial MEMS scanners for such video display applications. This paper discusses the optical performance requirements for scanning display systems. The display resolution directly translates into a scan-angle-mirror-size product and the frame rate translates into vertical and horizontal scanner frequencies. (theta) -product and fh are both very important figures of merit for scanner performance comparison. In addition, the static and dynamic flatness of the scanners, off-axis motion and scan repeatability, scanner position sensor accuracy all have a direct impact on display image quality.

  6. Ultra-Miniature Lidar Scanner for Launch Range Data Collection

    Science.gov (United States)

    Geng, Jason

    2012-01-01

    The most critical component in lidar is its laser scanner, which delivers pulsed or CW laser to target with desirable field of view (FOV). Most existing lidars use a rotating or oscillating mirror for scanning, resulting in several drawbacks. A lidar scanning technology was developed that could achieve very high scanning speed, with an ultra-miniature size and much lighter weight. This technology promises at least a 10x performance improvement in these areas over existing lidar scanners. Features of the proposed ultra-miniature lidar scanner include the ability to make the entire scanner <2 mm in diameter; very high scanning speed (e.g. 5 - 20 kHz, in contrast to several hundred Hz in existing scanners); structure design to meet stringent requirements on size, weight, power, and compactness for various applications; and the scanning speed and FOV can be altered for obtaining high image resolutions of targeted areas and for diversified uses.

  7. Design study for Thermal Infrared Multispectral Scanner (TIMS)

    Science.gov (United States)

    Stanich, C. G.; Osterwisch, F. G.; Szeles, D. M.; Houtman, W. H.

    1981-01-01

    The feasibility of dividing the 8-12 micrometer thermal infrared wavelength region into six spectral bands by an airborne line scanner system was investigated. By combining an existing scanner design with a 6 band spectrometer, a system for the remote sensing of Earth resources was developed. The elements in the spectrometer include an off axis reflective collimator, a reflective diffraction grating, a triplet germanium imaging lens, a photoconductive mercury cadmium telluride sensor array, and the mechanical assembly to hold these parts and maintain their optical alignment across a broad temperature range. The existing scanner design was modified to accept the new spectrometer and two field filling thermal reference sources.

  8. Description of a transmission X-ray computed tomography scanner

    Energy Technology Data Exchange (ETDEWEB)

    Hamideen, M.S., E-mail: mhamideen@fet.edu.jo [Department of Applied Science, Faculty of Engineering Technology, Al-Balqa' Applied University, Amman (Jordan); Sharaf, J.; Al-Saleh, K.A. [Department of Physics, University of Jordan, Amman (Jordan); Shaderma, M. [Department of Applied science, Faculty of Prince Abdullah bin Ghazi, Al-Balqa' Applied University, Amman (Jordan)

    2011-11-15

    A new prototype X-ray computed tomography scanner has been designed, constructed and tested locally. The major system employs an X-ray tube, a semiconductor detector, data logger and a three-dimensional sample position controller driven by three stepping motors, which allow two linear translations in addition to the rotational motion. The image resolution is determined by the step size and the diameter of the X-ray beam, which is controlled by the pinhole collimator. The scanner is designed to reconstruct two- and three-dimensional images mapping the internal structures of the object with the aid of the computer. This system, due to the semiconductor detector used, presents the novelty of being potentially able to acquire both in CT (transmission) mode and in SPECT (emission) mode. The imaging system performance is inspected for different phantoms, and some typical reconstructed images are presented. - Highlights: > A prototype X-ray transmission CT scanner system was designed and constructed successfully at the X-ray Laboratory in the University of Jordan. > X-ray CT scanner demonstrated its capability as a non-destructive tool for evaluating the internal atomic details of material objects. > Some general problems of X-ray CT scanning and image reconstruction are discussed and some suggested solutions are presented. > Scanner is designed to reconstruct two- and three-dimensional images mapping the internal structures of the object with the aid of the computer. > Internal geometrical structure can be determined from CT images.

  9. Pure Nano-Rotation Scanner

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-01-01

    Full Text Available We developed and tested a novel rotation scanner for nano resolution and accurate rotary motion about the rotation center. The scanner consists of circular hinges and leaf springs so that the parasitic error at the center of the scanner in the X and Y directions is minimized, and rotation performance is optimized. Each sector of the scanner's system was devised to have nano resolution by minimizing the parasitic errors of the rotation center that arise due to displacements other than rotation. The analytic optimal design results of the proposed scanner were verified using finite element analyses. The piezoelectric actuators were used to attain nano-resolution performances, and a capacitive sensor was used to measure displacement. A feedback controller was used to minimize the rotation errors in the rotation scanner system under practical conditions. Finally, the performance evaluation test results showed that the resonance frequency was 542 Hz, the resolution was 0.09 μrad, and the rotation displacement was 497.2 μrad. Our test results revealed that the rotation scanner exhibited accurate rotation about the center of the scanner and had good nano precision.

  10. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    Science.gov (United States)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-10-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool.

  11. Comparison between automated breast volume scanner (ABVS) versus hand-held ultrasound as a second look procedure after magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Girometti, Rossano; Zanotel, Martina; Londero, Viviana; Bazzocchi, Massimo; Zuiani, Chiara [University of Udine, Azienda Ospedaliero-Universitaria, ' S. Maria della Misericordia' , Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, Udine (Italy)

    2017-09-15

    To evaluate the agreement between automated breast volume scanner (ABVS) and conventional ultrasound (US) as a second-look (SL) tool for assessing additional findings found on MRI. Over a 7-month period, we prospectively assigned to SL-US and SL-ABVS all patients undergoing 1.5 T breast MRI in whom additional findings were found. Five experienced breast radiologists independently interpreted SL-US and SL-ABVS in blinded sessions to evaluate the detection rate of MRI findings and assign them to BI-RADS categories. We calculated the agreement between the two methods in assessing MRI findings as significant (BI-RADS 3-5) versus not significant (BI-RADS 1-2), as well as their cancer detection rate. In a population of 131 patients, SL-ABVS and SL-US showed a comparable detection rate of MRI findings (69.3 vs. 71.5%) (p > 0.05; McNemar test), with an almost perfect agreement in assessing them as significant or not (k = 0.94). This translated into a comparably high cancer detection rate (83.8% for SL-ABVS vs. 87.0% for SL-US). Only 1/31 cancers was missed by SL-ABVS. SL-ABVS and SL-US are nearly equivalent in assessing the significance of MRI findings, leading to a comparable cancer detection rate. SL-ABVS has the potential to replace SL-US in the SL scenario. (orig.)

  12. Noise properties for three weighted Feldkamp algorithms using a 256-detecotor row CT-scanner: case study for hepatic volumetric cine imaging.

    Science.gov (United States)

    Mori, Shinichiro; Endo, Masahiro; Obata, Takayuki; Kishimoto, Riwa; Kato, Hirotoshi; Kandatsu, Susumu; Tsujii, Hirohiko; Tanada, Shuji

    2006-08-01

    In cone-beam geometry, image quality may be degraded or artifacts may occur if the cone angle is substantially wide. This is because a cone-beam scan along a circular orbit does not collect the complete set of data required to make an exact reconstruction of all volumetric data. To increase temporal resolution and thus image quality in cone-beam geometry, Silver proposed the new half-scan algorithm (NHS-FDK), which extends Parker's weighting function (HS-FDK) by utilizing a larger range up to 2pi. Here, we evaluated these algorithms for hepatic contrast-enhanced CT in cine scan mode using a 256-detector row CT. The full-scan (FS-FDK) images show uniform distribution of the image noise and CT-number uniformity. Image noise and CT-number uniformity with HS-FDK and NHS-FDK images follow the initial projection angle. HS-FDK images therefore have more changeable higher intensity (brighter) and a lower intensity (darker) areas than respective FS-FDK and NHS-FDK images. We concluded that, considering the trade-off between image quality and temporal resolution, the NHS-FDK algorithm is useful in volumetric cine imaging for the abdomen.

  13. Get Mobile – The Smartphone Brain Scanner

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Stopczynski, Arkadiusz; Petersen, Michael Kai

    This demonstration will provide live-interaction with a smartphone brain scanner consisting of a low-cost wireless 14-channel EEG headset (Emotiv Epoc) and a mobile device. With our system it is possible to perform real-time functional brain imaging on a smartphone device, including stimulus...... delivery, data acquisition, logging, brain state decoding, and 3D visualization of the cortical EEG sources. Implementation of the smartphone brain scanner is based on the Qt framework and benefits from the cross-platform support of multiple hardware platforms (smartphones, tablet devices, netbooks and PCs......) that are based on Linux operating systems. Thus our system runs on multiple platforms, including Maemo/MeeGo based smartphones, Android-based smartphones and tablet devices....

  14. Side scanner for supermarkets: a new scanner design standard

    Science.gov (United States)

    Cheng, Charles K.; Cheng, J. K.

    1996-09-01

    High speed UPC bar code has become a standard mode of data capture for supermarkets in the US, Europe, and Japan. The influence of the ergonomics community on the design of the scanner is evident. During the past decade the ergonomic issues of cashier in check-outs has led to occupational hand-wrist cumulative trauma disorders, in most cases causing carpal tunnel syndrome, a permanent hand injury. In this paper, the design of a side scanner to resolve the issues is discussed. The complex optical module and the sensor for aforesaid side scanner is described. The ergonomic advantages offer the old counter mounted vertical scanner has been experimentally proved by the industrial funded study at an independent university.

  15. The impact of reconstruction and scanner characterisation on the diagnostic capability of a normal database for [123I]FP-CIT SPECT imaging

    National Research Council Canada - National Science Library

    Dickson, John C; Tossici-Bolt, Livia; Sera, Terez; Booij, Jan; Ziebell, Morten; Morbelli, Silvia; Assenbaum-Nan, Susanne; Borght, Thierry Vander; Pagani, Marco; Kapucu, Ozlem L; Hesse, Swen; Van Laere, Koen; Darcourt, Jacques; Varrone, Andrea; Tatsch, Klaus

    2017-01-01

    The use of a normal database for [123I]FP-CIT SPECT imaging has been found to be helpful for cases which are difficult to interpret by visual assessment alone, and to improve reproducibility in scan interpretation...

  16. SU-C-BRB-06: Utilizing 3D Scanner and Printer for Dummy Eye-Shield: Artifact-Free CT Images of Tungsten Eye-Shield for Accurate Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Park, J; Lee, J [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Kim, H [Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, I [Department of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Ye, S [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Suwon (Korea, Republic of)

    2015-06-15

    Purpose: To evaluate the effect of a tungsten eye-shield on the dose distribution of a patient. Methods: A 3D scanner was used to extract the dimension and shape of a tungsten eye-shield in the STL format. Scanned data was transferred into a 3D printer. A dummy eye shield was then produced using bio-resin (3D systems, VisiJet M3 Proplast). For a patient with mucinous carcinoma, the planning CT was obtained with the dummy eye-shield placed on the patient’s right eye. Field shaping of 6 MeV was performed using a patient-specific cerrobend block on the 15 x 15 cm{sup 2} applicator. The gantry angle was 330° to cover the planning target volume near by the lens. EGS4/BEAMnrc was commissioned from our measurement data from a Varian 21EX. For the CT-based dose calculation using EGS4/DOSXYZnrc, the CT images were converted to a phantom file through the ctcreate program. The phantom file had the same resolution as the planning CT images. By assigning the CT numbers of the dummy eye-shield region to 17000, the real dose distributions below the tungsten eye-shield were calculated in EGS4/DOSXYZnrc. In the TPS, the CT number of the dummy eye-shield region was assigned to the maximum allowable CT number (3000). Results: As compared to the maximum dose, the MC dose on the right lens or below the eye shield area was less than 2%, while the corresponding RTP calculated dose was an unrealistic value of approximately 50%. Conclusion: Utilizing a 3D scanner and a 3D printer, a dummy eye-shield for electron treatment can be easily produced. The artifact-free CT images were successfully incorporated into the CT-based Monte Carlo simulations. The developed method was useful in predicting the realistic dose distributions around the lens blocked with the tungsten shield.

  17. Simultaneous imaging of hyperpolarized [1,4-(13) C2 ]fumarate, [1-(13) C]pyruvate and (18) F-FDG in a rat model of necrosis in a clinical PET/MR scanner.

    Science.gov (United States)

    Eldirdiri, Abubakr; Clemmensen, Andreas; Bowen, Sean; Kjaer, Andreas; Ardenkjaer-Larsen, Jan Henrik

    2017-12-01

    A co-polarization scheme for [1,4-(13) C2 ]fumarate and [1-(13) C]pyruvate is presented to simultaneously assess necrosis and metabolism in rats with hyperpolarized (13) C magnetic resonance (MR). The co-polarization was performed in a SPINlab polarizer. In addition, the feasibility of simultaneous positron emission tomography (PET) and MR of small animals with a clinical PET/MR scanner is demonstrated. The hyperpolarized metabolic MR and PET was demonstrated in a rat model of necrosis. The polarization and T1 of the co-polarized [1,4-(13) C2 ]fumarate and [1-(13) C]pyruvate substrates were measured in vitro and compared with those obtained when the substrates were polarized individually. A polarization of 36 ± 4% for fumarate and 37 ± 6% for pyruvate was obtained. We found no significant difference in the polarization and T1 values between the dual and single substrate polarization. Rats weighing about 400 g were injected intramuscularly in one of the hind legs with 200 μL of turpentine to induce necrosis. Two hours later, (13) C metabolic maps were obtained with a chemical shift imaging sequence (16 × 16) with a resolution of 3.1 × 5.0 × 25.0 mm(3) . The (13) C spectroscopic images were acquired in 12 s, followed by an 8-min (18) F-2-fluoro-2-deoxy-d-glucose ((18) F-FDG) PET acquisition with a resolution of 3.5 mm. [1,4-(13) C2 ]Malate was observed from the tissue injected with turpentine indicating necrosis. Normal [1-(13) C]pyruvate metabolism and (18) F-FDG uptake were observed from the same tissue. The proposed co-polarization scheme provides a means to utilize multiple imaging agents simultaneously, and thus to probe various metabolic pathways in a single examination. Moreover, it demonstrates the feasibility of small animal research on a clinical PET/MR scanner for combined PET and hyperpolarized metabolic MR. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice X-ray CT scanners

    NARCIS (Netherlands)

    Ay, Mohammad Reza; Mehranian, Abolfazi; Maleki, Asghar; Ghadiri, Hossien; Ghafarian, Pardis; Zaidi, Habib

    Beam hardening filters have long been employed in X-ray Computed Tomography (CT) to preferentially absorb soft and low-energy X-rays having no or little contribution to image formation, thus allowing the reduction of patient dose and beam hardening artefacts. In this work, we studied the influence

  19. Moths on the Flatbed Scanner: The Art of Joseph Scheer

    Directory of Open Access Journals (Sweden)

    Stephen L. Buchmann

    2011-12-01

    Full Text Available During the past decade a few artists and even fewer entomologists discovered flatbed scanning technology, using extreme resolution graphical arts scanners for acquiring high magnification digital images of plants, animals and inanimate objects. They are not just for trip receipts anymore. The special attributes of certain scanners, to image thick objects is discussed along with the technical features of the scanners including magnification, color depth and shadow detail. The work of pioneering scanner artist, Joseph Scheer from New York’s Alfred University is highlighted. Representative flatbed-scanned images of moths are illustrated along with techniques to produce them. Collecting and preparing moths, and other objects, for scanning are described. Highlights of the Fulbright sabbatical year of professor Scheer in Arizona and Sonora, Mexico are presented, along with comments on moths in science, folklore, art and pop culture. The use of flatbed scanners is offered as a relatively new method for visualizing small objects while acquiring large files for creating archival inkjet prints for display and sale.

  20. Moths on the Flatbed Scanner: The Art of Joseph Scheer.

    Science.gov (United States)

    Buchmann, Stephen L

    2011-12-14

    During the past decade a few artists and even fewer entomologists discovered flatbed scanning technology, using extreme resolution graphical arts scanners for acquiring high magnification digital images of plants, animals and inanimate objects. They are not just for trip receipts anymore. The special attributes of certain scanners, to image thick objects is discussed along with the technical features of the scanners including magnification, color depth and shadow detail. The work of pioneering scanner artist, Joseph Scheer from New York's Alfred University is highlighted. Representative flatbed-scanned images of moths are illustrated along with techniques to produce them. Collecting and preparing moths, and other objects, for scanning are described. Highlights of the Fulbright sabbatical year of professor Scheer in Arizona and Sonora, Mexico are presented, along with comments on moths in science, folklore, art and pop culture. The use of flatbed scanners is offered as a relatively new method for visualizing small objects while acquiring large files for creating archival inkjet prints for display and sale.

  1. PARAMETRIC IMAGING AND TEST-RETEST VARIABILITY OF 11C-(+)-PHNO BINDING TO D2/D3 DOPAMINE RECEPTORS IN HUMANS ON THE HRRT PET SCANNER

    Science.gov (United States)

    Gallezot, Jean-Dominique; Zheng, Ming-Qiang; Lim, Keunpoong; Lin, Shu-fei; Labaree, David; Matuskey, David; Huang, Yiyun; Ding, Yu-Shin; Carson, Richard E.; Malison, Robert T.

    2014-01-01

    11C-(+)-PHNO is an agonist radioligand for imaging dopamine D2 and D3 receptors in the human brain with PET. In this study we evaluated the reproducibility of 11C-(+)-PHNO binding parameters using a within-day design and assessed parametric imaging methods. Methods Repeated studies were performed in eight subjects, with simultaneous measurement of the arterial input function and plasma free fraction. Two 11C-(+)-PHNO scans on the same subject were separated by 5.4±0.7 h. After evaluating compartment models, 11C-(+)-PHNO volumes of distribution VT and VT/fP and binding potentials BPND, BPP and BPF were quantified using the multilinear analysis MA1, with the cerebellum as reference region. Parametric images of BPND were also computed using SRTM and SRTM2. Results The test-retest variability of 11C-(+)-PHNO BPND was 9% in D2-rich regions (caudate and putamen). Among D3-rich regions, variability was low in pallidum (6%), but higher in substantia nigra (19%), thalamus (14%) and hypothalamus (21%). No significant mass carry-over effect was observed in D3-rich regions, although a trend in BPND was present in substantia nigra (−14±15%). Due to the relatively fast kinetics, low noise BPND parametric images were obtained with both SRTM and SRTM2 without spatial smoothing. Conclusion 11C-(+)-PHNO can be used to compute low noise parametric images in both D2 and D3 rich regions in humans. PMID:24732151

  2. Recent advances in airborne terrestrial remote sensing with the NASA airborne visible/infrared imaging spectrometer (AVIRIS), airborne synthetic aperture radar (SAR), and thermal infrared multispectral scanner (TIMS)

    Science.gov (United States)

    Vane, Gregg; Evans, Diane L.; Kahle, Anne B.

    1989-01-01

    Significant progress in terrestrial remote sensing from the air has been made with three NASA-developed sensors that collectively cover the solar-reflected, thermal infrared, and microwave regions of the electromagnetic spectrum. These sensors are the airborne visible/infrared imaging spectrometer (AVIRIS), the thermal infrared mapping spectrometer (TIMS) and the airborne synthetic aperture radar (SAR), respectively. AVIRIS and SAR underwent extensive in-flight engineering testing in 1987 and 1988 and are scheduled to become operational in 1989. TIMS has been in operation for several years. These sensors are described.

  3. Aircraft Scanners = NASA Digital Aerial Scanners (TMS, TIMS, NS001): Pre 1996

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Aircraft Scanners data set contains digital imagery acquired from several multispectral scanners including NS-001 Mutispectral scanner, Daedalus thematic mapper...

  4. Magnetic resonance imaging of iron-oxide labeled SK-Mel 28 human melanoma cells in the chick embryo using a clinical whole body MRI scanner.

    Science.gov (United States)

    Oppitz, M; Pintaske, J; Kehlbach, R; Schick, F; Schriek, G; Busch, C

    2007-02-01

    To evaluate advantages and limitations of magnetic resonance imaging (MRI) to monitor the migration of superparamagnetic iron oxide (SPIO) labeled cells in the chick embryo. Labeled human SK-Mel 28 melanoma cells were injected into the E2 chick embryo neural tube. Embryos were examined with a clinical 3 T MRI whole body system using 3D T*(2)-weighted sequences with isotropic spatial resolutions of 0.3-1.0 mm. MR-measurements of embryos were performed 2 - 16 days after cell injection. MRI findings were verified by dissection and histology. After injection, melanoma cells formed aggregations that were detectable in the neural tube as signal voids in MR images from day 2 after injection. Emigrating cells later left MRI detectable tracks. Aggregates that remained in the neural tube left label that was absorbed by glia cells. In E18 chick embryos, signals of haematopoiesis interfered with signals from cell labeling. It was shown that SK-Mel 28 cells will resume the neural crest pathways after injection into the embryonic micro-environment. SPIO cell labeling allows monitoring of transplanted melanoma cells during embryonic development. MRI using the standard clinical equipment promises to be valuable for high-sensitive monitoring of ex-vivo labeled cells in the chick embryo.

  5. Feasible Dose Reduction in Routine Chest Computed Tomography Maintaining Constant Image Quality Using the Last Three Scanner Generations: From Filtered Back Projection to Sinogram-affirmed Iterative Reconstruction and Impact of the Novel Fully Integrated Detector Design Minimizing Electronic Noise

    Directory of Open Access Journals (Sweden)

    Lukas Ebner

    2014-01-01

    Full Text Available Objective:The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP and an iterative reconstruction (IR algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany was investigated. Materials and Methods: 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP, SOMATOM Definition Flash (IR, and SOMATOM Definition Edge (ICD and IR. Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. Results: Dose-length product (DLP with FBP for the average chest CT was 308 mGycm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGycm ± 68.8 (P = 0.0001. Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGycm ± 54.5 (P = 0.033. The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048. Overall contrast-to-noise ratio (CNR improved with declining DLP. Conclusion: The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.

  6. Chemical shift MR imaging in the lumbar vertebra: the effect of field strength, scanner vendors and flip angles in repeatability of signal intensity index measurement.

    Science.gov (United States)

    Xiao, Zebin; Li, Jian; Li, Chengqi; Zhang, Yuyang; She, Dejun; Cao, Dairong

    2016-11-25

    To evaluate the reproducibility of signal intensity index (SII) measurements with MRI systems from different vendors and with different field strengths, and to test the effectiveness of flip angle. Thirty-two healthy volunteers (mean age 35.3 ± 9.3 years) were enrolled in this ethics committee-approved study. Chemical shift MR imaging was performed on 1.5- and 3.0-T MR systems from three vendors. Two independent observers measured SII values in five lumbar segments. Inter- and intraobserver agreement was assessed using the interclass correlation coefficients (ICCs). Differences of mean SII values between different field strengths and MR vendors as well as flip angles were compared by using repeated-measures analysis of variance. Differences of mean SII values between different flip angles were also compared by using paired-sample t test. Inter- and intra-observer correlation coefficients showed good agreement (all ICC > 0.75) when measuring SII values at different MR systems (ICCs ranging from 0.896 to 0.983) and flip angles (ICCs ranging from 0.824 to 0.983). There were no significant differences in mean SII values measured by different MR vendors with different field strengths (all p > 0.05 ranging from 0.337 to 0.824). The differences in the mean SII between the four different flip angles were statistically significant (all p measurement using chemical shift MR imaging may be comparable between different MR systems. Also high flip angles showed better stability to quantitate lumbar fat content.

  7. Geometric calibration between PET scanner and structured light scanner

    DEFF Research Database (Denmark)

    Kjer, Hans Martin; Olesen, Oline Vinter; Paulsen, Rasmus Reinhold

    2011-01-01

    is a structured light scanner placed just above the patient tunnel on the High Resolution Research Tomograph (HRRT, Siemens). It continuously registers point clouds of a part of the patient's face. The relative motion is estimated as the rigid transformation between frames. A geometric calibration between...

  8. Modeling biophysical properties of broad-leaved stands in the hyrcanian forests of Iran using fused airborne laser scanner data and ultraCam-D images

    Science.gov (United States)

    Mohammadi, Jahangir; Shataee, Shaban; Namiranian, Manochehr; Næsset, Erik

    2017-09-01

    Inventories of mixed broad-leaved forests of Iran mainly rely on terrestrial measurements. Due to rapid changes and disturbances and great complexity of the silvicultural systems of these multilayer forests, frequent repetition of conventional ground-based plot surveys is often cost prohibitive. Airborne laser scanning (ALS) and multispectral data offer an alternative or supplement to conventional inventories in the Hyrcanian forests of Iran. In this study, the capability of a combination of ALS and UltraCam-D data to model stand volume, tree density, and basal area using random forest (RF) algorithm was evaluated. Systematic sampling was applied to collect field plot data on a 150 m × 200 m sampling grid within a 1100 ha study area located at 36°38‧- 36°42‧N and 54°24‧-54°25‧E. A total of 308 circular plots (0.1 ha) were measured for calculation of stand volume, tree density, and basal area per hectare. For each plot, a set of variables was extracted from both ALS and multispectral data. The RF algorithm was used for modeling of the biophysical properties using ALS and UltraCam-D data separately and combined. The results showed that combining the ALS data and UltraCam-D images provided a slight increase in prediction accuracy compared to separate modeling. The RMSE as percentage of the mean, the mean difference between observed and predicted values, and standard deviation of the differences using a combination of ALS data and UltraCam-D images in an independent validation at 0.1-ha plot level were 31.7%, 1.1%, and 84 m3 ha-1 for stand volume; 27.2%, 0.86%, and 6.5 m2 ha-1 for basal area, and 35.8%, -4.6%, and 77.9 n ha-1 for tree density, respectively. Based on the results, we conclude that fusion of ALS and UltraCam-D data may be useful for modeling of stand volume, basal area, and tree density and thus gain insights into structural characteristics in the complex Hyrcanian forests.

  9. Compact implementation of dynamic receive apodization in ultrasound scanners

    DEFF Research Database (Denmark)

    Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2004-01-01

    The image quality in medical ultrasound scanners is determined by several factors, one of which is the ability of the receive beamformer to change the aperture weighting function with depth and beam angle. In digital beamformers, precise dynamic apodization can be achieved by representing the fun...

  10. The value of whole-brain CT perfusion imaging and CT angiography using a 320-slice CT scanner in the diagnosis of MCI and AD patients

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo; Gu, Guo-jun; Jiang, Hong; Guo, Yi [Medical School of Tongji University, Department of Medical Imaging, Tongji Hospital, Shanghai (China); Shen, Xing [Traditional Chinese Hospital, Department of Radiology, Kun Shan, Jiangsu Province (China); Li, Bo; Zhang, Wei [Medical School of Jiaotong University, Department of Medical Imaging, Renji Hospital, Shanghai (China)

    2017-11-15

    To validate the value of whole-brain computed tomography perfusion (CTP) and CT angiography (CTA) in the diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD). Whole-brain CTP and four-dimensional CT angiography (4D-CTA) images were acquired in 30 MCI, 35 mild AD patients, 35 moderate AD patients, 30 severe AD patients and 50 normal controls (NC). Cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), time to peak (TTP), and correlation between CTP and 4D-CTA were analysed. Elevated CBF in the left frontal and temporal cortex was found in MCI compared with the NC group. However, TTP was increased in the left hippocampus in mild AD patients compared with NC. In moderate and severe AD patients, hypoperfusion was found in multiple brain areas compared with NC. Finally, we found that the extent of arterial stenosis was negatively correlated with CBF in partial cerebral cortex and hippocampus, and positively correlated with TTP in these areas of AD and MCI patients. Our findings suggest that whole-brain CTP and 4D-CTA could serve as a diagnostic modality in distinguishing MCI and AD, and predicting conversion from MCI based on TTP of left hippocampus. (orig.)

  11. Long-Term Left Ventricular Remodelling in Rat Model of Nonreperfused Myocardial Infarction: Sequential MR Imaging Using a 3T Clinical Scanner

    Directory of Open Access Journals (Sweden)

    Muhammad G. Saleh

    2012-01-01

    Full Text Available Purpose. To evaluate whether 3T clinical MRI with a small-animal coil and gradient-echo (GE sequence could be used to characterize long-term left ventricular remodelling (LVR following nonreperfused myocardial infarction (MI using semi-automatic segmentation software (SASS in a rat model. Materials and Methods. 5 healthy rats were used to validate left ventricular mass (LVM measured by MRI with postmortem values. 5 sham and 7 infarcted rats were scanned at 2 and 4 weeks after surgery to allow for functional and structural analysis of the heart. Measurements included ejection fraction (EF, end-diastolic volume (EDV, end-systolic volume (ESV, and LVM. Changes in different regions of the heart were quantified using wall thickness analyses. Results. LVM validation in healthy rats demonstrated high correlation between MR and postmortem values. Functional assessment at 4 weeks after MI revealed considerable reduction in EF, increases in ESV, EDV, and LVM, and contractile dysfunction in infarcted and noninfarcted regions. Conclusion. Clinical 3T MRI with a small animal coil and GE sequence generated images in a rat heart with adequate signal-to-noise ratio (SNR for successful semiautomatic segmentation to accurately and rapidly evaluate long-term LVR after MI.

  12. CONTRAST DYNAMIC MR IMAGING IN HIRAYAMA DISEASE ON A 3-TESLA MRI SCANNER IN A TERTIARY CARE CENTRE IN EASTERN INDIA

    Directory of Open Access Journals (Sweden)

    Archana Singh

    2017-05-01

    Full Text Available BACKGROUND Hirayama disease, also termed non-progressive juvenile spinal muscular atrophy of the distal upper limbs, is a type of cervical myelopathy related to flexion movements of the neck. The objective of the study was to evaluate the role of Dynamic MR imaging findings in young patients with clinical suspicion of Hirayama disease. MATERIALS AND METHODS Thirteen patients (age range from 16 to 26 years with clinical suspicion of Hirayama disease underwent thorough clinical evaluation and dynamic cervical MRI in the Department of Radiology at IPGME&R within a time duration of June 2014 to September 2016. RESULTS All the thirteen patients showed anterior shifting of posterior dural sac, cord flattening, abnormal curvature, enhancing epidural component. Nine of them showed localised cord atrophy and intramedullary T2 hyperintensities. Ten patients showed prominent flow voids. CONCLUSION Hirayama disease, a rare disease affecting young adults almost always in the second to third decades of life, is characterised by insidious onset and slowly progressive course followed by static phase of unilateral or asymmetric atrophy of the hand(s and forearm(s with sparing of the brachioradialis, characterised as oblique amyotrophy. Dynamic contrast MRI has accurate and characteristic findings which help in early diagnosis and early institution of therapy.

  13. Monte Carlo simulation of efficient data acquisition for an entire-body PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Isnaini, Ismet; Obi, Takashi [Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Yoshida, Eiji, E-mail: rush@nirs.go.jp [National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Yamaya, Taiga [National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan)

    2014-07-01

    Conventional PET scanners can image the whole body using many bed positions. On the other hand, an entire-body PET scanner with an extended axial FOV, which can trace whole-body uptake images at the same time and improve sensitivity dynamically, has been desired. The entire-body PET scanner would have to process a large amount of data effectively. As a result, the entire-body PET scanner has high dead time at a multiplex detector grouping process. Also, the entire-body PET scanner has many oblique line-of-responses. In this work, we study an efficient data acquisition for the entire-body PET scanner using the Monte Carlo simulation. The simulated entire-body PET scanner based on depth-of-interaction detectors has a 2016-mm axial field-of-view (FOV) and an 80-cm ring diameter. Since the entire-body PET scanner has higher single data loss than a conventional PET scanner at grouping circuits, the NECR of the entire-body PET scanner decreases. But, single data loss is mitigated by separating the axially arranged detector into multiple parts. Our choice of 3 groups of axially-arranged detectors has shown to increase the peak NECR by 41%. An appropriate choice of maximum ring difference (MRD) will also maintain the same high performance of sensitivity and high peak NECR while at the same time reduces the data size. The extremely-oblique line of response for large axial FOV does not contribute much to the performance of the scanner. The total sensitivity with full MRD increased only 15% than that with about half MRD. The peak NECR was saturated at about half MRD. The entire-body PET scanner promises to provide a large axial FOV and to have sufficient performance values without using the full data.

  14. The value of whole-brain CT perfusion imaging and CT angiography using a 320-slice CT scanner in the diagnosis of MCI and AD patients.

    Science.gov (United States)

    Zhang, Bo; Gu, Guo-Jun; Jiang, Hong; Guo, Yi; Shen, Xing; Li, Bo; Zhang, Wei

    2017-06-02

    To validate the value of whole-brain computed tomography perfusion (CTP) and CT angiography (CTA) in the diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD). Whole-brain CTP and four-dimensional CT angiography (4D-CTA) images were acquired in 30 MCI, 35 mild AD patients, 35 moderate AD patients, 30 severe AD patients and 50 normal controls (NC). Cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), time to peak (TTP), and correlation between CTP and 4D-CTA were analysed. Elevated CBF in the left frontal and temporal cortex was found in MCI compared with the NC group. However, TTP was increased in the left hippocampus in mild AD patients compared with NC. In moderate and severe AD patients, hypoperfusion was found in multiple brain areas compared with NC. Finally, we found that the extent of arterial stenosis was negatively correlated with CBF in partial cerebral cortex and hippocampus, and positively correlated with TTP in these areas of AD and MCI patients. Our findings suggest that whole-brain CTP and 4D-CTA could serve as a diagnostic modality in distinguishing MCI and AD, and predicting conversion from MCI based on TTP of left hippocampus. • Whole-brain perfusion using the full 160-mm width of 320 detector rows • Provide clinical experience of 320-row CT in cerebrovascular disorders of Alzheimer's disease • Initial combined 4D CTA-CTP data analysed perfusion and correlated with CT angiography • Whole-brain CTP and 4D-CTA have high value for monitoring MCI to AD progression • TTP in the left hippocampus may predict the transition from MCI to AD.

  15. A systematic review and economic evaluation of new-generation computed tomography scanners for imaging in coronary artery disease and congenital heart disease: Somatom Definition Flash, Aquilion ONE, Brilliance iCT and Discovery CT750 HD.

    Science.gov (United States)

    Westwood, M; Al, M; Burgers, L; Redekop, K; Lhachimi, S; Armstrong, N; Raatz, H; Misso, K; Severens, J; Kleijnen, J

    2013-01-01

    Computed tomography (CT) is important in diagnosing and managing many conditions, including coronary artery disease (CAD) and congenital heart disease. Current CT scanners can very accurately diagnose CAD requiring revascularisation in most patients. However, imaging technologies have developed rapidly and new-generation computed tomography (NGCCT) scanners may benefit patients who are difficult to image (e.g. obese patients, patients with high or irregular heart beats and patients who have high levels of coronary calcium or a previous stent or bypass graft). To assess the clinical effectiveness and cost-effectiveness of NGCCT for diagnosing clinically significant CAD in patients who are difficult to image using 64-slice computed tomography and treatment planning in complex congenital heart disease. Bibliographic databases were searched from 2000 to February/March 2011, including MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, Cochrane Database of Systematic Reviews (CDSR), Cochrane Central Register of Controlled Trials (CENTRAL), Database of Abstracts of Reviews of Effects (DARE), NHS Economic Evaluation Database (NHS EED), Health Technology Assessment (HTA) database and Science Citation Index (SCI). Trial registers and conference proceedings were searched. Systematic review methods followed published guidance. Risk of bias was assessed using QUADAS-2. Results were stratified by patient group. Summary sensitivity and specificity were calculated using a bivariate summary receiver operating characteristic, or random effects model. Heterogeneity was assessed using the chi-squared statistic and I(2)-statistic. Cost-effectiveness of NGCCT was modelled separately for suspected and known CAD, evaluating invasive coronary angiography (ICA) only, ICA after positive NGCCT (NGCCT-ICA), and NGCCT only. The cost-effectiveness of NGCCT, compared with 64-slice CT, in reducing imaging-associated radiation in congenital heart disease was assessed. Twenty

  16. Scanner qualification with IntenCD based reticle error correction

    Science.gov (United States)

    Elblinger, Yair; Finders, Jo; Demarteau, Marcel; Wismans, Onno; Minnaert Janssen, Ingrid; Duray, Frank; Ben Yishai, Michael; Mangan, Shmoolik; Cohen, Yaron; Parizat, Ziv; Attal, Shay; Polonsky, Netanel; Englard, Ilan

    2010-03-01

    Scanner introduction into the fab production environment is a challenging task. An efficient evaluation of scanner performance matrices during factory acceptance test (FAT) and later on during site acceptance test (SAT) is crucial for minimizing the cycle time for pre and post production-start activities. If done effectively, the matrices of base line performance established during the SAT are used as a reference for scanner performance and fleet matching monitoring and maintenance in the fab environment. Key elements which can influence the cycle time of the SAT, FAT and maintenance cycles are the imaging, process and mask characterizations involved with those cycles. Discrete mask measurement techniques are currently in use to create across-mask CDU maps. By subtracting these maps from their final wafer measurement CDU map counterparts, it is possible to assess the real scanner induced printed errors within certain limitations. The current discrete measurement methods are time consuming and some techniques also overlook mask based effects other than line width variations, such as transmission and phase variations, all of which influence the final printed CD variability. Applied Materials Aera2TM mask inspection tool with IntenCDTM technology can scan the mask at high speed, offer full mask coverage and accurate assessment of all masks induced source of errors simultaneously, making it beneficial for scanner qualifications and performance monitoring. In this paper we report on a study that was done to improve a scanner introduction and qualification process using the IntenCD application to map the mask induced CD non uniformity. We will present the results of six scanners in production and discuss the benefits of the new method.

  17. Nodular melanoma serendipitously detected by airport full body scanners.

    Science.gov (United States)

    Mayer, Jonathan E; Adams, Brian B

    2015-01-01

    Nodular melanoma is the most dangerous form of melanoma and often evades early detection. We present a frequently traveling businessman whose nodular melanoma was detected by airport full body scanners. For about 20 flights over 2 months, the airport full body scanners singled out an area on his left lower leg for a pat-down. Dermatologic examination discovered a nodular melanoma in this area, and after surgical excision, the man traveled without incident. This case raises the possibility of using full body imaging in the detection of melanomas, especially of the nodular subtype. In its current form, full body scanning would most likely not be sensitive or specific enough to become a recommended screening tool. Nonetheless, for travelers with areas repeatedly singled out by the machines without a known justification, airport scanners could serve as incidental free screening for suspicious nodular lesions that should prompt dermatologist referral. © 2014 S. Karger AG, Basel.

  18. Dental impressions using 3D digital scanners: virtual becomes reality.

    Science.gov (United States)

    Birnbaum, Nathan S; Aaronson, Heidi B

    2008-10-01

    The technologies that have made the use of three-dimensional (3D) digital scanners an integral part of many industries for decades have been improved and refined for application to dentistry. Since the introduction of the first dental impressioning digital scanner in the 1980s, development engineers at a number of companies have enhanced the technologies and created in-office scanners that are increasingly user-friendly and able to produce precisely fitting dental restorations. These systems are capable of capturing 3D virtual images of tooth preparations, from which restorations may be fabricated directly (ie, CAD/CAM systems) or fabricated indirectly (ie, dedicated impression scanning systems for the creation of accurate master models). The use of these products is increasing rapidly around the world and presents a paradigm shift in the way in which dental impressions are made. Several of the leading 3D dental digital scanning systems are presented and discussed in this article.

  19. Acoustic noise reduction in a 4 T MRI scanner.

    Science.gov (United States)

    Mechefske, Chris K; Geris, Ryan; Gati, Joseph S; Rutt, Brian K

    2002-01-01

    High-field, high-speed magnetic resonance imaging (MRI) can generate high levels of noise. There is ongoing concern in the medical and imaging research communities regarding the detrimental effects of high acoustic levels on auditory function, patient anxiety, verbal communication between patients and health care workers and ultimately MR image quality. In order to effectively suppress the noise levels inside MRI scanners, the sound field needs to be accurately measured and characterized. This paper presents the results of measurements of the sound radiation from a gradient coil cylinder within a 4 T MRI scanner under a variety of conditions. These measurement results show: (1) that noise levels can be significantly reduced through the use of an appropriately designed passive acoustic liner; and (2) the true noise levels that are experienced by patients during echo planar imaging.

  20. COMPACT HANDHELD FRINGE PROJECTION BASED UNDERWATER 3D-SCANNER

    Directory of Open Access Journals (Sweden)

    C. Bräuer-Burchardt

    2015-04-01

    Full Text Available A new, fringe projection based compact handheld 3D scanner for the surface reconstruction of measurement objects under water is introduced. The weight of the scanner is about 10 kg and can be used in a water depth of maximal 40 metres. A measurement field of about 250 mm x 200 mm is covered under water, and the lateral resolution of the measured object points is about 150 μm. Larger measurement objects can be digitized in a unique geometric model by merging subsequently recorded datasets. The recording time for one 3D scan is a third of a second. The projection unit for the structured illumination of the scene as well as the computer for device control and measurement data analysis are included into the scanners housing. A display on the backside of the device realizes the graphical presentation of the current measurement data. It allows the user to evaluate the quality of the measurement result in real-time already during the recording of the measurement under water. For the calibration of the underwater scanner a combined method of air- and water-calibration was developed which needs only a few recorded underwater images of a plane surface and an object with known lengths. First measurement results obtained with the new scanner are presented.

  1. Cranial MRI of small rodents using a clinical MR scanner.

    Science.gov (United States)

    Linn, Jennifer; Schwarz, Friederike; Schichor, Christian; Wiesmann, Martin

    2007-09-01

    Increasing numbers of small animal models are in use in the field of neuroscience research. Magnetic resonance imaging (MRI) provides an excellent method for non-invasive imaging of the brain. Using three-dimensional (3D) MR sequences allows lesion volumetry, e.g. for the quantification of tumor size. Specialized small-bore animal MRI scanners are available for high-resolution MRI of small rodents' brain, but major drawbacks of this dedicated equipment are its high costs and thus its limited availability. Therefore, more and more research groups use clinical MR scanners for imaging small animal models. But to achieve a reasonable spatial resolution at an acceptable signal-to-noise ratio with these scanners, some requirements concerning sequence parameters have to be matched. Thus, the aim of this paper was to present in detail a method how to perform MRI of small rodents brain using a standard clinical 1.5 T scanner and clinically available radio frequency coils to keep material costs low and to circumvent the development of custom-made coils.

