WorldWideScience

Sample records for scanners computers

  1. Description of a transmission X-ray computed tomography scanner

    Energy Technology Data Exchange (ETDEWEB)

    Hamideen, M.S., E-mail: mhamideen@fet.edu.jo [Department of Applied Science, Faculty of Engineering Technology, Al-Balqa' Applied University, Amman (Jordan); Sharaf, J.; Al-Saleh, K.A. [Department of Physics, University of Jordan, Amman (Jordan); Shaderma, M. [Department of Applied science, Faculty of Prince Abdullah bin Ghazi, Al-Balqa' Applied University, Amman (Jordan)

    2011-11-15

    A new prototype X-ray computed tomography scanner has been designed, constructed and tested locally. The major system employs an X-ray tube, a semiconductor detector, data logger and a three-dimensional sample position controller driven by three stepping motors, which allow two linear translations in addition to the rotational motion. The image resolution is determined by the step size and the diameter of the X-ray beam, which is controlled by the pinhole collimator. The scanner is designed to reconstruct two- and three-dimensional images mapping the internal structures of the object with the aid of the computer. This system, due to the semiconductor detector used, presents the novelty of being potentially able to acquire both in CT (transmission) mode and in SPECT (emission) mode. The imaging system performance is inspected for different phantoms, and some typical reconstructed images are presented. - Highlights: > A prototype X-ray transmission CT scanner system was designed and constructed successfully at the X-ray Laboratory in the University of Jordan. > X-ray CT scanner demonstrated its capability as a non-destructive tool for evaluating the internal atomic details of material objects. > Some general problems of X-ray CT scanning and image reconstruction are discussed and some suggested solutions are presented. > Scanner is designed to reconstruct two- and three-dimensional images mapping the internal structures of the object with the aid of the computer. > Internal geometrical structure can be determined from CT images.

  2. Determining organ doses from computed tomography scanners using cadaveric subjects

    Science.gov (United States)

    Griglock, Thomas M.

    The use of computed tomographic (CT) imaging has increased greatly since its inception in 1972. Technological advances have increased both the applicability of CT exams for common health problems as well as the radiation doses used to perform these exams. The increased radiation exposures have garnered much attention in the media and government agencies, and have brought about numerous attempts to quantify the amount of radiation received by patients. While the overwhelming majority of these attempts have focused on creating models of the human body (physical or computational), this research project sought to directly measure the radiation inside an actual human being. Three female cadaveric subjects of varying sizes were used to represent live patients. Optically-stimulated luminescent (OSL) dosimeters were used to measure the radiation doses. A dosimeter placement system was developed, tested, and optimized to allow accurate and reproducible placement of the dosimeters within the cadaveric subjects. A broad-beam, 320-slice, volumetric CT scanner was utilized to perform all CT exams, including five torso exams, four cardiac exams, and three organ perfusion exams. Organ doses ranged in magnitude from less than 1 to over 120 mGy, with the largest doses measured for perfusion imaging. A methodology has been developed that allows fast and accurate measurement of actual organ doses resulting from CT exams. The measurements made with this methodology represent the first time CT organ doses have been directly measured within a human body. These measurements are of great importance because they allow comparison to the doses measured using previous methods, and can be used to more accurately assess the risks from CT imaging.

  3. Land use classification utilizing remote multispectral scanner data and computer analysis techniques

    Science.gov (United States)

    Leblanc, P. N.; Johannsen, C. J.; Yanner, J. E.

    1973-01-01

    An airborne multispectral scanner was used to collect the visible and reflective infrared data. A small subdivision near Lafayette, Indiana was selected as the test site for the urban land use study. Multispectral scanner data were collected over the subdivision on May 1, 1970 from an altitude of 915 meters. The data were collected in twelve wavelength bands from 0.40 to 1.00 micrometers by the scanner. The results indicated that computer analysis of multispectral data can be very accurate in classifying and estimating the natural and man-made materials that characterize land uses in an urban scene.

  4. Inter-laboratory comparison of medical computed tomography (CT) scanners for industrial applications in the slaughterhouses

    DEFF Research Database (Denmark)

    Christensen, Lars Bager; Angel, Jais Andreas Breusch

    2013-01-01

    Using computed tomography (CT) in the calibration of online grading equipment has been demonstrated to be beneficial over the last years by several institutions using medical CT scanners. The difference in makes and models calls for a standardized (and calibrated) method to be able to quantify di...

  5. Computed tomography image source identification by discriminating CT-scanner image reconstruction process.

    Science.gov (United States)

    Duan, Y; Coatrieux, G; Shu, H Z

    2015-08-01

    In this paper, we focus on the identification of the Computed Tomography (CT) scanner that has produced a CT image. To do so, we propose to discriminate CT-Scanner systems based on their reconstruction process, the footprint or the signature of which can be established based on the way they modify the intrinsic sensor noise of X-ray detectors. After having analyzed how the sensor noise is modified in the reconstruction process, we define a set of image features so as to serve as CT acquisition system footprint. These features are used to train a SVM based classifier. Experiments conducted on images issued from 15 different CT-Scanner models of 4 distinct manufacturers show it is possible to identify the origin of one CT image with high accuracy.

  6. Validation of quantitative computed tomographic evaluation of bone mineral density of several CT scanners

    Science.gov (United States)

    Fritz, Steven L.; Stockham, Charles D.

    1992-06-01

    We have validated a pre-existing model for QCT evaluation of bone mineral density by scanning a commercial bone mineral density phantom on several CT scanners and evaluating the accuracy and reproducibility of bone mineral density measurements on each. The model assumes that bone mineral density is a linear function of CT number of bone. Rather than imaging bone mineral density standards for calibration, we computed an `equivalent bone mineral density' for fat and muscle from the known linear relationship between bone mineral density and CT number to remove the dependence of bone mineral density on field non- uniformities caused by beam hardening and scattered radiation, positioning errors and quality control. The `equivalent bone mineral density' for fat and muscle were computed from spectral data and atomic composition of fat and tissue for a GE 9800 scanner. These were used to establish the true bone mineral density of two reference BMD standards used in the phantom and these in turn were used to measure the `equivalent bone mineral density' of fat and muscle on other CT scanners. Phantom measurements on several other CT scanners were used to compute the `equivalent bone mineral density' of the phantom inserts for those systems. Results from the Picker 1200, the Philips LX and the Siemens Somatom DR/H were compared with the results of the GE 9800.

  7. Computer implemented classification of vegetation using aircraft acquired multispectral scanner data

    Science.gov (United States)

    Cibula, W. G.

    1975-01-01

    The use of aircraft 24-channel multispectral scanner data in conjunction with computer processing techniques to obtain an automated classification of plant species association was discussed. The classification of various plant species associations was related to information needed for specific applications. In addition, the necessity for multiple selection of training fields for a single class in situations where the study area consists of highly irregular terrain was detailed. A single classification was illuminated differently in different areas, resulting in the existence of multiple spectral signatures for a given class. These different signatures result since different qualities of radiation upwell to the detector from portions that have differing qualities of incident radiation. Techniques of training field selection were outlined, and a classification obtained from a natural area in Tishomingo State Park in northern Mississippi was presented.

  8. Surround 3-Dimensional Scanner

    Directory of Open Access Journals (Sweden)

    Karbowski Krzysztof

    2017-06-01

    Full Text Available The paper describes original 3-dimensional structured light scanner used for medical application. Scanner kinematics is similar to the gantry mechanism of computed tomography apparatus. The unique feature of the presented scanner is a glass table for capturing image of a human body part. The scanner can acquire an object through the table. It gives the chance for surround scanning of the human body, using only one scanning head, without changing the body position. It is more cost effective scanner solution than multihead scanner configuration.

  9. Beam hardening artifacts by dental implants: Comparison of cone-beam and 64-slice computed tomography scanners

    Directory of Open Access Journals (Sweden)

    Farzad Esmaeili

    2013-01-01

    Full Text Available Background: Cone beam computed tomography (CBCT is an alternative to a computed tomography (CT scan, which is appropriate for a wide range of craniomaxillofacial indications. The long-term use of metallic materials in dentistry means that artifacts caused by metallic restorations in the oral cavity should be taken into account when utilizing CBCT and CT scanners. The aim of this study was to quantitatively compare the beam hardening artifacts produced by dental implants between CBCT and a 64-Slice CT scanner. Materials and Methods: In this descriptive study , an implant drilling model similar to the human mandible was used in the present study. The implants (Dentis were placed in the canine, premolar and molar areas. Three series of scans were provided from the implant areas using Somatom Sensation 64-slice and NewTom VGi (CBCT CT scanners. Identical images were evaluated by three radiologists. The artifacts in each image were determined based on pre-determined criteria. Kruskal-Wallis test was used to compare mean values; Mann-Whitney U test was used for two-by-two comparisons when there was a statistical significance ( P < 0.05. Results: The images of the two scanners had similar resolutions in axial sections ( P = 0.299. In coronal sections, there were significant differences in the resolutions of the images produced by the two scanners ( P < 0.001, with a higher resolution in the images produced by NewTom VGi scanner. On the whole, there were significant differences between the resolutions of the images produced by the two CT scanners ( P < 0.001, with higher resolution in the images produced by NewTom VGi scanner in comparison to those of Somatom Sensation. Conclusion: Given the high quality of the images produced by NewTom VGi and the lower costs in comparison to CT, the use of the images of this scanner in dental procedures is recommended, especially in patients with extensive restorations, multiple prostheses and previous implants.

  10. The CT Scanner Facility at Stellenbosch University: An open access X-ray computed tomography laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Plessis, Anton du, E-mail: anton2@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa); Physics Department, Stellenbosch University, Stellenbosch (South Africa); Roux, Stephan Gerhard le, E-mail: lerouxsg@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa); Guelpa, Anina, E-mail: aninag@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa)

    2016-10-01

    The Stellenbosch University CT Scanner Facility is an open access laboratory providing non-destructive X-ray computed tomography (CT) and a high performance image analysis services as part of the Central Analytical Facilities (CAF) of the university. Based in Stellenbosch, South Africa, this facility offers open access to the general user community, including local researchers, companies and also remote users (both local and international, via sample shipment and data transfer). The laboratory hosts two CT instruments, i.e. a micro-CT system, as well as a nano-CT system. A workstation-based Image Analysis Centre is equipped with numerous computers with data analysis software packages, which are to the disposal of the facility users, along with expert supervision, if required. All research disciplines are accommodated at the X-ray CT laboratory, provided that non-destructive analysis will be beneficial. During its first four years, the facility has accommodated more than 400 unique users (33 in 2012; 86 in 2013; 154 in 2014; 140 in 2015; 75 in first half of 2016), with diverse industrial and research applications using X-ray CT as means. This paper summarises the existence of the laboratory’s first four years by way of selected examples, both from published and unpublished projects. In the process a detailed description of the capabilities and facilities available to users is presented.

  11. Assessment of radiation exposure on a dual-source computed tomography-scanner performing coronary computed tomography-angiography

    Energy Technology Data Exchange (ETDEWEB)

    Kirchhoff, S., E-mail: sonja.kirchhoff@med.uni-muenchen.d [Institute of Clinical Radiology, University Hospital Munich - Grosshadern, Ludwig Maximilians-Universitaet Muenchen, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich (Germany); Herzog, P., E-mail: peter.herzog@med.uni-muenchen.d [Institute of Clinical Radiology, University Hospital Munich - Grosshadern, Ludwig Maximilians-Universitaet Muenchen, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich (Germany); Johnson, T., E-mail: Thorsten.johnson@med.uni-muenchen.d [Institute of Clinical Radiology, University Hospital Munich - Grosshadern, Ludwig Maximilians-Universitaet Muenchen, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich (Germany); Boehm, H., E-mail: holger.boehm@med.uni-muenchen.d [Institute of Clinical Radiology, University Hospital Munich - Grosshadern, Ludwig Maximilians-Universitaet Muenchen, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich (Germany); Nikolaou, K., E-mail: konstantin.nikolaou@med.uni-muenchen.d [Institute of Clinical Radiology, University Hospital Munich - Grosshadern, Ludwig Maximilians-Universitaet Muenchen, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich (Germany); Reiser, M.F., E-mail: maximilian.reiser@med.uni-muenchen.d [Institute of Clinical Radiology, University Hospital Munich - Grosshadern, Ludwig Maximilians-Universitaet Muenchen, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich (Germany); Becker, C.H., E-mail: christoph.becker@med.uni-muenchen.d [Institute of Clinical Radiology, University Hospital Munich - Grosshadern, Ludwig Maximilians-Universitaet Muenchen, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich (Germany)

    2010-06-15

    Objective: The radiation exposure of a dual-source-64-channel multi-detector-computed-tomography-scanner (Somatom-Defintion, Siemens, Germany) was assessed in a phantom-study performing coronary-CT-angiography (CTCA) in comparison to patients' data randomly selected from routine scanning. Methods: 240 CT-acquisitions of a computed tomography dose index (CTDI)-phantom (PTW, Freiburg, Germany) were performed using a synthetically generated Electrocardiography (ECG)-signal with variable heart rates (30-180 beats per minute (bpm)). 120 measurements were acquired using continuous tube-output; 120 measurements were performed using ECG-synchronized tube-modulation. The pulsing window was set at minimum duration at 65% of the cardiac cycle between 30 and 75 bpm. From 90-180 bpm the pulsing window was set at 30-70% of the cardiac cycle. Automated pitch adaptation was always used. A comparison between phantom CTDI and two patient groups' CTDI corresponding to the two pulsing groups was performed. Results: Without ECG-tube-modulation CDTI-values were affected by heart-rate-changes resulting in 85.7 mGray (mGy) at 30 and 45 bpm, 65.5 mGy/60 bpm, 54.7 mGy/75 bpm, 46.5 mGy/90 bpm, 34.2 mGy/120 bpm, 27.0 mGy/150 bpm and 22.1 mGy/180 bpm equal to effective doses between 14.5 mSievert (mSv) at 30/45 bpm and 3.6 mSv at 180 bpm. Using ECG-tube-modulation these CTDI-values resulted: 32.6 mGy/30 bpm, 36.6 mGy/45 bpm, 31.4 mGy/60 bpm, 26.8 mGy/75 bpm, 23.7 mGy/90 bpm, 19.4 mGy/120 bpm, 17.2 mGy/150 bpm and 15.6 mGy/180 bpm equal to effective doses between 5.5 mSv at 30 bpm and 2.6 mSv at 180 bpm. Significant CTDI-differences were found between patients with lower/moderate and higher heart rates in comparison to the phantom CTDI-results. Conclusions: Dual source CTCA is particularly dose efficient at high heart rates when automated pitch adaptation, especially in combination with ECG-based tube-modulation is used. However in clinical routine scanning for patients with higher

  12. A Hybrid Soft-computing Method for Image Analysis of Digital Plantar Scanners

    OpenAIRE

    Razjouyan, Javad; Khayat, Omid; Siahi, Mehdi; Mansouri, Ali Alizadeh

    2013-01-01

    Digital foot scanners have been developed in recent years to yield anthropometrists digital image of insole with pressure distribution and anthropometric information. In this paper, a hybrid algorithm containing gray level spatial correlation (GLSC) histogram and Shanbag entropy is presented for analysis of scanned foot images. An evolutionary algorithm is also employed to find the optimum parameters of GLSC and transform function of the membership values. Resulting binary images as the thres...

  13. Dental wear estimation using a digital intra-oral optical scanner and an automated 3D computer vision method.

    Science.gov (United States)

    Meireles, Agnes Batista; Vieira, Antonio Wilson; Corpas, Livia; Vandenberghe, Bart; Bastos, Flavia Souza; Lambrechts, Paul; Campos, Mario Montenegro; Las Casas, Estevam Barbosa de

    2016-01-01

    The objective of this work was to propose an automated and direct process to grade tooth wear intra-orally. Eight extracted teeth were etched with acid for different times to produce wear and scanned with an intra-oral optical scanner. Computer vision algorithms were used for alignment and comparison among models. Wear volume was estimated and visual scoring was achieved to determine reliability. Results demonstrated that it is possible to directly detect submillimeter differences in teeth surfaces with an automated method with results similar to those obtained by direct visual inspection. The investigated method proved to be reliable for comparison of measurements over time.

  14. Accuracy of computer-aided design/computer-aided manufacturing-generated dental casts based on intraoral scanner data.

    Science.gov (United States)

    Patzelt, Sebastian B M; Bishti, Shaza; Stampf, Susanne; Att, Wael

    2014-11-01

    Little is known about the accuracy of physical dental casts that are based on three-dimensional (3D) data from an intraoral scanner (IOS). Thus, the authors conducted a study to evaluate the accuracy of full-arch stereolithographic (SLA) and milled casts obtained from scans of three IOSs. The authors digitized a polyurethane model using a laboratory reference scanner and three IOSs. They sent the scans (n = five scans per IOS) to the manufacturers to produce five physical dental casts and scanned the casts with the reference scanner. Using 3D evaluation software, the authors superimposed the data sets and compared them. The mean trueness values of Lava Chairside Oral Scanner C.O.S. (3M ESPE, St. Paul, Minn.), CEREC AC with Bluecam (Sirona, Bensheim, Germany) and iTero (Align Technology, San Jose, Calif.) casts were 67.50 micrometers (95 percent confidence interval [CI], 63.43-71.56), 75.80 μm (95 percent CI, 71.74-79.87) and 98.23 μm (95 percent CI, 94.17-102.30), respectively, with a statistically significant difference among all of the scanners (P < .05). The mean precision values were 13.77 μm (95 percent CI, 2.76-24.79), 21.62 μm (95 percent CI, 10.60-32.63) and 48.83 μm (95 percent CI, 37.82-59.85), respectively, with statistically significant differences between CEREC AC with Bluecam and iTero casts, as well as between Lava Chairside Oral Scanner C.O.S. and iTero casts (P < .05). All of the casts showed an acceptable level of accuracy; however, the SLA-based casts (CEREC AC with Bluecam and Lava Chairside Oral Scanner C.O.S.) seemed to be more accurate than milled casts (iTero). On the basis of the results of this investigation, the authors suggested that SLA technology was superior for the fabrication of dental casts. Nevertheless, all of the investigated casts showed clinically acceptable accuracy. Clinicians should keep in mind that the highest deviations might occur in the distal areas of the casts.

  15. A comparative study for image quality and radiation dose of a cone beam computed tomography scanner and a multislice computed tomography scanner for paranasal sinus imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cock, Jens de; Canning, John [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Zanca, Federica; Hermans, Robert [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); KU Leuven, Imaging and Pathology Department, Leuven (Belgium); Pauwels, Ruben [KU Leuven, Imaging and Pathology Department, Leuven (Belgium)

    2015-07-15

    To evaluate image quality and radiation dose of a state of the art cone beam computed tomography (CBCT) system and a multislice computed tomography (MSCT) system in patients with sinonasal poliposis. In this retrospective study two radiologists evaluated 57 patients with sinonasal poliposis who underwent a CBCT or MSCT sinus examination, along with a control group of 90 patients with normal radiological findings. Tissue doses were measured using a phantom model with thermoluminescent dosimeters (TLD). Overall image quality in CBCT was scored significantly higher than in MSCT in patients with normal radiologic findings (p-value: 0.00001). In patients with sinonasal poliposis, MSCT scored significantly higher than CBCT (p-value: 0.00001). The average effective dose for MSCT was 42 % higher compared to CBCT (108 μSv vs 63 μSv). CBCT and MSCT are both suited for the evaluation of sinonasal poliposis. In patients with sinonasal poliposis, clinically important structures of the paranasal sinuses can be better delineated with MSCT, whereas in patients without sinonasal poliposis, CBCT turns out to define the important structures of the sinonasal region better. However, given the lower radiation dose, CBCT can be considered for the evaluation of the sinonasal structures in patients with sinonasal poliposis. (orig.)

  16. Cone beam optical computed tomography for gel dosimetry I: scanner characterization

    Energy Technology Data Exchange (ETDEWEB)

    Olding, Tim; Holmes, Oliver; Schreiner, L John, E-mail: tim.olding@krcc.on.c [Department of Physics, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2010-05-21

    The ongoing development of easily accessible, fast optical readout tools promises to remove one of the barriers to acceptance of gel dosimetry as a viable tool in cancer clinics. This paper describes the characterization of a number of basic properties of the Vista(TM) cone beam CCD-based optical scanner, which can obtain high resolution reconstructed data in less than 20 min total imaging and reconstruction time. The suitability of a filtered back projection cone beam reconstruction algorithm is established for optically absorbing dosimeters using this scanner configuration. The system was then shown to be capable of imaging an optically absorbing media-filled 1 L polyethylene terephthalate (PETE) jar dosimeter to a reconstructed voxel resolution of 0.5 x 0.5 x 0.5 mm{sup 3}. At this resolution, more than 60% of the imaged volume in the dosimeter exhibits minimal spatial distortion, a measurement accuracy of 3-4% and the mean to standard deviation signal-to-noise ratio greater than 100 over an optical absorption range of 0.06-0.18 cm{sup -1}. An inter-day scan precision of 1% was demonstrated near the upper end of this range. Absorption measurements show evidence of stray light perturbation causing artifacts in the data, which if better managed would improve the accuracy of optical readout. Cone beam optical attenuation measurements of scattering dosimeters, on the other hand, are nonlinearly affected by angled scatter stray light. Scatter perturbation leads to significant cupping artifacts and other inaccuracies that greatly limit the readout of scattering polymer gel dosimeters with cone beam optical CT.

  17. Monte Carlo modeling of a clinical PET scanner by using the GATE dedicated computer code; Modelagem Monte Carlo de um PET Scanner clinico utilizando o codigo dedicado GATE

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Igor Fagner; Lima, Fernando Roberto de Andrade, E-mail: falima@cnen.gov.b [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Universidade de Pernambuco (UPE), Recife, PE (Brazil). Escola Politecnica; Vieira, Jose Wilson [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2011-10-26

    This paper demonstrates more possible detailed the GATE simulated architecture involved in the 4D modeling of a General Electric PET scanner, the Advance. So, it were used data present in the literature on the configuration of GE modelled PET. The obtained results which were the 3D components of PET creation, and the simulation of 4D phenomena as the source decay and the gantry whirl, exhibit the potential of tool in emission tomograph modelling

  18. A phantom study for the comparison of different brands of computed tomography scanners and software packages for endovascular aneurysm repair sizing and planning.

    Science.gov (United States)

    Velu, Juliëtte F; Groot Jebbink, Erik; de Vries, Jean-Paul Pm; van der Palen, Job Am; Slump, Cornelis H; Geelkerken, Robert H

    2017-01-01

    Objectives Correct sizing of endoprostheses used for the treatment of abdominal aortic aneurysms is important to prevent endoleaks and migration. Sizing requires several steps and each step introduces a possible sizing error. The goal of this study was to investigate the magnitude of these errors compared to the golden standard: a vessel phantom. This study focuses on the errors in sizing with three different brands of computed tomography angiography scanners in combination with three reconstruction software packages. Methods Three phantoms with a different diameter, altitude and azimuth were scanned with three computed tomography scanners: Toshiba Aquilion 64-slice, Philips Brilliance iCT 256-slice and Siemens Somatom Sensation 64-slice. The phantom diameters were determined in the stretched view after central lumen line reconstruction by three observers using Simbionix PROcedure Rehearsal Studio, 3mensio and TeraRecon planning software. The observers, all novices in sizing endoprostheses using planning software, measured 108 slices each. Two senior vascular surgeons set the tolerated error margin of sizing on ±1.0 mm. Results In total, 11.3% of the measurements (73/648) were outside the set margins of ±1.0 mm from the phantom diameter, with significant differences between the scanner types (14.8%, 12.1%, 6.9% for the Siemens scanner, Philips scanner and Toshiba scanner, respectively, p-value = 0.032), but not between the software packages (8.3%, 11.1%, 14.4%, p-value = 0.141) or the observers (10.6%, 9.7%, 13.4%, p-value = 0.448). Conclusions It can be concluded that the errors in sizing were independent of the used software packages, but the phantoms scanned with Siemens scanner were significantly more measured incorrectly than the phantoms scanned with the Toshiba scanner. Consequently, awareness on the type of computed tomography scanner and computed tomography scanner setting is necessary, especially in complex abdominal aortic aneurysms

  19. Image quality in low-dose coronary computed tomography angiography with a new high-definition CT scanner.

    Science.gov (United States)

    Kazakauskaite, Egle; Husmann, Lars; Stehli, Julia; Fuchs, Tobias; Fiechter, Michael; Klaeser, Bernd; Ghadri, Jelena R; Gebhard, Catherine; Gaemperli, Oliver; Kaufmann, Philipp A

    2013-02-01

    A new generation of high definition computed tomography (HDCT) 64-slice devices complemented by a new iterative image reconstruction algorithm-adaptive statistical iterative reconstruction, offer substantially higher resolution compared to standard definition CT (SDCT) scanners. As high resolution confers higher noise we have compared image quality and radiation dose of coronary computed tomography angiography (CCTA) from HDCT versus SDCT. Consecutive patients (n = 93) underwent HDCT, and were compared to 93 patients who had previously undergone CCTA with SDCT matched for heart rate (HR), HR variability and body mass index (BMI). Tube voltage and current were adapted to the patient's BMI, using identical protocols in both groups. The image quality of all CCTA scans was evaluated by two independent readers in all coronary segments using a 4-point scale (1, excellent image quality; 2, blurring of the vessel wall; 3, image with artefacts but evaluative; 4, non-evaluative). Effective radiation dose was calculated from DLP multiplied by a conversion factor (0.014 mSv/mGy × cm). The mean image quality score from HDCT versus SDCT was comparable (2.02 ± 0.68 vs. 2.00 ± 0.76). Mean effective radiation dose did not significantly differ between HDCT (1.7 ± 0.6 mSv, range 1.0-3.7 mSv) and SDCT (1.9 ± 0.8 mSv, range 0.8-5.5 mSv; P = n.s.). HDCT scanners allow low-dose 64-slice CCTA scanning with higher resolution than SDCT but maintained image quality and equally low radiation dose. Whether this will translate into higher accuracy of HDCT for CAD detection remains to be evaluated.

  20. Scanner Art

    Science.gov (United States)

    Jaworski, Joy; Murphy, Kris

    2009-01-01

    In this article, the authors describe how they incorporated environmental awareness into their art curriculum. Here, they describe a digital photography project in which their students used flatbed scanners as cameras. Their students composed their objects directly on the scanner. The lesson enabled students to realize that artists have voices…

  1. Coronary Computed Tomography Angiography: Patient-related factors determining image quality using a second-generation 320-slice CT scanner.

    Science.gov (United States)

    Ghekiere, Olivier; Nchimi, Alain; Djekic, Julien; El Hachemi, Mounia; Mancini, Isabelle; Hansen, Dominique; Vanhoenacker, Piet; de Roos, Albert; Dendale, Paul

    2016-10-15

    To investigate the diagnostic confidence of Coronary Computed Tomography Angiography (CCTA) and the effect of patient-related factors on CCTA image quality using a second-generation 320-slice scanner. 200 consecutive patients (mean age 60±12years; 109 men) prospectively underwent CCTA. The mean body mass index (BMI) was 27.1±4.9kg/m(2); the median heart rate (HR) was 60.0 (interquartile range (IQR), 53.9-66.1) beats per minute (bpm). The median segment's diameter was 2.8 (IQR, 2.2-3.4) mm. For each coronary segment ≥1.5mm in diameter, two readers scored: diameter narrowing as confidence and motion-related image quality, with interobserver agreement kappa-values of 0.89, 0.91 and 0.61 respectively. Seventy-nine of the 2505 evaluated segments (3.2%) had non-diagnostic image quality because of coronary calcifications (66/79; 83.5%), stent- (6/79; 7.5%), pacemaker- (2/79; 2.5%) or motion-related artifacts (5/79; 6.5%). The effect of patient-related factors on motion-related image quality was investigated by multinomial logistic regression in 181 patients with calcium score (IQR, 0-446.5). Increasing coronary diameter was the most improving image quality factor (odds ratio (OR), 1.8637; pimage quality. Using a second-generation 320-slice scanner, CCTA diagnostic confidence is predominantly affected by coronary calcifications, whereas motion-related image quality is non-diagnostic only in exceptional cases and mainly influenced by the coronary diameter. For future developments, our study findings therefore suggest greater requirements concerning spatial resolution and calcium-related artifact removal than concerning temporal resolution, especially to improve diagnostic confidence in patient groups with smaller coronary diameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Beam Hardening Artifacts: Comparison between Two Cone Beam Computed Tomography Scanners

    Directory of Open Access Journals (Sweden)

    Farzad Esmaeili

    2012-04-01

    Full Text Available Background and aims. At present, cone beam computed tomography (CBCT has become a substitute for computed tomography (CT in dental procedures. The metallic materials used in dentistry can produce artifacts due to the beam hardening phenomenon. These artifacts decrease the quality of images. In the present study, the number of artifacts as a result of beam hardening in the images of dental implants was compared between two NewTom VG and Planmeca Promax 3D Max CBCT machines. Materials and methods. An implant drilling model was used in the present study. The implants (Dentis were placed in the canine, premolar and molar areas. Scanning procedures were carried out by two CBCT machines. The corresponding sections (coronal and axial of the implants were evaluated by two radiologists. The number of artifacts in each image was determined using the scale provided. Mann-Whitney U test was used for two-by-two comparisons at a significance level of P<0.05. Results. There were statistically significant differences in beam hardening artifacts in axial and coronal sections between the two x-ray machines (P<0.001, with a higher quality in the images produced by the NewTom VG. Conclusion. Given the higher quality of the images produced by the NewTom VG x-ray machine, it is recommended for imaging of patients with extensive restorations, multiple prostheses or previous implant treatments.

  3. Computed Tomography Scanner Productivity and Entry-Level Models in the Global Market

    Science.gov (United States)

    Almeida, R. M. V. R.

    2017-01-01

    Objective This study evaluated the productivity of computed tomography (CT) models and characterized their simplest (entry-level) models' supply in the world market. Methods CT exam times were measured in eight health facilities in the state of Rio de Janeiro, Brazil. Exams were divided into six stages: (1) arrival of patient records to the examination room; (2) patient arrival; (3) patient positioning; (4) data input prior to exam; (5) image acquisition; and (6) patient departure. CT exam productivity was calculated by dividing the total weekly working time by the total exam time for each model. Additionally, an internet search identified full-body CT manufacturers and their offered entry-level models. Results The time durations of 111 CT exams were obtained. Differences among average exam times were not large, and they were mainly due to stages not directly related to data acquisition or image reconstruction. The survey identified that most manufacturers offer 2- to 4-slice models for Asia, South America, and Africa, and one offers single-slice models (Asia). In the USA, two manufacturers offer models below 16-slice. Conclusion Productivity gains are not linearly related to “slice” number. It is suggested that the use of “shareable platforms” could make CTs cheaper, increasing their availability.

  4. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    Science.gov (United States)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  5. Imaging of Blood Flow in Cerebral Arteries with Dynamic Helical Computed Tomography Angiography (DHCTA) Using a 64-Row CT Scanner

    Energy Technology Data Exchange (ETDEWEB)

    Pekkola, J.; Kangasniemi, M. (Helsinki Medical Imaging Center, Helsinki Univ. Central Hospital, Helsinki (Finland))

    2009-08-15

    Background: Cerebral computed tomography angiography (CTA) depicts a structural image of intracranial arteries without providing much time-resolved information on blood flow dynamics. Current CT technology allows obtaining of rapidly repeated helical scans during the arterial contrast filling phase after an intravenous contrast injection. Purpose: To report our experience on dynamic CT imaging in determining the direction of contrast filling within proximal intracranial arteries of operated cerebral artery aneurysm patients. Such dynamic information can help detect vascular occlusion or severe spasm. The method is here referred to as dynamic helical CT angiography (DHCTA). Material and Methods: We retrospectively collected image and related technical data for 23 patients who underwent DHCTA and CTA during their first postoperative day after cerebral artery aneurysm surgery. For DHCTA, we had helically scanned a 4-cm tissue volume three times in succession with a 64-row CT scanner at intervals of 2.6 s during arterial contrast filling after an intravenous contrast injection. We assessed how well DHCTA succeeded in demonstrating the direction of contrast filling in the proximal intracranial arteries, evaluated clinically relevant structural information provided by DHCTA and CTA, and compared radiation doses for the two methods. Results: For 21 patients, DHCTA outlined the direction of contrast filling in proximal intracranial arteries. As to arterial spasm and residual filling of the operated aneurysm, CTA and DHCTA gave similar information. Radiation doses were higher (P<0.000001) for DHCTA than for CTA at 120 kV tube voltage. At 100 kV, the difference was smaller, but doses for DHCTA still exceeded (P<0.05) those for CTA. Conclusion: DHCTA gave dynamic information unobtainable with CTA and could prove useful in selected clinical settings

  6. The combination of digital surface scanners and cone beam computed tomography technology for guided implant surgery using 3Shape implant studio software: a case history report.

    Science.gov (United States)

    Lanis, Alejandro; Álvarez Del Canto, Orlando

    2015-01-01

    The incorporation of virtual engineering into dentistry and the digitization of information are providing new perspectives and innovative alternatives for dental treatment modalities. The use of digital surface scanners with surgical planning software allows for the combination of the radiographic, prosthetic, surgical, and laboratory fields under a common virtual scenario, permitting complete digital treatment planning. In this article, the authors present a clinical case in which a guided implant surgery was performed based on a complete digital surgical plan combining the information from a cone beam computed tomography scan and the virtual simulation obtained from the 3Shape TRIOS intraoral surface scanner. The information was imported to and combined in the 3Shape Implant Studio software for guided implant surgery planning. A surgical guide was obtained by a 3D printer, and the surgical procedure was done using the Biohorizons Guided Surgery Kit and its protocol.

  7. Detection of various anatomic patterns of root canals in mandibular incisors using digital periapical radiography, 3 cone-beam computed tomographic scanners, and micro-computed tomographic imaging.

    Science.gov (United States)

    Paes da Silva Ramos Fernandes, Luciana Maria; Rice, Dwight; Ordinola-Zapata, Ronald; Alvares Capelozza, Ana Lucia; Bramante, Clovis Monteiro; Jaramillo, David; Christensen, Heidi

    2014-01-01

    The purpose of this study was to compare the accuracy of digital periapical (PA) radiography and 3 cone-beam computed tomographic (CBCT) scanners in the identification of various internal anatomic patterns in mandibular incisors. Forty mandibular incisors were scanned using micro-computed tomographic imaging as the gold standard to establish the internal anatomic pattern. The number of root canals and internal patterns were classified into type I (single canal, n = 12), type Ia (single oval canal, n = 12), and type III (2 canals, n = 16). The teeth were placed in a human mandible, and digital PA radiography and 3 CBCT scans (Kodak 9000 3D [Carestream Health, Rochester, NY], Veraviewepocs 3De [J Morita MFG Corp, Kyoto, Japan], NewTom 5G [QR Srl, Verona, Italy]) were performed. Two blinded examiners classified each tooth's anatomic pattern, which were then compared with the micro-computed tomographic determinations. Considering type I and type Ia, which both presented with 1 root canal, there was a high degree of accuracy for all methods used (P > .05). The same result was found for type III. When identifying the shape of single canals (type I), CBCT imaging was more accurate compared with PA radiography. Concerning oval canals (type Ia), there was a significant difference between PA radiography and NewTom CBCT (PA radiography = 44%, NewTom = 88%). However, there were no significant differences between the 3 CBCT units. Double-exposure digital PA radiography for mandibular incisors is sufficient for the identification of the number of root canals. All CBCT devices showed improved accuracy in the identification of single root canal anatomy when a narrow canal was present. However, the identification of oval canals was improved only with the NewTom CBCT device. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Concrete hardened characterization using table scanner and microtomography computed; Caracterizacao de concreto endurecido utilizando scaner de mesa e microtomografia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.E.; Pessoa, J.R.; Assis, J.T. de, E-mail: jrenatopessoa@gmail.com [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), RJ (Brazil); Dominguez, D.S.; Dias, L.A.; Santana, M. R. [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)

    2016-07-01

    This paper proposes the use of image processing technologies to analyze hardened concrete samples obtained from table scanner and micro tomography. Techniques will be used to obtain numerical data on the distribution and geometry of aggregates and pores of the concrete, as well as their relative position. It is expected that the data obtained can produce information on the research of concrete pathologies such as AAR, and the freeze / thaw process. (author)

  9. Procedures for gathering ground truth information for a supervised approach to a computer-implemented land cover classification of LANDSAT-acquired multispectral scanner data

    Science.gov (United States)

    Joyce, A. T.

    1978-01-01

    Procedures for gathering ground truth information for a supervised approach to a computer-implemented land cover classification of LANDSAT acquired multispectral scanner data are provided in a step by step manner. Criteria for determining size, number, uniformity, and predominant land cover of training sample sites are established. Suggestions are made for the organization and orientation of field team personnel, the procedures used in the field, and the format of the forms to be used. Estimates are made of the probable expenditures in time and costs. Examples of ground truth forms and definitions and criteria of major land cover categories are provided in appendixes.

  10. Demonstration of wetland vegetation mapping in Florida from computer-processed satellite and aircraft multispectral scanner data

    Science.gov (United States)

    Butera, M. K.

    1979-01-01

    The success of remotely mapping wetland vegetation of the southwestern coast of Florida is examined. A computerized technique to process aircraft and LANDSAT multispectral scanner data into vegetation classification maps was used. The cost effectiveness of this mapping technique was evaluated in terms of user requirements, accuracy, and cost. Results indicate that mangrove communities are classified most cost effectively by the LANDSAT technique, with an accuracy of approximately 87 percent and with a cost of approximately 3 cent per hectare compared to $46.50 per hectare for conventional ground survey methods.

  11. A demonstration of wetland vegetation mapping in Florida from computer-processed satellite and aircraft multispectral scanner data

    Science.gov (United States)

    Butera, M. K. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Major vegetative classes identified by the remote sensing technique were cypress swamp, pine, wetland grasses, salt grass, mixed mangrove, black mangrove, Brazilian pepper. Australian pine and melaleuca were not satisfactorily classified from LANDSAT. Aircraft scanners provided better resolution resulting in a classification of finer surface detail. An edge effect, created by the integration of diverse spectral responses within boundary elements of digital data, affected the wetlands classification. Accuracy classification for aircraft was 68% and for LANDSAT was 74%.

  12. Designing an Orthotic Insole by Using Kinect® XBOX Gaming Sensor Scanner and Computer Aided Engineering Software

    Science.gov (United States)

    Hafiz Burhan, Mohd; Nor, Nik Hisyamudin Muhd; Yarwindran, Mogan; Ibrahim, Mustaffa; Fahrul Hassan, Mohd; Azwir Azlan, Mohd; Turan, Faiz Mohd; Johan, Kartina

    2017-08-01

    Healthcare and medical is one of the most expensive field in the modern world. In order to fulfil medical requirement, this study aimed to design an orthotic insole by using Kinect Xbox Gaming Sensor Scanner and CAE softwares. The accuracy of the Kinect® XBOX 360 gaming sensor is capable of producing 3D reconstructed geometry with the maximum and minimum error of 3.78% (2.78mm) and 1.74% (0.46mm) respectively. The orthotic insole design process had been done by using Autodesk Meshmixer 2.6 and Solidworks 2014 software. Functionality of the orthotic insole designed was capable of reducing foot pressure especially in the metatarsal area. Overall, the proposed method was proved to be highly potential in the design of the insole where it promises low cost, less time consuming, and efficiency in regards that the Kinect® XBOX 360 device promised low price compared to other digital 3D scanner since the software needed to run the device can be downloaded for free.

  13. User needs elicitation via analytic hierarchy process (AHP). A case study on a Computed Tomography (CT) scanner.

    Science.gov (United States)

    Pecchia, Leandro; Martin, Jennifer L; Ragozzino, Angela; Vanzanella, Carmela; Scognamiglio, Arturo; Mirarchi, Luciano; Morgan, Stephen P

    2013-01-05

    The rigorous elicitation of user needs is a crucial step for both medical device design and purchasing. However, user needs elicitation is often based on qualitative methods whose findings can be difficult to integrate into medical decision-making. This paper describes the application of AHP to elicit user needs for a new CT scanner for use in a public hospital. AHP was used to design a hierarchy of 12 needs for a new CT scanner, grouped into 4 homogenous categories, and to prepare a paper questionnaire to investigate the relative priorities of these. The questionnaire was completed by 5 senior clinicians working in a variety of clinical specialisations and departments in the same Italian public hospital. Although safety and performance were considered the most important issues, user needs changed according to clinical scenario. For elective surgery, the five most important needs were: spatial resolution, processing software, radiation dose, patient monitoring, and contrast medium. For emergency, the top five most important needs were: patient monitoring, radiation dose, contrast medium control, speed run, spatial resolution. AHP effectively supported user need elicitation, helping to develop an analytic and intelligible framework of decision-making. User needs varied according to working scenario (elective versus emergency medicine) more than clinical specialization. This method should be considered by practitioners involved in decisions about new medical technology, whether that be during device design or before deciding whether to allocate budgets for new medical devices according to clinical functions or according to hospital department.

  14. Monte Carlo simulation of the dose distribution of ICRP adult reference computational phantoms for acquisitions with a 320 detector-row cone-beam CT scanner.

    Science.gov (United States)

    Salvadó, M; Cros, M; Joemai, R M S; Calzado, A; Geleijns, J

    2015-07-01

    The purpose of this study was to develop and validate a Monte Carlo (MC) simulation tool for patient dose assessment for a 320 detector-row CT scanner, based on the recommendations of International Commission on Radiological Protection (ICRP). Additionally, the simulation was applied on four clinical acquisition protocols, with and without automatic tube current modulation (TCM). The MC simulation was based on EGS4 code and was developed specifically for a 320 detector-row cone-beam CT scanner. The ICRP adult reference phantoms were used as patient models. Dose measurements were performed free-in-air and also in four CTDI phantoms: 150 mm and 350 mm long CT head and CT body phantoms. The MC program was validated by comparing simulations results with these actual measurements acquired under the same conditions. The measurements agreed with the simulations across all conditions within 5%. Patient dose assessment was performed for four clinical axial acquisitions using the ICRP adult reference phantoms, one of them using TCM. The results were nearly always lower than those obtained from other dose calculator tools or published in other studies, which were obtained using mathematical phantoms in different CT systems. For the protocol with TCM organ doses were reduced by between 28 and 36%, compared to the results obtained using a fixed mA value. The developed simulation program provides a useful tool for assessing doses in a 320 detector-row cone-beam CT scanner using ICRP adult reference computational phantoms and is ready to be applied to more complex protocols. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Comparison of radiation doses imparted during 128-, 256-, 384-multislice CT-scanners and cone beam computed tomography for intra- and perioperative cochlear implant assessment.

    Science.gov (United States)

    Guberina, N; Dietrich, U; Arweiler-Harbeck, D; Forsting, M; Ringelstein, A

    2017-09-19

    To examine radiation-doses imparted during multislice (MSCT) and cone-beam computed-tomography (CBCT) for perioperative examination of cochlear-implant insertion. Radiation-doses were assessed during standardized petrous-bone CT-protocols at different MSCT ((I) single-source CT-scanner Somatom-Definition-AS+, (II) 2nd generation of dual-source CT-scanner Somatom-Definition-Flash, (III) 3rd generation of dual-source CT-scanner Somatom-Force and at the CBCT Ziehm-Vision-RFD3D ((IV) (a) RFD-3D (Standard-modifier), (b) RFD-3D (Low-dose-modifier)). Image quality was examined by two radiologists appraising electrode-array placement, quality-control of cochlear-implant surgery and complications based on real patients' examinations (n=78). In MSCT-setting following radiation-doses were assessed (CTDIw; DLP): (I) 21.5mGy; 216mGycm; (II) 19.7mGy; 195mGycm; (III) 12.7mGy; 127mGycm; in the CBCT setting radiation doses were distributed as follows: (IV) (a) 1.9mGy; 19.4mGycm; (b) 1.2mGy; 12.9mGycm. Overall, image quality was evaluated as good for both, MSCT- and CBCT-examinations, with a good interrater reliability (r=0.81). CBCT bears considerable dose-saving potential for the perioperative examination of cochlear-implant insertion while maintaining adequate image quality. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Architecture of a Dual-Modality, High-Resolution, Fully Digital Positron Emission Tomography/Computed Tomography (PET/CT) Scanner for Small Animal Imaging

    Science.gov (United States)

    Fontaine, R.; Belanger, F.; Cadorette, J.; Leroux, J.-D.; Martin, J.-P.; Michaud, J.-B.; Pratte, J.-F.; Robert, S.; Lecomte, R.

    2005-06-01

    Contemporary positron emission tomography (PET) scanners are commonly implemented with very large scale integration analog front-end electronics to reduce power consumption, space, noise, and cost. Analog processing yields excellent results in dedicated applications, but offers little flexibility for sophisticated signal processing or for more accurate measurements with newer, fast scintillation crystals. Design goals of the new Sherbrooke PET/computed tomography (CT) scanner are: 1) to achieve 1 mm resolution in both emission (PET) and transmission (CT) imaging using the same detector channels; 2) to be able to count and discriminate individual X-ray photons in CT mode. These requirements can be better met by sampling the analog signal from each individual detector channel as early as possible, using off-the-shelf, 8-b, 100-MHz, high-speed analog-to-digital converters (ADC) and digital processing in field programmable gate arrays (FPGAs). The core of the processing units consists of Xilinx SpartanIIe that can hold up to 16 individual channels. The initial architecture is designed for 1024 channels, but modularity allows extending the system up to 10 K channels or more. This parallel architecture supports count rates in excess of a million hits/s/scintillator in CT mode and up to 100 K events/s/scintillator in PET mode, with a coincidence time window of less than 10 ns full-width at half-maximum.

  17. SedCT: MATLAB™ tools for standardized and quantitative processing of sediment core computed tomography (CT) data collected using a medical CT scanner

    Science.gov (United States)

    Reilly, B. T.; Stoner, J. S.; Wiest, J.

    2017-08-01

    Computed tomography (CT) of sediment cores allows for high-resolution images, three-dimensional volumes, and down core profiles. These quantitative data are generated through the attenuation of X-rays, which are sensitive to sediment density and atomic number, and are stored in pixels as relative gray scale values or Hounsfield units (HU). We present a suite of MATLAB™ tools specifically designed for routine sediment core analysis as a means to standardize and better quantify the products of CT data collected on medical CT scanners. SedCT uses a graphical interface to process Digital Imaging and Communications in Medicine (DICOM) files, stitch overlapping scanned intervals, and create down core HU profiles in a manner robust to normal coring imperfections. Utilizing a random sampling technique, SedCT reduces data size and allows for quick processing on typical laptop computers. SedCTimage uses a graphical interface to create quality tiff files of CT slices that are scaled to a user-defined HU range, preserving the quantitative nature of CT images and easily allowing for comparison between sediment cores with different HU means and variance. These tools are presented along with examples from lacustrine and marine sediment cores to highlight the robustness and quantitative nature of this method.

  18. Dynamic computed tomography of the pituitary gland using a single slice scanner in dogs with pituitary-dependent hypercortisolism

    NARCIS (Netherlands)

    Del Magno, Sara; Grinwis, Guy C M; Voorhout, George; Meij, Björn P.

    Selective removal of the pituitary adenoma has not been advocated in dogs with pituitary-dependent hypercortisolism because the pituitary adenoma is usually not visualized on routine computed tomography (CT).Dynamic pituitary CT scanning is aimed at the detection of the pituitary flush and,

  19. Cardiac motion extraction and characterization in multislice computed tomography; Extraction et caracterisation du mouvement cardiaque en imagerie scanner multibarrette

    Energy Technology Data Exchange (ETDEWEB)

    Simon, A

    2005-12-15

    Cardiac kinetics analysis is of a great diagnostic interest in the fight against cardiovascular pathologies. Two methods are proposed in order to estimate cardiac motion from dynamic sequences of three-dimensional volumes acquired in multislice computed tomography. These methods both lie on a feature matching process, carried out within a Markovian framework and according to a multi-resolution scheme. The first method, estimating the correspondences between pre-segmented surfaces, is dependent on the temporal coherence of this segmentation. The second method estimates the correspondences between, on the one hand, a segmented surface and, on the other hand, the original data volume corresponding to the next moment. The motion estimation and the segmentation are then carried out, on the whole sequence, during a single process. Both methods are validated on simulated and real data. (author)

  20. The effects of computed tomography scanner parameters on the quality of the reverse triangular surface model of the fibula

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Nasir; Ahmad, Mushtaq, E-mail: nasirhayat@uet.edu.pk [Faculty of Mechanical Engineering, UET, Lahore (Pakistan)

    2016-01-15

    This study investigates the effects of computed tomography (CT) parameters on the quality and size of the reverse triangular surface model with an objective of obtaining an accurate 3D triangular surface model of complex-shaped customized objects for reverse engineering and many other applications such as surgical planning and finite element analysis. For this purpose, the fibula of a human knee joint was CT scanned by changing various parameters (slice thickness, slice spacing, pixel size, X-ray tube current and helical pitch) over wide ranges. Three-dimensional triangular surface models were created from point cloud data extracted from the CT image data. To assess the influences of scanning parameters on the surface quality and accuracy, the resulting surface models were qualitatively compared based on various anatomical features. Statistical analysis was used to quantify the deviations of surface models with different scanning parameter levels from the reference CT surface model. The results show that these parameters to a varying degree affect the surface quality, reproduction of various anatomical details and size of the resulting surface model. Moreover, these parameters are highly dependent on each other. Interactive effects of these parameters have been discussed and recommendations have been made for parameter settings. The results of the study would help to improve the accuracy of the 3D surface models required for customized implants and other applications. (author)

  1. Automated tube voltage selection in thoracoabdominal computed tomography at high pitch using a third-generation dual-source scanner: image quality and radiation dose performance.

    Science.gov (United States)

    Lurz, Markus; Lell, Michael M; Wuest, Wolfgang; Eller, Achim; Scharf, Michael; Uder, Michael; May, Matthias Stefan

    2015-05-01

    The objective of this study was to evaluate the radiation dose and image quality performance of thoracoabdominal examinations with an automated tube voltage selection (tube voltage adaptation), tube current modulation, and high pitch using a third-generation dual-source computed tomography (CT) compared intraindividually with 120-kV examinations with tube current modulation with special attention on clinically relevant lesions in the liver, the lungs, and extrahepatic soft tissues. This study was approved by the institutional review board. Computed tomography of the body was performed using a third-generation dual-source system in 95 patients (mean body mass index, 25 kg/m²; range, 18-35 kg/m²). For 49 of these patients, all calculated tube settings and resulting dose values were recorded for each of the 12 gradual contrast weightings of the tube voltage adaptation algorithm. Spiral CT was performed for all patients with an intermediate weighting (grade 7) in a portal venous phase at 120 reference kV, 180 reference mAs, and pitch of 1.55. Objective image quality was assessed on the basis of contrast-to-noise ratio. Subjective image quality was assessed on the basis of clarity and sharpness of anatomical and pathological structures as well as interfering beam hardening and spiral and motion artifacts (heart, lungs, diaphragm). Previous examinations on a 64-slice scanner served as reference. All examinations were rated good or excellent for clinical diagnosis. Automated tube voltage selection resulted in significantly lower effective radiation dose (9.5 mSv) compared with the reference (12.0 mSv; P radiation dose reduction while substantially increasing the image quality, even at large-volume exposure.

  2. Minimized Radiation and Contrast Agent Exposure for Coronary Computed Tomography Angiography: First Clinical Experience on a Latest Generation 256-slice Scanner.

    Science.gov (United States)

    Benz, Dominik C; Gräni, Christoph; Hirt Moch, Beatrice; Mikulicic, Fran; Vontobel, Jan; Fuchs, Tobias A; Stehli, Julia; Clerc, Olivier F; Possner, Mathias; Pazhenkottil, Aju P; Gaemperli, Oliver; Buechel, Ronny R; Kaufmann, Philipp A

    2016-08-01

    The aim of the study was to evaluate the impact of the latest coronary computed tomography angiography (CCTA) techniques allowing a radiation- and contrast-sparing protocol on image quality in unselected patients referred for exclusion of suspected coronary artery disease (CAD). This prospective study was approved by the local ethics committee, and all patients provided written informed consent. Between March and June 2015, 89 consecutive patients (61% male; mean age 55 ± 11 years) referred for exclusion of CAD by 256-slice CCTA using prospective electrocardiogram triggering were included. Tube voltage (80-120 kVp), tube current (180-310 mA) as well contrast agent volume (25-45 mL) and flow rate (3.5-5 mL/s) were adapted to body mass index. Signal intensity was measured by placing a region of interest in the aortic root, the left main artery, and the proximal right coronary artery. Image noise was measured in the aortic root. Two independent blinded readers semi-quantitatively assessed the image quality regarding motion, noise, and contrast on a 4-point scale. Median contrast agent volume and median effective radiation dose were 35 mL (interquartile range, 30-40 mL) and 0.5 mSv (interquartile range, 0.4-0.6 mSv), respectively. Mean attenuation in the aortic root was 412 ± 89 Hounsfield units. Diagnostic image quality was obtained in 1050 of 1067 (98.4%) coronary segments and, on an intention-to-diagnosis basis, in 85 of 89 (95.5%) patients. Below a cut-off heart rate of 67 beats/min, only 1 of 974 (0.1%) coronary segments was nondiagnostic. A radiation- and contrast-sparing protocol for CCTA on a latest generation 256-slice computed tomography scanner yields diagnostic image quality in patients referred for CAD exclusion in daily clinical routine. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  3. Compensation strategies for PET scanners with unconventional scanner geometry

    CERN Document Server

    Gundlich, B; Oehler, M

    2006-01-01

    The small animal PET scanner ClearPET®Neuro, developed at the Forschungszentrum Julich GmbH in cooperation with the Crystal Clear Collaboration (CERN), represents scanners with an unconventional geometry: due to axial and transaxial detector gaps ClearPet®Neuro delivers inhomogeneous sinograms with missing data. When filtered backprojection (FBP) or Fourier rebinning (FORE) are applied, strong geometrical artifacts appear in the images. In this contribution we present a method that takes the geometrical sensitivity into account and converts the measured sinograms into homogeneous and complete data. By this means artifactfree images are achieved using FBP or FORE. Besides an advantageous measurement setup that reduces inhomogeneities and data gaps in the sinograms, a modification of the measured sinograms is necessary. This modification includes two steps: a geometrical normalization and corrections for missing data. To normalize the measured sinograms, computed sinograms are used that describe the geometric...

  4. Medical facial surface scanner

    Science.gov (United States)

    Vannier, Michael W.; Bhatia, Gulab H.; Commean, Paul K.; Pilgram, Thomas K.; Brunsden, Barry S.

    1992-05-01

    Optical, non-contact three-dimensional range surface digitizers are employed in the 360-degree examination of object surfaces, especially the heads and faces of individuals. The resultant 3- D surface data is suitable for computer graphics display and manipulation, for numerically controlled object replications, or for further processing such as surface measurement extraction. We employed a scanner with a basic active sensor element consisting of a synchronized pattern projector employing flashtubes that illuminate a surface, with a CID camera to detect, digitize, and transmit the sequence of 24 images (per camera) to a digital image processor for surface triangulation, calibration, and fusion into a single surface description of the headform. A major feature of this unit is its use of multiple (typically 6) stationary active sensor elements, with efficient calibration algorithms that achieve nearly seamless superposition of overlapping surface segments seen by individual cameras. The result is accurate and complete coverage of complex contoured surfaces. Application of this system to digitization of the human head in the planning and evaluation of facial plastic surgery is presented.

  5. Input Scanners: A Growing Impact In A Diverse Marketplace

    Science.gov (United States)

    Marks, Kevin E.

    1989-08-01

    Just as newly invented photographic processes revolutionized the printing industry at the turn of the century, electronic imaging has affected almost every computer application today. To completely emulate traditionally mechanical means of information handling, computer based systems must be able to capture graphic images. Thus, there is a widespread need for the electronic camera, the digitizer, the input scanner. This paper will review how various types of input scanners are being used in many diverse applications. The following topics will be covered: - Historical overview of input scanners - New applications for scanners - Impact of scanning technology on select markets - Scanning systems issues

  6. Infrared scanners for temperature measurement in wind tunnels

    Science.gov (United States)

    Kantsios, A. G.

    1978-01-01

    Remote infrared scanners allow large surfaces to be studied without disturbing model and without extensive sensor installation. Computer techniques analyze data with accuracy of + or - 5 percent. Scanners are applicable to tracking and diffusion studies of rocket exhausts, nondestructive testing of rocket motor nozzles and composite materials, and detection of nonuniformity in home insulation.

  7. Quantitative Assay for Starch by Colorimetry Using a Desktop Scanner

    Science.gov (United States)

    Matthews, Kurt R.; Landmark, James D.; Stickle, Douglas F.

    2004-01-01

    The procedure to produce standard curve for starch concentration measurement by image analysis using a color scanner and computer for data acquisition and color analysis is described. Color analysis is performed by a Visual Basic program that measures red, green, and blue (RGB) color intensities for pixels within the scanner image.

  8. Investigation of the characteristics of Automatic Exposure Control (AEC) of a Computed Tomography (CT) scanner by utilising cylindrical and anthropomorphic phantoms

    Science.gov (United States)

    Rulaidi, W. E. P.; Huri, M. S. N.; Ng, K. H.

    2017-05-01

    One method to optimise the use of x-rays in CT and hence a reduction in patient dose is the application of automatic exposure control (AEC). This study measured the effective mAs, image noise and volume CT dose index (CTDIvol) as the result of changing the AEC index on a Siemens Somatom Definition 64 slices dual source CT scanner. The scans were performed on four phantoms of different geometries, namely the 16 and 32 cm cylindrical CTDI phantoms and two anthropomorphic phantoms, RANDO (20 cm effective diameter) and ATOM (19.8 cm effective diameter). Results showed that the effective mAs increased with increasing tube potential (kVp) and Quality Reference mAs (QRM), therefore increasing CTDIvol while reducing image noise. Meanwhile, no changes of radiation dose and image noise were observed when the pitch was increased. However, for the largest phantom (32 cm effective diameter), a constant effective mAs was found between 120 and 140 kVp. The same trend was also found with increasing QRM from 300 mAs to 400 mAs suggesting a certain limitation of the AEC has been reached. In conclusion, this study showed that AEC is affected by kVp and QRM but not by pitch selection. Further work is required to quantify the characteristics of the AEC system in relation to the mentioned parameters for better optimisation.

  9. Precision of Dental Implant Digitization Using Intraoral Scanners.

    Science.gov (United States)

    Flügge, Tabea V; Att, Wael; Metzger, Marc C; Nelson, Katja

    2016-01-01

    The digitization of scanbodies on dental implants is required to use computer-aided design/computer-assisted manufacture processes for implant prosthetics. Little is known about the accuracy of scanbody digitization with intraoral scanners and dental lab scanners. This study aimed to examine the precision of different intraoral digital impression systems as well as a dental lab scanner using commercially available implant scanbodies. Two study models with a different number and distribution of dental implant scanbodies were produced from conventional implant impressions. The study models were scanned using three different intraoral scanners (iTero, Cadent; Trios, 3Shape; and True Definition, 3M ESPE) and a dental lab scanner (D250, 3Shape). For each study model, 10 scans were performed per scanner to produce repeated measurements for the calculation of precision. The distance and angulation between the respective scanbodies were measured. The results of each scanning system were compared using analysis of variance, and post hoc Tukey test was conducted for a pairwise comparison of scanning devices. The precision values of the scanbodies varied according to the distance between the scanbodies and the scanning device. A distance of a single tooth space and a jaw-traversing distance between scanbodies produced significantly different results for distance and angle measurements between the scanning systems (P < .05). The precision of intraoral scanners and the dental lab scanner was significantly different. The precision of intraoral scanners decreased with an increasing distance between the scanbodies, whereas the precision of the dental lab scanner was independent of the distance between the scanbodies.

  10. Pure Nano-Rotation Scanner

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-01-01

    Full Text Available We developed and tested a novel rotation scanner for nano resolution and accurate rotary motion about the rotation center. The scanner consists of circular hinges and leaf springs so that the parasitic error at the center of the scanner in the X and Y directions is minimized, and rotation performance is optimized. Each sector of the scanner's system was devised to have nano resolution by minimizing the parasitic errors of the rotation center that arise due to displacements other than rotation. The analytic optimal design results of the proposed scanner were verified using finite element analyses. The piezoelectric actuators were used to attain nano-resolution performances, and a capacitive sensor was used to measure displacement. A feedback controller was used to minimize the rotation errors in the rotation scanner system under practical conditions. Finally, the performance evaluation test results showed that the resonance frequency was 542 Hz, the resolution was 0.09 μrad, and the rotation displacement was 497.2 μrad. Our test results revealed that the rotation scanner exhibited accurate rotation about the center of the scanner and had good nano precision.

  11. Development of high pressure pipe scanners

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Moon, Soon S.; Eom, Heung S.; Choi, Yu R

    1998-12-01

    This report describes an automatic ultrasonic scanning system for pressure pipe welds, which was developed in this project using recent advanced technologies on mobile robot and computer. The system consists of two modules: a robot scanner module which navigates and manipulates scanning devices, and a data acquisition module which generates ultrasonic signal and processes the data from the scanner. The robot has 4 magnetic wheels and 2 -axis manipulator on which ultrasonic transducer attached. The wheeled robot can navigate curved surface such as outer wall of circular pipes. Magnetic wheels were optimally designed through magnetic field analysis. Free surface sensing and line tracking control algorithm were developed and implemented, and the control devices and software can be used in practical inspection works. We expect our system can contribute to reduction of inspection time,performance enhancement, and effective management of inspection results.

  12. Assessment of CT numbers in limited and medium field-of-view scans taken using Accuitomo 170 and Veraviewepocs 3De cone-beam computed tomography scanners

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Matheus L. [Dept. of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Campinas (Brazil); Tosoni, Guilherme M. [Dept. of Oral Diagnosis and Surgery, Araraquara Dental School, Sao Paulo State University, Araraquara (Brazil); Lindsey, David H.; Mendoza, Kristopher; Tetradis, Sotirios; Mallya, Sanjay M. [Section of Oral and Maxillofacial Radiology, School of Dentistry, University of California, Los Angeles (United States)

    2014-12-15

    To assess the influence of anatomic location on the relationship between computed tomography (CT) number and X-ray attenuation in limited and medium field-of-view (FOV) scans. Tubes containing solutions with different concentrations of K2HPO4 were placed in the tooth sockets of a human head phantom. Cone-beam computed tomography (CBCT) scans were acquired, and CT numbers of the K{sub 2}HPO{sub 4} solutions were measured. The relationship between CT number and K{sub 2}HPO{sub 4} concentration was examined by linear regression analyses. Then, the variation in CT number according to anatomic location was examined. The relationship between K{sub 2}HPO{sub 4} concentration and CT number was strongly linear. The slopes of the linear regressions for the limited FOVs were almost 2-fold lower than those for the medium FOVs. The absolute CT number differed between imaging protocols and anatomic locations. There is a strong linear relationship between X-ray attenuation and CT number. The specific imaging protocol and anatomic location of the object strongly influence this relationship.

  13. Feasible Dose Reduction in Routine Chest Computed Tomography Maintaining Constant Image Quality Using the Last Three Scanner Generations: From Filtered Back Projection to Sinogram-affirmed Iterative Reconstruction and Impact of the Novel Fully Integrated Detector Design Minimizing Electronic Noise

    Directory of Open Access Journals (Sweden)

    Lukas Ebner

    2014-01-01

    Full Text Available Objective:The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP and an iterative reconstruction (IR algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany was investigated. Materials and Methods: 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP, SOMATOM Definition Flash (IR, and SOMATOM Definition Edge (ICD and IR. Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. Results: Dose-length product (DLP with FBP for the average chest CT was 308 mGycm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGycm ± 68.8 (P = 0.0001. Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGycm ± 54.5 (P = 0.033. The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048. Overall contrast-to-noise ratio (CNR improved with declining DLP. Conclusion: The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.

  14. Side scanner for supermarkets: a new scanner design standard

    Science.gov (United States)

    Cheng, Charles K.; Cheng, J. K.

    1996-09-01

    High speed UPC bar code has become a standard mode of data capture for supermarkets in the US, Europe, and Japan. The influence of the ergonomics community on the design of the scanner is evident. During the past decade the ergonomic issues of cashier in check-outs has led to occupational hand-wrist cumulative trauma disorders, in most cases causing carpal tunnel syndrome, a permanent hand injury. In this paper, the design of a side scanner to resolve the issues is discussed. The complex optical module and the sensor for aforesaid side scanner is described. The ergonomic advantages offer the old counter mounted vertical scanner has been experimentally proved by the industrial funded study at an independent university.

  15. Intraoral 3D scanner

    Science.gov (United States)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  16. Accuracy of full-arch scans using intraoral scanners.

    Science.gov (United States)

    Patzelt, Sebastian B M; Emmanouilidi, Archontia; Stampf, Susanne; Strub, Joerg R; Att, Wael

    2014-07-01

    This study aimed to evaluate the accuracy of intraoral scanners in full-arch scans. A representative model with 14 prepared abutments was digitized using an industrial scanner (reference scanner) as well as four intraoral scanners (iTero, CEREC AC Bluecam, Lava C.O.S., and Zfx IntraScan). Datasets obtained from different scans were loaded into 3D evaluation software, superimposed, and compared for accuracy. One-way analysis of variance (ANOVA) was implemented to compute differences within groups (precision) as well as comparisons with the reference scan (trueness). A level of statistical significance of p < 0.05 was set. Mean trueness values ranged from 38 to 332.9 μm. Data analysis yielded statistically significant differences between CEREC AC Bluecam and other scanners as well as between Zfx IntraScan and Lava C.O.S. Mean precision values ranged from 37.9 to 99.1 μm. Statistically significant differences were found between CEREC AC Bluecam and Lava C.O.S., CEREC AC Bluecam and iTero, Zfx Intra Scan and Lava C.O.S., and Zfx Intra Scan and iTero (p < 0.05). Except for one intraoral scanner system, all tested systems showed a comparable level of accuracy for full-arch scans of prepared teeth. Further studies are needed to validate the accuracy of these scanners under clinical conditions. Despite excellent accuracy in single-unit scans having been demonstrated, little is known about the accuracy of intraoral scanners in simultaneous scans of multiple abutments. Although most of the tested scanners showed comparable values, the results suggest that the inaccuracies of the obtained datasets may contribute to inaccuracies in the final restorations.

  17. The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: using CTDIvol to account for differences between scanners.

    Science.gov (United States)

    Turner, Adam C; Zankl, Maria; DeMarco, John J; Cagnon, Chris H; Zhang, Di; Angel, Erin; Cody, Dianna D; Stevens, Donna M; McCollough, Cynthia H; McNitt-Gray, Michael F

    2010-04-01

    Monte Carlo radiation transport techniques have made it possible to accurately estimate the radiation dose to radiosensitive organs in patient models from scans performed with modern multidetector row computed tomography (MDCT) scanners. However, there is considerable variation in organ doses across scanners, even when similar acquisition conditions are used. The purpose of this study was to investigate the feasibility of a technique to estimate organ doses that would be scanner independent. This was accomplished by assessing the ability of CTDIvol measurements to account for differences in MDCT scanners that lead to organ dose differences. Monte Carlo simulations of 64-slice MDCT scanners from each of the four major manufacturers were performed. An adult female patient model from the GSF family of voxelized phantoms was used in which all ICRP Publication 103 radiosensitive organs were identified. A 120 kVp, full-body helical scan with a pitch of 1 was simulated for each scanner using similar scan protocols across scanners. From each simulated scan, the radiation dose to each organ was obtained on a per mA s basis (mGy/mA s). In addition, CTDIvol values were obtained from each scanner for the selected scan parameters. Then, to demonstrate the feasibility of generating organ dose estimates from scanner-independent coefficients, the simulated organ dose values resulting from each scanner were normalized by the CTDIvol value for those acquisition conditions. CTDIvol values across scanners showed considerable variation as the coefficient of variation (CoV) across scanners was 34.1%. The simulated patient scans also demonstrated considerable differences in organ dose values, which varied by up to a factor of approximately 2 between some of the scanners. The CoV across scanners for the simulated organ doses ranged from 26.7% (for the adrenals) to 37.7% (for the thyroid), with a mean CoV of 31.5% across all organs. However, when organ doses are normalized by CTDIvo

  18. 3D ultrafast laser scanner

    Science.gov (United States)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  19. Aircraft Scanners = NASA Digital Aerial Scanners (TMS, TIMS, NS001): Pre 1996

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Aircraft Scanners data set contains digital imagery acquired from several multispectral scanners including NS-001 Mutispectral scanner, Daedalus thematic mapper...

  20. Evaluation of scanners for C-scan imaging in nondestructive inspection of aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Gieske, J.H.

    1994-04-01

    The goal of this project was to produce a document that contains information on the usability and performance of commercially available, fieldable, and portable scanner systems as they apply to aircraft NDI inspections. In particular, the scanners are used to generate images of eddy current, ultrasonic, or bond tester inspection data. The scanner designs include manual scanners, semiautomated scanners, and fully automated scanners. A brief description of the functionality of each scanner type, a sketch, and a fist of the companies that support the particular design are provided. Vendors of each scanner type provided hands-on demonstrations of their equipment on real aircraft samples in the FAA Aging Aircraft Nondestructive Inspection Validation Center (AANC) in Albuquerque, NM. From evaluations recorded during the demonstrations, a matrix of scanner features and factors and ranking of the capabilities and limitations of the design, portability, articulation, performance, usability, and computer hardware/software was constructed to provide a quick reference for comparing the different scanner types. Illustrations of C-scan images obtained during the demonstration are shown.

  1. Geometric calibration between PET scanner and structured light scanner

    DEFF Research Database (Denmark)

    Kjer, Hans Martin; Olesen, Oline Vinter; Paulsen, Rasmus Reinhold

    2011-01-01

    is a structured light scanner placed just above the patient tunnel on the High Resolution Research Tomograph (HRRT, Siemens). It continuously registers point clouds of a part of the patient's face. The relative motion is estimated as the rigid transformation between frames. A geometric calibration between...

  2. D Super-Resolution Approach for Sparse Laser Scanner Data

    Science.gov (United States)

    Hosseinyalamdary, S.; Yilmaz, A.

    2015-08-01

    Laser scanner point cloud has been emerging in Photogrammetry and computer vision to achieve high level tasks such as object tracking, object recognition and scene understanding. However, low cost laser scanners are noisy, sparse and prone to systematic errors. This paper proposes a novel 3D super resolution approach to reconstruct surface of the objects in the scene. This method works on sparse, unorganized point clouds and has superior performance over other surface recovery approaches. Since the proposed approach uses anisotropic diffusion equation, it does not deteriorate the object boundaries and it preserves topology of the object.

  3. A case study in scanner optimisation.

    Science.gov (United States)

    Dudley, N J; Gibson, N M

    2014-02-01

    Ultrasound scanner preset programmes are factory set or tailored to user requirements. Scanners may, therefore, have different settings for the same application, even on similar equipment in a single department. The aims of this study were: (1) to attempt to match the performance of two scanners, where one was preferred and (2) to assess differences between six scanners used for breast ultrasound within our organisation. The Nottingham Ultrasound Quality Assurance software was used to compare imaging performance. Images of a Gammex RMI 404GS test object were collected from six scanners, using default presets, factory presets and settings matched to a preferred scanner. Resolution, low contrast performance and high contrast performance were measured. The performance of two scanners was successfully matched, where one had been preferred. Default presets varied across the six scanners, three different presets being used. The most used preset differed in settings across the scanners, most notably in the use of different frequency modes. The factory preset was more consistent across the scanners, the main variation being in dynamic range (55-70 dB). Image comparisons showed significant differences, which were reduced or eliminated by adjustment of settings to match a reference scanner. It is possible to match scanner performance using the Nottingham Ultrasound Quality Assurance software as a verification tool. Ultrasound users should be aware that scanners may not behave in a similar fashion, even with apparently equivalent presets. It should be possible to harmonise presets by consensus amongst users.

  4. A systematic review and economic evaluation of new-generation computed tomography scanners for imaging in coronary artery disease and congenital heart disease: Somatom Definition Flash, Aquilion ONE, Brilliance iCT and Discovery CT750 HD.

    Science.gov (United States)

    Westwood, M; Al, M; Burgers, L; Redekop, K; Lhachimi, S; Armstrong, N; Raatz, H; Misso, K; Severens, J; Kleijnen, J

    2013-01-01

    Computed tomography (CT) is important in diagnosing and managing many conditions, including coronary artery disease (CAD) and congenital heart disease. Current CT scanners can very accurately diagnose CAD requiring revascularisation in most patients. However, imaging technologies have developed rapidly and new-generation computed tomography (NGCCT) scanners may benefit patients who are difficult to image (e.g. obese patients, patients with high or irregular heart beats and patients who have high levels of coronary calcium or a previous stent or bypass graft). To assess the clinical effectiveness and cost-effectiveness of NGCCT for diagnosing clinically significant CAD in patients who are difficult to image using 64-slice computed tomography and treatment planning in complex congenital heart disease. Bibliographic databases were searched from 2000 to February/March 2011, including MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, Cochrane Database of Systematic Reviews (CDSR), Cochrane Central Register of Controlled Trials (CENTRAL), Database of Abstracts of Reviews of Effects (DARE), NHS Economic Evaluation Database (NHS EED), Health Technology Assessment (HTA) database and Science Citation Index (SCI). Trial registers and conference proceedings were searched. Systematic review methods followed published guidance. Risk of bias was assessed using QUADAS-2. Results were stratified by patient group. Summary sensitivity and specificity were calculated using a bivariate summary receiver operating characteristic, or random effects model. Heterogeneity was assessed using the chi-squared statistic and I(2)-statistic. Cost-effectiveness of NGCCT was modelled separately for suspected and known CAD, evaluating invasive coronary angiography (ICA) only, ICA after positive NGCCT (NGCCT-ICA), and NGCCT only. The cost-effectiveness of NGCCT, compared with 64-slice CT, in reducing imaging-associated radiation in congenital heart disease was assessed. Twenty

  5. COMPACT HANDHELD FRINGE PROJECTION BASED UNDERWATER 3D-SCANNER

    Directory of Open Access Journals (Sweden)

    C. Bräuer-Burchardt

    2015-04-01

    Full Text Available A new, fringe projection based compact handheld 3D scanner for the surface reconstruction of measurement objects under water is introduced. The weight of the scanner is about 10 kg and can be used in a water depth of maximal 40 metres. A measurement field of about 250 mm x 200 mm is covered under water, and the lateral resolution of the measured object points is about 150 μm. Larger measurement objects can be digitized in a unique geometric model by merging subsequently recorded datasets. The recording time for one 3D scan is a third of a second. The projection unit for the structured illumination of the scene as well as the computer for device control and measurement data analysis are included into the scanners housing. A display on the backside of the device realizes the graphical presentation of the current measurement data. It allows the user to evaluate the quality of the measurement result in real-time already during the recording of the measurement under water. For the calibration of the underwater scanner a combined method of air- and water-calibration was developed which needs only a few recorded underwater images of a plane surface and an object with known lengths. First measurement results obtained with the new scanner are presented.

  6. 21 CFR 892.1220 - Fluorescent scanner.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fluorescent scanner. 892.1220 Section 892.1220...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification. A fluorescent scanner is a device intended to measure the induced fluorescent radiation in the body by exposing...

  7. Fast Micromachining Using Spatial Light Modulator and Galvanometer Scanner with Infrared Pulsed Nanosecond Fiber Laser

    National Research Council Canada - National Science Library

    Jarno J J Kaakkunen; Ilkka Vanttaja; Petri Laakso

    2014-01-01

    ...) and a galvanometer scanner with an infrared nanosecond fiber lasers is studied. Here, the SLM is used as a computer generated hologram which can be applied to modify laser pulses intensity distribution virtually almost arbitrary...

  8. Large-area aircraft scanner

    Science.gov (United States)

    Iddings, Frank A.

    A program to determine the feasibility of present state-of-the-art NDI technology to produce a large-area scanner and to identify commercial equipment available to construct the desired system is presented. Work performed to attain these objectives is described, along with suggested modifications to the existing commercial equipment in order to meet the design criteria as closely as possible. Techniques that show the most promise at present are: D-sight, shearography, and pulse IR thermography (PIRT). D-sight is argued to be inadequate alone, but may well help form a system in conjunction with another technique. Shearography requires additional development in the area of stress application along with interpretation and overall application. PIRT is argued to be satisfactory as a large-area scanner system, at least for thin composite and metal panels.

  9. Vacuum Attachment for XRF Scanner

    Science.gov (United States)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  10. Robotic Prostate Biopsy in Closed MRI Scanner

    National Research Council Canada - National Science Library

    Fischer, Gregory

    2008-01-01

    .... This work enables prostate brachytherapy and biopsy procedures in standard high-field diagnostic MRI scanners through the development of a robotic needle placement device specifically designed...

  11. Optimising Mobile Mapping System Laser Scanner Orientation

    Directory of Open Access Journals (Sweden)

    Conor Cahalane

    2015-02-01

    Full Text Available Multiple laser scanner hardware configurations can be applied to Mobile Mapping Systems. As best practice, laser scanners are rotated horizontally or inclined vertically to increase the probability of contact between the laser scan plane and any surfaces that are perpendicular to the direction of travel. Vertical inclinations also maximise the number of scan profiles striking narrow vertical features, something that can be of use when trying to recognise features. Adding a second scanner allows an MMS to capture more data and improve laser coverage of an area by filling in laser shadows. However, in any MMS the orientation of each scanner on the platform must be decided upon. Changes in the horizontal or vertical orientations of the scanner can increase the range to vertical targets and the road surface, with excessive scanner angles lowering point density significantly. Limited information is available to assist the manufacturers or operators in identifying the optimal scanner orientation for roadside surveys. The method proposed in this paper applies 3D surface normals and geometric formulae to assess the influence of scanner orientation on point distribution. It was demonstrated that by changing the orientation of the scanner the number of pulses striking a target could be greatly increased, and the number of profiles intersecting with the target could also be increased—something that is particularly important for narrow vertical features. The importance of identifying the correct trade-off between the number of profiles intersecting with the target and the point spacing was also raised.

  12. Long-Range WindScanner System

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola; Lea, Guillaume; Courtney, Michael

    2016-01-01

    The technical aspects of a multi-Doppler LiDAR instrument, the long-range WindScanner system, are presented accompanied by an overview of the results from several field campaigns. The long-range WindScanner system consists of three spatially-separated, scanning coherent Doppler LiDARs and a remote......-rangeWindScanner system measures the wind field by emitting and directing three laser beams to intersect, and then scanning the beam intersection over a region of interest. The long-range WindScanner system was developed to tackle the need for high-quality observations of wind fields on scales of modern wind turbine...

  13. The Coude spectrograph and echelle scanner of the 2.7 m telescope at McDonald observatory

    Science.gov (United States)

    Tull, R. G.

    1972-01-01

    The design of the Coude spectrograph of the 2.7 m McDonald telescope is discussed. A description is given of the Coude scanner which uses the spectrograph optics, the configuration of the large echelle and the computer scanner control and data systems.

  14. Accuracy of five intraoral scanners compared to indirect digitalization.

    Science.gov (United States)

    Güth, Jan-Frederik; Runkel, Cornelius; Beuer, Florian; Stimmelmayr, Michael; Edelhoff, Daniel; Keul, Christine

    2017-06-01

    Direct and indirect digitalization offer two options for computer-aided design (CAD)/ computer-aided manufacturing (CAM)-generated restorations. The aim of this study was to evaluate the accuracy of different intraoral scanners and compare them to the process of indirect digitalization. A titanium testing model was directly digitized 12 times with each intraoral scanner: (1) CS 3500 (CS), (2) Zfx Intrascan (ZFX), (3) CEREC AC Bluecam (BLU), (4) CEREC AC Omnicam (OC) and (5) True Definition (TD). As control, 12 polyether impressions were taken and the referring plaster casts were digitized indirectly with the D-810 laboratory scanner (CON). The accuracy (trueness/precision) of the datasets was evaluated by an analysing software (Geomagic Qualify 12.1) using a "best fit alignment" of the datasets with a highly accurate reference dataset of the testing model, received from industrial computed tomography. Direct digitalization using the TD showed the significant highest overall "trueness", followed by CS. Both performed better than CON. BLU, ZFX and OC showed higher differences from the reference dataset than CON. Regarding the overall "precision", the CS 3500 intraoral scanner and the True Definition showed the best performance. CON, BLU and OC resulted in significantly higher precision than ZFX did. Within the limitations of this in vitro study, the accuracy of the ascertained datasets was dependent on the scanning system. The direct digitalization was not superior to indirect digitalization for all tested systems. Regarding the accuracy, all tested intraoral scanning technologies seem to be able to reproduce a single quadrant within clinical acceptable accuracy. However, differences were detected between the tested systems.

  15. How flatbed scanners upset accurate film dosimetry

    NARCIS (Netherlands)

    Battum, L.J. van; Huizenga, H.; Verdaasdonk, R.M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis.

  16. 3D whole body scanners revisited

    NARCIS (Netherlands)

    Daanen, H.A.M.; Haar, F.B. ter

    2013-01-01

    An overview of whole body scanners in 1998 (H.A.M. Daanen, G.J. Van De Water. Whole body scanners, Displays 19 (1998) 111-120) shortly after they emerged to the market revealed that the systems were bulky, slow, expensive and low in resolution. This update shows that new developments in sensing and

  17. Towards System Calibration of Panoramic Laser Scanners from a Single Station

    Science.gov (United States)

    Medić, Tomislav; Holst, Christoph; Kuhlmann, Heiner

    2017-01-01

    Terrestrial laser scanner measurements suffer from systematic errors due to internal misalignments. The magnitude of the resulting errors in the point cloud in many cases exceeds the magnitude of random errors. Hence, the task of calibrating a laser scanner is important for applications with high accuracy demands. This paper primarily addresses the case of panoramic terrestrial laser scanners. Herein, it is proven that most of the calibration parameters can be estimated from a single scanner station without a need for any reference information. This hypothesis is confirmed through an empirical experiment, which was conducted in a large machine hall using a Leica Scan Station P20 panoramic laser scanner. The calibration approach is based on the widely used target-based self-calibration approach, with small modifications. A new angular parameterization is used in order to implicitly introduce measurements in two faces of the instrument and for the implementation of calibration parameters describing genuine mechanical misalignments. Additionally, a computationally preferable calibration algorithm based on the two-face measurements is introduced. In the end, the calibration results are discussed, highlighting all necessary prerequisites for the scanner calibration from a single scanner station. PMID:28513548

  18. Development of gamma column scanner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Jung, Sung Hee; Jun, Jong Kyu; Kim, Jin Sup

    2004-11-01

    Distillation column is important unit in petro-chemical industries, and its on-line diagnose is important. To get density profile measured by the radiation transmitted through column is well method for on-line diagnose to find out missing tray or flooding. In many cases the distance from radiation detector to detection circuit is up to 100m long. Conventional radiation detection method that is to transmit analog signal by co axial cable directly to detection circuit couldn't give good result because of its long cable. In this case the system is sensitive to electric noise because of long cable and interface between the radiation circuit and the controller for mechanical system. The radiation detection system introduced here is using digital modulated signal and loop coil to transmit signal instead of slip ring and analog signal. In detail detection part of automatic gamma scanner consists of high voltage circuit, PHA circuit FSK modem and battery. This method isolates power system and gives good solution for automatic gamma scanning by isolating the controlling circuit of mechanical system from radiation detecting circuit which is sensitive to noise.

  19. Diagnostic performance of coronary CT angiography by using different generations of multisection scanners: Single-center experience

    NARCIS (Netherlands)

    F. Pugliese (Francesca); N.R.A. Mollet (Nico); M.G.M. Hunink (Myriam); F. Cademartiri (Filippo); K. Nieman (Koen); R.T. van Domburg (Ron); W.B. Meijboom (Willem Bob); C.A.G. van Mieghem (Carlos); A.C. Weustink (Annick); M.L. Dijkshoorn (Marcel); P.J. de Feyter (Pim); G.P. Krestin (Gabriel)

    2008-01-01

    textabstractPurpose: To retrospectively compare sensitivity and specificity of four generations of multidetector computed tomographic (CT) scanners for diagnosing significant (≥50%) coronary artery stenosis, with quantitative conventional coronary angiography as reference standard. Materials and

  20. The 3D scanner prototype utilize object profile imaging using line laser and octave software

    Science.gov (United States)

    Nurdini, Mugi; Manunggal, Trikarsa Tirtadwipa; Samsi, Agus

    2016-11-01

    Three-dimensional scanner or 3D Scanner is a device to reconstruct the real object into digital form on a computer. 3D Scanner is a technology that is being developed, especially in developed countries, where the current 3D Scanner devices is the advanced version with a very expensive prices. This study is basically a simple prototype of 3D Scanner with a very low investment costs. 3D Scanner prototype device consists of a webcam, a rotating desk system controlled by a stepper motor and Arduino UNO, and a line laser. Objects that limit the research is the object with same radius from its center point (object pivot). Scanning is performed by using object profile imaging by line laser which is then captured by the camera and processed by a computer (image processing) using Octave software. On each image acquisition, the scanned object on a rotating desk rotated by a certain degree, so for one full turn multiple images of a number of existing side are finally obtained. Then, the profile of the entire images is extracted in order to obtain digital object dimension. Digital dimension is calibrated by length standard, called gage block. Overall dimensions are then digitally reconstructed into a three-dimensional object. Validation of the scanned object reconstruction of the original object dimensions expressed as a percentage error. Based on the results of data validation, horizontal dimension error is about 5% to 23% and vertical dimension error is about +/- 3%.

  1. Electronic Focusing In The Scophony Scanner

    Science.gov (United States)

    Johnson, Richard V.

    1980-09-01

    The Scophony Light Valve when used in a laser scanner exhibits a coherent imaging response. Because of this coherent response, electronic manipulation of the acoustooptic modulator's drive signal can produce unique optical imaging effects, effects which cannot be achieved with the flying spot scanner architecture. An example of this electronic processing is a shift in the plane of best focus of the scanner which is achieved by passing the modulator's drive signal through a chirp filter. This electronic focus shift can enable a three dimensional television display.

  2. Mobile network architecture of the long-range WindScanner system

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola; Lea, Guillaume; Hansen, Per

    In this report we have presented the network architecture of the long-range WindScanner system that allows utilization of mobile network connections without the use of static public IP addresses. The architecture mitigates the issues of additional fees and contractual obligations that are linked...... to the acquisition of the mobile network connections with static public IP addresses. The architecture consists of a hardware VPN solution based on the network appliances Z1 and MX60 from Cisco Meraki with additional 3G or 4G dongles. With the presented network architecture and appropriate configuration, we fulfill...... the requirements of running the long-range WindScanner system using a mobile network such as 3G. This architecture allows us to have the WindScanners and the master computer in different geographical locations, and in general facilitates deployments of the long-range WindScanner system....

  3. A Cross-Platform Smartphone Brain Scanner

    DEFF Research Database (Denmark)

    Larsen, Jakob Eg; Stopczynski, Arkadiusz; Stahlhut, Carsten

    We describe a smartphone brain scanner with a low-costwireless 14-channel Emotiv EEG neuroheadset interfacingwith multiple mobile devices. This personal informaticssystem enables minimally invasive and continuouscapturing of brain imaging data in natural settings. Thesystem applies an inverse...

  4. Get Mobile – The Smartphone Brain Scanner

    OpenAIRE

    Stahlhut, Carsten; Stopczynski, Arkadiusz; Petersen, Michael Kai; Larsen, Jakob Eg; Hansen, Lars Kai

    2012-01-01

    This demonstration will provide live-interaction with a smartphone brain scanner consisting of a low-cost wireless 14-channel EEG headset (Emotiv Epoc) and a mobile device. With our system it is possible to perform real-time functional brain imaging on a smartphone device, including stimulus delivery, data acquisition, logging, brain state decoding, and 3D visualization of the cortical EEG sources. Implementation of the smartphone brain scanner is based on the Qt framework and benefits from t...

  5. How flatbed scanners upset accurate film dosimetry.

    Science.gov (United States)

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  6. Software platform for simulation of a prototype proton CT scanner.

    Science.gov (United States)

    Giacometti, Valentina; Bashkirov, Vladimir A; Piersimoni, Pierluigi; Guatelli, Susanna; Plautz, Tia E; Sadrozinski, Hartmut F-W; Johnson, Robert P; Zatserklyaniy, Andriy; Tessonnier, Thomas; Parodi, Katia; Rosenfeld, Anatoly B; Schulte, Reinhard W

    2017-03-01

    Proton computed tomography (pCT) is a promising imaging technique to substitute or at least complement x-ray CT for more accurate proton therapy treatment planning as it allows calculating directly proton relative stopping power from proton energy loss measurements. A proton CT scanner with a silicon-based particle tracking system and a five-stage scintillating energy detector has been completed. In parallel a modular software platform was developed to characterize the performance of the proposed pCT. The modular pCT software platform consists of (1) a Geant4-based simulation modeling the Loma Linda proton therapy beam line and the prototype proton CT scanner, (2) water equivalent path length (WEPL) calibration of the scintillating energy detector, and (3) image reconstruction algorithm for the reconstruction of the relative stopping power (RSP) of the scanned object. In this work, each component of the modular pCT software platform is described and validated with respect to experimental data and benchmarked against theoretical predictions. In particular, the RSP reconstruction was validated with both experimental scans, water column measurements, and theoretical calculations. The results show that the pCT software platform accurately reproduces the performance of the existing prototype pCT scanner with a RSP agreement between experimental and simulated values to better than 1.5%. The validated platform is a versatile tool for clinical proton CT performance and application studies in a virtual setting. The platform is flexible and can be modified to simulate not yet existing versions of pCT scanners and higher proton energies than those currently clinically available. © 2017 American Association of Physicists in Medicine.