  2. Practical experiences in the transfer of clinical protocols between CT scanners with different ATCM systems.

    Science.gov (United States)

    Sookpeng, Supawitoo; Martin, Colin J; Cheebsumon, Patsuree; Pengpan, Thanyawee

    2017-03-20

    Automatic tube current modulation (ATCM) systems to aid in optimizing dose and image noise have become standard on computed tomography (CT) scanners over the last decade. ATCM systems of the main vendors modulate tube current in slightly different ways, with some using a control parameter related to image noise (e.g. Toshiba, GE) while others use a quality reference image mAs (e.g. Siemens). The translation of clinical protocols including ATCM operation between CT scanners from different manufacturers in order to obtain similar levels of image quality with optimized exposure variables has become an important issue. In this study, cylindrical phantoms of different sizes representing small, average and large patients, have been combined into one phantom, which has been scanned on Siemens, Toshiba and GE CT scanners with the full ranges of ATCM image quality settings. The volume weighted CT dose index (CTDIvol) and image noise over each section of the phantom were recorded for every setting. Relationships between the image quality level settings, and CTDIvol and measured image noise were analysed in order to investigate ATCM performance. Equations were developed from fits of the data to enable CTDIvol and image noise to be expressed in terms of the image quality parameters for different size phantoms on each scanner. The Siemens scanner protocol was chosen as the reference, as it avoided high doses for large patients, while allowing full modulation of tube current for patients of all sizes, and so was considered to provide optimized performance. The equations derived were used to equate the noise parameters on Toshiba and GE scanners to the quality reference mAs on the Siemens scanner, so that clinical protocols incorporating similar levels of optimization could be obtained on the three CT scanners.

  3. 21 CFR 892.1220 - Fluorescent scanner.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fluorescent scanner. 892.1220 Section 892.1220...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification. A fluorescent scanner is a device intended to measure the induced fluorescent radiation in the body by exposing...

  4. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Tushita, E-mail: tp3rn@virginia.edu [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Peppard, Heather [Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908 (United States); Williams, Mark B. [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908 (United States); Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908 (United States)

    2016-04-15

    Purpose: Radiation scattered from the breast in digital breast tomosynthesis (DBT) causes image degradation, including loss of contrast between cancerous and background tissue. Unlike in 2-dimensional (2D) mammography, an antiscatter grid cannot readily be used in DBT because changing alignment between the tube and detector during the scan would result in unacceptable loss of primary radiation. However, in the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis, the tube and detector rotate around a common axis, thereby maintaining a fixed tube-detector alignment. This C-arm geometry raises the possibility of using a 2D (cellular) focused antiscatter grid. The purpose of this study is to assess change in image quality when using an antiscatter grid in the DBT portion of a DMT scan under conditions of fixed radiation dose. Methods: Two 2D focused prototype grids with 80 cm focal length were tested, one stack-laminated from copper (Cu) and one cast from a tungsten-polymer (W-poly). They were reciprocated using a motion scheme designed to maximize transmission of primary x-ray photons. Grid-in and grid-out scatter-to-primary ratios (SPRs) were measured for rectangular blocks of material simulating 30%, 50%, and 70% glandular tissue compositions. For assessment of changes in image quality through the addition of a grid, the Computerized Imaging Reference Systems, Inc., phantom Model 011A containing a set of 1 cm thick blocks simulating a range of glandular/adipose ratios from 0/100 to 100/0 was used. To simulate 6.5 and 8.5 cm thick compressed breasts, 1 cm thick slices of PMMA were added to the Model 011A phantom. DBT images were obtained with and without the grid, with exposure parameters fixed for a given compressed thickness. Signal-difference-to-noise ratios (SDNRs), contrast, and voxel value-based attenuation coefficients (μ) were measured for all blocks from reconstructed phantom images. Results: For 4, 6, and

  5. Large-area aircraft scanner

    Science.gov (United States)

    Iddings, Frank A.

    A program to determine the feasibility of present state-of-the-art NDI technology to produce a large-area scanner and to identify commercial equipment available to construct the desired system is presented. Work performed to attain these objectives is described, along with suggested modifications to the existing commercial equipment in order to meet the design criteria as closely as possible. Techniques that show the most promise at present are: D-sight, shearography, and pulse IR thermography (PIRT). D-sight is argued to be inadequate alone, but may well help form a system in conjunction with another technique. Shearography requires additional development in the area of stress application along with interpretation and overall application. PIRT is argued to be satisfactory as a large-area scanner system, at least for thin composite and metal panels.

  6. Exposure to static and time-varying magnetic fields from working in the static magnetic stray fields of MRI scanners : A comprehensive survey in the Netherlands

    NARCIS (Netherlands)

    Schaap, Kristel|info:eu-repo/dai/nl/323043216; Christopher-De Vries, Yvette; Crozier, Stuart; Vocht, Frank De; Kromhout, Hans|info:eu-repo/dai/nl/074385224

    2014-01-01

    Clinical and research staff who work around magnetic resonance imaging (MRI) scanners are exposed to the static magnetic stray fields of these scanners. Although the past decade has seen strong developments in the assessment of occupational exposure to electromagnetic fields from MRI scanners, there

  7. Symptoms and Cognitive Effects of Exposure to Magnetic Stray Fields of MRI Scanners

    NARCIS (Netherlands)

    Vocht, Frank Gérard de

    2006-01-01

    People working routinely with magnetic resonance imaging (MRI) systems report a number of symptoms related to their presence in the inhomogeneous static magnetic fields (the stray field) surrounding these scanners. Experienced symptoms and neurobehavioral performance among engineers manufacturing

  8. Characterization by SPECT imaging, micro-PET with {sup 18}F-F.D.G. and micro scanner of an orthotopic osteosarcoma murine model; Caracterisation par imagerie TEMP, micro-TEP au {sup 18}F-FDG et microscanner d'un modele murin d'osteosarcome orthotopique

    Energy Technology Data Exchange (ETDEWEB)

    Miot-Noirault, E.; Moins, N.; Chezal, J.M. [EA4231, UMR 990, Inserm, 63 - Clermont-Ferrand (France); Gouin, F.; Heymann, D.; Redini, F. [EA3822, UMR 957, 44 - Nantes (France)

    2010-07-01

    This study had for purpose the characterization of the murine model of POS-1 osteolytic osteosarcoma implanted in orthotopic situation, by SPECT imaging, micro-PET, micro scanner, clinical and histological study. Conclusions: these results show all the interest of multimodal small animal imaging as quantitative method of evaluation in vivo of the osteosarcoma tumor progression and bone rebuilding associated to the osteolytic evolution. The assessment in vivo of this pathology should allow to improve the knowledge of interactions between tumor cells and bone environment, preclinical evaluation in vivo of new therapy strategies targeting both tumor development and bone resorption. (N.C.)

  9. Vacuum Attachment for XRF Scanner

    Science.gov (United States)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  10. Middle infrared multispectral aircraft scanner data: analysis for geological applications.

    Science.gov (United States)

    Kahle, A B; Madura, D P; Soha, J M

    1980-07-15

    Multispectral middle IR (8-13-microm) data were acquired with an aircraft scanner over Utah. Because these digital image data were dominated by temperature, all six channels were highly correlated. Extensive processing was required to allow geologic photointerpretation based on subtle variations in spectral emittance between rock types. After preliminary processing, ratio images were produced and color ratio composites created from these. Sensor calibration and an atmospheric model allowed determination of surface brightness, temperature, emittance, and color composite emittance images. The best separation of major rock types was achieved with a principal component transformation, followed by a Gaussian stretch, followed by an inverse transformation to the original axes.

  11. Middle infrared multispectral aircraft scanner data - Analysis for geological applications

    Science.gov (United States)

    Kahle, A. B.; Madura, D. P.; Soha, J. M.

    1980-01-01

    Multispectral middle IR (8-13 microns) data were acquired with an aircraft scanner over Utah. Because these digital image data were dominated by temperature, all six channels were highly correlated. Extensive processing was required to allow geologic photointerpretation based on subtle variations in spectral emittance between rock types. After preliminary processing, ratio images were produced and color ratio composites created from these. Sensor calibration and an atmospheric model allowed determination of surface brightness, temperature, emittance, and color composite emittance images. The best separation of major rock types was achieved with a principal component transformation, followed by a Gaussian stretch, followed by an inverse transformation to the original axes.

  12. Label-free tissue scanner for colorectal cancer screening

    Science.gov (United States)

    Kandel, Mikhail E.; Sridharan, Shamira; Liang, Jon; Luo, Zelun; Han, Kevin; Macias, Virgilia; Shah, Anish; Patel, Roshan; Tangella, Krishnarao; Kajdacsy-Balla, Andre; Guzman, Grace; Popescu, Gabriel

    2017-06-01

    The current practice of surgical pathology relies on external contrast agents to reveal tissue architecture, which is then qualitatively examined by a trained pathologist. The diagnosis is based on the comparison with standardized empirical, qualitative assessments of limited objectivity. We propose an approach to pathology based on interferometric imaging of "unstained" biopsies, which provides unique capabilities for quantitative diagnosis and automation. We developed a label-free tissue scanner based on "quantitative phase imaging," which maps out optical path length at each point in the field of view and, thus, yields images that are sensitive to the "nanoscale" tissue architecture. Unlike analysis of stained tissue, which is qualitative in nature and affected by color balance, staining strength and imaging conditions, optical path length measurements are intrinsically quantitative, i.e., images can be compared across different instruments and clinical sites. These critical features allow us to automate the diagnosis process. We paired our interferometric optical system with highly parallelized, dedicated software algorithms for data acquisition, allowing us to image at a throughput comparable to that of commercial tissue scanners while maintaining the nanoscale sensitivity to morphology. Based on the measured phase information, we implemented software tools for autofocusing during imaging, as well as image archiving and data access. To illustrate the potential of our technology for large volume pathology screening, we established an "intrinsic marker" for colorectal disease that detects tissue with dysplasia or colorectal cancer and flags specific areas for further examination, potentially improving the efficiency of existing pathology workflows.

  13. Robotic Prostate Biopsy in Closed MRI Scanner

    National Research Council Canada - National Science Library

    Fischer, Gregory

    2008-01-01

    .... This work enables prostate brachytherapy and biopsy procedures in standard high-field diagnostic MRI scanners through the development of a robotic needle placement device specifically designed...

  14. Optimising Mobile Mapping System Laser Scanner Orientation

    Directory of Open Access Journals (Sweden)

    Conor Cahalane

    2015-02-01

    Full Text Available Multiple laser scanner hardware configurations can be applied to Mobile Mapping Systems. As best practice, laser scanners are rotated horizontally or inclined vertically to increase the probability of contact between the laser scan plane and any surfaces that are perpendicular to the direction of travel. Vertical inclinations also maximise the number of scan profiles striking narrow vertical features, something that can be of use when trying to recognise features. Adding a second scanner allows an MMS to capture more data and improve laser coverage of an area by filling in laser shadows. However, in any MMS the orientation of each scanner on the platform must be decided upon. Changes in the horizontal or vertical orientations of the scanner can increase the range to vertical targets and the road surface, with excessive scanner angles lowering point density significantly. Limited information is available to assist the manufacturers or operators in identifying the optimal scanner orientation for roadside surveys. The method proposed in this paper applies 3D surface normals and geometric formulae to assess the influence of scanner orientation on point distribution. It was demonstrated that by changing the orientation of the scanner the number of pulses striking a target could be greatly increased, and the number of profiles intersecting with the target could also be increased—something that is particularly important for narrow vertical features. The importance of identifying the correct trade-off between the number of profiles intersecting with the target and the point spacing was also raised.

  15. Long-Range WindScanner System

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola; Lea, Guillaume; Courtney, Michael

    2016-01-01

    The technical aspects of a multi-Doppler LiDAR instrument, the long-range WindScanner system, are presented accompanied by an overview of the results from several field campaigns. The long-range WindScanner system consists of three spatially-separated, scanning coherent Doppler LiDARs and a remote......-rangeWindScanner system measures the wind field by emitting and directing three laser beams to intersect, and then scanning the beam intersection over a region of interest. The long-range WindScanner system was developed to tackle the need for high-quality observations of wind fields on scales of modern wind turbine...

  16. High-precision GAFCHROMIC EBT film-based absolute clinical dosimetry using a standard flatbed scanner without the use of a scanner non-uniformity correction.

    Science.gov (United States)

    Chung, Heeteak; Lynch, Bart; Samant, Sanjiv

    2010-04-17

    To report a study of the use of GAFCHROMIC EBT radiochromic film (RCF) digitized with a commercially available flatbed document scanner for accurate and reliable all-purpose two-dimensional (2D) absolute dosimetry within a clinical environment. We used a simplified methodology that yields high-precision dosimetry measurements without significant postirradiation correction. The Epson Expression 1680 Professional scanner and the Epson Expression 10000XL scanner were used to digitize the films. Both scanners were retrofitted with light-diffusing glass to minimize the effects of Newton rings. Known doses were delivered to calibration films. Flat and wedge fields were irradiated with variable depth of solid water and 5 cm back scatter solid water. No particular scanner nonuniformity effect corrections or significant post-scan image processing were carried out. The profiles were compared with CC04 ionization chamber profiles. The depth dose distribution was measured at a source-to-surface distance (SSD) of 100 cm with a field size of 10 x 10 cm2. Additionally, 22 IMRT fields were measured and evaluated using gamma index analysis. The overall accuracy of RCF with respect to CC04 was found to be 2%-4%. The overall accuracy of RCF was determined using the absolute mean of difference for all flat and wedge field profiles. For clinical IMRT fields, both scanners showed an overall gamma index passing rate greater than 90%. This work demonstrated that EBT films, in conjunction with a commercially available flatbed scanner, can be used as an accurate and precise absolute dosimeter. Both scanners showed that no significant scanner nonuniformity correction is necessary for accurate absolute dosimetry using the EBT films for field sizes smaller than or equal to 15 x 15 cm2.

  17. A Surface-Based Spatial Registration Method Based on Sense Three-Dimensional Scanner.

    Science.gov (United States)

    Fan, Yifeng; Xu, Xiufang; Wang, Manning

    2017-01-01

    The purpose of this study was to investigate the feasibility of a surface-based registration method based on a low-cost, hand-held Sense three-dimensional (3D) scanner in image-guided neurosurgery system. The scanner was calibrated prior and fixed on a tripod before registration. During registration, a part of the head surface was scanned at first and the spatial position of the adapter was recorded. Then the scanner was taken off from the tripod and the entire head surface was scanned by moving the scanner around the patient's head. All the scan points were aligned to the recorded spatial position to form a unique point cloud of the head by the automatic mosaic function of the scanner. The coordinates of the scan points were transformed from the device space to the adapter space by a calibration matrix, and then to the patient space. A 2-step patient-to-image registration method was then performed to register the patient space to the image space. The experimental results showed that the mean target registration error of 15 targets on the surface of the phantom was 1.61±0.09 mm. In a clinical experiment, the mean target registration error of 7 targets on the patient's head surface was 2.50±0.31 mm, which was sufficient to meet clinical requirements. It is feasible to use the Sense 3D scanner for patient-to-image registration, and the low-cost Sense 3D scanner can take the place of the current used scanner in the image-guided neurosurgery system.

  18. WE-D-218-01: Ultrasound Scanner Innovations and Clinical Practice.

    Science.gov (United States)

    Thomenius, K

    2012-06-01

    Of all the imaging modalities, ultrasound scanners have gone through the most profound changes over the last several decades in terms of their size, capability, and cost. Much of this is due to the small data acquisition devices (ultrasound transducers) and Moore's Law dependent signal/image processors that comprise and ultrasound scanner. These are in direct contrast with the front ends of MRI or CT scanners with their sizeable power hungry gantries. Thus ultrasound has been a direct beneficiary of the miniaturization associated with the semiconductor industry; this has enabled the migration of much hardware functionality to software and development of much smaller devices even including handheld scanners. Such changes are having a significant impact on clinical utilization of ultrasound. This talk will review some of these including the recent introduction of complete software backends, i.e. ultrasound scanners composed of analog front ends which are connected to processors with minimal dedicated digital hardware. 1. Understand the architecture of an ultrasound scanner and how it has changed with evolving technology. 2. Understand the implications to clinical practice from these changes. 3. Understand the possibilities for the future of ultrasound scanners both from the view of new technical capabilities and how these might impact the clinic. © 2012 American Association of Physicists in Medicine.

  19. The Edinburgh Pipe Phantom: characterising ultrasound scanners beyond 50 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Moran, C M [Medical Physics, University of Edinburgh, Edinburgh, EH16 4TJ (United Kingdom); Ellis, W; Janeczko, A; Pye, S D [Medical Physics Department, NHS Lothian University Hospitals Division, Royal Infirmary, Edinburgh EH16 4SA (United Kingdom); Bell, D, E-mail: carmel.moran@ed.ac.uk [Precision Acoustics Ltd, Hampton Farm Business Park, Dorset, DT2 8QH (United Kingdom)

    2011-02-01

    The ability to measure the imaging performance of pre-clinical and clinical ultrasound scanners is important but difficult to achieve objectively. The Edinburgh Pipe Phantom was originally developed to assess the technical performance of clinical scanners up to 15MHz. It comprises a series of anechoic cylinders with diameters 0.4 - 8mm embedded in agar-based tissue mimic. This design enables measurement of the characteristics (Resolution Integral R, Depth of Field L{sub R}, Characteristic Resolution D{sub R}) of grey-scale images with transducer centre frequencies from about 2.5 to 15MHz. We describe further development of the Edinburgh Pipe Phantom as a tool for characterising ultrasound scanners with centre frequencies up to at least 50MHz. This was achieved by moulding a series of anechoic pipe structures (diameters 0.045 - 1.5mm) into a block of agar-based tissue mimic. We report measurements of R, L{sub R} and D{sub R} for a series of 10 transducers (5 single element and 5 array transducers) designed for pre-clinical scanning, with centre frequencies in the range 15-55 MHz. Values of R ranged from 18-72 for single element transducers and 49-58 for linear array transducers. In conclusion, the pre-clinical pipe phantom was able to successfully determine the imaging characteristics of ultrasound probes up to 55MHz.

  20. Visual stimulus presentation using fiber optics in the MRI scanner.

    Science.gov (United States)

    Huang, Ruey-Song; Sereno, Martin I

    2008-03-30

    Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.

  1. How flatbed scanners upset accurate film dosimetry

    NARCIS (Netherlands)

    Battum, L.J. van; Huizenga, H.; Verdaasdonk, R.M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis.

  2. 3D whole body scanners revisited

    NARCIS (Netherlands)

    Daanen, H.A.M.; Haar, F.B. ter

    2013-01-01

    An overview of whole body scanners in 1998 (H.A.M. Daanen, G.J. Van De Water. Whole body scanners, Displays 19 (1998) 111-120) shortly after they emerged to the market revealed that the systems were bulky, slow, expensive and low in resolution. This update shows that new developments in sensing and

  3. Functional MR imaging on an open 1T MR imaging system: exploiting the advantages of an open MR imaging system for functional MR imaging

    NARCIS (Netherlands)

    van de Giessen, E.; Groot, P. F. C.; Booij, J.; van den Brink, W.; Veltman, D. J.; Nederveen, A. J.

    2011-01-01

    Open MR imaging scanners are designed for imaging of specific patient groups that cannot be routinely scanned with conventional MR imaging scanners (eg, patients with obesity and claustrophobia). This study aims to determine whether BOLD sensitivity on an open 1T scanner is adequate for fMRI for

  4. Positron emission tomography/magnetic resonance hybrid scanner imaging of cerebral blood flow using 15O-water positron emission tomography and arterial spin labeling magnetic resonance imaging in newborn piglets

    DEFF Research Database (Denmark)

    Andersen, Julie B; Henning, William S; Lindberg, Ulrich

    2015-01-01

    Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic-ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous (15)O-water positron emission tomography (PET) and single TI pulsed...... arterial spin labeling (ASL) magnetic resonance imaging (MR) on a hybrid PET/MR in seven newborn piglets. Positron emission tomography was performed with IV injections of 20 MBq and 100 MBq (15)O-water to confirm CBF reliability at low activity. Cerebral blood flow was quantified using a one...

  5. Basic study of entire whole-body PET scanners based on the OpenPET geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.j [National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Yamaya, Taiga; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo [National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan)

    2010-09-21

    A conventional PET scanner has a 15-25 cm axial field-of-view (FOV) and images a whole body using about six bed positions. An OpenPET geometry can extend the axial FOV with a limited number of detectors. The entire whole-body PET scanner must be able to process a large amount of data effectively. In this work, we study feasibility of the fully 3D entire whole-body PET scanner using the GATE simulation. The OpenPET has 12 block detector rings with the ring diameter of 840 mm and each block detector ring consists of 48 depth-of-interaction (DOI) detectors. The OpenPET has the axial length of 895.95 mm with five parts of 58.95 mm open gaps. The OpenPET has higher single data loss than a conventional PET scanner at grouping circuits. NECR of the OpenPET decreases by single data loss. But single data loss is mitigated by separating the axially arranged detector into two parts. Also, multiple coincidences are found to be important for the entire whole-body PET scanner. The entire whole-body PET scanner with the OpenPET geometry promises to provide a large axial FOV with the open space and to have sufficient performance values. But single data loss at the grouping circuits and multiple coincidences are limited to the peak noise equivalent count rate (NECR) for the entire whole-body PET scanner.

  6. Software platform for simulation of a prototype proton CT scanner.

    Science.gov (United States)

    Giacometti, Valentina; Bashkirov, Vladimir A; Piersimoni, Pierluigi; Guatelli, Susanna; Plautz, Tia E; Sadrozinski, Hartmut F-W; Johnson, Robert P; Zatserklyaniy, Andriy; Tessonnier, Thomas; Parodi, Katia; Rosenfeld, Anatoly B; Schulte, Reinhard W

    2017-03-01

    Proton computed tomography (pCT) is a promising imaging technique to substitute or at least complement x-ray CT for more accurate proton therapy treatment planning as it allows calculating directly proton relative stopping power from proton energy loss measurements. A proton CT scanner with a silicon-based particle tracking system and a five-stage scintillating energy detector has been completed. In parallel a modular software platform was developed to characterize the performance of the proposed pCT. The modular pCT software platform consists of (1) a Geant4-based simulation modeling the Loma Linda proton therapy beam line and the prototype proton CT scanner, (2) water equivalent path length (WEPL) calibration of the scintillating energy detector, and (3) image reconstruction algorithm for the reconstruction of the relative stopping power (RSP) of the scanned object. In this work, each component of the modular pCT software platform is described and validated with respect to experimental data and benchmarked against theoretical predictions. In particular, the RSP reconstruction was validated with both experimental scans, water column measurements, and theoretical calculations. The results show that the pCT software platform accurately reproduces the performance of the existing prototype pCT scanner with a RSP agreement between experimental and simulated values to better than 1.5%. The validated platform is a versatile tool for clinical proton CT performance and application studies in a virtual setting. The platform is flexible and can be modified to simulate not yet existing versions of pCT scanners and higher proton energies than those currently clinically available. © 2017 American Association of Physicists in Medicine.

  7. Development of gamma column scanner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Jung, Sung Hee; Jun, Jong Kyu; Kim, Jin Sup

    2004-11-01

    Distillation column is important unit in petro-chemical industries, and its on-line diagnose is important. To get density profile measured by the radiation transmitted through column is well method for on-line diagnose to find out missing tray or flooding. In many cases the distance from radiation detector to detection circuit is up to 100m long. Conventional radiation detection method that is to transmit analog signal by co axial cable directly to detection circuit couldn't give good result because of its long cable. In this case the system is sensitive to electric noise because of long cable and interface between the radiation circuit and the controller for mechanical system. The radiation detection system introduced here is using digital modulated signal and loop coil to transmit signal instead of slip ring and analog signal. In detail detection part of automatic gamma scanner consists of high voltage circuit, PHA circuit FSK modem and battery. This method isolates power system and gives good solution for automatic gamma scanning by isolating the controlling circuit of mechanical system from radiation detecting circuit which is sensitive to noise.

  8. A multispectral scanner survey of the Rocky Flats Environmental Technology Site and surrounding area, Golden, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Brewster, S.B. Jr.; Brickey, D.W.; Ross, S.L.; Shines, J.E.

    1997-04-01

    Aerial multispectral scanner imagery was collected of the Rocky Flats Environmental Technology Site in Golden, Colorado, on June 3, 5, 6, and 7, 1994, using a Daedalus AADS1268 multispectral scanner and coincident aerial color and color infrared photography. Flight altitudes were 4,500 feet (1372 meters) above ground level to match prior 1989 survey data; 2,000 feet (609 meters) above ground level for sitewide vegetation mapping; and 1,000 feet (304 meters) above ground level for selected areas of special interest. A multispectral survey was initiated to improve the existing vegetation classification map, to identify seeps and springs, and to generate ARC/INFO Geographic Information System compatible coverages of the vegetation and wetlands for the entire site including the buffer zone. The multispectral scanner imagery and coincident aerial photography were analyzed for the detection, identification, and mapping of vegetation and wetlands. The multispectral scanner data were processed digitally while the color and color infrared photography were manually photo-interpreted to define vegetation and wetlands. Several standard image enhancement techniques were applied to the multispectral scanner data to assist image interpretation. A seep enhancement was applied and a color composite consisting of multispectral scanner channels 11, 7, and 5 (thermal infrared, mid-infrared, and red bands, respectively) proved most useful for detecting seeps, seep zones, and springs. The predawn thermal infrared data were also useful in identifying and locating seeps. The remote sensing data, mapped wetlands, and ancillary Geographic Information System compatible data sets were spatially analyzed for seeps.

  9. Application of multispectral scanner data to the study of an abandoned surface coal mine

    Science.gov (United States)

    Spisz, E. W.

    1978-01-01

    The utility of aircraft multispectral scanner data for describing the land cover features of an abandoned contour-mined coal mine is considered. The data were obtained with an 11 band multispectral scanner at an altitude of 1.2 kilometers. Supervised, maximum-likelihood statistical classifications of the data were made to establish land-cover classes and also to describe in more detail the barren surface features as they may pertain to the reclamation or restoration of the area. The scanner data for the surface-water areas were studied to establish the variability and range of the spectral signatures. Both day and night thermal images of the area are presented. The results of the study show that a high degree of statistical separation can be obtained from the multispectral scanner data for the various land-cover features.

  10. Development of a high resolution module for PET scanners

    Science.gov (United States)

    Stringhini, G.; Pizzichemi, M.; Ghezzi, A.; Stojkovic, A.; Tavernier, S.; Niknejad, T.; Varela, J.; Paganoni, M.; Auffray, E.

    2017-02-01

    Positron Emission Tomography (PET) scanners require high performances in term of spatial resolution and sensitivity to allow early detection of cancer masses. In small animal and organ dedicated PET scanners the Depth of Interaction (DOI) information has to be obtained to avoid parallax errors and to reconstruct high resolution images. In the whole body PET, the DOI information can be useful to correct for the time jitter of the optical photons along the main axis of the scintillator, improving the time performances. In this work we present the development of PET module designed to reach high performance as compared to the current scanners while keeping the complexity of the system reasonably low. The module presented is based on a 64 LYSO (Lutetium-yttrium oxyorthosilicate) crystals matrix and on a 4×4 MPPC (Multi Pixels Photon Counter) array as detector in a 4 to 1 coupling between the crystals and the detector and a single side readout. The lateral surfaces of the crystals are optically treated to be unpolished. The DOI and the energy resolution of the PET module are presented and a fast method to obtain the DOI calibration is discussed.

  11. How flatbed scanners upset accurate film dosimetry.

    Science.gov (United States)

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  12. Label-free tissue scanner for colorectal cancer screening.

    Science.gov (United States)

    Kandel, Mikhail E; Sridharan, Shamira; Liang, Jon; Luo, Zelun; Han, Kevin; Macias, Virgilia; Shah, Anish; Patel, Roshan; Tangella, Krishnarao; Kajdacsy-Balla, Andre; Guzman, Grace; Popescu, Gabriel

    2017-06-01

    The current practice of surgical pathology relies on external contrast agents to reveal tissue architecture, which is then qualitatively examined by a trained pathologist. The diagnosis is based on the comparison with standardized empirical, qualitative assessments of limited objectivity. We propose an approach to pathology based on interferometric imaging of “unstained” biopsies, which provides unique capabilities for quantitative diagnosis and automation. We developed a label-free tissue scanner based on “quantitative phase imaging,” which maps out optical path length at each point in the field of view and, thus, yields images that are sensitive to the “nanoscale” tissue architecture. Unlike analysis of stained tissue, which is qualitative in nature and affected by color balance, staining strength and imaging conditions, optical path length measurements are intrinsically quantitative, i.e., images can be compared across different instruments and clinical sites. These critical features allow us to automate the diagnosis process. We paired our interferometric optical system with highly parallelized, dedicated software algorithms for data acquisition, allowing us to image at a throughput comparable to that of commercial tissue scanners while maintaining the nanoscale sensitivity to morphology. Based on the measured phase information, we implemented software tools for autofocusing during imaging, as well as image archiving and data access. To illustrate the potential of our technology for large volume pathology screening, we established an “intrinsic marker” for colorectal disease that detects tissue with dysplasia or colorectal cancer and flags specific areas for further examination, potentially improving the efficiency of existing pathology workflows.

  13. Development of CT scanner models for patient organ dose calculations using Monte Carlo methods

    Science.gov (United States)

    Gu, Jianwei

    There is a serious and growing concern about the CT dose delivered by diagnostic CT examinations or image-guided radiation therapy imaging procedures. To better understand and to accurately quantify radiation dose due to CT imaging, Monte Carlo based CT scanner models are needed. This dissertation describes the development, validation, and application of detailed CT scanner models including a GE LightSpeed 16 MDCT scanner and two image guided radiation therapy (IGRT) cone beam CT (CBCT) scanners, kV CBCT and MV CBCT. The modeling process considered the energy spectrum, beam geometry and movement, and bowtie filter (BTF). The methodology of validating the scanner models using reported CTDI values was also developed and implemented. Finally, the organ doses to different patients undergoing CT scan were obtained by integrating the CT scanner models with anatomically-realistic patient phantoms. The tube current modulation (TCM) technique was also investigated for dose reduction. It was found that for RPI-AM, thyroid, kidneys and thymus received largest dose of 13.05, 11.41 and 11.56 mGy/100 mAs from chest scan, abdomen-pelvis scan and CAP scan, respectively using 120 kVp protocols. For RPI-AF, thymus, small intestine and kidneys received largest dose of 10.28, 12.08 and 11.35 mGy/100 mAs from chest scan, abdomen-pelvis scan and CAP scan, respectively using 120 kVp protocols. The dose to the fetus of the 3 month pregnant patient phantom was 0.13 mGy/100 mAs and 0.57 mGy/100 mAs from the chest and kidney scan, respectively. For the chest scan of the 6 month patient phantom and the 9 month patient phantom, the fetal doses were 0.21 mGy/100 mAs and 0.26 mGy/100 mAs, respectively. For MDCT with TCM schemas, the fetal dose can be reduced with 14%-25%. To demonstrate the applicability of the method proposed in this dissertation for modeling the CT scanner, additional MDCT scanner was modeled and validated by using the measured CTDI values. These results demonstrated that the

  14. Custom Integrated Circuit Design for Portable Ultrasound Scanners

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere

    ) are contained in the probe. Due to the nature of ultrasonic transducers, the transmitting circuitry needs to generate high-voltage pulses to drive them. Furthermore, the low-voltage receiving circuitry has to provide high enough signal to noise ratio (SNR) in order to generate usable imaging. For the purpose...... of evaluating the feasibility of the transmitting and receiving circuitry of a handheld probe for portable ultrasound scanners, three integrated circuit prototypes have been fabricated. Measurements have been performed on all of them with satisfactory results. The first part of this project is focused...

  15. Demonstration: A smartphone 3D functional brain scanner

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Stopczynski, Arkadiusz; Larsen, Jakob Eg

    We demonstrate a fully portable 3D real-time functional brain scanner consisting of a wireless 14-channel ‘Neuroheadset‘ (Emotiv EPOC) and a Nokia N900 smartphone. The novelty of our system is the ability to perform real-time functional brain imaging on a smartphone device, including stimulus...... tools are preferred. Source localization is implemented locally on the phone with a 3D brain model consisting of 1,028 vertices and 2,048 triangles stored in the mobile application. Our system design benefits from the possibility of being able to integrate with multiple hardware platforms (smartphones...

  16. MEMS temperature scanner: principles, advances, and applications

    Science.gov (United States)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  17. Modelling the Siemens SOMATOM Sensation 64 Multi-Slice CT (MSCT) Scanner

    Science.gov (United States)

    Amin, A. T. Mohd; Rahni, A. A. Abd

    2017-05-01

    Reconstructing large volumetric 3D images with minimal radiation dosage exposure with reduced scanning time has been one of the main objectives in the advancement of CT development. One of its advancement is the introduction of multi-slice arc detector geometry from a cone-beam source in third generation scanners. In solving this complex geometry, apart from the known vast computations in CT image reconstruction due to large CT images, iterative reconstruction methods are preferred compared to analytic methods due to its flexibility in image reconstruction. A scanner of interest that has this type of geometry is the Siemens SOMATOM Sensation 64 Multi-Slice CT (MSCT) Scanner, which has a total of 32 slices with 672 detector elements on each slice. In this paper, the scanner projection is modelled via the intersecting lengths between each ray (exhibited from the source to the detector elements) with the scanned image voxels, which are evaluated using the classical Siddon’s algorithm to generate the system matrix, H. This is a prerequisite to perform various iterative reconstruction methods, which involves solving the inverse problem arising from the linear equation: S = H· I; where S is the projections produced from the image, I. Due to the ‘cone-beam geometry’ along the z-axis, the effective field-of-view (FOV) with voxel dimensions (0.4×0.4×0.4) mm3 is 512×512×32 voxels. The scanner model is demonstrated by reconstructing an image from simulated projections using the analytic Feldkamp-Davis-Kress (FDK) method against basic iterative image reconstruction methods.

  18. Attenuation correction for the NIH ATLAS small animal PET scanner

    CERN Document Server

    Yao, Rutao; Liow, JeihSan; Seidel, Jurgen

    2003-01-01

    We evaluated two methods of attenuation correction for the NIH ATLAS small animal PET scanner: 1) a CT-based method that derives 511 keV attenuation coefficients (mu) by extrapolation from spatially registered CT images; and 2) an analytic method based on the body outline of emission images and an empirical mu. A specially fabricated attenuation calibration phantom with cylindrical inserts that mimic different body tissues was used to derive the relationship to convert CT values to (I for PET. The methods were applied to three test data sets: 1) a uniform cylinder phantom, 2) the attenuation calibration phantom, and 3) a mouse injected with left bracket **1**8F right bracket FDG. The CT-based attenuation correction factors were larger in non-uniform regions of the imaging subject, e.g. mouse head, than the analytic method. The two methods had similar correction factors for regions with uniform density and detectable emission source distributions.

  19. Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Nikolov, Svetoslav Ivanov; Pedersen, Mads Møller

    2012-01-01

    This paper describes the design and implementation of a versatile, open-architecture research data acquisition system using a commercially available medical ultrasound scanner. The open architecture will allow researchers and clinicians to rapidly develop applications and move them relatively easy...... to the clinic. The system consists of a standard PC equipped with a camera link and an ultrasound scanner equipped with a research interface. The ultrasound scanner is an easy-to-use imaging device that is capable of generating high-quality images. In addition to supporting the acquisition of multiple data...... to give researchers and clinicians the ability to utilize third-party software for data analysis and flexible manipulation of control parameters. Because of the advantages of speed of acquisition and clinical benefit, research projects have successfully used the system to test and implement...

  20. Automatic Channel Fault Detection on a Small Animal APD-Based Digital PET Scanner

    Science.gov (United States)

    Charest, Jonathan; Beaudoin, Jean-François; Cadorette, Jules; Lecomte, Roger; Brunet, Charles-Antoine; Fontaine, Réjean

    2014-10-01

    Avalanche photodiode (APD) based positron emission tomography (PET) scanners show enhanced imaging capabilities in terms of spatial resolution and contrast due to the one to one coupling and size of individual crystal-APD detectors. However, to ensure the maximal performance, these PET scanners require proper calibration by qualified scanner operators, which can become a cumbersome task because of the huge number of channels they are made of. An intelligent system (IS) intends to alleviate this workload by enabling a diagnosis of the observational errors of the scanner. The IS can be broken down into four hierarchical blocks: parameter extraction, channel fault detection, prioritization and diagnosis. One of the main activities of the IS consists in analyzing available channel data such as: normalization coincidence counts and single count rates, crystal identification classification data, energy histograms, APD bias and noise thresholds to establish the channel health status that will be used to detect channel faults. This paper focuses on the first two blocks of the IS: parameter extraction and channel fault detection. The purpose of the parameter extraction block is to process available data on individual channels into parameters that are subsequently used by the fault detection block to generate the channel health status. To ensure extensibility, the channel fault detection block is divided into indicators representing different aspects of PET scanner performance: sensitivity, timing, crystal identification and energy. Some experiments on a 8 cm axial length LabPET scanner located at the Sherbrooke Molecular Imaging Center demonstrated an erroneous channel fault detection rate of 10% (with a 95% confidence interval (CI) of [9, 11]) which is considered tolerable. Globally, the IS achieves a channel fault detection efficiency of 96% (CI: [95, 97]), which proves that many faults can be detected automatically. Increased fault detection efficiency would be

  1. Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner

    Science.gov (United States)

    Kim, Jin Young; Lee, Changho; Park, Kyungjin; Lim, Geunbae; Kim, Chulhong

    2015-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is a novel label-free microscopic imaging tool to provide in vivo optical absorbing contrasts. Specially, it is crucial to equip a real-time imaging capability without sacrificing high signal-to-noise ratios (SNRs) for identifying and tracking specific diseases in OR-PAM. Herein we demonstrate a 2-axis water-proofing MEMS scanner made of flexible PDMS. This flexible scanner results in a wide scanning range (9 × 4 mm2 in a transverse plane) and a fast imaging speed (5 B-scan images per second). Further, the MEMS scanner is fabricated in a compact footprint with a size of 15 × 15 × 15 mm3. More importantly, the scanning ability in water makes the MEMS scanner possible to confocally and simultaneously reflect both ultrasound and laser, and consequently we can maintain high SNRs. The lateral and axial resolutions of the OR-PAM system are 3.6 and 27.7 μm, respectively. We have successfully monitored the flow of carbon particles in vitro with a volumetric display frame rate of 0.14 Hz. Finally, we have successfully obtained in vivo PA images of microvasculatures in a mouse ear. It is expected that our compact and fast OR-PAM system can be significantly useful in both preclinical and clinical applications. PMID:25604654

  2. Investigation of a Dedicated, High Resolution PET/CT Scanner for Staging and Treatment Planning of Head and Neck Cancer

    Science.gov (United States)

    Raylman, Raymond R.; Stolin, Alexander V.; Sompalli, Prashanth; Randall, Nicole Bunda; Martone, Peter F.; Clinthorne, Neal H.

    2015-10-01

    Staging of head and neck cancer (HNC) is often hindered by the limited resolution of standard whole body PET scanners, which can make it challenging to detect small areas of metastatic disease in regional lymph nodes and accurately delineate tumor boundaries. In this investigation, the performance of a proposed high resolution PET/CT scanner designed specifically for imaging of the head and neck region was explored. The goal is to create a dedicated PET/CT system that will enhance the staging and treatment of HNCs. Its performance was assessed by simulating the scanning of a three-dimensional Rose-Burger contrast phantom. To extend the results from the simulation studies, an existing scanner with a similar geometry to the dedicated system and a whole body, clinical PET/CT scanner were used to image a Rose-Burger contrast phantom and a phantom simulating the neck of an HNC patient (out-of-field-of-view sources of activity were not included). Images of the contrast detail phantom acquired with Breast-PET/CT and simulated head and neck scanner both produced object contrasts larger than the images created by the clinical scanner. Images of a neck phantom acquired with the Breast-PET/CT scanner permitted the identification of all of the simulated metastases, while it was not possible to identify any of the simulated metastasis with the clinical scanner. The initial results from this study demonstrate the potential benefits of high-resolution PET systems for improving the diagnosis and treatment of HNC.

  3. Manually operated small envelope scanner system

    Energy Technology Data Exchange (ETDEWEB)

    Sword, Charles Keith

    2017-04-18

    A scanner system and method for acquisition of position-based ultrasonic inspection data are described. The scanner system includes an inspection probe and a first non-contact linear encoder having a first sensor and a first scale to track inspection probe position. The first sensor is positioned to maintain a continuous non-contact interface between the first sensor and the first scale and to maintain a continuous alignment of the first sensor with the inspection probe. The scanner system may be used to acquire two-dimensional inspection probe position data by including a second non-contact linear encoder having a second sensor and a second scale, the second sensor positioned to maintain a continuous non-contact interface between the second sensor and the second scale and to maintain a continuous alignment of the second sensor with the first sensor.

  4. High precision kinematic surveying with laser scanners

    Science.gov (United States)

    Gräfe, Gunnar

    2007-12-01

    The kinematic survey of roads and railways is becoming a much more common data acquisition method. The development of the Mobile Road Mapping System (MoSES) has reached a level that allows the use of kinematic survey technology for high precision applications. The system is equipped with cameras and laser scanners. For high accuracy requirements, the scanners become the main sensor group because of their geometric precision and reliability. To guarantee reliable survey results, specific calibration procedures have to be applied, which can be divided into the scanner sensor calibration as step 1, and the geometric transformation parameter estimation with respect to the vehicle coordinate system as step 2. Both calibration steps include new methods for sensor behavior modeling and multisensor system integration. To verify laser scanner quality of the MoSES system, the results are regularly checked along different test routes. It can be proved that a standard deviation of 0.004 m for height of the scanner points will be obtained, if the specific calibrations and data processing methods are applied. This level of accuracy opens new possibilities to serve engineering survey applications using kinematic measurement techniques. The key feature of scanner technology is the full digital coverage of the road area. Three application examples illustrate the capabilities. Digital road surface models generated from MoSES data are used, especially for road surface reconstruction tasks along highways. Compared to static surveys, the method offers comparable accuracy at higher speed, lower costs, much higher grid resolution and with greater safety. The system's capability of gaining 360 profiles leads to other complex applications like kinematic tunnel surveys or the precise analysis of bridge clearances.

  5. Infrared scanner concept verification test report

    Science.gov (United States)

    Bachtel, F. D.

    1980-01-01

    The test results from a concept verification test conducted to assess the use of an infrared scanner as a remote temperature sensing device for the space shuttle program are presented. The temperature and geometric resolution limits, atmospheric attenuation effects including conditions with fog and rain, and the problem of surface emissivity variations are included. It is concluded that the basic concept of using an infrared scanner to determine near freezing surface temperatures is feasible. The major problem identified is concerned with infrared reflections which result in significant errors if not controlled. Action taken to manage these errors result in design and operational constraints to control the viewing angle and surface emissivity.