  7. A PC-controlled microwave tomographic scanner for breast imaging

    Science.gov (United States)

    Padhi, Shantanu; Howard, John; Fhager, A.; Bengtsson, Sebastian

    2011-01-01

    This article presents the design and development of a personal computer based controller for a microwave tomographic system for breast cancer detection. The system uses motorized, dual-polarized antennas and a custom-made GUI interface to control stepper motors, a wideband vector network analyzer (VNA) and to coordinate data acquisition and archival in a local MDSPlus database. Both copolar and cross-polar scattered field components can be measured directly. Experimental results are presented to validate the various functionalities of the scanner.

  8. MEMS temperature scanner: principles, advances, and applications

    Science.gov (United States)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  9. Practical experiences in the transfer of clinical protocols between CT scanners with different ATCM systems.

    Science.gov (United States)

    Sookpeng, Supawitoo; Martin, Colin J; Cheebsumon, Patsuree; Pengpan, Thanyawee

    2017-03-20

    Automatic tube current modulation (ATCM) systems to aid in optimizing dose and image noise have become standard on computed tomography (CT) scanners over the last decade. ATCM systems of the main vendors modulate tube current in slightly different ways, with some using a control parameter related to image noise (e.g. Toshiba, GE) while others use a quality reference image mAs (e.g. Siemens). The translation of clinical protocols including ATCM operation between CT scanners from different manufacturers in order to obtain similar levels of image quality with optimized exposure variables has become an important issue. In this study, cylindrical phantoms of different sizes representing small, average and large patients, have been combined into one phantom, which has been scanned on Siemens, Toshiba and GE CT scanners with the full ranges of ATCM image quality settings. The volume weighted CT dose index (CTDIvol) and image noise over each section of the phantom were recorded for every setting. Relationships between the image quality level settings, and CTDIvol and measured image noise were analysed in order to investigate ATCM performance. Equations were developed from fits of the data to enable CTDIvol and image noise to be expressed in terms of the image quality parameters for different size phantoms on each scanner. The Siemens scanner protocol was chosen as the reference, as it avoided high doses for large patients, while allowing full modulation of tube current for patients of all sizes, and so was considered to provide optimized performance. The equations derived were used to equate the noise parameters on Toshiba and GE scanners to the quality reference mAs on the Siemens scanner, so that clinical protocols incorporating similar levels of optimization could be obtained on the three CT scanners.

  10. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner.

    Science.gov (United States)

    Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R; Badawi, Ramsey D; Qi, Jinyi

    2017-03-21

    The EXPLORER project aims to build a 2 meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20 min whole-body PET scan with an injection of 25 MBq 18 F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner.

  11. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner

    Science.gov (United States)

    Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R.; Badawi, Ramsey D.; Qi, Jinyi

    2017-03-01

    The EXPLORER project aims to build a 2 meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20 min whole-body PET scan with an injection of 25 MBq 18F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner.

  12. Manually operated small envelope scanner system

    Energy Technology Data Exchange (ETDEWEB)

    Sword, Charles Keith

    2017-04-18

    A scanner system and method for acquisition of position-based ultrasonic inspection data are described. The scanner system includes an inspection probe and a first non-contact linear encoder having a first sensor and a first scale to track inspection probe position. The first sensor is positioned to maintain a continuous non-contact interface between the first sensor and the first scale and to maintain a continuous alignment of the first sensor with the inspection probe. The scanner system may be used to acquire two-dimensional inspection probe position data by including a second non-contact linear encoder having a second sensor and a second scale, the second sensor positioned to maintain a continuous non-contact interface between the second sensor and the second scale and to maintain a continuous alignment of the second sensor with the first sensor.

  13. A flexible and wearable terahertz scanner

    Science.gov (United States)

    Suzuki, D.; Oda, S.; Kawano, Y.

    2016-12-01

    Imaging technologies based on terahertz (THz) waves have great potential for use in powerful non-invasive inspection methods. However, most real objects have various three-dimensional curvatures and existing THz technologies often encounter difficulties in imaging such configurations, which limits the useful range of THz imaging applications. Here, we report the development of a flexible and wearable THz scanner based on carbon nanotubes. We achieved room-temperature THz detection over a broad frequency band ranging from 0.14 to 39 THz and developed a portable THz scanner. Using this scanner, we performed THz imaging of samples concealed behind opaque objects, breakages and metal impurities of a bent film and multi-view scans of a syringe. We demonstrated a passive biometric THz scan of a human hand. Our results are expected to have considerable implications for non-destructive and non-contact inspections, such as medical examinations for the continuous monitoring of health conditions.

  14. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... slices. When the image slices are reassembled by computer software, the result is a very detailed multidimensional view of the body's interior. Refinements in detector technology allow nearly all CT scanners to obtain multiple ...

  15. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... slices. When the image slices are reassembled by computer software, the result is a very detailed multidimensional view of the body's interior. Refinements in detector technology allow nearly all CT scanners to obtain multiple ...

  16. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... These images can be viewed on a computer monitor, printed on film or transferred to a CD ... room, where the technologist operates the scanner and monitors your examination in direct visual contact and usually ...

  17. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... These images can be viewed on a computer monitor, printed on film or transferred to a CD ... room, where the technologist operates the scanner and monitors your examination in direct visual contact and usually ...

  18. High precision kinematic surveying with laser scanners

    Science.gov (United States)

    Gräfe, Gunnar

    2007-12-01

    The kinematic survey of roads and railways is becoming a much more common data acquisition method. The development of the Mobile Road Mapping System (MoSES) has reached a level that allows the use of kinematic survey technology for high precision applications. The system is equipped with cameras and laser scanners. For high accuracy requirements, the scanners become the main sensor group because of their geometric precision and reliability. To guarantee reliable survey results, specific calibration procedures have to be applied, which can be divided into the scanner sensor calibration as step 1, and the geometric transformation parameter estimation with respect to the vehicle coordinate system as step 2. Both calibration steps include new methods for sensor behavior modeling and multisensor system integration. To verify laser scanner quality of the MoSES system, the results are regularly checked along different test routes. It can be proved that a standard deviation of 0.004 m for height of the scanner points will be obtained, if the specific calibrations and data processing methods are applied. This level of accuracy opens new possibilities to serve engineering survey applications using kinematic measurement techniques. The key feature of scanner technology is the full digital coverage of the road area. Three application examples illustrate the capabilities. Digital road surface models generated from MoSES data are used, especially for road surface reconstruction tasks along highways. Compared to static surveys, the method offers comparable accuracy at higher speed, lower costs, much higher grid resolution and with greater safety. The system's capability of gaining 360 profiles leads to other complex applications like kinematic tunnel surveys or the precise analysis of bridge clearances.

  19. Bladder filling variation during radiation treatment of prostate cancer: can the use of a bladder ultrasound scanner and biofeedback optimize bladder filling?

    NARCIS (Netherlands)

    Stam, M.R.; Lin, E.N.J.T. van; Vight, L.P. van der; Kaanders, J.H.A.M.; Visser, A.G.

    2006-01-01

    PURPOSE: To investigate the use of a bladder ultrasound scanner in achieving a better reproducible bladder filling during irradiation of pelvic tumors, specifically prostate cancer. METHODS AND MATERIALS: First, the accuracy of the bladder ultrasound scanner relative to computed tomography was

  20. A simple scanner for Compton tomography

    CERN Document Server

    Cesareo, R; Brunetti, A; Golosio, B; Castellano, A

    2002-01-01

    A first generation CT-scanner was designed and constructed to carry out Compton images. This CT-scanner is composed of a 80 kV, 5 mA X-ray tube and a NaI(Tl) X-ray detector; the tube is strongly collimated, generating a X-ray beam of 2 mm diameter, whilst the detector is not collimated to collect Compton photons from the whole irradiated cylinder. The performances of the equipment were tested contemporaneous transmission and Compton images.

  1. Infrared scanner concept verification test report

    Science.gov (United States)

    Bachtel, F. D.

    1980-01-01

    The test results from a concept verification test conducted to assess the use of an infrared scanner as a remote temperature sensing device for the space shuttle program are presented. The temperature and geometric resolution limits, atmospheric attenuation effects including conditions with fog and rain, and the problem of surface emissivity variations are included. It is concluded that the basic concept of using an infrared scanner to determine near freezing surface temperatures is feasible. The major problem identified is concerned with infrared reflections which result in significant errors if not controlled. Action taken to manage these errors result in design and operational constraints to control the viewing angle and surface emissivity.

  2. Three-dimensional surface scanners compared with standard anthropometric measurements for head shape

    NARCIS (Netherlands)

    Beaumont, C.A.A. (Caroline A.A.); Knoops, P.G.M. (Paul G.M.); Borghi, A. (Alessandro); Jeelani, N.U.O. (N.U. Owase); M.J. Koudstaal (Maarten); S. Schievano (Silvia); D.J. Dunaway (David); Rodriguez-Florez, N. (Naiara)

    2016-01-01

    textabstractThree-dimensional (3D) surface imaging devices designed to capture and quantify craniofacial surface morphology are becoming more common in clinical environments. Such scanners overcome the limitations of two-dimensional photographs while avoiding the ionizing radiation of computed

  3. Three-dimensional surface scanners compared with standard anthropometric measurements for head shape

    NARCIS (Netherlands)

    Beaumont, C.A.A. (Caroline A.A.); Knoops, P.G.M. (Paul G.M.); Borghi, A. (Alessandro); Jeelani, N.U.O. (N.U. Owase); M.J. Koudstaal (Maarten); S. Schievano (Silvia); D.J. Dunaway (David); Rodriguez-Florez, N. (Naiara)

    2017-01-01

    textabstractThree-dimensional (3D) surface imaging devices designed to capture and quantify craniofacial surface morphology are becoming more common in clinical environments. Such scanners overcome the limitations of two-dimensional photographs while avoiding the ionizing radiation of computed

  4. Accuracy and workflow of navigated spinal instrumentation with the mobile AIRO® CT scanner

    National Research Council Canada - National Science Library

    Hecht, Nils; Kamphuis, Marije; Czabanka, Marcus; Hamm, Bernd; König, Susanne; Woitzik, Johannes; Synowitz, Michael; Vajkoczy, Peter

    2016-01-01

    ...® intraoperative computed tomography (iCT) scanner.AIRO® iCT was used for navigated posterior spinal instrumentation of 170 screws in 23 consecutive patients operated on in our Department between the first use of the system in May 2014 and August 2014...

  5. Test-methods of chemical analysis with visual and scanner indication in ecoanalytical monitoring of nature reservoirs of Kirovograd region

    Directory of Open Access Journals (Sweden)

    Y. V. Bokhan

    2007-03-01

    Full Text Available The features of test analysis with visual and scanner indication for the exposure and semiquantitative determination of general pollutants and indices of water bodies’ quality are considered. Evaluation of some metrological descriptions of the known test-methods of pH determination, concentrations of the dissolved oxygen, nitrate- and phosphate-ions, ions of iron with visual and computer scanner-technologies using is offered.

  6. Wire scanner software and firmware issues

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John Doug [Los Alamos National Laboratory

    2008-01-01

    The Los Alamos Neutron Science Center facility presently has 110 slow wire scanning profile measurement instruments located along its various beam lines. These wire scanners were developed and have been operating for at least 30 years. While the wire scanners solved many problems to operate and have served the facility well they have increasingly suffered from several problems or limitations, such as maintenance and reliability problems, antiquated components, slow data acquisition, and etc. In order to refurbish these devices, these wire scanners will be replaced with newer versions. The replacement will consist of a completely new beam line actuator, new cables, new electronics and brand new software and firmware. This note describes the functions and modes of operation that LabVIEW VI software on the real time controller and FPGA LabVIEW firmware will be required. It will be especially interesting to understand the overall architecture of these LabVIEW VIs. While this note will endeavor to describe all of the requirements and issues for the wire scanners, undoubtedly, there will be missing details that will be added as time progresses.

  7. The PS Booster Fast Wire Scanner

    CERN Document Server

    Burger, S; Priestnall, K; Raich, U

    2003-01-01

    The very tight emittance budget for LHC type beams makes precise emittance measurements in the injector complex a necessity. The PS machine uses 2 fast wire scanners per transverse plane for emittance measurement of the circulating beams. In order to ease comparison the same type of wire scanners have been newly installed in the upstream machine, the PS Booster, where each of the 4 rings is equipped with 2 wire scanners measuring the horizontal and vertical profiles. Those wire scanners use new and more modern control and readout electronics featuring dedicated intelligent motor movement controllers, which relieves the very stringent real time constraints due to the very high speed of 20m/s. In order to be able to measure primary beams at the very low injection energy of the Booster (50MeV) secondary emission currents from the wire can be measured as well as secondary particle flows at higher primary particle energies during and after acceleration. The solution adopted for the control of the devices is descri...

  8. Biomedical imaging and sensing using flatbed scanners.

    Science.gov (United States)

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-09-07

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600-700 cm(2)) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings.

  9. Rail profile control using laser triangulation scanners

    Science.gov (United States)

    Boronahin, Ð. ńlexandr M.; Larionov, Daniil Yu.; Podgornaya, Liudmila N.; Shalymov, Roman V.; Filatov, Yuri V.; Bokhman, Evgueny D.

    2016-11-01

    Rail track geometric parameters measurement requires knowledge of left and right rail head location in each section. First of all displacement in transverse plane of rail head point located at a distance of 14 mm below the running surface, must be controlled [1]. It is carried out by detecting of each rail profile using triangulation laser scanners. Optical image recognition is carried out successfully in the laboratory, approaches used for this purpose are widely known. However, laser scanners operation has several features on railways leading to necessity of traditional approaches adaptation for solving these particular problems. The most significant problem is images noisiness due to the solar flashes and the effect of "Moon path" on the smooth rail surface. Using of optical filters gives inadequate result, because scanner laser diodes radiation frequency varies with temperature changes that forbid the use of narrow-band filters. Consideration of these features requires additional constructive and algorithmic solutions, including involvement of information from other sensors of the system. The specific usage of optical scanners for rail profiles control is the subject of the paper.

  10. Inter laboratory comparison of industrial CT scanners

    DEFF Research Database (Denmark)

    Angel, Jais Andreas Breusch; Cantatore, Angela; De Chiffre, Leonardo

    2012-01-01

    In this report results from an intercomparison of industrial CT scanners are presented. Three audit items, similar to common industrial parts, were selected for circulation: a single polymer part with complex geometry (Item 1), a simple geometry part made of two polymers (Item 2) and a miniature ...

  11. A PET scanner developed by CERN

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This image shows a Position Emission Tomography (PET) scanner at the Hopital Cantonal Universitaire de Genève. Development of the multiwire proportional chamber at CERN in the mid-1970s was soon seen as a potential device for medical imaging. It is much more sensitive than previous devices and greatly reduced the dose of radiation received by the patient.

  12. Biomedical Imaging and Sensing using Flatbed Scanners

    Science.gov (United States)

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-01-01

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600–700 cm2) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings. PMID:24965011

  13. submitter Dynamical Models of a Wire Scanner

    CERN Document Server

    Barjau, Ana; Dehning, Bernd

    2016-01-01

    The accuracy of the beam profile measurements achievable by the current wire scanners at CERN is limited by the vibrations of their mechanical parts. In particular, the vibrations of the carbon wire represent the major source of wire position uncertainty which limits the beam profile measurement accuracy. In the coming years, due to the Large Hadron Collider (LHC) luminosity upgrade, a wire traveling speed up to 20 $m s^{−1}$ and a position measurement accuracy of the order of 1 μm will be required. A new wire scanner design based on the understanding of the wire vibration origin is therefore needed. We present the models developed to understand the main causes of the wire vibrations observed in an existing wire scanner. The development and tuning of those models are based on measurements and tests performed on that CERN proton synchrotron (PS) scanner. The final model for the (wire + fork) system has six degrees-of-freedom (DOF). The wire equations contain three different excitation terms: inertia...

  14. Coronary CT Angiography: Variability of CT Scanners and Readers in Measurement of Plaque Volume.

    Science.gov (United States)

    Symons, Rolf; Morris, Justin Z; Wu, Colin O; Pourmorteza, Amir; Ahlman, Mark A; Lima, João A C; Chen, Marcus Y; Mallek, Marissa; Sandfort, Veit; Bluemke, David A

    2016-12-01

    Purpose To determine reader and computed tomography (CT) scan variability for measurement of coronary plaque volume. Materials and Methods This HIPAA-compliant study followed Standards for Reporting of Diagnostic Accuracy guidelines. Baseline coronary CT angiography was performed in 40 prospectively enrolled subjects (mean age, 67 years ± 6 [standard deviation]) with asymptomatic hyperlipidemia by using a 320-detector row scanner (Aquilion One Vision; Toshiba, Otawara, Japan). Twenty of these subjects underwent coronary CT angiography repeated on a separate day with the same CT scanner (Toshiba, group 1); 20 subjects underwent repeat CT performed with a different CT scanner (Somatom Force; Siemens, Forchheim, Germany [group 2]). Intraclass correlation coefficients (ICCs) and Bland-Altman analysis were used to assess interreader, intrareader, and interstudy reproducibility. Results Baseline and repeat coronary CT angiography scans were acquired within 19 days ± 6. Interreader and intrareader agreement rates were high for total, calcified, and noncalcified plaques for both CT scanners (all ICCs ≥ 0.96) without bias. Scanner variability was ±18.4% (coefficient of variation) with same-vendor follow-up. However, scanner variability increased to ±29.9% with different-vendor follow-up. The sample size to detect a 5% change in noncalcified plaque volume with 90% power and an α error of .05 was 286 subjects for same-CT scanner follow-up and 753 subjects with different-vendor follow-up. Conclusion State-of-the-art coronary CT angiography with same-vendor follow-up has good scan-rescan reproducibility, suggesting a role of coronary CT angiography in monitoring coronary artery plaque response to therapy. Differences between coronary CT angiography vendors resulted in lower scan-rescan reproducibility. (©) RSNA, 2016 Online supplemental material is available for this article.

  15. Improved Scanners for Microscopic Hyperspectral Imaging

    Science.gov (United States)

    Mao, Chengye

    2009-01-01

    Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version

  16. AN AUTOMATIC PROCEDURE FOR COMBINING DIGITAL IMAGES AND LASER SCANNER DATA

    Directory of Open Access Journals (Sweden)

    W. Moussa

    2012-07-01

    Full Text Available Besides improving both the geometry and the visual quality of the model, the integration of close-range photogrammetry and terrestrial laser scanning techniques directs at filling gaps in laser scanner point clouds to avoid modeling errors, reconstructing more details in higher resolution and recovering simple structures with less geometric details. Thus, within this paper a flexible approach for the automatic combination of digital images and laser scanner data is presented. Our approach comprises two methods for data fusion. The first method starts by a marker-free registration of digital images based on a point-based environment model (PEM of a scene which stores the 3D laser scanner point clouds associated with intensity and RGB values. The PEM allows the extraction of accurate control information for the direct computation of absolute camera orientations with redundant information by means of accurate space resection methods. In order to use the computed relations between the digital images and the laser scanner data, an extended Helmert (seven-parameter transformation is introduced and its parameters are estimated. Precedent to that, in the second method, the local relative orientation parameters of the camera images are calculated by means of an optimized Structure and Motion (SaM reconstruction method. Then, using the determined transformation parameters results in having absolute oriented images in relation to the laser scanner data. With the resulting absolute orientations we have employed robust dense image reconstruction algorithms to create oriented dense image point clouds, which are automatically combined with the laser scanner data to form a complete detailed representation of a scene. Examples of different data sets are shown and experimental results demonstrate the effectiveness of the presented procedures.

  17. Operation of the preclinical head scanner for proton CT

    Energy Technology Data Exchange (ETDEWEB)

    Sadrozinski, H.F.-W., E-mail: hartmut@ucsc.edu [SCIPP, U.C. Santa Cruz, Santa Cruz, CA 95064 (United States); Geoghegan, T.; Harvey, E.; Johnson, R.P.; Plautz, T.E.; Zatserklyaniy, A. [SCIPP, U.C. Santa Cruz, Santa Cruz, CA 95064 (United States); Bashkirov, V.; Hurley, R.F.; Piersimoni, P.; Schulte, R.W. [Division of Radiation Research, Loma Linda University, Loma Linda, CA 92354 (United States); Karbasi, P.; Schubert, K.E.; Schultze, B. [School of Engineering and Computer Science, Baylor University, Waco, TX 76798 (United States); Giacometti, V. [Center for Medical Radiation Physics, University of Wollongong, NSW (Australia)

    2016-09-21

    We report on the operation and performance tests of a preclinical head scanner developed for proton computed tomography (pCT). After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. In order to assess the performance of the scanner, we have performed CT scans with 200 MeV protons from both the synchrotron of the Loma Linda University Medical Center (LLUMC) and the cyclotron of the Northwestern Medicine Chicago Proton Center (NMCPC). The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360° scan to be completed in less than 7 min. The reconstruction of various phantoms verified accurate reconstruction of the proton relative stopping power (RSP) and the spatial resolution in a variety of materials. The dose for an image with better than 1% uncertainty in the RSP is found to be close to 1 mGy.

  18. Use of Terrestrial Laser Scanner for Rigid Airport Pavement Management.

    Science.gov (United States)

    Barbarella, Maurizio; D'Amico, Fabrizio; De Blasiis, Maria Rosaria; Di Benedetto, Alessandro; Fiani, Margherita

    2017-12-26

    The evaluation of the structural efficiency of airport infrastructures is a complex task. Faulting is one of the most important indicators of rigid pavement performance. The aim of our study is to provide a new method for faulting detection and computation on jointed concrete pavements. Nowadays, the assessment of faulting is performed with the use of laborious and time-consuming measurements that strongly hinder aircraft traffic. We proposed a field procedure for Terrestrial Laser Scanner data acquisition and a computation flow chart in order to identify and quantify the fault size at each joint of apron slabs. The total point cloud has been used to compute the least square plane fitting those points. The best-fit plane for each slab has been computed too. The attitude of each slab plane with respect to both the adjacent ones and the apron reference plane has been determined by the normal vectors to the surfaces. Faulting has been evaluated as the difference in elevation between the slab planes along chosen sections. For a more accurate evaluation of the faulting value, we have then considered a few strips of data covering rectangular areas of different sizes across the joints. The accuracy of the estimated quantities has been computed too.

  19. Use of Terrestrial Laser Scanner for Rigid Airport Pavement Management

    Directory of Open Access Journals (Sweden)

    Maurizio Barbarella

    2017-12-01

    Full Text Available The evaluation of the structural efficiency of airport infrastructures is a complex task. Faulting is one of the most important indicators of rigid pavement performance. The aim of our study is to provide a new method for faulting detection and computation on jointed concrete pavements. Nowadays, the assessment of faulting is performed with the use of laborious and time-consuming measurements that strongly hinder aircraft traffic. We proposed a field procedure for Terrestrial Laser Scanner data acquisition and a computation flow chart in order to identify and quantify the fault size at each joint of apron slabs. The total point cloud has been used to compute the least square plane fitting those points. The best-fit plane for each slab has been computed too. The attitude of each slab plane with respect to both the adjacent ones and the apron reference plane has been determined by the normal vectors to the surfaces. Faulting has been evaluated as the difference in elevation between the slab planes along chosen sections. For a more accurate evaluation of the faulting value, we have then considered a few strips of data covering rectangular areas of different sizes across the joints. The accuracy of the estimated quantities has been computed too.

  20. Assessment of a new trauma workflow concept implementing a sliding CT scanner in the trauma room: the effect on workup times

    NARCIS (Netherlands)

    Fung Kon Jin, P. H. Ping; Goslings, J. Carel; Ponsen, Kees Jan; van Kuijk, Cees; Hoogerwerf, Nico; Luitse, Jan S.

    2008-01-01

    INTRODUCTION: We developed a new shockroom resuscitation setting that includes a moveable, multislice computed tomography (CT) scanner capable of scanning patients during the initial trauma resuscitation phase without (multiple) patient transfers that previously were necessary. This enables us to

  1. Wire scanners in low energy accelerators

    CERN Document Server

    Elmfors, P; Huhtinen, M; Lindroos, M; Olsfors, J; Raich, U

    1997-01-01

    Fast wire scanners are today considered as part of standard instrumentation in high energy synchrotrons. The extension of their use to synchrotrons working at lower energies, where Coulomb scattering can be important and the transverse beam size is large, introduces new complications considering beam heating of the wire, composition of the secondary particle shower and geometrical consideration in the detection set-up. A major problem in treating these effects is that the creation of secondaries in a thin carbon wire by a energetic primary beam is difficult to describe in an analytical way. We are here presenting new results from a full Monte Carlo simulation of this process yielding information on heat deposited in the wire, particle type and energy spectrum of secondaries and angular dependence as a function of primary beam energy. The results are used to derive limits for the use of wire scanners in low energy accelerators.

  2. Get Mobile – The Smartphone Brain Scanner

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Stopczynski, Arkadiusz; Petersen, Michael Kai

    This demonstration will provide live-interaction with a smartphone brain scanner consisting of a low-cost wireless 14-channel EEG headset (Emotiv Epoc) and a mobile device. With our system it is possible to perform real-time functional brain imaging on a smartphone device, including stimulus...... delivery, data acquisition, logging, brain state decoding, and 3D visualization of the cortical EEG sources. Implementation of the smartphone brain scanner is based on the Qt framework and benefits from the cross-platform support of multiple hardware platforms (smartphones, tablet devices, netbooks and PCs......) that are based on Linux operating systems. Thus our system runs on multiple platforms, including Maemo/MeeGo based smartphones, Android-based smartphones and tablet devices....

  3. Reliability evaluation of a MEMS scanner

    Science.gov (United States)

    Lani, S.; Marozau, Y.; Dadras, M.

    2017-02-01

    Previously, the realization and closed loop control of a MEMS scanner integrating position sensors made with piezoresistive sensors was presented. It consisted of a silicon compliant membrane with integrated position sensors, on which a mirror and a magnet were assembled. This device was mounted on a PCB containing coils for electromagnetic actuation. In this work, the reliability of such system was evaluated through thermal and mechanical analysis. The objective of thermal analysis was to evaluate the lifetime of the MEMS scanner and is consisting of temperature cycling (-40°C to 100°C) and accelerated electrical endurance (100°C with power supplied to all electrical components). The objective of mechanical analysis was to assess the resistance of the system to mechanical stress and is consisting of mechanical shock and vibration. A high speed camera has been used to observe the behavior of the MEMS scanner. The use of shock stopper to improve the mechanical resistance has been evaluated and had demonstrated a resistance increase from 250g to 900g. The minimum shock resistance required for the system is 500g for transportation and 1000g for portative devices.

  4. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview In autumn the main focus was to process and handle CRAFT data and to perform the Summer08 MC production. The operational aspects were well covered by regular Computing Shifts, experts on duty and Computing Run Coordination. At the Computing Resource Board (CRB) in October a model to account for service work at Tier 2s was approved. The computing resources for 2009 were reviewed for presentation at the C-RRB. The quarterly resource monitoring is continuing. Facilities/Infrastructure operations Operations during CRAFT data taking ran fine. This proved to be a very valuable experience for T0 workflows and operations. The transfers of custodial data to most T1s went smoothly. A first round of reprocessing started at the Tier-1 centers end of November; it will take about two weeks. The Computing Shifts procedure was tested full scale during this period and proved to be very efficient: 30 Computing Shifts Persons (CSP) and 10 Computing Resources Coordinators (CRC). The shift program for the shut down w...

  5. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview During the past three months activities were focused on data operations, testing and re-enforcing shift and operational procedures for data production and transfer, MC production and on user support. Planning of the computing resources in view of the new LHC calendar in ongoing. Two new task forces were created for supporting the integration work: Site Commissioning, which develops tools helping distributed sites to monitor job and data workflows, and Analysis Support, collecting the user experience and feedback during analysis activities and developing tools to increase efficiency. The development plan for DMWM for 2009/2011 was developed at the beginning of the year, based on the requirements from the Physics, Computing and Offline groups (see Offline section). The Computing management meeting at FermiLab on February 19th and 20th was an excellent opportunity discussing the impact and for addressing issues and solutions to the main challenges facing CMS computing. The lack of manpower is particul...

  6. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction CMS distributed computing system performed well during the 2011 start-up. The events in 2011 have more pile-up and are more complex than last year; this results in longer reconstruction times and harder events to simulate. Significant increases in computing capacity were delivered in April for all computing tiers, and the utilisation and load is close to the planning predictions. All computing centre tiers performed their expected functionalities. Heavy-Ion Programme The CMS Heavy-Ion Programme had a very strong showing at the Quark Matter conference. A large number of analyses were shown. The dedicated heavy-ion reconstruction facility at the Vanderbilt Tier-2 is still involved in some commissioning activities, but is available for processing and analysis. Facilities and Infrastructure Operations Facility and Infrastructure operations have been active with operations and several important deployment tasks. Facilities participated in the testing and deployment of WMAgent and WorkQueue+Request...

  7. COMPUTING

    CERN Multimedia

    P. McBride

    The Computing Project is preparing for a busy year where the primary emphasis of the project moves towards steady operations. Following the very successful completion of Computing Software and Analysis challenge, CSA06, last fall, we have reorganized and established four groups in computing area: Commissioning, User Support, Facility/Infrastructure Operations and Data Operations. These groups work closely together with groups from the Offline Project in planning for data processing and operations. Monte Carlo production has continued since CSA06, with about 30M events produced each month to be used for HLT studies and physics validation. Monte Carlo production will continue throughout the year in the preparation of large samples for physics and detector studies ramping to 50 M events/month for CSA07. Commissioning of the full CMS computing system is a major goal for 2007. Site monitoring is an important commissioning component and work is ongoing to devise CMS specific tests to be included in Service Availa...

  8. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... slices. When the image slices are reassembled by computer software, the result is a very detailed multidimensional view of the body's interior. Refinements in detector technology allow new CT scanners to obtain multiple slices ...

  9. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... appears black. With CT scanning, numerous x-ray beams and a set of electronic x-ray detectors ... through the scanner, so that the x-ray beam follows a spiral path. A special computer program ...

  10. Mathematical modelling of scanner-specific bowtie filters for Monte Carlo CT dosimetry

    Science.gov (United States)

    Kramer, R.; Cassola, V. F.; Andrade, M. E. A.; de Araújo, M. W. C.; Brenner, D. J.; Khoury, H. J.

    2017-02-01

    The purpose of bowtie filters in CT scanners is to homogenize the x-ray intensity measured by the detectors in order to improve the image quality and at the same time to reduce the dose to the patient because of the preferential filtering near the periphery of the fan beam. For CT dosimetry, especially for Monte Carlo calculations of organ and tissue absorbed doses to patients, it is important to take the effect of bowtie filters into account. However, material composition and dimensions of these filters are proprietary. Consequently, a method for bowtie filter simulation independent of access to proprietary data and/or to a specific scanner would be of interest to many researchers involved in CT dosimetry. This study presents such a method based on the weighted computer tomography dose index, CTDIw, defined in two cylindrical PMMA phantoms of 16 cm and 32 cm diameter. With an EGSnrc-based Monte Carlo (MC) code, ratios CTDIw/CTDI100,a were calculated for a specific CT scanner using PMMA bowtie filter models based on sigmoid Boltzmann functions combined with a scanner filter factor (SFF) which is modified during calculations until the calculated MC CTDIw/CTDI100,a matches ratios CTDIw/CTDI100,a, determined by measurements or found in publications for that specific scanner. Once the scanner-specific value for an SFF has been found, the bowtie filter algorithm can be used in any MC code to perform CT dosimetry for that specific scanner. The bowtie filter model proposed here was validated for CTDIw/CTDI100,a considering 11 different CT scanners and for CTDI100,c, CTDI100,p and their ratio considering 4 different CT scanners. Additionally, comparisons were made for lateral dose profiles free in air and using computational anthropomorphic phantoms. CTDIw/CTDI100,a determined with this new method agreed on average within 0.89% (max. 3.4%) and 1.64% (max. 4.5%) with corresponding data published by CTDosimetry (www.impactscan.org) for the CTDI HEAD and BODY phantoms

  11. COMPUTING

    CERN Multimedia

    I. Fisk

    2013-01-01

    Computing activity had ramped down after the completion of the reprocessing of the 2012 data and parked data, but is increasing with new simulation samples for analysis and upgrade studies. Much of the Computing effort is currently involved in activities to improve the computing system in preparation for 2015. Operations Office Since the beginning of 2013, the Computing Operations team successfully re-processed the 2012 data in record time, not only by using opportunistic resources like the San Diego Supercomputer Center which was accessible, to re-process the primary datasets HTMHT and MultiJet in Run2012D much earlier than planned. The Heavy-Ion data-taking period was successfully concluded in February collecting almost 500 T. Figure 3: Number of events per month (data) In LS1, our emphasis is to increase efficiency and flexibility of the infrastructure and operation. Computing Operations is working on separating disk and tape at the Tier-1 sites and the full implementation of the xrootd federation ...

  12. THE POTENTIAL OF LIGHT LASER SCANNERS DEVELOPED FOR UNMANNED AERIAL VEHICLES – THE REVIEW AND ACCURACY

    Directory of Open Access Journals (Sweden)

    M. Pilarska

    2016-10-01

    Full Text Available Modern photogrammetry and remote sensing have found small Unmanned Aerial Vehicles (UAVs to be a valuable source of data in various branches of science and industry (e.g., agriculture, cultural heritage. Recently, the growing role of laser scanning in the application of UAVs has also been observed. Laser scanners dedicated to UAVs consist of four basic components: a laser scanner (LiDAR, an Inertial Measurement Unit (IMU, a Global Navigation Satellite System (GNSS receiver and an on-board computer. The producers of the system provide users with detailed descriptions of the accuracies separately for each component. However, the final measurement accuracy is not given. This paper reviews state-of-the-art of laser scanners developed specifically for use on a UAV, presenting an overview of several constructions that are available nowadays. The second part of the paper is focussed on analysing the influence of the sensor accuracies on the final measurement accuracy. Mathematical models developed for Airborne Laser Scanning (ALS accuracy analyses are used to estimate the theoretical accuracies of different scanners with conditions typical for UAV missions. Finally, the theoretical results derived from the mathematical simulations are compared with an experimental use case.

  13. The Potential of Light Laser Scanners Developed for Unmanned Aerial Vehicles - The Review and Accuracy

    Science.gov (United States)

    Pilarska, M.; Ostrowski, W.; Bakuła, K.; Górski, K.; Kurczyński, Z.

    2016-10-01

    Modern photogrammetry and remote sensing have found small Unmanned Aerial Vehicles (UAVs) to be a valuable source of data in various branches of science and industry (e.g., agriculture, cultural heritage). Recently, the growing role of laser scanning in the application of UAVs has also been observed. Laser scanners dedicated to UAVs consist of four basic components: a laser scanner (LiDAR), an Inertial Measurement Unit (IMU), a Global Navigation Satellite System (GNSS) receiver and an on-board computer. The producers of the system provide users with detailed descriptions of the accuracies separately for each component. However, the final measurement accuracy is not given. This paper reviews state-of-the-art of laser scanners developed specifically for use on a UAV, presenting an overview of several constructions that are available nowadays. The second part of the paper is focussed on analysing the influence of the sensor accuracies on the final measurement accuracy. Mathematical models developed for Airborne Laser Scanning (ALS) accuracy analyses are used to estimate the theoretical accuracies of different scanners with conditions typical for UAV missions. Finally, the theoretical results derived from the mathematical simulations are compared with an experimental use case.

  14. Fabrication of malleable three-dimensional-printed customized bolus using three-dimensional scanner.

    Directory of Open Access Journals (Sweden)

    Jae Won Park

    Full Text Available A three-dimensional (3D-printed customized bolus (3D bolus can be used for radiotherapy application to irregular surfaces. However, bolus fabrication based on computed tomography (CT scans is complicated and also delivers unwanted irradiation. Consequently, we fabricated a bolus using a 3D scanner and evaluated its efficacy. The head of an Alderson Rando phantom was scanned with a 3D scanner. The 3D surface data were exported and reconstructed with Geomagic Design X software. A 3D bolus of 5-mm thickness designed to fit onto the nose was printed with the use of rubber-like printing material, and a radiotherapy plan was developed. We successfully fabricated the customized 3D bolus, and further, a CT simulation indicated an acceptable fit of the 3D bolus to the nose. There was no air gap between the bolus and the phantom surface. The percent depth dose (PDD curve of the phantom with the 3D bolus showed an enhanced surface dose when compared with that of the phantom without the bolus. The PDD of the 3D bolus was comparable with that of a commercial superflab bolus. The radiotherapy plan considering the 3D bolus showed improved target coverage when compared with that without the bolus. Thus, we successfully fabricated a customized 3D bolus for an irregular surface using a 3D scanner instead of a CT scanner.

  15. A Compact Vertical Scanner for Atomic Force Microscopes

    OpenAIRE

    Jae Hong Park; Jaesool Shim; Dong-Yeon Lee

    2010-01-01

    A compact vertical scanner for an atomic force microscope (AFM) is developed. The vertical scanner is designed to have no interference with the optical microscope for viewing the cantilever. The theoretical stiffness and resonance of the scanner are derived and verified via finite element analysis. An optimal design process that maximizes the resonance frequency is performed. To evaluate the scanner’s performance, experiments are performed to evaluate the travel range, resonance frequency, an...

  16. Adaptive on-line classification of multi-spectral scanner data

    Science.gov (United States)

    Fromm, F. R.; Northouse, R. A.

    1973-01-01

    A possible solution to the analysis of the massive amounts of multi-spectral scanner data from the Earth Resource Technical Satellite (ERTS) program is proposed. This solution is offered as an adaptive on-line classification scheme. The classifier is described as well as its controller which is based on ground truth data. Cluster analysis is presented as an alternative approach to the ground truth data. Adaptive feature selection is discussed and possible mini-computer implementations are offered.

  17. Microcontroller USB interfacing with MATLAB GUI for low cost medical ultrasound scanners

    OpenAIRE

    Raj, Jean; Rahman, S.M.K.; Anand, Sneh

    2017-01-01

    This paper presents an 8051 microcontroller-based control of ultrasound scanner prototype hardware from a host laptop MATLAB GUI. The hardware control of many instruments is carried out by microcontrollers. These microcontrollers are in turn controlled from a GUI residing in a computing machine that is connected over the USB interface. Conventionally such GUIs are developed using ‘C’ language or its variants. But MATLAB GUI is a better tool, when such GUI programs need to do huge image/video ...

  18. Interferometric Laser Scanner for Direction Determination

    Directory of Open Access Journals (Sweden)

    Gennady Kaloshin

    2016-01-01

    Full Text Available In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km.

  19. A Compact Vertical Scanner for Atomic Force Microscopes

    Directory of Open Access Journals (Sweden)

    Jae Hong Park

    2010-11-01

    Full Text Available A compact vertical scanner for an atomic force microscope (AFM is developed. The vertical scanner is designed to have no interference with the optical microscope for viewing the cantilever. The theoretical stiffness and resonance of the scanner are derived and verified via finite element analysis. An optimal design process that maximizes the resonance frequency is performed. To evaluate the scanner’s performance, experiments are performed to evaluate the travel range, resonance frequency, and feedback noise level. In addition, an AFM image using the proposed vertical scanner is generated.

  20. Was the Scanner Calibration Slide used for its intended purpose?

    Directory of Open Access Journals (Sweden)

    Zong Yaping

    2011-04-01

    Full Text Available Abstract In the article, Scanner calibration revisited, BMC Bioinformatics 2010, 11:361, Dr. Pozhitkov used the Scanner Calibration Slide, a key product of Full Moon BioSystems to generate data in his study of microarray scanner PMT response and proposed a mathematic model for PMT response 1. In the end, the author concluded that "Full Moon BioSystems calibration slides are inadequate for performing calibration," and recommended "against using these slides." We found these conclusions are seriously flawed and misleading, and his recommendation against using the Scanner Calibration Slide was not properly supported.

  1. COMPUTING

    CERN Multimedia

    I. Fisk

    2010-01-01

    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion An activity that is still in progress is computing for the heavy-ion program. The heavy-ion events are collected without zero suppression, so the event size is much large at roughly 11 MB per event of RAW. The central collisions are more complex and...

  2. COMPUTING

    CERN Multimedia

    M. Kasemann P. McBride Edited by M-C. Sawley with contributions from: P. Kreuzer D. Bonacorsi S. Belforte F. Wuerthwein L. Bauerdick K. Lassila-Perini M-C. Sawley

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the comput...

  3. Digital data storage of core image using high resolution full color core scanner; Kokaizodo full color scanner wo mochiita core image no digital ka

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, W.; Ujo, S.; Osato, K.; Takasugi, S. [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan)

    1996-05-01

    This paper reports on digitization of core images by using a new type core scanner system. This system consists of a core scanner unit (equipped with a CCD camera), a personal computer and ancillary devices. This is a modification of the old type system, with measurable core length made to 100 cm/3 scans, and resolution enhanced to 5100 pixels/m (1024 pixels/m in the old type). The camera was changed to that of a color specification, and the A/D conversion was improved to 24-bit full color. As a result of carrying out a detail reproduction test on digital images of this core scanner, it was found that objects can be identified at a level of about the size of pixels constituting the image in the case when the best contrast is obtained between the objects and the background, and that in an evaluation test on visibility of concaves and convexes on core surface, reproducibility is not very good in large concaves and convexes. 2 refs., 6 figs.

  4. COMPUTING

    CERN Multimedia

    P. McBride

    It has been a very active year for the computing project with strong contributions from members of the global community. The project has focused on site preparation and Monte Carlo production. The operations group has begun processing data from P5 as part of the global data commissioning. Improvements in transfer rates and site availability have been seen as computing sites across the globe prepare for large scale production and analysis as part of CSA07. Preparations for the upcoming Computing Software and Analysis Challenge CSA07 are progressing. Ian Fisk and Neil Geddes have been appointed as coordinators for the challenge. CSA07 will include production tests of the Tier-0 production system, reprocessing at the Tier-1 sites and Monte Carlo production at the Tier-2 sites. At the same time there will be a large analysis exercise at the Tier-2 centres. Pre-production simulation of the Monte Carlo events for the challenge is beginning. Scale tests of the Tier-0 will begin in mid-July and the challenge it...

  5. COMPUTING

    CERN Multimedia

    I. Fisk

    2012-01-01

    Introduction Computing continued with a high level of activity over the winter in preparation for conferences and the start of the 2012 run. 2012 brings new challenges with a new energy, more complex events, and the need to make the best use of the available time before the Long Shutdown. We expect to be resource constrained on all tiers of the computing system in 2012 and are working to ensure the high-priority goals of CMS are not impacted. Heavy ions After a successful 2011 heavy-ion run, the programme is moving to analysis. During the run, the CAF resources were well used for prompt analysis. Since then in 2012 on average 200 job slots have been used continuously at Vanderbilt for analysis workflows. Operations Office As of 2012, the Computing Project emphasis has moved from commissioning to operation of the various systems. This is reflected in the new organisation structure where the Facilities and Data Operations tasks have been merged into a common Operations Office, which now covers everything ...

  6. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion The Tier 0 infrastructure was able to repack and promptly reconstruct heavy-ion collision data. Two copies were made of the data at CERN using a large CASTOR disk pool, and the core physics sample was replicated ...

  7. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the co...

  8. COMPUTING

    CERN Multimedia

    M. Kasemann

    CCRC’08 challenges and CSA08 During the February campaign of the Common Computing readiness challenges (CCRC’08), the CMS computing team had achieved very good results. The link between the detector site and the Tier0 was tested by gradually increasing the number of parallel transfer streams well beyond the target. Tests covered the global robustness at the Tier0, processing a massive number of very large files and with a high writing speed to tapes.  Other tests covered the links between the different Tiers of the distributed infrastructure and the pre-staging and reprocessing capacity of the Tier1’s: response time, data transfer rate and success rate for Tape to Buffer staging of files kept exclusively on Tape were measured. In all cases, coordination with the sites was efficient and no serious problem was found. These successful preparations prepared the ground for the second phase of the CCRC’08 campaign, in May. The Computing Software and Analysis challen...

  9. COMPUTING

    CERN Multimedia

    I. Fisk

    2010-01-01

    Introduction The first data taking period of November produced a first scientific paper, and this is a very satisfactory step for Computing. It also gave the invaluable opportunity to learn and debrief from this first, intense period, and make the necessary adaptations. The alarm procedures between different groups (DAQ, Physics, T0 processing, Alignment/calibration, T1 and T2 communications) have been reinforced. A major effort has also been invested into remodeling and optimizing operator tasks in all activities in Computing, in parallel with the recruitment of new Cat A operators. The teams are being completed and by mid year the new tasks will have been assigned. CRB (Computing Resource Board) The Board met twice since last CMS week. In December it reviewed the experience of the November data-taking period and could measure the positive improvements made for the site readiness. It also reviewed the policy under which Tier-2 are associated with Physics Groups. Such associations are decided twice per ye...

  10. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction During the past six months, Computing participated in the STEP09 exercise, had a major involvement in the October exercise and has been working with CMS sites on improving open issues relevant for data taking. At the same time operations for MC production, real data reconstruction and re-reconstructions and data transfers at large scales were performed. STEP09 was successfully conducted in June as a joint exercise with ATLAS and the other experiments. It gave good indication about the readiness of the WLCG infrastructure with the two major LHC experiments stressing the reading, writing and processing of physics data. The October Exercise, in contrast, was conducted as an all-CMS exercise, where Physics, Computing and Offline worked on a common plan to exercise all steps to efficiently access and analyze data. As one of the major results, the CMS Tier-2s demonstrated to be fully capable for performing data analysis. In recent weeks, efforts were devoted to CMS Computing readiness. All th...

  11. Modelling the Siemens SOMATOM Sensation 64 Multi-Slice CT (MSCT) Scanner

    Science.gov (United States)

    Amin, A. T. Mohd; Rahni, A. A. Abd

    2017-05-01

    Reconstructing large volumetric 3D images with minimal radiation dosage exposure with reduced scanning time has been one of the main objectives in the advancement of CT development. One of its advancement is the introduction of multi-slice arc detector geometry from a cone-beam source in third generation scanners. In solving this complex geometry, apart from the known vast computations in CT image reconstruction due to large CT images, iterative reconstruction methods are preferred compared to analytic methods due to its flexibility in image reconstruction. A scanner of interest that has this type of geometry is the Siemens SOMATOM Sensation 64 Multi-Slice CT (MSCT) Scanner, which has a total of 32 slices with 672 detector elements on each slice. In this paper, the scanner projection is modelled via the intersecting lengths between each ray (exhibited from the source to the detector elements) with the scanned image voxels, which are evaluated using the classical Siddon’s algorithm to generate the system matrix, H. This is a prerequisite to perform various iterative reconstruction methods, which involves solving the inverse problem arising from the linear equation: S = H· I; where S is the projections produced from the image, I. Due to the ‘cone-beam geometry’ along the z-axis, the effective field-of-view (FOV) with voxel dimensions (0.4×0.4×0.4) mm3 is 512×512×32 voxels. The scanner model is demonstrated by reconstructing an image from simulated projections using the analytic Feldkamp-Davis-Kress (FDK) method against basic iterative image reconstruction methods.

  12. A UGV-based laser scanner system for measuring tree geometric characteristics

    Science.gov (United States)

    Wang, Yonghui; Lan, Yubin; Zheng, Yongjun; Lee, Kevin; Cui, Suxia; Lian, Jian-ao

    2013-09-01

    This paper introduces a laser scanner based measurement system for measuring crop/tree geometric characteristics. The measurement system, which is mounted on a Unmanned Ground Vehicle (UGV), contains a SICK LMS511 PRO laser scanner, a GPS, and a computer. The LMS511 PRO scans objects within distance up to 80 meters with a scanning frequency of 25 up to 100Hz and with an angular resolution of 0.1667° up to 1°. With an Ethernet connection, this scanner can output the measured values in real time. The UGV is a WIFI based remotely controlled agricultural robotics system. During field tests, the laser scanner was mounted on the UGV vertically to scan crops or trees. The UGV moved along the row direction with certain average travel speed. The experimental results show that the UGV's travel speed significantly affects the measurement accuracy. A slower speed produces more accurate measuring results. With the developed measurement system, crop/tree canopy height, width, and volume can be accurately measured in a real-time manner. With a higher spatial resolution, the original data set may even provide useful information in predicting crop/tree growth and productivity. In summary, the UGV based measurement system developed in this research can measure the crop/tree geometric characteristics with good accuracy and will work as a step stone for our future UGV based intelligent agriculture system, which will include variable rate spray and crop/tree growth and productivity prediction through analyzing the measured results of the laser scanner system.

  13. Flat-field postobjective polygon scanner.

    Science.gov (United States)

    Walters, C T

    1995-05-01

    A general two-dimensional ray-trace analysis is presented for the motion of a geometric focal point over a flat surface provided by a postobjective rotating polygon laser beam scanner. The exact defocus equation is derived for any value of the neutral scan position deflection angle and the polygon rotation angle. The scan nonlinearity is derived for the special case of a zero neutral scan deflection angle. Geometric parameters were found that reduce the peak-to-peak defocus by more than an order of magnitude from that found in previous design approaches. Conditions were also found that reduce scan nonlinearity to less than 2 × 10(-4). Practical limitations, such as large polygons and beam obscurations, encountered in the implementation of postobjective scanning are discussed.

  14. Cornice Monitoring with a Terrestrial Laser Scanner

    Science.gov (United States)

    Prokop, Alexander; Hancock, Holt

    2017-04-01

    Cornice failure poses a threat to infrastructure and human life in central Svalbard, where cornice fall avalanches comprise a significant portion of all observed avalanche activity. Cornice accretion occurs seasonally on the plateau edges of the mountains that border Longyearbyen - Svalbard's primary settlement - where snow entrained over the long fetches of the plateau summits is deposited by the prevailing winds. Here, we present the preliminary results from our first season regularly monitoring these cornice systems with the Riegl VZ-6000 terrestrial laser scanner. We demonstrate the applicability of TLS data acquisition for monitoring cornice system dynamics and discuss the utility of such measurements for hazard management purposes. Finally, we show how this unique high spatial resolution data will act as a reference dataset for modeling exercises to improve the process understanding of cornice development and failure - in arctic environments and throughout the world.

  15. The Skylab lunar multispectral scanner data

    Science.gov (United States)

    Seeger, C. R.; Potter, A. E.

    1984-01-01

    Skylab S-192 multispectral scanner data, in 12 bands covering wavelengths from 0.41 to 2.3 microns, have been investigated to identify and classify geologic units of the lunar surface. Seventeen spectral cluster classes have been identified, seven in the highlands, seven in the maria, and three of which occur in both or in border regions. This finding may be roughly indicative of the relative heterogeneity of these regions. It implies that there is as much heterogeneity in the highlands as in the maria. This work extends the spectral and aerial coverage of similar studies of the lunar surface and provides useful data for comparison for most of the lunar near side.

  16. Accuracy and efficiency of full-arch digitalization and 3D printing: A comparison between desktop model scanners, an intraoral scanner, a CBCT model scan, and stereolithographic 3D printing.

    Science.gov (United States)

    Wesemann, Christian; Muallah, Jonas; Mah, James; Bumann, Axel

    2017-01-01

    The primary objective of this study was to compare the accuracy and time efficiency of an indirect and direct digitalization workflow with that of a three-dimensional (3D) printer in order to identify the most suitable method for orthodontic use. A master model was measured with a coordinate measuring instrument. The distances measured were the intercanine width, the intermolar width, and the dental arch length. Sixty-four scans were taken with each of the desktop scanners R900 and R700 (3Shape), the intraoral scanner TRIOS Color Pod (3Shape), and the Promax 3D Mid cone beam computed tomography (CBCT) unit (Planmeca). All scans were measured with measuring software. One scan was selected and printed 37 times on the D35 stereolithographic 3D printer (Innovation MediTech). The printed models were measured again using the coordinate measuring instrument. The most accurate results were obtained by the R900. The R700 and the TRIOS intraoral scanner showed comparable results. CBCT-3D-rendering with the Promax 3D Mid CBCT unit revealed significantly higher accuracy with regard to dental casts than dental impressions. 3D printing offered a significantly higher level of deviation than digitalization with desktop scanners or an intraoral scanner. The chairside time required for digital impressions was 27% longer than for conventional impressions. Conventional impressions, model casting, and optional digitization with desktop scanners remains the recommended workflow process. For orthodontic demands, intraoral scanners are a useful alternative for full-arch scans. For prosthodontic use, the scanning scope should be less than one quadrant and three additional teeth.

  17. A ''Millipede'' scanner model - Energy consumption and performance

    NARCIS (Netherlands)

    Engelen, Johannes Bernardus Charles; Khatib, M.G.

    2008-01-01

    This short report (1) describes an energy model for the seek and read/write operations in a mass-balanced Y-scanner for parallel-probe storage by IBM [1] and (2) updates the settings of the MEMS model in DiskSim with recent published figures from this XY-scanner. To speedup system simulations, a

  18. Computational engineering

    CERN Document Server

    2014-01-01

    The book presents state-of-the-art works in computational engineering. Focus is on mathematical modeling, numerical simulation, experimental validation and visualization in engineering sciences. In particular, the following topics are presented: constitutive models and their implementation into finite element codes, numerical models in nonlinear elasto-dynamics including seismic excitations, multiphase models in structural engineering and multiscale models of materials systems, sensitivity and reliability analysis of engineering structures, the application of scientific computing in urban water management and hydraulic engineering, and the application of genetic algorithms for the registration of laser scanner point clouds.

  19. Optical performance requirements for MEMS-scanner-based microdisplays

    Science.gov (United States)

    Urey, Hakan; Wine, David W.; Osborn, Thor D.

    2000-08-01

    High-resolution and high frame rate dynamic microdisplays can be implemented by scanning a photon beam in a raster format across the viewer's retina. Microvision is developing biaxial MEMS scanners for such video display applications. This paper discusses the optical performance requirements for scanning display systems. The display resolution directly translates into a scan-angle-mirror-size product and the frame rate translates into vertical and horizontal scanner frequencies. (theta) -product and fh are both very important figures of merit for scanner performance comparison. In addition, the static and dynamic flatness of the scanners, off-axis motion and scan repeatability, scanner position sensor accuracy all have a direct impact on display image quality.

  20. Ultra-Miniature Lidar Scanner for Launch Range Data Collection

    Science.gov (United States)

    Geng, Jason

    2012-01-01

    The most critical component in lidar is its laser scanner, which delivers pulsed or CW laser to target with desirable field of view (FOV). Most existing lidars use a rotating or oscillating mirror for scanning, resulting in several drawbacks. A lidar scanning technology was developed that could achieve very high scanning speed, with an ultra-miniature size and much lighter weight. This technology promises at least a 10x performance improvement in these areas over existing lidar scanners. Features of the proposed ultra-miniature lidar scanner include the ability to make the entire scanner <2 mm in diameter; very high scanning speed (e.g. 5 - 20 kHz, in contrast to several hundred Hz in existing scanners); structure design to meet stringent requirements on size, weight, power, and compactness for various applications; and the scanning speed and FOV can be altered for obtaining high image resolutions of targeted areas and for diversified uses.

  1. COMPUTING

    CERN Multimedia

    I. Fisk

    2013-01-01

    Computing operation has been lower as the Run 1 samples are completing and smaller samples for upgrades and preparations are ramping up. Much of the computing activity is focusing on preparations for Run 2 and improvements in data access and flexibility of using resources. Operations Office Data processing was slow in the second half of 2013 with only the legacy re-reconstruction pass of 2011 data being processed at the sites.   Figure 1: MC production and processing was more in demand with a peak of over 750 Million GEN-SIM events in a single month.   Figure 2: The transfer system worked reliably and efficiently and transferred on average close to 520 TB per week with peaks at close to 1.2 PB.   Figure 3: The volume of data moved between CMS sites in the last six months   The tape utilisation was a focus for the operation teams with frequent deletion campaigns from deprecated 7 TeV MC GEN-SIM samples to INVALID datasets, which could be cleaned up...

  2. COMPUTING

    CERN Multimedia

    I. Fisk

    2012-01-01

      Introduction Computing activity has been running at a sustained, high rate as we collect data at high luminosity, process simulation, and begin to process the parked data. The system is functional, though a number of improvements are planned during LS1. Many of the changes will impact users, we hope only in positive ways. We are trying to improve the distributed analysis tools as well as the ability to access more data samples more transparently.  Operations Office Figure 2: Number of events per month, for 2012 Since the June CMS Week, Computing Operations teams successfully completed data re-reconstruction passes and finished the CMSSW_53X MC campaign with over three billion events available in AOD format. Recorded data was successfully processed in parallel, exceeding 1.2 billion raw physics events per month for the first time in October 2012 due to the increase in data-parking rate. In parallel, large efforts were dedicated to WMAgent development and integrati...

  3. COMPUTING

    CERN Multimedia

    2010-01-01

    Introduction Just two months after the “LHC First Physics” event of 30th March, the analysis of the O(200) million 7 TeV collision events in CMS accumulated during the first 60 days is well under way. The consistency of the CMS computing model has been confirmed during these first weeks of data taking. This model is based on a hierarchy of use-cases deployed between the different tiers and, in particular, the distribution of RECO data to T1s, who then serve data on request to T2s, along a topology known as “fat tree”. Indeed, during this period this model was further extended by almost full “mesh” commissioning, meaning that RECO data were shipped to T2s whenever possible, enabling additional physics analyses compared with the “fat tree” model. Computing activities at the CMS Analysis Facility (CAF) have been marked by a good time response for a load almost evenly shared between ALCA (Alignment and Calibration tasks - highest p...

  4. COMPUTING

    CERN Multimedia

    Matthias Kasemann

    Overview The main focus during the summer was to handle data coming from the detector and to perform Monte Carlo production. The lessons learned during the CCRC and CSA08 challenges in May were addressed by dedicated PADA campaigns lead by the Integration team. Big improvements were achieved in the stability and reliability of the CMS Tier1 and Tier2 centres by regular and systematic follow-up of faults and errors with the help of the Savannah bug tracking system. In preparation for data taking the roles of a Computing Run Coordinator and regular computing shifts monitoring the services and infrastructure as well as interfacing to the data operations tasks are being defined. The shift plan until the end of 2008 is being put together. User support worked on documentation and organized several training sessions. The ECoM task force delivered the report on “Use Cases for Start-up of pp Data-Taking” with recommendations and a set of tests to be performed for trigger rates much higher than the ...

  5. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction A large fraction of the effort was focused during the last period into the preparation and monitoring of the February tests of Common VO Computing Readiness Challenge 08. CCRC08 is being run by the WLCG collaboration in two phases, between the centres and all experiments. The February test is dedicated to functionality tests, while the May challenge will consist of running at all centres and with full workflows. For this first period, a number of functionality checks of the computing power, data repositories and archives as well as network links are planned. This will help assess the reliability of the systems under a variety of loads, and identifying possible bottlenecks. Many tests are scheduled together with other VOs, allowing the full scale stress test. The data rates (writing, accessing and transfer¬ring) are being checked under a variety of loads and operating conditions, as well as the reliability and transfer rates of the links between Tier-0 and Tier-1s. In addition, the capa...

  6. COMPUTING

    CERN Multimedia

    Contributions from I. Fisk

    2012-01-01

    Introduction The start of the 2012 run has been busy for Computing. We have reconstructed, archived, and served a larger sample of new data than in 2011, and we are in the process of producing an even larger new sample of simulations at 8 TeV. The running conditions and system performance are largely what was anticipated in the plan, thanks to the hard work and preparation of many people. Heavy ions Heavy Ions has been actively analysing data and preparing for conferences.  Operations Office Figure 6: Transfers from all sites in the last 90 days For ICHEP and the Upgrade efforts, we needed to produce and process record amounts of MC samples while supporting the very successful data-taking. This was a large burden, especially on the team members. Nevertheless the last three months were very successful and the total output was phenomenal, thanks to our dedicated site admins who keep the sites operational and the computing project members who spend countless hours nursing the...

  7. COMPUTING

    CERN Multimedia

    P. MacBride

    The Computing Software and Analysis Challenge CSA07 has been the main focus of the Computing Project for the past few months. Activities began over the summer with the preparation of the Monte Carlo data sets for the challenge and tests of the new production system at the Tier-0 at CERN. The pre-challenge Monte Carlo production was done in several steps: physics generation, detector simulation, digitization, conversion to RAW format and the samples were run through the High Level Trigger (HLT). The data was then merged into three "Soups": Chowder (ALPGEN), Stew (Filtered Pythia) and Gumbo (Pythia). The challenge officially started when the first Chowder events were reconstructed on the Tier-0 on October 3rd. The data operations teams were very busy during the the challenge period. The MC production teams continued with signal production and processing while the Tier-0 and Tier-1 teams worked on splitting the Soups into Primary Data Sets (PDS), reconstruction and skimming. The storage sys...

  8. Recent developments with a prototype fan-beam optical CT scanner

    Science.gov (United States)

    Campbell, W. G.; Jirasek, A.; Wells, D.

    2013-06-01

    The latest design of a prototype fan-beam optical computed tomography scanner is presented. A new beam creation system consists of a 635 nm laser diode module with variable, DC voltage-controlled beam intensity. A change in scanner alignment allows for the elimination of ring artefacts caused by data corruption that is spaced symmetrically across the detector array. These artefacts, as well as a pair of streaking artefacts caused by flask seams, are removed in sinogram space. A flask registration technique has been developed that allows for accurate, reproducible dosimeter placement. Protocol investigations with gel dosimeters have indicated the importance of: i) proper cooling techniques during gel manufacture, and ii) scanning the dosimeter while it is at room temperature. Latest reconstructions of a normoxic polymer gel dosimeter are presented as an indicator of current system performance.

  9. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction The Computing Team successfully completed the storage, initial processing, and distribution for analysis of proton-proton data in 2011. There are still a variety of activities ongoing to support winter conference activities and preparations for 2012. Heavy ions The heavy-ion run for 2011 started in early November and has already demonstrated good machine performance and success of some of the more advanced workflows planned for 2011. Data collection will continue until early December. Facilities and Infrastructure Operations Operational and deployment support for WMAgent and WorkQueue+Request Manager components, routinely used in production by Data Operations, are provided. The GlideInWMS and components installation are now deployed at CERN, which is added to the GlideInWMS factory placed in the US. There has been new operational collaboration between the CERN team and the UCSD GlideIn factory operators, covering each others time zones by monitoring/debugging pilot jobs sent from the facto...

  10. A LIGHT-WEIGHT LASER SCANNER FOR UAV APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A. M. G. Tommaselli

    2016-06-01

    Full Text Available Unmanned Aerial Vehicles (UAV have been recognized as a tool for geospatial data acquisition due to their flexibility and favourable cost benefit ratio. The practical use of laser scanning devices on-board UAVs is also developing with new experimental and commercial systems. This paper describes a light-weight laser scanning system composed of an IbeoLux scanner, an Inertial Navigation System Span-IGM-S1, from Novatel, a Raspberry PI portable computer, which records data from both systems and an octopter UAV. The performance of this light-weight system was assessed both for accuracy and with respect to point density, using Ground Control Points (GCP as reference. Two flights were performed with the UAV octopter carrying the equipment. In the first trial, the flight height was 100 m with six strips over a parking area. The second trial was carried out over an urban park with some buildings and artificial targets serving as reference Ground Control Points. In this experiment a flight height of 70 m was chosen to improve target response. Accuracy was assessed based on control points the coordinates of which were measured in the field. Results showed that vertical accuracy with this prototype is around 30 cm, which is acceptable for forest applications but this accuracy can be improved using further refinements in direct georeferencing and in the system calibration.

  11. a Light-Weight Laser Scanner for Uav Applications

    Science.gov (United States)

    Tommaselli, A. M. G.; Torres, F. M.

    2016-06-01

    Unmanned Aerial Vehicles (UAV) have been recognized as a tool for geospatial data acquisition due to their flexibility and favourable cost benefit ratio. The practical use of laser scanning devices on-board UAVs is also developing with new experimental and commercial systems. This paper describes a light-weight laser scanning system composed of an IbeoLux scanner, an Inertial Navigation System Span-IGM-S1, from Novatel, a Raspberry PI portable computer, which records data from both systems and an octopter UAV. The performance of this light-weight system was assessed both for accuracy and with respect to point density, using Ground Control Points (GCP) as reference. Two flights were performed with the UAV octopter carrying the equipment. In the first trial, the flight height was 100 m with six strips over a parking area. The second trial was carried out over an urban park with some buildings and artificial targets serving as reference Ground Control Points. In this experiment a flight height of 70 m was chosen to improve target response. Accuracy was assessed based on control points the coordinates of which were measured in the field. Results showed that vertical accuracy with this prototype is around 30 cm, which is acceptable for forest applications but this accuracy can be improved using further refinements in direct georeferencing and in the system calibration.

  12. Intraoral Scanner Technologies: A Review to Make a Successful Impression

    Science.gov (United States)

    Richert, Raphaël; Goujat, Alexis; Venet, Laurent; Viguie, Gilbert; Viennot, Stéphane; Robinson, Philip; Farges, Jean-Christophe; Fages, Michel

    2017-01-01

    To overcome difficulties associated with conventional techniques, impressions with IOS (intraoral scanner) and CAD/CAM (computer-aided design and manufacturing) technologies were developed for dental practice. The last decade has seen an increasing number of optical IOS devices, and these are based on different technologies; the choice of which may impact on clinical use. To allow informed choice before purchasing or renewing an IOS, this article summarizes first the technologies currently used (light projection, distance object determination, and reconstruction). In the second section, the clinical considerations of each strategy such as handling, learning curve, powdering, scanning paths, tracking, and mesh quality are discussed. The last section is dedicated to the accuracy of files and of the intermaxillary relationship registered with IOS as the rendering of files in the graphical user interface is often misleading. This overview leads to the conclusion that the current IOS is adapted for a common practice, although differences exist between the technologies employed. An important aspect highlighted in this review is the reduction in the volume of hardware which has led to an increase in the importance of software-based technologies. PMID:29065652

  13. Intraoral Scanner Technologies: A Review to Make a Successful Impression

    Directory of Open Access Journals (Sweden)

    Raphaël Richert

    2017-01-01

    Full Text Available To overcome difficulties associated with conventional techniques, impressions with IOS (intraoral scanner and CAD/CAM (computer-aided design and manufacturing technologies were developed for dental practice. The last decade has seen an increasing number of optical IOS devices, and these are based on different technologies; the choice of which may impact on clinical use. To allow informed choice before purchasing or renewing an IOS, this article summarizes first the technologies currently used (light projection, distance object determination, and reconstruction. In the second section, the clinical considerations of each strategy such as handling, learning curve, powdering, scanning paths, tracking, and mesh quality are discussed. The last section is dedicated to the accuracy of files and of the intermaxillary relationship registered with IOS as the rendering of files in the graphical user interface is often misleading. This overview leads to the conclusion that the current IOS is adapted for a common practice, although differences exist between the technologies employed. An important aspect highlighted in this review is the reduction in the volume of hardware which has led to an increase in the importance of software-based technologies.

  14. COMPUTING

    CERN Multimedia

    M. Kasemann

    CMS relies on a well functioning, distributed computing infrastructure. The Site Availability Monitoring (SAM) and the Job Robot submission have been very instrumental for site commissioning in order to increase availability of more sites such that they are available to participate in CSA07 and are ready to be used for analysis. The commissioning process has been further developed, including "lessons learned" documentation via the CMS twiki. Recently the visualization, presentation and summarizing of SAM tests for sites has been redesigned, it is now developed by the central ARDA project of WLCG. Work to test the new gLite Workload Management System was performed; a 4 times increase in throughput with respect to LCG Resource Broker is observed. CMS has designed and launched a new-generation traffic load generator called "LoadTest" to commission and to keep exercised all data transfer routes in the CMS PhE-DEx topology. Since mid-February, a transfer volume of about 12 P...

  15. Assessment of the impact of the scanner-related factors on brain morphometry analysis with Brainvisa

    National Research Council Canada - National Science Library

    Shokouhi, Mahsa; Barnes, Anna; Suckling, John; Moorhead, Thomas Wj; Brennan, David; Job, Dominic; Lymer, Katherine; Dazzan, Paola; Reis Marques, Tiago; Mackay, Clare; McKie, Shane; Williams, Steven Cr; Lawrie, Stephen M; Deakin, Bill; Williams, Steve R; Condon, Barrie

    2011-01-01

    ... with multicentre and longitudinal studies. It is important therefore to investigate the variability and reliability of morphometric measurements between different scanners and different sessions of the same scanner...

  16. An evaluation of a prototype proton CT scanner

    Science.gov (United States)

    Plautz, Tia Elizabeth

    Since the 1990s, the number of clinical proton therapy facilities around the world has been growing exponentially. Because of this, and the lack of imaging support for proton therapy in the treatment room, a renewed interest in proton radiography and computed tomography (CT) has emerged. This imaging modality was largely abandoned in the 1970s and '80s in favor of the already successful x-ray CT, for reasons including long acquisition times and inadequate spatial resolution. Protons are particularly useful for radiotherapy because of their well-defined range in matter and their favorable energy profile which facilitates greater conformality than other radiotherapies; however, in order to realize the full potential of proton radiotherapy, the range of protons in the patient must be precisely known. Presently, proton therapy treatment planning is accomplished by taking x-ray CTs of the patient and converting each voxel into proton relative stopping power with respect to water (RSP) via a stoichiometrically-acquired calibration curve. However, since there is no unique relationship between Hounsfield values and RSP, this procedure has inherent uncertainties of a few percent in the proton range, requiring additional distal uncertainty margins in proton treatment plans. In contrast to x-ray CT, proton CT measures the RSP of an object directly, eliminating the need for Hounsfield-value-to-RSP conversion. In the prototype proton CT scanner that we have developed, a low-intensity beam of 200 MeV protons traverses a patient, entirely, and stops in a downstream energy/range detector. The entry and exit vectors of each proton are measured in order to determine a most-likely path of the proton through the object, and the response of the energy/range detector is converted to the water-equivalent path length of each proton in the object. These measurements are made at many angles between 0 and 360 degrees in order to reconstruct a three-dimensional map of proton RSP in the object

  17. Fast and High Accuracy Wire Scanner

    CERN Document Server

    Koujili, M; Koopman, J; Ramos, D; Sapinski, M; De Freitas, J; Ait Amira, Y; Djerdir, A

    2009-01-01

    Scanning of a high intensity particle beam imposes challenging requirements on a Wire Scanner system. It is expected to reach a scanning speed of 20 m.s-1 with a position accuracy of the order of 1 μm. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a fork holding a wire rotating by a maximum of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of the vacuum chamber, has to resist a bake-out temperature of 200°C and ionizing radiation up to a dozen of kGy/year. A digital feedback controller allows maxi...

  18. Design study for Thermal Infrared Multispectral Scanner (TIMS)

    Science.gov (United States)

    Stanich, C. G.; Osterwisch, F. G.; Szeles, D. M.; Houtman, W. H.

    1981-01-01

    The feasibility of dividing the 8-12 micrometer thermal infrared wavelength region into six spectral bands by an airborne line scanner system was investigated. By combining an existing scanner design with a 6 band spectrometer, a system for the remote sensing of Earth resources was developed. The elements in the spectrometer include an off axis reflective collimator, a reflective diffraction grating, a triplet germanium imaging lens, a photoconductive mercury cadmium telluride sensor array, and the mechanical assembly to hold these parts and maintain their optical alignment across a broad temperature range. The existing scanner design was modified to accept the new spectrometer and two field filling thermal reference sources.

  19. Verification of a CT scanner using a miniature step gauge

    DEFF Research Database (Denmark)

    Cantatore, Angela; Andreasen, J.L.; Carmignato, S.

    2011-01-01

    The work deals with performance verification of a CT scanner using a 42mm miniature replica step gauge developed for optical scanner verification. Errors quantification and optimization of CT system set-up in terms of resolution and measurement accuracy are fundamental for use of CT scanning...... in dimensional metrology. Influence of workpiece orientation, magnification, source-object-detector distances and surface extraction method on metrological performances of a CT scanner was evaluated. Results show that the position of the workpiece in the CT cabinet is fundamental to get reliable measurements...

  20. Range 7 Scanner Integration with PaR Robot Scanning System

    Science.gov (United States)

    Schuler, Jason; Burns, Bradley; Carlson, Jeffrey; Minich, Mark

    2011-01-01

    An interface bracket and coordinate transformation matrices were designed to allow the Range 7 scanner to be mounted on the PaR Robot detector arm for scanning the heat shield or other object placed in the test cell. A process was designed for using Rapid Form XOR to stitch data from multiple scans together to provide an accurate 3D model of the object scanned. An accurate model was required for the design and verification of an existing heat shield. The large physical size and complex shape of the heat shield does not allow for direct measurement of certain features in relation to other features. Any imaging devices capable of imaging the entire heat shield in its entirety suffers a reduced resolution and cannot image sections that are blocked from view. Prior methods involved tools such as commercial measurement arms, taking images with cameras, then performing manual measurements. These prior methods were tedious and could not provide a 3D model of the object being scanned, and were typically limited to a few tens of measurement points at prominent locations. Integration of the scanner with the robot allows for large complex objects to be scanned at high resolution, and for 3D Computer Aided Design (CAD) models to be generated for verification of items to the original design, and to generate models of previously undocumented items. The main components are the mounting bracket for the scanner to the robot and the coordinate transformation matrices used for stitching the scanner data into a 3D model. The steps involve mounting the interface bracket to the robot's detector arm, mounting the scanner to the bracket, and then scanning sections of the object and recording the location of the tool tip (in this case the center of the scanner's focal point). A novel feature is the ability to stitch images together by coordinates instead of requiring each scan data set to have overlapping identifiable features. This setup allows models of complex objects to be developed

  1. Agricultural Applications and Requirements for Thermal Infrared Scanners

    Science.gov (United States)

    Wiegand, C. L.

    1971-01-01

    Some of the applications of thermal scanner data in agriculture are presented along with illustrations of some of the factors affecting the temperature of plants, soil, and water. Examples of thermal imagery are included.

  2. Feature-space transformation improves supervised segmentation across scanners

    DEFF Research Database (Denmark)

    van Opbroek, Annegreet; Achterberg, Hakim C.; de Bruijne, Marleen

    2015-01-01

    Image-segmentation techniques based on supervised classification generally perform well on the condition that training and test samples have the same feature distribution. However, if training and test images are acquired with different scanners or scanning parameters, their feature distributions...... can be very different, which can hurt the performance of such techniques. We propose a feature-space-transformation method to overcome these differences in feature distributions. Our method learns a mapping of the feature values of training voxels to values observed in images from the test scanner....... This transformation is learned from unlabeled images of subjects scanned on both the training scanner and the test scanner. We evaluated our method on hippocampus segmentation on 27 images of the Harmonized Hippocampal Protocol (HarP), a heterogeneous dataset consisting of 1.5T and 3T MR images. The results showed...

  3. Dental models made with an intraoral scanner: A validation study.

    NARCIS (Netherlands)

    Cuperus, A.M.; Harms, M.C.; Rangel, F.A.; Bronkhorst, E.M.; Schols, J.G.J.H.; Breuning, K.H.

    2012-01-01

    INTRODUCTION: Our objectives were to determine the validity and reproducibility of measurements on stereolithographic models and 3-dimensional digital dental models made with an intraoral scanner. METHODS: Ten dry human skulls were scanned; from the scans, stereolithographic models and digital

  4. Landsat 1-5 Multispectral Scanner V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract: The Landsat Multispectral Scanner (MSS) was a sensor onboard Landsats 1 through 5 and acquired images of the Earth nearly continuously from July 1972 to...

  5. A low noise infrared spot scanner for testing detector arrays

    Science.gov (United States)

    Puetter, R. C.; Brissenden, P.; Casler, J.; Hier, R. G.; Jones, B.

    1984-01-01

    A low noise spot scanner has been built for use in testing the performance of infrared detector arrays for NASA's IR detector technology development program and the University of California's MICRO program. The scanner provides a convenient low noise detector test environment and a wide range of test conditions including versatile temperature control of the detector, ambient background, and blackbody source temperature and control of spot size, color, and brightness.

  6. Automating slope monitoring in mines with terrestrial lidar scanners

    Science.gov (United States)

    Conforti, Dario

    2014-05-01

    Static terrestrial laser scanners (TLS) have been an important component of slope monitoring for some time, and many solutions for monitoring the progress of a slide have been devised over the years. However, all of these solutions have required users to operate the lidar equipment in the field, creating a high cost in time and resources, especially if the surveys must be performed very frequently. This paper presents a new solution for monitoring slides, developed using a TLS and an automated data acquisition, processing and analysis system. In this solution, a TLS is permanently mounted within sight of the target surface and connected to a control computer. The control software on the computer automatically triggers surveys according to a user-defined schedule, parses data into point clouds, and compares data against a baseline. The software can base the comparison against either the original survey of the site or the most recent survey, depending on whether the operator needs to measure the total or recent movement of the slide. If the displacement exceeds a user-defined safety threshold, the control computer transmits alerts via SMS text messaging and/or email, including graphs and tables describing the nature and size of the displacement. The solution can also be configured to trigger the external visual/audio alarm systems. If the survey areas contain high-traffic areas such as roads, the operator can mark them for exclusion in the comparison to prevent false alarms. To improve usability and safety, the control computer can connect to a local intranet and allow remote access through the software's web portal. This enables operators to perform most tasks with the TLS from their office, including reviewing displacement reports, downloading survey data, and adjusting the scan schedule. This solution has proved invaluable in automatically detecting and alerting users to potential danger within the monitored areas while lowering the cost and work required for

  7. The time efficiency of intraoral scanners: an in vitro comparative study.

    Science.gov (United States)

    Patzelt, Sebastian B M; Lamprinos, Christos; Stampf, Susanne; Att, Wael

    2014-06-01

    Although intraoral scanners are known to have good accuracy in computer-aided impression making (CAIM), their effect on time efficiency is not. Little is known about the time required to make a digital impression. The purpose of the authors' in vitro investigation was to evaluate the time efficiency of intraoral scanners. The authors used three different intraoral scanners to digitize a single abutment (scenario 1), a short-span fixed dental prosthesis (scenario 2) and a full-arch prosthesis preparation (scenario 3). They measured the procedure durations for the several scenarios and compiled and contrasted the procedure durations for three conventional impression materials. The mean total procedure durations for making digital impressions of scenarios 1, 2 and 3 were as much as 5 minutes 57 seconds, 6 minutes 57 seconds, and 20 minutes 55 seconds, respectively. Results showed statistically significant differences between all scanners (P < .05), except Lava (3M ESPE, St. Paul, Minn.) and iTero with foot pedal (Align Technology, San Jose, Calif.) for scenario 1, CEREC (Sirona, Bensheim, Germany) and CEREC with foot pedal for scenario 2, and iTero and iTero with foot pedal for scenarios 2 and 3. The compiled procedure durations for making conventional impressions in scenarios 1 and 2 ranged between 18 minutes 15 seconds and 27 minutes 25 seconds; for scenario 3, they ranged between 21 minutes 25 seconds and 30 minutes 25 seconds. The authors found that CAIM was significantly faster for all tested scenarios. This suggests that CAIM might be beneficial in establishing a more time-efficient work flow. On the basis of the results of this in vitro study, the authors found CAIM to be superior regarding time efficiency in comparison with conventional approaches and might accelerate the work flow of making impressions.

  8. Ultra-compact imaging plate scanner module using a MEMS mirror and specially designed MPPC

    Science.gov (United States)

    Miyamoto, Yuichi; Sasaki, Kensuke; Takasaka, Masaomi; Fujimoto, Masatoshi; Yamamoto, Koei

    2017-02-01

    Computed radiography (CR), which is one of the most useful methods for dental imaging and nondestructive testing, uses a phosphor imaging plate (IP) because it is flexible, reusable, and inexpensive. Conventional IP scanners utilize a galvanometer or a polygon mirror as a scanning device and a photomultiplier as an optical sensor. Microelectromechanical systems (MEMS) technology currently provides silicon-based devices and has the potential to replace such discrete devices and sensors. Using these devices, we constructed an ultra-compact IP scanner. Our extremely compact plate scanner utilizes a module that is composed of a one-dimensional MEMS mirror and a long multi-pixel photon counter (MPPC) that is combined with a specially designed wavelength filter and a rod lens. The MEMS mirror, which is a non-resonant electromagnetic type, is 2.6 mm in diameter with a recommended optical scanning angle up to +/-15°. The CR's wide dynamic range is maintained using a newly developed MPPC. The MPPC is a sort of silicon photomultiplier and is a high-sensitivity photon-counting device. To achieve such a wide dynamic range, we developed a long MPPC that has over 10,000 pixels. For size reduction and high optical efficiency, we set the MPPC close to an IP across the rod lens. To prevent the MPPC from detecting excitation light, which is much more intense than photo-stimulated light, we produced a sharp-cut wavelength filter that has a wide angle (+/-60°) of tolerance. We evaluated our constructed scanner module through gray chart and resolution chart images.

  9. Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module

    Science.gov (United States)

    Martinez, Gregory D.; McKay, James; Farmer, Ben; Scott, Pat; Roebber, Elinore; Putze, Antje; Conrad, Jan

    2017-11-01

    We introduce ScannerBit, the statistics and sampling module of the public, open-source global fitting framework GAMBIT. ScannerBit provides a standardised interface to different sampling algorithms, enabling the use and comparison of multiple computational methods for inferring profile likelihoods, Bayesian posteriors, and other statistical quantities. The current version offers random, grid, raster, nested sampling, differential evolution, Markov Chain Monte Carlo (MCMC) and ensemble Monte Carlo samplers. We also announce the release of a new standalone differential evolution sampler, Diver, and describe its design, usage and interface to ScannerBit. We subject Diver and three other samplers (the nested sampler MultiNest, the MCMC GreAT, and the native ScannerBit implementation of the ensemble Monte Carlo algorithm T-Walk) to a battery of statistical tests. For this we use a realistic physical likelihood function, based on the scalar singlet model of dark matter. We examine the performance of each sampler as a function of its adjustable settings, and the dimensionality of the sampling problem. We evaluate performance on four metrics: optimality of the best fit found, completeness in exploring the best-fit region, number of likelihood evaluations, and total runtime. For Bayesian posterior estimation at high resolution, T-Walk provides the most accurate and timely mapping of the full parameter space. For profile likelihood analysis in less than about ten dimensions, we find that Diver and MultiNest score similarly in terms of best fit and speed, outperforming GreAT and T-Walk; in ten or more dimensions, Diver substantially outperforms the other three samplers on all metrics.

  10. The Traveling Optical Scanner – Case Study on 3D Shape Models of Ancient Brazilian Skulls

    DEFF Research Database (Denmark)

    Trinderup, Camilla Himmelstrup; Dahl, Vedrana Andersen; Gregersen, Kristian Murphy

    2016-01-01

    Recovering detailed morphological information from archaeological or paleontological material requires extensive hands-on time. Creating 3D scans based on e.g. computed tomography (CT) will recover the geometry of the specimen, but can inflict bimolecular degradation. Instead, we propose a fast...... morphological modelling is possible with accurate description of the specimens provided by the models. Furthermore, performing studies on models reduces the risk of damage to the original specimen. In our work we employ a high resolution structured light scanner for digitalizing a collection of 8500 year old...

  11. Forest attributes estimation using aerial laser scanner and TM data

    Energy Technology Data Exchange (ETDEWEB)

    Shataee, S.

    2013-07-01

    Aim of study: The aim of this study was performance of four non-parametric algorithms including the k-NN, SVR, RF and ANN to estimate forest volume and basal area attributes using combination of Aerial Laser Scanner and Landsat- TM data. Area of study: Data in small part of a mixed managed forest in the Waldkirch region, Germany. Material and methods: The volume/ha and basal area/ha in the 411 circular plots were estimated based on DBH and height of trees using volume functions of study area. The low density ALS raw data as first and last pulses were prepared and automatically classified into vegetation and ground returns to generate two fine resolution digital terrain and surface models after noise removing. Plot-based height and density metrics were extracted from ALS data and used both separated and combined with orthorectified and processed TM bands. The algorithms implemented with different options including k-NN with different distance measures, SVR with the best regularized parameters for four kernel types, RF with regularized decision tree parameters and ANN with different types of networks. The algorithm performances were validated using computing absolute and percentage RMSe and bias on unused test samples. Main results: Results showed that among four methods, SVR using the RBF kernel could better estimate volume/ha with lower RMSe and bias (156.02 m{sup 3} ha{sup -}1 and 0.48, respectively) compared to others. In basal area/ha, k-NN could generate results with similar RMSe (11.79 m{sup 3} ha{sup -}1) but unbiased (0.03) compared to SVR with RMSe of 11.55 m{sup 3} ha{sup -}1 but slightly biased (-1.04). Research highlights: Results exposed that combining Lidar with TM data could improve estimations compared to using only Lidar or TM data. (Author)

  12. Forest Attributes Estimation Using Aerial Laser Scanner and TM Data

    Directory of Open Access Journals (Sweden)

    S. Shataee Joibary

    2013-12-01

    Full Text Available Aim of study: The aim of this study was performance of four non-parametric algorithms including the k-NN, SVR, RF and ANN to estimate forest volume and basal area attributes using combination of Aerial Laser Scanner and Landsat-TM data.Area of study: Data in small part of a mixed managed forest in the Waldkirch region, Germany.Material and methods: The volume/ha and basal area/ha in the 411 circular plots were estimated based on DBH and height of trees using volume functions of study area. The low density ALS raw data as first and last pulses were prepared and automatically classified into vegetation and ground returns to generate two fine resolution digital terrain and surface models after noise removing. Plot-based height and density metrics were extracted from ALS data and used both separated and combined with orthorectified and processed TM bands. The algorithms implemented with different options including k-NN with different distance measures, SVR with the best regularized parameters for four kernel types, RF with regularized decision tree parameters and ANN with different types of networks. The algorithm performances were validated using computing absolute and percentage RMSe and bias on unused test samples.Main results: Results showed that among four methods, SVR using the RBF kernel could better estimate volume/ha with lower RMSe and bias (156.02 m3 ha–1 and 0.48, respectively compared to others. In basal area/ha, k-NN could generate results with similar RMSe (11.79 m3 ha–1 but unbiased (0.03 compared to SVR with RMSe of 11.55 m3 ha–1 but slightly biased (–1.04.Research highlights: Results exposed that combining Lidar with TM data could improve estimations compared to using only Lidar or TM data.Key words: forest attributes estimation; ALS; TM; non-parametric algorithms.

  13. Scanner qualification with IntenCD based reticle error correction

    Science.gov (United States)

    Elblinger, Yair; Finders, Jo; Demarteau, Marcel; Wismans, Onno; Minnaert Janssen, Ingrid; Duray, Frank; Ben Yishai, Michael; Mangan, Shmoolik; Cohen, Yaron; Parizat, Ziv; Attal, Shay; Polonsky, Netanel; Englard, Ilan

    2010-03-01

    Scanner introduction into the fab production environment is a challenging task. An efficient evaluation of scanner performance matrices during factory acceptance test (FAT) and later on during site acceptance test (SAT) is crucial for minimizing the cycle time for pre and post production-start activities. If done effectively, the matrices of base line performance established during the SAT are used as a reference for scanner performance and fleet matching monitoring and maintenance in the fab environment. Key elements which can influence the cycle time of the SAT, FAT and maintenance cycles are the imaging, process and mask characterizations involved with those cycles. Discrete mask measurement techniques are currently in use to create across-mask CDU maps. By subtracting these maps from their final wafer measurement CDU map counterparts, it is possible to assess the real scanner induced printed errors within certain limitations. The current discrete measurement methods are time consuming and some techniques also overlook mask based effects other than line width variations, such as transmission and phase variations, all of which influence the final printed CD variability. Applied Materials Aera2TM mask inspection tool with IntenCDTM technology can scan the mask at high speed, offer full mask coverage and accurate assessment of all masks induced source of errors simultaneously, making it beneficial for scanner qualifications and performance monitoring. In this paper we report on a study that was done to improve a scanner introduction and qualification process using the IntenCD application to map the mask induced CD non uniformity. We will present the results of six scanners in production and discuss the benefits of the new method.