  6. Design of a small animal MR compatible PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Slates, R.; Cherry, S.; Boutefnouchet, A.; Shao, Y.; Dahlbom, M.; Farahani, K. [Univ. of California, Los Angeles, CA (United States). School of Medicine

    1999-06-01

    Using a combination of Monte-Carlo simulations and experimental measurements, the authors have designed a small animal MR compatible PET (McPET) scanner for simultaneous PET and MR imaging of mice and rats in vivo. The scanner consists of one ring of 480 LSO crystals arranged in 3 layers with 160 crystals per layer. The crystal dimensions are 2 x 3 x 7.5 mm{sup 3}. This was based on a target resolution of 2.5 mm and simulations showing that a depth of 7.5 mm avoided significant depth of interaction effects across the desired field of view. The system diameter of 11.2 cm is large enough to accommodate the animal positioned inside a stereotactic frame. Each crystal will be coupled through 2 mm diameter optical fibers to multi-channel PMT`s which reside outside the main magnetic field. Through 50 cm of optical fiber, a photopeak is clearly seen and the measured energy resolution is 25%. Prototype optical fiber connectors have been tested to increase the flexibility of the system and result in a light loss of only 6%. The proposed system will have adequate resolution and sensitivity for a number of applications in small animals and will be the first practical device for simultaneous in vivo imaging with PET and MR.

  7. STARBASE: Database software for the automated plate scanner

    Science.gov (United States)

    Odewahn, S. C.; Humphreys, R. M.; Thurmes, P.

    1992-01-01

    The Automated Plate Scanner (APS) of the University of Minnesota, a unique high speed 'flying spot' laser scanner, is currently being used to scan and digitize the 936 O and E plate pairs of the first epoch Palomar Sky Survey. The resultant database will be used to produce a catalog of approximately a billion stars and several million galaxies. The authors describe the ongoing development of a dedicated APS database management system which will be made available to the astronomical community via INTERNET. A specialized DBMS called STARBASE has been written to provide fast access to the hundreds of millions of images collected by the APS. This system provides an initial reduction mode for parameterizing APS images and classifying image types using a novel set of neural network image classifiers. A second analysis mode, which will be that commonly used by the general user, provides for searches of the database which may be constrained by any combination of physical and positional parameters. Through the use of pointer hash trees, the system has been optimized for extremely fast positional searches using either right ascension and declination on the sky or linear X and Y positions on the POSS field. In addition to fast data retrieval, the system provides a graphical interface for displaying scatter plots or histograms of the collected data. In addition, a specialized image display system is being developed to allow the user to view densitometric data for all objects classified as extended by the neural network system. Finally, STARBASE has a flexible programmable interface which allows other programs to access information in the database. This allows users to write applications suited to their particular needs to process APS data.

  8. Robustness of intrinsic connectivity networks in the human brain to the presence of acoustic scanner noise

    NARCIS (Netherlands)

    Langers, Dave R. M.; van Dijk, Pim

    2011-01-01

    Evoked responses in functional magnetic resonance imaging (fMRI) are affected by the presence of acoustic scanner noise (ASN). Particularly, stimulus-related activation of the auditory system and deactivation of the default mode network have repeatedly been shown to diminish. In contrast, little is

  9. NREL Develops High-Speed Scanner to Monitor Fuel Cell Material Defects

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    This highlight describes results of recent work in which polymer electrolyte membrane fuel cell electrodes with intentionally introduced known defects were imaged and analyzed using a fuel cell scanner recently developed at NREL. The highlight is being developed for the September 2015 Alliance S&T Board meeting.

  10. Automated post-hoc noise cancellation tool for audio recordings acquired in an MRI scanner

    NARCIS (Netherlands)

    Cusack, R.; Cumming, N.; Bor, D.; Norris, D.; Lijzenga, J.

    2005-01-01

    There are several types of experiment in which it is useful to have subjects speak overtly in a magnetic resonance imaging (MRI) scanner, including those studying the articulatory apparatus and the neural basis of speech production, and fMRI experiments in which speech is used as a response

  11. Three-dimensional surface scanners compared with standard anthropometric measurements for head shape

    NARCIS (Netherlands)

    Beaumont, C.A.A. (Caroline A.A.); Knoops, P.G.M. (Paul G.M.); Borghi, A. (Alessandro); Jeelani, N.U.O. (N.U. Owase); M.J. Koudstaal (Maarten); S. Schievano (Silvia); D.J. Dunaway (David); Rodriguez-Florez, N. (Naiara)

    2016-01-01

    textabstractThree-dimensional (3D) surface imaging devices designed to capture and quantify craniofacial surface morphology are becoming more common in clinical environments. Such scanners overcome the limitations of two-dimensional photographs while avoiding the ionizing radiation of computed

  12. Three-dimensional surface scanners compared with standard anthropometric measurements for head shape

    NARCIS (Netherlands)

    Beaumont, C.A.A. (Caroline A.A.); Knoops, P.G.M. (Paul G.M.); Borghi, A. (Alessandro); Jeelani, N.U.O. (N.U. Owase); M.J. Koudstaal (Maarten); S. Schievano (Silvia); D.J. Dunaway (David); Rodriguez-Florez, N. (Naiara)

    2017-01-01

    textabstractThree-dimensional (3D) surface imaging devices designed to capture and quantify craniofacial surface morphology are becoming more common in clinical environments. Such scanners overcome the limitations of two-dimensional photographs while avoiding the ionizing radiation of computed

  13. Computerized tomography (the EMI Scanner): a comparison with pneumoencephalography and ventriculography.

    Science.gov (United States)

    Gawler, J; Du Boulay, G H; Bull, J W; Marshall, J

    1976-01-01

    Computerized tomography, using the EMI Scanner, allows the diagnosis of cerebral atrophy or hydrocephalus to be made with the same degree of accuracy as conventional neuroradiological methods. Ventricular measurements made on EMI scans have been compared with those from pneumoencephalograms and ventriculograms. A range of normal ventricular measurements for the EMI scan is suggested. Images PMID:1084413

  14. External motion tracking for brain imaging: structured light tracking with invisible light

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Højgaard, Liselotte

    2010-01-01

    The importance of motion correction in 3D medical imaging increases with increasing scanner resolution. It is necessary for scanners with long image acquisition and low contrast images to correct for patient motion in order to optimize image quality. We present a near infrared structured light...... stereo depth map system for head motion estimation inside 3D medical scanners with limited space....

  15. Wire scanner software and firmware issues

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John Doug [Los Alamos National Laboratory

    2008-01-01

    The Los Alamos Neutron Science Center facility presently has 110 slow wire scanning profile measurement instruments located along its various beam lines. These wire scanners were developed and have been operating for at least 30 years. While the wire scanners solved many problems to operate and have served the facility well they have increasingly suffered from several problems or limitations, such as maintenance and reliability problems, antiquated components, slow data acquisition, and etc. In order to refurbish these devices, these wire scanners will be replaced with newer versions. The replacement will consist of a completely new beam line actuator, new cables, new electronics and brand new software and firmware. This note describes the functions and modes of operation that LabVIEW VI software on the real time controller and FPGA LabVIEW firmware will be required. It will be especially interesting to understand the overall architecture of these LabVIEW VIs. While this note will endeavor to describe all of the requirements and issues for the wire scanners, undoubtedly, there will be missing details that will be added as time progresses.

  16. The PS Booster Fast Wire Scanner

    CERN Document Server

    Burger, S; Priestnall, K; Raich, U

    2003-01-01

    The very tight emittance budget for LHC type beams makes precise emittance measurements in the injector complex a necessity. The PS machine uses 2 fast wire scanners per transverse plane for emittance measurement of the circulating beams. In order to ease comparison the same type of wire scanners have been newly installed in the upstream machine, the PS Booster, where each of the 4 rings is equipped with 2 wire scanners measuring the horizontal and vertical profiles. Those wire scanners use new and more modern control and readout electronics featuring dedicated intelligent motor movement controllers, which relieves the very stringent real time constraints due to the very high speed of 20m/s. In order to be able to measure primary beams at the very low injection energy of the Booster (50MeV) secondary emission currents from the wire can be measured as well as secondary particle flows at higher primary particle energies during and after acceleration. The solution adopted for the control of the devices is descri...

  17. Inter laboratory comparison of industrial CT scanners

    DEFF Research Database (Denmark)

    Angel, Jais Andreas Breusch; Cantatore, Angela; De Chiffre, Leonardo

    2012-01-01

    In this report results from an intercomparison of industrial CT scanners are presented. Three audit items, similar to common industrial parts, were selected for circulation: a single polymer part with complex geometry (Item 1), a simple geometry part made of two polymers (Item 2) and a miniature ...

  18. submitter Dynamical Models of a Wire Scanner

    CERN Document Server

    Barjau, Ana; Dehning, Bernd

    2016-01-01

    The accuracy of the beam profile measurements achievable by the current wire scanners at CERN is limited by the vibrations of their mechanical parts. In particular, the vibrations of the carbon wire represent the major source of wire position uncertainty which limits the beam profile measurement accuracy. In the coming years, due to the Large Hadron Collider (LHC) luminosity upgrade, a wire traveling speed up to 20 $m s^{−1}$ and a position measurement accuracy of the order of 1 μm will be required. A new wire scanner design based on the understanding of the wire vibration origin is therefore needed. We present the models developed to understand the main causes of the wire vibrations observed in an existing wire scanner. The development and tuning of those models are based on measurements and tests performed on that CERN proton synchrotron (PS) scanner. The final model for the (wire + fork) system has six degrees-of-freedom (DOF). The wire equations contain three different excitation terms: inertia...

  19. PET-based geometrical calibration of a pinhole SPECT add-on for an animal PET scanner.

    Science.gov (United States)

    Deng, Xiao; Beaudoin, Jean-François; Cadorette, Jules; Naaman, Charles; Lecomte, Roger; Yao, Rutao

    2013-04-07

    We developed SPECT imaging capability on an animal PET scanner to provide a cost effective option for animal SPECT imaging. The SPECT add-on sub-system was enabled by mechanically integrating a multiple-pinhole collimator in the PET detector ring. This study introduces a method to calibrate the geometrical parameters of the SPECT add-on using the PET imaging capability of the scanner. The proposed PET imaging-based calibration method consists of two steps: (1) paint the pinhole apertures of the collimator with a positron emitting radioactive solution; and (2) image the collimator inside the scanner in PET mode. The geometrical parameters of the multi-pinhole SPECT add-on can then be derived directly from a set of PET images by simple linear calculation and used in defining the SPECT system. The method was compared to our implementation of a SPECT calibration approach with model-based fitting of SPECT projection data. The procedure for carrying out the PET imaging-based calibration method is simpler and faster than that of our implementation of the SPECT model-based calibration method. Since it does not require model fitting, the uniqueness of the calibration result is warranted. Better quality SPECT images were reconstructed using the PET-derived calibration parameters rather than our implementation of the SPECT model-based calibration parameters. We conclude that the proposed PET imaging-based calibration method provides a highly effective means for enabling SPECT imaging on a PET scanner.

  20. First CT using Medipix3 and the MARS-CT-3 spectral scanner

    OpenAIRE

    Walsh, M F; Butler, P H; Doesburg, R M N; Ballabriga, R; Butler, A. P. H.; Opie, A M T; Mohr, J L; Ronaldson, J P; Nik, S J

    2011-01-01

    The MARS research group has created a new version of their scanner for taking improved spectral CT datasets. This version of the scanner (MARS-CT-3) has taken the first Medipix3 CT images of a phantom. MARS-CT-3 incorporates a new gantry, new x-ray sources and the new MARS readout board, as well as the ability to connect gas lines to the specimen. The new gantry has improved mechanical rigidity and can perform scans faster. Magnification can be controlled by moving the detector and the x-ray ...

  1. Beam hardening artifacts by dental implants: Comparison of cone-beam and 64-slice computed tomography scanners

    Directory of Open Access Journals (Sweden)

    Farzad Esmaeili

    2013-01-01

    Full Text Available Background: Cone beam computed tomography (CBCT is an alternative to a computed tomography (CT scan, which is appropriate for a wide range of craniomaxillofacial indications. The long-term use of metallic materials in dentistry means that artifacts caused by metallic restorations in the oral cavity should be taken into account when utilizing CBCT and CT scanners. The aim of this study was to quantitatively compare the beam hardening artifacts produced by dental implants between CBCT and a 64-Slice CT scanner. Materials and Methods: In this descriptive study , an implant drilling model similar to the human mandible was used in the present study. The implants (Dentis were placed in the canine, premolar and molar areas. Three series of scans were provided from the implant areas using Somatom Sensation 64-slice and NewTom VGi (CBCT CT scanners. Identical images were evaluated by three radiologists. The artifacts in each image were determined based on pre-determined criteria. Kruskal-Wallis test was used to compare mean values; Mann-Whitney U test was used for two-by-two comparisons when there was a statistical significance ( P < 0.05. Results: The images of the two scanners had similar resolutions in axial sections ( P = 0.299. In coronal sections, there were significant differences in the resolutions of the images produced by the two scanners ( P < 0.001, with a higher resolution in the images produced by NewTom VGi scanner. On the whole, there were significant differences between the resolutions of the images produced by the two CT scanners ( P < 0.001, with higher resolution in the images produced by NewTom VGi scanner in comparison to those of Somatom Sensation. Conclusion: Given the high quality of the images produced by NewTom VGi and the lower costs in comparison to CT, the use of the images of this scanner in dental procedures is recommended, especially in patients with extensive restorations, multiple prostheses and previous implants.

  2. Diagnostic Accuracy of Digitized Conventional Radiographs by Camera and Scanner in Detection of Proximal Caries

    Directory of Open Access Journals (Sweden)

    Solmaz Valizadeh

    2009-12-01

    Full Text Available Background and aims. Digital radiographs have some advantages over conventional ones. Application of digital receptors is not routine yet. Therefore, there is a need for digitizing conventional radiographs. The aim of the present study was to compare the diagnostic accuracy of digitized conventional radiographs by scanner and camera in detection of proximal caries. Material and methods. Three hundred and sixteen surfaces of 158 extracted posterior teeth were radiographed. The radiographs were digitized using a digital camera and a scanner. Five observers scored the images for the presence and depth of caries. Histopathologic sections were the gold standard. Kappa agreement coefficient was used for statistical analysis. Results. Kappa agreement coefficients between the camera and the scanner and also between each one with the gold standard in detecting the depth of caries were 0.504, 0.557 and 0.454, respectively. In detection of caries, the indexes were 0.571, 0.553 and 0.527, respectively. Conclusion. Diagnostic accuracy of camera images in caries detection was more than that of scanned images, but there was also a moderate consistency between them. The consistency of detecting the presence of caries was more than that of detecting their depths. It seems that both digital cameras and scanners can be used interchangeably.

  3. Static field influences on transcranial magnetic stimulation: considerations for TMS in the scanner environment.

    Science.gov (United States)

    Yau, Jeffrey M; Jalinous, Reza; Cantarero, Gabriela L; Desmond, John E

    2014-01-01

    Transcranial magnetic stimulation (TMS) can be combined with functional magnetic resonance imaging (fMRI) to simultaneously manipulate and monitor human cortical responses. Although tremendous efforts have been directed at characterizing the impact of TMS on image acquisition, the influence of the scanner's static field on the TMS coil has received limited attention. The aim of this study was to characterize the influence of the scanner's static field on TMS. We hypothesized that spatial variations in the static field could account for TMS field variations in the scanner environment. Using an MRI-compatible TMS coil, we estimated TMS field strengths based on TMS-induced voltage changes measured in a search coil. We compared peak field strengths obtained with the TMS coil positioned at different locations (B0 field vs fringe field) and orientations in the static field. We also measured the scanner's static field to derive a field map to account for TMS field variations. TMS field strength scaled depending on coil location and orientation with respect to the static field. Larger TMS field variations were observed in fringe field regions near the gantry as compared to regions inside the bore or further removed from the bore. The scanner's static field also exhibited the greatest spatial variations in fringe field regions near the gantry. The scanner's static field influences TMS fields and spatial variations in the static field correlate with TMS field variations. Coil orientation changes in the B0 field did not result in substantial TMS field variations. TMS field variations can be minimized by delivering TMS in the bore or outside of the 0-70 cm region from the bore entrance. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Operation of the preclinical head scanner for proton CT

    Energy Technology Data Exchange (ETDEWEB)

    Sadrozinski, H.F.-W., E-mail: hartmut@ucsc.edu [SCIPP, U.C. Santa Cruz, Santa Cruz, CA 95064 (United States); Geoghegan, T.; Harvey, E.; Johnson, R.P.; Plautz, T.E.; Zatserklyaniy, A. [SCIPP, U.C. Santa Cruz, Santa Cruz, CA 95064 (United States); Bashkirov, V.; Hurley, R.F.; Piersimoni, P.; Schulte, R.W. [Division of Radiation Research, Loma Linda University, Loma Linda, CA 92354 (United States); Karbasi, P.; Schubert, K.E.; Schultze, B. [School of Engineering and Computer Science, Baylor University, Waco, TX 76798 (United States); Giacometti, V. [Center for Medical Radiation Physics, University of Wollongong, NSW (Australia)

    2016-09-21

    We report on the operation and performance tests of a preclinical head scanner developed for proton computed tomography (pCT). After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. In order to assess the performance of the scanner, we have performed CT scans with 200 MeV protons from both the synchrotron of the Loma Linda University Medical Center (LLUMC) and the cyclotron of the Northwestern Medicine Chicago Proton Center (NMCPC). The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360° scan to be completed in less than 7 min. The reconstruction of various phantoms verified accurate reconstruction of the proton relative stopping power (RSP) and the spatial resolution in a variety of materials. The dose for an image with better than 1% uncertainty in the RSP is found to be close to 1 mGy.

  5. Performance Evaluation of a PEM Scanner Using the NEMA NU 4—2008 Small Animal PET Standards

    Science.gov (United States)

    Luo, Weidong; Anashkin, Edward; Matthews, Christopher G.

    2010-02-01

    The recently published NEMA NU 4-2008 Standards has been specially designed for evaluating the performance of small animal PET scanners used in preclinical applications. In this paper, we report on the NU 4 performance of a clinical positron emission mammography (PEM) system. Since there are no PEM specific performance test protocols available, and the NU 2 protocol (intended for whole-body PET scanners) cannot be applied without modification due to the compact design of the PEM scanner, we decided to evaluate the NU 4 Standards as an alternative. We obtained the following results: Trans-axial spatial resolution 1.8 mm FWHM for high resolution reconstruction mode and 2.4 mm FWHM for standard resolution reconstruction mode with no significant variation within the field of view. The total system sensitivity was 0.16 cps/Bq. In image quality testing, the uniformity was found to be 3.9% STD at the standard resolution mode and 5.6% at the high resolution mode when measured with a 34 mm paddle separation. The NEMA NU 4-2008 Standards were found to be a practicable tool to evaluate the performance of the PEM scanner after some modifications to address the specifics of its detector configuration. Furthermore, the PEM scanner's in-plane spatial resolution was comparable to other small animal PET scanners with good image quality.

  6. Application of combined Landsat thematic mapper and airborne thermal infrared multispectral scanner data to lithologic mapping in Nevada

    Science.gov (United States)

    Podwysocki, M.H.; Ehmann, W.J.; Brickey, D.W.

    1987-01-01

    Future Landsat satellites are to include the Thematic Mapper (TM) and also may incorporate additional multispectral scanners. One such scanner being considered for geologic and other applications is a four-channel thermal-infrared multispectral scanner having 60-m spatial resolution. This paper discusses the results of studies using combined Landsat TM and airborne Thermal Infrared Multispectral Scanner (TIMS) digital data for lithologic discrimination, identification, and geologic mapping in two areas within the Basin and Range province of Nevada. Field and laboratory reflectance spectra in the visible and reflective-infrared and laboratory spectra in the thermal-infrared parts of the spectrum were used to verify distinctions made between rock types in the image data sets.

  7. Development of high pressure pipe scanners

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Moon, Soon S.; Eom, Heung S.; Choi, Yu R

    1998-12-01

    This report describes an automatic ultrasonic scanning system for pressure pipe welds, which was developed in this project using recent advanced technologies on mobile robot and computer. The system consists of two modules: a robot scanner module which navigates and manipulates scanning devices, and a data acquisition module which generates ultrasonic signal and processes the data from the scanner. The robot has 4 magnetic wheels and 2 -axis manipulator on which ultrasonic transducer attached. The wheeled robot can navigate curved surface such as outer wall of circular pipes. Magnetic wheels were optimally designed through magnetic field analysis. Free surface sensing and line tracking control algorithm were developed and implemented, and the control devices and software can be used in practical inspection works. We expect our system can contribute to reduction of inspection time,performance enhancement, and effective management of inspection results.

  8. Wire scanners in low energy accelerators

    CERN Document Server

    Elmfors, P; Huhtinen, M; Lindroos, M; Olsfors, J; Raich, U

    1997-01-01

    Fast wire scanners are today considered as part of standard instrumentation in high energy synchrotrons. The extension of their use to synchrotrons working at lower energies, where Coulomb scattering can be important and the transverse beam size is large, introduces new complications considering beam heating of the wire, composition of the secondary particle shower and geometrical consideration in the detection set-up. A major problem in treating these effects is that the creation of secondaries in a thin carbon wire by a energetic primary beam is difficult to describe in an analytical way. We are here presenting new results from a full Monte Carlo simulation of this process yielding information on heat deposited in the wire, particle type and energy spectrum of secondaries and angular dependence as a function of primary beam energy. The results are used to derive limits for the use of wire scanners in low energy accelerators.

  9. Reliability evaluation of a MEMS scanner

    Science.gov (United States)

    Lani, S.; Marozau, Y.; Dadras, M.

    2017-02-01

    Previously, the realization and closed loop control of a MEMS scanner integrating position sensors made with piezoresistive sensors was presented. It consisted of a silicon compliant membrane with integrated position sensors, on which a mirror and a magnet were assembled. This device was mounted on a PCB containing coils for electromagnetic actuation. In this work, the reliability of such system was evaluated through thermal and mechanical analysis. The objective of thermal analysis was to evaluate the lifetime of the MEMS scanner and is consisting of temperature cycling (-40°C to 100°C) and accelerated electrical endurance (100°C with power supplied to all electrical components). The objective of mechanical analysis was to assess the resistance of the system to mechanical stress and is consisting of mechanical shock and vibration. A high speed camera has been used to observe the behavior of the MEMS scanner. The use of shock stopper to improve the mechanical resistance has been evaluated and had demonstrated a resistance increase from 250g to 900g. The minimum shock resistance required for the system is 500g for transportation and 1000g for portative devices.

  10. New class of survey-grade laser scanner for UAVs

    Science.gov (United States)

    Pfennigbauer, Martin; Rieger, Peter; Ullrich, Andreas; Riegl, Ursula

    2014-05-01

    A novel class of surveying instruments, closing the gap between full-scale airborne laser scanning systems and image-based approaches, is presented: RIEGL developed the first fully survey-grade airborne laser scanner for UAV applications bringing down the performance of state of-the-art airborne laser scanning to a weight of about 4kg and suitable size for UAV integration. The system employs echo signal digitization, online waveform processing at a measurement rate of up to 600kHz with a maximum operational flying altitude of up to 350m. With its high-resolution multi target capability the instrument is excellently suited for agricultural and forestry applications. We provide insights on the employed technologies as well as integration and operation of the instrument. The capabilities of the instrument are analyzed with respect to measurement precision, resolution, and other application-related aspects like the provided point attributes.

  11. The new airborne Thermal Infrared Multispectral Scanner (TIMS)

    Science.gov (United States)

    Kahle, A. B.

    1983-01-01

    A new airborne Thermal Infrared Multispectral Scanner (TIMS) with six bands between 8 and 12 microns is briefly characterized, and some results of remote sensing experiments are reported. The instrument has an instantaneous field of view of 2.5 milliradians, a total field of view of 80 deg, and a NE Delta T of approximately 0.1-0.3 C depending on the band. In the TIMS image of Death Valley, silica-rich rocks were easily separable from the nonsilicates. The Eureka Quartzite stood out in sharp contrast to other Ordovician and Cambrian metasediments, and Tertiary volcanic rocks were easily separable from both. Also distinguishable were various units in the fan gravels.

  12. Collection of intraoral findings in corpse with small-scale color dental scanner system.

    Science.gov (United States)

    Yoshida, Masaki; Hanaoka, Yoichi; Tsuzuki, Tamiyuki; Ueno, Asao; Takagi, Tetsuya; Iwahara, Kaori; Yasuda, Mamoru; Sato, Yoshinobu; Minaguchi, Kiyoshi

    2009-03-10

    Together with X-ray radiography and the description in the dental chart (odontogram), the collection of intraoral images is extremely important in dental identification. Recently, thanks to advances in digital devices for taking images in the oral cavity, problems with developing images and images being lost due to scanning errors have been minimized. However, in corpses where postmortem rigidity has firmly set in and burned bodies where the jaw has to be forced open, it is difficult to open the jaw enough to allow images to be taken. In addition, collection of intraoral images requires skill. Our goal was to determine the efficacy of a newly developed, small-scale color dental scanner in collecting intraoral images. The results showed that it was comparatively easy to obtain an entire image of the oral cavity with even a minimum degree of jaw opening. This should enable even a non-expert to perform oral image collection.

  13. Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner.

    Science.gov (United States)

    Hemmsen, Martin Christian; Nikolov, Svetoslav Ivanov; Pedersen, Mads Møller; Pihl, Michael Johannes; Enevoldsen, Marie Sand; Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-07-01

    This paper describes the design and implementation of a versatile, open-architecture research data acquisition system using a commercially available medical ultrasound scanner. The open architecture will allow researchers and clinicians to rapidly develop applications and move them relatively easy to the clinic. The system consists of a standard PC equipped with a camera link and an ultrasound scanner equipped with a research interface. The ultrasound scanner is an easy-to-use imaging device that is capable of generating high-quality images. In addition to supporting the acquisition of multiple data types, such as B-mode, M-mode, pulsed Doppler, and color flow imaging, the machine provides users with full control over imaging parameters such as transmit level, excitation waveform, beam angle, and focal depth. Beamformed RF data can be acquired from regions of interest throughout the image plane and stored to a file with a simple button press. For clinical trials and investigational purposes, when an identical image plane is desired for both an experimental and a reference data set, interleaved data can be captured. This form of data acquisition allows switching between multiple setups while maintaining identical transducer, scanner, region of interest, and recording time. Data acquisition is controlled through a graphical user interface running on the PC. This program implements an interface for third-party software to interact with the application. A software development toolkit is developed to give researchers and clinicians the ability to utilize third-party software for data analysis and flexible manipulation of control parameters. Because of the advantages of speed of acquisition and clinical benefit, research projects have successfully used the system to test and implement their customized solutions for different applications. Three examples of system use are presented in this paper: evaluation of synthetic aperture sequential beamformation, transverse

  14. Hybrid approach for attenuation correction in PET/MR scanners

    Energy Technology Data Exchange (ETDEWEB)

    Santos Ribeiro, A., E-mail: afribeiro@fc.ul.pt [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Lisbon (Portugal); Rota Kops, E.; Herzog, H. [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, Juelich (Germany); Almeida, P. [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Lisbon (Portugal)

    2014-01-11

    Aim: Attenuation correction (AC) of PET images is still one of the major limitations of hybrid PET/MR scanners. Different methods have been proposed to obtain the AC map from morphological MR images. Although, segmentation methods normally fail to differentiate air and bone regions, while template or atlas methods usually cannot accurately represent regions anatomically different from the template image. In this study a feed forward neural network (FFNN) algorithm is presented which directly outputs the attenuation coefficients by non-linear regression of the images acquired with an ultrashort echo time (UTE) sequence guided by the template-based AC map (TAC-map). Materials and methods: MR as well as CT data were acquired in four subjects. The UTE images and the TAC-map were the inputs of the presented FFNN algorithm for training as well as classification. The resulting attenuation maps were compared with CT-based, PNN-based and TAC maps. All the AC maps were used to reconstruct the PET emission data which were then compared for the different methods. Results: For each subject dice coefficients D were calculated between each method and the respective CT-based AC maps. The resulting Ds show higher values for all FFNN-based tissues comparatively to both TAC-based and PNN-based methods, particularly for bone tissue (D=0.77, D=0.51 and D=0.71, respectively). The AC-corrected PET images with the FFNN-based map show an overall lower relative difference (RD=3.90%) than those AC-corrected with the PNN-based (RD=4.44%) or template-based (RD=4.43%) methods. Conclusion: Our results show that an enhancement of current methods can be performed by combining both information of new MR image sequence techniques and general information provided from template techniques. Nevertheless, the number of tested subjects is statistically low and current analysis for a larger dataset is being carried out.

  15. Development of a 3D optical scanner for evaluating patient-specific dose distributions.

    Science.gov (United States)

    Chang, Kyung Hwan; Lee, Suk; Jung, Hong; Choo, Yeon-Wook; Cao, Yuan Jie; Shim, Jang Bo; Kim, Kwang Hyeon; Lee, Nam Kwon; Park, Young Je; Kim, Chul Yong; Cho, Sam Ju; Lee, Sang Hoon; Min, Chul Kee; Kim, Woo Chul; Cho, Kwang Hwan; Huh, Hyun Do; Lim, Sangwook

    2015-07-01

    This paper describes the hardware and software characteristics of a 3D optical scanner (P3DS) developed in-house. The P3DS consists of an LED light source, diffuse screen, step motor, CCD camera, and scanner management software with 3D reconstructed software. We performed optical simulation, 2D and 3D reconstruction image testing, and pre-clinical testing for the P3DS. We developed the optical scanner with three key characteristics in mind. First, we developed a continuous scanning method to expand possible clinical applications. Second, we manufactured a collimator to improve image quality by reducing scattering from the light source. Third, we developed an optical scanner with changeable camera positioning to enable acquisition of optimal images according to the size of the gel dosimeter. We confirmed ray-tracing in P3DS with optic simulation and found that 2D projection and 3D reconstructed images were qualitatively similar to the phantom images. For pre-clinical tests, the dose distribution and profile showed good agreement among RTP, optical CT, and external beam radiotherapy film data for the axial and coronal views. The P3DS has shown that it can scan and reconstruct for evaluation of the gel dosimeter within 1 min. We confirmed that the P3DS system is a useful tool for the measurement of 3D dose distributions for 3D radiation therapy QA. Further experiments are needed to investigate quantitative analysis for 3D dose distribution. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Range 7 Scanner Integration with PaR Robot Scanning System

    Science.gov (United States)

    Schuler, Jason; Burns, Bradley; Carlson, Jeffrey; Minich, Mark

    2011-01-01

    An interface bracket and coordinate transformation matrices were designed to allow the Range 7 scanner to be mounted on the PaR Robot detector arm for scanning the heat shield or other object placed in the test cell. A process was designed for using Rapid Form XOR to stitch data from multiple scans together to provide an accurate 3D model of the object scanned. An accurate model was required for the design and verification of an existing heat shield. The large physical size and complex shape of the heat shield does not allow for direct measurement of certain features in relation to other features. Any imaging devices capable of imaging the entire heat shield in its entirety suffers a reduced resolution and cannot image sections that are blocked from view. Prior methods involved tools such as commercial measurement arms, taking images with cameras, then performing manual measurements. These prior methods were tedious and could not provide a 3D model of the object being scanned, and were typically limited to a few tens of measurement points at prominent locations. Integration of the scanner with the robot allows for large complex objects to be scanned at high resolution, and for 3D Computer Aided Design (CAD) models to be generated for verification of items to the original design, and to generate models of previously undocumented items. The main components are the mounting bracket for the scanner to the robot and the coordinate transformation matrices used for stitching the scanner data into a 3D model. The steps involve mounting the interface bracket to the robot's detector arm, mounting the scanner to the bracket, and then scanning sections of the object and recording the location of the tool tip (in this case the center of the scanner's focal point). A novel feature is the ability to stitch images together by coordinates instead of requiring each scan data set to have overlapping identifiable features. This setup allows models of complex objects to be developed

  17. Assessment of the impact of the scanner-related factors on brain morphometry analysis with Brainvisa

    Directory of Open Access Journals (Sweden)

    Shokouhi Mahsa

    2011-12-01

    analysis with the current version of Brainvisa using data from multicentre or longitudinal studies, the scanner-related variability must be taken into account and where possible should be corrected for. We also suggest providing some flexibility to Brainvisa for a step-by-step analysis of the robustness of this package in terms of reproducibility of the results by allowing the bias corrected images to be imported from other packages and bias correction step be skipped, for example.

  18. Performance assessment of a preclinical PET scanner with pinhole collimation by comparison to a coincidence-based small-animal PET scanner.

    Science.gov (United States)

    Walker, Matthew D; Goorden, Marlies C; Dinelle, Katherine; Ramakers, Ruud M; Blinder, Stephan; Shirmohammad, Maryam; van der Have, Frans; Beekman, Freek J; Sossi, Vesna

    2014-08-01

    PET imaging of rodents is increasingly used in preclinical research, but its utility is limited by spatial resolution and signal-to-noise ratio of the images. A recently developed preclinical PET system uses a clustered-pinhole collimator, enabling high-resolution, simultaneous imaging of PET and SPECT tracers. Pinhole collimation strongly departs from traditional electronic collimation achieved via coincidence detection in PET. We investigated the potential of such a design by direct comparison to a traditional PET scanner. Two small-animal PET scanners, 1 with electronic collimation and 1 with physical collimation using clustered pinholes, were used to acquire data from Jaszczak (hot rod) and uniform phantoms. Mouse brain imaging using (18)F-FDG PET was performed on each system and compared with quantitative ex vivo autoradiography as a gold standard. Bone imaging using (18)F-NaF allowed comparison of imaging in the mouse body. Images were visually and quantitatively compared using measures of contrast and noise. Pinhole PET resolved the smallest rods (diameter, 0.85 mm) in the Jaszczak phantom, whereas the coincidence system resolved 1.1-mm-diameter rods. Contrast-to-noise ratios were better for pinhole PET when imaging small rods (superior to that on the pinhole system (5%). The high (18)F-FDG uptake in the striatum of the mouse brain was fully resolved using the pinhole system, with contrast to nearby regions equaling that from autoradiography; a lower contrast was found using the coincidence PET system. For short-duration images (low-count), the coincidence system was superior. In the cases for which small regions need to be resolved in scans with reasonably high activity or reasonably long scan times, a first-generation clustered-pinhole system can provide image quality in terms of resolution, contrast, and the contrast-to-noise ratio superior to a traditional PET system. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. Multi-spectral optical scanners for commercial earth observation missions

    Science.gov (United States)

    Schröter, Karin; Engel, Wolfgang; Berndt, Klaus

    2017-11-01

    In recent years, a number of commercial Earth observation missions have been initiated with the aim to gather data in the visible and near-infrared wavelength range. Some of these missions aim at medium resolution (5 to 10 m) multi-spectral imaging with the special background of daily revisiting. Typical applications aim at monitoring of farming area for growth control and harvest prediction, irrigation control, or disaster monitoring such as hail damage in farming, or flood survey. In order to arrive at profitable business plans for such missions, it is mandatory to establish the space segment, i.e. the spacecraft with their opto -electronic payloads, at minimum cost while guaranteeing maximum reliability for mission success. As multiple spacecraft are required for daily revisiting, the solutions are typically based on micro-satellites. This paper presents designs for multi-spectral opto-electric scanners for this type of missions. These designs are drive n by minimum mass and power budgets of microsatellites, and the need for minimum cost. As a consequence, it is mandatory to arrive at thermally robust, compact telescope designs. The paper gives a comparison between refractive, catadioptric, and TMA optics. For mirror designs, aluminium and Zerodur mirror technologies are briefly discussed. State-of-the art focal plane designs are presented. The paper also addresses the choice of detector technologies such as CCDs and CMOS Active Pixel Sensors. The electronics of the multi-spectral scanners represent the main design driver regarding power consumption, reliability, and (most often) cost. It can be subdivided into the detector drive electronics, analog and digital data processing chains, the data mass memory unit, formatting and down - linking units, payload control electronics, and local power supply. The paper gives overviews and trade-offs between data compression strategies and electronics solutions, mass memory unit designs, and data formatting approaches

  20. An evaluation of a prototype proton CT scanner

    Science.gov (United States)

    Plautz, Tia Elizabeth

    Since the 1990s, the number of clinical proton therapy facilities around the world has been growing exponentially. Because of this, and the lack of imaging support for proton therapy in the treatment room, a renewed interest in proton radiography and computed tomography (CT) has emerged. This imaging modality was largely abandoned in the 1970s and '80s in favor of the already successful x-ray CT, for reasons including long acquisition times and inadequate spatial resolution. Protons are particularly useful for radiotherapy because of their well-defined range in matter and their favorable energy profile which facilitates greater conformality than other radiotherapies; however, in order to realize the full potential of proton radiotherapy, the range of protons in the patient must be precisely known. Presently, proton therapy treatment planning is accomplished by taking x-ray CTs of the patient and converting each voxel into proton relative stopping power with respect to water (RSP) via a stoichiometrically-acquired calibration curve. However, since there is no unique relationship between Hounsfield values and RSP, this procedure has inherent uncertainties of a few percent in the proton range, requiring additional distal uncertainty margins in proton treatment plans. In contrast to x-ray CT, proton CT measures the RSP of an object directly, eliminating the need for Hounsfield-value-to-RSP conversion. In the prototype proton CT scanner that we have developed, a low-intensity beam of 200 MeV protons traverses a patient, entirely, and stops in a downstream energy/range detector. The entry and exit vectors of each proton are measured in order to determine a most-likely path of the proton through the object, and the response of the energy/range detector is converted to the water-equivalent path length of each proton in the object. These measurements are made at many angles between 0 and 360 degrees in order to reconstruct a three-dimensional map of proton RSP in the object

  1. Beyond 18F-FDG: Characterization of PET/CT and PET/MR Scanners for a Comprehensive Set of Positron Emitters of Growing Application--18F, 11C, 89Zr, 124I, 68Ga, and 90Y.

    Science.gov (United States)

    Soderlund, A Therese; Chaal, Jasper; Tjio, Gabriel; Totman, John J; Conti, Maurizio; Townsend, David W

    2015-08-01

    This study aimed to investigate image quality for a comprehensive set of isotopes ((18)F, (11)C, (89)Zr, (124)I, (68)Ga, and (90)Y) on 2 clinical scanners: a PET/CT scanner and a PET/MR scanner. Image quality and spatial resolution were tested according to NU 2-2007 of the National Electrical Manufacturers Association. An image-quality phantom was used to measure contrast recovery, residual bias in a cold area, and background variability. Reconstruction methods available on the 2 scanners were compared, including point-spread-function correction for both scanners and time of flight for the PET/CT scanner. Spatial resolution was measured using point sources and filtered backprojection reconstruction. With the exception of (90)Y, small differences were seen in the hot-sphere contrast recovery of the different isotopes. Cold-sphere contrast recovery was similar across isotopes for all reconstructions, with an improvement seen with time of flight on the PET/CT scanner. The lower-statistic (90)Y scans yielded substantially lower contrast recovery than the other isotopes. When isotopes were compared, there was no difference in measured spatial resolution except for PET/MR axial spatial resolution, which was significantly higher for (124)I and (68)Ga. Overall, both scanners produced good images with (18)F, (11)C, (89)Zr, (124)I, (68)Ga, and (90)Y. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. A Compact Vertical Scanner for Atomic Force Microscopes

    OpenAIRE

    Jae Hong Park; Jaesool Shim; Dong-Yeon Lee

    2010-01-01

    A compact vertical scanner for an atomic force microscope (AFM) is developed. The vertical scanner is designed to have no interference with the optical microscope for viewing the cantilever. The theoretical stiffness and resonance of the scanner are derived and verified via finite element analysis. An optimal design process that maximizes the resonance frequency is performed. To evaluate the scanner’s performance, experiments are performed to evaluate the travel range, resonance frequency, an...

  3. Assessment of early attrition using an ordinary flatbed scanner.

    Science.gov (United States)

    Van't Spijker, Arie; Kreulen, Cees M; Bronkhorst, Ewald M; Creugers, Nico H J

    2012-07-01

    The aim of this study was to assess a two-dimensional method to monitor occlusal tooth wear quantitatively using a commercially available ordinary flatbed scanner. A flatbed scanner, measuring software and gypsum casts were used. In Part I, two observers (A and B) independently traced scans of marked wear facets of ten sets of casts in two sessions (test and retest). In Part II, three other sets of casts were duplicated and two observers (C and D) marked wear facets and traced the scanned images independently. Intra- and inter-observer agreement was determined comparing measured values (mm(2)) in paired T-tests. Duplicate measurement errors (DME) were calculated. In Part I the test and retest values (10 casts, 218 teeth) of observer A and B did not differ significantly (A: p = 0.289; B: p = 0.666); correlation coefficients were 0.998 (A) and 0.999 (B). "Tracing wear facets" showed a DME of 0.30 mm(2) for observer A and 0.15 mm(2) for observer B. In Part II, assessment of 70 teeth resulted in correlation coefficients of 0.994 for observer C and 0.997 for observer D; no differences between test and retest values were found for C (p = 0.061), although D differed significantly (p = 0.000). The DME for "marking and tracing wear facets" was 0.39 mm(2) (C) and 0.27 mm(2) (D). DME for inter-observer agreement were 0.45 mm(2) (test) and 0.42 mm(2) (re-test). We conclude that marking and tracing of occlusal wear facets to assess occlusal tooth wear quantitatively can be done accurately and reproducibly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Validation of quantitative computed tomographic evaluation of bone mineral density of several CT scanners

    Science.gov (United States)

    Fritz, Steven L.; Stockham, Charles D.

    1992-06-01

    We have validated a pre-existing model for QCT evaluation of bone mineral density by scanning a commercial bone mineral density phantom on several CT scanners and evaluating the accuracy and reproducibility of bone mineral density measurements on each. The model assumes that bone mineral density is a linear function of CT number of bone. Rather than imaging bone mineral density standards for calibration, we computed an `equivalent bone mineral density' for fat and muscle from the known linear relationship between bone mineral density and CT number to remove the dependence of bone mineral density on field non- uniformities caused by beam hardening and scattered radiation, positioning errors and quality control. The `equivalent bone mineral density' for fat and muscle were computed from spectral data and atomic composition of fat and tissue for a GE 9800 scanner. These were used to establish the true bone mineral density of two reference BMD standards used in the phantom and these in turn were used to measure the `equivalent bone mineral density' of fat and muscle on other CT scanners. Phantom measurements on several other CT scanners were used to compute the `equivalent bone mineral density' of the phantom inserts for those systems. Results from the Picker 1200, the Philips LX and the Siemens Somatom DR/H were compared with the results of the GE 9800.