  14. Initial validation of 4D-model for a clinical PET scanner using the Monte Carlo code gate

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Igor F.; Lima, Fernando R.A.; Gomes, Marcelo S., E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Vieira, Jose W.; Pacheco, Ludimila M. [Instituto Federal de Educacao, Ciencia e Tecnologia (IFPE), Recife, PE (Brazil); Chaves, Rosa M. [Instituto de Radium e Supervoltagem Ivo Roesler, Recife, PE (Brazil)

    2011-07-01

    Building exposure computational models (ECM) of emission tomography (PET and SPECT) currently has several dedicated computing tools based on Monte Carlo techniques (SimSET, SORTEO, SIMIND, GATE). This paper is divided into two steps: (1) using the dedicated code GATE (Geant4 Application for Tomographic Emission) to build a 4D model (where the fourth dimension is the time) of a clinical PET scanner from General Electric, GE ADVANCE, simulating the geometric and electronic structures suitable for this scanner, as well as some phenomena 4D, for example, rotating gantry; (2) the next step is to evaluate the performance of the model built here in the reproduction of test noise equivalent count rate (NEC) based on the NEMA Standards Publication NU protocols 2-2007 for this tomography. The results for steps (1) and (2) will be compared with experimental and theoretical values of the literature showing actual state of art of validation. (author)

  15. Hyper-spectral scanner design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.; Moses, J.; Smith, R.

    1996-06-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). An earlier project produced rough designs for key components of a compact hyper-spectral sensor for environmental and ecological measurements. Such sensors could be deployed on unmanned vehicles, aircraft, or satellites for measurements important to agriculture, the environment, and ecologies. This represents an important advance in remote sensing. Motorola invited us to propose an add-on, proof-of-principle sensor for their Comet satellite, whose primary mission is to demonstrate a channel of the IRIDIUM satellite communications system. Our project converted the preliminary designs from the previous effort into final designs for the telescope, camera, computer and interfaces that constitute the hyper-spectral scanning sensor. The work concentrated on design, fabrication, preliminary integration, and testing of the electronic circuit boards for the computer, data compression board, and interface board for the camera-computer and computer-modulator (transmitter) interfaces.

  16. Lack of CT scanner in a rural emergency department increases inter-facility transfers: a pilot study.

    Science.gov (United States)

    Bergeron, Catherine; Fleet, Richard; Tounkara, Fatoumata Korika; Lavallée-Bourget, Isabelle; Turgeon-Pelchat, Catherine

    2017-12-28

    Rural emergency departments (EDs) are an important gateway to care for the 20% of Canadians who reside in rural areas. Less than 15% of Canadian rural EDs have access to a computed tomography (CT) scanner. We hypothesized that a significant proportion of inter-facility transfers from rural hospitals without CT scanners are for CT imaging. Our objective was to assess inter-facility transfers for CT imaging in a rural ED without a CT scanner. We selected a rural ED that offers 24/7 medical care with admission beds but no CT scanner. Descriptive statistics were collected from 2010 to 2015 on total ED visits and inter-facility transfers. Data was accessible through hospital and government databases. Between 2010 and 2014, there were respectively 13,531, 13,524, 13,827, 12,883, and 12,942 ED visits, with an average of 444 inter-facility transfers. An average of 33% (148/444) of inter-facility transfers were to a rural referral centre with a CT scan, with 84% being for CT scan. Inter-facility transfers incur costs and potential delays in patient diagnosis and management, yet current databases could not capture transfer times. Acquiring a CT scan may represent a reasonable opportunity for the selected rural hospital considering the number of required transfers.

  17. Moths on the Flatbed Scanner: The Art of Joseph Scheer

    Directory of Open Access Journals (Sweden)

    Stephen L. Buchmann

    2011-12-01

    Full Text Available During the past decade a few artists and even fewer entomologists discovered flatbed scanning technology, using extreme resolution graphical arts scanners for acquiring high magnification digital images of plants, animals and inanimate objects. They are not just for trip receipts anymore. The special attributes of certain scanners, to image thick objects is discussed along with the technical features of the scanners including magnification, color depth and shadow detail. The work of pioneering scanner artist, Joseph Scheer from New York’s Alfred University is highlighted. Representative flatbed-scanned images of moths are illustrated along with techniques to produce them. Collecting and preparing moths, and other objects, for scanning are described. Highlights of the Fulbright sabbatical year of professor Scheer in Arizona and Sonora, Mexico are presented, along with comments on moths in science, folklore, art and pop culture. The use of flatbed scanners is offered as a relatively new method for visualizing small objects while acquiring large files for creating archival inkjet prints for display and sale.

  18. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    Science.gov (United States)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-10-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool.

  19. Moths on the Flatbed Scanner: The Art of Joseph Scheer.

    Science.gov (United States)

    Buchmann, Stephen L

    2011-12-14

    During the past decade a few artists and even fewer entomologists discovered flatbed scanning technology, using extreme resolution graphical arts scanners for acquiring high magnification digital images of plants, animals and inanimate objects. They are not just for trip receipts anymore. The special attributes of certain scanners, to image thick objects is discussed along with the technical features of the scanners including magnification, color depth and shadow detail. The work of pioneering scanner artist, Joseph Scheer from New York's Alfred University is highlighted. Representative flatbed-scanned images of moths are illustrated along with techniques to produce them. Collecting and preparing moths, and other objects, for scanning are described. Highlights of the Fulbright sabbatical year of professor Scheer in Arizona and Sonora, Mexico are presented, along with comments on moths in science, folklore, art and pop culture. The use of flatbed scanners is offered as a relatively new method for visualizing small objects while acquiring large files for creating archival inkjet prints for display and sale.

  20. Snowmelt monitoring with Terrestrial Laser Scanner Measurements

    Science.gov (United States)

    Anttila, Kati; Kaasalainen, Sanna; Kaartinen, Harri; Krooks, Anssi; Manninen, Terhikki; Lahtinen, Panu; Riihelä, Aku; Siljamo, Niilo; Thölix, Laura; Karjalainen, Tuure

    2010-05-01

    gathering validation data for satellite products. The results of the ground measurements of the SNORTEX campaign will be used to SAF product validations and to support the aerial data collected during the campaign. The TLS measurements during the campaign were made in several different locations at different stages of snowmelt. These measurements were georeferenced and normalized so that they could be compared. The results were compared to different ground measurements, e.g. snow depth, water equivalent etc., made by the Finnish Meteorological Institute. The results were used to estimate the usability of the point cloud and intensity data of the scanner in measuring different snow properties. The results show that TLS data is applicable in profiling seasonal snow conditions and the intensity data helps the classifying of the snow cover. The laser backscatter from snow surface is not directly related to any of the snow cover properties measured during the campaign but the snow structure has a clear effect on the TLS intensity. A MMS method for snow profiling was also developed during the campaign and the results show potential for MMS-based surface roughness profiling and change detection.

  1. Nodular melanoma serendipitously detected by airport full body scanners.

    Science.gov (United States)

    Mayer, Jonathan E; Adams, Brian B

    2015-01-01

    Nodular melanoma is the most dangerous form of melanoma and often evades early detection. We present a frequently traveling businessman whose nodular melanoma was detected by airport full body scanners. For about 20 flights over 2 months, the airport full body scanners singled out an area on his left lower leg for a pat-down. Dermatologic examination discovered a nodular melanoma in this area, and after surgical excision, the man traveled without incident. This case raises the possibility of using full body imaging in the detection of melanomas, especially of the nodular subtype. In its current form, full body scanning would most likely not be sensitive or specific enough to become a recommended screening tool. Nonetheless, for travelers with areas repeatedly singled out by the machines without a known justification, airport scanners could serve as incidental free screening for suspicious nodular lesions that should prompt dermatologist referral. © 2014 S. Karger AG, Basel.

  2. Dental impressions using 3D digital scanners: virtual becomes reality.

    Science.gov (United States)

    Birnbaum, Nathan S; Aaronson, Heidi B

    2008-10-01

    The technologies that have made the use of three-dimensional (3D) digital scanners an integral part of many industries for decades have been improved and refined for application to dentistry. Since the introduction of the first dental impressioning digital scanner in the 1980s, development engineers at a number of companies have enhanced the technologies and created in-office scanners that are increasingly user-friendly and able to produce precisely fitting dental restorations. These systems are capable of capturing 3D virtual images of tooth preparations, from which restorations may be fabricated directly (ie, CAD/CAM systems) or fabricated indirectly (ie, dedicated impression scanning systems for the creation of accurate master models). The use of these products is increasing rapidly around the world and presents a paradigm shift in the way in which dental impressions are made. Several of the leading 3D dental digital scanning systems are presented and discussed in this article.

  3. Measurement of luminance and color uniformity of displays using the large-format scanner

    Science.gov (United States)

    Mazikowski, Adam

    2017-08-01

    Uniformity of display luminance and color is important for comfort and good perception of the information presented on the display. Although display technology has developed and improved a lot over the past years, different types of displays still present a challenge in selected applications, e.g. in medical use or in case of multi-screen installations. A simplified 9-point method of determining uniformity does not always produce satisfactory results, so a different solution is proposed in the paper. The developed system consists of the large-format X-Y-Z ISEL scanner (isel Germany AG), Konica Minolta high sensitivity spot photometer-colorimeter (e.g. CS-200, Konica Minolta, Inc.) and PC computer. Dedicated software in LabView environment for control of the scanner, transfer the measured data to the computer, and visualization of measurement results was also prepared. Based on the developed setup measurements of plasma display and LCD-LED display were performed. A heavily wornout plasma TV unit, with several artifacts visible was selected. These tests show the advantages and drawbacks of described scanning method with comparison with 9-point simplified uniformity determining method.

  4. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications

    Energy Technology Data Exchange (ETDEWEB)

    Loubele, M. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); Department of Periodontology, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); ESAT-PSI, Centre for the Processing of Speech and Images. Department of Electrotechnical Engineering, Group Science, Engineering and Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10 - bus 2440 Belgium (Belgium)], E-mail: Miet.Loubele@uzleuven.be; Bogaerts, R. [Department of Experimental Radiotherapy, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49 - bus 7003, 3000 Leuven (Belgium)], E-mail: Ria.Bogaerts@med.kuleuven.be; Van Dijck, E. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); Pauwels, R. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium)], E-mail: ruben.pauwels@med.kuleuven.be; Vanheusden, S. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); Suetens, P. [ESAT-PSI, Centre for the Processing of Speech and Images. Department of Electrotechnical Engineering, Group Science, Engineering and Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10 - bus 2440 Belgium (Belgium)], E-mail: Paul.Suetens@esat.kuleuven.be; Marchal, G. [Department of Radiology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49 - bus 7003, 3000 Leuven (Belgium)], E-mail: Guy.Marchal@uzleuven.be (and others)

    2009-09-15

    Objectives: To compare the effective dose levels of cone beam computed tomography (CBCT) for maxillofacial applications with those of multi-slice computed tomography (MSCT). Study design: The effective doses of 3 CBCT scanners were estimated (Accuitomo 3D, i-CAT, and NewTom 3G) and compared to the dose levels for corresponding image acquisition protocols for 3 MSCT scanners (Somatom VolumeZoom 4, Somatom Sensation 16 and Mx8000 IDT). The effective dose was calculated using thermoluminescent dosimeters (TLDs), placed in a Rando Alderson phantom, and expressed according to the ICRP 103 (2007) guidelines (including a separate tissue weighting factor for the salivary glands, as opposed to former ICRP guidelines). Results: Effective dose values ranged from 13 to 82 {mu}Sv for CBCT and from 474 to 1160 {mu}Sv for MSCT. CBCT dose levels were the lowest for the Accuitomo 3D, and highest for the i-CAT. Conclusions: Dose levels for CBCT imaging remained far below those of clinical MSCT protocols, even when a mandibular protocol was applied for the latter, resulting in a smaller field of view compared to various CBCT protocols. Considering this wide dose span, it is of outmost importance to justify the selection of each of the aforementioned techniques, and to optimise the radiation dose while achieving a sufficient image quality. When comparing these results to previous dosimetric studies, a conversion needs to be made using the latest ICRP recommendations.

  5. Free-space wavelength-multiplexed optical scanner.

    Science.gov (United States)

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.

  6. A prototype quantitative film scanner for radiochromic film dosimetry.

    Science.gov (United States)

    Ranade, Manisha K; Li, Jonathan G; Dubose, Ryan S; Kozelka, Jakub; Simon, William E; Dempsey, James F

    2008-02-01

    We have developed a high resolution, quantitative, two-dimensional optical film scanner for use with a commercial high sensitivity radiochromic film (RCF) for measuring single fraction external-beam radiotherapy dose distributions. The film scanner was designed to eliminate artifacts commonly observed in RCF dosimetry. The scanner employed a stationary light source and detector with a moving antireflective glass film platen attached to a high precision computerized X-Y translation stage. An ultrabright red light emitting diode (LED) with a peak output at 633 nm and full width at half maximum (FWHM) of 16 nm was selected as the scanner light source to match the RCF absorption peak. A dual detector system was created using two silicon photodiode detectors to simultaneously measure incident and transmitted light. The LED light output was focused to a submillimeter (FWHM 0.67 mm) spot size, which was determined from a scanning knife-edge technique for measuring Gaussian optical beams. Data acquisition was performed with a 16-bit A/D card in conjunction with commercial software. The linearity of the measured densities on the scanner was tested using a calibrated neutral-density step filter. Sensitometric curves and three IMRT field scans were acquired with a spatial resolution of 1 mm for both radiographic film and RCF. The results were compared with measurements taken with a commercial diode array under identical delivery conditions. The RCF was rotated by 90 deg and rescanned to study orientation effects. Comparison between the RCF and the diode array measurements using percent dose difference and distance-to-agreement criteria produced average passing rates of 99.0% using 3%/3 mm criteria and 96.7% using 2%/2 mm criteria. The same comparison between the radiographic film and diode array measurements resulted in average passing rates 96.6% and 91.6% for the above two criteria, respectively. No measurable light-scatter or interference scanner artifacts were observed

  7. Pitfalls in urinary stone identification using CT attenuation values: Are we getting the same information on different scanner models?

    Energy Technology Data Exchange (ETDEWEB)

    Grosjean, Romain, E-mail: r.grosjean@chu-nancy.fr [IADI Laboratory, INSERM-U947, Nancy-University, Allée du Morvan, 54500 Vandoeuvre-les-Nancy (France); Daudon, Michel, E-mail: michel.daudon@tnn.aphp.fr [IADI Laboratory, INSERM-U947, Nancy-University, Allée du Morvan, 54500 Vandoeuvre-les-Nancy (France); Chammas, Mario F., E-mail: mariochammas@usp.br [University of Sao Paulo – Division of Urology, Av. Dr. Enéas de Carvalho Aguiar, 255, 7" o Andar – s. 7123, São Paulo (Brazil); Claudon, Michel, E-mail: m.claudon@chu-nancy.fr [IADI Laboratory, INSERM-U947, Nancy-University, Allée du Morvan, 54500 Vandoeuvre-les-Nancy (France); Eschwege, Pascal, E-mail: peschwege@yahoo.com [Department of Urology, Brabois Hospital, University Hospital of Nancy, Allée du Morvan, 54511 Vandoeuvre-les-Nancy (France); Felblinger, Jacques, E-mail: j.felblinger@chu-nancy.fr [IADI Laboratory, INSERM-U947, Nancy-University, Allée du Morvan, 54500 Vandoeuvre-les-Nancy (France); Hubert, Jacques, E-mail: j.hubert@chu-nancy.fr [Department of Urology, Brabois Hospital, University Hospital of Nancy, Allée du Morvan, 54511 Vandoeuvre-les-Nancy (France)

    2013-08-15

    Introduction: Evaluate the capability of different Computed Tomography scanners to determine urinary stone compositions based on CT attenuation values and to evaluate potential differences between each model. Methods: 241 human urinary stones were obtained and their biochemical composition determined. Four different CT scanners (Siemens, Philips, GEMS and Toshiba) were evaluated. Mean CT-attenuation values and the standard deviation were recorded separately and compared with a t-paired test. Results: For all tested CT scanners, when the classification of the various types of stones was arranged according to the mean CT-attenuation values and to the confidence interval, large overlappings between stone types were highlighted. The t-paired test showed that most stone types could not be identified. Some types of stones presented mean CT attenuation values significantly different from one CT scanner to another. At 80 kV, the mean CT attenuation values obtained with the Toshiba Aquilion were significantly different from those obtained with the Siemens Sensation. On the other hand, mean values obtained with the Philips Brilliance were all significantly equal to those obtained with the Siemens Sensation and with the Toshiba Aquilion. At 120 kV mean CT attenuation values of uric acid, cystine and struvite stones obtained with the Philips model are significantly different from those obtained with the Siemens and the Toshiba but equal to those obtained with the GE 64. Conclusions: According to our study, there is a great variability when different brands and models of scanners are compared directly. Furthermore, the CT scan analysis and HU evaluation appears to gather insufficient information in order to characterize and identify the composition of renal stones.

  8. Magnetic actuation for MEMS scanners for retinal scanning displays

    Science.gov (United States)

    Yan, Jun; Luanava, Selso; Casasanta, Vincenzo

    2003-01-01

    We discuss magnetic actuation for Microvision"s bi-axial scanners for retinal scanning displays. Compared to the common side-magnet and moving-coil approach, we have designed, assembled and tested a novel magnet configuration, with magnets above and below the moving coil. This design reduces the magnet sizes significantly without sacrificing performance, and opens further improvement paths as well.

  9. Compact implementation of dynamic receive apodization in ultrasound scanners

    DEFF Research Database (Denmark)

    Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2004-01-01

    The image quality in medical ultrasound scanners is determined by several factors, one of which is the ability of the receive beamformer to change the aperture weighting function with depth and beam angle. In digital beamformers, precise dynamic apodization can be achieved by representing the fun...

  10. Vision Assisted Laser Scanner Navigation for Autonomous Robots

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Andersen, Nils Axel; Ravn, Ole

    2008-01-01

    .5 m). The front looking camera is used to classify the road from this distance and forward, taking a seed area from the laser scanner data and from this estimate the outline of the visible part of the road. The method has been tested successfully on gravelled and asphalt roads in a national park...

  11. Infrared scanners detect thermal gradients in building walls

    Science.gov (United States)

    Kantsios, A. G.

    1979-01-01

    Presents study on ability of infrared scanner used to detect thermal gradients in outside walls of two homes in Virginia Beach, Virginia under joint effort of Langley Research Center, Virginia Energy Office and Virginia Beach Energy Conservation Pilot Project. Details how study can be used to help minimize energy loss.

  12. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pandya, R.M.; Mathur, K.M.; Charyulu, R.J.K.; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  13. Laser Scanner al servizio del Patrimonio Monumentale Ecclesiastico italiano

    Directory of Open Access Journals (Sweden)

    CAM2 CAM2

    2014-11-01

    Full Text Available The Centre for Researc h Master in Arc hitecture, Sacr ed Art and Liturgy has spent really excellent results with a CAM2 Laser ScannerFocus3D to detect the architecture of the magnificent Cathedral of Sessa Aurunca. 

  14. Attitudes des prescripteurs de scanner en matiere de radioprotection ...

    African Journals Online (AJOL)

    Objectif: Evaluer les attitudes des prescripteurs de scanner en matière de radioprotection des patients à Lomé au Togo. Méthodologie: Etude transversale descriptive ... Objective: Estimate the attitudes of CT scan prescribers regarding radiation protection of the patients in Lome. Methods: Cross-sectional study performed ...

  15. Electro-optic and Acousto-optic Laser Beam Scanners

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Bechtold, P.

    2014-01-01

    Optical solid state deflectors rely on the electro-optical or acousto-optic effect. These Electro-Optical Deflectors (EODs) and Acousto-Optical Deflectors (AODs) do not contain moving parts and therefore exhibit high deflection velocities and are free of drawbacks associated with mechanical scanners. A

  16. Free-space wavelength-multiplexed optical scanner demonstration.

    Science.gov (United States)

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.

  17. Cranial MRI of small rodents using a clinical MR scanner.

    Science.gov (United States)

    Linn, Jennifer; Schwarz, Friederike; Schichor, Christian; Wiesmann, Martin

    2007-09-01

    Increasing numbers of small animal models are in use in the field of neuroscience research. Magnetic resonance imaging (MRI) provides an excellent method for non-invasive imaging of the brain. Using three-dimensional (3D) MR sequences allows lesion volumetry, e.g. for the quantification of tumor size. Specialized small-bore animal MRI scanners are available for high-resolution MRI of small rodents' brain, but major drawbacks of this dedicated equipment are its high costs and thus its limited availability. Therefore, more and more research groups use clinical MR scanners for imaging small animal models. But to achieve a reasonable spatial resolution at an acceptable signal-to-noise ratio with these scanners, some requirements concerning sequence parameters have to be matched. Thus, the aim of this paper was to present in detail a method how to perform MRI of small rodents brain using a standard clinical 1.5 T scanner and clinically available radio frequency coils to keep material costs low and to circumvent the development of custom-made coils.

  18. Validation of the SimSET simulation package for modeling the Siemens Biograph mCT PET scanner.

    Science.gov (United States)

    Poon, Jonathan K; Dahlbom, Magnus L; Casey, Michael E; Qi, Jinyi; Cherry, Simon R; Badawi, Ramsey D

    2015-02-07

    Monte Carlo simulation provides a valuable tool in performance assessment and optimization of system design parameters for PET scanners. SimSET is a popular Monte Carlo simulation toolkit that features fast simulation time, as well as variance reduction tools to further enhance computational efficiency. However, SimSET has lacked the ability to simulate block detectors until its most recent release. Our goal is to validate new features of SimSET by developing a simulation model of the Siemens Biograph mCT PET scanner and comparing the results to a simulation model developed in the GATE simulation suite and to experimental results. We used the NEMA NU-2 2007 scatter fraction, count rates, and spatial resolution protocols to validate the SimSET simulation model and its new features. The SimSET model overestimated the experimental results of the count rate tests by 11-23% and the spatial resolution test by 13-28%, which is comparable to previous validation studies of other PET scanners in the literature. The difference between the SimSET and GATE simulation was approximately 4-8% for the count rate test and approximately 3-11% for the spatial resolution test. In terms of computational time, SimSET performed simulations approximately 11 times faster than GATE simulations. The new block detector model in SimSET offers a fast and reasonably accurate simulation toolkit for PET imaging applications.

  19. NMR of geophysical drill cores with a mobile Halbach scanner

    Energy Technology Data Exchange (ETDEWEB)

    Talnishnikh, E.

    2007-08-21

    This thesis is devoted to a mobile NMR with an improved Halbach scanner. This is a lightweight tube-shaped magnet with sensitive volume larger and a homogeneity of the magnetic field higher than the previous prototype version. The improved Halbach scanner is used for analysis of water-saturated drill cores and plugs with diameters up to 60 mm. To provide the analysis, the standard 1D technique with the CPMG sequence as well as 2D correlation experiments were successfully applied and adapted to study properties of fluid-saturated sediments. Afterwards the Halbach scanner was calibrated to fast non-destructive measurements of porosity, relaxation time distributions, and estimation of permeability. These properties can be calculated directly from the NMR data using the developed methodology. Any independent measurements of these properties with other methods are not needed. One of the main results of this work is the development of a new NMR on-line core scanner for measurements of porosity in long cylindrical and semi cylindrical drill cores. Also dedicated software was written to operate the NMR on-line core scanner. The physical background of this work is the study of the diffusion influence on transverse relaxation. The diffusion effect in the presence of internal gradients in porous media was probed by 1D and 2D experiments. The transverse relaxation time distributions obtained from 1D and from 2D experiments are comparable but different in fine details. Two new methodologies were developed based on the results of this study. First is the methodology quantifying the influence of diffusion in the internal gradients of water-saturated sediments on transverse relaxation from 2D correlation experiments. The second one is the correction of the permeability estimation from the NMR data taking in account the influence of the diffusion. Furthermore, PFG NMR technique was used to study restricted diffusion in the same kind of samples. Preliminary results are reported

  20. In vivo cellular imaging with microscopes enabled by MEMS scanners

    Science.gov (United States)

    Ra, Hyejun

    High-resolution optical imaging plays an important role in medical diagnosis and biomedical research. Confocal microscopy is a widely used imaging method for obtaining cellular and sub-cellular images of biological tissue in reflectance and fluorescence modes. Its characteristic optical sectioning capability also enables three-dimensional (3-D) image reconstruction. However, its use has mostly been limited to excised tissues due to the requirement of high numerical aperture (NA) lenses for cellular resolution. Microscope miniaturization can enable in vivo imaging to make possible early cancer diagnosis and biological studies in the innate environment. In this dissertation, microscope miniaturization for in vivo cellular imaging is presented. The dual-axes confocal (DAC) architecture overcomes limitations of the conventional single-axis confocal (SAC) architecture to allow for miniaturization with high resolution. A microelectromechanical systems (MEMS) scanner is the central imaging component that is key in miniaturization of the DAC architecture. The design, fabrication, and characterization of the two-dimensional (2-D) MEMS scanner are presented. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer and is actuated by self-aligned vertical electrostatic combdrives. The imaging performance of the MEMS scanner in a DAC configuration is shown in a breadboard microscope setup, where reflectance and fluorescence imaging is demonstrated. Then, the MEMS scanner is integrated into a miniature DAC microscope. The whole imaging system is integrated into a portable unit for research in small animal models of human biology and disease. In vivo 3-D imaging is demonstrated on mouse skin models showing gene transfer and siRNA silencing. The siRNA silencing process is sequentially imaged in one mouse over time.

  1. Ultrahigh-resolution CT and DR scanner

    Science.gov (United States)

    DiBianca, Frank A.; Gupta, Vivek; Zou, Ping; Jordan, Lawrence M.; Laughter, Joseph S.; Zeman, Herbert D.; Sebes, Jeno I.

    1999-05-01

    A new technique called Variable-Resolution X-ray (VRX) detection that dramatically increases the spatial resolution in computed tomography (CT) and digital radiography (DR) is presented. The technique is based on a principle called 'projective compression' that allows the resolution element of a CT detector to scale with the subject or field size. For very large (40 - 50 cm) field sizes, resolution exceeding 2 cy/mm is possible and for very small fields, microscopy is attainable with resolution exceeding 100 cy/mm. Several effects that could limit the performance of VRX detectors are considered. Experimental measurements on a 16-channel, CdWO4 scintillator + photodiode test array yield a limiting MTF of 64 cy/mm (8(mu) ) in the highest-resolution configuration reported. Preliminary CT images have been made of small anatomical specimens and small animals using a storage phosphor screen in the VRX mode. Measured detector resolution of the CT projection data exceeds 20 cy/mm (less than 25 (mu) ); however, the final, reconstructed CT images produced thus far exhibit 10 cy/mm (50 (mu) ) resolution because of non-flatness of the storage phosphor plates, focal spot effects and the use of a rudimentary CT reconstruction algorithm. A 576-channel solid-state detector is being fabricated that is expected to achieve CT image resolution in excess of that of the 26-channel test array.

  2. Defense Commissaries: Issues Related to the Sale of Electronic Scanner Data

    National Research Council Canada - National Science Library

    1998-01-01

    In response to your request that we review DeCA'S sale of scanner data and its implementation of category management, this report identifies DeCA'S total revenue from selling scanner data and compares license revenues...

  3. Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET

    Directory of Open Access Journals (Sweden)

    Christopher J Thompson

    2014-08-01

    Full Text Available Recently, positron emission tomography (PET is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs and more recently silicon photo-multipliers (SiPMs are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution.

  4. Surface shape parameters and analysis of data captured with use of 4D surface scanners

    Science.gov (United States)

    Witkowski, Marcin; Sitnik, Robert; Rapp, Walter; Haex, Bart; Kowalski, Marcin; Mooshake, Sven

    2008-02-01

    The recent development of electro-optical instrumentation allowed constructing 4D (3D + time) structure-light scanners which may be used to measure the surface of human body in motion. The main advantage of structure-light scanners is the possibility of capturing data from the whole measured body surface, while traditional marker-based systems acquire data only form markers attached to skin of the examined patient. The paper describes new parameters describing the local shape of measured surface. The distribution maps of these parameters allow discrimination of various surface types and in effect localization and tracing of under-skin anatomical structures in time. The presented parameters give similar results to well-known curvatures but are easier and quicker to calculate. Moreover the calculation process of the new parameters is more numerically stable itself. The developed path of processing and analysis of 4D measurement data has been presented. It contains the following stages: data acquisition, volumetric model creation, calculations of shape parameters, selecting areas of interest, locating and tracing of anatomical landmarks. Exemplary results of application of developed parameters and methods to real measurement and computer generated data are also presented.

  5. Quality assurance for ultrasound scanners using a durable tissue-mimicking phantom and radial MTF

    Science.gov (United States)

    Kaar, Marcus; Semturs, Friedrich; Figl, Michael; Hoffmann, Rainer; Hummel, Johann

    2014-03-01

    For the use in routine technical quality assurance (TQA) we developed a tissue-mimicking phantom and an evaluation algorithm. Key properties of US phantom materials are sound velocity and acoustic attenuation. For daily clinical use the material also has to be nontoxic, durable and easy in handling and maintenance. The base material of our phantom is Poly(vinyl alcohol) (PVA), a synthetic polymer. By freezing the phantom body during the production process, it changes its sound velocity to closely match the one of the human body. The phantom's base form is a cuboid containing a large anechoic cylindric target. In routine QA it is required to gain comparable and reproducible results from a single image. To determine spatial resolution of phantom images, we calculate a modulation transfer function (MTF). We developed an algorithm, that calculates a radial MTF from a circular structure representing spatial resolution averaged across all directions. For evaluation of the algorithm, we created a set of synthetic images. A comparison of the results from a traditional slanted edge algorithm and our solution showed a close correlation. The US phantom was imaged with a commercial US-scanner at different sound frequencies. The computed MTFs of higher frequency images show higher transfer percentages in all spatial frequencies than the MTFs of lower frequency images. The results suggest that the proposed method produces clear statements about the spatial resolution of evaluated imaging devices. We therefore consider the method as suitable for application in technical quality assurance of diagnostic ultrasound scanners.

  6. A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-12-07

    The objective of this project is to design, fabricate and demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at EnUrga Inc. The multi-spectral scanner was also evaluated using a blind Department of Energy study at the Rocky Mountain Oilfield Testing Center. The performance of the scanner was inconsistent during the blind study. However, most of the leaks were outside the view of the multi-spectral scanner that was developed during the first year of the project. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. A prototype scanner was built and evaluated during the second year of the project. Only laboratory evaluations were completed during the second year. The laboratory evaluations show the feasibility of using the scanner to determine natural gas pipeline leaks. Further field evaluations and optimization of the scanner are required before commercialization of the scanner can be initiated.

  7. Digital Data Matrix Scanner Developnent At Marshall Space Flight Center

    Science.gov (United States)

    2004-01-01

    Research at NASA's Marshall Space Flight Center has resulted in a system for reading hidden identification codes using a hand-held magnetic scanner. It's an invention that could help businesses improve inventory management, enhance safety, improve security, and aid in recall efforts if defects are discovered. Two-dimensional Data Matrix symbols consisting of letters and numbers permanently etched on items for identification and resembling a small checkerboard pattern are more efficient and reliable than traditional bar codes, and can store up to 100 times more information. A team led by Fred Schramm of the Marshall Center's Technology Transfer Department, in partnership with PRI,Torrance, California, has developed a hand-held device that can read this special type of coded symbols, even if covered by up to six layers of paint. Before this new technology was available, matrix symbols were read with optical scanners, and only if the codes were visible. This latest improvement in digital Data Matrix technologies offers greater flexibility for businesses and industries already using the marking system. Paint, inks, and pastes containing magnetic properties are applied in matrix symbol patterns to objects with two-dimensional codes, and the codes are read by a magnetic scanner, even after being covered with paint or other coatings. The ability to read hidden matrix symbols promises a wide range of benefits in a number of fields, including airlines, electronics, healthcare, and the automotive industry. Many industries would like to hide information on a part, so it can be read only by the party who put it there. For instance, the automotive industry uses direct parts marking for inventory control, but for aesthetic purposes the marks often need to be invisible. Symbols have been applied to a variety of materials, including metal, plastic, glass, paper, fabric and foam, on everything from electronic parts to pharmaceuticals to livestock. The portability of the hand

  8. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... detectors rotate around the patient. At the same time, the examination table is moving through the scanner, so that the x-ray beam follows a spiral path. A special computer program processes this series of pictures, or slices ...

  9. Computed tomography status

    Energy Technology Data Exchange (ETDEWEB)

    Hansche, B.D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  10. The airborne infrared scanner as a geophysical research tool

    Science.gov (United States)

    Friedman, Jules D.

    1970-01-01

    The infrared scanner is proving to be an effective anomaly-mapping tool, albeit one which depicts surface emission directly and heat mass transfer from depths only indirectly and at a threshold level 50 to 100 times the normal conductive heat flow of the earth. Moreover, successive terrain observations are affected by time-dependent variables such as the diurnal and seasonal warming and cooling cycle of a point on the earth's surface. In planning precise air borne surveys of radiant flux from the earth's surface, account must be taken of background noise created by variations in micrometeorological factors and emissivity of surface materials, as well as the diurnal temperature cycle. The effect of the diurnal cycle may be minimized by planning predawn aerial surveys. In fact, the diurnal change is very small for most water bodies and the emissivity factor for water (e) =~ 1 so a minimum background noise is characteristic of scanner records of calm water surfaces.

  11. Counting rates modeling for PET scanners with GATE

    Energy Technology Data Exchange (ETDEWEB)

    Guez, D.; Honore, P.F.; Kerhoas, S. [CEA, DSM, DAPNIA, SPHN, F-91191 Gif Sur Yvette (France); Bataille, F.; Comtat, C.; Jan, S. [CEA, DSV, DRM, SHFJ, F-91401 Orsay (France)

    2008-07-01

    Several developments were made in the GATE simulation platform to allow accurate modeling of the count rate performances of PET scanners over a wide range of activity concentrations. A background noise module, a dead time and limited bandwidth modeling for the coincidences, and a delayed coincidence builder were added in the code. The results obtained for the modeling of the ECAT HRRT and Focus 220 scanners with the newly developed modules are discussed. They show that GATE can be used to accurately simulate the single event, prompt coincidence and delayed coincidence rates, from very low activity levels in the field of view up to levels that saturate the acquisition system. The new developments were committed into the public release of GATE, making them available for the whole community, thanks to the open source license under Which GATE is published (LGPL). (authors)

  12. Acoustic noise reduction in a 4 T MRI scanner.

    Science.gov (United States)

    Mechefske, Chris K; Geris, Ryan; Gati, Joseph S; Rutt, Brian K

    2002-01-01

    High-field, high-speed magnetic resonance imaging (MRI) can generate high levels of noise. There is ongoing concern in the medical and imaging research communities regarding the detrimental effects of high acoustic levels on auditory function, patient anxiety, verbal communication between patients and health care workers and ultimately MR image quality. In order to effectively suppress the noise levels inside MRI scanners, the sound field needs to be accurately measured and characterized. This paper presents the results of measurements of the sound radiation from a gradient coil cylinder within a 4 T MRI scanner under a variety of conditions. These measurement results show: (1) that noise levels can be significantly reduced through the use of an appropriately designed passive acoustic liner; and (2) the true noise levels that are experienced by patients during echo planar imaging.

  13. Object 3D surface reconstruction approach using portable laser scanner

    Science.gov (United States)

    Xu, Ning; Zhang, Wei; Zhu, Liye; Li, Changqing; Wang, Shifeng

    2017-06-01

    The environment perception plays the key role for a robot system. The 3D surface of the objects can provide essential information for the robot to recognize objects. This paper present an approach to reconstruct objects' 3D surfaces using a portable laser scanner we designed which consists of a single-layer laser scanner, an encoder, a motor, power supply and mechanical components. The captured point cloud data is processed to remove the discrete points, denoise filtering, stitching and registration. Then the triangular mesh generation of point cloud is accomplished by using Gaussian bilateral filtering, ICP real-time registration and greedy triangle projection algorithm. The experiment result shows the feasibility of the device designed and the algorithm proposed.

  14. Photoacoustic imaging using an 8-beam Fabry-Perot scanner

    Science.gov (United States)

    Huynh, Nam; Ogunlade, Olumide; Zhang, Edward; Cox, Ben; Beard, Paul

    2016-03-01

    The planar Fabry Perot (FP) photoacoustic scanner has been shown to provide exquisite high resolution 3D images of soft tissue structures in vivo to depths up to approximately 10mm. However a significant limitation of current embodiments of the concept is low image acquisition speed. To increase acquisition speed, a novel multi-beam scanner architecture has been developed. This enables a line of equally spaced 8 interrogation beams to be scanned simultaneously across the FP sensor and the photoacoustic signals detected in parallel. In addition, an excitation laser operating at 200Hz was used. The combination of parallelising the detection and the high pulse repetition frequency (PRF) of the excitation laser has enabled dramatic reductions in image acquisition time to be achieved. A 3D image can now be acquired in 10 seconds and 2D images at video rates are now possible.

  15. Beam dumping ghost signals in electric sweep scanners

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.; /SNS Project, Oak Ridge /Tennessee U.; Leitner, M.; /LBL, Berkeley; Moehs, D.P.; /Fermilab; Keller, R.; /LBL, Berkeley; Welton, R.F.; /SNS Project, Oak Ridge

    2004-12-01

    Over the last 20 years many labs started to use Allison scanners to measure low-energy ion beam emittances. We show that large trajectory angles produce ghost signals due to the impact of the beamlet on the electric deflection plates. The strength of the ghost signal is proportional to the amount of beam entering the scanner. Depending on the ions and their velocity, ghost signals can have the opposite polarity as the main beam signals or the same polarity. These ghost signals are easily overlooked because they partly overlap the real signals, they are mostly below the 1% level, and they are often hidden in the noise. However, they cause significant errors in emittance estimates because they are associated with large trajectory angles. The strength of ghost signals, and the associated errors, can be drastically reduced with a simple modification of the deflection plates.

  16. Limited Evaluation of Image Quality Produced by a Portable Head CT Scanner (CereTom) in a Neurosurgery Centre.

    Science.gov (United States)

    Abdullah, Ariz Chong; Adnan, Johari Siregar; Rahman, Noor Azman A; Palur, Ravikant

    2017-03-01

    Computed tomography (CT) is the preferred diagnostic toolkit for head and brain imaging of head injury. A recent development is the invention of a portable CT scanner that can be beneficial from a clinical point of view. To compare the quality of CT brain images produced by a fixed CT scanner and a portable CT scanner (CereTom). This work was a single-centre retrospective study of CT brain images from 112 neurosurgical patients. Hounsfield units (HUs) of the images from CereTom were measured for air, water and bone. Three assessors independently evaluated the images from the fixed CT scanner and CereTom. Streak artefacts, visualisation of lesions and grey-white matter differentiation were evaluated at three different levels (centrum semiovale, basal ganglia and middle cerebellar peduncles). Each evaluation was scored 1 (poor), 2 (average) or 3 (good) and summed up to form an ordinal reading of 3 to 9. HUs for air, water and bone from CereTom were within the recommended value by the American College of Radiology (ACR). Streak artefact evaluation scores for the fixed CT scanner was 8.54 versus 7.46 ( Z = -5.67) for CereTom at the centrum semiovale, 8.38 (SD = 1.12) versus 7.32 (SD = 1.63) at the basal ganglia and 8.21 (SD = 1.30) versus 6.97 (SD = 2.77) at the middle cerebellar peduncles. Grey-white matter differentiation showed scores of 8.27 (SD = 1.04) versus 7.21 (SD = 1.41) at the centrum semiovale, 8.26 (SD = 1.07) versus 7.00 (SD = 1.47) at the basal ganglia and 8.38 (SD = 1.11) versus 6.74 (SD = 1.55) at the middle cerebellar peduncles. Visualisation of lesions showed scores of 8.86 versus 8.21 ( Z = -4.24) at the centrum semiovale, 8.93 versus 8.18 ( Z = -5.32) at the basal ganglia and 8.79 versus 8.06 ( Z = -4.93) at the middle cerebellar peduncles. All results were significant with P -value < 0.01. Results of the study showed a significant difference in image quality produced by the fixed CT scanner and CereTom, with the latter being more inferior than the

  17. New targeting device for stereotaxic procedures within the CT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Huk, W.; Baer, U.

    1980-01-01

    A new targeting device is reported which makes it possible to perform stereotaxic procedures within CT scanners under tomographic control. The zero position of the biopsy neddle is the reference point for all measurements. The head of the anesthetized patient is immobilized with firm plastic cushions in a special head holder. This unit can be used for biopsies, preoperative marking of small lesions, therapeutic punctures, and placement of radioactive substances into inoperable brain tumors.

  18. Automatic Threshold Design for a Bound Document Scanner.

    Science.gov (United States)

    1982-12-01

    conditions due to fluorescent tube deterioration. Slightly less than optimum thresholding may occur about 10 to 15 percent of the time, but this D1 is...conditions due to fluorescent tube deterioration. Slightly less than optimum thresholding may occur about 10 to 15 percent of the time, but this is due to data... fluorescent tube deterioration. Thresholding errors occur about 10 to 15 percent of the time, but they are due to other shortcomings in the scanner rather

  19. Advanced optical 3D scanners using DMD technology

    Science.gov (United States)

    Muenstermann, P.; Godding, R.; Hermstein, M.

    2017-02-01

    Optical 3D measurement techniques are state-of-the-art for highly precise, non-contact surface scanners - not only in industrial development, but also in near-production and even in-line configurations. The need for automated systems with very high accuracy and clear implementation of national precision standards is growing extremely due to expanding international quality guidelines, increasing production transparency and new concepts related to the demands of the fourth industrial revolution. The presentation gives an overview about the present technical concepts for optical 3D scanners and their benefit for customers and various different applications - not only in quality control, but also in design centers or in medical applications. The advantages of DMD-based systems will be discussed and compared to other approaches. Looking at today's 3D scanner market, there is a confusing amount of solutions varying from lowprice solutions to high end systems. Many of them are linked to a very special target group or to special applications. The article will clarify the differences of the approaches and will discuss some key features which are necessary to render optical measurement systems suitable for industrial environments. The paper will be completed by examples for DMDbased systems, e. g. RGB true-color systems with very high accuracy like the StereoScan neo of AICON 3D Systems. Typical applications and the benefits for customers using such systems are described.

  20. Development of a high resolution module for PET scanners

    Science.gov (United States)

    Stringhini, G.; Pizzichemi, M.; Ghezzi, A.; Stojkovic, A.; Tavernier, S.; Niknejad, T.; Varela, J.; Paganoni, M.; Auffray, E.

    2017-02-01

    Positron Emission Tomography (PET) scanners require high performances in term of spatial resolution and sensitivity to allow early detection of cancer masses. In small animal and organ dedicated PET scanners the Depth of Interaction (DOI) information has to be obtained to avoid parallax errors and to reconstruct high resolution images. In the whole body PET, the DOI information can be useful to correct for the time jitter of the optical photons along the main axis of the scintillator, improving the time performances. In this work we present the development of PET module designed to reach high performance as compared to the current scanners while keeping the complexity of the system reasonably low. The module presented is based on a 64 LYSO (Lutetium-yttrium oxyorthosilicate) crystals matrix and on a 4×4 MPPC (Multi Pixels Photon Counter) array as detector in a 4 to 1 coupling between the crystals and the detector and a single side readout. The lateral surfaces of the crystals are optically treated to be unpolished. The DOI and the energy resolution of the PET module are presented and a fast method to obtain the DOI calibration is discussed.

  1. Determining the surface roughness coefficient by 3D Scanner

    Directory of Open Access Journals (Sweden)

    Karmen Fifer Bizjak

    2010-12-01

    Full Text Available Currently, several test methods can be used in the laboratory to determine the roughness of rock joint surfaces.However, true roughness can be distorted and underestimated by the differences in the sampling interval of themeasurement methods. Thus, these measurement methods produce a dead zone and distorted roughness profiles.In this paper a new rock joint surface roughness measurement method is presented, with the use of a camera-typethree-dimensional (3D scanner as an alternative to current methods. For this study, the surfaces of ten samples oftuff were digitized by means of a 3D scanner, and the results were compared with the corresponding Rock JointCoefficient (JRC values. Up until now such 3D scanner have been mostly used in the automotive industry, whereastheir use for comparison with obtained JRC coefficient values in rock mechanics is presented here for the first time.The proposed new method is a faster, more precise and more accurate than other existing test methods, and is apromising technique for use in this area of study in the future.

  2. The Edinburgh Pipe Phantom: characterising ultrasound scanners beyond 50 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Moran, C M [Medical Physics, University of Edinburgh, Edinburgh, EH16 4TJ (United Kingdom); Ellis, W; Janeczko, A; Pye, S D [Medical Physics Department, NHS Lothian University Hospitals Division, Royal Infirmary, Edinburgh EH16 4SA (United Kingdom); Bell, D, E-mail: carmel.moran@ed.ac.uk [Precision Acoustics Ltd, Hampton Farm Business Park, Dorset, DT2 8QH (United Kingdom)

    2011-02-01

    The ability to measure the imaging performance of pre-clinical and clinical ultrasound scanners is important but difficult to achieve objectively. The Edinburgh Pipe Phantom was originally developed to assess the technical performance of clinical scanners up to 15MHz. It comprises a series of anechoic cylinders with diameters 0.4 - 8mm embedded in agar-based tissue mimic. This design enables measurement of the characteristics (Resolution Integral R, Depth of Field L{sub R}, Characteristic Resolution D{sub R}) of grey-scale images with transducer centre frequencies from about 2.5 to 15MHz. We describe further development of the Edinburgh Pipe Phantom as a tool for characterising ultrasound scanners with centre frequencies up to at least 50MHz. This was achieved by moulding a series of anechoic pipe structures (diameters 0.045 - 1.5mm) into a block of agar-based tissue mimic. We report measurements of R, L{sub R} and D{sub R} for a series of 10 transducers (5 single element and 5 array transducers) designed for pre-clinical scanning, with centre frequencies in the range 15-55 MHz. Values of R ranged from 18-72 for single element transducers and 49-58 for linear array transducers. In conclusion, the pre-clinical pipe phantom was able to successfully determine the imaging characteristics of ultrasound probes up to 55MHz.