  5. Radiation exposure and privacy concerns surrounding full-body scanners in airports

    Directory of Open Access Journals (Sweden)

    Julie Accardo

    2014-04-01

    Full Text Available Millions of people filter through airport security check points in the United States every year. These security checks, in response to the post 9/11 and 2009 “Underwear Bomber” terrorist threats, have become increasingly burdensome to the general public due to the wide spread deployment of “enhanced screening systems.” The enhanced screening systems that have generated the most controversy are the passenger “full-body scanners.” These systems enable airport security personnel to effectively detect contraband (often concealed under clothing without the physical contact necessitated by a strip search. The two types of full-body scanners (also known as Advanced Imaging Technology systems, used in airports in the United States and around the world are referred to as backscatter technology units and millimeter-wave technology units. Although their respective radiation emissions vary, both scanners serve the same purpose; that is, the detection of concealed metallic and non-metallic threats in the form of liquids, gels, plastics, etc. Although enhanced screening systems were deployed to further public safety efforts, they have also generated wide spread public concern. Specifically, these concerns address the potential of adverse health and privacy issues that may result from continued public exposure to full-body scanner systems.

  6. A portable optical waveguide resonance light-scattering scanner for microarray detection.

    Science.gov (United States)

    Xing, Xuefeng; Liu, Wanyao; Li, Tao; Xing, Shu; Fu, Xueqi; Wu, Dongyang; Liu, Dianjun; Wang, Zhenxin

    2016-01-07

    In the present work, a portable and low-cost planar waveguide based resonance light scattering (RLS) scanner (termed as: PW-RLS scanner) has been developed for microarray detection. The PW-RLS scanner employs a 2 × 4 white light emitting diode array (WLEDA) as the excitation light source, a folded optical path with a complementary metal oxide semiconductor (CMOS) as the signal/image acquisition device and stepper motors with gear drives as the mechanical drive system. The biological binding/recognizing events on the microarray can be detected with an evanescent waveguide-directed illumination and light-scattering label (e.g., nanoparticles) while the microarray slide acts as an evanescent waveguide substrate. The performance of the as-developed PW-RLS scanner has been evaluated by analyzing type 2 diabetes mellitus (T2DM) risk genes. Highly selective and sensitive (less than 1% allele frequency at the attomole-level) T2DM risk gene detection is achieved using single-stranded DNA functionalized gold nanoparticles (ssDNA-GNPs) as detection probes. Additionally, the successful simultaneous analysis of 15 T2DM patient genotypes suggests that the device has great potential for the realization of a personalized diagnostic test for a given disease or patient follow-up.

  7. Interferometric Laser Scanner for Direction Determination

    Directory of Open Access Journals (Sweden)

    Gennady Kaloshin

    2016-01-01

    Full Text Available In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km.

  8. Was the Scanner Calibration Slide used for its intended purpose?

    Directory of Open Access Journals (Sweden)

    Zong Yaping

    2011-04-01

    Full Text Available Abstract In the article, Scanner calibration revisited, BMC Bioinformatics 2010, 11:361, Dr. Pozhitkov used the Scanner Calibration Slide, a key product of Full Moon BioSystems to generate data in his study of microarray scanner PMT response and proposed a mathematic model for PMT response 1. In the end, the author concluded that "Full Moon BioSystems calibration slides are inadequate for performing calibration," and recommended "against using these slides." We found these conclusions are seriously flawed and misleading, and his recommendation against using the Scanner Calibration Slide was not properly supported.

  9. Microcontroller USB interfacing with MATLAB GUI for low cost medical ultrasound scanners

    OpenAIRE

    Raj, Jean; Rahman, S.M.K.; Anand, Sneh

    2017-01-01

    This paper presents an 8051 microcontroller-based control of ultrasound scanner prototype hardware from a host laptop MATLAB GUI. The hardware control of many instruments is carried out by microcontrollers. These microcontrollers are in turn controlled from a GUI residing in a computing machine that is connected over the USB interface. Conventionally such GUIs are developed using ‘C’ language or its variants. But MATLAB GUI is a better tool, when such GUI programs need to do huge image/video ...

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... when the scan begins. top of page What does the equipment look like? Ultrasound scanners consist of ... poorly suited for ultrasound. top of page How does the procedure work? Ultrasound imaging is based on ...

  11. Attenuation correction for the HRRT PET-scanner using transmission scatter correction and total variation regularization.

    Science.gov (United States)

    Keller, Sune H; Svarer, Claus; Sibomana, Merence

    2013-09-01

    In the standard software for the Siemens high-resolution research tomograph (HRRT) positron emission tomography (PET) scanner the most commonly used segmentation in the μ -map reconstruction for human brain scans is maximum a posteriori for transmission (MAP-TR). Bias in the lower cerebellum and pons in HRRT brain images have been reported. The two main sources of the problem with MAP-TR are poor bone/soft tissue segmentation below the brain and overestimation of bone mass in the skull. We developed the new transmission processing with total variation (TXTV) method that introduces scatter correction in the μ-map reconstruction and total variation filtering to the transmission processing. Comparing MAP-TR and the new TXTV with gold standard CT-based attenuation correction, we found that TXTV has less bias as compared to MAP-TR. We also compared images acquired at the HRRT scanner using TXTV to the GE Advance scanner images and found high quantitative correspondence. TXTV has been used to reconstruct more than 4000 HRRT scans at seven different sites with no reports of biases. TXTV-based reconstruction is recommended for human brain scans on the HRRT.

  12. Mathematical modelling of scanner-specific bowtie filters for Monte Carlo CT dosimetry

    Science.gov (United States)

    Kramer, R.; Cassola, V. F.; Andrade, M. E. A.; de Araújo, M. W. C.; Brenner, D. J.; Khoury, H. J.

    2017-02-01

    The purpose of bowtie filters in CT scanners is to homogenize the x-ray intensity measured by the detectors in order to improve the image quality and at the same time to reduce the dose to the patient because of the preferential filtering near the periphery of the fan beam. For CT dosimetry, especially for Monte Carlo calculations of organ and tissue absorbed doses to patients, it is important to take the effect of bowtie filters into account. However, material composition and dimensions of these filters are proprietary. Consequently, a method for bowtie filter simulation independent of access to proprietary data and/or to a specific scanner would be of interest to many researchers involved in CT dosimetry. This study presents such a method based on the weighted computer tomography dose index, CTDIw, defined in two cylindrical PMMA phantoms of 16 cm and 32 cm diameter. With an EGSnrc-based Monte Carlo (MC) code, ratios CTDIw/CTDI100,a were calculated for a specific CT scanner using PMMA bowtie filter models based on sigmoid Boltzmann functions combined with a scanner filter factor (SFF) which is modified during calculations until the calculated MC CTDIw/CTDI100,a matches ratios CTDIw/CTDI100,a, determined by measurements or found in publications for that specific scanner. Once the scanner-specific value for an SFF has been found, the bowtie filter algorithm can be used in any MC code to perform CT dosimetry for that specific scanner. The bowtie filter model proposed here was validated for CTDIw/CTDI100,a considering 11 different CT scanners and for CTDI100,c, CTDI100,p and their ratio considering 4 different CT scanners. Additionally, comparisons were made for lateral dose profiles free in air and using computational anthropomorphic phantoms. CTDIw/CTDI100,a determined with this new method agreed on average within 0.89% (max. 3.4%) and 1.64% (max. 4.5%) with corresponding data published by CTDosimetry (www.impactscan.org) for the CTDI HEAD and BODY phantoms

  13. Separate-type scanner and wideband high-voltage amplifier for atomic-resolution and high-speed atomic force microscopy

    OpenAIRE

    Miyata, Kazuki; Usho, Satoshi; Yamada, Satoshi; Furuya, Shoji; Yoshida, Kiyonori; Asakawa, Hitoshi; Fukuma, Takeshi

    2013-01-01

    We have developed a liquid-environment atomic force microscope with a wideband and low-noise scanning system for atomic-scale imaging of dynamic processes at solid/liquid interfaces. The developed scanning system consists of a separate-type scanner and a wideband high-voltage amplifier (HVA). By separating an XY-sample scanner from a Z-tip scanner, we have enabled to use a relatively large sample without compromising the high resonance frequency. We compared various cantilever- and sample-hol...

  14. Backside illuminated CMOS-TDI line scanner for space applications

    Science.gov (United States)

    Cohen, O.; Ben-Ari, N.; Nevo, I.; Shiloah, N.; Zohar, G.; Kahanov, E.; Brumer, M.; Gershon, G.; Ofer, O.

    2017-09-01

    A new multi-spectral line scanner CMOS image sensor is reported. The backside illuminated (BSI) image sensor was designed for continuous scanning Low Earth Orbit (LEO) space applications including A custom high quality CMOS Active Pixels, Time Delayed Integration (TDI) mechanism that increases the SNR, 2-phase exposure mechanism that increases the dynamic Modulation Transfer Function (MTF), very low power internal Analog to Digital Converters (ADC) with resolution of 12 bit per pixel and on chip controller. The sensor has 4 independent arrays of pixels where each array is arranged in 2600 TDI columns with controllable TDI depth from 8 up to 64 TDI levels. A multispectral optical filter with specific spectral response per array is assembled at the package level. In this paper we briefly describe the sensor design and present some electrical and electro-optical recent measurements of the first prototypes including high Quantum Efficiency (QE), high MTF, wide range selectable Full Well Capacity (FWC), excellent linearity of approximately 1.3% in a signal range of 5-85% and approximately 1.75% in a signal range of 2-95% out of the signal span, readout noise of approximately 95 electrons with 64 TDI levels, negligible dark current and power consumption of less than 1.5W total for 4 bands sensor at all operation conditions .

  15. Quality assurance for ultrasound scanners using a durable tissue-mimicking phantom and radial MTF

    Science.gov (United States)

    Kaar, Marcus; Semturs, Friedrich; Figl, Michael; Hoffmann, Rainer; Hummel, Johann

    2014-03-01

    For the use in routine technical quality assurance (TQA) we developed a tissue-mimicking phantom and an evaluation algorithm. Key properties of US phantom materials are sound velocity and acoustic attenuation. For daily clinical use the material also has to be nontoxic, durable and easy in handling and maintenance. The base material of our phantom is Poly(vinyl alcohol) (PVA), a synthetic polymer. By freezing the phantom body during the production process, it changes its sound velocity to closely match the one of the human body. The phantom's base form is a cuboid containing a large anechoic cylindric target. In routine QA it is required to gain comparable and reproducible results from a single image. To determine spatial resolution of phantom images, we calculate a modulation transfer function (MTF). We developed an algorithm, that calculates a radial MTF from a circular structure representing spatial resolution averaged across all directions. For evaluation of the algorithm, we created a set of synthetic images. A comparison of the results from a traditional slanted edge algorithm and our solution showed a close correlation. The US phantom was imaged with a commercial US-scanner at different sound frequencies. The computed MTFs of higher frequency images show higher transfer percentages in all spatial frequencies than the MTFs of lower frequency images. The results suggest that the proposed method produces clear statements about the spatial resolution of evaluated imaging devices. We therefore consider the method as suitable for application in technical quality assurance of diagnostic ultrasound scanners.

  16. Objective Image Quality Metrics for Ultrasound Imaging

    OpenAIRE

    Simpson, Cecilie Øinæs

    2009-01-01

    Objective evaluation of the image quality on ultrasound images is a comprehensive task due to the relatively low image quality compared to other imaging techniques. It is desirable to objectively determine the quality of ultrasound images since quantification of the quality removes the subjective evaluation which can lead to varying results. The scanner will also be more user friendly if the user is given feedback on the quality of the current image. This thesis has investigated in the obje...

  17. Flat-field postobjective polygon scanner.

    Science.gov (United States)

    Walters, C T

    1995-05-01

    A general two-dimensional ray-trace analysis is presented for the motion of a geometric focal point over a flat surface provided by a postobjective rotating polygon laser beam scanner. The exact defocus equation is derived for any value of the neutral scan position deflection angle and the polygon rotation angle. The scan nonlinearity is derived for the special case of a zero neutral scan deflection angle. Geometric parameters were found that reduce the peak-to-peak defocus by more than an order of magnitude from that found in previous design approaches. Conditions were also found that reduce scan nonlinearity to less than 2 × 10(-4). Practical limitations, such as large polygons and beam obscurations, encountered in the implementation of postobjective scanning are discussed.

  18. Cornice Monitoring with a Terrestrial Laser Scanner

    Science.gov (United States)

    Prokop, Alexander; Hancock, Holt

    2017-04-01

    Cornice failure poses a threat to infrastructure and human life in central Svalbard, where cornice fall avalanches comprise a significant portion of all observed avalanche activity. Cornice accretion occurs seasonally on the plateau edges of the mountains that border Longyearbyen - Svalbard's primary settlement - where snow entrained over the long fetches of the plateau summits is deposited by the prevailing winds. Here, we present the preliminary results from our first season regularly monitoring these cornice systems with the Riegl VZ-6000 terrestrial laser scanner. We demonstrate the applicability of TLS data acquisition for monitoring cornice system dynamics and discuss the utility of such measurements for hazard management purposes. Finally, we show how this unique high spatial resolution data will act as a reference dataset for modeling exercises to improve the process understanding of cornice development and failure - in arctic environments and throughout the world.

  19. The Skylab lunar multispectral scanner data

    Science.gov (United States)

    Seeger, C. R.; Potter, A. E.

    1984-01-01

    Skylab S-192 multispectral scanner data, in 12 bands covering wavelengths from 0.41 to 2.3 microns, have been investigated to identify and classify geologic units of the lunar surface. Seventeen spectral cluster classes have been identified, seven in the highlands, seven in the maria, and three of which occur in both or in border regions. This finding may be roughly indicative of the relative heterogeneity of these regions. It implies that there is as much heterogeneity in the highlands as in the maria. This work extends the spectral and aerial coverage of similar studies of the lunar surface and provides useful data for comparison for most of the lunar near side.

  20. Infrared scanners for temperature measurement in wind tunnels

    Science.gov (United States)

    Kantsios, A. G.

    1978-01-01

    Remote infrared scanners allow large surfaces to be studied without disturbing model and without extensive sensor installation. Computer techniques analyze data with accuracy of + or - 5 percent. Scanners are applicable to tracking and diffusion studies of rocket exhausts, nondestructive testing of rocket motor nozzles and composite materials, and detection of nonuniformity in home insulation.

  1. A ''Millipede'' scanner model - Energy consumption and performance

    NARCIS (Netherlands)

    Engelen, Johannes Bernardus Charles; Khatib, M.G.

    2008-01-01

    This short report (1) describes an energy model for the seek and read/write operations in a mass-balanced Y-scanner for parallel-probe storage by IBM [1] and (2) updates the settings of the MEMS model in DiskSim with recent published figures from this XY-scanner. To speedup system simulations, a

  2. First results of the INSIDE in-beam PET scanner for the on-line monitoring of particle therapy treatments

    Science.gov (United States)

    Piliero, M. A.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cerello, P.; Coli, S.; Del Guerra, A.; Ferrero, V.; Fiorina, E.; Giraudo, G.; Kostara, E.; Morrocchi, M.; Pennazio, F.; Peroni, C.; Pirrone, G.; Rivetti, A.; Rolo, M. D.; Rosso, V.; Sportelli, G.; Wheadon, R.

    2016-12-01

    Quality assessment of particle therapy treatments by means of PET systems has been carried out since late `90 and it is one of the most promising in-vivo non invasive monitoring techniques employed clinically. It can be performed with a diagnostic PET scanners installed outside the treatment room (off-line monitoring) or inside the treatment room (in-room monitoring). However the most efficient way is by integrating a PET scanner with the treatment delivery system (on-line monitoring) so that the biological wash out and the patient repositioning errors are minimized. In this work we present the performance of the in-beam PET scanner developed within the INSIDE project. The INSIDE PET scanner is made of two planar heads, 10 cm wide (transaxially) and 25 cm long (axially), composed of pixellated LFS crystals coupled to Hamamatsu MPPCs. Custom designed Front-End Electronics (FE) and Data AcQuisition (DAQ) systems allow an on-line reconstruction of PET images from separated in-spill and inter-spill data sets. The INSIDE PET scanner has been recently delivered at the CNAO (Pavia, Italy) hadrontherapy facility and the first experimental measurements have been carried out. Homogeneous PMMA phantoms and PMMA phantoms with small air and bone inserts were irradiated with monoenergetic clinical proton beams. The activity range was evaluated at various benchmark positions within the field of view to assess the homogeneity of response of the PET system. Repeated irradiations of PMMA phantoms with clinical spread out Bragg peak proton beams were performed to evaluate the reproducibility of the PET signal. The results found in this work show that the response of the INSIDE PET scanner is independent of the position within the radiation field. Results also show the capability of the INSIDE PET scanner to distinguish variations of the activity range due to small tissue inhomogeneities. Finally, the reproducibility of the activity range measurement was within 1 mm.

  3. Precision of Dental Implant Digitization Using Intraoral Scanners.

    Science.gov (United States)

    Flügge, Tabea V; Att, Wael; Metzger, Marc C; Nelson, Katja

    2016-01-01

    The digitization of scanbodies on dental implants is required to use computer-aided design/computer-assisted manufacture processes for implant prosthetics. Little is known about the accuracy of scanbody digitization with intraoral scanners and dental lab scanners. This study aimed to examine the precision of different intraoral digital impression systems as well as a dental lab scanner using commercially available implant scanbodies. Two study models with a different number and distribution of dental implant scanbodies were produced from conventional implant impressions. The study models were scanned using three different intraoral scanners (iTero, Cadent; Trios, 3Shape; and True Definition, 3M ESPE) and a dental lab scanner (D250, 3Shape). For each study model, 10 scans were performed per scanner to produce repeated measurements for the calculation of precision. The distance and angulation between the respective scanbodies were measured. The results of each scanning system were compared using analysis of variance, and post hoc Tukey test was conducted for a pairwise comparison of scanning devices. The precision values of the scanbodies varied according to the distance between the scanbodies and the scanning device. A distance of a single tooth space and a jaw-traversing distance between scanbodies produced significantly different results for distance and angle measurements between the scanning systems (P < .05). The precision of intraoral scanners and the dental lab scanner was significantly different. The precision of intraoral scanners decreased with an increasing distance between the scanbodies, whereas the precision of the dental lab scanner was independent of the distance between the scanbodies.

  4. Monitor hemoglobin concentration and oxygen saturation in living mouse tail using photoacoustic CT scanner

    Science.gov (United States)

    Liu, Bo; Kruger, Robert; Reinecke, Daniel; Stantz, Keith M.

    2010-02-01

    Purpose: The purpose of this study is to use PCT spectroscopy scanner to monitor the hemoglobin concentration and oxygen saturation change of living mouse by imaging the artery and veins in a mouse tail. Materials and Methods: One mouse tail was scanned using the PCT small animal scanner at the isosbestic wavelength (796nm) to obtain its hemoglobin concentration. Immediately after the scan, the mouse was euthanized and its blood was extracted from the heart. The true hemoglobin concentration was measured using a co-oximeter. Reconstruction correction algorithm to compensate the acoustic signal loss due to the existence of bone structure in the mouse tail was developed. After the correction, the hemoglobin concentration was calculated from the PCT images and compared with co-oximeter result. Next, one mouse were immobilized in the PCT scanner. Gas with different concentrations of oxygen was given to mouse to change the oxygen saturation. PCT tail vessel spectroscopy scans were performed 15 minutes after the introduction of gas. The oxygen saturation values were then calculated to monitor the oxygen saturation change of mouse. Results: The systematic error for hemoglobin concentration measurement was less than 5% based on preliminary analysis. Same correction technique was used for oxygen saturation calculation. After correction, the oxygen saturation level change matches the oxygen volume ratio change of the introduced gas. Conclusion: This living mouse tail experiment has shown that NIR PCT-spectroscopy can be used to monitor the oxygen saturation status in living small animals.

  5. The design of the CMOS wireless bar code scanner applying optical system based on ZigBee

    Science.gov (United States)

    Chen, Yuelin; Peng, Jian

    2008-03-01

    The traditional bar code scanner is influenced by the length of data line, but the farthest distance of the wireless bar code scanner of wireless communication is generally between 30m and 100m on the market. By rebuilding the traditional CCD optical bar code scanner, a CMOS code scanner is designed based on the ZigBee to meet the demands of market. The scan system consists of the CMOS image sensor and embedded chip S3C2401X, when the two dimensional bar code is read, the results show the inaccurate and wrong code bar, resulted from image defile, disturber, reads image condition badness, signal interference, unstable system voltage. So we put forward the method which uses the matrix evaluation and Read-Solomon arithmetic to solve them. In order to construct the whole wireless optics of bar code system and to ensure its ability of transmitting bar code image signals digitally with long distances, ZigBee is used to transmit data to the base station, and this module is designed based on image acquisition system, and at last the wireless transmitting/receiving CC2430 module circuit linking chart is established. And by transplanting the embedded RTOS system LINUX to the MCU, an applying wireless CMOS optics bar code scanner and multi-task system is constructed. Finally, performance of communication is tested by evaluation software Smart RF. In broad space, every ZIGBEE node can realize 50m transmission with high reliability. When adding more ZigBee nodes, the transmission distance can be several thousands of meters long.

  6. The Smartphone Brain Scanner: A Portable Real-Time Neuroimaging System

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Larsen, Jakob Eg

    2014-01-01

    Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction....... The system – Smartphone Brain Scanner – combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imaging. We discuss the benefits and challenges, including technical limitations as well as details of real...

  7. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller

    CERN Document Server

    Jofre, M; Steinlechner, F; Oliverio, N; Torres, J P; Pruneri, V; Mitchell, M W; 10.1364/OE.20.012247

    2012-01-01

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than $\\sim 20$ ms. Given the unification of components to fully cont...

  8. Development of an inexpensive, low attenuation styrofoam primate chair for use in a PET scanner.

    Science.gov (United States)

    Kortekaas, R; van Waarde, A; Maguire, R P; Leenders, K L; Elsinga, P H

    2004-04-01

    Pharmacokinetic modelling of radiotracers for positron emission tomography (PET) imaging of neuroreceptors can be performed with time-activity data for brain and blood. We aimed to develop an alternative to withdrawal of arterial blood samples for acquisition of a blood curve. A supportive primate chair was constructed out of styrofoam and fixed to the head portion of the bed of a PET scanner. A lightly anaesthetised rhesus monkey was positioned in the chair in a sitting position and injected with the radiotracer. The styrofoam chair provided sufficient support for the monkey. The presence of the chair in the PET scanner caused negligible attenuation of radiation, allowing simultaneous acquisition of dynamic data from the subject's brain and heart. We conclude that a styrofoam primate chair is an ideal tool to measure blood and brain data from a rhesus monkey with PET. Invasiveness to the animal is reduced, as well as experimenter time.

  9. Determining organ doses from computed tomography scanners using cadaveric subjects

    Science.gov (United States)

    Griglock, Thomas M.

    The use of computed tomographic (CT) imaging has increased greatly since its inception in 1972. Technological advances have increased both the applicability of CT exams for common health problems as well as the radiation doses used to perform these exams. The increased radiation exposures have garnered much attention in the media and government agencies, and have brought about numerous attempts to quantify the amount of radiation received by patients. While the overwhelming majority of these attempts have focused on creating models of the human body (physical or computational), this research project sought to directly measure the radiation inside an actual human being. Three female cadaveric subjects of varying sizes were used to represent live patients. Optically-stimulated luminescent (OSL) dosimeters were used to measure the radiation doses. A dosimeter placement system was developed, tested, and optimized to allow accurate and reproducible placement of the dosimeters within the cadaveric subjects. A broad-beam, 320-slice, volumetric CT scanner was utilized to perform all CT exams, including five torso exams, four cardiac exams, and three organ perfusion exams. Organ doses ranged in magnitude from less than 1 to over 120 mGy, with the largest doses measured for perfusion imaging. A methodology has been developed that allows fast and accurate measurement of actual organ doses resulting from CT exams. The measurements made with this methodology represent the first time CT organ doses have been directly measured within a human body. These measurements are of great importance because they allow comparison to the doses measured using previous methods, and can be used to more accurately assess the risks from CT imaging.

  10. Efficacy of a dynamic collimator for overranging dose reduction in a second- and third-generation dual source CT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Ronald; Dijkshoorn, Marcel L.; Straten, Marcel van [Erasmus MC, Department of Radiology and Nuclear Medicine, P.O. Box 2240, Rotterdam (Netherlands)

    2017-09-15

    The purpose of this study was to assess the efficacy of the renewed dynamic collimator in a third-generation dual source CT (DSCT) scanner and to determine the improvements over the second-generation scanner. Collimator efficacy is defined as the percentage overranging dose in terms of dose-length product (DLP) that is blocked by the dynamic collimator relative to the total overranging dose in case of a static collimator. Efficacy was assessed at various pitch values and different scan lengths. The number of additional rotations due to overranging and effective scan length were calculated on the basis of reported scanning parameters. On the basis of these values, the efficacy of the collimator was calculated. The second-generation scanner showed decreased performance of the dynamic collimator at increasing pitch. Efficacy dropped to 10% at the highest pitch. For the third-generation scanner the efficacy remained above 50% at higher pitch. Noise was for some pitch values slightly higher at the edge of the imaged volume, indicating a reduced scan range to reduce the overranging dose. The improved dynamic collimator in the third-generation scanner blocks the overranging dose for more than 50% and is more capable of shielding radiation dose, especially in high pitch scan modes. (orig.)

  11. A New Generation of X-ray Baggage Scanners Based on a Different Physical Principle

    Directory of Open Access Journals (Sweden)

    Robert D. Speller

    2011-10-01

    Full Text Available X-ray baggage scanners play a basic role in the protection of airports, customs, and other strategically important buildings and infrastructures. The current technology of baggage scanners is based on x-ray attenuation, meaning that the detection of threat objects relies on how various objects differently attenuate the x-ray beams going through them. This capability is enhanced by the use of dual-energy x-ray scanners, which make the determination of the x-ray attenuation characteristics of a material more precise by taking images with different x-ray spectra, and combining the information appropriately. However, this still has limitations whenever objects with similar attenuation characteristics have to be distinguished. We describe an alternative approach based on a different x-ray interaction phenomenon, x-ray refraction. Refraction is a familiar phenomenon in visible light (e.g., what makes a straw half immersed in a glass of water appear bent, which also takes place in the x-ray regime, only causing deviations at much smaller angles. Typically, these deviations occur at the boundaries of all objects. We have developed a system that, like other “phase contrast” based instruments, is capable of detecting such deviations, and therefore of creating precise images of the contours of all objects. This complements the material-related information provided by x-ray attenuation, and helps contextualizing the nature of the individual objects, therefore resulting in an increase of both sensitivity (increased detection rate and specificity (reduced rate of false positives of baggage scanners.

  12. Validation of (18)F-FDG-PET Single-Subject Optimized SPM Procedure with Different PET Scanners.

    Science.gov (United States)

    Presotto, Luca; Ballarini, Tommaso; Caminiti, Silvia Paola; Bettinardi, Valentino; Gianolli, Luigi; Perani, Daniela

    2017-04-01

    (18)F-fluoro-deoxy-glucose Positron Emission Tomography (FDG-PET) allows early identification of neurodegeneration in dementia. The use of an optimized method based on the SPM software package highly improves diagnostic accuracy. However, the impact of different scanners for data acquisition on the SPM results and the effects of different pools of healthy subjects on the statistical comparison have not been investigated yet. Images from 144 AD patients acquired using six different PET scanners were analysed with an optimized single-subject SPM procedure to identify the typical AD hypometabolism pattern at single subject level. We compared between-scanners differences on the SPM outcomes in a factorial design. Single-subject SPM comparison analyses were also performed against a different group of healthy controls from the ADNI initiative. The concordance between the two analyses (112 vs. 157 control subjects) was tested using Dice scores. In addition, we applied the optimized single-subject SPM procedure to the FDG-PET data acquired with 3 different scanners in 57 MCI subjects, in order to assess for tomograph influence in early disease phase. All the patients showed comparable AD-like hypometabolic patterns, also in the prodromal phase, in spite of being acquired with different PET scanners. SPM statistical comparisons performed with the two different healthy control databases showed a high degree of concordance (76% average pattern volume overlap and 90% voxel-wise agreement in AD-related brain structures). The validated optimized SPM-based single-subject procedure is influenced neither by the scanners used for image acquisition, nor by differences in healthy control groups, thus implying a great reliability of this method for longitudinal and multicentre studies.

  13. A test pattern for quality control of laser scanner and charge-coupled device film digitizers.

    Science.gov (United States)

    Halpern, E J

    1995-02-01

    Although clinical images provide the ultimate test of diagnostic performance for a film digitizer, such images are not generally suitable for daily quality control (QC) purposes. However, a well-designed test pattern will provide a rapid, comprehensive, objective and reproducible assessment of image quality. This pattern should evaluate various parameters of image quality, including high contrast resolution, low contrast discrimination, linearity of gray scale, geometric distortion, and noise. Furthermore, the pattern should detect light leak and film slippage, two problems commonly associated with film digitizers. The test pattern described in this manuscript was designed to provide quantitative measures of performance for a film digitizer. As part of a regular QC routine for a laser scanner or charge-coupled device digitizer, this pattern provides a simple method to identify and quantify changes in digital image quality.

  14. Assessment of the impact of the scanner-related factors on brain morphometry analysis with Brainvisa

    National Research Council Canada - National Science Library

    Shokouhi, Mahsa; Barnes, Anna; Suckling, John; Moorhead, Thomas Wj; Brennan, David; Job, Dominic; Lymer, Katherine; Dazzan, Paola; Reis Marques, Tiago; Mackay, Clare; McKie, Shane; Williams, Steven Cr; Lawrie, Stephen M; Deakin, Bill; Williams, Steve R; Condon, Barrie

    2011-01-01

    ... with multicentre and longitudinal studies. It is important therefore to investigate the variability and reliability of morphometric measurements between different scanners and different sessions of the same scanner...

  15. A Quick Method for the Texture Mapping of Meshes Acquired by Laser Scanner

    Directory of Open Access Journals (Sweden)

    Francesco Gabellone

    2012-12-01

    Full Text Available The methodology described in this article was developed in connection with two different projects and entails texture mapping by time-of-flight laser scanner. In order to verify its operational effectiveness and applicability to other contexts, sites with extremely different morphological characteristics were studied. The basic rationale of this simple method derives from the need to obtain different types of mapping – including RGB real colour images, infra-red images, false colour images from georadar scans, etc. – from the same scanned surface. To resolve this problem, we felt that the most appropriate step was to obtain a UVW mapping based on the high resolution real colour images and then use the samecoordinates to rapidly map the false colour images as well. Thus we fitted a device to the camera to determine its trajectory (similar to a gunsight; when scanned by the laser scanner in the same context as the monument, it makes it possible to know the exact coordinates of the viewpoint.

  16. Modelling Single Tree Structure with Terrestrial Laser Scanner

    Science.gov (United States)

    Yurtseven, H.; Akgül, M.; Gülci, S.

    2017-11-01

    Recent technological developments, which has reliable accuracy and quality for all engineering works, such as remote sensing tools have wide range use in forestry applications. Last decade, sustainable use and management opportunities of forest resources are favorite topics. Thus, precision of obtained data plays an important role in evaluation of current status of forests' value. The use of aerial and terrestrial laser technology has more reliable and effective models to advance the appropriate natural resource management. This study investigates the use of terrestrial laser scanner (TLS) technology in forestry, and also the methodological data processing stages for tree volume extraction is explained. Z+F Imager 5010C TLS system was used for measure single tree information such as tree height, diameter of breast height, branch volume and canopy closure. In this context more detailed and accurate data can be obtained than conventional inventory sampling in forestry by using TLS systems. However the accuracy of obtained data is up to the experiences of TLS operator in the field. Number of scan stations and its positions are other important factors to reduce noise effect and accurate 3D modelling. The results indicated that the use of point cloud data to extract tree information for forestry applications are promising methodology for precision forestry.

  17. Accuracy of full-arch scans using intraoral scanners.

    Science.gov (United States)

    Patzelt, Sebastian B M; Emmanouilidi, Archontia; Stampf, Susanne; Strub, Joerg R; Att, Wael

    2014-07-01

    This study aimed to evaluate the accuracy of intraoral scanners in full-arch scans. A representative model with 14 prepared abutments was digitized using an industrial scanner (reference scanner) as well as four intraoral scanners (iTero, CEREC AC Bluecam, Lava C.O.S., and Zfx IntraScan). Datasets obtained from different scans were loaded into 3D evaluation software, superimposed, and compared for accuracy. One-way analysis of variance (ANOVA) was implemented to compute differences within groups (precision) as well as comparisons with the reference scan (trueness). A level of statistical significance of p < 0.05 was set. Mean trueness values ranged from 38 to 332.9 μm. Data analysis yielded statistically significant differences between CEREC AC Bluecam and other scanners as well as between Zfx IntraScan and Lava C.O.S. Mean precision values ranged from 37.9 to 99.1 μm. Statistically significant differences were found between CEREC AC Bluecam and Lava C.O.S., CEREC AC Bluecam and iTero, Zfx Intra Scan and Lava C.O.S., and Zfx Intra Scan and iTero (p < 0.05). Except for one intraoral scanner system, all tested systems showed a comparable level of accuracy for full-arch scans of prepared teeth. Further studies are needed to validate the accuracy of these scanners under clinical conditions. Despite excellent accuracy in single-unit scans having been demonstrated, little is known about the accuracy of intraoral scanners in simultaneous scans of multiple abutments. Although most of the tested scanners showed comparable values, the results suggest that the inaccuracies of the obtained datasets may contribute to inaccuracies in the final restorations.

  18. Image Processing Research

    Science.gov (United States)

    1975-09-30

    Picture Processing," USCEE Report No. 530, 1974, pp. 11-19. 4.7 Spectral Sensitivity Estimation of a Color Image Scanner Clanton E. Mancill and William...Projects: the improvement of image fidelity and presentation format; (3) Image Data Extraction Projects: the recognition of objects within pictures ...representation; (5) Image Proc- essing Systems Projects: the development of image processing hardware and software support systems. 14. Key words : Image

  19. Fast and High Accuracy Wire Scanner

    CERN Document Server

    Koujili, M; Koopman, J; Ramos, D; Sapinski, M; De Freitas, J; Ait Amira, Y; Djerdir, A

    2009-01-01

    Scanning of a high intensity particle beam imposes challenging requirements on a Wire Scanner system. It is expected to reach a scanning speed of 20 m.s-1 with a position accuracy of the order of 1 μm. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a fork holding a wire rotating by a maximum of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of the vacuum chamber, has to resist a bake-out temperature of 200°C and ionizing radiation up to a dozen of kGy/year. A digital feedback controller allows maxi...

  20. Verification of a CT scanner using a miniature step gauge

    DEFF Research Database (Denmark)

    Cantatore, Angela; Andreasen, J.L.; Carmignato, S.

    2011-01-01

    The work deals with performance verification of a CT scanner using a 42mm miniature replica step gauge developed for optical scanner verification. Errors quantification and optimization of CT system set-up in terms of resolution and measurement accuracy are fundamental for use of CT scanning...... in dimensional metrology. Influence of workpiece orientation, magnification, source-object-detector distances and surface extraction method on metrological performances of a CT scanner was evaluated. Results show that the position of the workpiece in the CT cabinet is fundamental to get reliable measurements...

  1. Point-based and plane-based deformation monitoring of indoor environments using terrestrial laser scanners

    Science.gov (United States)

    Chow, Jacky C. K.; Ebeling, Axel; Teskey, William F.

    2012-11-01

    Terrestrial laser scanners are high-accuracy 3D imaging instruments that are capable of measuring deformations with sub-millimetre level accuracy in most close-range applications. Traditionally, deformation monitoring via laser scanning is performed by measuring distinct signalised targets. In this case, the centroid of these targets must be determined with great accuracy for optimum detectability. To achieve this, a least-squares target centroid extraction algorithm suitable for planar checkerboard-type targets is proposed for irregularly organised laser scanner data. These target centroids are then used in a free-station network adjustment for performing deformation analysis with no a priori assumptions about the deformation pattern. To ensure the optimum measurement accuracy, all systematic errors inherent to the instrument at the time of data acquisition needs to be removed. One of the methods for reducing these systematic errors is by performing self-calibration of terrestrial laser scanners. In this paper, this was performed on-site to model the systematic errors of the scanner. It is demonstrated that the accuracy of the recovered translational movements were improved by an order of magnitude from the millimetre level to the sub-millimetre level using this approach. Despite the success of using laser scanners with signalised targets in deformation analysis, the main benefit of active sensors like terrestrial laser scanning systems is their ability to capture 3D information of the entire scene without installing markers. A new markerless deformation analysis technique that utilises intersection points derived from planar-features is proposed and tested in this paper. The extraction and intersection of planes in each point cloud can be performed semi-automatically or automatically. This new method is based on free-stationing and does not require a priori knowledge about stable control points or movement patterns. It can detect and measure both translational

  2. Multiple-echo diffusion tensor acquisition technique (MEDITATE) on a 3T clinical scanner.

    Science.gov (United States)

    Baete, Steven H; Cho, Gene; Sigmund, Eric E

    2013-11-01

    This article describes the concepts and implementation of an MRI method, the multiple-echo diffusion tensor acquisition technique (MEDITATE), which is capable of acquiring apparent diffusion tensor maps in two scans on a 3T clinical scanner. In each MEDITATE scan, a set of RF pulses generates multiple echoes, the amplitudes of which are diffusion weighted in both magnitude and direction by a pattern of diffusion gradients. As a result, two scans acquired with different diffusion weighting strengths suffice for accurate estimation of diffusion tensor imaging (DTI) parameters. The MEDITATE variation presented here expands previous MEDITATE approaches to adapt to the clinical scanner platform, such as exploiting longitudinal magnetization storage to reduce T2 weighting. Fully segmented multi-shot Cartesian encoding is used for image encoding. MEDITATE was tested on isotropic (agar gel), anisotropic diffusion phantoms (asparagus) and in vivo skeletal muscle in healthy volunteers with cardiac gating. Comparisons of accuracy were performed with standard twice-refocused spin echo (TRSE) DTI in each case and good quantitative agreement was found between diffusion eigenvalues, mean diffusivity and fractional anisotropy derived from TRSE DTI and from the MEDITATE sequence. Orientation patterns were correctly reproduced in both isotropic and anisotropic phantoms, and approximately for in vivo imaging. This illustrates that the MEDITATE method of compressed diffusion encoding is feasible on the clinical scanner platform. With future development and employment of appropriate view-sharing image encoding, this technique may be used in clinical applications requiring time-sensitive acquisition of DTI parameters such as dynamical DTI in muscle. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Digital image processing techniques in archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Santanam, K.; Vaithiyanathan, R.; Tripati, S.

    Digital image processing involves the manipulation and interpretation of digital images with the aid of a computer. This form of remote sensing actually began in the 1960's with a limited number of researchers analysing multispectral scanner data...

  4. Agricultural Applications and Requirements for Thermal Infrared Scanners

    Science.gov (United States)

    Wiegand, C. L.

    1971-01-01

    Some of the applications of thermal scanner data in agriculture are presented along with illustrations of some of the factors affecting the temperature of plants, soil, and water. Examples of thermal imagery are included.

  5. Dental models made with an intraoral scanner: A validation study.

    NARCIS (Netherlands)

    Cuperus, A.M.; Harms, M.C.; Rangel, F.A.; Bronkhorst, E.M.; Schols, J.G.J.H.; Breuning, K.H.

    2012-01-01

    INTRODUCTION: Our objectives were to determine the validity and reproducibility of measurements on stereolithographic models and 3-dimensional digital dental models made with an intraoral scanner. METHODS: Ten dry human skulls were scanned; from the scans, stereolithographic models and digital

  6. Utilization of a Terrestrial Laser Scanner for the Calibration of Mobile Mapping Systems

    Directory of Open Access Journals (Sweden)

    Seunghwan Hong

    2017-02-01

    Full Text Available This paper proposes a practical calibration solution for estimating the boresight and lever-arm parameters of the sensors mounted on a Mobile Mapping System (MMS. On our MMS devised for conducting the calibration experiment, three network video cameras, one mobile laser scanner, and one Global Navigation Satellite System (GNSS/Inertial Navigation System (INS were mounted. The geometric relationships between three sensors were solved by the proposed calibration, considering the GNSS/INS as one unit sensor. Our solution basically uses the point cloud generated by a 3-dimensional (3D terrestrial laser scanner rather than using conventionally obtained 3D ground control features. With the terrestrial laser scanner, accurate and precise reference data could be produced and the plane features corresponding with the sparse mobile laser scanning data could be determined with high precision. Furthermore, corresponding point features could be extracted from the dense terrestrial laser scanning data and the images captured by the video cameras. The parameters of the boresight and the lever-arm were calculated based on the least squares approach and the precision of the boresight and lever-arm could be achieved by 0.1 degrees and 10 mm, respectively.

  7. High-resolution mobile optical 3D scanner with color mapping

    Science.gov (United States)

    Ramm, Roland; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Notni, Gunther

    2017-07-01

    A high-resolution mobile handheld scanning device suitable for 3D data acquisition and analysis for forensic investigations, rapid prototyping, design, quality management, and archaeology with a measurement volume of approximately 325 mm x 200 mm x 100mm and a lateral object resolution of 170 µm developed at our institute is introduced. The scanners weight is 4.4 kg with an optional color DLSR camera. The PC for measurement control and point calculation is included inside the housing. Power supply is realized by rechargeable batteries. Possible operation time is between 30 and 60 minutes. The object distance is between 400 and 500 mm, and the scan time for one 3D shot may vary between 0.1 and 0.5 seconds. The complete 3D result is obtained a few seconds after starting the scan. For higher quality 3D and color images the scanner is attachable to tripod use. Measurement objects larger than the measurement volume must be acquired partly. The different resulting datasets are merged using a suitable software module. The scanner has been successfully used in various applications.

  8. Lack of CT scanner in a rural emergency department increases inter-facility transfers: a pilot study.

    Science.gov (United States)

    Bergeron, Catherine; Fleet, Richard; Tounkara, Fatoumata Korika; Lavallée-Bourget, Isabelle; Turgeon-Pelchat, Catherine

    2017-12-28

    Rural emergency departments (EDs) are an important gateway to care for the 20% of Canadians who reside in rural areas. Less than 15% of Canadian rural EDs have access to a computed tomography (CT) scanner. We hypothesized that a significant proportion of inter-facility transfers from rural hospitals without CT scanners are for CT imaging. Our objective was to assess inter-facility transfers for CT imaging in a rural ED without a CT scanner. We selected a rural ED that offers 24/7 medical care with admission beds but no CT scanner. Descriptive statistics were collected from 2010 to 2015 on total ED visits and inter-facility transfers. Data was accessible through hospital and government databases. Between 2010 and 2014, there were respectively 13,531, 13,524, 13,827, 12,883, and 12,942 ED visits, with an average of 444 inter-facility transfers. An average of 33% (148/444) of inter-facility transfers were to a rural referral centre with a CT scan, with 84% being for CT scan. Inter-facility transfers incur costs and potential delays in patient diagnosis and management, yet current databases could not capture transfer times. Acquiring a CT scan may represent a reasonable opportunity for the selected rural hospital considering the number of required transfers.

  9. A low noise infrared spot scanner for testing detector arrays

    Science.gov (United States)

    Puetter, R. C.; Brissenden, P.; Casler, J.; Hier, R. G.; Jones, B.

    1984-01-01

    A low noise spot scanner has been built for use in testing the performance of infrared detector arrays for NASA's IR detector technology development program and the University of California's MICRO program. The scanner provides a convenient low noise detector test environment and a wide range of test conditions including versatile temperature control of the detector, ambient background, and blackbody source temperature and control of spot size, color, and brightness.

  10. Organ dose and effective dose with the EOS scanner in spine deformity surgery

    DEFF Research Database (Denmark)

    Heide Pedersen, Peter; Eiskjær, Søren Peter; Petersen, Asger Greval

    2016-01-01

    Organ dose and effective dose with the EOS scanner in spine deformity surgery. A study on anthropomorphic phantoms describing patient radiation exposure in full spine examinations. Authors: Peter Heide Pedersen, Asger Greval Petersen, Søren Peter Eiskjær. Background: Ionizing radiation potentially...... leads to tissue damage. It has been documented in large cohort studies that radiographic imaging during childhood for spinal deformities eg. scoliosis, increases the lifetime risk of breast cancer. The EOS biplane x-ray imaging system (EOS Imaging S.A, Paris France) has been developed to produce high...... quality images while at the same time reducing radiation dose. At our institution we use the EOS for pre- and postoperative full spine examinations. Purpose: The purpose of the study is to make first time organ dose and effective dose evaluations with micro-dose settings in full spine examinations. Our...

  11. Foveated scanning: dynamic monodimensional enlargement of resolved field of view in lenses of scanner systems.

    Science.gov (United States)

    Javaherian, Farhang; Rashidian, Bizhan

    2016-09-10

    An inconsistency between the circular symmetric geometry of conventional optical imagers and the geometry of long linear sensors used in today's line-scan cameras results in suboptimal separate design of optics and electronics of scanner systems. Based on the method of foveated optical imaging, a technique named foveated scanning (FS) is proposed in this paper. The FS technique is employed to enlarge the one-dimensional resolved field of view (RFOV) of conventional lenses and permits optimized performance on a line-of-interest in the image plane where the optoelectronic sensor is located. The achieved enlargement of RFOV is verified on a proof-of-concept basic telephoto lens. Both modulation transfer function analysis and the imaging simulation of a standard target have been performed. Results show a twofold increase in RFOV by this technique.

  12. In vivo multiphoton microscopy using a handheld scanner with lateral and axial motion compensation.

    Science.gov (United States)

    Sherlock, Ben; Warren, Sean C; Alexandrov, Yuriy; Yu, Fei; Stone, James; Knight, Jonathan; Neil, Mark A A; Paterson, Carl; French, Paul M W; Dunsby, Chris

    2017-08-31

    This paper reports a handheld multiphoton fluorescence microscope designed for clinical imaging that incorporates axial motion compensation and lateral image stabilization. Spectral domain optical coherence tomography is employed to track the axial position of the skin surface, and lateral motion compensation is realised by imaging the speckle pattern arising from the optical coherence tomography beam illuminating the sample. Our system is able to correct lateral sample velocities of up to approximately 65 μm s-1 . Combined with the use of negative curvature microstructured optical fibre to deliver tunable ultrafast radiation to the handheld multiphoton scanner without the need of a dispersion compensation unit, this instrument has potential for a range of clinical applications. The system is used to compensate for both lateral and axial motion of the sample when imaging human skin in vivo. © 2017 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Calculation of the Scattered Radiation Profile in 64 Slice CT Scanners Using Experimental Measurement

    Directory of Open Access Journals (Sweden)

    Afshin Akbarzadeh

    2009-06-01

    Full Text Available Introduction: One of the most important parameters in x-ray CT imaging is the noise induced by detected scattered radiation. The detected scattered radiation is completely dependent on the scanner geometry as well as size, shape and material of the scanned object. The magnitude and spatial distribution of the scattered radiation in x-ray CT should be quantified for development of robust scatter correction techniques. Empirical methods based on blocking the primary photons in a small region are not able to extract scatter in all elements of the detector array while the scatter profile is required for a scatter correction procedure. In this study, we measured scatter profiles in 64 slice CT scanners using a new experimental measurement. Material and Methods: To measure the scatter profile, a lead block array was inserted under the collimator and the phantom was exposed at the isocenter. The raw data file, which contained detector array readouts, was transferred to a PC and was read using a dedicated GUI running under MatLab 7.5. The scatter profile was extracted by interpolating the shadowed area. Results: The scatter and SPR profiles were measured. Increasing the tube voltage from 80 to 140 kVp resulted in an 80% fall off in SPR for a water phantom (d=210 mm and 86% for a polypropylene phantom (d = 350 mm. Increasing the air gap to 20.9 cm caused a 30% decrease in SPR. Conclusion: In this study, we presented a novel approach for measurement of scattered radiation distribution and SPR in a CT scanner with 64-slice capability using a lead block array. The method can also be used on other multi-slice CT scanners. The proposed technique can accurately estimate scatter profiles. It is relatively straightforward, easy to use, and can be used for any related measurement.

  14. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... kidneys. top of page What are some common uses of the procedure? Abdominal ultrasound imaging is performed ... the scanner by a cord. Some exams may use different transducers (with different capabilities) during a single ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... affecting the MRI images, these objects can become projectiles within the MRI scanner room and may cause ... at a very early stage by mapping the motion of water molecules in the tissue. This water ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... scanner. top of page How does the procedure work? Unlike conventional x-ray examinations and computed tomography ( ... that magnetic resonance imaging harms the fetus, pregnant women usually are advised not to have an MRI ...

  17. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... needed for ultrasound examinations. top of page What does the ultrasound equipment look like? Ultrasound scanners consist ... poorly suited for ultrasound. top of page How does the procedure work? Ultrasound imaging is based on ...

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... or headphones during the exam. MRI scanners are air-conditioned and well-lit. Music may be played ... the limitations of MRI of the Head? High-quality images are assured only if you are able ...

  19. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... the same effect. A very irregular heartbeat may affect the quality of images obtained using techniques that ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... the same effect. A very irregular heartbeat may affect the quality of images obtained using techniques that ...

  1. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? Abdominal ultrasound imaging is performed to evaluate ... for ultrasound examinations. top of page What does the ultrasound equipment look like? Ultrasound scanners consist of ...

  2. Images

    Data.gov (United States)

    National Aeronautics and Space Administration — Images for the website main pages and all configurations. The upload and access points for the other images are: Website Template RSW images BSCW Images HIRENASD...

  3. Ultrasound Imaging and its modeling

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2002-01-01

    Modern medical ultrasound scanners are used for imaging nearly all soft tissue structures in the body. The anatomy can be studied from gray-scale B-mode images, where the reflectivity and scattering strength of the tissues are displayed. The imaging is performed in real time with 20 to 100 images...

  4. Assessment of Pen Branch delta and corridor vegetation changes using multispectral scanner data 1992--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Airborne multispectral scanner data were used to monitor natural succession of wetland vegetation species over a three-year period from 1992 through 1994 for Pen Branch on the Savannah River Site in South Carolina. Image processing techniques were used to identify and measure wetland vegetation communities in the lower portion of the Pen Branch corridor and delta. The study provided a reliable means for monitoring medium- and large-scale changes in a diverse environment. Findings from the study will be used to support decisions regarding remediation efforts following the cessation of cooling water discharge from K reactor at the Department of Energy`s Savannah River Site in South Carolina.

  5. Performance evaluation of a high resolution dedicated breast PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    García Hernández, Trinitat, E-mail: mtrinitat@eresa.com; Vicedo González, Aurora; Brualla González, Luis; Granero Cabañero, Domingo [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Ferrer Rebolleda, Jose; Sánchez Jurado, Raúl; Puig Cozar Santiago, Maria del [Department of Nuclear Medicine, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Roselló Ferrando, Joan [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Department of Physiology, University of Valencia, Valencia 46010 (Spain)

    2016-05-15

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ({sup 18}F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) were simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good

  6. Terrain Extraction by Integrating Terrestrial Laser Scanner Data and Spectral Information

    Science.gov (United States)

    Lau, C. L.; Halim, S.; Zulkepli, M.; Azwan, A. M.; Tang, W. L.; Chong, A. K.

    2015-10-01

    The extraction of true terrain points from unstructured laser point cloud data is an important process in order to produce an accurate digital terrain model (DTM). However, most of these spatial filtering methods just utilizing the geometrical data to discriminate the terrain points from nonterrain points. The point cloud filtering method also can be improved by using the spectral information available with some scanners. Therefore, the objective of this study is to investigate the effectiveness of using the three-channel (red, green and blue) of the colour image captured from built-in digital camera which is available in some Terrestrial Laser Scanner (TLS) for terrain extraction. In this study, the data acquisition was conducted at a mini replica landscape in Universiti Teknologi Malaysia (UTM), Skudai campus using Leica ScanStation C10. The spectral information of the coloured point clouds from selected sample classes are extracted for spectral analysis. The coloured point clouds which within the corresponding preset spectral threshold are identified as that specific feature point from the dataset. This process of terrain extraction is done through using developed Matlab coding. Result demonstrates that a higher spectral resolution passive image is required in order to improve the output. This is because low quality of the colour images captured by the sensor contributes to the low separability in spectral reflectance. In conclusion, this study shows that, spectral information is capable to be used as a parameter for terrain extraction.

  7. Measurement accuracy of alveolar soft tissue contour using a laboratory laser scanner.

    Science.gov (United States)

    Ueno, Daisuke; Kobayashi, Mariko; Tanaka, Kenko; Watanabe, Tsuneaki; Nakamura, Tetsuro; Ueda, Kazuhiko; Nagano, Takatoshi

    2017-08-02

    Steric analysis of morphological changes is important for evaluation of surgical techniques. This study was performed to assess the measurement accuracy of alveolar soft tissue contour with a laboratory laser scanner. The width of the maxillary alveolar soft tissue contour was evaluated in 20 volunteers. Measurement sites were established in the alveolar soft tissue contour of the maxillary incisor and canine areas. Each site was evaluated by direct measurement with a microcaliper for each subject (DMM) and image measurement using a laboratory laser scanner (IMS). The accuracy of measurement methods was evaluated. Additionally, two plaster models obtained from the same subjects were scanned and superimposed, and the nonoverlapping areas were measured. Each measurement method exhibited a strong correlation (r = 0.89). The interclass correlation coefficient (single measure) between examiners was also high for each measurement method (PMM 0.978; IMS 0.997). In the superimposed images of the two plaster models, the distance of the nonoverlapping region was only 0.06 ± 0.08 mm in the labial aspect and 0.07 ± 0.09 mm in the palatal aspect. The image measurement of the scanning data shows high accuracy in evaluation of the alveolar soft tissue contour. This technique is useful for evaluation of chronological changes in the alveolar contour after soft and hard tissue augmentation.

  8. Digital Hammurabi: design and development of a 3D scanner for cuneiform tablets

    Science.gov (United States)

    Hahn, Daniel V.; Duncan, Donald D.; Baldwin, Kevin C.; Cohen, Jonathon D.; Purnomo, Budirijanto

    2006-02-01

    Cuneiform is an ancient form of writing in which wooden reeds were used to impress shapes upon moist clay tablets. Upon drying, the tablets preserved the written script with remarkable accuracy and durability. There are currently hundreds of thousands of cuneiform tablets spread throughout the world in both museums and private collections. The global scale of these artifacts presents several problems for scholars who wish to study them. It may be difficult or impossible to obtain access to a given collection. In addition, photographic records of the tablets many times prove to be inadequate for proper examination. Photographs lack the ability to alter the lighting conditions and view direction. As a solution to these problems, we describe a 3D scanner capable of acquiring the shape, color, and reflectance of a tablet as a complete 3D object. This data set could then be stored in an online library and manipulated by suitable rendering software that would allow a user to specify any view direction and lighting condition. The scanner utilizes a camera and telecentric lens to acquire images of the tablet under varying controlled illumination conditions. Image data are processed using photometric stereo and structured light techniques to determine the tablet shape; color information is reconstructed from primary color monochrome image data. The scanned surface is sampled at 26.8 μm lateral spacing and the height information is calculated on a much smaller scale. Scans of adjacent tablet sides are registered together to form a 3D surface model.

  9. Anechoic sphere phantoms for estimating 3-D resolution of very-high-frequency ultrasound scanners.

    Science.gov (United States)

    Madsen, Ernest; Frank, Gary; McCormick, Matthew; Deaner, Meagan; Stiles, Timothy

    2010-10-01

    Two phantoms have been constructed for assessing performance of high-frequency ultrasound imagers. They also allow for periodic quality assurance tests and training technicians in the use of higher-frequency scanners. The phantoms contain eight blocks of tissue-mimicking material; each block contains a spatially random distribution of suitably small anechoic spheres having a small distribution of diameters. The eight mean sphere diameters are distributed from 0.10 to 1.09 mm. The two phantoms differ primarily in terms of the frequency dependence of the backscatter coefficient of the background material. Because spheres have no preferred orientation, all three (spatial) dimensions of resolution contribute to sphere detection on an equal basis; thus, the resolution is termed 3-D. Two high-frequency scanners are compared. One employs single-element (fixed focus) transducers (25 and 55 MHz), and the other employs variable focus linear arrays (20, 30, and 40 MHz). The depth range for detection of spheres of each size is determined corresponding to determination of 3-D resolution as a function of depth. As expected, the single-element transducers are severely limited in useful imaging depth ranges compared with the linear arrays. In this preliminary report, only one human observer analyzed images.

  10. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications

    Energy Technology Data Exchange (ETDEWEB)

    Loubele, M. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); Department of Periodontology, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); ESAT-PSI, Centre for the Processing of Speech and Images. Department of Electrotechnical Engineering, Group Science, Engineering and Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10 - bus 2440 Belgium (Belgium)], E-mail: Miet.Loubele@uzleuven.be; Bogaerts, R. [Department of Experimental Radiotherapy, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49 - bus 7003, 3000 Leuven (Belgium)], E-mail: Ria.Bogaerts@med.kuleuven.be; Van Dijck, E. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); Pauwels, R. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium)], E-mail: ruben.pauwels@med.kuleuven.be; Vanheusden, S. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); Suetens, P. [ESAT-PSI, Centre for the Processing of Speech and Images. Department of Electrotechnical Engineering, Group Science, Engineering and Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10 - bus 2440 Belgium (Belgium)], E-mail: Paul.Suetens@esat.kuleuven.be; Marchal, G. [Department of Radiology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49 - bus 7003, 3000 Leuven (Belgium)], E-mail: Guy.Marchal@uzleuven.be (and others)

    2009-09-15

    Objectives: To compare the effective dose levels of cone beam computed tomography (CBCT) for maxillofacial applications with those of multi-slice computed tomography (MSCT). Study design: The effective doses of 3 CBCT scanners were estimated (Accuitomo 3D, i-CAT, and NewTom 3G) and compared to the dose levels for corresponding image acquisition protocols for 3 MSCT scanners (Somatom VolumeZoom 4, Somatom Sensation 16 and Mx8000 IDT). The effective dose was calculated using thermoluminescent dosimeters (TLDs), placed in a Rando Alderson phantom, and expressed according to the ICRP 103 (2007) guidelines (including a separate tissue weighting factor for the salivary glands, as opposed to former ICRP guidelines). Results: Effective dose values ranged from 13 to 82 {mu}Sv for CBCT and from 474 to 1160 {mu}Sv for MSCT. CBCT dose levels were the lowest for the Accuitomo 3D, and highest for the i-CAT. Conclusions: Dose levels for CBCT imaging remained far below those of clinical MSCT protocols, even when a mandibular protocol was applied for the latter, resulting in a smaller field of view compared to various CBCT protocols. Considering this wide dose span, it is of outmost importance to justify the selection of each of the aforementioned techniques, and to optimise the radiation dose while achieving a sufficient image quality. When comparing these results to previous dosimetric studies, a conversion needs to be made using the latest ICRP recommendations.

  11. Operative Line of Resection Determination Method for Emphysema Surgery using High-Speed Laser Scanner and Non-Rigid Registration

    Directory of Open Access Journals (Sweden)

    Jong-Ha Lee

    2016-02-01

    Full Text Available A successful image-to-physical space overlay method is necessary to provide reliable guidance information to surgeons and accurate surface displacement data for use in compensation algorithm of soft tissue deformation. In this paper we outline a novel approach to relate preoperative images to intraoperative space in a lung volume reduction surgery. The protocol requires intraoperative geometric data to measure and compensate for tissue deformation in the organ. We use 3D laser scanner to accomplish these tasks intraoperatively. A laser scanner based on the optical principle of triangulation acquires a dense set of three-dimensional point data in a very short time. The non-rigid registration is then performed via robust point matching algorithm between control points identifiable in both the preoperative tomograms and the intraoperatively acquired point cloud data provided by a laser scanner. Using the obtained warping field, preoperative region of interest is determined in a physical space. Phantom studies using commercial pig’s lung were performed to test the ability to link 3D laser scanner with preoperative modality data through non-rigid registration. The experiments demonstrate that the proposed protocol is capable of achieving non-overlapping ratio of less than 1.41 %. Surface deformation studies were performed in order to determine if the non-rigid registration is capable of compensate soft tissue deformation. In the deformation studies, the laser scanner with non-rigid registration method was able to track changes in preoperative region of interest less than 3.13 % non-overlapping ratio. The experiments were also performed different field of vision data: the non-overlapping error was below 4.14 % with 84 % of the organ visible and below 1.66 % with 96 % of the organ visible.

  12. Development of a reader for track etch detectors based on a commercially available slide scanner

    CERN Document Server

    Steele, J D; Tanner, R J; Bartlett, D T

    1999-01-01

    NRPB has operated a routine neutron personal dosimetry service based on the electrochemical etch of PADC elements since 1986. Since its inception it has used an automated reader based on a video camera and real time analysis. A new and more powerful replacement system has been developed using a commercially available photographic slide scanner. This permits a complete image of the dosemeter to be grabbed in a single scan, generating a 2592x3888 pixel file which is saved for subsequent analysis. This gives an effective pixel size of 10x10 mu m with an image of the entire dosemeter in one field of view. Custom written software subsequently analyses the image to assess the number of etched pits on the dosemeter and read the detector identification number (code). Batch scanning of up to 40 detectors is also possible using an autofeed attachment. The system can be used for electrochemically etched tracks for neutron detectors and chemically etched tracks for radon detectors.

  13. Compact beamforming in medical ultrasound scanners

    DEFF Research Database (Denmark)

    Tomov, Borislav Gueorguiev

    2003-01-01

    This Ph.D. project was carried out at the Center for Fast Ultrasound Imaging, Technical University of Denmark, under the supervision of Prof. Jørgen Arendt Jensen, Assoc. Prof. Jens Sparsø and Prof. Erik Bruun. The goal was to investigate methods for efficient beamforming, which make it possible ...

  14. Snowmelt monitoring with Terrestrial Laser Scanner Measurements

    Science.gov (United States)

    Anttila, Kati; Kaasalainen, Sanna; Kaartinen, Harri; Krooks, Anssi; Manninen, Terhikki; Lahtinen, Panu; Riihelä, Aku; Siljamo, Niilo; Thölix, Laura; Karjalainen, Tuure

    2010-05-01

    gathering validation data for satellite products. The results of the ground measurements of the SNORTEX campaign will be used to SAF product validations and to support the aerial data collected during the campaign. The TLS measurements during the campaign were made in several different locations at different stages of snowmelt. These measurements were georeferenced and normalized so that they could be compared. The results were compared to different ground measurements, e.g. snow depth, water equivalent etc., made by the Finnish Meteorological Institute. The results were used to estimate the usability of the point cloud and intensity data of the scanner in measuring different snow properties. The results show that TLS data is applicable in profiling seasonal snow conditions and the intensity data helps the classifying of the snow cover. The laser backscatter from snow surface is not directly related to any of the snow cover properties measured during the campaign but the snow structure has a clear effect on the TLS intensity. A MMS method for snow profiling was also developed during the campaign and the results show potential for MMS-based surface roughness profiling and change detection.

  15. Piezoelectric bimorph-based scanner in the tip-scan mode for high speed atomic force microscope.

    Science.gov (United States)

    Zhao, Jianyong; Gong, Weitao; Cai, Wei; Shang, Guangyi

    2013-08-01

    A piezoelectric bimorph-based scanner operating in tip-scan mode for high speed atomic force microscope (AFM) is first presented. The free end of the bimorph is used for fixing an AFM cantilever probe and the other one is mounted on the AFM head. The sample is placed on the top of a piezoelectric tube scanner. High speed scan is performed with the bimorph that vibrates at the resonant frequency, while slow scanning is carried out by the tube scanner. The design and performance of the scanner is discussed and given in detailed. Combined with a commercially available data acquisition system, a high speed AFM has been built successfully. By real-time observing the deformation of the pores on the surface of a commercial piezoelectric lead zirconate titanate (PZT-5) ceramics under electric field, the dynamic imaging capability of the AFM is demonstrated. The results show that the notable advantage of the AFM is that dynamic process of the sample with large dimensions can be easily investigated. In addition, this design could provide a way to study a sample in real time under the given experimental condition, such as under an external electric field, on a heating stage, or in a liquid cell.

  16. A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators.

    Science.gov (United States)

    Kamińska, D; Gajos, A; Czerwiński, E; Alfs, D; Bednarski, T; Białas, P; Curceanu, C; Dulski, K; Głowacz, B; Gupta-Sharma, N; Gorgol, M; Hiesmayr, B C; Jasińska, B; Korcyl, G; Kowalski, P; Krzemień, W; Krawczyk, N; Kubicz, E; Mohammed, M; Niedźwiecki, Sz; Pawlik-Niedźwiecka, M; Raczyński, L; Rudy, Z; Silarski, M; Wieczorek, A; Wiślicki, W; Zgardzińska, B; Zieliński, M; Moskal, P

    We present a study of the application of the Jagiellonian positron emission tomograph (J-PET) for the registration of gamma quanta from decays of ortho-positronium (o-Ps). The J-PET is the first positron emission tomography scanner based on organic scintillators in contrast to all current PET scanners based on inorganic crystals. Monte Carlo simulations show that the J-PET as an axially symmetric and high acceptance scanner can be used as a multi-purpose detector well suited to pursue research including e.g. tests of discrete symmetries in decays of ortho-positronium in addition to the medical imaging. The gamma quanta originating from o-Ps decay interact in the plastic scintillators predominantly via the Compton effect, making the direct measurement of their energy impossible. Nevertheless, it is shown in this paper that the J-PET scanner will enable studies of the [Formula: see text] decays with angular and energy resolution equal to [Formula: see text] and [Formula: see text], respectively. An order of magnitude shorter decay time of signals from plastic scintillators with respect to the inorganic crystals results not only in better timing properties crucial for the reduction of physical and instrumental background, but also suppresses significantly the pile-ups, thus enabling compensation of the lower efficiency of the plastic scintillators by performing measurements with higher positron source activities.

  17. Implementation of fast macromolecular proton fraction mapping on 1.5 and 3 Tesla clinical MRI scanners: preliminary experience

    Science.gov (United States)

    Yarnykh, V.; Korostyshevskaya, A.

    2017-08-01

    Macromolecular proton fraction (MPF) is a biophysical parameter describing the amount of macromolecular protons involved into magnetization exchange with water protons in tissues. MPF represents a significant interest as a magnetic resonance imaging (MRI) biomarker of myelin for clinical applications. A recent fast MPF mapping method enabled clinical translation of MPF measurements due to time-efficient acquisition based on the single-point constrained fit algorithm. However, previous MPF mapping applications utilized only 3 Tesla MRI scanners and modified pulse sequences, which are not commonly available. This study aimed to test the feasibility of MPF mapping implementation on a 1.5 Tesla clinical scanner using standard manufacturer’s sequences and compare the performance of this method between 1.5 and 3 Tesla scanners. MPF mapping was implemented on 1.5 and 3 Tesla MRI units of one manufacturer with either optimized custom-written or standard product pulse sequences. Whole-brain three-dimensional MPF maps obtained from a single volunteer were compared between field strengths and implementation options. MPF maps demonstrated similar quality at both field strengths. MPF values in segmented brain tissues and specific anatomic regions appeared in close agreement. This experiment demonstrates the feasibility of fast MPF mapping using standard sequences on 1.5 T and 3 T clinical scanners.

  18. A model for a PC-based, universal-format, multimedia digitization system: moving beyond the scanner.

    Science.gov (United States)

    McEachen, James C; Cusack, Thomas J; McEachen, John C

    2003-08-01

    Digitizing images for use in case presentations based on hardcopy films, slides, photographs, negatives, books, and videos can present a challenging task. Scanners and digital cameras have become standard tools of the trade. Unfortunately, use of these devices to digitize multiple images in many different media formats can be a time-consuming and in some cases unachievable process. The authors' goal was to create a PC-based solution for digitizing multiple media formats in a timely fashion while maintaining adequate image presentation quality. The authors' PC-based solution makes use of off-the-shelf hardware applications to include a digital document camera (DDC), VHS video player, and video-editing kit. With the assistance of five staff radiologists, the authors examined the quality of multiple image types digitized with this equipment. The authors also quantified the speed of digitization of various types of media using the DDC and video-editing kit. With regard to image quality, the five staff radiologists rated the digitized angiography, CT, and MR images as adequate to excellent for use in teaching files and case presentations. With regard to digitized plain films, the average rating was adequate. As for performance, the authors recognized a 68% improvement in the time required to digitize hardcopy films using the DDC instead of a professional quality scanner. The PC-based solution provides a means for digitizing multiple images from many different types of media in a timely fashion while maintaining adequate image presentation quality.

  19. Concrete hardened characterization using table scanner and microtomography computed; Caracterizacao de concreto endurecido utilizando scaner de mesa e microtomografia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.E.; Pessoa, J.R.; Assis, J.T. de, E-mail: jrenatopessoa@gmail.com [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), RJ (Brazil); Dominguez, D.S.; Dias, L.A.; Santana, M. R. [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)

    2016-07-01

    This paper proposes the use of image processing technologies to analyze hardened concrete samples obtained from table scanner and micro tomography. Techniques will be used to obtain numerical data on the distribution and geometry of aggregates and pores of the concrete, as well as their relative position. It is expected that the data obtained can produce information on the research of concrete pathologies such as AAR, and the freeze / thaw process. (author)

  20. Ultrahigh-resolution CT and DR scanner

    Science.gov (United States)

    DiBianca, Frank A.; Gupta, Vivek; Zou, Ping; Jordan, Lawrence M.; Laughter, Joseph S.; Zeman, Herbert D.; Sebes, Jeno I.

    1999-05-01

    A new technique called Variable-Resolution X-ray (VRX) detection that dramatically increases the spatial resolution in computed tomography (CT) and digital radiography (DR) is presented. The technique is based on a principle called 'projective compression' that allows the resolution element of a CT detector to scale with the subject or field size. For very large (40 - 50 cm) field sizes, resolution exceeding 2 cy/mm is possible and for very small fields, microscopy is attainable with resolution exceeding 100 cy/mm. Several effects that could limit the performance of VRX detectors are considered. Experimental measurements on a 16-channel, CdWO4 scintillator + photodiode test array yield a limiting MTF of 64 cy/mm (8(mu) ) in the highest-resolution configuration reported. Preliminary CT images have been made of small anatomical specimens and small animals using a storage phosphor screen in the VRX mode. Measured detector resolution of the CT projection data exceeds 20 cy/mm (less than 25 (mu) ); however, the final, reconstructed CT images produced thus far exhibit 10 cy/mm (50 (mu) ) resolution because of non-flatness of the storage phosphor plates, focal spot effects and the use of a rudimentary CT reconstruction algorithm. A 576-channel solid-state detector is being fabricated that is expected to achieve CT image resolution in excess of that of the 26-channel test array.

  1. New scintillating crystals for PET scanners

    CERN Document Server

    Lecoq, P

    2002-01-01

    Systematic R&D on basic mechanism in inorganic scintillators, initiated by the Crystal Clear Collaboration at CERN 10 years ago, has contributed not to a small amount, to the development of new materials for a new generation of medical imaging devices with increased resolution and sensitivity. The first important requirement for a scintillator to be used in medical imaging devices is the stopping power for the given energy range of X and gamma rays to be considered, and more precisely the conversion efficiency. A high light yield is also mandatory to improve the energy resolution, which is essentially limited by the photostatistics and the electronic noise at these energies. A short scintillation decay time allows to reduce the dead time and therefore to increase the limiting counting rate. When all these requirements are fulfilled the sensitivity and image contrast are increased for a given patient dose, or the dose can be reduced. Examples of new materials under development by the Crystal Clear Collabor...

  2. Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masami; Ino, Kenji; Yano, Keiichi [University of Tokyo Hospital, Department of Radiological Technology, Bunkyo-ku, Tokyo (Japan); Abe, Osamu [Nihon University School of Medicine, Department of Radiology, Itabashi-ku, Tokyo (Japan); Aoki, Shigeki [Juntendo University, Department of Radiology, Bunkyo-ku, Tokyo (Japan); Hayashi, Naoto [University of Tokyo Hospital, Department of Computational Diagnostic Radiology and Preventive Medicine, Bunkyo-ku, Tokyo (Japan); Miyati, Tosiaki [Kanazawa University, Graduate School of Medical Science, Kanazawa (Japan); Takao, Hidemasa; Mori, Harushi; Kunimatsu, Akira; Ohtomo, Kuni [University of Tokyo Hospital, Department of Radiology and Department of Computational Diagnostic Radiology and Preventive Medicine, Bunkyo-ku, Tokyo (Japan); Iwatsubo, Takeshi [University of Tokyo, Department of Neuropathology, Bunkyo-ku, Tokyo (Japan); Yamashita, Fumio [Iwate Medical University, Department of Radiology, Yahaba, Iwate (Japan); Matsuda, Hiroshi [Integrative Brain Imaging Center National Center of Neurology and Psychiatry, Department of Nuclear Medicine, Kodaira, Tokyo (Japan); Collaboration: Japanese Alzheimer' s Disease Neuroimaging Initiative

    2013-07-15

    This study aimed to investigate whether the effect of scanner for cortex volumetry with atlas-based method is reduced using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) normalization compared with standard normalization. Three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects were obtained and evaluated for effect of scanner in cortex volumetry. 3D-T1WIs of the 21 subjects were obtained with five MRI systems. Imaging of each subject was performed on each of five different MRI scanners. We used the Voxel-Based Morphometry 8 tool implemented in Statistical Parametric Mapping 8 and WFU PickAtlas software (Talairach brain atlas theory). The following software default settings were used as bilateral region-of-interest labels: ''Frontal Lobe,'' ''Hippocampus,'' ''Occipital Lobe,'' ''Orbital Gyrus,'' ''Parietal Lobe,'' ''Putamen,'' and ''Temporal Lobe.'' Effect of scanner for cortex volumetry using the atlas-based method was reduced with DARTEL normalization compared with standard normalization in Frontal Lobe, Occipital Lobe, Orbital Gyrus, Putamen, and Temporal Lobe; was the same in Hippocampus and Parietal Lobe; and showed no increase with DARTEL normalization for any region of interest (ROI). DARTEL normalization reduces the effect of scanner, which is a major problem in multicenter studies. (orig.)

  3. Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects.

    Science.gov (United States)

    Goto, Masami; Abe, Osamu; Aoki, Shigeki; Hayashi, Naoto; Miyati, Tosiaki; Takao, Hidemasa; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi; Mori, Harushi; Kunimatsu, Akira; Ino, Kenji; Yano, Keiichi; Ohtomo, Kuni

    2013-07-01

    This study aimed to investigate whether the effect of scanner for cortex volumetry with atlas-based method is reduced using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) normalization compared with standard normalization. Three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects were obtained and evaluated for effect of scanner in cortex volumetry. 3D-T1WIs of the 21 subjects were obtained with five MRI systems. Imaging of each subject was performed on each of five different MRI scanners. We used the Voxel-Based Morphometry 8 tool implemented in Statistical Parametric Mapping 8 and WFU PickAtlas software (Talairach brain atlas theory). The following software default settings were used as bilateral region-of-interest labels: "Frontal Lobe," "Hippocampus," "Occipital Lobe," "Orbital Gyrus," "Parietal Lobe," "Putamen," and "Temporal Lobe." Effect of scanner for cortex volumetry using the atlas-based method was reduced with DARTEL normalization compared with standard normalization in Frontal Lobe, Occipital Lobe, Orbital Gyrus, Putamen, and Temporal Lobe; was the same in Hippocampus and Parietal Lobe; and showed no increase with DARTEL normalization for any region of interest (ROI). DARTEL normalization reduces the effect of scanner, which is a major problem in multicenter studies.

  4. Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner

    Science.gov (United States)

    2015-01-01

    The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imaging device and a mobile, hand-held Raman scanner. We show that SERS image-guided resection is more accurate than resection using white light visualization alone. Both methods complemented each other, and correlation with histology showed that SERS nanoparticles accurately outlined the extent of the tumors. Importantly, the hand-held Raman probe not only allowed near real-time scanning, but also detected additional microscopic foci of cancer in the resection bed that were not seen on static SERS images and would otherwise have been missed. This technology has a strong potential for clinical translation because it uses inert gold–silica SERS nanoparticles and a hand-held Raman scanner that can guide brain tumor resection in the operating room. PMID:25093240

  5. D Super-Resolution Approach for Sparse Laser Scanner Data

    Science.gov (United States)

    Hosseinyalamdary, S.; Yilmaz, A.

    2015-08-01

    Laser scanner point cloud has been emerging in Photogrammetry and computer vision to achieve high level tasks such as object tracking, object recognition and scene understanding. However, low cost laser scanners are noisy, sparse and prone to systematic errors. This paper proposes a novel 3D super resolution approach to reconstruct surface of the objects in the scene. This method works on sparse, unorganized point clouds and has superior performance over other surface recovery approaches. Since the proposed approach uses anisotropic diffusion equation, it does not deteriorate the object boundaries and it preserves topology of the object.

  6. Free-space wavelength-multiplexed optical scanner.

    Science.gov (United States)

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.

  7. A prototype quantitative film scanner for radiochromic film dosimetry.

    Science.gov (United States)

    Ranade, Manisha K; Li, Jonathan G; Dubose, Ryan S; Kozelka, Jakub; Simon, William E; Dempsey, James F

    2008-02-01

    We have developed a high resolution, quantitative, two-dimensional optical film scanner for use with a commercial high sensitivity radiochromic film (RCF) for measuring single fraction external-beam radiotherapy dose distributions. The film scanner was designed to eliminate artifacts commonly observed in RCF dosimetry. The scanner employed a stationary light source and detector with a moving antireflective glass film platen attached to a high precision computerized X-Y translation stage. An ultrabright red light emitting diode (LED) with a peak output at 633 nm and full width at half maximum (FWHM) of 16 nm was selected as the scanner light source to match the RCF absorption peak. A dual detector system was created using two silicon photodiode detectors to simultaneously measure incident and transmitted light. The LED light output was focused to a submillimeter (FWHM 0.67 mm) spot size, which was determined from a scanning knife-edge technique for measuring Gaussian optical beams. Data acquisition was performed with a 16-bit A/D card in conjunction with commercial software. The linearity of the measured densities on the scanner was tested using a calibrated neutral-density step filter. Sensitometric curves and three IMRT field scans were acquired with a spatial resolution of 1 mm for both radiographic film and RCF. The results were compared with measurements taken with a commercial diode array under identical delivery conditions. The RCF was rotated by 90 deg and rescanned to study orientation effects. Comparison between the RCF and the diode array measurements using percent dose difference and distance-to-agreement criteria produced average passing rates of 99.0% using 3%/3 mm criteria and 96.7% using 2%/2 mm criteria. The same comparison between the radiographic film and diode array measurements resulted in average passing rates 96.6% and 91.6% for the above two criteria, respectively. No measurable light-scatter or interference scanner artifacts were observed

  8. COMPET: High resolution high sensitivity MRI compatible pre-clinical PET scanner

    CERN Document Server

    Hines, Kim-Eigard; Skretting, Arne; Rohne, Ole; Bjaalie, Jan G; Volgyes, David; Rissi, Michael; Dorholt, Ole; Stapnes, Steinar

    2013-01-01

    COMPET is a pre-clinical MRI compatible PET scanner which decouples sensitivity and resolution by the use of a novel detector design. The detector has been built using 8 x 8 cm(2) square layers consisting of 30 LYSO crystals (2 x 3 x 80 mm(2)) interleaved with 24 Wavelength Shifting Fibers (WLS) (3 x 1 x 80 mm(3)). By stacking several layers into a module, the point-of-interaction (POI) can be measured in 3D. Four layers form a PET ring where the sensitivity can be increased by stacking several layers. The layers can be stacked so that no inter-crystal or inter-module gap is formed. COMPET has used four assembled layers for module and scanner characterization. The modules are connected to the COMPET data-acquisition chain and the reconstructed images are produced with the novel geometry-independent COMPET image reconstruction algorithm. Time and energy resolution have been resolved and found to be around 4 as and 14% respectively. Tests for MRI interference and count rate performance have been carried out The...

  9. Feasibility study of a breast density measurement within a direct photon-counting mammography scanner system.

    Science.gov (United States)

    Machida, Youichi; Tozaki, Mitsuhiro; Yoshida, Tamiko; Saita, Ai; Yakabe, Mari; Nii, Kanae

    2014-09-01

    To evaluate the clinical feasibility of breast density measurements by a new application within a direct photon-counting mammography scanner system. A retrospective study of consecutive women who underwent mammography using a direct photon-counting mammography scanner system (MicroDose mammography SI; Philips Digital Mammography Sweden AB) was performed at the authors' institution between September and December 2013. Quantitative volumetric glandularity measurements were performed automatically for each acquired mammographic image using an application (Breast Density Measurement; Philips Digital Mammography Sweden AB). The quantitative volumetric glandularity of each breast was defined as the average values for the mediolateral oblique (MLO) and craniocaudal (CC) mammogram views. Of the 44 women who underwent bilateral mammogram acquisitions, the breast density measurements were performed successfully in 40 patients (90.9%). A very good to excellent correlation in the quantitative breast density measurements acquired from the MLO and CC images was obtained in the 40 evaluable patients (R = 0.99). The calculated volumetric glandularity using this new application should correspond well with the true volumetric density of each breast.

  10. Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners.

    Science.gov (United States)

    Yin, Ting; Coudyzer, Walter; Peeters, Ronald; Liu, Yewei; Cona, Marlein Miranda; Feng, Yuanbo; Xia, Qian; Yu, Jie; Jiang, Yansheng; Dymarkowski, Steven; Huang, Gang; Chen, Feng; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    The purpose of this work was to visualize the pancreas in post-mortem rats with local contrast medium infusion by three-dimensional (3D) magnetic resonance imaging (MRI) and computed tomography (CT) using clinical imagers. A total of 16 Sprague Dawley rats of about 300 g were used for the pancreas visualization. Following the baseline imaging, a mixed contrast medium dye called GadoIodo-EB containing optimized concentrations of Gd-DOTA, iomeprol and Evens blue was infused into the distally obstructed common bile duct (CBD) for post-contrast imaging with 3.0 T MRI and 128-slice CT scanners. Images were post-processed with the MeVisLab software package. MRI findings were co-registered with CT scans and validated with histomorphology, with relative contrast ratios quantified. Without contrast enhancement, the pancreas was indiscernible. After infusion of GadoIodo-EB solution, only the pancreatic region became outstandingly visible, as shown by 3D rendering MRI and CT and proven by colored dissection and histological examinations. The measured volume of the pancreas averaged 1.12 ± 0.04 cm(3) after standardization. Relative contrast ratios were 93.28 ± 34.61% and 26.45 ± 5.29% for MRI and CT respectively. We have developed a multifunctional contrast medium dye to help clearly visualize and delineate rat pancreas in situ using clinical MRI and CT scanners. The topographic landmarks thus created with 3D demonstration may help to provide guidelines for the next in vivo pancreatic MRI research in rodents. Copyright © 2015 John Wiley & Sons, Ltd.

  11. An Ensemble Method for Classifying Regional Disease Patterns of Diffuse Interstitial Lung Disease Using HRCT Images from Different Vendors.

    Science.gov (United States)

    Jun, Sanghoon; Kim, Namkug; Seo, Joon Beom; Lee, Young Kyung; Lynch, David A

    2017-12-01

    We propose the use of ensemble classifiers to overcome inter-scanner variations in the differentiation of regional disease patterns in high-resolution computed tomography (HRCT) images of diffuse interstitial lung disease patients obtained from different scanners. A total of 600 rectangular 20 × 20-pixel regions of interest (ROIs) on HRCT images obtained from two different scanners (GE and Siemens) and the whole lung area of 92 HRCT images were classified as one of six regional pulmonary disease patterns by two expert radiologists. Textual and shape features were extracted from each ROI and the whole lung parenchyma. For automatic classification, individual and ensemble classifiers were trained and tested with the ROI dataset. We designed the following three experimental sets: an intra-scanner study in which the training and test sets were from the same scanner, an integrated scanner study in which the data from the two scanners were merged, and an inter-scanner study in which the training and test sets were acquired from different scanners. In the ROI-based classification, the ensemble classifiers showed better (p ensemble classifiers also showed partial improvements in the intra- and inter-scanner tests. In the whole lung classification experiment, the quantification accuracies of the ensemble classifiers with integrated training (49.57%) were higher (p ensemble classifiers also showed better performance in both the intra- and inter-scanner experiments. We concluded that the ensemble classifiers provide better performance when using integrated scanner images.