  3. Visual stimulus presentation using fiber optics in the MRI scanner.

    Science.gov (United States)

    Huang, Ruey-Song; Sereno, Martin I

    2008-03-30

    Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.

  4. Infrared horizon scanner attitude data error analysis for SEASAT-A

    Science.gov (United States)

    Phenneger, M. C.; Manders, C.; Spence, C. B., Jr.; Levitas, M.; Lerner, G. M.

    1978-01-01

    The results of a study of the effect of variations in the earth's seasonal and geographical horizon radiance on the location of the infrared horizon as measured by ITHACO scanwheels are presented. Two types of variations are considered. These are (1) systematic variations of the mean (averaged over all longitudes) atmospheric radiance due to macroscopic changes in temperature as a function of latitude and season and (2) random variations in atmospheric radiance due to microscopic fluctuations (weather). The effect of variations in the scanner wheel speeds on the attitude determination accuracy is also presented. The computed horizon radiance and wheel speed variation - induced attitude errors are then combined with errors caused by sensor alignment and electronics tolerances to obtain an overall estimate of the SEASAT-A pitch and roll angle accuracy.

  5. Development of a Large, Low-Cost, Instant 3D Scanner

    Directory of Open Access Journals (Sweden)

    Jeremy Straub

    2014-05-01

    Full Text Available Three-dimensional scanning serves a large variety of uses. It can be utilized to generate objects for, after possible modification, 3D printing. It can facilitate reverse engineering, replication of artifacts to allow interaction without risking cultural heirlooms and the creation of replacement bespoke parts. The technology can also be used to capture imagery for creating holograms, it can support applications requiring human body imaging (e.g., medical, sports performance, garment creation, security and it can be used to import real-world objects into computer games and other simulations. This paper presents the design of a 3D scanner that was designed and constructed at the University of North Dakota to create 3D models for printing and numerous other uses. It discusses multiple prospective uses for the unit and technology. It also provides an overview of future directions of the project, such as 3D video capture.

  6. Adaptive notch filter for removal of coherent noise from infrared scanner data

    Science.gov (United States)

    Jaggi, Sandeep

    1991-11-01

    This paper addresses the use of an adaptive noise canceling technique to eliminate the coherent noise generated in scanner data. The technique is based on a Finite Impulse Response (FIR) adaptive noise canceler. A two-weight FIR filter is used to adaptively learn the characteristics of a sinusoid. This sinusoid is then removed from the data. The least Mean Squares (LMS) algorithm is used to converge to the coefficients of the adaptive filter during the learning process. An image corrupted with a single frequency periodic noise is used for investigating the algorithm. It is observed that the efficiency of the algorithm is dependent on the convergence gains and the initial positioning of the weights of the FIR filter. Because of the computational simplicity of the algorithm, it is possible to implement this in real-time mode.

  7. Estimating vegetation coverage in St. Joseph Bay, Florida with an airborne multispectral scanner

    Science.gov (United States)

    Savastano, K. J.; Faller, K. H.; Iverson, R. L.

    1984-01-01

    A four-channel multispectral scanner (MSS) carried aboard an aircraft was used to collect data along several flight paths over St. Joseph Bay, FL. Various classifications of benthic features were defined from the results of ground-truth observations. The classes were statistically correlated with MSS channel signal intensity using multivariate methods. Application of the classification measures to the MSS data set allowed computer construction of a detailed map of benthic features of the bay. Various densities of segrasses, various bottom types, and algal coverage were distinguished from water of various depths. The areal vegetation coverage of St. Joseph Bay was not significantly different from the results of a survey conducted six years previously, suggesting that seagrasses are a very stable feature of the bay bottom.

  8. Microcontroller USB interfacing with MATLAB GUI for low cost medical ultrasound scanners

    Directory of Open Access Journals (Sweden)

    Jean Rossario Raj

    2016-06-01

    Full Text Available This paper presents an 8051 microcontroller-based control of ultrasound scanner prototype hardware from a host laptop MATLAB GUI. The hardware control of many instruments is carried out by microcontrollers. These microcontrollers are in turn controlled from a GUI residing in a computing machine that is connected over the USB interface. Conventionally such GUIs are developed using ‘C’ language or its variants. But MATLAB GUI is a better tool, when such GUI programs need to do huge image/video processing. However interfacing MATLAB with the microcontroller is a challenging task. Here, MATLAB interfacing through an intermediate MEX ‘C’ language program is presented. This paper outlines the MEX programming methods for achieving the smooth interfacing of microcontrollers with MATLAB GUI.

  9. An Approach for Automatic Orientation of Big Point Clouds from the Stationary Scanners Based on the Spherical Targets

    Directory of Open Access Journals (Sweden)

    YAO Jili

    2015-04-01

    Full Text Available Terrestrial laser scanning (TLS technology has high speed of data acquisition, large amount of point cloud, long distance of measuring. However, there are some disadvantages such as distance limitation in target detecting, hysteresis in point clouds processing, low automation and weaknesses of adapting long-distance topographic survey. In this case, we put forward a method on long-range targets detecting in big point clouds orientation. The method firstly searches point cloud rings that contain targets according to their engineering coordinate system. Then the detected rings are divided into sectors to detect targets in a very short time so as to obtain central coordinates of these targets. Finally, the position and orientation parameters of scanner are calculated and point clouds in scanner's own coordinate system(SOCS are converted into engineering coordinate system. The method is able to be applied in ordinary computers for long distance topographic(the distance between scanner and targets ranges from 180 to 700 m survey in mountainous areas with targets radius of 0.162m.

  10. System Architecture of the LabPET Small Animal PET Scanner

    Science.gov (United States)

    Tetrault, Marc-AndrÉ; Viscogliosi, Nicolas; Riendeau, Joel; Belanger, FranÇois; Michaud, Jean-Baptiste; Semmaoui, Hicham; Berard, Philippe; Lemieux, FranÇois; Arpin, Louis; Bergeron, Melanie; Cadorette, Jules; Pepin, Catherine M.; Robert, Ghislain; Lepage, Martin D.; Lecomte, Roger; Fontaine, RÉjean

    2008-10-01

    To address modern molecular imaging requirements, a digital positron emission tomography (PET) scanner for small animals has been developed at Universite de Sherbrooke. Based on individual readout of avalanche photodiodes (APD) coupled to LYSO/LGSO phoswich detectors, the scanner supports up to 4608 channels in a 16.2 cm diameter, 11.25 cm axial field of view with an isotropic 1.2 mm FWHM intrinsic spatial resolution at the center of the field of view. Custom data acquisition boards preprocess and sample APD signals at 45 MHz and compute in real time crystal identification, energy and timing information of detected events at an average sustained rate of up to 1250 raw counts per second per mm2 (10 000 cps/channel). Real time digital signal analysis also filters out events outside the pre-selected energy window with crystal granularity to eliminate Compton events and electronic noise. Retained events are then merged into a single stream through a real-time sorting tree, at which end prompt and delayed coincidences are extracted. A single Firewire link handles both control and data transfers with a host computer. The LabPET features four data recording modes, giving the user the choice to retain data for research or to minimize file size for high coincidence count rate and imaging purposes. The electronic system also supports time synchronized data insertion for flags such as vital signs used in gated image reconstruction. Aside from data acquisition, hardware can generate live energy and discrimination spectra suitable for fast, automatic channel calibration.

  11. Does the Use of Body Scanners Discriminate Overweight Flight Passengers? The Effect of Body Scanners on Body Image

    Directory of Open Access Journals (Sweden)

    Magdalena Laib

    2016-06-01

    Full Text Available Whereas the introduction of body scanners at airports has been accompanied by critical voices raising concerns that body scanners might have a negative impact on different minority groups, it has not been investigated thus far whether they might also have negative impacts on the average flight passenger and if the provision of adequate information might attenuate such negative impacts. Using a pre/post-design the current study examines the effect of a body scan in a controlled laboratory setting on the explicit and implicit body image of normal-weight and overweight people as assessed by questionnaires and an Implicit Association Test. Half of the sample received an information sheet concerning body scanners before they were scanned. While there was a negative impact of the body scan on the implicit body image of overweight participants, there was a positive impact on their explicit body image. The negative effect of the body scan was unaffected by receiving information. This study demonstrates that body scans do not only have negative effects on certain minority groups but potentially on a large proportion of the general public which suggests a critical reconsideration of the control procedures at airports, the training of the airport staff who is in charge of these procedures and the information flight passengers get about these procedures.

  12. Pin-photodiode array for the measurement of fan-beam energy and air kerma distributions of X-ray CT scanners.

    Science.gov (United States)

    Haba, Tomonobu; Koyama, Shuji; Aoyama, Takahiko; Kinomura, Yutaka; Ida, Yoshihiro; Kobayashi, Masanao; Kameyama, Hiroshi; Tsutsumi, Yoshinori

    2016-07-01

    Patient dose estimation in X-ray computed tomography (CT) is generally performed by Monte Carlo simulation of photon interactions within anthropomorphic or cylindrical phantoms. An accurate Monte Carlo simulation requires an understanding of the effects of the bow-tie filter equipped in a CT scanner, i.e. the change of X-ray energy and air kerma along the fan-beam arc of the CT scanner. To measure the effective energy and air kerma distributions, we devised a pin-photodiode array utilizing eight channels of X-ray sensors arranged at regular intervals along the fan-beam arc of the CT scanner. Each X-ray sensor consisted of two plate type of pin silicon photodiodes in tandem - front and rear photodiodes - and of a lead collimator, which only allowed X-rays to impinge vertically to the silicon surface of the photodiodes. The effective energy of the X-rays was calculated from the ratio of the output voltages of the photodiodes and the dose was calculated from the output voltage of the front photodiode using the energy and dose calibration curves respectively. The pin-photodiode array allowed the calculation of X-ray effective energies and relative doses, at eight points simultaneously along the fan-beam arc of a CT scanner during a single rotation of the scanner. The fan-beam energy and air kerma distributions of CT scanners can be effectively measured using this pin-photodiode array. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    Science.gov (United States)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  14. Custom Integrated Circuit Design for Portable Ultrasound Scanners

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere

    ) are contained in the probe. Due to the nature of ultrasonic transducers, the transmitting circuitry needs to generate high-voltage pulses to drive them. Furthermore, the low-voltage receiving circuitry has to provide high enough signal to noise ratio (SNR) in order to generate usable imaging. For the purpose...... of evaluating the feasibility of the transmitting and receiving circuitry of a handheld probe for portable ultrasound scanners, three integrated circuit prototypes have been fabricated. Measurements have been performed on all of them with satisfactory results. The first part of this project is focused...

  15. Middle infrared multispectral aircraft scanner data: analysis for geological applications.

    Science.gov (United States)

    Kahle, A B; Madura, D P; Soha, J M

    1980-07-15

    Multispectral middle IR (8-13-microm) data were acquired with an aircraft scanner over Utah. Because these digital image data were dominated by temperature, all six channels were highly correlated. Extensive processing was required to allow geologic photointerpretation based on subtle variations in spectral emittance between rock types. After preliminary processing, ratio images were produced and color ratio composites created from these. Sensor calibration and an atmospheric model allowed determination of surface brightness, temperature, emittance, and color composite emittance images. The best separation of major rock types was achieved with a principal component transformation, followed by a Gaussian stretch, followed by an inverse transformation to the original axes.

  16. Middle infrared multispectral aircraft scanner data - Analysis for geological applications

    Science.gov (United States)

    Kahle, A. B.; Madura, D. P.; Soha, J. M.

    1980-01-01

    Multispectral middle IR (8-13 microns) data were acquired with an aircraft scanner over Utah. Because these digital image data were dominated by temperature, all six channels were highly correlated. Extensive processing was required to allow geologic photointerpretation based on subtle variations in spectral emittance between rock types. After preliminary processing, ratio images were produced and color ratio composites created from these. Sensor calibration and an atmospheric model allowed determination of surface brightness, temperature, emittance, and color composite emittance images. The best separation of major rock types was achieved with a principal component transformation, followed by a Gaussian stretch, followed by an inverse transformation to the original axes.

  17. Agricultural applications for thermal infrared multispectral scanner data

    Science.gov (United States)

    Pelletier, R. E.; Ochoa, M. C.; Hajek, B. F.

    1985-01-01

    The use of the Thermal Infrared Multispectral Scanner (TIMS) data in agricultural landscapes is discussed. The TIMS allows for narrow-band analysis in the 8.2-11.6 micron range at spatial resolutions down to 5 meters in cell size. A coastal plain region in SE Alabama was studied using the TIMS. The crop/plant vigor, canopy density, and thermal response changes for soils obtained from thermal imagery are examined. The application of TIMS data to hydrologic and topographic issues, inventory and conservation monitoring, and the enhancement and extraction of cartographic features is described.

  18. Diffractive element design for resonant scanner angular correction

    Science.gov (United States)

    Khoury, Jed; Woods, Charles L.; Haji-Saeed, Bahareh; Pyburn, Dana; Sengupta, Sandip K.; Kierstead, John

    2006-09-01

    We propose an optical corrective element with zooming capability to convert nonlinear sinusoidal scanning into linear scanning. Such a device will be useful for linearizing the angular scan of a resonant mirror scanner. The design methodology is to create a graded index of refraction device as the reference design, with its index of refraction parameters based on the propagation of an electromagnetic field in inhomogeneous media. The algorithm for converting this refractive element to the corresponding binary diffractive version is also presented. Design and simulation data are shown.

  19. Demonstration: A smartphone 3D functional brain scanner

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Stopczynski, Arkadiusz; Larsen, Jakob Eg

    We demonstrate a fully portable 3D real-time functional brain scanner consisting of a wireless 14-channel ‘Neuroheadset‘ (Emotiv EPOC) and a Nokia N900 smartphone. The novelty of our system is the ability to perform real-time functional brain imaging on a smartphone device, including stimulus...... tools are preferred. Source localization is implemented locally on the phone with a 3D brain model consisting of 1,028 vertices and 2,048 triangles stored in the mobile application. Our system design benefits from the possibility of being able to integrate with multiple hardware platforms (smartphones...

  20. Mapping of MAC Address with Moving WiFi Scanner

    Directory of Open Access Journals (Sweden)

    Arief Hidayat

    2017-10-01

    Full Text Available Recently, Wifi is one of the most useful technologies that can be used for detecting and counting MAC Address. This paper described using of WiFi scanner which carried out seven times circulated the bus. The method used WiFi and GPS are to counting MAC address as raw data from the pedestrian smartphone, bus passenger or WiFi devices near from the bus as long as the bus going around the route. There are seven processes to make map WiFi data.

  1. A new electronic read-out for the YAPPET scanner

    CERN Document Server

    Damiani, C; Malaguti, R; Guerra, A D; Domenico, G D; Zavattini, G

    2002-01-01

    A small animal PET-SPECT scanner (YAPPET) prototype was built at the Physics Department of the Ferrara University and is presently being used at the Nuclear Medicine Department for radiopharmaceutical studies on rats. The first YAPPET prototype shows very good performances, but needs some improvements before it can be fully used for intensive radiopharmaceutical research. The main problem of the actual prototype is its heavy electronics, based on NIM and CAMAC standard modules. For this reason a new, compact read-out electronics was developed and tested. The results of a first series of tests made on the first prototype will be presented in the paper.

  2. Optical monitoring of scoliosis by 3D medical laser scanner

    Science.gov (United States)

    Rodríguez-Quiñonez, Julio C.; Sergiyenko, Oleg Yu.; Preciado, Luis C. Basaca; Tyrsa, Vera V.; Gurko, Alexander G.; Podrygalo, Mikhail A.; Lopez, Moises Rivas; Balbuena, Daniel Hernandez

    2014-03-01

    Three dimensional recording of the human body surface or anatomical areas have gained importance in many medical applications. In this paper, our 3D Medical Laser Scanner is presented. It is based on the novel principle of dynamic triangulation. We analyze the method of operation, medical applications, orthopedically diseases as Scoliosis and the most common types of skin to employ the system the most proper way. It is analyzed a group of medical problems related to the application of optical scanning in optimal way. Finally, experiments are conducted to verify the performance of the proposed system and its method uncertainty.

  3. Scatter fraction of the J-PET tomography scanner

    CERN Document Server

    Kowalski, P; Raczyński, L; Alfs, D; Bednarski, T; Białas, P; Czerwiński, E; Gajos, A; Głowacz, B; Jasińska, J; Kamińska, D; Korcyl, G; Kozik, T; Krzemień, W; Kubicz, E; Mohammad, M; Niedźwiecki, Sz; Pałka, M; Pawlik-Niedźwiecka, M; Rudy, Z; Silarski, M; Smyrski, J; Strzelecki, A; Wieczorek, A; Zgardzińska, B; Zieliński, M; Moskal, P

    2016-01-01

    A novel Positron Emission Tomography system, based on plastic scintillators, is being developed by the J-PET collaboration. In this article we present the simulation results of the scatter fraction, representing one of the parameters crucial for background studies defined in the NEMA-NU-2-2012 norm. We elaborate an event selection methods allowing to suppress events in which gamma quanta were scattered in the phantom or underwent the multiple scattering in the detector. The estimated scatter fraction for the single-layer J-PET scanner varies from 37% to 53% depending on the applied energy threshold.

  4. Proton computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, K.M.

    1978-01-01

    The use of protons or other heavy charged particles instead of x rays in computed tomography (CT) is explored. The results of an experimental implementation of proton CT are presented. High quality CT reconstructions are obtained at an average dose reduction factor compared with an EMI 5005 x-ray scanner of 10:1 for a 30-cm-diameter phantom and 3.5:1 for a 20-cm diameter. The spatial resolution is limited by multiple Coulomb scattering to about 3.7 mm FWHM. Further studies are planned in which proton and x-ray images of fresh human specimens will be compared. Design considerations indicate that a clinically useful proton CT scanner is eminently feasible.

  5. Two-laser, large-field hyperspectral microarray scanner for the analysis of multicolor microarrays.

    Science.gov (United States)

    Erfurth, Florian; Tretyakov, Alexander; Nyuyki, Berla; Mrotzek, Grit; Schmidt, Wolf-Dieter; Fassler, Dieter; Saluz, Hans Peter

    2008-10-15

    We describe the development and operation of a two-laser, large-field hyperspectral scanner for analysis of multicolor genotyping microarrays. In contrast to confocal microarray scanners, in which wavelength selectivity is obtained by positioning band-pass filters in front of a photomultiplier detector, hyperspectral microarray scanners collect the complete visible emission spectrum from the labeled microarrays. Hyperspectral scanning permits discrimination of multiple spectrally overlapping fluorescent labels with minimal use of optical filters, thus offering important advantages over standard filter-based multicolor microarray scanners. The scanner uses two-sided oblique line illumination of microarrays. Two lasers are used for the excitation of dyes in the visible and near-infrared spectral regions. The hyperspectral scanner was evaluated with commercially available two-color calibration slides and with in-house-printed four-color microarrays containing dyes with spectral properties similar to their commercial genotyping array counterparts.

  6. Continued Development Of An Inexpensive Simulator Based CT Scanner For Radiation Therapy Treatment Planning

    Science.gov (United States)

    Peschmann, K. R.; Parker, D. L.; Smith, V.

    1982-11-01

    An abundant number of different CT scanner models has been developed in the past ten years, meeting increasing standards of performance. From the beginning they remained a comparatively expensive piece of equipment. This is due not only to their technical complexity but is also due to the difficulties involved in assessing "true" specifications (avoiding "overde-sign"). Our aim has been to provide, for Radiation Therapy Treatment Planning, a low cost CT scanner system featuring large freedom in patient positioning. We have taken advantage of the concurrent tremendously increased amount of knowledge and experience in the technical area of CT1 . By way of extensive computer simulations we gained confidence that an inexpensive C-arm simulator gantry and a simple one phase-two pulse generator in connection with a standard x-ray tube could be used, without sacrificing image quality. These components have been complemented by a commercial high precision shaft encoder, a simple and effective fan beam collimator, a high precision, high efficiency, luminescence crystal-silicon photodiode detector with 256 channels, low noise electronic preamplifier and sampling filter stages, a simplified data aquisition system furnished by Toshiba/ Analogic and an LSI 11/23 microcomputer plus data storage disk as well as various smaller interfaces linking the electrical components. The quality of CT scan pictures of phantoms,performed by the end of last year confirmed that this simple approach is working well. As a next step we intend to upgrade this system with an array processor in order to shorten recon-struction time to one minute per slice. We estimate that the system including this processor could be manufactured for a selling price of $210,000.

  7. Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests.

    Science.gov (United States)

    Demir, Mustafa; Toklu, Türkay; Abuqbeitah, Mohammad; Çetin, Hüseyin; Sezgin, H Sezer; Yeyin, Nami; Sönmezoğlu, Kerim

    2018-02-01

    The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated aspects were spatial resolution, sensitivity, scatter fraction, count rate performance, image quality, count loss and random events correction accuracy. The findings of this study demonstrated superior sensitivity (~ 4 folds) of PET scanner in PET/MR compared to PET/CT system. Image quality test exhibited higher contrast in PET/MR (~ 9%) compared with PET/CT. The scatter fraction of PET/MR was 43.4% at noise equivalent count rate (NECR) peak of 218 kcps and the corresponding activity concentration was 17.7 kBq/cc. Whereas the scatter fraction of PET/CT was found as 39.2% at NECR peak of 72 kcps and activity concentration of 24.3 kBq/cc. The percentage error of the random event correction accuracy was 3.4% and 3.1% in PET/MR and PET/CT, respectively. It was concluded that PET/MR system is about 4 times more sensitive than PET/CT, and the contrast of hot lesions in PET/MR was ~ 9% higher than PET/CT. These outcomes also emphasize the possibility to achieve excellent clinical PET images with low administered dose and/or a short acquisition time in PET/MR.

  8. Design and Development of a Megavoltage CT Scanner for Radiation Therapy.

    Science.gov (United States)

    Chen, Ching-Tai

    A Varian 4 MeV isocentric therapy accelerator has been modified to perform also as a CT scanner. The goal is to provide low cost computed tomography capability for use in radiotherapy. The system will have three principal uses. These are (i) to provide 2- and 3-dimensional maps of electron density distribution for CT assisted therapy planning, (ii) to aid in patient set up by providing sectional views of the treatment volume and high contrast scout-mode verification images and (iii) to provide a means for periodically checking the patients anatomical conformation against what was used to generate the original therapy plan. The treatment machine was modified by mounting an array of detectors on a frame bolted to the counter weight end of the gantry in such a manner as to define a 'third generation' CT Scanner geometry. The data gathering is controlled by a Z-80 based microcomputer system which transfers the x-ray transmission data to a general purpose PDP 11/34 for processing. There a series of calibration processes and a logarithmic conversion are performed to get projection data. After reordering the projection data to an equivalent parallel beam sinogram format a convolution algorithm is employed to construct the image from the equivalent parallel projection data. Results of phantom studies have shown a spatial resolution of 2.6 mm and an electron density discrimination of less than 1% which are sufficiently good for accurate therapy planning. Results also show that the system is linear to within the precision of our measurement ((DBLTURN).75%) over a wide range of electron densities corresponding to those found in body tissues. Animal and human images are also presented to demonstrate that the system's imaging capability is sufficient to allow the necessary visualization of anatomy.

  9. Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners.

    Science.gov (United States)

    Yin, Ting; Coudyzer, Walter; Peeters, Ronald; Liu, Yewei; Cona, Marlein Miranda; Feng, Yuanbo; Xia, Qian; Yu, Jie; Jiang, Yansheng; Dymarkowski, Steven; Huang, Gang; Chen, Feng; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    The purpose of this work was to visualize the pancreas in post-mortem rats with local contrast medium infusion by three-dimensional (3D) magnetic resonance imaging (MRI) and computed tomography (CT) using clinical imagers. A total of 16 Sprague Dawley rats of about 300 g were used for the pancreas visualization. Following the baseline imaging, a mixed contrast medium dye called GadoIodo-EB containing optimized concentrations of Gd-DOTA, iomeprol and Evens blue was infused into the distally obstructed common bile duct (CBD) for post-contrast imaging with 3.0 T MRI and 128-slice CT scanners. Images were post-processed with the MeVisLab software package. MRI findings were co-registered with CT scans and validated with histomorphology, with relative contrast ratios quantified. Without contrast enhancement, the pancreas was indiscernible. After infusion of GadoIodo-EB solution, only the pancreatic region became outstandingly visible, as shown by 3D rendering MRI and CT and proven by colored dissection and histological examinations. The measured volume of the pancreas averaged 1.12 ± 0.04 cm(3) after standardization. Relative contrast ratios were 93.28 ± 34.61% and 26.45 ± 5.29% for MRI and CT respectively. We have developed a multifunctional contrast medium dye to help clearly visualize and delineate rat pancreas in situ using clinical MRI and CT scanners. The topographic landmarks thus created with 3D demonstration may help to provide guidelines for the next in vivo pancreatic MRI research in rodents. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Thermal Infrared Multispectral Scanner (TIMS): An investigator's guide to TIMS data

    Science.gov (United States)

    Palluconi, F. D.; Meeks, G. R.

    1985-01-01

    The Thermal Infrared Multispectral Scanner (TIMS) is a NASA aircraft scanner providing six channel spectral capability in the thermal infrared region of the electromagnetic spectrum. Operating in the atmospheric window region (8 to 12 micrometers) with a channel sensitivity of approximately 0.1 C, TIMS may be used whenever an accurate measure of the Earth's surface is needed. A description of this scanner is provided as well as a discussion of data acquisition and reduction.

  11. Monte Carlo simulation of efficient data acquisition for an entire-body PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Isnaini, Ismet; Obi, Takashi [Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Yoshida, Eiji, E-mail: rush@nirs.go.jp [National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Yamaya, Taiga [National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan)

    2014-07-01

    Conventional PET scanners can image the whole body using many bed positions. On the other hand, an entire-body PET scanner with an extended axial FOV, which can trace whole-body uptake images at the same time and improve sensitivity dynamically, has been desired. The entire-body PET scanner would have to process a large amount of data effectively. As a result, the entire-body PET scanner has high dead time at a multiplex detector grouping process. Also, the entire-body PET scanner has many oblique line-of-responses. In this work, we study an efficient data acquisition for the entire-body PET scanner using the Monte Carlo simulation. The simulated entire-body PET scanner based on depth-of-interaction detectors has a 2016-mm axial field-of-view (FOV) and an 80-cm ring diameter. Since the entire-body PET scanner has higher single data loss than a conventional PET scanner at grouping circuits, the NECR of the entire-body PET scanner decreases. But, single data loss is mitigated by separating the axially arranged detector into multiple parts. Our choice of 3 groups of axially-arranged detectors has shown to increase the peak NECR by 41%. An appropriate choice of maximum ring difference (MRD) will also maintain the same high performance of sensitivity and high peak NECR while at the same time reduces the data size. The extremely-oblique line of response for large axial FOV does not contribute much to the performance of the scanner. The total sensitivity with full MRD increased only 15% than that with about half MRD. The peak NECR was saturated at about half MRD. The entire-body PET scanner promises to provide a large axial FOV and to have sufficient performance values without using the full data.

  12. Clinical marginal fit of zirconia crowns and patients' preferences for impression techniques using intraoral digital scanner versus polyvinyl siloxane material.

    Science.gov (United States)

    Sakornwimon, Nawapat; Leevailoj, Chalermpol

    2017-09-01

    The use of digital intraoral scanners is increasing; however, evidence of its precision in making crown impressions clinically remains scarce. Patients should also feel more comfortable with digital impressions, but only a few studies evaluating this subject have been performed. The purpose of this clinical study was to evaluate the marginal fit of monolithic zirconia crowns and patients' preferences for digital impressions versus polyvinyl siloxane (PVS) impressions. Sixteen participants with indications for single molar crowns were included. After crown preparation, digital impressions by intraoral scanner and PVS impressions were made. The participants were asked to complete a 6-item questionnaire with a visual analog scale related to perceptions of each of the following topics: time involved, taste/smell, occlusal registration, size of impression tray/scanner, gag reflex, and overall preference. Computer-aided design and computer-aided manufacturing monolithic zirconia crowns were fabricated from both impressions. The crowns were evaluated intraorally, and a blinded examiner measured the marginal discrepancy of silicone replicas under a stereomicroscope. Intraexaminer reliability was evaluated by calculating the intraclass correlation coefficient. Data for patients' preferences and marginal discrepancies were analyzed using the paired t test (α=.05). Visual analog scale scores for digital impressions were statistically significantly higher than those for PVS impressions in every topic (P.05). No differences were found in the clinical marginal fit of zirconia crowns fabricated from either digital impressions compared with PVS impressions. Furthermore, patients' satisfaction with digital impressions was significantly higher than with conventional impressions. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Irradiation in helical scanner: doses estimation, parameters choice; Irradiation en scanner helicoidal: estimation des doses, choix des parametres

    Energy Technology Data Exchange (ETDEWEB)

    Cordoliani, Y.S.; Boyer, B.; Jouan, E.; Beauvais, H

    2001-07-01

    The new generation of helical scanners improves the diagnosis abilities and the service done to the patients. The rational use allows to give the patients a ratio benefit/risk far better than the almost medical examinations. It is particularly true for over sixty years old aged people, that have a null genetic risk and a practically null carcinogen risk; However, for young adults and children, it is necessary to banish any useless irradiation and limit exposure to the strict necessary for the diagnosis. It is necessary to develop a radiation protection culture, possible by the radiation doses index display and doses benchmarks knowledge. (N.C.)

  14. Label-free tissue scanner for colorectal cancer screening

    Science.gov (United States)

    Kandel, Mikhail E.; Sridharan, Shamira; Liang, Jon; Luo, Zelun; Han, Kevin; Macias, Virgilia; Shah, Anish; Patel, Roshan; Tangella, Krishnarao; Kajdacsy-Balla, Andre; Guzman, Grace; Popescu, Gabriel

    2017-06-01

    The current practice of surgical pathology relies on external contrast agents to reveal tissue architecture, which is then qualitatively examined by a trained pathologist. The diagnosis is based on the comparison with standardized empirical, qualitative assessments of limited objectivity. We propose an approach to pathology based on interferometric imaging of "unstained" biopsies, which provides unique capabilities for quantitative diagnosis and automation. We developed a label-free tissue scanner based on "quantitative phase imaging," which maps out optical path length at each point in the field of view and, thus, yields images that are sensitive to the "nanoscale" tissue architecture. Unlike analysis of stained tissue, which is qualitative in nature and affected by color balance, staining strength and imaging conditions, optical path length measurements are intrinsically quantitative, i.e., images can be compared across different instruments and clinical sites. These critical features allow us to automate the diagnosis process. We paired our interferometric optical system with highly parallelized, dedicated software algorithms for data acquisition, allowing us to image at a throughput comparable to that of commercial tissue scanners while maintaining the nanoscale sensitivity to morphology. Based on the measured phase information, we implemented software tools for autofocusing during imaging, as well as image archiving and data access. To illustrate the potential of our technology for large volume pathology screening, we established an "intrinsic marker" for colorectal disease that detects tissue with dysplasia or colorectal cancer and flags specific areas for further examination, potentially improving the efficiency of existing pathology workflows.

  15. Design of a small animal MR compatible PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Slates, R.; Cherry, S.; Boutefnouchet, A.; Shao, Y.; Dahlbom, M.; Farahani, K. [Univ. of California, Los Angeles, CA (United States). School of Medicine

    1999-06-01

    Using a combination of Monte-Carlo simulations and experimental measurements, the authors have designed a small animal MR compatible PET (McPET) scanner for simultaneous PET and MR imaging of mice and rats in vivo. The scanner consists of one ring of 480 LSO crystals arranged in 3 layers with 160 crystals per layer. The crystal dimensions are 2 x 3 x 7.5 mm{sup 3}. This was based on a target resolution of 2.5 mm and simulations showing that a depth of 7.5 mm avoided significant depth of interaction effects across the desired field of view. The system diameter of 11.2 cm is large enough to accommodate the animal positioned inside a stereotactic frame. Each crystal will be coupled through 2 mm diameter optical fibers to multi-channel PMT`s which reside outside the main magnetic field. Through 50 cm of optical fiber, a photopeak is clearly seen and the measured energy resolution is 25%. Prototype optical fiber connectors have been tested to increase the flexibility of the system and result in a light loss of only 6%. The proposed system will have adequate resolution and sensitivity for a number of applications in small animals and will be the first practical device for simultaneous in vivo imaging with PET and MR.

  16. Electro-optic and acousto-optic laser beam scanners

    Science.gov (United States)

    Heberle, Johannes; Bechtold, Peter; Strauß, Johannes; Schmidt, Michael

    2016-03-01

    Electro-optical deflectors (EOD) and acousto-optical deflectors (AOD) are based on deflection of laser light within a solid state medium. As they do not contain any moving parts, they yield advantages compared to mechanical scanners which are conventionally used for laser beam deflection. Even for arbitrary scan paths high feed rates can be achieved. In this work the principles of operation and characteristic properties of EOD and AOD are presented. Additionally, a comparison to mirror based mechanical deflectors regarding deflection angles, speed and accuracy is made in terms of resolvable spots and the rate of resolvable spots. Especially, the latter one is up to one order of magnitude higher for EOD and AOD systems compared to conventional systems. Further characteristic properties such as response time, damage threshold, efficiency and beam distortions are discussed. Solid state laser beam deflectors are usually characterized by small deflection angles but high angular deflection velocities. As mechanical deflectors exhibit opposite properties an arrangement of a mechanical scanner combined with a solid state deflector provides a solution with the benefits of both systems. As ultrashort pulsed lasers with average power above 100 W and repetition rates in the MHz range have been available for several years this approach can be applied to fully exploit their capabilities. Thereby, pulse overlap can be reduced and by this means heat affected zones are prevented to provide proper processing results.

  17. Commissioning of a passive rod scanner at INB

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira, Fabio da Silva; Oliveira, Carlos A.; Palheiros, Franklin, E-mail: carlossilva@inb.gov.br, E-mail: franklin@inb.gov.br [Industrias Nucleares do Brasil (INB), Resende, RJ (Brazil). Superintendencia de Engenharia do Combustivel; Fernandez, Pablo Jesus Piñer, E-mail: pineiro@tecnatom.es [Tecnatom, San Sebastian de los Reyes, Madrid (Spain)

    2015-07-01

    For the 21st reload for Angra 1, a shift from Standard to Advanced fuel design will be introduced, where the fuel assemblies under the new design will contain fuel rods with axial blanket, in line with ELETRONUCLEAR's requirement for a higher energy efficient reactor fuel. Additionally, fuel rods for Angra 2 and 3, using gadolinium type burnable poison, have to be submitted to inspections due to the demand for the same type of inspection, which cannot be certified at INB currently. In keeping with CNEN regulations, every fuel-assembly component must be inspected and certified by a qualified method. Nevertheless, INB lacks the means to perform the certification-required inspection aimed at determining the uranium enrichment and presence of gadolinium pellets inside the closed rods. Hence, the use is necessary of a scanner capable of inspecting differently enriched fuel rods and/or gadolinium pellets (axial blanket). This work aims to present the recent Passive Rod Scanner installed at INB with most advance technology in the area, making possible to completely fulfill Angra 1, 2 and 3 rods inspection at INB Resende site. (author)

  18. High-precision GAFCHROMIC EBT film-based absolute clinical dosimetry using a standard flatbed scanner without the use of a scanner non-uniformity correction.

    Science.gov (United States)

    Chung, Heeteak; Lynch, Bart; Samant, Sanjiv

    2010-04-17

    To report a study of the use of GAFCHROMIC EBT radiochromic film (RCF) digitized with a commercially available flatbed document scanner for accurate and reliable all-purpose two-dimensional (2D) absolute dosimetry within a clinical environment. We used a simplified methodology that yields high-precision dosimetry measurements without significant postirradiation correction. The Epson Expression 1680 Professional scanner and the Epson Expression 10000XL scanner were used to digitize the films. Both scanners were retrofitted with light-diffusing glass to minimize the effects of Newton rings. Known doses were delivered to calibration films. Flat and wedge fields were irradiated with variable depth of solid water and 5 cm back scatter solid water. No particular scanner nonuniformity effect corrections or significant post-scan image processing were carried out. The profiles were compared with CC04 ionization chamber profiles. The depth dose distribution was measured at a source-to-surface distance (SSD) of 100 cm with a field size of 10 x 10 cm2. Additionally, 22 IMRT fields were measured and evaluated using gamma index analysis. The overall accuracy of RCF with respect to CC04 was found to be 2%-4%. The overall accuracy of RCF was determined using the absolute mean of difference for all flat and wedge field profiles. For clinical IMRT fields, both scanners showed an overall gamma index passing rate greater than 90%. This work demonstrated that EBT films, in conjunction with a commercially available flatbed scanner, can be used as an accurate and precise absolute dosimeter. Both scanners showed that no significant scanner nonuniformity correction is necessary for accurate absolute dosimetry using the EBT films for field sizes smaller than or equal to 15 x 15 cm2.

  19. Repeatability and reproducibility of individual abutment impression, assessed with a blue light scanner

    National Research Council Canada - National Science Library

    Jeon, Jin-Hun; Kim, Dong-Yeon; Lee, Jae-Jun; Kim, Ji-Hwan; Kim, Woong-Chul

    2016-01-01

    We assessed the repeatability and reproducibility of abutment teeth dental impressions, digitized with a blue light scanner, by comparing the discrepancies in repeatability and reproducibility values...

  20. Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

    National Research Council Canada - National Science Library

    Mansour Alsaleh; Noura Alomar; Monirah Alshreef; Abdulrahman Alarifi; AbdulMalik Al-Salman

    2017-01-01

    ... their detection effectiveness. Despite the advantages of dynamic testing approaches, the literature lacks studies that systematically evaluate the performance of open source web vulnerability scanners...

  1. The accuracy of the CAD system using intraoral and extraoral scanners for designing of fixed dental prostheses.

    Science.gov (United States)

    Shimizu, Sakura; Shinya, Akikazu; Kuroda, Soichi; Gomi, Harunori

    2017-07-26

    The accuracy of prostheses affects clinical success and is, in turn, affected by the accuracy of the scanner and CAD programs. Thus, their accuracy is important. The first aim of this study was to evaluate the accuracy of an intraoral scanner with active triangulation (Cerec Omnicam), an intraoral scanner with a confocal laser (3Shape Trios), and an extraoral scanner with active triangulation (D810). The second aim of this study was to compare the accuracy of the digital crowns designed with two different scanner/CAD combinations. The accuracy of the intraoral scanners and extraoral scanner was clinically acceptable. Marginal and internal fit of the digital crowns fabricated using the intraoral scanner and CAD programs were inferior to those fabricated using the extraoral scanner and CAD programs.

  2. LASER SCANNER SURVEY TO CULTURAL HERITAGE CONSERVATION AND RESTORATION

    Directory of Open Access Journals (Sweden)

    G. Vacca

    2012-07-01

    Full Text Available The field of Cultural Heritage has inspired, in the course of last few years, an interest more and more important on behalf of scientific community that deals to survey. The idea that knowledge of a site doesn't apply only to its history but must necessarily include its characteristics of position, shape and geometry, is gathering pace. In Geomatic science the field of cultural heritage benefits to an integrated approach of techniques and different technologies. Every cultural site in fact, is a case in itself, with its own characteristics, problems and specificness. Current techniques offer opportunity to achieve new ways of representation and visualization of cultural site, with the aim of a better metric description. This techniques are powerful tools for analysis of sites and supports to activity of reconstruction and repair. Biggest expectations in this field is laser three-dimensional scanning technique; a system which is able to operate in a methodical way in speed of acquisition and in possibility to access data in real time. Documentation and filing of state of a monument or site is essential in case of reconstruction or conservative project. Possibility to detect very complex geometries with great accuracy allows an in depth study of constructive techniques, making analysis of geometrical details easier which is, with traditional techniques, difficult to achieve. Biggest problems about use of laser scanner survey are graphic outputs for restorers and architects, in fact they often don't know real potential of this techniques, methodologies and functionalities and they expect traditional outputs such as floor plans, cross sections and front elevation of cultural asset. Present study is focused on finding a workflow to support activity of study, restoration and conservative project of cultural heritage, extracting automatically (or with a limited manual operation graphic outputs from laser scanner survey. Some procedure was tested on two

  3. Laser Scanner Survey to Cultural Heritage Conservation and Restoration

    Science.gov (United States)

    Vacca, G.; Deidda, M.; Dessi, A.; Marras, M.

    2012-07-01

    The field of Cultural Heritage has inspired, in the course of last few years, an interest more and more important on behalf of scientific community that deals to survey. The idea that knowledge of a site doesn't apply only to its history but must necessarily include its characteristics of position, shape and geometry, is gathering pace. In Geomatic science the field of cultural heritage benefits to an integrated approach of techniques and different technologies. Every cultural site in fact, is a case in itself, with its own characteristics, problems and specificness. Current techniques offer opportunity to achieve new ways of representation and visualization of cultural site, with the aim of a better metric description. This techniques are powerful tools for analysis of sites and supports to activity of reconstruction and repair. Biggest expectations in this field is laser three-dimensional scanning technique; a system which is able to operate in a methodical way in speed of acquisition and in possibility to access data in real time. Documentation and filing of state of a monument or site is essential in case of reconstruction or conservative project. Possibility to detect very complex geometries with great accuracy allows an in depth study of constructive techniques, making analysis of geometrical details easier which is, with traditional techniques, difficult to achieve. Biggest problems about use of laser scanner survey are graphic outputs for restorers and architects, in fact they often don't know real potential of this techniques, methodologies and functionalities and they expect traditional outputs such as floor plans, cross sections and front elevation of cultural asset. Present study is focused on finding a workflow to support activity of study, restoration and conservative project of cultural heritage, extracting automatically (or with a limited manual operation) graphic outputs from laser scanner survey. Some procedure was tested on two case study the

  4. Multi-spectral optical scanners for commercial earth observation missions

    Science.gov (United States)

    Schröter, Karin; Engel, Wolfgang; Berndt, Klaus

    2017-11-01

    In recent years, a number of commercial Earth observation missions have been initiated with the aim to gather data in the visible and near-infrared wavelength range. Some of these missions aim at medium resolution (5 to 10 m) multi-spectral imaging with the special background of daily revisiting. Typical applications aim at monitoring of farming area for growth control and harvest prediction, irrigation control, or disaster monitoring such as hail damage in farming, or flood survey. In order to arrive at profitable business plans for such missions, it is mandatory to establish the space segment, i.e. the spacecraft with their opto -electronic payloads, at minimum cost while guaranteeing maximum reliability for mission success. As multiple spacecraft are required for daily revisiting, the solutions are typically based on micro-satellites. This paper presents designs for multi-spectral opto-electric scanners for this type of missions. These designs are drive n by minimum mass and power budgets of microsatellites, and the need for minimum cost. As a consequence, it is mandatory to arrive at thermally robust, compact telescope designs. The paper gives a comparison between refractive, catadioptric, and TMA optics. For mirror designs, aluminium and Zerodur mirror technologies are briefly discussed. State-of-the art focal plane designs are presented. The paper also addresses the choice of detector technologies such as CCDs and CMOS Active Pixel Sensors. The electronics of the multi-spectral scanners represent the main design driver regarding power consumption, reliability, and (most often) cost. It can be subdivided into the detector drive electronics, analog and digital data processing chains, the data mass memory unit, formatting and down - linking units, payload control electronics, and local power supply. The paper gives overviews and trade-offs between data compression strategies and electronics solutions, mass memory unit designs, and data formatting approaches

  5. Quantitative evaluation of three-dimensional facial scanners measurement accuracy for facial deformity

    Science.gov (United States)

    Zhao, Yi-jiao; Xiong, Yu-xue; Sun, Yu-chun; Yang, Hui-fang; Lyu, Pei-jun; Wang, Yong

    2015-07-01

    Objective: To evaluate the measurement accuracy of three-dimensional (3D) facial scanners for facial deformity patients from oral clinic. Methods: 10 patients in different types of facial deformity from oral clinical were included. Three 3D digital face models for each patient were obtained by three facial scanners separately (line laser scanner from Faro for reference, stereophotography scanner from 3dMD and structured light scanner from FaceScan for test). For each patient, registration based on Iterative Closest Point (ICP) algorithm was executed to align two test models (3dMD data & Facescan data) to the reference models (Faro data in high accuracy) respectively. The same boundaries on each pair models (one test and one reference models) were obtained by projection function in Geomagic Stuido 2012 software for trimming overlapping region, then 3D average measurement errors (3D errors) were calculated for each pair models also by the software. Paired t-test analysis was adopted to compare the 3D errors of two test facial scanners (10 data for each group). 3D profile measurement accuracy (3D accuracy) that is integrated embodied by average value and standard deviation of 10 patients' 3D errors were obtained by surveying analysis for each test scanner finally. Results: 3D accuracies of 2 test facial scanners in this study for facial deformity were 0.44+/-0.08 mm and 0.43+/-0.05 mm. The result of structured light scanner was slightly better than stereophotography scanner. No statistical difference between them. Conclusions: Both test facial scanners could meet the accuracy requirement (0.5mm) of 3D facial data acquisition for oral clinic facial deformity patients in this study. Their practical measurement accuracies were all slightly lower than their nominal accuracies.