  12. Correcting lateral response artifacts from flatbed scanners for radiochromic film dosimetry.

    Science.gov (United States)

    Lewis, David; Chan, Maria F

    2015-01-01

    A known factor affecting the accuracy of radiochromic film dosimetry is the lateral response artifact (LRA) induced by nonuniform response of a flatbed scanner in the direction perpendicular to the scan direction. This work reports a practical solution to eliminate such artifacts for all forms of dose QA. EBT3 films from a single production lot (02181401) cut into rectangular 4 × 5 cm(2) pieces, with the long dimension parallel to the long dimension of the original 20.3 × 25.4 cm(2) sheets, were exposed at a depth of 5 cm on a Varian Trilogy at the center of a 20 × 20 cm(2) open field at seven doses between 50 and 1600 cGy using 6 MV photons. These films together with an unexposed film from the same production lot were lined one next to the other on an Epson 10000 XL or 11000 XL scanner in portrait orientation with their long dimension parallel to the scan direction. Scanned images were then obtained with the line of films positioned at seven discrete lateral locations perpendicular to the scan direction. The process was repeated in landscape orientation and on three other Epson scanners. Data were also collected for three additional production lots of EBT3 film (11051302, 03031401, and 03171403). From measurements at the various lateral positions, the scanner response was determined as a function of the lateral position of the scanned film. For a given color channel X, the response at any lateral position L is related to the response at the center, C, of the scanner by Response(C, D, X) = A(L,X) + B(L,X) ⋅ Response(L, D, X), where D is dose and the coefficients A(L,X) and B(L,X) are determined from the film measurements at the center of the scanner and six other discrete lateral positions. The values at intermediate lateral positions were obtained by linear interpolation. The coefficients were determined for the red, green, and blue color channels, preserving the ability to apply triple-channel dosimetry once corrections were applied to compensate for the

  13. Spatial Distortion in MRI-Guided Stereotactic Procedures: Evaluation in 1.5-, 3- and 7-Tesla MRI Scanners.

    Science.gov (United States)

    Neumann, Jan-Oliver; Giese, Henrik; Biller, Armin; Nagel, Armin M; Kiening, Karl

    2015-01-01

    Magnetic resonance imaging (MRI) is replacing computed tomography (CT) as the main imaging modality for stereotactic transformations. MRI is prone to spatial distortion artifacts, which can lead to inaccuracy in stereotactic procedures. Modern MRI systems provide distortion correction algorithms that may ameliorate this problem. This study investigates the different options of distortion correction using standard 1.5-, 3- and 7-tesla MRI scanners. A phantom was mounted on a stereotactic frame. One CT scan and three MRI scans were performed. At all three field strengths, two 3-dimensional sequences, volumetric interpolated breath-hold examination (VIBE) and magnetization-prepared rapid acquisition with gradient echo, were acquired, and automatic distortion correction was performed. Global stereotactic transformation of all 13 datasets was performed and two stereotactic planning workflows (MRI only vs. CT/MR image fusion) were subsequently analysed. Distortion correction on the 1.5- and 3-tesla scanners caused a considerable reduction in positional error. The effect was more pronounced when using the VIBE sequences. By using co-registration (CT/MR image fusion), even a lower positional error could be obtained. In ultra-high-field (7 T) MR imaging, distortion correction introduced even higher errors. However, the accuracy of non-corrected 7-tesla sequences was comparable to CT/MR image fusion 3-tesla imaging. MRI distortion correction algorithms can reduce positional errors by up to 60%. For stereotactic applications of utmost precision, we recommend a co-registration to an additional CT dataset. © 2015 S. Karger AG, Basel.

  14. The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: using CTDIvol to account for differences between scanners.

    Science.gov (United States)

    Turner, Adam C; Zankl, Maria; DeMarco, John J; Cagnon, Chris H; Zhang, Di; Angel, Erin; Cody, Dianna D; Stevens, Donna M; McCollough, Cynthia H; McNitt-Gray, Michael F

    2010-04-01

    Monte Carlo radiation transport techniques have made it possible to accurately estimate the radiation dose to radiosensitive organs in patient models from scans performed with modern multidetector row computed tomography (MDCT) scanners. However, there is considerable variation in organ doses across scanners, even when similar acquisition conditions are used. The purpose of this study was to investigate the feasibility of a technique to estimate organ doses that would be scanner independent. This was accomplished by assessing the ability of CTDIvol measurements to account for differences in MDCT scanners that lead to organ dose differences. Monte Carlo simulations of 64-slice MDCT scanners from each of the four major manufacturers were performed. An adult female patient model from the GSF family of voxelized phantoms was used in which all ICRP Publication 103 radiosensitive organs were identified. A 120 kVp, full-body helical scan with a pitch of 1 was simulated for each scanner using similar scan protocols across scanners. From each simulated scan, the radiation dose to each organ was obtained on a per mA s basis (mGy/mA s). In addition, CTDIvol values were obtained from each scanner for the selected scan parameters. Then, to demonstrate the feasibility of generating organ dose estimates from scanner-independent coefficients, the simulated organ dose values resulting from each scanner were normalized by the CTDIvol value for those acquisition conditions. CTDIvol values across scanners showed considerable variation as the coefficient of variation (CoV) across scanners was 34.1%. The simulated patient scans also demonstrated considerable differences in organ dose values, which varied by up to a factor of approximately 2 between some of the scanners. The CoV across scanners for the simulated organ doses ranged from 26.7% (for the adrenals) to 37.7% (for the thyroid), with a mean CoV of 31.5% across all organs. However, when organ doses are normalized by CTDIvo

  15. Attenuation correction for hybrid MR/PET scanners: a comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Rota Kops, Elena [Forschungszentrum Jülich GmbH, Jülich (Germany); Ribeiro, Andre Santos [Imperial College London, London (United Kingdom); Caldeira, Liliana [Forschungszentrum Jülich GmbH, Jülich (Germany); Hautzel, Hubertus [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Lukas, Mathias [Technische Universitaet Muenchen, Munich (Germany); Antoch, Gerald [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Lerche, Christoph; Shah, Jon [Forschungszentrum Jülich GmbH, Jülich (Germany)

    2015-05-18

    Attenuation correction of PET data acquired in hybrid MR/PET scanners is still a challenge. Different methods have been adopted by several groups to obtain reliable attenuation maps (mu-maps). In this study we compare three methods: MGH, UCL, Neural-Network. The MGH method is based on an MR/CT template obtained with the SPM8 software. The UCL method uses a database of MR/CT pairs. Both generate mu-maps from MP-RAGE images. The feed-forward neural-network from Juelich (NN-Juelich) requires two UTE images; it generates segmented mu-maps. Data from eight subjects (S1-S8) measured in the Siemens 3T MR-BrainPET scanner were used. Corresponding CT images were acquired. The resulting mu-maps were compared against the CT-based mu-maps for each subject and method. Overlapped voxels and Dice similarity coefficients, D, for bone, soft-tissue and air regions, and relative differences images were calculated. The true positive (TP) recognized voxels for the whole head were 79.9% (NN-Juelich, S7) to 92.1% (UCL method, S1). D values of the bone were D=0.65 (NN-Juelich, S1) to D=0.87 (UCL method, S1). For S8 the MHG method failed (TP=76.4%; D=0.46 for bone). D values shared a common tendency in all subjects and methods to recognize soft-tissue as bone. The relative difference images showed a variation of -10.9% - +10.1%; for S8 and MHG method the values were -24.5% and +14.2%. A preliminary comparison of three methods for generation of mu-maps for MR/PET scanners is presented. The continuous methods (MGH, UCL) seem to generate reliable mu-maps, whilst the binary method seems to need further improvement. Future work will include more subjects, the reconstruction of corresponding PET data and their comparison.

  16. Combined analysis of stress myocardial tomo-scintigraphies and coronaries angio scanners to identify the arteries responsible of ischemia;Analyse combinee des tomoscintigraphies myocardiques de stress et angioscanners coronaires pour identifier les arteres responsables de l'ischemie

    Energy Technology Data Exchange (ETDEWEB)

    Didot, N.; Djaballah, W.; Daragon, N.; Gillet, N.; Meneroux, B.; Netter, F.; Paris-Grandpierre, S.; Karcher, G.; Marie, P.Y. [CHU de Nancy-Brabois, Service de medecine nucleaire, 54 (France); Mandry, D. [CHU de Nancy-Brabois, Service de radiologie, 54 (France)

    2010-05-15

    The purpose of this study is to assess the contribution of an analysis by image fusion of myocardium tomo-scintigraphy and coronary angio scanner in the identification of coronary artery responsible for myocardial ischemia stress. As results, the identification in myocardium tomo-scintigraphy of the ischemic arterial trunk is rarely changed by a combined analysis with coronary angio scanner. Discrepancies between the two examinations are common, even after fusion, but especially for mild ischemia. (N.C.)

  17. A geometrical calibration method for the PIXSCAN micro-CT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, R; Bonissent, A; Clemens, J C; Meessen, C; Vigeolas, E; Billault, M; Morel, C [Centre de Physique des Particules de Marseille (CPPM), CNRS-IN2P3 and Universite de la Mediterranee Aix-Marseille II, 163 Avenue de Luminy, 13288 Marseille cedex 9 (France)], E-mail: ranabf@hotmail.com

    2009-07-15

    Reconstruction in Cone-Beam Tomography can suffer from artifacts due to geometrical misalignments of the source-detector system. They can be avoided by a complete and precise description of the system. We present a high precision method for the geometric calibration for the PIXSCAN, a small animal X-ray CT scanner demonstrator based on hybrid pixel detectors (XPAD2). The specificities of the XPAD2 detectors (dead pixels, tilts and gaps between modules...) made the calibration of the PIXSCAN quite difficult. The method uses a calibration object consisting of a hollow cylinder of polycarbonate on which we positioned four metallic balls. It requires 360 X-ray images (1 deg. increments). An analytic expression of the 3 image ellipses has been derived. It is used for a least square regression of the 13 alignment parameters after a correction of the internal XPAD2 geometry. Our method is fast and completely automated, achieving a precision of about 30 {mu}m.

  18. Magnetic actuation for MEMS scanners for retinal scanning displays

    Science.gov (United States)

    Yan, Jun; Luanava, Selso; Casasanta, Vincenzo

    2003-01-01

    We discuss magnetic actuation for Microvision"s bi-axial scanners for retinal scanning displays. Compared to the common side-magnet and moving-coil approach, we have designed, assembled and tested a novel magnet configuration, with magnets above and below the moving coil. This design reduces the magnet sizes significantly without sacrificing performance, and opens further improvement paths as well.

  19. Vision Assisted Laser Scanner Navigation for Autonomous Robots

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Andersen, Nils Axel; Ravn, Ole

    2008-01-01

    .5 m). The front looking camera is used to classify the road from this distance and forward, taking a seed area from the laser scanner data and from this estimate the outline of the visible part of the road. The method has been tested successfully on gravelled and asphalt roads in a national park...

  20. Infrared scanners detect thermal gradients in building walls

    Science.gov (United States)

    Kantsios, A. G.

    1979-01-01

    Presents study on ability of infrared scanner used to detect thermal gradients in outside walls of two homes in Virginia Beach, Virginia under joint effort of Langley Research Center, Virginia Energy Office and Virginia Beach Energy Conservation Pilot Project. Details how study can be used to help minimize energy loss.

  1. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pandya, R.M.; Mathur, K.M.; Charyulu, R.J.K.; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  2. Laser Scanner al servizio del Patrimonio Monumentale Ecclesiastico italiano

    Directory of Open Access Journals (Sweden)

    CAM2 CAM2

    2014-11-01

    Full Text Available The Centre for Researc h Master in Arc hitecture, Sacr ed Art and Liturgy has spent really excellent results with a CAM2 Laser ScannerFocus3D to detect the architecture of the magnificent Cathedral of Sessa Aurunca. 

  3. Attitudes des prescripteurs de scanner en matiere de radioprotection ...

    African Journals Online (AJOL)

    Objectif: Evaluer les attitudes des prescripteurs de scanner en matière de radioprotection des patients à Lomé au Togo. Méthodologie: Etude transversale descriptive ... Objective: Estimate the attitudes of CT scan prescribers regarding radiation protection of the patients in Lome. Methods: Cross-sectional study performed ...

  4. Electro-optic and Acousto-optic Laser Beam Scanners

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Bechtold, P.

    2014-01-01

    Optical solid state deflectors rely on the electro-optical or acousto-optic effect. These Electro-Optical Deflectors (EODs) and Acousto-Optical Deflectors (AODs) do not contain moving parts and therefore exhibit high deflection velocities and are free of drawbacks associated with mechanical scanners. A

  5. Free-space wavelength-multiplexed optical scanner demonstration.

    Science.gov (United States)

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.

  6. Evaluation of different approaches for using a laser scanner in digitization of dental impressions.

    Science.gov (United States)

    Lee, Wan-Sun; Kim, Woong-Chul; Kim, Hae-Young; Kim, Wook-Tae; Kim, Ji-Hwan

    2014-02-01

    This study aimed to investigate the potential clinical application of digitized silicone rubber impressions by comparing the accuracy of zirconia 3-unit fixed partial dentures (FPDs) fabricated from 2 types of data (working model and impression) obtained from a laser scanner. Ten working models and impressions were prepared with epoxy resin and vinyl polysiloxane, respectively. Based on the data obtained from the laser scanner (D-700; 3Shape A/S, Copenhagen, Denmark), a total of 20 zirconia frameworks were prepared using a dental CAD/CAM system (DentalDesigner; 3shape A/S, Copenhagen, Denmark / Ener-mill, Dentaim, Seoul, Korea). The silicone replicas were sectioned into four pieces to evaluate the framework fit. The replicas were imaged using a digital microscope, and the fit of the reference points (P1, P2, P3, P4, P5, P6, and P7) were measured using the program in the device. Measured discrepancies were divided into 5 categories of gaps (MG, CG, AWG, AOTG, OG). Data were analyzed with Student's t-test (α=0.05), repeated measures ANOVA and two-way ANOVA (α=0.05). The mean gap of the zirconia framework prepared from the working models presented a narrower discrepancy than the frameworks fabricated from the impression bodies. The mean of the total gap in premolars (P=.003) and molars (P=.002) exhibited a statistical difference between two groups. The mean gap dimensions of each category showed statistically significant difference. Nonetheless, the digitized impression bodies obtained with a laser scanner were applicable to clinical settings, considering the clinically acceptable marginal fit (120 µm).

  7. Digital dental surface registration with laser scanner for orthodontics set-up planning

    Science.gov (United States)

    Alcaniz-Raya, Mariano L.; Albalat, Salvador E.; Grau Colomer, Vincente; Monserrat, Carlos A.

    1997-05-01

    We present an optical measuring system based on laser structured light suitable for its diary use in orthodontics clinics that fit four main requirements: (1) to avoid use of stone models, (2) to automatically discriminate geometric points belonging to teeth and gum, (3) to automatically calculate diagnostic parameters used by orthodontists, (4) to make use of low cost and easy to use technology for future commercial use. Proposed technique is based in the use of hydrocolloids mould used by orthodontists for stone model obtention. These mould of the inside of patient's mouth are composed of very fluent materials like alginate or hydrocolloids that reveal fine details of dental anatomy. Alginate mould are both very easy to obtain and very low costly. Once captured, alginate moulds are digitized by mean of a newly developed and patented 3D dental scanner. Developed scanner is based in the optical triangulation method based in the projection of a laser line on the alginate mould surface. Line deformation gives uncalibrated shape information. Relative linear movements of the mould with respect to the sensor head gives more sections thus obtaining a full 3D uncalibrated dentition model. Developed device makes use of redundant CCD in the sensor head and servocontrolled linear axis for mould movement. Last step is calibration to get a real and precise X, Y, Z image. All the process is done automatically. The scanner has been specially adapted for 3D dental anatomy capturing in order to fulfill specific requirements such as: scanning time, accuracy, security and correct acquisition of 'hidden points' in alginate mould. Measurement realized on phantoms with known geometry quite similar to dental anatomy present errors less than 0,1 mm. Scanning of global dental anatomy is 2 minutes, and generation of 3D graphics of dental cast takes approximately 30 seconds in a Pentium-based PC.

  8. A television scanner for the ultracentrifuge. II. Multiple cell operation.

    Science.gov (United States)

    Rockholt, D L; Royce, C R; Richards, E G

    1976-07-01

    The "Optical Multichannel Analyzer" (OMA) is a commercially available instrument that with the absorption optical system of the ultracentrifuge, provides an entire 500 channel intensity profile of a cell in real time. With its own analog-todigital converter, the OMA integrates a selectable number of 32.8 msec scans to provide a time-averaged image in digital form. This paper describes an interface-controller for operation of the OMA with single- and double-sector cells in multi-cell rotors, simulating double-beam measurement required for absorbance determinations. The desired sector is selected by "gating" the intensifier stage of a "Silicon Intensified Target" vidicon (SIT) used as the light detector. The cell location in the rotor and the position of the gate relative to the cell centerline is obtained from a phase-locked loop circuit which divides each rotation of the rotor into 3600 parts independent of rotor speed. (This circuit employed with photo-multiplier scanners would select the gate position for integration of photomultiplier pulses.) From examination of appropriate signals with an oscilloscope, it was verified that gate positions and widths are located with an accuracy of 0.1degree or better and with a precision of +/- 0.1 mus. The light intensity profile for any desired cell can be examined in "real time", even during acceleration of the rotor. Additional circuits employing a 10 MHz crystal clock 1) control the automatic collection of data for all sectors in multicell rotors at digitally selected time intervals, 2) display the rotor speed, and 3) indicate the elapsed time of the experiment. Constructed but not tested are additional circuits for pulsing a laser into the absorption or Rayleigh optical system. The accuracy of the pulsed SIT has been demonstrated by measurement of absorbances of solutions and also by sedimentation equilibrium experiments with myoglobin. The estimated error is 0.003 for absorbances ranging from 0 to 1. The interface

  9. Design and Development of a Megavoltage CT Scanner for Radiation Therapy.

    Science.gov (United States)

    Chen, Ching-Tai

    A Varian 4 MeV isocentric therapy accelerator has been modified to perform also as a CT scanner. The goal is to provide low cost computed tomography capability for use in radiotherapy. The system will have three principal uses. These are (i) to provide 2- and 3-dimensional maps of electron density distribution for CT assisted therapy planning, (ii) to aid in patient set up by providing sectional views of the treatment volume and high contrast scout-mode verification images and (iii) to provide a means for periodically checking the patients anatomical conformation against what was used to generate the original therapy plan. The treatment machine was modified by mounting an array of detectors on a frame bolted to the counter weight end of the gantry in such a manner as to define a 'third generation' CT Scanner geometry. The data gathering is controlled by a Z-80 based microcomputer system which transfers the x-ray transmission data to a general purpose PDP 11/34 for processing. There a series of calibration processes and a logarithmic conversion are performed to get projection data. After reordering the projection data to an equivalent parallel beam sinogram format a convolution algorithm is employed to construct the image from the equivalent parallel projection data. Results of phantom studies have shown a spatial resolution of 2.6 mm and an electron density discrimination of less than 1% which are sufficiently good for accurate therapy planning. Results also show that the system is linear to within the precision of our measurement ((DBLTURN).75%) over a wide range of electron densities corresponding to those found in body tissues. Animal and human images are also presented to demonstrate that the system's imaging capability is sufficient to allow the necessary visualization of anatomy.

  10. Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph

    Energy Technology Data Exchange (ETDEWEB)

    Woody, C. [Brookhaven National Laboratory, Upton, NY (United States)]. E-mail: woody@bnl.gov; Schlyer, D. [Brookhaven National Laboratory, Upton, NY (United States); Vaska, P. [Brookhaven National Laboratory, Upton, NY (United States); Tomasi, D. [Brookhaven National Laboratory, Upton, NY (United States); Solis-Najera, S. [Brookhaven National Laboratory, Upton, NY (United States); Rooney, W. [Oregon Health and Sciences University, Portland, Oregon (United States); Pratte, J.-F. [Brookhaven National Laboratory, Upton, NY (United States); Junnarkar, S. [Brookhaven National Laboratory, Upton, NY (United States); Stoll, S. [Brookhaven National Laboratory, Upton, NY (United States); Master, Z. [Brookhaven National Laboratory, Upton, NY (United States); Purschke, M. [Brookhaven National Laboratory, Upton, NY (United States); Park, S.-J. [Brookhaven National Laboratory, Upton, NY (United States); Southekal, S. [Stony Brook University, Stony Brook, New York (United States); Kriplani, A. [Stony Brook University, Stony Brook, New York (United States); Krishnamoorthy, S. [Stony Brook University, Stony Brook, New York (United States); Maramraju, S. [Stony Brook University, Stony Brook, New York (United States); O' Connor, P. [Brookhaven National Laboratory, Upton, NY (United States); Radeka, V. [Brookhaven National Laboratory, Upton, NY (United States)

    2007-02-01

    We are developing a scanner that will allow simultaneous acquisition of high resolution anatomical data using magnetic resonance imaging (MRI) and quantitative physiological data using positron emission tomography (PET). The approach is based on the technology used for the RatCAP conscious small animal PET tomograph which utilizes block detectors consisting of pixelated arrays of LSO crystals read out with matching arrays of avalanche photodiodes and a custom-designed ASIC. The version of this detector used for simultaneous PET/MRI imaging will be constructed out of all nonmagnetic materials and will be situated inside the MRI field. We have demonstrated that the PET detector and its electronics can be operated inside the MRI, and have obtained MRI images with various detector components located inside the MRI field. The MRI images show minimal distortion in this configuration even where some components still contain traces of certain magnetic materials. We plan to improve on the image quality in the future using completely non-magnetic components and by tuning the MRI pulse sequences. The combined result will be a highly compact, low mass PET scanner that can operate inside an MRI magnet without distorting the MRI image, and can be retrofitted into existing MRI instruments.

  11. NMR of geophysical drill cores with a mobile Halbach scanner

    Energy Technology Data Exchange (ETDEWEB)

    Talnishnikh, E.

    2007-08-21

    This thesis is devoted to a mobile NMR with an improved Halbach scanner. This is a lightweight tube-shaped magnet with sensitive volume larger and a homogeneity of the magnetic field higher than the previous prototype version. The improved Halbach scanner is used for analysis of water-saturated drill cores and plugs with diameters up to 60 mm. To provide the analysis, the standard 1D technique with the CPMG sequence as well as 2D correlation experiments were successfully applied and adapted to study properties of fluid-saturated sediments. Afterwards the Halbach scanner was calibrated to fast non-destructive measurements of porosity, relaxation time distributions, and estimation of permeability. These properties can be calculated directly from the NMR data using the developed methodology. Any independent measurements of these properties with other methods are not needed. One of the main results of this work is the development of a new NMR on-line core scanner for measurements of porosity in long cylindrical and semi cylindrical drill cores. Also dedicated software was written to operate the NMR on-line core scanner. The physical background of this work is the study of the diffusion influence on transverse relaxation. The diffusion effect in the presence of internal gradients in porous media was probed by 1D and 2D experiments. The transverse relaxation time distributions obtained from 1D and from 2D experiments are comparable but different in fine details. Two new methodologies were developed based on the results of this study. First is the methodology quantifying the influence of diffusion in the internal gradients of water-saturated sediments on transverse relaxation from 2D correlation experiments. The second one is the correction of the permeability estimation from the NMR data taking in account the influence of the diffusion. Furthermore, PFG NMR technique was used to study restricted diffusion in the same kind of samples. Preliminary results are reported

  12. Synthesis and quality control of fluorodeoxyglucose and performance assessment of Siemens MicroFocus 220 small animal PET scanner

    Science.gov (United States)

    Phaterpekar, Siddhesh Nitin

    The scope of this article is to cover the synthesis and quality control procedures involved in production of Fludeoxyglucose (18F--FDG). The article also describes the cyclotron production of 18F radioisotope and gives a brief overview on operations and working of a fixed energy medical cyclotron. The quality control procedures for FDG involve radiochemical and radionuclidic purity tests, pH tests, chemical purity tests, sterility tests, endotoxin tests. Each of these procedures were carried out for multiple batches of FDG with a passing rate of 95% among 20 batches. The article also covers the quality assurance steps for the Siemens MicroPET Focus 220 Scanner using a Jaszczak phantom. We have carried out spatial resolution tests on the scanner, with an average transaxial resolution of 1.775mm with 2-3mm offset. Tests involved detector efficiency, blank scan sinograms and transmission sinograms. A series of radioactivity distribution tests are also carried out on a uniform phantom, denoting the variations in radioactivity and uniformity by using cylindrical ROIs in the transverse region of the final image. The purpose of these quality control tests is to make sure the manufactured FDG is biocompatible with the human body. Quality assurance tests are carried on PET scanners for efficient performance, and to make sure the quality of images acquired is according to the radioactivity distribution in the subject of interest.

  13. Fine root dynamics in moso bamboo and Japanese cedar forest by scanner method in central Taiwan

    Science.gov (United States)

    Chen, Zhi-Wei; Lin, Po-Hsuan; Kume, Tomonori

    2017-04-01

    Phyllostachys pubescens is one of the most important economic plant in the world. Phyllostachys pubescens originates from China and it had been introduced to neighbor countries about three hundred ago due to its economic value. But substantial bamboo forests were abandoned due to declines in demand. These unmanaged bamboo forests have been expanding to adjacent original forests in northern Taiwan. This vegetation alternation may not only decrease the local biodiversity but also affect the carbon cycle. Fine roots are responsible for water and nutrients acquisition and forming the most active part of the whole root system. The characteristics of fine roots are non-woody, small diameter and short lifespan. When roots keep producing new roots and replacing old roots, carbon and nutrients was transported into soil. Consequently, fine root production is one of the important component to understand the below-ground carbon cycle. However, there is few studies about fine root production in moso bamboo forests. We still lack effective method to obtain quantitative and objective data in Taiwan. It severely limits us to understand the below-ground carbon dynamics there. Minirhizotrons method has been used to investigate fine root dynamics by inserting transparent tubes into soil and by comparing changes in root length in images taken by micro-camera. But this method has some shortcomings; i.e. Most of image analysis are conducted manually and time-consuming. And it is difficult to estimate the stand level fine root production from small observation view. A new method "scanner method", which collect A4-size image (bigger than minirhizotrons) can overcome some parts of the shortcoming of minirhizotrons. The transparent acrylic box with A4-box view is inserted into soil and the interface between soil and box is scanned by commercial scanner. We can monitor the total projected root area, growth and decomposition separately by series of images. The primary objective of this study

  14. Defense Commissaries: Issues Related to the Sale of Electronic Scanner Data

    National Research Council Canada - National Science Library

    1998-01-01

    In response to your request that we review DeCA'S sale of scanner data and its implementation of category management, this report identifies DeCA'S total revenue from selling scanner data and compares license revenues...

  15. Improving consistency of the ERB record measured by CERES scanners aboard Terra/Aqua/S-NPP satellites

    Science.gov (United States)

    Szewczyk, Z. Peter; Walikainen, Dale R.; Smith, Nitchie; Thomas, Susan; Priestley, Kory J.

    2017-10-01

    A purpose of this paper is to present verification of the consistency of unfiltered radiances measured by CERES instruments over their mission 2000-2016. The FM1 scanner on Terra, designated as the climate instrument, is used as a benchmark. The degradation modeling while the instruments on Terra and Aqua were operating in the RAPS mode is being revised, and the rate of the monthly degradation is shown to be 0.03%. The focus of this paper is on consistency between Terra CERES scanners, and it is a part of a broader investigation. Results of comparing FM2 and FM1 are reported for all-sky condition and selected scene types for shortwave and long-wave radiances based on Edition 4 ERBE-like (ES8) data product. Some scene type based results are also verified using an SSF product that contains imager (MODIS) information.

  16. Applications and requirements for MEMS scanner mirrors

    Science.gov (United States)

    Wolter, Alexander; Hsu, Shu-Ting; Schenk, Harald; Lakner, Hubert K.

    2005-01-01

    Micro scanning mirrors are quite versatile MEMS devices for the deflection of a laser beam or a shaped beam from another light source. The most exciting application is certainly in laser-scanned displays. Laser television, home cinema and data projectors will display the most brilliant colors exceeding even plasma, OLED and CRT. Devices for front and rear projection will have advantages in size, weight and price. These advantages will be even more important in near-eye virtual displays like head-mounted displays or viewfinders in digital cameras and potentially in UMTS handsets. Optical pattern generation by scanning a modulated beam over an area can be used also in a number of other applications: laser printers, direct writing of photo resist for printed circuit boards or laser marking and with higher laser power laser ablation or material processing. Scanning a continuous laser beam over a printed pattern and analyzing the scattered reflection is the principle of barcode reading in 1D and 2D. This principle works also for identification of signatures, coins, bank notes, vehicles and other objects. With a focused white-light or RGB beam even full color imaging with high resolution is possible from an amazingly small device. The form factor is also very interesting for the application in endoscopes. Further applications are light curtains for intrusion control and the generation of arbitrary line patterns for triangulation. Scanning a measurement beam extends point measurements to 1D or 2D scans. Automotive LIDAR (laser RADAR) or scanning confocal microscopy are just two examples. Last but not least there is the field of beam steering. E.g. for all-optical fiber switches or positioning of read-/write heads in optical storage devices. The variety of possible applications also brings a variety of specifications. This publication discusses various applications and their requirements.

  17. A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-12-07

    The objective of this project is to design, fabricate and demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at EnUrga Inc. The multi-spectral scanner was also evaluated using a blind Department of Energy study at the Rocky Mountain Oilfield Testing Center. The performance of the scanner was inconsistent during the blind study. However, most of the leaks were outside the view of the multi-spectral scanner that was developed during the first year of the project. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. A prototype scanner was built and evaluated during the second year of the project. Only laboratory evaluations were completed during the second year. The laboratory evaluations show the feasibility of using the scanner to determine natural gas pipeline leaks. Further field evaluations and optimization of the scanner are required before commercialization of the scanner can be initiated.

  18. The Spinal Curvature of Three Different Sitting Positions Analysed in an Open MRI Scanner

    Directory of Open Access Journals (Sweden)

    Daniel Baumgartner

    2012-01-01

    Full Text Available Sitting is the most frequently performed posture of everyday life. Biomechanical interactions with office chairs have therefore a long-term effect on our musculoskeletal system and ultimately on our health and wellbeing. This paper highlights the kinematic effect of office chairs on the spinal column and its single segments. Novel chair concepts with multiple degrees of freedom provide enhanced spinal mobility. The angular changes of the spinal column in the sagittal plane in three different sitting positions (forward inclined, reclined, and upright for six healthy subjects (aged 23 to 45 years were determined using an open magnetic resonance imaging (MRI scanner. An MRI-compatible and commercially available office chair was adapted for use in the scanner. The midpoint coordinates of the vertebral bodies, the wedge angles of the intervertebral discs, and the lumbar lordotic angle were analysed. The mean lordotic angles were 16.0±8.5∘ (mean ± standard deviation in a forward inclined position, 24.7±8.3∘ in an upright position, and 28.7±8.1∘ in a reclined position. All segments from T10-T11 to L5-S1 were involved in movement during positional changes, whereas the range of motion in the lower lumbar segments was increased in comparison to the upper segments.

  19. Investigation of Tree Spectral Reflectance Characteristics Using a Mobile Terrestrial Line Spectrometer and Laser Scanner

    Directory of Open Access Journals (Sweden)

    Eetu Puttonen

    2013-07-01

    Full Text Available In mobile terrestrial hyperspectral imaging, individual trees often present large variations in spectral reflectance that may impact the relevant applications, but the related studies have been seldom reported. To fill this gap, this study was dedicated to investigating the spectral reflectance characteristics of individual trees with a Sensei mobile mapping system, which comprises a Specim line spectrometer and an Ibeo Lux laser scanner. The addition of the latter unit facilitates recording the structural characteristics of the target trees synchronously, and this is beneficial for revealing the characteristics of the spatial distributions of tree spectral reflectance with variations at different levels. Then, the parts of trees with relatively low-level variations can be extracted. At the same time, since it is difficult to manipulate the whole spectrum, the traditional concept of vegetation indices (VI based on some particular spectral bands was taken into account here. Whether the assumed VIs capable of behaving consistently for the whole crown of each tree was also checked. The specific analyses were deployed based on four deciduous tree species and six kinds of VIs. The test showed that with the help of the laser scanner data, the parts of individual trees with relatively low-level variations can be located. Based on these parts, the relatively stable spectral reflectance characteristics for different tree species can be learnt.

  20. Two-dimensional shear-wave elastography on conventional ultrasound scanners with time-aligned sequential tracking (TAST) and comb-push ultrasound shear elastography (CUSE).

    Science.gov (United States)

    Song, Pengfei; Macdonald, Michael; Behler, Russell; Lanning, Justin; Wang, Michael; Urban, Matthew; Manduca, Armando; Zhao, Heng; Callstrom, Matthew; Alizad, Azra; Greenleaf, James; Chen, Shigao

    2015-02-01

    Two-dimensional shear-wave elastography presents 2-D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2-D shear-wave elastography on conventional ultrasound scanners, however, is challenging because of the low tracking pulse-repetition-frequency (PRF) of these systems. Although some clinical and research platforms support software beamforming and plane-wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2-D shear-wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a time-aligned sequential tracking (TAST) method for shear-wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high-PRF shear-wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The comb-push ultrasound shear elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave SNR and facilitate robust reconstructions of 2-D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner. A phantom study showed that the shear-wave speed measurements from the conventional ultrasound scanner were in good agreement with the values measured from other 2-D shear wave imaging technologies. An inclusion phantom study showed that the conventional ultrasound scanner had comparable performance to a state-of-the-art shear-wave imaging system in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the conventional ultrasound

  1. Digital Data Matrix Scanner Developnent At Marshall Space Flight Center

    Science.gov (United States)

    2004-01-01

    Research at NASA's Marshall Space Flight Center has resulted in a system for reading hidden identification codes using a hand-held magnetic scanner. It's an invention that could help businesses improve inventory management, enhance safety, improve security, and aid in recall efforts if defects are discovered. Two-dimensional Data Matrix symbols consisting of letters and numbers permanently etched on items for identification and resembling a small checkerboard pattern are more efficient and reliable than traditional bar codes, and can store up to 100 times more information. A team led by Fred Schramm of the Marshall Center's Technology Transfer Department, in partnership with PRI,Torrance, California, has developed a hand-held device that can read this special type of coded symbols, even if covered by up to six layers of paint. Before this new technology was available, matrix symbols were read with optical scanners, and only if the codes were visible. This latest improvement in digital Data Matrix technologies offers greater flexibility for businesses and industries already using the marking system. Paint, inks, and pastes containing magnetic properties are applied in matrix symbol patterns to objects with two-dimensional codes, and the codes are read by a magnetic scanner, even after being covered with paint or other coatings. The ability to read hidden matrix symbols promises a wide range of benefits in a number of fields, including airlines, electronics, healthcare, and the automotive industry. Many industries would like to hide information on a part, so it can be read only by the party who put it there. For instance, the automotive industry uses direct parts marking for inventory control, but for aesthetic purposes the marks often need to be invisible. Symbols have been applied to a variety of materials, including metal, plastic, glass, paper, fabric and foam, on everything from electronic parts to pharmaceuticals to livestock. The portability of the hand

  2. System Architecture of the LabPET Small Animal PET Scanner

    Science.gov (United States)

    Tetrault, Marc-AndrÉ; Viscogliosi, Nicolas; Riendeau, Joel; Belanger, FranÇois; Michaud, Jean-Baptiste; Semmaoui, Hicham; Berard, Philippe; Lemieux, FranÇois; Arpin, Louis; Bergeron, Melanie; Cadorette, Jules; Pepin, Catherine M.; Robert, Ghislain; Lepage, Martin D.; Lecomte, Roger; Fontaine, RÉjean

    2008-10-01

    To address modern molecular imaging requirements, a digital positron emission tomography (PET) scanner for small animals has been developed at Universite de Sherbrooke. Based on individual readout of avalanche photodiodes (APD) coupled to LYSO/LGSO phoswich detectors, the scanner supports up to 4608 channels in a 16.2 cm diameter, 11.25 cm axial field of view with an isotropic 1.2 mm FWHM intrinsic spatial resolution at the center of the field of view. Custom data acquisition boards preprocess and sample APD signals at 45 MHz and compute in real time crystal identification, energy and timing information of detected events at an average sustained rate of up to 1250 raw counts per second per mm2 (10 000 cps/channel). Real time digital signal analysis also filters out events outside the pre-selected energy window with crystal granularity to eliminate Compton events and electronic noise. Retained events are then merged into a single stream through a real-time sorting tree, at which end prompt and delayed coincidences are extracted. A single Firewire link handles both control and data transfers with a host computer. The LabPET features four data recording modes, giving the user the choice to retain data for research or to minimize file size for high coincidence count rate and imaging purposes. The electronic system also supports time synchronized data insertion for flags such as vital signs used in gated image reconstruction. Aside from data acquisition, hardware can generate live energy and discrimination spectra suitable for fast, automatic channel calibration.

  3. Cone beam optical computed tomography for gel dosimetry I: scanner characterization

    Energy Technology Data Exchange (ETDEWEB)

    Olding, Tim; Holmes, Oliver; Schreiner, L John, E-mail: tim.olding@krcc.on.c [Department of Physics, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2010-05-21

    The ongoing development of easily accessible, fast optical readout tools promises to remove one of the barriers to acceptance of gel dosimetry as a viable tool in cancer clinics. This paper describes the characterization of a number of basic properties of the Vista(TM) cone beam CCD-based optical scanner, which can obtain high resolution reconstructed data in less than 20 min total imaging and reconstruction time. The suitability of a filtered back projection cone beam reconstruction algorithm is established for optically absorbing dosimeters using this scanner configuration. The system was then shown to be capable of imaging an optically absorbing media-filled 1 L polyethylene terephthalate (PETE) jar dosimeter to a reconstructed voxel resolution of 0.5 x 0.5 x 0.5 mm{sup 3}. At this resolution, more than 60% of the imaged volume in the dosimeter exhibits minimal spatial distortion, a measurement accuracy of 3-4% and the mean to standard deviation signal-to-noise ratio greater than 100 over an optical absorption range of 0.06-0.18 cm{sup -1}. An inter-day scan precision of 1% was demonstrated near the upper end of this range. Absorption measurements show evidence of stray light perturbation causing artifacts in the data, which if better managed would improve the accuracy of optical readout. Cone beam optical attenuation measurements of scattering dosimeters, on the other hand, are nonlinearly affected by angled scatter stray light. Scatter perturbation leads to significant cupping artifacts and other inaccuracies that greatly limit the readout of scattering polymer gel dosimeters with cone beam optical CT.

  4. Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests.

    Science.gov (United States)

    Demir, Mustafa; Toklu, Türkay; Abuqbeitah, Mohammad; Çetin, Hüseyin; Sezgin, H Sezer; Yeyin, Nami; Sönmezoğlu, Kerim

    2018-02-01

    The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated aspects were spatial resolution, sensitivity, scatter fraction, count rate performance, image quality, count loss and random events correction accuracy. The findings of this study demonstrated superior sensitivity (~ 4 folds) of PET scanner in PET/MR compared to PET/CT system. Image quality test exhibited higher contrast in PET/MR (~ 9%) compared with PET/CT. The scatter fraction of PET/MR was 43.4% at noise equivalent count rate (NECR) peak of 218 kcps and the corresponding activity concentration was 17.7 kBq/cc. Whereas the scatter fraction of PET/CT was found as 39.2% at NECR peak of 72 kcps and activity concentration of 24.3 kBq/cc. The percentage error of the random event correction accuracy was 3.4% and 3.1% in PET/MR and PET/CT, respectively. It was concluded that PET/MR system is about 4 times more sensitive than PET/CT, and the contrast of hot lesions in PET/MR was ~ 9% higher than PET/CT. These outcomes also emphasize the possibility to achieve excellent clinical PET images with low administered dose and/or a short acquisition time in PET/MR.

  5. The airborne infrared scanner as a geophysical research tool

    Science.gov (United States)

    Friedman, Jules D.

    1970-01-01

    The infrared scanner is proving to be an effective anomaly-mapping tool, albeit one which depicts surface emission directly and heat mass transfer from depths only indirectly and at a threshold level 50 to 100 times the normal conductive heat flow of the earth. Moreover, successive terrain observations are affected by time-dependent variables such as the diurnal and seasonal warming and cooling cycle of a point on the earth's surface. In planning precise air borne surveys of radiant flux from the earth's surface, account must be taken of background noise created by variations in micrometeorological factors and emissivity of surface materials, as well as the diurnal temperature cycle. The effect of the diurnal cycle may be minimized by planning predawn aerial surveys. In fact, the diurnal change is very small for most water bodies and the emissivity factor for water (e) =~ 1 so a minimum background noise is characteristic of scanner records of calm water surfaces.

  6. Counting rates modeling for PET scanners with GATE

    Energy Technology Data Exchange (ETDEWEB)

    Guez, D.; Honore, P.F.; Kerhoas, S. [CEA, DSM, DAPNIA, SPHN, F-91191 Gif Sur Yvette (France); Bataille, F.; Comtat, C.; Jan, S. [CEA, DSV, DRM, SHFJ, F-91401 Orsay (France)

    2008-07-01

    Several developments were made in the GATE simulation platform to allow accurate modeling of the count rate performances of PET scanners over a wide range of activity concentrations. A background noise module, a dead time and limited bandwidth modeling for the coincidences, and a delayed coincidence builder were added in the code. The results obtained for the modeling of the ECAT HRRT and Focus 220 scanners with the newly developed modules are discussed. They show that GATE can be used to accurately simulate the single event, prompt coincidence and delayed coincidence rates, from very low activity levels in the field of view up to levels that saturate the acquisition system. The new developments were committed into the public release of GATE, making them available for the whole community, thanks to the open source license under Which GATE is published (LGPL). (authors)

  7. Object 3D surface reconstruction approach using portable laser scanner

    Science.gov (United States)

    Xu, Ning; Zhang, Wei; Zhu, Liye; Li, Changqing; Wang, Shifeng

    2017-06-01

    The environment perception plays the key role for a robot system. The 3D surface of the objects can provide essential information for the robot to recognize objects. This paper present an approach to reconstruct objects' 3D surfaces using a portable laser scanner we designed which consists of a single-layer laser scanner, an encoder, a motor, power supply and mechanical components. The captured point cloud data is processed to remove the discrete points, denoise filtering, stitching and registration. Then the triangular mesh generation of point cloud is accomplished by using Gaussian bilateral filtering, ICP real-time registration and greedy triangle projection algorithm. The experiment result shows the feasibility of the device designed and the algorithm proposed.

  8. Beam dumping ghost signals in electric sweep scanners

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.; /SNS Project, Oak Ridge /Tennessee U.; Leitner, M.; /LBL, Berkeley; Moehs, D.P.; /Fermilab; Keller, R.; /LBL, Berkeley; Welton, R.F.; /SNS Project, Oak Ridge

    2004-12-01

    Over the last 20 years many labs started to use Allison scanners to measure low-energy ion beam emittances. We show that large trajectory angles produce ghost signals due to the impact of the beamlet on the electric deflection plates. The strength of the ghost signal is proportional to the amount of beam entering the scanner. Depending on the ions and their velocity, ghost signals can have the opposite polarity as the main beam signals or the same polarity. These ghost signals are easily overlooked because they partly overlap the real signals, they are mostly below the 1% level, and they are often hidden in the noise. However, they cause significant errors in emittance estimates because they are associated with large trajectory angles. The strength of ghost signals, and the associated errors, can be drastically reduced with a simple modification of the deflection plates.

  9. New targeting device for stereotaxic procedures within the CT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Huk, W.; Baer, U.

    1980-01-01

    A new targeting device is reported which makes it possible to perform stereotaxic procedures within CT scanners under tomographic control. The zero position of the biopsy neddle is the reference point for all measurements. The head of the anesthetized patient is immobilized with firm plastic cushions in a special head holder. This unit can be used for biopsies, preoperative marking of small lesions, therapeutic punctures, and placement of radioactive substances into inoperable brain tumors.

  10. Accuracy of five intraoral scanners compared to indirect digitalization.

    Science.gov (United States)

    Güth, Jan-Frederik; Runkel, Cornelius; Beuer, Florian; Stimmelmayr, Michael; Edelhoff, Daniel; Keul, Christine

    2017-06-01

    Direct and indirect digitalization offer two options for computer-aided design (CAD)/ computer-aided manufacturing (CAM)-generated restorations. The aim of this study was to evaluate the accuracy of different intraoral scanners and compare them to the process of indirect digitalization. A titanium testing model was directly digitized 12 times with each intraoral scanner: (1) CS 3500 (CS), (2) Zfx Intrascan (ZFX), (3) CEREC AC Bluecam (BLU), (4) CEREC AC Omnicam (OC) and (5) True Definition (TD). As control, 12 polyether impressions were taken and the referring plaster casts were digitized indirectly with the D-810 laboratory scanner (CON). The accuracy (trueness/precision) of the datasets was evaluated by an analysing software (Geomagic Qualify 12.1) using a "best fit alignment" of the datasets with a highly accurate reference dataset of the testing model, received from industrial computed tomography. Direct digitalization using the TD showed the significant highest overall "trueness", followed by CS. Both performed better than CON. BLU, ZFX and OC showed higher differences from the reference dataset than CON. Regarding the overall "precision", the CS 3500 intraoral scanner and the True Definition showed the best performance. CON, BLU and OC resulted in significantly higher precision than ZFX did. Within the limitations of this in vitro study, the accuracy of the ascertained datasets was dependent on the scanning system. The direct digitalization was not superior to indirect digitalization for all tested systems. Regarding the accuracy, all tested intraoral scanning technologies seem to be able to reproduce a single quadrant within clinical acceptable accuracy. However, differences were detected between the tested systems.

  11. Automatic Threshold Design for a Bound Document Scanner.

    Science.gov (United States)

    1982-12-01

    conditions due to fluorescent tube deterioration. Slightly less than optimum thresholding may occur about 10 to 15 percent of the time, but this D1 is...conditions due to fluorescent tube deterioration. Slightly less than optimum thresholding may occur about 10 to 15 percent of the time, but this is due to data... fluorescent tube deterioration. Thresholding errors occur about 10 to 15 percent of the time, but they are due to other shortcomings in the scanner rather

  12. An evaluation of spatial resolution of a prototype proton CT scanner.

    Science.gov (United States)

    Plautz, Tia E; Bashkirov, V; Giacometti, V; Hurley, R F; Johnson, R P; Piersimoni, P; Sadrozinski, H F-W; Schulte, R W; Zatserklyaniy, A

    2016-12-01

    To evaluate the spatial resolution of proton CT using both a prototype proton CT scanner and Monte Carlo simulations. A custom cylindrical edge phantom containing twelve tissue-equivalent inserts with four different compositions at varying radial displacements from the axis of rotation was developed for measuring the modulation transfer function (MTF) of a prototype proton CT scanner. Two scans of the phantom, centered on the axis of rotation, were obtained with a 200 MeV, low-intensity proton beam: one scan with steps of 4°, and one scan with the phantom continuously rotating. In addition, Monte Carlo simulations of the phantom scan were performed using scanners idealized to various degrees. The data were reconstructed using an iterative projection method with added total variation superiorization based on individual proton histories. Edge spread functions in the radial and azimuthal directions were obtained using the oversampling technique. These were then used to obtain the modulation transfer functions. The spatial resolution was defined by the 10% value of the modulation transfer function (MTF10%) in units of line pairs per centimeter (lp/cm). Data from the simulations were used to better understand the contributions of multiple Coulomb scattering in the phantom and the scanner hardware, as well as the effect of discretization of proton location. The radial spatial resolution of the prototype proton CT scanner depends on the total path length, W, of the proton in the phantom, whereas the azimuthal spatial resolution depends both on W and the position, u-, at which the most-likely path uncertainty is evaluated along the path. For protons contributing to radial spatial resolution, W varies with the radial position of the edge, whereas for protons contributing to azimuthal spatial resolution, W is approximately constant. For a pixel size of 0.625 mm, the radial spatial resolution of the image reconstructed from the fully idealized simulation data ranged between

  13. Advanced optical 3D scanners using DMD technology

    Science.gov (United States)

    Muenstermann, P.; Godding, R.; Hermstein, M.

    2017-02-01

    Optical 3D measurement techniques are state-of-the-art for highly precise, non-contact surface scanners - not only in industrial development, but also in near-production and even in-line configurations. The need for automated systems with very high accuracy and clear implementation of national precision standards is growing extremely due to expanding international quality guidelines, increasing production transparency and new concepts related to the demands of the fourth industrial revolution. The presentation gives an overview about the present technical concepts for optical 3D scanners and their benefit for customers and various different applications - not only in quality control, but also in design centers or in medical applications. The advantages of DMD-based systems will be discussed and compared to other approaches. Looking at today's 3D scanner market, there is a confusing amount of solutions varying from lowprice solutions to high end systems. Many of them are linked to a very special target group or to special applications. The article will clarify the differences of the approaches and will discuss some key features which are necessary to render optical measurement systems suitable for industrial environments. The paper will be completed by examples for DMDbased systems, e. g. RGB true-color systems with very high accuracy like the StereoScan neo of AICON 3D Systems. Typical applications and the benefits for customers using such systems are described.

  14. Determining the surface roughness coefficient by 3D Scanner

    Directory of Open Access Journals (Sweden)

    Karmen Fifer Bizjak

    2010-12-01

    Full Text Available Currently, several test methods can be used in the laboratory to determine the roughness of rock joint surfaces.However, true roughness can be distorted and underestimated by the differences in the sampling interval of themeasurement methods. Thus, these measurement methods produce a dead zone and distorted roughness profiles.In this paper a new rock joint surface roughness measurement method is presented, with the use of a camera-typethree-dimensional (3D scanner as an alternative to current methods. For this study, the surfaces of ten samples oftuff were digitized by means of a 3D scanner, and the results were compared with the corresponding Rock JointCoefficient (JRC values. Up until now such 3D scanner have been mostly used in the automotive industry, whereastheir use for comparison with obtained JRC coefficient values in rock mechanics is presented here for the first time.The proposed new method is a faster, more precise and more accurate than other existing test methods, and is apromising technique for use in this area of study in the future.

  15. T.O.F. LASER SCANNER FOR THE SURVEYING OF STATUES: A TEST ON A REAL CASE

    Directory of Open Access Journals (Sweden)

    G. Artese

    2013-07-01

    Full Text Available The contribution regards the surveying of two statues of famous contemporary sculptors that have been placed in the central zone of Cosenza, which has been transformed in an open air museum. To realize a 3-D representation of the museum, different methodologies have been used, based on classical surveying (total stations and GNSS, image data and range data. The increasing performances of the new models of Time Of Flight (T.O.F. laser scanners allow to build accurate models also for medium-size objects; on the other hand, the recent techniques of 3D modeling enable the processing of large amount of data and the effective removal of noises. Thus, if an extreme accuracy is not required, one can think to use the T.O.F. laser scanner, also for the surveying of statues. For the acquisition of the surfaces of the statues, two different types of laser scanning have been used: the Leica Scan StationC10, based on Time Of Flight, and the Minolta VIVID 300 triangulation scanner. In the paper, the comparison between the results obtained by using the different techniques is described.

  16. T.O.F. Laser Scanner for the Surveying of Statues: a Test on a Real Case

    Science.gov (United States)

    Artese, G.; De Napoli, L.; Artese, S.

    2013-07-01

    The contribution regards the surveying of two statues of famous contemporary sculptors that have been placed in the central zone of Cosenza, which has been transformed in an open air museum. To realize a 3-D representation of the museum, different methodologies have been used, based on classical surveying (total stations and GNSS), image data and range data. The increasing performances of the new models of Time Of Flight (T.O.F.) laser scanners allow to build accurate models also for medium-size objects; on the other hand, the recent techniques of 3D modeling enable the processing of large amount of data and the effective removal of noises. Thus, if an extreme accuracy is not required, one can think to use the T.O.F. laser scanner, also for the surveying of statues. For the acquisition of the surfaces of the statues, two different types of laser scanning have been used: the Leica Scan StationC10, based on Time Of Flight, and the Minolta VIVID 300 triangulation scanner. In the paper, the comparison between the results obtained by using the different techniques is described.

  17. Quantitative densitometry of proteins stained with coomassie blue using a Hewlett Packard scanjet scanner and Scanplot software.

    Science.gov (United States)

    Vincent, S G; Cunningham, P R; Stephens, N L; Halayko, A J; Fisher, J T

    1997-01-01

    In the present study we evaluated the performance of a software/scanner system that employed the Hewlett Packard (HP) ScanJet Plus and Scanplot Software for densitometric quantification of protein loads stained with Coomassie Brilliant Blue following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Gels with bovine serum albumin (BSA) standards, ranging from 0.125 to 10 micrograms, were scanned using reflectance densitometry with 127 microns step size in both the x and y directions and a resolution of 200 dots per inch. Densitometric volume was calculated for each protein band from scanner output in the tagged image file format (TIFF) by a customized software package, Scanplot V. 4.05 (Cunningham Engineering). Protein loads between 0.125 and 10.0 micrograms vs. volume were fit by a second-order regression: Volume = -0.58 x protein load2 + 16.82 x protein load + 7.87 (r = 0.991, p < 0.01). The same gels were scanned and quantified using a transmittance laser densitometer; densitometric volumes measured by both systems were highly correlated (r2 = 0.981, p < 0.01). Additional gels of BSA, smooth muscle myosin heavy chain (myosin), and actin displayed linear relationships between protein loads up to 4.0 micrograms and densitometric volume reflecting unique dye binding properties. We conclude that accurate and reproducible quantitative densitometry of SDS-PAGE can be performed using the HP ScanJet Plus scanner and Scanplot software.

  18. Validation of the SimSET simulation package for modeling the Siemens Biograph mCT PET scanner.

    Science.gov (United States)

    Poon, Jonathan K; Dahlbom, Magnus L; Casey, Michael E; Qi, Jinyi; Cherry, Simon R; Badawi, Ramsey D

    2015-02-07

    Monte Carlo simulation provides a valuable tool in performance assessment and optimization of system design parameters for PET scanners. SimSET is a popular Monte Carlo simulation toolkit that features fast simulation time, as well as variance reduction tools to further enhance computational efficiency. However, SimSET has lacked the ability to simulate block detectors until its most recent release. Our goal is to validate new features of SimSET by developing a simulation model of the Siemens Biograph mCT PET scanner and comparing the results to a simulation model developed in the GATE simulation suite and to experimental results. We used the NEMA NU-2 2007 scatter fraction, count rates, and spatial resolution protocols to validate the SimSET simulation model and its new features. The SimSET model overestimated the experimental results of the count rate tests by 11-23% and the spatial resolution test by 13-28%, which is comparable to previous validation studies of other PET scanners in the literature. The difference between the SimSET and GATE simulation was approximately 4-8% for the count rate test and approximately 3-11% for the spatial resolution test. In terms of computational time, SimSET performed simulations approximately 11 times faster than GATE simulations. The new block detector model in SimSET offers a fast and reasonably accurate simulation toolkit for PET imaging applications.

  19. Development of a Large, Low-Cost, Instant 3D Scanner

    Directory of Open Access Journals (Sweden)

    Jeremy Straub

    2014-05-01

    Full Text Available Three-dimensional scanning serves a large variety of uses. It can be utilized to generate objects for, after possible modification, 3D printing. It can facilitate reverse engineering, replication of artifacts to allow interaction without risking cultural heirlooms and the creation of replacement bespoke parts. The technology can also be used to capture imagery for creating holograms, it can support applications requiring human body imaging (e.g., medical, sports performance, garment creation, security and it can be used to import real-world objects into computer games and other simulations. This paper presents the design of a 3D scanner that was designed and constructed at the University of North Dakota to create 3D models for printing and numerous other uses. It discusses multiple prospective uses for the unit and technology. It also provides an overview of future directions of the project, such as 3D video capture.

  20. Resisting the Revelatory Scanner: Critical Engagements with fMRI in Popular Media

    DEFF Research Database (Denmark)

    Whiteley, Louise Emma

    2012-01-01

    deterministic perspectives, and diverts attention from non-biological ways of understanding the mind. Here, I review these critical discourses and ask whether they are reflected in popular media, through a discourse analysis of print and online reports of functional neuroimaging research deriving primarily from...... the United Kingdom. In contrast to earlier studies, I found diverse challenges to the expertise of the scanner, ranging from explicit polemic to assertions of lay expertise. Brain images themselves were often manipulated, mislabelled or omitted in favour of photographic representations of mental function...... that qualitative analysis of media texts is essential to understanding the developing discourse surrounding functional neuroimaging, and discuss possible implications for science communication and public engagement practice....

  1. Novel Geometrical Concept of a High Performance Brain PET Scanner Principle, Design and Performance Estimates

    CERN Document Server

    Séguinot, Jacques; Chesi, Enrico Guido; Joram, C; Mathot, S; Weilhammer, P; Chamizo-Llatas, M; Correia, J G; Ribeiro da Silva, M; Garibaldi, F; De Leo, R; Nappi, E; Corsi, F; Dragone, A; Schoenahl, F; Zaidi, H

    2006-01-01

    We present the principle, a possible implementation and performance estimates of a novel geometrical concept for a high resolution positron emission tomograph. The concept, which can for example be implemented in a brain PET device, promisses to lead to an essentially parallax free 3D image reconstruction with excellent spatial resolution and constrast, uniform over the complete field of view. The key components are matrices of long axially oriented scintillator crystals which are read out at both extremities by segmented Hybrid Photon Detectors. We discuss the relevant design considerations for a 3D axial PET camera module, motivate parameter and material choices, and estimate its performance in terms of spatial and energy resolution. We support these estimates by Monte Carlo simulations and in some cases by first experimental results. From the performance of a camera module, we extrapolate to the reconstruction resolution of a 3D axial PET scanner in a semi-analytical way and compare it to an existing state...

  2. Adaptive notch filter for removal of coherent noise from infrared scanner data

    Science.gov (United States)

    Jaggi, Sandeep

    1991-11-01

    This paper addresses the use of an adaptive noise canceling technique to eliminate the coherent noise generated in scanner data. The technique is based on a Finite Impulse Response (FIR) adaptive noise canceler. A two-weight FIR filter is used to adaptively learn the characteristics of a sinusoid. This sinusoid is then removed from the data. The least Mean Squares (LMS) algorithm is used to converge to the coefficients of the adaptive filter during the learning process. An image corrupted with a single frequency periodic noise is used for investigating the algorithm. It is observed that the efficiency of the algorithm is dependent on the convergence gains and the initial positioning of the weights of the FIR filter. Because of the computational simplicity of the algorithm, it is possible to implement this in real-time mode.

  3. Methods and considerations to determine sphere center from terrestrial laser scanner point cloud data

    Science.gov (United States)

    Rachakonda, Prem; Muralikrishnan, Bala; Cournoyer, Luc; Cheok, Geraldine; Lee, Vincent; Shilling, Meghan; Sawyer, Daniel

    2017-10-01

    The Dimensional Metrology Group at the National Institute of Standards and Technology is performing research to support the development of documentary standards within the ASTM E57 committee. This committee is addressing the point-to-point performance evaluation of a subclass of 3D imaging systems called terrestrial laser scanners (TLSs), which are laser-based and use a spherical coordinate system. This paper discusses the usage of sphere targets for this effort, and methods to minimize the errors due to the determination of their centers. The key contributions of this paper include methods to segment sphere data from a TLS point cloud, and the study of some of the factors that influence the determination of sphere centers.

  4. Microcontroller USB interfacing with MATLAB GUI for low cost medical ultrasound scanners

    Directory of Open Access Journals (Sweden)

    Jean Rossario Raj

    2016-06-01

    Full Text Available This paper presents an 8051 microcontroller-based control of ultrasound scanner prototype hardware from a host laptop MATLAB GUI. The hardware control of many instruments is carried out by microcontrollers. These microcontrollers are in turn controlled from a GUI residing in a computing machine that is connected over the USB interface. Conventionally such GUIs are developed using ‘C’ language or its variants. But MATLAB GUI is a better tool, when such GUI programs need to do huge image/video processing. However interfacing MATLAB with the microcontroller is a challenging task. Here, MATLAB interfacing through an intermediate MEX ‘C’ language program is presented. This paper outlines the MEX programming methods for achieving the smooth interfacing of microcontrollers with MATLAB GUI.

  5. Images in medicine

    African Journals Online (AJOL)

    abp

    considered. Biopsies of the tumor in the scalp revealed moderately- differentiated epidermoid carcinoma, which were considered to be cutaneous metastases. Cerebral magnetic resonance imaging and thoracoabdominal pelvic scanner objectivated a tumoral mass of lung (D) with ocular, hepatica and bone metastasis.

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us ... medical test that helps physicians diagnose and treat medical ... is a small hand-held device that resembles a microphone, attached to the scanner ...

  7. Aircraft scanner data availability via the version 0 Information Management System

    Science.gov (United States)

    Mah, G. R.

    1995-01-01

    As part of the Earth Observing System Data and Information System (EOSDIS) development, NASA and other government agencies have developed an operational prototype of the Information Management System (IMS). The IMS provides access to the data archived at the Distributed Active Archive Centers (DAAC's) that allows users to search through metadata describing the (image) data. Criteria based on sensor name or type, date and time, and geographic location are used to search the archive. Graphical representations of coverage and browse images are available to further refine a user's selection. previously, the EROS Data Center (EDC) DAAC had identified the Advanced SOlid-state Array Spectrometer (ASAS), Airborne Visible and infrared Imaging Spectrometer (AVIRIS), NS-001, and Thermal Infrared Multispectral Scanner (TIMS) as precursor data sets similar to those the DAAC will handle in the Earth Observing System era. Currently, the EDC DAAC staff, in cooperation with NASA, has transcribed TIMS, NS-001, and Thematic Mapper Simulation (TMS) data from Ames Research Center and also TIMS data from Stennis Space Center. During the transcription process, the IMS metadata and browse images were created to populate the inventory at the EDC DAAC. These data sets are now available in the IMS and may be requested from the any of the DAAC's via the IMS.

  8. Anechoic Sphere Phantoms for Estimating 3-D Resolution of Very High Frequency Ultrasound Scanners

    Science.gov (United States)

    Madsen, Ernest L.; Frank, Gary R.; McCormick, Matthew M.; Deaner, Meagan E.; Stiles, Timothy A.

    2013-01-01

    Two phantoms have been constructed for assessing the performance of high frequency ultrasound imagers. They also allow for periodic quality assurance tests. The phantoms contain eight blocks of tissue-mimicking material where each block contains a spatially random distribution of suitably small anechoic spheres having a small distribution of diameters. The eight mean sphere diameters are distributed from 0.10 to 1.09 mm. The two phantoms differ primarily in terms of the backscatter coefficient of the background material in which the spheres are suspended. The mean scatterer diameter for one phantom is larger than that for the other phantom resulting in a lesser increase in backscatter coefficient for the second phantom; however, the backscatter curves cross at about 35 MHz. Since spheres have no preferred orientation, all three (spatial) dimensions of resolution contribute to sphere detection on an equal basis; thus, the resolution is termed 3-D. Two high frequency scanners are compared. One employs single-element (fixed focus) transducers, and the other employs variable focus linear arrays. The nominal frequency for the single element transducers were 25 and 55 MHz and for the linear array transducers were 20, 30 and 40 MHz. The depth range for detection of spheres of each size is determined corresponding to determination of 3-D resolution as a function of depth. As expected, the single-element transducers are severely limited in useful imaging depth ranges compared with the linear arrays. Note that these phantoms could also be useful for training technicians in using higher frequency scanners. PMID:20889416

  9. Multipurpose Pressure Vessel Scanner and Photon Doppler Velocimetry

    Science.gov (United States)

    Ellis, Tayera

    2015-01-01

    Critical flight hardware typically undergoes a series of nondestructive evaluation methods to screen for defects before it is integrated into the flight system. Conventionally, pressure vessels have been inspected for flaws using a technique known as fluorescent dye penetrant, which is biased to inspector interpretation. An alternate method known as eddy current is automated and can detect small cracks better than dye penetrant. A new multipurpose pressure vessel scanner has been developed to perform internal and external eddy current scanning, laser profilometry, and thickness mapping on pressure vessels. Before this system can be implemented throughout industry, a probability of detection (POD) study needs to be performed to validate the system’s eddy current crack/flaw capabilities. The POD sample set will consist of 6 flight-like metal pressure vessel liners with defects of known size. Preparation for the POD includes sample set fabrication, system operation, procedure development, and eddy current settings optimization. For this, collaborating with subject matter experts was required. This technical paper details the preparation activities leading up to the POD study currently scheduled for winter 2015/2016. Once validated, this system will be a proven innovation for increasing the safety and reliability of necessary flight hardware.Additionally, testing of frangible joint requires Photon Doppler Velocimetry (PDV) and Digital Image Correlation instrumentation. There is often noise associated with PDV data, which necessitates a frequency modulation (FM) signal-to-noise pre-test. Generally, FM radio works by varying the carrier frequency and mixing it with a fixed frequency source, creating a beat frequency which is represented by audio frequency that can be heard between about 20 to 20,000 Hz. Similarly, PDV reflects a shifted frequency (a phenomenon known as the Doppler Effect) from a moving source and mixes it with a fixed source frequency, which results in

  10. Code blue in the MR suite--a drill to rescue a patients with cardiac arrest from the MR scanner.

    Science.gov (United States)

    Muehling, Olaf M; Huber, Armin; Friedrich, Denise; Nabauer, Michael; Reiser, Maximilian; Schoenberg, Stefan O

    2006-04-01

    Dobutamine stress MR (DSMR) is increasingly used in the clinical routine. Due to the limitations inherent to MR, i.e. the distance of the personnel to the patient during imaging, it is necessary to set up an emergency training to rescue a patient from the scanner room in the shortest possible time. We placed a volunteer in the 1.5 T scanner. Monitoring devices are attached in the same way as a patient would be prepared. A team of four performed the drill, everybody assigned to a certain task and position of the rescue procedure. In consecutive order, scanning was stopped, the MR table was released and the team entered the scanner room. The monitoring equipment was removed from the volunteer and he was slid onto a stretcher and moved out of the scanner room. The drill was performed 30 times, 3 teams were involved. The minimum time required was 32 s, maximum was 52 s. The amount of practice runs significantly reduced the rescue time. Team 1 with 15 runs had an average time of 39+/-6 s vs. team 2 with 9 runs (45+/-3 s, p<0.02) or team 3 with 6 runs (46+/-3 s, p<0.01). Team 1 practiced on three separate days each with five practice runs and consecutively improved from day one (43+/-5 s) to day three (35+/-2 s, p<0.02). A significant reduction in rescue time can be achieved with repetitive exercise. We recommend repetitive training with various scenarios, volunteers and personnel involved in the DSMR testing.

  11. Use of a 1.0 Tesla open scanner for evaluation of pediatric and congenital heart disease: a retrospective cohort study.

    Science.gov (United States)

    Lu, Jimmy C; Nielsen, James C; Morowitz, Layne; Musani, Muzammil; Ghadimi Mahani, Maryam; Agarwal, Prachi P; Ibrahim, El-Sayed H; Dorfman, Adam L

    2015-05-25

    Open cardiovascular magnetic resonance (CMR) scanners offer the potential for imaging patients with claustrophobia or large body size, but at a lower 1.0 Tesla magnetic field. This study aimed to evaluate the efficacy of open CMR for evaluation of pediatric and congenital heart disease. This retrospective, cross-sectional study included all patients ≤18 years old or with congenital heart disease who underwent CMR on an open 1.0 Tesla scanner at two centers from 2012-2014. Indications for CMR and clinical questions were extracted from the medical record. Studies were qualitatively graded for image quality and diagnostic utility. In a subset of 25 patients, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were compared to size- and diagnosis-matched patients with CMR on a 1.5 Tesla scanner. A total of 65 patients (median 17.3 years old, 60% male) were included. Congenital heart disease was present in 32 (50%), with tetralogy of Fallot and bicuspid aortic valve the most common diagnoses. Open CMR was used due to scheduling/equipment issues in 51 (80%), claustrophobia in 7 (11%), and patient size in 3 (5%); 4 patients with claustrophobia had failed CMR on a different scanner, but completed the study on open CMR without sedation. All patients had good or excellent image quality on black blood, phase contrast, magnetic resonance angiography, and late gadolinium enhancement imaging. There was below average image quality in 3/63 (5%) patients with cine images, and 4/15 (27%) patients with coronary artery imaging. SNR and CNR were decreased in cine and magnetic resonance angiography images compared to 1.5 Tesla. The clinical question was answered adequately in all but 2 patients; 1 patient with a Fontan had artifact from an embolization coil limiting RV volume analysis, and in 1 patient the right coronary artery origin was not well seen. Open 1.0 Tesla scanners can effectively evaluate pediatric and congenital heart disease, including patients with claustrophobia

  12. Shadow effects in simulated ultrasound images derived from computed tomography images using a focused beam tracing model

    DEFF Research Database (Denmark)

    Pham, An Hoai; Lundgren, Bo; Stage, Bjarne

    2012-01-01

    Focus ultrasound scanner (BK Medical, Herlev, Denmark) equipped with a dedicated research interface giving access to beamformed radio frequency data. CT images were obtained with an Aquilion ONE Toshiba CT scanner (Toshiba Medical Systems Corp., Tochigi, Japan). CT data were mapped from Hounsfield units...

  13. The Issue of Documentation of Hardly Accessible Historical Monuments by Using of Photogrammetry and Laser Scanner Techniques

    Directory of Open Access Journals (Sweden)

    Karol Bartoš

    2011-12-01

    Full Text Available This article deals with issues of measuring hardly accessible historical monuments on the example of the Slanec castle, Slovakia. In the first phase the convergence case of close-range photogrammetry was applied using digital camera Pentax K10D. Subsequently was created its 3D model in the PhotoModeler Scanner software. Special attention was paid to shape of ground, surroundings and characteristic of object of interest about choice of the right method and technique of making digital images. Processing of images was made with the highest possible accuracy with respect to the used method and apparatus. As a result of processing, the exact spatial model was made, which was exported to different formats. Also digital photo-plan with real photo textures and vector drawings was made. In the next phase the whole object of castle was measured with the laser scanner Leica ScanStation C10 and the final point cloud was processed in the best available software. The results obtained by both methods were compared in comparable digital formats with respect to the positional accuracy of final models. In the final phase is planned to obtain images appropriate for convergence case of photogrammetry using digital camera placed on a carrier on the MikroKopter HexaKopter controlled from the ground. Then the final comparison and further analysis of all acquired models can be made.

  14. PET performance evaluation of MADPET4: a small animal PET insert for a 7 T MRI scanner

    Science.gov (United States)

    Omidvari, Negar; Cabello, Jorge; Topping, Geoffrey; Schneider, Florian R.; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I.

    2017-11-01

    MADPET4 is the first small animal PET insert with two layers of individually read out crystals in combination with silicon photomultiplier technology. It has a novel detector arrangement, in which all crystals face the center of field of view transaxially. In this work, the PET performance of MADPET4 was evaluated and compared to other preclinical PET scanners using the NEMA NU 4 measurements, followed by imaging a mouse-size hot-rod resolution phantom and two in vivo simultaneous PET/MRI scans in a 7 T MRI scanner. The insert had a peak sensitivity of 0.49%, using an energy threshold of 350 keV. A uniform transaxial resolution was obtained up to 15 mm radial offset from the axial center, using filtered back-projection with single-slice rebinning. The measured average radial and tangential resolutions (FWHM) were 1.38 mm and 1.39 mm, respectively. The 1.2 mm rods were separable in the hot-rod phantom using an iterative image reconstruction algorithm. The scatter fraction was 7.3% and peak noise equivalent count rate was 15.5 kcps at 65.1 MBq of activity. The FDG uptake in a mouse heart and brain were visible in the two in vivo simultaneous PET/MRI scans without applying image corrections. In conclusion, the insert demonstrated a good overall performance and can be used for small animal multi-modal research applications.

  15. Research interface for experimental ultrasound imaging - the CFU grabber project

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Hemmsen, Martin Christian; Jensen, Jørgen Arendt

    Purpose The acquisition of ultrasound images using new calculation methods usually requires days of post processing. An ultrasound scanner with a research interface developed in collaboration between DTU and BK medicals has made it possible to process US images faster than the current reaserch...... system RASMUS. Furthermore precise scanner settings are stored for inter- and intra-observer studies. The resulting images are used for clinical evaluation. Method and materials The ultrasound scanners research interface is connected to a graphical grabber card in a Windows PC (Grabber PC). The grabber......) was performed. The resulting 3 seconds of image sequences (video) will be evaluated by experts within medical ultrasound imaging. Conclusion The setup makes the data aquisition fast and the scanner setting reproducible and the first in-vivo studies using the new research system are on-going....

  16. Agricultural applications for thermal infrared multispectral scanner data

    Science.gov (United States)

    Pelletier, R. E.; Ochoa, M. C.; Hajek, B. F.

    1985-01-01

    The use of the Thermal Infrared Multispectral Scanner (TIMS) data in agricultural landscapes is discussed. The TIMS allows for narrow-band analysis in the 8.2-11.6 micron range at spatial resolutions down to 5 meters in cell size. A coastal plain region in SE Alabama was studied using the TIMS. The crop/plant vigor, canopy density, and thermal response changes for soils obtained from thermal imagery are examined. The application of TIMS data to hydrologic and topographic issues, inventory and conservation monitoring, and the enhancement and extraction of cartographic features is described.

  17. Diffractive element design for resonant scanner angular correction

    Science.gov (United States)

    Khoury, Jed; Woods, Charles L.; Haji-Saeed, Bahareh; Pyburn, Dana; Sengupta, Sandip K.; Kierstead, John

    2006-09-01

    We propose an optical corrective element with zooming capability to convert nonlinear sinusoidal scanning into linear scanning. Such a device will be useful for linearizing the angular scan of a resonant mirror scanner. The design methodology is to create a graded index of refraction device as the reference design, with its index of refraction parameters based on the propagation of an electromagnetic field in inhomogeneous media. The algorithm for converting this refractive element to the corresponding binary diffractive version is also presented. Design and simulation data are shown.

  18. Mapping of MAC Address with Moving WiFi Scanner

    Directory of Open Access Journals (Sweden)

    Arief Hidayat

    2017-10-01

    Full Text Available Recently, Wifi is one of the most useful technologies that can be used for detecting and counting MAC Address. This paper described using of WiFi scanner which carried out seven times circulated the bus. The method used WiFi and GPS are to counting MAC address as raw data from the pedestrian smartphone, bus passenger or WiFi devices near from the bus as long as the bus going around the route. There are seven processes to make map WiFi data.

  19. A new electronic read-out for the YAPPET scanner

    CERN Document Server

    Damiani, C; Malaguti, R; Guerra, A D; Domenico, G D; Zavattini, G

    2002-01-01

    A small animal PET-SPECT scanner (YAPPET) prototype was built at the Physics Department of the Ferrara University and is presently being used at the Nuclear Medicine Department for radiopharmaceutical studies on rats. The first YAPPET prototype shows very good performances, but needs some improvements before it can be fully used for intensive radiopharmaceutical research. The main problem of the actual prototype is its heavy electronics, based on NIM and CAMAC standard modules. For this reason a new, compact read-out electronics was developed and tested. The results of a first series of tests made on the first prototype will be presented in the paper.

  20. Optical monitoring of scoliosis by 3D medical laser scanner

    Science.gov (United States)

    Rodríguez-Quiñonez, Julio C.; Sergiyenko, Oleg Yu.; Preciado, Luis C. Basaca; Tyrsa, Vera V.; Gurko, Alexander G.; Podrygalo, Mikhail A.; Lopez, Moises Rivas; Balbuena, Daniel Hernandez

    2014-03-01

    Three dimensional recording of the human body surface or anatomical areas have gained importance in many medical applications. In this paper, our 3D Medical Laser Scanner is presented. It is based on the novel principle of dynamic triangulation. We analyze the method of operation, medical applications, orthopedically diseases as Scoliosis and the most common types of skin to employ the system the most proper way. It is analyzed a group of medical problems related to the application of optical scanning in optimal way. Finally, experiments are conducted to verify the performance of the proposed system and its method uncertainty.

  1. Scatter fraction of the J-PET tomography scanner

    CERN Document Server

    Kowalski, P; Raczyński, L; Alfs, D; Bednarski, T; Białas, P; Czerwiński, E; Gajos, A; Głowacz, B; Jasińska, J; Kamińska, D; Korcyl, G; Kozik, T; Krzemień, W; Kubicz, E; Mohammad, M; Niedźwiecki, Sz; Pałka, M; Pawlik-Niedźwiecka, M; Rudy, Z; Silarski, M; Smyrski, J; Strzelecki, A; Wieczorek, A; Zgardzińska, B; Zieliński, M; Moskal, P

    2016-01-01

    A novel Positron Emission Tomography system, based on plastic scintillators, is being developed by the J-PET collaboration. In this article we present the simulation results of the scatter fraction, representing one of the parameters crucial for background studies defined in the NEMA-NU-2-2012 norm. We elaborate an event selection methods allowing to suppress events in which gamma quanta were scattered in the phantom or underwent the multiple scattering in the detector. The estimated scatter fraction for the single-layer J-PET scanner varies from 37% to 53% depending on the applied energy threshold.

  2. Images.

    Science.gov (United States)

    Barr, Catherine, Ed.

    1997-01-01

    The theme of this month's issue is "Images"--from early paintings and statuary to computer-generated design. Resources on the theme include Web sites, CD-ROMs and software, videos, books, and others. A page of reproducible activities is also provided. Features include photojournalism, inspirational Web sites, art history, pop art, and myths. (AEF)

  3. Multi-temporal Terrestrial Laser Scanner monitoring of coastal instability processes at Coroglio cliff

    Science.gov (United States)

    Caputo, Teresa; Somma, Renato; Marino, Ermanno; Matano, Fabio; Troise, Claudia; De Natale, Giuseppe

    2016-04-01

    The Coroglio cliff is a morphological evolution of the caldera rim of Neapolitan Yellow Tuff (NYT) in Campi Flegrei caldera (CFc) with an elevation of 150 m a.s.l. and a length of about 200 m. The lithology consists of NYT, extremely lithified, overlaid by less lithified recent products of the Phlegrean volcanism., These materials are highly erodible and, due to proximity to the sea, the sea wave and wind actions cause very strong erosion process. In the recent years Terrestrial Laser Scanner (TLS) technique is used for environmental monitoring purposes through the creation of high resolution Digital Surface Model (DSM) and Digital Terrain Model (DTM). This method allows the reconstruction, by means of a dense cloud of points, of a 3D model for the entire investigated area. The scans need to be performed from different points of view in order to ensure a good coverage of the area, because a widespread problem is the occurrence of shaded areas. In our study we used a long-range laser scanner model RIEGL VZ1000®. Numerous surveys (April 2013, June 2014, February 2015) have been performed for monitoring coastal cliff morphological evolution. An additional survey was executed in March 2015, shortly after a landslide occurrence. To validate the multi-temporal monitoring of the laser scanner, a "quick" comparison of the acquired point clouds has been carried out using an algorithm cloud-to-cloud, in order to identify 3D changes. Then 2.5D raster images of the different scans has been performed in GIS environment, also in order to allow a map overlay of the produced thematic layer, both raster and vector data (geology, contour map, orthophoto, and so on). The comparison of multi-temporal data have evidenced interesting geomorphological processes on the cliff. It was observed a very intense (about 6 m) local moving back at the base of the cliff, mainly due to the sea wave action during storms, while in cliff sectors characterized by less compact lithologies widespread

  4. Use of a clinical PET/MR scanner for preclinical research with first results

    Energy Technology Data Exchange (ETDEWEB)

    Chary, Karthik; Teuho, Jarmo; Virta, Jenni; Sipilä, Hannu; Saunavaara, Virva; Roivainen, Anne; Teräs, Mika [Turku PET Centre, Turku University Hospital, Turku (Finland)

    2014-07-29

    This study was performed to evaluate the feasibility of preclinical imaging in a clinical PET/MR system. Preliminary sequences were evaluated for establishing preclinical protocols for rat brain and rabbit knee. Rats were placed in a stereotactic holder, allowing a 30 minute scan time before re-administration of anesthesia. In-house developed warm-water heating system was used to maintain the body temperature at 37.5°C, monitored using an MR-compatible rectal probe. Brain imaging was performed with a dedicated 4 channel phased array receive coil (RAPID Biomedical GmbH, Germany). High resolution coronal images were acquired using conventional T1-SE (0.30x0.30x1.2mm) and T2-TSE (0.23x0.23x0.7mm) with a total scan time of 30 min. PET/MR imaging was performed on two white rabbits. The rabbits were imaged in a custom wooden holder. PET/MR protocol had a total duration of 45 minutes. No external heating was used. MR protocol consisted of anatomical T1, T2 and PDW of the knees, using a SENSE Flex-S coil. MR attenuation correction (MRAC) was acquired with 3D T1-FFE using three-class segmentation. A dynamic 30 minute PET acquisition was started on injection of 33.8MBq of Ga-68. Animal coils enabled high resolution images to be acquired in reasonable acquisition time with regards to animal handling and anesthesia. T1 and T2 images provided good differentiation of anatomy in the rat brain with high contrast. T1, T2 and PDW images of the rabbit knee had high resolution and differentiation of anatomical structures. MRAC was able to distinguish the knees and the body contour. Image fusion of PET and MR was able to localize the infection, which was confirmed by a physician. Pre-clinical imaging with the Ingenuity TF was deemed feasible, although PET imaging is limited by the resolution of the scanner. The preliminary sequences were successfully implemented for future studies on the Ingenuity TF.

  5. Two-laser, large-field hyperspectral microarray scanner for the analysis of multicolor microarrays.

    Science.gov (United States)

    Erfurth, Florian; Tretyakov, Alexander; Nyuyki, Berla; Mrotzek, Grit; Schmidt, Wolf-Dieter; Fassler, Dieter; Saluz, Hans Peter

    2008-10-15

    We describe the development and operation of a two-laser, large-field hyperspectral scanner for analysis of multicolor genotyping microarrays. In contrast to confocal microarray scanners, in which wavelength selectivity is obtained by positioning band-pass filters in front of a photomultiplier detector, hyperspectral microarray scanners collect the complete visible emission spectrum from the labeled microarrays. Hyperspectral scanning permits discrimination of multiple spectrally overlapping fluorescent labels with minimal use of optical filters, thus offering important advantages over standard filter-based multicolor microarray scanners. The scanner uses two-sided oblique line illumination of microarrays. Two lasers are used for the excitation of dyes in the visible and near-infrared spectral regions. The hyperspectral scanner was evaluated with commercially available two-color calibration slides and with in-house-printed four-color microarrays containing dyes with spectral properties similar to their commercial genotyping array counterparts.

  6. MARS Spectral Imaging: From High-Energy Physics to a Biomedical Business

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Abstract MARS spectral scanners provide colour X-Ray images. Current MARS pre-clinical scanners enable researchers and clinicians to measure biochemical and physiological processes in specimens, and animal models of disease. The scanners have developed from a 10 year scientific collaboration between New Zealand and CERN. In parallel a company, MARS Bioimaging Ltd, was founded to commercialise the technology by productising the scanner and selling it to biomedical users around the world. The New Zealand team is now more than 30 people including staff and students from the fields of physics, engineering, computing, maths, radiology, cardiology, biochemistry, oncology, and orthopaedics. Current work with pre-clinical scanners has concluded that the technology will be  useful in heart disease, stroke, arthritis, joint replacements, and cancer. In late 2014, the government announced funding for NZ to build a MARS scanner capable of imaging humans. Bio Professor Anthony Butler is a radiologist wit...

  7. Thermal Infrared Multispectral Scanner (TIMS): An investigator's guide to TIMS data

    Science.gov (United States)

    Palluconi, F. D.; Meeks, G. R.

    1985-01-01

    The Thermal Infrared Multispectral Scanner (TIMS) is a NASA aircraft scanner providing six channel spectral capability in the thermal infrared region of the electromagnetic spectrum. Operating in the atmospheric window region (8 to 12 micrometers) with a channel sensitivity of approximately 0.1 C, TIMS may be used whenever an accurate measure of the Earth's surface is needed. A description of this scanner is provided as well as a discussion of data acquisition and reduction.

  8. Continued Development Of An Inexpensive Simulator Based CT Scanner For Radiation Therapy Treatment Planning

    Science.gov (United States)

    Peschmann, K. R.; Parker, D. L.; Smith, V.