  6. Geometrical metrology on silicone rubber by computed tomography

    DEFF Research Database (Denmark)

    Müller, Pavel; Pacurar, Ramona Alexandra; De Chiffre, Leonardo

    2011-01-01

    Computed tomography (CT) represents a suitable measuring technique for investigation of deformable materials, since no forces are developed on the part during scanning. As for any other measuring instruments, the traceability of the CT scanners needs to be assured. An investigation on geometrical...... measurements on silicone rubber using CT was carried out. Measurements performed on a CT scanner were compared to measurements on a coordinate measuring machine (CMM), being used as reference....

  7. Attenuation correction for the NIH ATLAS small animal PET scanner

    CERN Document Server

    Yao, Rutao; Liow, JeihSan; Seidel, Jurgen

    2003-01-01

    We evaluated two methods of attenuation correction for the NIH ATLAS small animal PET scanner: 1) a CT-based method that derives 511 keV attenuation coefficients (mu) by extrapolation from spatially registered CT images; and 2) an analytic method based on the body outline of emission images and an empirical mu. A specially fabricated attenuation calibration phantom with cylindrical inserts that mimic different body tissues was used to derive the relationship to convert CT values to (I for PET. The methods were applied to three test data sets: 1) a uniform cylinder phantom, 2) the attenuation calibration phantom, and 3) a mouse injected with left bracket **1**8F right bracket FDG. The CT-based attenuation correction factors were larger in non-uniform regions of the imaging subject, e.g. mouse head, than the analytic method. The two methods had similar correction factors for regions with uniform density and detectable emission source distributions.

  8. New class of survey-grade laser scanner for UAVs

    Science.gov (United States)

    Pfennigbauer, Martin; Rieger, Peter; Ullrich, Andreas; Riegl, Ursula

    2014-05-01

    A novel class of surveying instruments, closing the gap between full-scale airborne laser scanning systems and image-based approaches, is presented: RIEGL developed the first fully survey-grade airborne laser scanner for UAV applications bringing down the performance of state of-the-art airborne laser scanning to a weight of about 4kg and suitable size for UAV integration. The system employs echo signal digitization, online waveform processing at a measurement rate of up to 600kHz with a maximum operational flying altitude of up to 350m. With its high-resolution multi target capability the instrument is excellently suited for agricultural and forestry applications. We provide insights on the employed technologies as well as integration and operation of the instrument. The capabilities of the instrument are analyzed with respect to measurement precision, resolution, and other application-related aspects like the provided point attributes.

  9. The new airborne Thermal Infrared Multispectral Scanner (TIMS)

    Science.gov (United States)

    Kahle, A. B.

    1983-01-01

    A new airborne Thermal Infrared Multispectral Scanner (TIMS) with six bands between 8 and 12 microns is briefly characterized, and some results of remote sensing experiments are reported. The instrument has an instantaneous field of view of 2.5 milliradians, a total field of view of 80 deg, and a NE Delta T of approximately 0.1-0.3 C depending on the band. In the TIMS image of Death Valley, silica-rich rocks were easily separable from the nonsilicates. The Eureka Quartzite stood out in sharp contrast to other Ordovician and Cambrian metasediments, and Tertiary volcanic rocks were easily separable from both. Also distinguishable were various units in the fan gravels.

  10. Application of Infrared Scanners to Forest Fire Detection

    Science.gov (United States)

    Hirsch, S. N.

    1971-01-01

    The potential of using infrared scanners for the detection of forest fires is discussed. An experiment is described in which infrared and visual detection systems were used jointly to study timber fire detection. Many fires were detected visually but missed by the airborne IR system, and many fires were detected by the IR system but missed visually. Until more is learned about the relationship between heat output and smoke output from latent fires, the relative effectiveness of visual and IR systems cannot be determined. The 1970 tests indicated that IR used in combination with visual detection will result in a more efficient system than visual alone. Even with limited knowledge of the relative effectiveness of the two systems, operational use of a combined system can be used to substantially reduce total firefighting costs.

  11. Solar radiance models for determination of ERBE scanner filter factor

    Science.gov (United States)

    Arduini, R. F.

    1985-01-01

    Shortwave spectral radiance models for use in the spectral correction algorithms for the ERBE Scanner Instrument are provided. The required data base was delivered to the ERBe Data Reduction Group in October 1984. It consisted of two sets of data files: (1) the spectral bidirectional angular models and (2) the spectral flux modes. The bidirectional models employ the angular characteristics of reflection by the Earth-atmosphere system and were derived from detailed radiance calculations using a finite difference model of the radiative transfer process. The spectral flux models were created through the use of a delta-Eddington model to economically simulate the effects of atmospheric variability. By combining these data sets, a wide range of radiances may be approximated for a number of scene types.

  12. An electronic scanner of pressure for wind tunnel models

    Science.gov (United States)

    Kauffman, Ronald C.; Coe, Charles F.

    1986-01-01

    An electronic scanner of pressure (ESOP) has been developed by NASA Ames Research Center for installation in wind tunnel models. An ESOP system consists of up to 20 pressure modules (PMs), each with 48 pressure transducers and a heater, an analog-to-digital (A/D) converter module, a microprocessor, a data controller, a monitor unit, a control and processing unit, and a heater controller. The PMs and the A/D converter module are sized to be installed in the models tested in the Ames Aerodynamics Division wind tunnels. A unique feature of the pressure module is the lack of moving parts such as a pneumatic switch used in other systems for in situ calibrations. This paper describes the ESOP system and the results of the initial testing of the system. The initial results indicate the system meets the original design goal of 0.15 percent accuracy.

  13. Assessment of early attrition using an ordinary flatbed scanner.

    Science.gov (United States)

    Van't Spijker, Arie; Kreulen, Cees M; Bronkhorst, Ewald M; Creugers, Nico H J

    2012-07-01

    The aim of this study was to assess a two-dimensional method to monitor occlusal tooth wear quantitatively using a commercially available ordinary flatbed scanner. A flatbed scanner, measuring software and gypsum casts were used. In Part I, two observers (A and B) independently traced scans of marked wear facets of ten sets of casts in two sessions (test and retest). In Part II, three other sets of casts were duplicated and two observers (C and D) marked wear facets and traced the scanned images independently. Intra- and inter-observer agreement was determined comparing measured values (mm(2)) in paired T-tests. Duplicate measurement errors (DME) were calculated. In Part I the test and retest values (10 casts, 218 teeth) of observer A and B did not differ significantly (A: p = 0.289; B: p = 0.666); correlation coefficients were 0.998 (A) and 0.999 (B). "Tracing wear facets" showed a DME of 0.30 mm(2) for observer A and 0.15 mm(2) for observer B. In Part II, assessment of 70 teeth resulted in correlation coefficients of 0.994 for observer C and 0.997 for observer D; no differences between test and retest values were found for C (p = 0.061), although D differed significantly (p = 0.000). The DME for "marking and tracing wear facets" was 0.39 mm(2) (C) and 0.27 mm(2) (D). DME for inter-observer agreement were 0.45 mm(2) (test) and 0.42 mm(2) (re-test). We conclude that marking and tracing of occlusal wear facets to assess occlusal tooth wear quantitatively can be done accurately and reproducibly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Label-free tissue scanner for colorectal cancer screening.

    Science.gov (United States)

    Kandel, Mikhail E; Sridharan, Shamira; Liang, Jon; Luo, Zelun; Han, Kevin; Macias, Virgilia; Shah, Anish; Patel, Roshan; Tangella, Krishnarao; Kajdacsy-Balla, Andre; Guzman, Grace; Popescu, Gabriel

    2017-06-01

    The current practice of surgical pathology relies on external contrast agents to reveal tissue architecture, which is then qualitatively examined by a trained pathologist. The diagnosis is based on the comparison with standardized empirical, qualitative assessments of limited objectivity. We propose an approach to pathology based on interferometric imaging of “unstained” biopsies, which provides unique capabilities for quantitative diagnosis and automation. We developed a label-free tissue scanner based on “quantitative phase imaging,” which maps out optical path length at each point in the field of view and, thus, yields images that are sensitive to the “nanoscale” tissue architecture. Unlike analysis of stained tissue, which is qualitative in nature and affected by color balance, staining strength and imaging conditions, optical path length measurements are intrinsically quantitative, i.e., images can be compared across different instruments and clinical sites. These critical features allow us to automate the diagnosis process. We paired our interferometric optical system with highly parallelized, dedicated software algorithms for data acquisition, allowing us to image at a throughput comparable to that of commercial tissue scanners while maintaining the nanoscale sensitivity to morphology. Based on the measured phase information, we implemented software tools for autofocusing during imaging, as well as image archiving and data access. To illustrate the potential of our technology for large volume pathology screening, we established an “intrinsic marker” for colorectal disease that detects tissue with dysplasia or colorectal cancer and flags specific areas for further examination, potentially improving the efficiency of existing pathology workflows.

  15. STARBASE: Database software for the automated plate scanner

    Science.gov (United States)

    Odewahn, S. C.; Humphreys, R. M.; Thurmes, P.

    1992-01-01

    The Automated Plate Scanner (APS) of the University of Minnesota, a unique high speed 'flying spot' laser scanner, is currently being used to scan and digitize the 936 O and E plate pairs of the first epoch Palomar Sky Survey. The resultant database will be used to produce a catalog of approximately a billion stars and several million galaxies. The authors describe the ongoing development of a dedicated APS database management system which will be made available to the astronomical community via INTERNET. A specialized DBMS called STARBASE has been written to provide fast access to the hundreds of millions of images collected by the APS. This system provides an initial reduction mode for parameterizing APS images and classifying image types using a novel set of neural network image classifiers. A second analysis mode, which will be that commonly used by the general user, provides for searches of the database which may be constrained by any combination of physical and positional parameters. Through the use of pointer hash trees, the system has been optimized for extremely fast positional searches using either right ascension and declination on the sky or linear X and Y positions on the POSS field. In addition to fast data retrieval, the system provides a graphical interface for displaying scatter plots or histograms of the collected data. In addition, a specialized image display system is being developed to allow the user to view densitometric data for all objects classified as extended by the neural network system. Finally, STARBASE has a flexible programmable interface which allows other programs to access information in the database. This allows users to write applications suited to their particular needs to process APS data.

  16. Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. N.; Revet, G.; Fuchs, J. [LULI-CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay, UPMC Univ Paris 06, Sorbonne Universities, F-91128 Palaiseau Cedex (France); Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Gauthier, M.; Glenzer, S.; Propp, A. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Bazalova-Carter, M. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2 (Canada); Bolanos, S. [LULI-CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay, UPMC Univ Paris 06, Sorbonne Universities, F-91128 Palaiseau Cedex (France); Riquier, R. [LULI-CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay, UPMC Univ Paris 06, Sorbonne Universities, F-91128 Palaiseau Cedex (France); CEA, DAM, DIF, F-91297 Arpajon (France); Antici, P. [INRS-EMT, Varennes, J3X1S2 Québec (Canada); Morabito, A. [ELI-ALPS, ELI-HU non profit kft, Dugonics ter 13, H-6720, Szeged (Hungary); Starodubtsev, M. [Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation)

    2016-07-15

    Radiochromic films (RCF) are commonly used in dosimetry for a wide range of radiation sources (electrons, protons, and photons) for medical, industrial, and scientific applications. They are multi-layered, which includes plastic substrate layers and sensitive layers that incorporate a radiation-sensitive dye. Quantitative dose can be retrieved by digitizing the film, provided that a prior calibration exists. Here, to calibrate the newly developed EBT3 and HDv2 RCFs from Gafchromic™, we used the Stanford Medical LINAC to deposit in the films various doses of 10 MeV photons, and by scanning the films using three independent EPSON Precision 2450 scanners, three independent EPSON V750 scanners, and two independent EPSON 11000XL scanners. The films were scanned in separate RGB channels, as well as in black and white, and film orientation was varied. We found that the green channel of the RGB scan and the grayscale channel are in fact quite consistent over the different models of the scanner, although this comes at the cost of a reduction in sensitivity (by a factor ∼2.5 compared to the red channel). To allow any user to extend the absolute calibration reported here to any other scanner, we furthermore provide a calibration curve of the EPSON 2450 scanner based on absolutely calibrated, commercially available, optical density filters.

  17. FormScanner: Open-Source Solution for Grading Multiple-Choice Exams

    Science.gov (United States)

    Young, Chadwick; Lo, Glenn; Young, Kaisa; Borsetta, Alberto

    2016-01-01

    The multiple-choice exam remains a staple for many introductory physics courses. In the past, people have graded these by hand or even flaming needles. Today, one usually grades the exams with a form scanner that utilizes optical mark recognition (OMR). Several companies provide these scanners and particular forms, such as the eponymous…

  18. Validity and Repeatability of the Sizestream 3D Scanner and Poikos Modeling System

    NARCIS (Netherlands)

    Vonk, T.E.; Daanen, H.A.M.

    2015-01-01

    Three-dimensional (3D) body scanning becomes increasingly important in the medical, ergonomical and apparel industry. The SizeStream 3D body scanner is a 3D body scanner in the shape of a fitting room that can generate a 3D copy of the human body in a few seconds. The Poikos modeling system

  19. Application of intra-oral dental scanners in the digital workflow of implantology

    NARCIS (Netherlands)

    van der Meer, W.J.; Andriessen, F.S.; Wismeijer, D.; Ren, Y.

    2012-01-01

    Intra-oral scanners will play a central role in digital dentistry in the near future. In this study the accuracy of three intra-oral scanners was compared. Materials and methods: A master model made of stone was fitted with three high precision manufactured PEEK cylinders and scanned with three

  20. Application of intra-oral dental scanners in the digital workflow of implantology

    NARCIS (Netherlands)

    van der Meer, Wicher J; Andriessen, Frank S; Wismeijer, Daniel; Ren, Yijin

    2012-01-01

    UNLABELLED: Intra-oral scanners will play a central role in digital dentistry in the near future. In this study the accuracy of three intra-oral scanners was compared. MATERIALS AND METHODS: A master model made of stone was fitted with three high precision manufactured PEEK cylinders and scanned

  1. 21 CFR 862.2400 - Densitometer/scanner (integrating, reflectance, TLC, or radiochromatogram) for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Densitometer/scanner (integrating, reflectance, TLC, or radiochromatogram) for clinical use. 862.2400 Section 862.2400 Food and Drugs FOOD AND DRUG..., reflectance, TLC, or radiochromatogram) for clinical use. (a) Identification. A densitometer/scanner...

  2. Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

    Directory of Open Access Journals (Sweden)

    Mansour Alsaleh

    2017-01-01

    Full Text Available The widespread adoption of web vulnerability scanners and the differences in the functionality provided by these tool-based vulnerability detection approaches increase the demand for testing their detection effectiveness. Despite the advantages of dynamic testing approaches, the literature lacks studies that systematically evaluate the performance of open source web vulnerability scanners. The main objectives of this study are to assess the performance of open source scanners from multiple perspectives and to examine their detection capability. This paper presents the results of a comparative evaluation of the security features as well as the performance of four web vulnerability detection tools. We followed this comparative assessment with a case study in which we evaluate the level of agreement between the results reported by two open source web vulnerability scanners. Given that the results of our comparative evaluation did not show significant performance differences among the scanners while the results of the conducted case study revealed high level of disagreement between the reports generated by different scanners, we conclude that the inconsistencies between the reports generated by different scanners might not necessarily correlate with their performance properties. We also present some recommendations for helping developers of web vulnerabilities scanners to improve their tools’ capabilities.

  3. Accuracy and reproducibility of the DAVID SLS-2 scanner in three-dimensional facial imaging

    DEFF Research Database (Denmark)

    Jared Olsen, Jesper; Darvann, Tron Andre; Pinholt, Else Marie

    2017-01-01

    PURPOSE: A prospective study was performed to test the accuracy and reproducibility of the DAVID-SLS-2 scanner (SLS-2) [DAVID Vision Systems GmbH], compared to the validated 3dMDtrio scanner (3dMD) [3dMD, LLC, Atlanta, GA, USA]. MATERIALS AND METHODS: The accuracy of the SLS-2 was determined...

  4. Using a Flatbed Scanner to Measure Detergency: A Cost-Effective Undergraduate Laboratory

    Science.gov (United States)

    Poce-Fatou, J. A.; Bethencourt, M.; Moreno-Dorado, F. J.; Palacios-Santander, J. M.

    2011-01-01

    The efficiency of a laundry-washing process is typically assessed using reflection measurements. A spectrometer and an integrating sphere are used to obtain the reflection data. The similarities between this equipment and a commercially available flatbed scanner are examined, and the way a flatbed scanner can be used to obtain detergent…

  5. Development of a Low-Cost Medical Ultrasound Scanner Using a Monostatic Synthetic Aperture

    NARCIS (Netherlands)

    Heuvel, T.L.A. van den; Graham, D.J.; Smith, K.J.; Korte, C.L. de; Neasham, J.A.

    2017-01-01

    OBJECTIVE: In this paper, we present the design of low-cost medical ultrasound scanners aimed at the detection of maternal mortality risk factors in developing countries. METHOD: Modern ultrasound scanners typically employ a high element count transducer array with multichannel transmit and receive

  6. Calibration between a Laser Range Scanner and an Industrial Robot Manipulator

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm; Andersen, Nils Axel; Ravn, Ole

    2014-01-01

    In this paper we present a method for findingthe transformation between a laser scanner and a robotmanipulator. We present the design of a flat calibration targetthat can easily fit between a laser scanner and a conveyor belt,making the method easily implementable in a manufacturingline.We prove...

  7. Terrestrial Laser Scanner for assessing rockfall susceptibility in the Cilento rocky coast (Southern Italy)

    Science.gov (United States)

    Sorrentino, Valerio; Matasci, Battista; Abellan, Antonio; Jaboyedoff, Michel; Marino, Ermanno; Pignalosa, Antonio; Santo, Antonio

    2016-04-01

    Rockfalls and other types of landslides are the dominant processes causing a retreat of sea cliffs. The coastal areas constitute an important tourist attraction and a large number of people rest beneath the cliffs on a daily basis, considerably increasing the risk associated to rockfalls. We present an approach to assess rockfall susceptibility at the cliff scale based on terrestrial laser scanner (TLS) point clouds. The test area is a coastal cliff situated in the southern part of the Cilento (Centola Municipality, Campania Region), in which a natural arch was formed. This cliff is constituted by heavy fractured carbonate rock mass with a strong structural control. In June 2015 TLS data were acquired with long-range scanner RIEGL VZ1000®. The structural analysis of the cliff was performed in the field and using Coltop 3D software on the point cloud. As a result, 10 discontinuity sets (joint, faults and bedding planes) were individuated and the different characteristics such as orientation, spacing and persistence were measured. The kinematically unstable areas were highlighted using a script that computes an index of susceptibility to rockfalls based on the spatial distribution of failure mechanisms. The susceptibility index computation is based on the average surface that every joint set (or combinations of two joint sets in the case of wedge failure) forms on the topography according to its spacing, trace length, and incidence angle. This susceptibility index also depends on the steepness of the joint set (or of the intersection line in the case of wedge failure). As a result the most important discontinuity sets in terms of potential planar failure, wedge failure and toppling were individuated and an assessment of rockfall susceptibility at the cliff scale was achieved. Results show that the kinematically feasible failures are not equally distributed along the cliff but concentrated on certain areas. The most susceptible areas for planar failure are related to

  8. Out of lab calibration of a rotating 2D scanner for 3D mapping

    Science.gov (United States)

    Koch, Rainer; Böttcher, Lena; Jahrsdörfer, Maximilian; Maier, Johannes; Trommer, Malte; May, Stefan; Nüchter, Andreas

    2017-06-01

    Mapping is an essential task in mobile robotics. To fulfil advanced navigation and manipulation tasks a 3D representation of the environment is required. Applying stereo cameras or Time-of-flight cameras (TOF cameras) are one way to archive this requirement. Unfortunately, they suffer from drawbacks which makes it difficult to map properly. Therefore, costly 3D laser scanners are applied. An inexpensive way to build a 3D representation is to use a 2D laser scanner and rotate the scan plane around an additional axis. A 3D point cloud acquired with such a custom device consists of multiple 2D line scans. Therefore the scanner pose of each line scan need to be determined as well as parameters resulting from a calibration to generate a 3D point cloud. Using external sensor systems are a common method to determine these calibration parameters. This is costly and difficult when the robot needs to be calibrated outside the lab. Thus, this work presents a calibration method applied on a rotating 2D laser scanner. It uses a hardware setup to identify the required parameters for calibration. This hardware setup is light, small, and easy to transport. Hence, an out of lab calibration is possible. Additional a theoretical model was created to test the algorithm and analyse impact of the scanner accuracy. The hardware components of the 3D scanner system are an HOKUYO UTM-30LX-EW 2D laser scanner, a Dynamixel servo-motor, and a control unit. The calibration system consists of an hemisphere. In the inner of the hemisphere a circular plate is mounted. The algorithm needs to be provided with a dataset of a single rotation from the laser scanner. To achieve a proper calibration result the scanner needs to be located in the middle of the hemisphere. By means of geometric formulas the algorithms determine the individual deviations of the placed laser scanner. In order to minimize errors, the algorithm solves the formulas in an iterative process. First, the calibration algorithm was

  9. Studies on the dynamics of vacuum encapsulated 2D MEMS scanners by laser Doppler vibrometry

    Science.gov (United States)

    Janes, Joachim; Hofmann, Ulrich

    2014-03-01

    2D MEMS scanners are used for e.g. Laser projection purposes or Lidar applications. Electrostatically driven resonant torsional oscillations of both axes of the scanners lead to Lissajous trajectories for Laser beams reflected from the micro mirror. Wafer level vacuum encapsulation with tilt glass capping ensures high angular amplitudes at low driving voltages additionally preventing environmental impacts. Applying Laser Doppler Vibrometry, the effect of residual gas friction, squeezed film damping and internal friction on 2D MEMS scanners is analyzed by measuring the Q-values associated with the torsional oscillations. Vibrometry is also used to analyze the oscillatory motion of the micro mirror and the gimbal of the scanners. Excited modes of the scanner structures are identified giving rise to coupling effects influencing the scanning performance of the 2D MEMS mirrors.

  10. The response of the Seasat and Magsat infrared horizon scanners to cold clouds

    Science.gov (United States)

    Bilanow, S.; Phenneger, M.

    1980-01-01

    Cold clouds over the Earth are shown to be the principal cause of pitch and roll measurement noise in flight data from the infrared horizon scanners onboard Seasat and Magsat. The observed effects of clouds on the fixed threshold horizon detection logic of the Magsat scanner and on the variable threshold detection logic of the Seasat scanner are discussed. National Oceanic and Atmospheric Administration (NOAA) Earth photographs marked with the scanner ground trace clearly confirm the relationship between measurement errors and Earth clouds. A one to one correspondence can be seen between excursion in the pitch and roll data and cloud crossings. The characteristics of the cloud-induced noise are discussed, and the response of the satellite control systems to the cloud errors is described. Changes to the horizon scanner designs that would reduce the effects of clouds are noted.

  11. High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermorefractive glass.

    Science.gov (United States)

    Yaqoob, Zahid; Arain, Muzammil A; Riza, Nabeel A

    2003-09-10

    A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.

  12. Sensitivity of commercial scanners to microchips of various frequencies implanted in dogs and cats.

    Science.gov (United States)

    Lord, Linda K; Pennell, Michael L; Ingwersen, Walter; Fisher, Robert A

    2008-12-01

    To evaluate the sensitivity of 4 commercially available microchip scanners used to detect or read encrypted and unencrypted 125-, 128-, and 134.2-kHz microchips under field conditions following implantation in dogs and cats at 6 animal shelters. Cross-sectional study. Animals-3,949 dogs and cats at 6 animal shelters. Each shelter was asked to enroll 657 to 660 animals and to implant microchips in 438 to 440 animals (each shelter used a different microchip brand). Animals were then scanned with 3 or 4 commercial scanners to determine whether microchips could be detected. Scanner sensitivity was calculated as the percentage of animals with a microchip in which the microchip was detected. None of the scanners examined had 100% sensitivity for any of the microchip brands. In addition, there were clear differences among scanners in regard to sensitivity. The 3 universal scanners capable of reading or detecting 128- and 134.2-kHz microchips all had sensitivities > or = 94.8% for microchips of these frequencies. Three of the 4 scanners had sensitivities > or = 88.2% for 125-kHz microchips, but sensitivity of one of the universal scanners for microchips of this frequency was lower (66.4% to 75.0%). Results indicated that some currently available universal scanners have high sensitivity to microchips of the frequencies commonly used in the United States, although none of the scanners had 100% sensitivity. To maximize microchip detection, proper scanning technique should be used and animals should be scanned more than once. Microchipping should remain a component of a more comprehensive pet identification program.

  13. Dosimetric impact of image artifact from a wide-bore CT scanner in radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Vincent; Podgorsak, Matthew B.; Tran, Tuan-Anh; Malhotra, Harish K.; Wang, Iris Z. [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

    2011-07-15

    Purpose: Traditional computed tomography (CT) units provide a maximum scan field-of-view (sFOV) diameter of 50 cm and a limited bore size, which cannot accommodate a large patient habitus or an extended simulation setup in radiation therapy (RT). Wide-bore CT scanners with increased bore size were developed to address these needs. Some scanners have the capacity to reconstruct the CT images at an extended FOV (eFOV), through data interpolation or extrapolation, using projection data acquired with a conventional sFOV. Objects that extend past the sFOV for eFOV reconstruction may generate image artifacts resulting from truncated projection data; this may distort CT numbers and structure contours in the region beyond the sFOV. The purpose of this study was to evaluate the dosimetric impact of image artifacts from eFOV reconstruction with a wide-bore CT scanner in radiotherapy (RT) treatment planning. Methods: Testing phantoms (i.e., a mini CT phantom with equivalent tissue inserts, a set of CT normal phantoms and anthropomorphic phantoms of the thorax and the pelvis) were used to evaluate eFOV artifacts. Reference baseline images of these phantoms were acquired with the phantom centrally positioned within the sFOV. For comparison, the phantoms were then shifted laterally and scanned partially outside the sFOV, but still within the eFOV. Treatment plans were generated for the thoracic and pelvic anthropomorphic phantoms utilizing the Eclipse treatment planning system (TPS) to study the potential effects of eFOV artifacts on dose calculations. All dose calculations of baseline and test treatment plans were carried out using the same MU. Results: Results show that both body contour and CT numbers are altered by image artifacts in eFOV reconstruction. CT number distortions of up to -356 HU for bone tissue and up to 323 HU for lung tissue were observed in the mini CT phantom. Results from the large body normal phantom, which is close to a clinical patient size, show

  14. Computed Tomography in Forensic Medicine

    OpenAIRE

    Leth, Peter Mygind

    2015-01-01

    Modern diagnostic imagining techniques are gaining popularity in forensic medicine. Denmark has been involved in the development of this use of imaging techniques from the beginning. The Institute of Forensic Medicine at the University of Southern Denmark acquired a helical computed tomography (CT) scanner in 2006. This thesis presents our research on post-mortem CT (PMCT) and addresses the following research questions: 1. In how many cases can the cause of death be established by PMCT, and w...

  15. A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography.

    Science.gov (United States)

    Darne, Chinmay D; Lu, Yujie; Tan, I-Chih; Zhu, Banghe; Rasmussen, John C; Smith, Anne M; Yan, Shikui; Sevick-Muraca, Eva M

    2012-12-21

    The work presented herein describes the system design and performance evaluation of a miniaturized near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system with non-contact excitation and homodyne detection capability for small animal fluorescence tomography. The FDPM system was developed specifically for incorporation into a Siemens micro positron emission tomography/computed tomography (microPET/CT) commercial scanner for hybrid small animal imaging, but could be adapted to other systems. Operating at 100 MHz, the system noise was minimized and the associated amplitude and phase errors were characterized to be ±0.7% and ±0.3°, respectively. To demonstrate the tomographic ability, a commercial mouse-shaped phantom with 50 µM IRDye800CW and ⁶⁸Ga containing inclusion was used to associate PET and NIRF tomography. Three-dimensional mesh generation and anatomical referencing was accomplished through CT. A third-order simplified spherical harmonics approximation (SP₃) algorithm, for efficient prediction of light propagation in small animals, was tailored to incorporate the FDPM approach. Finally, the PET-NIRF target co-localization accuracy was analyzed in vivo with a dual-labeled imaging agent targeting orthotopic growth of human prostate cancer. The obtained results validate the integration of time-dependent fluorescence tomography system within a commercial microPET/CT scanner for multimodality small animal imaging.

  16. Spatial Distortion in MRI-Guided Stereotactic Procedures: Evaluation in 1.5-, 3- and 7-Tesla MRI Scanners.

    Science.gov (United States)

    Neumann, Jan-Oliver; Giese, Henrik; Biller, Armin; Nagel, Armin M; Kiening, Karl

    2015-01-01

    Magnetic resonance imaging (MRI) is replacing computed tomography (CT) as the main imaging modality for stereotactic transformations. MRI is prone to spatial distortion artifacts, which can lead to inaccuracy in stereotactic procedures. Modern MRI systems provide distortion correction algorithms that may ameliorate this problem. This study investigates the different options of distortion correction using standard 1.5-, 3- and 7-tesla MRI scanners. A phantom was mounted on a stereotactic frame. One CT scan and three MRI scans were performed. At all three field strengths, two 3-dimensional sequences, volumetric interpolated breath-hold examination (VIBE) and magnetization-prepared rapid acquisition with gradient echo, were acquired, and automatic distortion correction was performed. Global stereotactic transformation of all 13 datasets was performed and two stereotactic planning workflows (MRI only vs. CT/MR image fusion) were subsequently analysed. Distortion correction on the 1.5- and 3-tesla scanners caused a considerable reduction in positional error. The effect was more pronounced when using the VIBE sequences. By using co-registration (CT/MR image fusion), even a lower positional error could be obtained. In ultra-high-field (7 T) MR imaging, distortion correction introduced even higher errors. However, the accuracy of non-corrected 7-tesla sequences was comparable to CT/MR image fusion 3-tesla imaging. MRI distortion correction algorithms can reduce positional errors by up to 60%. For stereotactic applications of utmost precision, we recommend a co-registration to an additional CT dataset. © 2015 S. Karger AG, Basel.

  17. 3D noise power spectrum applied on clinical MDCT scanners: effects of reconstruction algorithms and reconstruction filters

    Science.gov (United States)

    Miéville, Frédéric A.; Bolard, Gregory; Benkreira, Mohamed; Ayestaran, Paul; Gudinchet, François; Bochud, François; Verdun, Francis R.

    2011-03-01

    The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters. A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed. In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements. The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.

  18. Monitoring marginal erosion in hydroelectric reservoirs with terrestrial mobile laser scanner

    Directory of Open Access Journals (Sweden)

    A. M. G. Tommaselli

    2014-06-01

    Full Text Available Marginal erosions in reservoirs of hydroelectric plants have caused economic and environmental problems concerning hydroelectric power generation, reduction of productive areas and devaluing land parcels. The real extension and dynamics of these erosion processes are not well known for Brazilian reservoirs. To objectively assess these problems Unesp (Univ Estadual Paulista and Duke Energy are developing a joint project which aims at the monitoring the progression of some erosive processes and understanding the causes and the dynamics of this phenomenon. Mobile LASER scanning was considered the most suitable alternative for the challenges established in the project requirements. A MDL DynaScan Mobile LASER M150 scanner was selected which uses RTK for real time positioning integrated to an IMU, enabling instantaneous generation of georeferenced point clouds. Two different reservoirs were choose for monitoring: Chavantes (storage plant and Rosana (run-of-river plant, both in the Paranapanema River, border of São Paulo and Paraná States, Brazil. The monitoring areas are scanned quarterly and analysed with base on the point cloud, meshes, contours and cross sections. Cross sections are used to visualize and compute the rate and the dynamics of erosion. Some examples and quantitative results are presented along with an analysis of the proposed technique. Some recommendations to improve the field work and latter data processing are also introduced.

  19. Dedicated scanner for laboratory investigations on cone-beam CT/SPECT imaging of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Mettivier, Giovanni, E-mail: mettivier@na.infn.i [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, I-80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy); Russo, Paolo, E-mail: russo@na.infn.i [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, I-80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy); Cesarelli, Mario; Ospizio, Roberto [Dipartimento di Ingegneria Biomedica, Elettronica e delle Telecomunicazioni, Universita di Napoli Federico II, I-80125 Napoli (Italy); Passeggio, Giuseppe; Roscilli, Lorenzo; Pontoriere, Giuseppe; Rocco, Raffaele [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy)

    2011-02-11

    We describe the design, realization and basic tests of a prototype Cone-Beam Breast Computed Tomography (CBBCT) scanner, combined with a SPECT head consisting of a compact pinhole gamma camera based on a photon counting CdTe hybrid pixel detector. The instrument features a 40 {mu}m focal spot X-ray tube, a 50 {mu}m pitch flat panel detector and a 1-mm-thick, 55 {mu}m pitch CdTe pixel detector. Preliminary imaging tests of the separate CT and gamma-ray units are presented showing a resolution in CT of 3.2 mm{sup -1} at a radial distance of 50 mm from the rotation axis and that the 5 and 8 mm hot masses ({sup 99m}Tc labeled with a 15:1 activity ratio with respect to the background) can be detected in planar gamma-ray imaging with a contrast-to-noise ratio of about 4.

  20. Fundamental study for estimating rice-plant stem number using laser scanner measurements

    Science.gov (United States)

    Phan, Anh Thu Thi; Rikimaru, Atsushi; Higuchi, Yasuhiro; Takahashi, Kazuyoshi

    2017-07-01

    The number of rice-plant stems (S), directly affecting the competition among rice plants and contributing to rice yield, is estimated from laser data. The laser data were normalized to eliminate the increasing plant height effect. Relative spatial volume (rVslaser) was derived and scaled as an exponential function of S. A relationship between rVslaser and S is confirmed in two growing seasons (2014 and 2016, separately obtained by two different laser scanners). The scaling and exponent factors (β and α) depended on the planting geometry, planting density, and bottom position of the rice plants (D) but were almost independent of the number of divided layers in the rVslaser computation. From the estimated stem number using D at the 80th percentile (D80), the maximum S was obtained at ˜50 days after transplanting. In both years, the relative error in the estimate was below 0.10, and the bias was small. In the models with D80 in 2014 (MD201480) and D95 in 2016 (MD201695), the β and α values were very similar. Using the rVslaser measure, we can disregard the footprint characteristics and voxel size. The presented results support the proposed approach as a useful future method for estimating rice-plant stems.

  1. Design of a coincidence processing board for a dual-head PET scanner for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.D. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain)]. E-mail: jormarp1@doctor.upv.es; Toledo, J. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Esteve, R. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Sebastia, A. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Mora, F.J. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Benlloch, J.M. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Fernandez, M.M. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Gimenez, M. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Gimenez, E.N. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Lerche, Ch.W. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Pavon, N. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Sanchez, F. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain)

    2005-07-01

    This paper describes the design of a coincidence processing board for a dual-head Positron Emission Tomography (PET) scanner for breast imaging. The proposed block-oriented data acquisition system relies on a high-speed DSP processor for fully digital trigger and on-line event processing that surpasses the performance of traditional analog coincidence detection systems. A mixed-signal board has been designed and manufactured. The analog section comprises 12 coaxial inputs (six per head) which are digitized by means of two 8-channel 12-bit 40-MHz ADCs in order to acquire the scintillation pulse, the charge division signals and the depth of interaction within the scintillator. At the digital section, a state-of-the-art FPGA is used as deserializer and also implements the DMA interface to the DSP processor by storing each digitized channel into a fast embedded FIFO memory. The system incorporates a high-speed USB 2.0 interface to the host computer.

  2. Basic study of entire whole-body PET scanners based on the OpenPET geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.j [National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Yamaya, Taiga; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo [National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan)

    2010-09-21

    A conventional PET scanner has a 15-25 cm axial field-of-view (FOV) and images a whole body using about six bed positions. An OpenPET geometry can extend the axial FOV with a limited number of detectors. The entire whole-body PET scanner must be able to process a large amount of data effectively. In this work, we study feasibility of the fully 3D entire whole-body PET scanner using the GATE simulation. The OpenPET has 12 block detector rings with the ring diameter of 840 mm and each block detector ring consists of 48 depth-of-interaction (DOI) detectors. The OpenPET has the axial length of 895.95 mm with five parts of 58.95 mm open gaps. The OpenPET has higher single data loss than a conventional PET scanner at grouping circuits. NECR of the OpenPET decreases by single data loss. But single data loss is mitigated by separating the axially arranged detector into two parts. Also, multiple coincidences are found to be important for the entire whole-body PET scanner. The entire whole-body PET scanner with the OpenPET geometry promises to provide a large axial FOV with the open space and to have sufficient performance values. But single data loss at the grouping circuits and multiple coincidences are limited to the peak noise equivalent count rate (NECR) for the entire whole-body PET scanner.

  3. WE-D-218-01: Ultrasound Scanner Innovations and Clinical Practice.

    Science.gov (United States)

    Thomenius, K

    2012-06-01

    Of all the imaging modalities, ultrasound scanners have gone through the most profound changes over the last several decades in terms of their size, capability, and cost. Much of this is due to the small data acquisition devices (ultrasound transducers) and Moore's Law dependent signal/image processors that comprise and ultrasound scanner. These are in direct contrast with the front ends of MRI or CT scanners with their sizeable power hungry gantries. Thus ultrasound has been a direct beneficiary of the miniaturization associated with the semiconductor industry; this has enabled the migration of much hardware functionality to software and development of much smaller devices even including handheld scanners. Such changes are having a significant impact on clinical utilization of ultrasound. This talk will review some of these including the recent introduction of complete software backends, i.e. ultrasound scanners composed of analog front ends which are connected to processors with minimal dedicated digital hardware. 1. Understand the architecture of an ultrasound scanner and how it has changed with evolving technology. 2. Understand the implications to clinical practice from these changes. 3. Understand the possibilities for the future of ultrasound scanners both from the view of new technical capabilities and how these might impact the clinic. © 2012 American Association of Physicists in Medicine.

  4. Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data

    Directory of Open Access Journals (Sweden)

    Mathias Disney

    2013-01-01

    Full Text Available This paper presents a new method for constructing quickly and automatically precision tree models from point clouds of the trunk and branches obtained by terrestrial laser scanning. The input of the method is a point cloud of a single tree scanned from multiple positions. The surface of the visible parts of the tree is robustly reconstructed by making a flexible cylinder model of the tree. The thorough quantitative model records also the topological branching structure. In this paper, every major step of the whole model reconstruction process, from the input to the finished model, is presented in detail. The model is constructed by a local approach in which the point cloud is covered with small sets corresponding to connected surface patches in the tree surface. The neighbor-relations and geometrical properties of these cover sets are used to reconstruct the details of the tree and, step by step, the whole tree. The point cloud and the sets are segmented into branches, after which the branches are modeled as collections of cylinders. From the model, the branching structure and size properties, such as volume and branch size distributions, for the whole tree or some of its parts, can be approximated. The approach is validated using both measured and modeled terrestrial laser scanner data from real trees and detailed 3D models. The results show that the method allows an easy extraction of various tree attributes from terrestrial or mobile laser scanning point clouds.

  5. 2D MEMS scanner integrating a position feedback

    Directory of Open Access Journals (Sweden)

    Lani Sebastien

    2015-01-01

    Full Text Available An integrated position sensor for a dual-axis electromagnetic tilting mirror is presented. This tilting mirror is composed of a silicon based mirror directly assembled on a silicon membrane supported by flexible beams. The position sensors are constituted by 4 Wheatstone bridges of piezoresistors which are fabricated by doping locally the flexible beams. A permanent magnet is attached to the membrane and the scanner is mounted above planar coils deposited on a ceramic substrate to achieve electromagnetic actuation. The performances of the piezoresistive sensors are evaluated by measuring the output signal of the piezoresistors as a function of the tilt of the mirror and the temperature. White light interferometry was performed for all measurement to measure the exact tilt angle. The minimum detectable angle with such sensors was 30μrad (around 13bits in the range of the minimum resolution of the interferometer. The tilt reproducibility was 0.0186%, obtained by measuring the tilt after repeated actuations with a coil current of 50mA during 30 min and the stability over time was 0.05% in 1h without actuation. The maximum measured tilt angle was 6° (mechanical limited by nonlinearity of the MEMS system.

  6. Modelling Single Tree Structure with Terrestrial Laser Scanner

    Science.gov (United States)

    Yurtseven, H.; Akgül, M.; Gülci, S.

    2017-11-01

    Recent technological developments, which has reliable accuracy and quality for all engineering works, such as remote sensing tools have wide range use in forestry applications. Last decade, sustainable use and management opportunities of forest resources are favorite topics. Thus, precision of obtained data plays an important role in evaluation of current status of forests' value. The use of aerial and terrestrial laser technology has more reliable and effective models to advance the appropriate natural resource management. This study investigates the use of terrestrial laser scanner (TLS) technology in forestry, and also the methodological data processing stages for tree volume extraction is explained. Z+F Imager 5010C TLS system was used for measure single tree information such as tree height, diameter of breast height, branch volume and canopy closure. In this context more detailed and accurate data can be obtained than conventional inventory sampling in forestry by using TLS systems. However the accuracy of obtained data is up to the experiences of TLS operator in the field. Number of scan stations and its positions are other important factors to reduce noise effect and accurate 3D modelling. The results indicated that the use of point cloud data to extract tree information for forestry applications are promising methodology for precision forestry.

  7. Rail Track Detection and Modelling in Mobile Laser Scanner Data

    Directory of Open Access Journals (Sweden)

    S. Oude Elberink

    2013-10-01

    Full Text Available We present a method for detecting and modelling rails in mobile laser scanner data. The detection is based on the properties of the rail tracks and contact wires such as relative height, linearity and relative position with respect to other objects. Points classified as rail track are used in a 3D modelling algorithm. The modelling is done by first fitting a parametric model of a rail piece to the points along each track, and estimating the position and orientation parameters of each piece model. For each position and orientation parameter a smooth low-order Fourier curve is interpolated. Using all interpolated parameters a mesh model of the rail is reconstructed. The method is explained using two areas from a dataset acquired by a LYNX mobile mapping system in a mountainous area. Residuals between railway laser points and 3D models are in the range of 2 cm. It is concluded that a curve fitting algorithm is essential to reliably and accurately model the rail tracks by using the knowledge that railways are following a continuous and smooth path.

  8. Mineralogic information from a new airborne thermal infrared multispectral scanner

    Science.gov (United States)

    Kahle, A. B.; Goetz, A. F. H.

    1983-01-01

    The thermal IR multispectral scanner (TIMS) has been developed for airborne geologic surveys. The resststrahlen band between 8-11 microns is exhibited by interatomic stretching vibrations of Si and oxygen bound up in the crystal lattice of silicate rocks. The crystal structure of the component minerals influence the depth and position of the detected band. The TIMS has six channels, an 80 deg field of view, and a sensitivity sufficient to detect a noise equivalent change in spectral emissivity of 0.002-0.006. The six bands measured are 8.2-8.6, 8.6-9.0, 9.4-10.2, 10.2-11.2, and 11.2-12.2 microns, using HgCdTe detectors. The data are analyzed with respect to emissivity variations as a function of wavelength, using the component transformation technique called a decorrelation stretch, with spectral differences being displayed as different colors. Sample scenes from Death Valley and the Nevada Cuprite mining district are compared with visible and near-IR color composites of the same areas, revealing the superior distinctions that are available with the TIMS.

  9. Backside illuminated CMOS-TDI line scanner for space applications

    Science.gov (United States)

    Cohen, O.; Ben-Ari, N.; Nevo, I.; Shiloah, N.; Zohar, G.; Kahanov, E.; Brumer, M.; Gershon, G.; Ofer, O.