    1982-11-01

    An abundant number of different CT scanner models has been developed in the past ten years, meeting increasing standards of performance. From the beginning they remained a comparatively expensive piece of equipment. This is due not only to their technical complexity but is also due to the difficulties involved in assessing "true" specifications (avoiding "overde-sign"). Our aim has been to provide, for Radiation Therapy Treatment Planning, a low cost CT scanner system featuring large freedom in patient positioning. We have taken advantage of the concurrent tremendously increased amount of knowledge and experience in the technical area of CT1 . By way of extensive computer simulations we gained confidence that an inexpensive C-arm simulator gantry and a simple one phase-two pulse generator in connection with a standard x-ray tube could be used, without sacrificing image quality. These components have been complemented by a commercial high precision shaft encoder, a simple and effective fan beam collimator, a high precision, high efficiency, luminescence crystal-silicon photodiode detector with 256 channels, low noise electronic preamplifier and sampling filter stages, a simplified data aquisition system furnished by Toshiba/ Analogic and an LSI 11/23 microcomputer plus data storage disk as well as various smaller interfaces linking the electrical components. The quality of CT scan pictures of phantoms,performed by the end of last year confirmed that this simple approach is working well. As a next step we intend to upgrade this system with an array processor in order to shorten recon-struction time to one minute per slice. We estimate that the system including this processor could be manufactured for a selling price of $210,000.

  9. Characterization of Solid Renal Masses using 64-Slice Multidetector CT Scanner

    Directory of Open Access Journals (Sweden)

    Saleh S. El-Esawy

    2009-01-01

    Full Text Available The purpose of our study was to assess the role of a 64-slice multidetector CT (MDCT scanner in the characterization of different solid renal masses, using a simplified approach to correct the postenhancement attenuation values. The study included 96 consecutive adults (58 men, 38 women with renal masses; 93 with unilateral and three with bilateral masses. All of our patients underwent multiphasic CT study including pre- and postcontrast corticomedullary (CM and nephrographic phases. We analyzed the images and corrected the postcontrast attenuation values at the CM phase. The postbiopsy or -surgical data were used as reference standard. There were 53 masses at the right kidney, 40 at the left kidney, and three bilateral. The final diagnosis of the 96 solid parenchymal masses were 28 clear-type renal cell carcinoma (RCC, 22 papillary-type RCC, 21 chromophobe-type RCC, six XP 11.2 chromosomal translocation–type RCC, 15 angiomyolipoma (AML, and seven oncocytoma. All the AML had fat, with attenuation values less than -40 HU at the nonenhanced scan. There is no difference in the precontrast attenuation values for the different types other than AML. At the postcontrast CM phase after the correction of the attenuation values, the clear cell type could be separated easily, with attenuation values >20 with specificity, sensitivity, and overall accuracy of 92, 84, and 93%, respectively. The 64-slice MDCT scanner with application of enhancement values correction allows diagnosis of clear cell carcinoma. Also, AML could be identified easily with fat inside at the precontrast scan.

  10. An industrial design solution for integrating NMR magnetic field sensors into an MRI scanner.

    Science.gov (United States)

    Kennedy, Michael; Lee, Yoojin; Nagy, Zoltan

    2017-12-28

    Neuroimaging research relies on the skills of increasingly multidisciplinary individuals and often requires the installation and use of additional home-built or third-party equipment. The purpose of the present work was the safe, ergonomic, durable, and aesthetically pleasing installation of magnetic field monitoring equipment into a scanner, while keeping the setup compatible with standard operating procedures. An extensive set of steps was required to design a 3D printed solution to install a magnetic field camera into the eight-channel head coil of a 3T MRI scanner. First, the outer surface of the plastic coil housing was recreated into a 3D model, and the installation of the magnetic field sensors around this 3D model was performed in a virtual environment. The 3D printed solution was then assembled and tested for safety, reproducible performance, and image quality. The 3D printed solution holds the probes in stable positions and guides the necessary cables in an organized fashion and away from the volunteer. Assembly is easy and the solution is ergonomic, durable, and safe. We did not find excessive heating in the 3D printed parts, nor in the electronics, that they help to incorporate. The material used interferes minimally with transmit B1+ field. The design met all of the boundary conditions for a durable, safe, cost-effective, attractive, and functional installation. This work will provide the basis for installing the magnetic field sensors into other available head coils, and for designing the experimental setup for projects with varying experimental requirements. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Irradiation in helical scanner: doses estimation, parameters choice; Irradiation en scanner helicoidal: estimation des doses, choix des parametres

    Energy Technology Data Exchange (ETDEWEB)

    Cordoliani, Y.S.; Boyer, B.; Jouan, E.; Beauvais, H

    2001-07-01

    The new generation of helical scanners improves the diagnosis abilities and the service done to the patients. The rational use allows to give the patients a ratio benefit/risk far better than the almost medical examinations. It is particularly true for over sixty years old aged people, that have a null genetic risk and a practically null carcinogen risk; However, for young adults and children, it is necessary to banish any useless irradiation and limit exposure to the strict necessary for the diagnosis. It is necessary to develop a radiation protection culture, possible by the radiation doses index display and doses benchmarks knowledge. (N.C.)

  12. CT Angiography of Peripheral Arterial Disease by 256-Slice Scanner: Accuracy, Advantages and Disadvantages Compared to Digital Subtraction Angiography.

    Science.gov (United States)

    Mishra, Atul; Jain, Narendra; Bhagwat, Anand

    2017-07-01

    Peripheral arterial occlusive disease (PAOD) may cause disabling claudication or critical limb ischemia. Multidetector computed tomography (CT) technology has evolved to the level of 256-slice CT scanners which has significantly improved the spatial and temporal resolution of the images. This has provided the capability of chasing the contrast bolus at a fast speed enabling angiographic imaging of long segments of the body. These images can be reconstructed in various planes and various modes for detailed analysis of the peripheral vascular diseases which helps in making treatment decision. The aim of this retrospective study was to compare the CT angiograms (CTAs) of all cases of PAOD done by 256-slice CT scanner at a tertiary care vascular center and comparing these images with the digital subtraction angiograms (DSAs) of these patients. The retrospective study included 53 patients who underwent both CTA and DSA at our center over a period of 3 years from March 2013 to March 2016. The CTA showed high sensitivity (93%) and specificity (92.7%) for overall assessment of degree of stenosis in a vascular segment in cases of aortic and lower limb occlusive disease. The assessment of lesions of infrapopliteal segment was comparatively inferior (sensitivity 91.6%, accuracy 73.3%, and positive predictive value 78.5%), more so in the presence of significant calcification. The advantages of CTA were its noninvasive nature, ability to image large area of body, almost no adverse effects to the patients, and better assessment of vessel wall disease. However, the CTA assessment of collaterals was inferior with a sensitivity of only 62.7% as compared to DSA. Overall, 256-slice CTA provides fast and accurate imaging of vascular tree which can restrict DSA only in few selected cases as a problem-solving tool where clinico-radiological mismatch is present.

  13. Electro-optic and acousto-optic laser beam scanners

    Science.gov (United States)

    Heberle, Johannes; Bechtold, Peter; Strauß, Johannes; Schmidt, Michael

    2016-03-01

    Electro-optical deflectors (EOD) and acousto-optical deflectors (AOD) are based on deflection of laser light within a solid state medium. As they do not contain any moving parts, they yield advantages compared to mechanical scanners which are conventionally used for laser beam deflection. Even for arbitrary scan paths high feed rates can be achieved. In this work the principles of operation and characteristic properties of EOD and AOD are presented. Additionally, a comparison to mirror based mechanical deflectors regarding deflection angles, speed and accuracy is made in terms of resolvable spots and the rate of resolvable spots. Especially, the latter one is up to one order of magnitude higher for EOD and AOD systems compared to conventional systems. Further characteristic properties such as response time, damage threshold, efficiency and beam distortions are discussed. Solid state laser beam deflectors are usually characterized by small deflection angles but high angular deflection velocities. As mechanical deflectors exhibit opposite properties an arrangement of a mechanical scanner combined with a solid state deflector provides a solution with the benefits of both systems. As ultrashort pulsed lasers with average power above 100 W and repetition rates in the MHz range have been available for several years this approach can be applied to fully exploit their capabilities. Thereby, pulse overlap can be reduced and by this means heat affected zones are prevented to provide proper processing results.

  14. Commissioning of a passive rod scanner at INB

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira, Fabio da Silva; Oliveira, Carlos A.; Palheiros, Franklin, E-mail: carlossilva@inb.gov.br, E-mail: franklin@inb.gov.br [Industrias Nucleares do Brasil (INB), Resende, RJ (Brazil). Superintendencia de Engenharia do Combustivel; Fernandez, Pablo Jesus Piñer, E-mail: pineiro@tecnatom.es [Tecnatom, San Sebastian de los Reyes, Madrid (Spain)

    2015-07-01

    For the 21st reload for Angra 1, a shift from Standard to Advanced fuel design will be introduced, where the fuel assemblies under the new design will contain fuel rods with axial blanket, in line with ELETRONUCLEAR's requirement for a higher energy efficient reactor fuel. Additionally, fuel rods for Angra 2 and 3, using gadolinium type burnable poison, have to be submitted to inspections due to the demand for the same type of inspection, which cannot be certified at INB currently. In keeping with CNEN regulations, every fuel-assembly component must be inspected and certified by a qualified method. Nevertheless, INB lacks the means to perform the certification-required inspection aimed at determining the uranium enrichment and presence of gadolinium pellets inside the closed rods. Hence, the use is necessary of a scanner capable of inspecting differently enriched fuel rods and/or gadolinium pellets (axial blanket). This work aims to present the recent Passive Rod Scanner installed at INB with most advance technology in the area, making possible to completely fulfill Angra 1, 2 and 3 rods inspection at INB Resende site. (author)

  15. Repeatability and reproducibility of individual abutment impression, assessed with a blue light scanner

    National Research Council Canada - National Science Library

    Jeon, Jin-Hun; Kim, Dong-Yeon; Lee, Jae-Jun; Kim, Ji-Hwan; Kim, Woong-Chul

    2016-01-01

    We assessed the repeatability and reproducibility of abutment teeth dental impressions, digitized with a blue light scanner, by comparing the discrepancies in repeatability and reproducibility values...

  16. Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

    National Research Council Canada - National Science Library

    Mansour Alsaleh; Noura Alomar; Monirah Alshreef; Abdulrahman Alarifi; AbdulMalik Al-Salman

    2017-01-01

    ... their detection effectiveness. Despite the advantages of dynamic testing approaches, the literature lacks studies that systematically evaluate the performance of open source web vulnerability scanners...

  17. Detection and mapping of volcanic rock assemblages and associated hydrothermal alteration with Thermal Infrared Multiband Scanner (TIMS) data Comstock Lode Mining District, Virginia City, Nevada

    Science.gov (United States)

    Taranik, James V.; Hutsinpiller, Amy; Borengasser, Marcus

    1986-01-01

    Thermal Infrared Multispectral Scanner (TIMS) data were acquired over the Virginia City area on September 12, 1984. The data were acquired at approximately 1130 hours local time (1723 IRIG). The TIMS data were analyzed using both photointerpretation and digital processing techniques. Karhuen-Loeve transformations were utilized to display variations in radiant spectral emittance. The TIMS image data were compared with color infrared metric camera photography, LANDSAT Thematic Mapper (TM) data, and key areas were photographed in the field.

  18. Quantitative evaluation of ischemic myocardial scar tissue by unenhanced T1 mapping using 3.0 Tesla MR scanner.

    Science.gov (United States)

    Okur, Aylin; Kantarcı, Mecit; Kızrak, Yeşim; Yıldız, Sema; Pirimoğlu, Berhan; Karaca, Leyla; Oğul, Hayri; Sevimli, Serdar

    2014-01-01

    We aimed to use a noninvasive method for quantifying T1 values of chronic myocardial infarction scar by cardiac magnetic resonance imaging (MRI), and determine its diagnostic performance. We performed cardiac MRI on 29 consecutive patients with known coronary artery disease (CAD) on 3.0 Tesla MRI scanner. An unenhanced T1 mapping technique was used to calculate T1 relaxation time of myocardial scar tissue, and its diagnostic performance was evaluated. Chronic scar tissue was identified by delayed contrast-enhancement (DE) MRI and T2-weighted images. Sensitivity, specificity, and accuracy values were calculated for T1 mapping using DE images as the gold standard. Four hundred and forty-two segments were analyzed in 26 patients. While myocardial chronic scar was demonstrated in 45 segments on DE images, T1 mapping MRI showed a chronic scar area in 54 segments. T1 relaxation time was higher in chronic scar tissue, compared with remote areas (1314±98 ms vs. 1099±90 ms, P T1 values were shown in areas of myocardium colocalized with areas of DE and normal signal on T2-weighted images. There was a significant correlation between T1 mapping and DE images in evaluation of myocardial wall injury extent (P T1 mapping MRI combined with T2-weighted images might be a feasible imaging modality for detecting chronic myocardial infarction scar tissue.

  19. The accuracy of the CAD system using intraoral and extraoral scanners for designing of fixed dental prostheses.

    Science.gov (United States)

    Shimizu, Sakura; Shinya, Akikazu; Kuroda, Soichi; Gomi, Harunori

    2017-07-26

    The accuracy of prostheses affects clinical success and is, in turn, affected by the accuracy of the scanner and CAD programs. Thus, their accuracy is important. The first aim of this study was to evaluate the accuracy of an intraoral scanner with active triangulation (Cerec Omnicam), an intraoral scanner with a confocal laser (3Shape Trios), and an extraoral scanner with active triangulation (D810). The second aim of this study was to compare the accuracy of the digital crowns designed with two different scanner/CAD combinations. The accuracy of the intraoral scanners and extraoral scanner was clinically acceptable. Marginal and internal fit of the digital crowns fabricated using the intraoral scanner and CAD programs were inferior to those fabricated using the extraoral scanner and CAD programs.

  20. Evaluation of the feasibility of security technologies in teleradiology as biometric fingerprint scanners for data exchange over a satellite WAN

    Science.gov (United States)

    Soegner, Peter I.; Helweg, Gernot; Holzer, Heimo; zur Nedden, Dieter

    2000-05-01

    We evaluated the feasibility of fingerprint-scanners in combination with smart cards for personal identification and transmission of encrypted TCP/IP-data-packages via satellite between the university-hospital of Innsbruck and the rural hospital of Reutte. The aim of our study was the proof of the userfriendliness of the SkymedTM technology for security purpose in teleradiology. We examined the time of the personal identification process, the time for the necessary training and the personal satisfaction. The images were sent from the local PACS in Reutte via a Data-Encryption-and-Transmission- Box via satellite from Reutte to Innsbruck. We used an asymmetric bandwidth of 512 kbit/s from Reutte to Innsbruck and 128 kbit/s in the opposite direction. Window NT 4.0- operating PCs were used for the electronical patient record, the medical inquiry of the referring physician and the final report of the radiologist. The images were reported on an UNIX-PACS viewing station. After identification through fingerprint-scanners in combination with the smart card the radiologist was able to open the electronic patient record (EPR) from Reutte and sign with his digital signature his confirmed final report before it was send back to Reutte. The used security technology enables encrypted communication over a WAN, which fulfill data-protection.

  1. 200 MeV Proton Radiography Studies with a Hand Phantom Using a Prototype Proton CT Scanner

    Science.gov (United States)

    Plautz, Tia; Bashkirov, V.; Feng, V.; Hurley, F.; Johnson, R.P.; Leary, C.; Macafee, S.; Plumb, A.; Rykalin, V.; Sadrozinski, H.F.-W.; Schubert, K.; Schulte, R.; Schultze, B.; Steinberg, D.; Witt, M.; Zatserklyaniy, A.

    2014-01-01

    Proton radiography has applications in patient alignment and verification procedures for proton beam radiation therapy. In this paper, we report an experiment which used 200 MeV protons to generate proton energy-loss and scattering radiographs of a hand phantom. The experiment used the first-generation proton CT scanner prototype, which was installed on the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center (LLUMC). It was found that while both radiographs displayed anatomical details of the hand phantom, the energy-loss radiograph had a noticeably higher resolution. Nonetheless, scattering radiography may yield more contrast between soft and bone tissue than energy-loss radiography, however, this requires further study. This study contributes to the optimization of the performance of the next-generation of clinical proton CT scanners. Furthermore, it demonstrates the potential of proton imaging (proton radiography and CT), which is now within reach of becoming available as a new, potentially low-dose medical imaging modality. PMID:24710156

  2. Digital imaging primer

    CERN Document Server

    Parkin, Alan

    2016-01-01

    Digital Imaging targets everyyone with an interest in digital imaging, be they professional or private, who uses even quite modest equipment such as a PC, digital camera and scanner, a graphics editor such as Paint, and an inkjet printer. Uniquely, it is intended to fill the gap between highly technical texts for academics (with access to expensive equipment) and superficial introductions for amateurs. The four-part treatment spans theory, technology, programs and practice. Theory covers integer arithmetic, additive and subtractive color, greyscales, computational geometry, and a new presentation of discrete Fourier analysis; Technology considers bitmap file structures, scanners, digital cameras, graphic editors, and inkjet printers; Programs develops several processing tools for use in conjunction with a standard Paint graphics editor and supplementary processing tools; Practice discusses 1-bit, greyscale, 4-bit, 8-bit, and 24-bit images for the practice section. Relevant QBASIC code is supplied an accompa...

  3. LASER SCANNER SURVEY TO CULTURAL HERITAGE CONSERVATION AND RESTORATION

    Directory of Open Access Journals (Sweden)

    G. Vacca

    2012-07-01

    Full Text Available The field of Cultural Heritage has inspired, in the course of last few years, an interest more and more important on behalf of scientific community that deals to survey. The idea that knowledge of a site doesn't apply only to its history but must necessarily include its characteristics of position, shape and geometry, is gathering pace. In Geomatic science the field of cultural heritage benefits to an integrated approach of techniques and different technologies. Every cultural site in fact, is a case in itself, with its own characteristics, problems and specificness. Current techniques offer opportunity to achieve new ways of representation and visualization of cultural site, with the aim of a better metric description. This techniques are powerful tools for analysis of sites and supports to activity of reconstruction and repair. Biggest expectations in this field is laser three-dimensional scanning technique; a system which is able to operate in a methodical way in speed of acquisition and in possibility to access data in real time. Documentation and filing of state of a monument or site is essential in case of reconstruction or conservative project. Possibility to detect very complex geometries with great accuracy allows an in depth study of constructive techniques, making analysis of geometrical details easier which is, with traditional techniques, difficult to achieve. Biggest problems about use of laser scanner survey are graphic outputs for restorers and architects, in fact they often don't know real potential of this techniques, methodologies and functionalities and they expect traditional outputs such as floor plans, cross sections and front elevation of cultural asset. Present study is focused on finding a workflow to support activity of study, restoration and conservative project of cultural heritage, extracting automatically (or with a limited manual operation graphic outputs from laser scanner survey. Some procedure was tested on two

  4. Laser Scanner Survey to Cultural Heritage Conservation and Restoration

    Science.gov (United States)

    Vacca, G.; Deidda, M.; Dessi, A.; Marras, M.

    2012-07-01

    The field of Cultural Heritage has inspired, in the course of last few years, an interest more and more important on behalf of scientific community that deals to survey. The idea that knowledge of a site doesn't apply only to its history but must necessarily include its characteristics of position, shape and geometry, is gathering pace. In Geomatic science the field of cultural heritage benefits to an integrated approach of techniques and different technologies. Every cultural site in fact, is a case in itself, with its own characteristics, problems and specificness. Current techniques offer opportunity to achieve new ways of representation and visualization of cultural site, with the aim of a better metric description. This techniques are powerful tools for analysis of sites and supports to activity of reconstruction and repair. Biggest expectations in this field is laser three-dimensional scanning technique; a system which is able to operate in a methodical way in speed of acquisition and in possibility to access data in real time. Documentation and filing of state of a monument or site is essential in case of reconstruction or conservative project. Possibility to detect very complex geometries with great accuracy allows an in depth study of constructive techniques, making analysis of geometrical details easier which is, with traditional techniques, difficult to achieve. Biggest problems about use of laser scanner survey are graphic outputs for restorers and architects, in fact they often don't know real potential of this techniques, methodologies and functionalities and they expect traditional outputs such as floor plans, cross sections and front elevation of cultural asset. Present study is focused on finding a workflow to support activity of study, restoration and conservative project of cultural heritage, extracting automatically (or with a limited manual operation) graphic outputs from laser scanner survey. Some procedure was tested on two case study the

  5. Quantitative evaluation of three-dimensional facial scanners measurement accuracy for facial deformity

    Science.gov (United States)

    Zhao, Yi-jiao; Xiong, Yu-xue; Sun, Yu-chun; Yang, Hui-fang; Lyu, Pei-jun; Wang, Yong

    2015-07-01

    Objective: To evaluate the measurement accuracy of three-dimensional (3D) facial scanners for facial deformity patients from oral clinic. Methods: 10 patients in different types of facial deformity from oral clinical were included. Three 3D digital face models for each patient were obtained by three facial scanners separately (line laser scanner from Faro for reference, stereophotography scanner from 3dMD and structured light scanner from FaceScan for test). For each patient, registration based on Iterative Closest Point (ICP) algorithm was executed to align two test models (3dMD data & Facescan data) to the reference models (Faro data in high accuracy) respectively. The same boundaries on each pair models (one test and one reference models) were obtained by projection function in Geomagic Stuido 2012 software for trimming overlapping region, then 3D average measurement errors (3D errors) were calculated for each pair models also by the software. Paired t-test analysis was adopted to compare the 3D errors of two test facial scanners (10 data for each group). 3D profile measurement accuracy (3D accuracy) that is integrated embodied by average value and standard deviation of 10 patients' 3D errors were obtained by surveying analysis for each test scanner finally. Results: 3D accuracies of 2 test facial scanners in this study for facial deformity were 0.44+/-0.08 mm and 0.43+/-0.05 mm. The result of structured light scanner was slightly better than stereophotography scanner. No statistical difference between them. Conclusions: Both test facial scanners could meet the accuracy requirement (0.5mm) of 3D facial data acquisition for oral clinic facial deformity patients in this study. Their practical measurement accuracies were all slightly lower than their nominal accuracies.

  6. The CT Scanner Facility at Stellenbosch University: An open access X-ray computed tomography laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Plessis, Anton du, E-mail: anton2@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa); Physics Department, Stellenbosch University, Stellenbosch (South Africa); Roux, Stephan Gerhard le, E-mail: lerouxsg@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa); Guelpa, Anina, E-mail: aninag@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa)

    2016-10-01

    The Stellenbosch University CT Scanner Facility is an open access laboratory providing non-destructive X-ray computed tomography (CT) and a high performance image analysis services as part of the Central Analytical Facilities (CAF) of the university. Based in Stellenbosch, South Africa, this facility offers open access to the general user community, including local researchers, companies and also remote users (both local and international, via sample shipment and data transfer). The laboratory hosts two CT instruments, i.e. a micro-CT system, as well as a nano-CT system. A workstation-based Image Analysis Centre is equipped with numerous computers with data analysis software packages, which are to the disposal of the facility users, along with expert supervision, if required. All research disciplines are accommodated at the X-ray CT laboratory, provided that non-destructive analysis will be beneficial. During its first four years, the facility has accommodated more than 400 unique users (33 in 2012; 86 in 2013; 154 in 2014; 140 in 2015; 75 in first half of 2016), with diverse industrial and research applications using X-ray CT as means. This paper summarises the existence of the laboratory’s first four years by way of selected examples, both from published and unpublished projects. In the process a detailed description of the capabilities and facilities available to users is presented.

  7. Calibrating an optical scanner for quality assurance of large area radiation detectors

    Science.gov (United States)

    Karadzhinova, A.; Hildén, T.; Berdova, M.; Lauhakangas, R.; Heino, J.; Tuominen, E.; Franssila, S.; Hæggström, E.; Kassamakov, I.

    2014-11-01

    A gas electron multiplier (GEM) is a particle detector used in high-energy physics. Its main component is a thin copper-polymer-copper sandwich that carries Ø =70  ±  5 µm holes. Quality assurance (QA) is needed to guarantee both long operating life and reading fidelity of the GEM. Absence of layer defects and conformity of the holes to specifications is important. Both hole size and shape influence the detector’s gas multiplication factor and hence affect the collected data. For the scanner the required lateral measurement tolerance is ± 5 µm. We calibrated a high aspect ratio optical scanning system (OSS) to allow ensuring the quality of large GEM foils. For the calibration we microfabricated transfer standards, which were imaged with the OSS and which were compared to corresponding scanning electron microscopy (SEM) images. The calibration fulfilled the ISO/IEC 17025 and UKAS M3003 requirements: the calibration factor was 1.01  ±  0.01, determined at 95% confidence level across a 950  ×  950 mm2 area. The proposed large-scale scanning technique can potentially be valuable in other microfabricated products too.

  8. Monitoring tooth demineralization using a cross polarization optical coherence tomographic system with an integrated MEMS scanner

    Science.gov (United States)

    Fried, Daniel; Staninec, Michal; Darling, Cynthia; Kang, Hobin; Chan, Kenneth

    2012-01-01

    New methods are needed for the nondestructive measurement of tooth demineralization and remineralization to monitor the progression of incipient caries lesions (tooth decay) for effective nonsurgical intervention and to evaluate the performance of anti-caries treatments such as chemical treatments or laser irradiation. Studies have shown that optical coherence tomography (OCT) has great potential to fulfill this role since it can be used to measure the depth and severity of early lesions with an axial resolution exceeding 10-μm, it is easy to apply in vivo and it can be used to image the convoluted topography of tooth occlusal surfaces. In this paper we present early results using a new cross-polarization OCT system introduced by Santec. This system utilizes a swept laser source and a MEMS scanner for rapid acquisition of cross polarization images. Preliminary studies show that this system is useful for measurement of the severity of demineralization on tooth surfaces and for showing the spread of occlusal lesions under the dentinal-enamel junction.

  9. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... of SA imaging. Due to the complete data set, it is possible to have both dynamic transmit and receive focusing to improve contrast and resolution. It is also possible to improve penetration depth by employing codes during ultrasound transmission. Data sets for vector flow imaging can be acquired using...... short imaging sequences, whereby both the correct velocity magnitude and angle can be estimated. A number of examples of both phantom and in-vivo SA images will be presented measured by the experimental ultrasound scanner RASMUS to demonstrate the many benefits of SA imaging....

  10. Performance evaluation of the Ingenuity TF PET/CT scanner with a focus on high count-rate conditions

    Science.gov (United States)

    Kolthammer, Jeffrey A.; Su, Kuan-Hao; Grover, Anu; Narayanan, Manoj; Jordan, David W.; Muzic, Raymond F.

    2014-07-01

    This study evaluated the positron emission tomography (PET) imaging performance of the Ingenuity TF 128 PET/computed tomography (CT) scanner which has a PET component that was designed to support a wider radioactivity range than is possible with those of Gemini TF PET/CT and Ingenuity TF PET/MR. Spatial resolution, sensitivity, count rate characteristics and image quality were evaluated according to the NEMA NU 2-2007 standard and ACR phantom accreditation procedures; these were supplemented by additional measurements intended to characterize the system under conditions that would be encountered during quantitative cardiac imaging with 82Rb. Image quality was evaluated using a hot spheres phantom, and various contrast recovery and noise measurements were made from replicated images. Timing and energy resolution, dead time, and the linearity of the image activity concentration, were all measured over a wide range of count rates. Spatial resolution (4.8-5.1 mm FWHM), sensitivity (7.3 cps kBq-1), peak noise-equivalent count rate (124 kcps), and peak trues rate (365 kcps) were similar to those of the Gemini TF PET/CT. Contrast recovery was higher with a 2 mm, body-detail reconstruction than with a 4 mm, body reconstruction, although the precision was reduced. The noise equivalent count rate peak was broad (within 10% of peak from 241-609 MBq). The activity measured in phantom images was within 10% of the true activity for count rates up to those observed in 82Rb cardiac PET studies.

  11. Multi-contrast attenuation map synthesis for PET/MR scanners: assessment on FDG and Florbetapir PET tracers

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, Ninon [University College London, Translational Imaging Group, Centre for Medical Image Computing, London (United Kingdom); Cardoso, M.J.; Modat, Marc; Ourselin, Sebastien [University College London, Translational Imaging Group, Centre for Medical Image Computing, London (United Kingdom); University College London, Dementia Research Centre, Institute of Neurology, London (United Kingdom); Thielemans, Kris; Dickson, John [University College London, Institute of Nuclear Medicine, London (United Kingdom); Schott, Jonathan M. [University College London, Dementia Research Centre, Institute of Neurology, London (United Kingdom); Atkinson, David [University College London, Centre for Medical Imaging, London (United Kingdom); Arridge, Simon R. [University College London, Centre for Medical Image Computing, London (United Kingdom); Hutton, Brian F. [University College London, Institute of Nuclear Medicine, London (United Kingdom); University of Wollongong, Centre for Medical Radiation Physics, Wollongong, NSW (Australia)

    2015-08-15

    Positron Emission Tomography/Magnetic Resonance Imaging (PET/MR) scanners are expected to offer a new range of clinical applications. Attenuation correction is an essential requirement for quantification of PET data but MRI images do not directly provide a patient-specific attenuation map. Methods We further validate and extend a Computed Tomography (CT) and attenuation map (μ-map) synthesis method based on pre-acquired MRI-CT image pairs. The validation consists of comparing the CT images synthesised with the proposed method to the original CT images. PET images were acquired using two different tracers ({sup 18}F-FDG and {sup 18}F-florbetapir). They were then reconstructed and corrected for attenuation using the synthetic μ-maps and compared to the reference PET images corrected with the CT-based μ-maps. During the validation, we observed that the CT synthesis was inaccurate in areas such as the neck and the cerebellum, and propose a refinement to mitigate these problems, as well as an extension of the method to multi-contrast MRI data. Results With the improvements proposed, a significant enhancement in CT synthesis, which results in a reduced absolute error and a decrease in the bias when reconstructing PET images, was observed. For both tracers, on average, the absolute difference between the reference PET images and the PET images corrected with the proposed method was less than 2%, with a bias inferior to 1%. Conclusion With the proposed method, attenuation information can be accurately derived from MRI images by synthesising CT using routine anatomical sequences. MRI sequences, or combination of sequences, can be used to synthesise CT images, as long as they provide sufficient anatomical information. (orig.)

  12. Application of Infrared Scanners to Forest Fire Detection

    Science.gov (United States)

    Hirsch, S. N.

    1971-01-01

    The potential of using infrared scanners for the detection of forest fires is discussed. An experiment is described in which infrared and visual detection systems were used jointly to study timber fire detection. Many fires were detected visually but missed by the airborne IR system, and many fires were detected by the IR system but missed visually. Until more is learned about the relationship between heat output and smoke output from latent fires, the relative effectiveness of visual and IR systems cannot be determined. The 1970 tests indicated that IR used in combination with visual detection will result in a more efficient system than visual alone. Even with limited knowledge of the relative effectiveness of the two systems, operational use of a combined system can be used to substantially reduce total firefighting costs.

  13. Solar radiance models for determination of ERBE scanner filter factor

    Science.gov (United States)

    Arduini, R. F.

    1985-01-01

    Shortwave spectral radiance models for use in the spectral correction algorithms for the ERBE Scanner Instrument are provided. The required data base was delivered to the ERBe Data Reduction Group in October 1984. It consisted of two sets of data files: (1) the spectral bidirectional angular models and (2) the spectral flux modes. The bidirectional models employ the angular characteristics of reflection by the Earth-atmosphere system and were derived from detailed radiance calculations using a finite difference model of the radiative transfer process. The spectral flux models were created through the use of a delta-Eddington model to economically simulate the effects of atmospheric variability. By combining these data sets, a wide range of radiances may be approximated for a number of scene types.

  14. An electronic scanner of pressure for wind tunnel models

    Science.gov (United States)

    Kauffman, Ronald C.; Coe, Charles F.

    1986-01-01

    An electronic scanner of pressure (ESOP) has been developed by NASA Ames Research Center for installation in wind tunnel models. An ESOP system consists of up to 20 pressure modules (PMs), each with 48 pressure transducers and a heater, an analog-to-digital (A/D) converter module, a microprocessor, a data controller, a monitor unit, a control and processing unit, and a heater controller. The PMs and the A/D converter module are sized to be installed in the models tested in the Ames Aerodynamics Division wind tunnels. A unique feature of the pressure module is the lack of moving parts such as a pneumatic switch used in other systems for in situ calibrations. This paper describes the ESOP system and the results of the initial testing of the system. The initial results indicate the system meets the original design goal of 0.15 percent accuracy.

  15. Design and performance evaluation of a high resolution IRI-microPET preclinical scanner

    Energy Technology Data Exchange (ETDEWEB)

    Islami rad, S.Z., E-mail: szislami@yahoo.com [Department of Physic, Faculty of Science, University of Qom, Qom (Iran, Islamic Republic of); Peyvandi, R. Gholipour; Lehdarboni, M. Askari; Ghafari, A.A. [Instrumentation Research Group, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2015-05-01

    PET for small animal, IRI-microPET, was designed and built at the NSTRI. The scanner is made of four detectors positioned on a rotating gantry at a distance 50 mm from the center. Each detector consists of a 10×10 crystal matrix of 2×2×10 mm{sup 3} directly coupled to a PS-PMT. A position encoding circuit for specific PS-PMT has been designed, built and tested with a PD-MFS-2MS/s-8/14 data acquisition board. After implementing reconstruction algorithms (FBP, MLEM and SART) on sinograms, images quality and system performance were evaluated by energy resolution, timing resolution, spatial resolution, scatter fraction, sensitivity, RMS contrast and SNR parameters. The energy spectra were obtained for the crystals with an energy window of 300–700 keV. The energy resolution in 511 keV averaged over all modules, detectors, and crystals, was 23.5%. A timing resolution of 2.4 ns FWHM obtained by coincidence timing spectrum was measured with crystal LYSO. The radial and tangential resolutions for {sup 18}F (1.15-mm inner diameter) at the center of the field of view were 1.81 mm and 1.90 mm, respectively. At a radial offset of 5 mm, the FWHM values were 1.96 and 2.06 mm. The system scatter fraction was 7.1% for the mouse phantom. The sensitivity was measured for different energy windows, leading to a sensitivity of 1.74% at the center of FOV. Also, images quality was evaluated by RMS contrast and SNR factors, and the results show that the reconstructed images by MLEM algorithm have the best RMS contrast, and SNR. The IRI-microPET presents high image resolution, low scatter fraction values and improved SNR for animal studies.

  16. SU-F-R-08: Can Normalization of Brain MRI Texture Features Reduce Scanner-Dependent Effects in Unsupervised Machine Learning?

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, K; O’Dwyer, R [SUNY Upstate Medical University, Syracuse, NY (United States); Bradford, T [Syracuse University, Syracuse, NY (United States); Cussen, L [Rochester Institute of Technology, Rochester, NY (United States)

    2016-06-15

    Purpose: To reduce differences in features calculated from MRI brain scans acquired at different field strengths with or without Gadolinium contrast. Methods: Brain scans were processed for 111 epilepsy patients to extract hippocampus and thalamus features. Scans were acquired on 1.5 T scanners with Gadolinium contrast (group A), 1.5T scanners without Gd (group B), and 3.0 T scanners without Gd (group C). A total of 72 features were extracted. Features were extracted from original scans and from scans where the image pixel values were rescaled to the mean of the hippocampi and thalami values. For each data set, cluster analysis was performed on the raw feature set and for feature sets with normalization (conversion to Z scores). Two methods of normalization were used: The first was over all values of a given feature, and the second by normalizing within the patient group membership. The clustering software was configured to produce 3 clusters. Group fractions in each cluster were calculated. Results: For features calculated from both the non-rescaled and rescaled data, cluster membership was identical for both the non-normalized and normalized data sets. Cluster 1 was comprised entirely of Group A data, Cluster 2 contained data from all three groups, and Cluster 3 contained data from only groups 1 and 2. For the categorically normalized data sets there was a more uniform distribution of group data in the three Clusters. A less pronounced effect was seen in the rescaled image data features. Conclusion: Image Rescaling and feature renormalization can have a significant effect on the results of clustering analysis. These effects are also likely to influence the results of supervised machine learning algorithms. It may be possible to partly remove the influence of scanner field strength and the presence of Gadolinium based contrast in feature extraction for radiomics applications.

  17. Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. N.; Revet, G.; Fuchs, J. [LULI-CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay, UPMC Univ Paris 06, Sorbonne Universities, F-91128 Palaiseau Cedex (France); Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Gauthier, M.; Glenzer, S.; Propp, A. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Bazalova-Carter, M. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2 (Canada); Bolanos, S. [LULI-CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay, UPMC Univ Paris 06, Sorbonne Universities, F-91128 Palaiseau Cedex (France); Riquier, R. [LULI-CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay, UPMC Univ Paris 06, Sorbonne Universities, F-91128 Palaiseau Cedex (France); CEA, DAM, DIF, F-91297 Arpajon (France); Antici, P. [INRS-EMT, Varennes, J3X1S2 Québec (Canada); Morabito, A. [ELI-ALPS, ELI-HU non profit kft, Dugonics ter 13, H-6720, Szeged (Hungary); Starodubtsev, M. [Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation)

    2016-07-15

    Radiochromic films (RCF) are commonly used in dosimetry for a wide range of radiation sources (electrons, protons, and photons) for medical, industrial, and scientific applications. They are multi-layered, which includes plastic substrate layers and sensitive layers that incorporate a radiation-sensitive dye. Quantitative dose can be retrieved by digitizing the film, provided that a prior calibration exists. Here, to calibrate the newly developed EBT3 and HDv2 RCFs from Gafchromic™, we used the Stanford Medical LINAC to deposit in the films various doses of 10 MeV photons, and by scanning the films using three independent EPSON Precision 2450 scanners, three independent EPSON V750 scanners, and two independent EPSON 11000XL scanners. The films were scanned in separate RGB channels, as well as in black and white, and film orientation was varied. We found that the green channel of the RGB scan and the grayscale channel are in fact quite consistent over the different models of the scanner, although this comes at the cost of a reduction in sensitivity (by a factor ∼2.5 compared to the red channel). To allow any user to extend the absolute calibration reported here to any other scanner, we furthermore provide a calibration curve of the EPSON 2450 scanner based on absolutely calibrated, commercially available, optical density filters.

  18. FormScanner: Open-Source Solution for Grading Multiple-Choice Exams

    Science.gov (United States)

    Young, Chadwick; Lo, Glenn; Young, Kaisa; Borsetta, Alberto

    2016-01-01

    The multiple-choice exam remains a staple for many introductory physics courses. In the past, people have graded these by hand or even flaming needles. Today, one usually grades the exams with a form scanner that utilizes optical mark recognition (OMR). Several companies provide these scanners and particular forms, such as the eponymous…

  19. Validity and Repeatability of the Sizestream 3D Scanner and Poikos Modeling System

    NARCIS (Netherlands)

    Vonk, T.E.; Daanen, H.A.M.

    2015-01-01

    Three-dimensional (3D) body scanning becomes increasingly important in the medical, ergonomical and apparel industry. The SizeStream 3D body scanner is a 3D body scanner in the shape of a fitting room that can generate a 3D copy of the human body in a few seconds. The Poikos modeling system

  20. Application of intra-oral dental scanners in the digital workflow of implantology

    NARCIS (Netherlands)

    van der Meer, W.J.; Andriessen, F.S.; Wismeijer, D.; Ren, Y.

    2012-01-01

    Intra-oral scanners will play a central role in digital dentistry in the near future. In this study the accuracy of three intra-oral scanners was compared. Materials and methods: A master model made of stone was fitted with three high precision manufactured PEEK cylinders and scanned with three

  1. Application of intra-oral dental scanners in the digital workflow of implantology

    NARCIS (Netherlands)

    van der Meer, Wicher J; Andriessen, Frank S; Wismeijer, Daniel; Ren, Yijin

    2012-01-01

    UNLABELLED: Intra-oral scanners will play a central role in digital dentistry in the near future. In this study the accuracy of three intra-oral scanners was compared. MATERIALS AND METHODS: A master model made of stone was fitted with three high precision manufactured PEEK cylinders and scanned

  2. 21 CFR 862.2400 - Densitometer/scanner (integrating, reflectance, TLC, or radiochromatogram) for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Densitometer/scanner (integrating, reflectance, TLC, or radiochromatogram) for clinical use. 862.2400 Section 862.2400 Food and Drugs FOOD AND DRUG..., reflectance, TLC, or radiochromatogram) for clinical use. (a) Identification. A densitometer/scanner...

  3. Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

    Directory of Open Access Journals (Sweden)

    Mansour Alsaleh

    2017-01-01

    Full Text Available The widespread adoption of web vulnerability scanners and the differences in the functionality provided by these tool-based vulnerability detection approaches increase the demand for testing their detection effectiveness. Despite the advantages of dynamic testing approaches, the literature lacks studies that systematically evaluate the performance of open source web vulnerability scanners. The main objectives of this study are to assess the performance of open source scanners from multiple perspectives and to examine their detection capability. This paper presents the results of a comparative evaluation of the security features as well as the performance of four web vulnerability detection tools. We followed this comparative assessment with a case study in which we evaluate the level of agreement between the results reported by two open source web vulnerability scanners. Given that the results of our comparative evaluation did not show significant performance differences among the scanners while the results of the conducted case study revealed high level of disagreement between the reports generated by different scanners, we conclude that the inconsistencies between the reports generated by different scanners might not necessarily correlate with their performance properties. We also present some recommendations for helping developers of web vulnerabilities scanners to improve their tools’ capabilities.

  4. Using a Flatbed Scanner to Measure Detergency: A Cost-Effective Undergraduate Laboratory

    Science.gov (United States)

    Poce-Fatou, J. A.; Bethencourt, M.; Moreno-Dorado, F. J.; Palacios-Santander, J. M.

    2011-01-01

    The efficiency of a laundry-washing process is typically assessed using reflection measurements. A spectrometer and an integrating sphere are used to obtain the reflection data. The similarities between this equipment and a commercially available flatbed scanner are examined, and the way a flatbed scanner can be used to obtain detergent…

  5. Development of a Low-Cost Medical Ultrasound Scanner Using a Monostatic Synthetic Aperture

    NARCIS (Netherlands)

    Heuvel, T.L.A. van den; Graham, D.J.; Smith, K.J.; Korte, C.L. de; Neasham, J.A.

    2017-01-01

    OBJECTIVE: In this paper, we present the design of low-cost medical ultrasound scanners aimed at the detection of maternal mortality risk factors in developing countries. METHOD: Modern ultrasound scanners typically employ a high element count transducer array with multichannel transmit and receive

  6. Calibration between a Laser Range Scanner and an Industrial Robot Manipulator

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm; Andersen, Nils Axel; Ravn, Ole

    2014-01-01

    In this paper we pre