    2017-09-01

    A new multi-spectral line scanner CMOS image sensor is reported. The backside illuminated (BSI) image sensor was designed for continuous scanning Low Earth Orbit (LEO) space applications including A custom high quality CMOS Active Pixels, Time Delayed Integration (TDI) mechanism that increases the SNR, 2-phase exposure mechanism that increases the dynamic Modulation Transfer Function (MTF), very low power internal Analog to Digital Converters (ADC) with resolution of 12 bit per pixel and on chip controller. The sensor has 4 independent arrays of pixels where each array is arranged in 2600 TDI columns with controllable TDI depth from 8 up to 64 TDI levels. A multispectral optical filter with specific spectral response per array is assembled at the package level. In this paper we briefly describe the sensor design and present some electrical and electro-optical recent measurements of the first prototypes including high Quantum Efficiency (QE), high MTF, wide range selectable Full Well Capacity (FWC), excellent linearity of approximately 1.3% in a signal range of 5-85% and approximately 1.75% in a signal range of 2-95% out of the signal span, readout noise of approximately 95 electrons with 64 TDI levels, negligible dark current and power consumption of less than 1.5W total for 4 bands sensor at all operation conditions .

  10. Validation of the Autonomously Operating Terrestrial Laser Scanner

    Science.gov (United States)

    Sanow, J.; Eitel, J.

    2015-12-01

    The Autonomously Operating Terrestrial Laser Scanner (ATLS) is a ground-based Light Detection and Ranging (LiDAR) system. ATLS technology has the potential to be used for snow measurement studies in locations that are unsafe or inaccessible to humans throughout the winter season. Alternative Terrestrial Laser Systems (TLS) have thus far proven to produce low temporal resolution and are high in cost. ATLS, on the other hand, is a unique system that can generate high temporal resolution at a low cost. In order for the progression of ATLS to continue, the data from the system needs to be validated by determining if ATLS scans are a viable method for the measurement of snow depth. To complete the validation, two specific objectives have been identified: 1) the ability of ATLS to measure snow depth and 2) to produce high quality resolution measurements over varying distances of ATLS scans. For this, both ATLS and validation measurements were taken throughout two winter seasons near McCall, Idaho. Preliminary results of the study indicate that the ATLS is capable of fulfilling these two objectives.

  11. Vacuum Actuator and Controller Design for a Fast Wire Scanner

    CERN Document Server

    Dehning, B; Herranz Alvarez, J; Koujili, M; Sirvent Blasco, J L

    2012-01-01

    To cope with increasing requirements in terms of accuracy and beam intensity limits a beam wire scanner (BWS) design is under development for the CERN accelerators complex. The main parameters have been determined; the wire speed should be 20 m·s -1 when interacting with the beam and a beam width determination accuracy of 2µm under the harsh radioactive environment should be reached. To meet this goal, the proposed solution locates all moveable parts of the actuator and the angular sensors in the beam vacuum pipe in order to reduce the friction and to allow a direct position measurement. One absolute positioning sensor will be used for the brushless motor feedback and one custom, high precision incremental design will target the beam size determination. The laboratory tests set up for the actuator and the incremental sensor will be presented along with the motor control feedback loops developed with the DSpace environment using Simulink and MatLab tools. Finally, the development of the digital...

  12. Comparison of experience curves between two 3-dimensional intraoral scanners.

    Science.gov (United States)

    Kim, Jisun; Park, Ji-Man; Kim, Minji; Heo, Seong-Joo; Shin, Im Hee; Kim, Miae

    2016-08-01

    Conventional impression-making methods are being replaced by intraoral digital scanning. How long dental professionals take to master the new technologies is unknown. The purpose of this human subject study was to compare the experience curves of 2 intraoral scanners among dental hygienists and determine whether repeated scanning experience could change the scan time (ST). A total of 29 dental hygienists with more than 3 years of working experience were recruited (group 1: 3-5 years; group 2: >6 years of clinical experience) to learn the iTero and Trios systems. All learners scanned the oral cavities of 4 human participants (participants A, B, C, and D) 10 times (T1-T10) throughout the learning sessions and the experimental dentoform model twice at the beginning and end of the 10 sessions. ST was measured, and changes in ST were compared between the 2 devices. The average ST for 10 sessions was greater with iTero than with Trios, but the decrease in the measured ST was greater for iTero than for Trios. Baseline and postexperience STs with iTero showed statistically significant differences, with a decrease in time related to the clinical experience levels of the dental hygienists (group 1: T2 and T4, Pslow, and measured ST was shorter than iTero, and was not influenced by clinical experience. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. A High Spatial Resolution CT Scanner for Small Animal Imaging

    Science.gov (United States)

    Cicalini, E.; Baldazzi, G.; Belcari, N.; Del Guerra, A.; Gombia, M.; Motta, A.; Panetta, D.

    2006-01-01

    We have built a micro-CT system that will be integrated with a small animal PET scanner. The components are: an X-ray source with a peak voltage of up to 60 kV, a power of 10 W and a focal spot size of 30 μm; a CCD coupled to CsI(Tl) scintillator, subdivided into 128×3072 square pixels, each with a size of 48 μm; stepping motors for the sample roto-translation; a PCI acquisition board; electronic boards to control and read-out the CCD. A program in Lab VIEW controls the data acquisition. Reconstruction algorithms have been implemented for fan-beam and cone-beam configurations. Images of a bar pattern have been acquired to evaluate the detector performance: the CTF curve has been extracted from the data, obtaining a value of 10 % at 5 lp/mm and about 3 % at 10 lp/mm. Tomographic acquisitions have been performed with a test phantom consisting of a Plexiglas cylinder, 3 cm in diameter, with holes ranging from 3 mm down to 0.6 mm in diameter, filled with different materials. The contrast resolution has been extracted from the reconstructed images: a value of 6 % (in water) for a cubic voxel size of 80 μm has been obtained.

  14. Imaging mouse cerebellum with serial optical coherence scanner (Conference Presentation)

    Science.gov (United States)

    Liu, Chao J.; Williams, Kristen; Orr, Harry; Taner, Akkin

    2017-02-01

    We present the serial optical coherence scanner (SOCS), which consists of a polarization sensitive optical coherence tomography and a vibratome with associated controls for serial imaging, to visualize the cerebellum and adjacent brainstem of mouse. The cerebellar cortical layers and white matter are distinguished by using intrinsic optical contrasts. Images from serial scans reveal the large-scale anatomy in detail and map the nerve fiber pathways in the cerebellum and adjacent brainstem. The optical system, which has 5.5 μm axial resolution, utilizes a scan lens or a water-immersion microscope objective resulting in 10 μm or 4 μm lateral resolution, respectively. The large-scale brain imaging at high resolution requires an efficient way to collect large datasets. It is important to improve the SOCS system to deal with large-scale and large number of samples in a reasonable time. The imaging and slicing procedure for a section took about 4 minutes due to a low speed of the vibratome blade to maintain slicing quality. SOCS has potential to investigate pathological changes and monitor the effects of therapeutic drugs in cerebellar diseases such as spinocerebellar ataxia 1 (SCA1). The SCA1 is a neurodegenerative disease characterized by atrophy and eventual loss of Purkinje cells from the cerebellar cortex, and the optical contrasts provided by SOCS is being evaluated for biomarkers of the disease.

  15. Mechanical optimisation of a high-precision fast wire scanner at CERN

    CERN Document Server

    Samuelsson, Sebastian; Veness, Raymond

    Wire scanners are instruments used to measure the transverse beam prole in particle accelerators by passing a thin wire through the particle beam. To avoid the issues of vacuum leakage through the bellows and wire failure related to current designs of wire scanners, a new concept for a wire scanner has been developed at CERN. This design has all moving parts inside the beam vacuum and has a nominal wire scanning speed of 20 m/s. The demands on the design associated with this together with the high precision requirements create a need for\

  16. Evaluation of an infrared horizon scanner bias determination algorithm for earth-oriented spacecraft

    Science.gov (United States)

    Hotovy, S. G.

    1977-01-01

    An algorithm for estimating infrared horizon scanner biases for earth-oriented spacecraft is presented. A mathematical description of the proposed algorithm is given, and the algorithm is evaluated for use by two earth-oriented spacecraft: the Applications Explorer Missions-A/Heat Capacity Mapping Mission (AEM-A/HCMM) and Seasat-A. The results of this study indicate that scanner alignment and calibration errors appear as nearly constant biases in the scanner pitch and roll data and that these constant biases can be estimated to within 0.05 degree for AEM-A and 0.03 degree for Seasat-A.

  17. Advanced proton imaging in computed tomography

    CERN Document Server

    Mattiazzo, S; Giubilato, P; Pantano, D; Pozzobon, N; Snoeys, W; Wyss, J

    2015-01-01

    In recent years the use of hadrons for cancer radiation treatment has grown in importance, and many facilities are currently operational or under construction worldwide. To fully exploit the therapeutic advantages offered by hadron therapy, precise body imaging for accurate beam delivery is decisive. Proton computed tomography (pCT) scanners, currently in their R&D phase, provide the ultimate 3D imaging for hadrons treatment guidance. A key component of a pCT scanner is the detector used to track the protons, which has great impact on the scanner performances and ultimately limits its maximum speed. In this article, a novel proton-tracking detector was presented that would have higher scanning speed, better spatial resolution and lower material budget with respect to present state-of-the-art detectors, leading to enhanced performances. This advancement in performances is achieved by employing the very latest development in monolithic active pixel detectors (to build high granularity, low material budget, ...

  18. Implementation of whole body scanner for determining somatotype index at Chang Gung Memorial Hospital.

    Science.gov (United States)

    Liu, T H; Chiou, W K; Lin, J D; Yu, C Y

    2001-11-01

    Body mass index (BMI) and waist-hip ratio (WHR) using 1-dimensional circumference data have been proven to be highly related to blood pressure and total cholesterol; these 2 indices have been widely used as health indicators in preventive diagnosis and health examination. Sophisticated software, which allows calculation of the triangular mesh related to the body surface in 3D space, is capable of computing the circumference, width, sectional surface, volume, and surface area of the body. Chang Gung Whole Body Scanner (CGWBS) was used to capture 3D whole body surface images. In this study, the human body was divided into 10 segments consisting of the head, breast, wrist, hip, upper arm, forearm, hand, thigh, calf, and foot. Five independent assessments were made on a total of 32 anthropometric sites, including 12 circumferences, 3 widths, 3 profile areas, 7 surface areas, and 7 volumes. In this study, the somatotype index (SI) was computed through anthropometric data after 1,323 subjects were investigated. Correlation analysis was used to describe the relationship between BMI, WHR, SI, and anthropometric data. One-way analysis of variance (ANOVA) and Duncan's multiple range tests were used to examine differences between examination variables across sex and SI groups. This study found 4 somatotypes from anthropometric data. SI determined by CGWBS has better correlation with anthropometry than WHR or BMI. Of the 644 male subjects, 155 were in the ectomorph group, 232 in the semi-mesomorph group, 136 in the full-mesomorph group, and 121 in the endomorph group. Of the 679 female subjects, 160 were in the ectomorph group, 235 in the semi-mesomorph group, 168 in the full-mesomorph group, and 116 in the endomorph group. The results show that SI has great potential to perform precise somatotype classification.

  19. PEMANFAATAN SENSOR COASTAL ZONE COLOR SCANNER (CZCS) DAN OCEAN COLOR AND TEMPERATURE SCANNER (OCTS) DALAM IDENTIFIKASI KESUBURAN PERAIRAN DAN DAERAH PENANGKAPAN IKAN

    OpenAIRE

    Sachoemar, Suhendar I

    2017-01-01

    The spatial distribution of the water productivity bio-optically can be identifiedand detected by using visible infrared sensor of Coastal Zone Color Scanner(CZCS) carried by the satellite Nimbus 7. Since the availability of the ADEOS(Advance Earth Observation Satellite) that carried both sensors of the visiblenear infrared and near infra red on the OCTS (Ocean Color andTemperature Scanner) in August 1996, beside the water productivity,the fishing ground also is hoped can be studied all at on...

  20. Systematic errors in digital volume correlation due to the self-heating effect of a laboratory x-ray CT scanner

    KAUST Repository

    Wang, B

    2017-02-15

    The use of digital volume correlation (DVC) in combination with a laboratory x-ray computed tomography (CT) for full-field internal 3D deformation measurement of opaque materials has flourished in recent years. During x-ray tomographic imaging, the heat generated by the x-ray tube changes the imaging geometry of x-ray scanner, and further introduces noticeable errors in DVC measurements. In this work, to provide practical guidance high-accuracy DVC measurement, the errors in displacements and strains measured by DVC due to the self-heating for effect of a commercially available x-ray scanner were experimentally investigated. The errors were characterized by performing simple rescan tests with different scan durations. The results indicate that the maximum strain errors associated with the self-heating of the x-ray scanner exceed 400 µε. Possible approaches for minimizing or correcting these displacement and strain errors are discussed. Finally, a series of translation and uniaxial compression tests were performed, in which strain errors were detected and then removed using pre-established artificial dilatational strain-time curve. Experimental results demonstrate the efficacy and accuracy of the proposed strain error correction approach.

  1. Systematic errors in digital volume correlation due to the self-heating effect of a laboratory x-ray CT scanner

    Science.gov (United States)

    Wang, B.; Pan, B.; Tao, R.; Lubineau, G.

    2017-04-01

    The use of digital volume correlation (DVC) in combination with a laboratory x-ray computed tomography (CT) for full-field internal 3D deformation measurement of opaque materials has flourished in recent years. During x-ray tomographic imaging, the heat generated by the x-ray tube changes the imaging geometry of x-ray scanner, and further introduces noticeable errors in DVC measurements. In this work, to provide practical guidance high-accuracy DVC measurement, the errors in displacements and strains measured by DVC due to the self-heating for effect of a commercially available x-ray scanner were experimentally investigated. The errors were characterized by performing simple rescan tests with different scan durations. The results indicate that the maximum strain errors associated with the self-heating of the x-ray scanner exceed 400 µε. Possible approaches for minimizing or correcting these displacement and strain errors are discussed. Finally, a series of translation and uniaxial compression tests were performed, in which strain errors were detected and then removed using pre-established artificial dilatational strain-time curve. Experimental results demonstrate the efficacy and accuracy of the proposed strain error correction approach.

  2. Electro-Optic Laser Scanners for Space-Based Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this phase II SBIR is to design and build new non-mechanical, electro-optic (EO) laser scanners that will be suitable for space based laser ranging,...

  3. A Low-Cost, High Quality MRI Breast Scanner Using Prepolarization

    National Research Council Canada - National Science Library

    Macovski, Albert

    2000-01-01

    .... But an x-ray mammogram costs about $100 whereas an MRI study costs about $1500. The exam cost is related to the scanners manufacturing cost (about $400,000) and sale price (about $1 to $3 Million...

  4. A Low-Cost, High Quality MRI Breast Scanner Using Prepolarization

    National Research Council Canada - National Science Library

    Macvoski, Albert

    2001-01-01

    .... But an x-ray mammogram costs about $100 whereas an MRI study costs about $1500. The exam cost is related to the scanner's manufacturing cost (about $400,000) and sale price (about $1 to $3 million...

  5. 'What does a scanner see?' Techno-fascination and unreliability in the mind-game film.

    NARCIS (Netherlands)

    Schuster, L.

    2008-01-01

    In popular cinema, paranoia and conspiracy plots often go hand in hand with questions of technological innovation. For example, A Scanner Darkly (Richard Linklater, US 2006) combines issues such as audiovisual surveillance, conspiracy, and manipulation without disambiguating between paranoid

  6. Terrestrial laser scanner data from Hetch Hetchy area, Yosemite National Park, California, USA

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data are 3D point cloud data collected by laser scanner in the Hetch Hetchy area of Yosemite National Park, USA. The data were collected to assess landscape...

  7. Application of multispectral scanner data to the study of an abandoned surface coal mine

    Science.gov (United States)

    Spisz, E. W.

    1978-01-01

    The utility of aircraft multispectral scanner data for describing the land cover features of an abandoned contour-mined coal mine is considered. The data were obtained with an 11 band multispectral scanner at an altitude of 1.2 kilometers. Supervised, maximum-likelihood statistical classifications of the data were made to establish land-cover classes and also to describe in more detail the barren surface features as they may pertain to the reclamation or restoration of the area. The scanner data for the surface-water areas were studied to establish the variability and range of the spectral signatures. Both day and night thermal images of the area are presented. The results of the study show that a high degree of statistical separation can be obtained from the multispectral scanner data for the various land-cover features.

  8. The mechatronic design of a fast wire scanner in IHEP U-70 accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, V.T. [Institute for High Energy Physics in National Research Centre “Kurchatov Institute”, Protvino 142281 (Russian Federation); Makhov, S.S. [Microprivod Ltd., Moscow 111123 (Russian Federation); Savin, D.A.; Terekhov, V.I. [Institute for High Energy Physics in National Research Centre “Kurchatov Institute”, Protvino 142281 (Russian Federation)

    2016-10-11

    This paper presents the mechatronic design of a fast wire scanner based on a servomotor. The design of the wire scanner is motivated by the need to measure the transverse profile of the high power proton and carbon beams at the IHEP U-70 accelerator. This paper formulates the requirements to the fast wire scanner system for the high intensity proton beam at the U-70 accelerator. The results on the design of electro-mechanical device for the wire scanner with a wire traveling speed 10–20 m/s are presented. The solution consists in a brushless servomotor and standard motor control electronics. High radiation levels in the accelerator enclosure dictate the use of a resolver as the position feedback element.

  9. Automatic Tree Data Removal Method for Topography Measurement Result Using Terrestrial Laser Scanner

    Science.gov (United States)

    Yokoyama, H.; Chikatsu, H.

    2017-02-01

    Recently, laser scanning has been receiving greater attention as a useful tool for real-time 3D data acquisition, and various applications such as city modelling, DTM generation and 3D modelling of cultural heritage sites have been proposed. And, former digital data processing were demanded in the past digital archive techniques for cultural heritage sites. However, robust filtering method for distinguishing on- and off-terrain points by terrestrial laser scanner still have many issues. In the past investigation, former digital data processing using air-bone laser scanner were reported. Though, efficient tree removal methods from terrain points for the cultural heritage are not considered. In this paper, authors describe a new robust filtering method for cultural heritage using terrestrial laser scanner with "the echo digital processing technology" as latest data processing techniques of terrestrial laser scanner.

  10. Symptoms and Cognitive Effects of Exposure to Magnetic Stray Fields of MRI Scanners

    NARCIS (Netherlands)

    Vocht, Frank Gérard de

    2006-01-01

    People working routinely with magnetic resonance imaging (MRI) systems report a number of symptoms related to their presence in the inhomogeneous static magnetic fields (the stray field) surrounding these scanners. Experienced symptoms and neurobehavioral performance among engineers manufacturing

  11. LANDSLIDE MONITORING USING TERRESTRIAL LASER SCANNER: GEOREFERENCING AND CANOPY FILTERING ISSUES IN A CASE STUDY

    National Research Council Canada - National Science Library

    M. Barbarella; M. Fiani

    2012-01-01

    ... road and to a major railway line in Italy. To survey the landslide we used three different models of Terrestrial Laser Scanners, including a "full wave form" one, potentially useful for filtering vegetation from the data...

  12. Exploiting Indoor Mobile Laser Scanner Trajectories for Semantic Interpretation of Point Clouds

    Science.gov (United States)

    Nikoohemat, S.; Peter, M.; Oude Elberink, S.; Vosselman, G.

    2017-09-01

    The use of Indoor Mobile Laser Scanners (IMLS) for data collection in indoor environments has been increasing in the recent years. These systems, unlike Terrestrial Laser Scanners (TLS), collect data along a trajectory instead of at discrete scanner positions. In this research, we propose several methods to exploit the trajectories of IMLS systems for the interpretation of point clouds. By means of occlusion reasoning and use of trajectory as a set of scanner positions, we are capable of detecting openings in cluttered indoor environments. In order to provide information about both the partitioning of the space and the navigable space, we use the voxel concept for point clouds. Furthermore, to reconstruct walls, floor and ceiling we exploit the indoor topology and plane primitives. The results show that the trajectory is a valuable source of data for feature detection and understanding of indoor MLS point clouds.

  13. Investigation of tree spectral reflectance characteristics using a mobile terrestrial line spectrometer and laser scanner

    National Research Council Canada - National Science Library

    Lin, Yi; Puttonen, Eetu; Hyyppä, Juha

    2013-01-01

    ... spectrometer and an Ibeo Lux laser scanner. The addition of the latter unit facilitates recording the structural characteristics of the target trees synchronously, and this is beneficial for revealing the characteristics of the spatial...

  14. Hybrid approach for attenuation correction in PET/MR scanners

    Energy Technology Data Exchange (ETDEWEB)

    Santos Ribeiro, A., E-mail: afribeiro@fc.ul.pt [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Lisbon (Portugal); Rota Kops, E.; Herzog, H. [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, Juelich (Germany); Almeida, P. [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Lisbon (Portugal)

    2014-01-11

    Aim: Attenuation correction (AC) of PET images is still one of the major limitations of hybrid PET/MR scanners. Different methods have been proposed to obtain the AC map from morphological MR images. Although, segmentation methods normally fail to differentiate air and bone regions, while template or atlas methods usually cannot accurately represent regions anatomically different from the template image. In this study a feed forward neural network (FFNN) algorithm is presented which directly outputs the attenuation coefficients by non-linear regression of the images acquired with an ultrashort echo time (UTE) sequence guided by the template-based AC map (TAC-map). Materials and methods: MR as well as CT data were acquired in four subjects. The UTE images and the TAC-map were the inputs of the presented FFNN algorithm for training as well as classification. The resulting attenuation maps were compared with CT-based, PNN-based and TAC maps. All the AC maps were used to reconstruct the PET emission data which were then compared for the different methods. Results: For each subject dice coefficients D were calculated between each method and the respective CT-based AC maps. The resulting Ds show higher values for all FFNN-based tissues comparatively to both TAC-based and PNN-based methods, particularly for bone tissue (D=0.77, D=0.51 and D=0.71, respectively). The AC-corrected PET images with the FFNN-based map show an overall lower relative difference (RD=3.90%) than those AC-corrected with the PNN-based (RD=4.44%) or template-based (RD=4.43%) methods. Conclusion: Our results show that an enhancement of current methods can be performed by combining both information of new MR image sequence techniques and general information provided from template techniques. Nevertheless, the number of tested subjects is statistically low and current analysis for a larger dataset is being carried out.

  15. Design and experimental tests of free electron laser wire scanners

    Directory of Open Access Journals (Sweden)

    G. L. Orlandi

    2016-09-01

    Full Text Available SwissFEL is a x-rays free electron laser (FEL driven by a 5.8 GeV linac under construction at Paul Scherrer Institut. In SwissFEL, wire scanners (WSCs will be complementary to view-screens for emittance measurements and routinely used to monitor the transverse profile of the electron beam during FEL operations. The SwissFEL WSC is composed of an in-vacuum beam-probe—motorized by a stepper motor—and an out-vacuum pick-up of the wire signal. The mechanical stability of the WSC in-vacuum hardware has been characterized on a test bench. In particular, the motor induced vibrations of the wire have been measured and mapped for different motor speeds. Electron-beam tests of the entire WSC setup together with different wire materials have been carried out at the 250 MeV SwissFEL Injector Test Facility (SITF, Paul Scherrer Institut, CH and at FERMI (Elettra-Sincrotrone Trieste, Italy. In particular, a comparative study of the relative measurement accuracy and the radiation-dose release of Al(99∶Si(1 and tungsten (W wires has been carried out. On the basis of the outcome of the bench and electron-beam tests, the SwissFEL WSC can be qualified as a high resolution and machine-saving diagnostic tool in consideration of the mechanical stability of the scanning wire at the micrometer level and the choice of the wire material ensuring a drastic reduction of the radiation-dose release with respect to conventional metallic wires. The main aspects of the design, laboratory characterization and electron beam tests of the SwissFEL WSCs are presented.

  16. Trends in PET scanner ownership and leasing by nonradiologist physicians.

    Science.gov (United States)

    Agarwal, Rajan; Levin, David C; Parker, Laurence; Rao, Vijay M

    2010-03-01

    The aim of this study was to examine growth trends in ownership or leasing of private-office PET scanners by nonradiologist physicians. The Medicare Part B Physician/Supplier Procedure Summary Master Files for 2002 through 2007 were used to collect the following data for each PET-related Current Procedural Terminology((R)) code: 1) annual procedure volume, 2) places of service for the procedures, and 3) specialties of the physicians filing the claims. To determine ownership or leasing, only technical and global claims that occurred in the nonhospital, private-office setting were included in the study. Professional component-only claims were not included. Procedure volume and growth trends were compared between radiologists and other specialties. Between 2002 and 2007, radiologist-owned Medicare PET scans increased by 259%, whereas nonradiologist-owned or nonradiologist-leased scans grew by 737%. Five specialty groups accounted for 95% of all nonradiologist PET volume in 2007: internal medicine subspecialties (28,324 studies in 2007), medical oncology (14,320 studies), cardiology (13,724 studies), radiation oncology (9,563 studies), and primary care (2,398 studies). In 2002, of all Medicare PET examinations performed on units owned or leased by physicians, the share for nonradiologists was 13%; their share rose to 24% in 2007. Although a large percentage of PET scans in private offices are done by radiologists, the growth rate among nonradiologists was far higher between 2002 and 2007 (259% for the former, 737% for the latter). The disproportionately rapid growth of PET scans performed on units owned by nonradiologists raises concern about self-referral at a time when policymakers are struggling to contain costs and reduce radiation exposure.

  17. Design and experimental tests of free electron laser wire scanners

    Science.gov (United States)

    Orlandi, G. L.; Heimgartner, P.; Ischebeck, R.; Loch, C. Ozkan; Trovati, S.; Valitutti, P.; Schlott, V.; Ferianis, M.; Penco, G.

    2016-09-01

    SwissFEL is a x-rays free electron laser (FEL) driven by a 5.8 GeV linac under construction at Paul Scherrer Institut. In SwissFEL, wire scanners (WSCs) will be complementary to view-screens for emittance measurements and routinely used to monitor the transverse profile of the electron beam during FEL operations. The SwissFEL WSC is composed of an in-vacuum beam-probe—motorized by a stepper motor—and an out-vacuum pick-up of the wire signal. The mechanical stability of the WSC in-vacuum hardware has been characterized on a test bench. In particular, the motor induced vibrations of the wire have been measured and mapped for different motor speeds. Electron-beam tests of the entire WSC setup together with different wire materials have been carried out at the 250 MeV SwissFEL Injector Test Facility (SITF, Paul Scherrer Institut, CH) and at FERMI (Elettra-Sincrotrone Trieste, Italy). In particular, a comparative study of the relative measurement accuracy and the radiation-dose release of Al (99 )∶Si (1 ) and tungsten (W) wires has been carried out. On the basis of the outcome of the bench and electron-beam tests, the SwissFEL WSC can be qualified as a high resolution and machine-saving diagnostic tool in consideration of the mechanical stability of the scanning wire at the micrometer level and the choice of the wire material ensuring a drastic reduction of the radiation-dose release with respect to conventional metallic wires. The main aspects of the design, laboratory characterization and electron beam tests of the SwissFEL WSCs are presented.

  18. THE POTENTIAL OF LIGHT LASER SCANNERS DEVELOPED FOR UNMANNED AERIAL VEHICLES – THE REVIEW AND ACCURACY

    OpenAIRE

    M. Pilarska; W. Ostrowski; K. Bakuła; Górski, K.; Z. Kurczyński

    2016-01-01

    Modern photogrammetry and remote sensing have found small Unmanned Aerial Vehicles (UAVs) to be a valuable source of data in various branches of science and industry (e.g., agriculture, cultural heritage). Recently, the growing role of laser scanning in the application of UAVs has also been observed. Laser scanners dedicated to UAVs consist of four basic components: a laser scanner (LiDAR), an Inertial Measurement Unit (IMU), a Global Navigation Satellite System (GNSS) receiver and an on-boar...

  19. A Surface-Based Spatial Registration Method Based on Sense Three-Dimensional Scanner.

    Science.gov (United States)

    Fan, Yifeng; Xu, Xiufang; Wang, Manning

    2017-01-01

    The purpose of this study was to investigate the feasibility of a surface-based registration method based on a low-cost, hand-held Sense three-dimensional (3D) scanner in image-guided neurosurgery system. The scanner was calibrated prior and fixed on a tripod before registration. During registration, a part of the head surface was scanned at first and the spatial position of the adapter was recorded. Then the scanner was taken off from the tripod and the entire head surface was scanned by moving the scanner around the patient's head. All the scan points were aligned to the recorded spatial position to form a unique point cloud of the head by the automatic mosaic function of the scanner. The coordinates of the scan points were transformed from the device space to the adapter space by a calibration matrix, and then to the patient space. A 2-step patient-to-image registration method was then performed to register the patient space to the image space. The experimental results showed that the mean target registration error of 15 targets on the surface of the phantom was 1.61±0.09 mm. In a clinical experiment, the mean target registration error of 7 targets on the patient's head surface was 2.50±0.31 mm, which was sufficient to meet clinical requirements. It is feasible to use the Sense 3D scanner for patient-to-image registration, and the low-cost Sense 3D scanner can take the place of the current used scanner in the image-guided neurosurgery system.

  20. Two-Dimensional Metrology with Flatbed Scanners at Room and Liquid Nitrogen Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A. [CIEMAT. Madrid (Spain)

    2000-07-01

    We study the capability of the commercial flatbed scanner as a measuring instrument of two-coordinate sample both at room and liquid nitrogen temperatures. We describes simple procedure to calibrate the scanner, and the most adequate standard configuration to carry out the measurements. To illustrate the procedure, we measure the relative positions of the conductors in a cross-section of a superconducting magnet of CERN. (Author) 8 refs.

  1. Measuring 3-dimensional tooth movement with a 3-dimensional surface laser scanner

    OpenAIRE

    Thiruvenkatachari, Badri; Al-Abdallah, Mariam; Akram, Noreen C.; Sandler, Jonathan; O'Brien, Kevin

    2009-01-01

    Introduction: Our aims in this study were to (1) develop a method of measuring 3-dimensional (3D) tooth movement using a 3D surface laser scanner, (2) test the accuracy of this method, and (3) compare the measurements with those from cephalometric radiographs. Methods: A method of superimposing pretreatment and posttreatment models on the palatal rugae was developed, and an experimental model was prepared to evaluate the accuracy and reliability of the laser scanner. Records were obtained fro...

  2. Comparison of target volumes in radiotherapy defined on scanner and on PET-T.D.M. with {sup 18}F-F.D.G. in the frame of head and neck cancers; Comparaison des volumes cibles en radiotherapie definis sur scanner et sur TEP-TDM au 18F FDG dans le cadre des cancers de la tete et du cou

    Energy Technology Data Exchange (ETDEWEB)

    Henriques De Figueiredo, B.; Barret, O.; Allard, M.; Fernandez, P. [Service de medecine nucleaire, CHU de Pellegrin, Bordeaux, (France); Demeaux, H.; Maire, J.P.; Lagarde, P. [service de radiotherapie, hopital Saint-Andre, Bordeaux, (France); Kantor, G.; Richau, P. [departement de radiotherapie, institut Bergonie, Bordeaux, (France); De Mones Del Pujol, E. [service d' ORL, hopital Pellegrin, Bordeaux, (France)

    2009-05-15

    The objective is to study in a prospective way, in the frame of head and neck cancers, the impact of the positron computed tomography with {sup 18}F fluorodeoxyglucose (PET-F.D.G.) on the limitation of target volumes in radiotherapy. In conclusions, the gross tumor volume (G.T.V.) defined on PET is smaller than this one defined on scanner, that could be interesting in radiotherapy, in the perspective of a dose escalation. In addition, areas of discordance exist between the clinical target volumes (C.T.V.70 and C.T.V.50) defined on PET and on scanner. These discordances, synonyms of under or over estimation of target volumes, could have important clinical consequences in term of local control and toxicity. (N.C.)

  3. Development and comparison of algorithms for generating a scan sequence for a random access scanner. [ZAP (and flow charts for ZIP and SCAN), in FORTRAN for DEC-10

    Energy Technology Data Exchange (ETDEWEB)

    Eason, R. O.

    1980-09-01

    Many data acquisition systems incorporate high-speed scanners to convert analog signals into digital format for further processing. Some systems multiplex many channels into a single scanner. A random access scanner whose scan sequence is specified by a table in random access memory will permit different scan rates on different channels. Generation of this scan table can be a tedious manual task when there are many channels (e.g. 50), when there are more than a few scan rates (e.g. 5), and/or when the ratio of the highest scan rate to the lowest scan rate becomes large (e.g. 100:1). An algorithm is developed which will generate these scan sequences for the random access scanner and implements the algorithm on a digital computer. Application of number theory to the mathematical statement of the problem led to development of several algorithms which were implemented in FORTRAN. The most efficient of these algorithms operates by partitioning the problem into a set of subproblems. Through recursion they solve each subproblem by partitioning it repeatedly into even smaller parts, continuing until a set of simple problems is created. From this process, a pictorial representation or wheel diagram of the problem can be constructed. From the wheel diagram and a description of the original problem, a scan table can be constructed. In addition, the wheel diagram can be used as a method of storing the scan sequence in a smaller amount of memory. The most efficient partitioning algorithm solved most scan table problems in less than a second of CPU time. Some types of problems, however, required as much as a few minutes of CPU time. 26 figures, 2 tables.

  4. Two-dimensional scanner apparatus. [flaw detector in small flat plates

    Science.gov (United States)

    Kurtz, G. W.; Bankston, B. F. (Inventor)

    1984-01-01

    An X-Y scanner utilizes an eddy current or ultrasonic current test probe to detect surface defects in small flat plates and the like. The apparatus includes a scanner which travels on a pair of slide tubes in the X-direction. The scanner, carried on a carriage which slides in the Y-direction, is driven by a helix shaft with a closed-loop helix groove in which a follower pin carried by scanner rides. The carriage is moved incrementally in the Y-direction upon the completion of travel of the scanner back and forth in the X-direction by means of an indexing actuator and an indexing gear. The actuator is in the form of a ratchet which engages ratchet gear upon return of the scanner to the indexing position. The indexing gear is rotated a predetermined increment along a crack gear to move carriage incrementally in the Y-direction. Thus, simplified highly responsive mechanical motion may be had in a small lightweight portable unit for accurate scanning of small area.

  5. A multispectral scanner survey of the Rocky Flats Environmental Technology Site and surrounding area, Golden, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Brewster, S.B. Jr.; Brickey, D.W.; Ross, S.L.; Shines, J.E.

    1997-04-01

    Aerial multispectral scanner imagery was collected of the Rocky Flats Environmental Technology Site in Golden, Colorado, on June 3, 5, 6, and 7, 1994, using a Daedalus AADS1268 multispectral scanner and coincident aerial color and color infrared photography. Flight altitudes were 4,500 feet (1372 meters) above ground level to match prior 1989 survey data; 2,000 feet (609 meters) above ground level for sitewide vegetation mapping; and 1,000 feet (304 meters) above ground level for selected areas of special interest. A multispectral survey was initiated to improve the existing vegetation classification map, to identify seeps and springs, and to generate ARC/INFO Geographic Information System compatible coverages of the vegetation and wetlands for the entire site including the buffer zone. The multispectral scanner imagery and coincident aerial photography were analyzed for the detection, identification, and mapping of vegetation and wetlands. The multispectral scanner data were processed digitally while the color and color infrared photography were manually photo-interpreted to define vegetation and wetlands. Several standard image enhancement techniques were applied to the multispectral scanner data to assist image interpretation. A seep enhancement was applied and a color composite consisting of multispectral scanner channels 11, 7, and 5 (thermal infrared, mid-infrared, and red bands, respectively) proved most useful for detecting seeps, seep zones, and springs. The predawn thermal infrared data were also useful in identifying and locating seeps. The remote sensing data, mapped wetlands, and ancillary Geographic Information System compatible data sets were spatially analyzed for seeps.

  6. A compact two-dimensional laser scanner based on piezoelectric actuators

    Science.gov (United States)

    Wei, Chen; Sihai, Chen; Dong, Luo; Guohua, Jiao

    2015-01-01

    A compact two-dimensional (2D) single-mirror laser scanner has been designed and prototyped that is structurally small and has high accuracy. The mirror of the scanner is driven by three piezoelectric actuators aligned in parallel and staggered to form a triangular base to provide structural compactness and close drive axes. The mechanical structure and 2D tilt principle of the scanner were analyzed and the architecture was tested. With an asymmetric structure, the scanner has an optical angle of 2.558° and a principle resonance frequency at 1036.8 Hz in the x-axis and 4.495° at 654.0 Hz in the y-axis. Experimental results suggest that, with hysteresis compensation, the nonlinearity of the scanner is reduced to ±0.25% for the x-axis and ±0.3% for the y-axis. With an open-loop controller, the laser scanner can realize linear scanning at several hundred hertz.

  7. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... scanner is typically a large machine with a hole, or short tunnel, in the center. A moveable ... scanners to obtain multiple slices in a single rotation. These scanners, called "multislice CT" or "multidetector CT," ...

  8. A technique for the determination of Louisiana marsh salinity zone from vegetation mapped by multispectral scanner data: A comparison of satellite and aircraft data

    Science.gov (United States)

    Butera, M. K.

    1977-01-01

    Vegetation in selected study areas on the Louisiana coast was mapped using low altitude aircraft and satellite (LANDSAT) multispectral scanner data. Fresh, brackish, and saline marshes were then determined from the remotely sensed presence of dominant indicator plant associations. Such vegetational classifications were achieved from data processed through a standard pattern recognition computer program. The marsh salinity zone maps from the aircraft and satellite data compared favorably within the broad salinity regimes. The salinity zone boundaries determined by remote sensing compared favorably with those interpolated from line-transect field observations from an earlier year.

  9. Fast and accurate line scanner based on white light interferometry

    Science.gov (United States)

    Lambelet, Patrick; Moosburger, Rudolf

    2013-04-01

    White-light interferometry is a highly accurate technology for 3D measurements. The principle is widely utilized in surface metrology instruments but rarely adopted for in-line inspection systems. The main challenges for rolling out inspection systems based on white-light interferometry to the production floor are its sensitivity to environmental vibrations and relatively long measurement times: a large quantity of data needs to be acquired and processed in order to obtain a single topographic measurement. Heliotis developed a smart-pixel CMOS camera (lock-in camera) which is specially suited for white-light interferometry. The demodulation of the interference signal is treated at the level of the pixel which typically reduces the acquisition data by one orders of magnitude. Along with the high bandwidth of the dedicated lock-in camera, vertical scan-speeds of more than 40mm/s are reachable. The high scan speed allows for the realization of inspection systems that are rugged against external vibrations as present on the production floor. For many industrial applications such as the inspection of wafer-bumps, surface of mechanical parts and solar-panel, large areas need to be measured. In this case either the instrument or the sample are displaced laterally and several measurements are stitched together. The cycle time of such a system is mostly limited by the stepping time for multiple lateral displacements. A line-scanner based on white light interferometry would eliminate most of the stepping time while maintaining robustness and accuracy. A. Olszak proposed a simple geometry to realize such a lateral scanning interferometer. We demonstrate that such inclined interferometers can benefit significantly from the fast in-pixel demodulation capabilities of the lock-in camera. One drawback of an inclined observation perspective is that its application is limited to objects with scattering surfaces. We therefore propose an alternate geometry where the incident light is

  10. A television scanner for the ultracentrifuge. II. Multiple cell operation.

    Science.gov (United States)

    Rockholt, D L; Royce, C R; Richards, E G

    1976-07-01

    The "Optical Multichannel Analyzer" (OMA) is a commercially available instrument that with the absorption optical system of the ultracentrifuge, provides an entire 500 channel intensity profile of a cell in real time. With its own analog-todigital converter, the OMA integrates a selectable number of 32.8 msec scans to provide a time-averaged image in digital form. This paper describes an interface-controller for operation of the OMA with single- and double-sector cells in multi-cell rotors, simulating double-beam measurement required for absorbance determinations. The desired sector is selected by "gating" the intensifier stage of a "Silicon Intensified Target" vidicon (SIT) used as the light detector. The cell location in the rotor and the position of the gate relative to the cell centerline is obtained from a phase-locked loop circuit which divides each rotation of the rotor into 3600 parts independent of rotor speed. (This circuit employed with photo-multiplier scanners would select the gate position for integration of photomultiplier pulses.) From examination of appropriate signals with an oscilloscope, it was verified that gate positions and widths are located with an accuracy of 0.1degree or better and with a precision of +/- 0.1 mus. The light intensity profile for any desired cell can be examined in "real time", even during acceleration of the rotor. Additional circuits employing a 10 MHz crystal clock 1) control the automatic collection of data for all sectors in multicell rotors at digitally selected time intervals, 2) display the rotor speed, and 3) indicate the elapsed time of the experiment. Constructed but not tested are additional circuits for pulsing a laser into the absorption or Rayleigh optical system. The accuracy of the pulsed SIT has been demonstrated by measurement of absorbances of solutions and also by sedimentation equilibrium experiments with myoglobin. The estimated error is 0.003 for absorbances ranging from 0 to 1. The interface

  11. Performance evaluation of a high resolution dedicated breast PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    García Hernández, Trinitat, E-mail: mtrinitat@eresa.com; Vicedo González, Aurora; Brualla González, Luis; Granero Cabañero, Domingo [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Ferrer Rebolleda, Jose; Sánchez Jurado, Raúl; Puig Cozar Santiago, Maria del [Department of Nuclear Medicine, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Roselló Ferrando, Joan [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Department of Physiology, University of Valencia, Valencia 46010 (Spain)

    2016-05-15

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ({sup 18}F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) were simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good

  12. Quantitative computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Judith E. [Royal Infirmary and University, Manchester (United Kingdom)], E-mail: judith.adams@manchester.ac.uk

    2009-09-15

    Quantitative computed tomography (QCT) was introduced in the mid 1970s. The technique is most commonly applied to 2D slices in the lumbar spine to measure trabecular bone mineral density (BMD; mg/cm{sup 3}). Although not as widely utilized as dual-energy X-ray absortiometry (DXA) QCT has some advantages when studying the skeleton (separate measures of cortical and trabecular BMD; measurement of volumetric, as opposed to 'areal' DXA-BMDa, so not size dependent; geometric and structural parameters obtained which contribute to bone strength). A limitation is that the World Health Organisation (WHO) definition of osteoporosis in terms of bone densitometry (T score -2.5 or below using DXA) is not applicable. QCT can be performed on conventional body CT scanners, or at peripheral sites (radius, tibia) using smaller, less expensive dedicated peripheral CT scanners (pQCT). Although the ionising radiation dose of spinal QCT is higher than for DXA, the dose compares favorably with those of other radiographic procedures (spinal radiographs) performed in patients suspected of having osteoporosis. The radiation dose from peripheral QCT scanners is negligible. Technical developments in CT (spiral multi-detector CT; improved spatial resolution) allow rapid acquisition of 3D volume images which enable QCT to be applied to the clinically important site of the proximal femur, more sophisticated analysis of cortical and trabecular bone, the imaging of trabecular structure and the application of finite element analysis (FEA). Such research studies contribute importantly to the understanding of bone growth and development, the effect of disease and treatment on the skeleton and the biomechanics of bone strength and fracture.

  13. IMPROVEMENT OF 3D MONTE CARLO LOCALIZATION USING A DEPTH CAMERA AND TERRESTRIAL LASER SCANNER

    Directory of Open Access Journals (Sweden)

    S. Kanai

    2015-05-01

    Full Text Available Effective and accurate localization method in three-dimensional indoor environments is a key requirement for indoor navigation and lifelong robotic assistance. So far, Monte Carlo Localization (MCL has given one of the promising solutions for the indoor localization methods. Previous work of MCL has been mostly limited to 2D motion estimation in a planar map, and a few 3D MCL approaches have been recently proposed. However, their localization accuracy and efficiency still remain at an unsatisfactory level (a few hundreds millimetre error at up to a few FPS or is not fully verified with the precise ground truth. Therefore, the purpose of this study is to improve an accuracy and efficiency of 6DOF motion estimation in 3D MCL for indoor localization. Firstly, a terrestrial laser scanner is used for creating a precise 3D mesh model as an environment map, and a professional-level depth camera is installed as an outer sensor. GPU scene simulation is also introduced to upgrade the speed of prediction phase in MCL. Moreover, for further improvement, GPGPU programming is implemented to realize further speed up of the likelihood estimation phase, and anisotropic particle propagation is introduced into MCL based on the observations from an inertia sensor. Improvements in the localization accuracy and efficiency are verified by the comparison with a previous MCL method. As a result, it was confirmed that GPGPU-based algorithm was effective in increasing the computational efficiency to 10-50 FPS when the number of particles remain below a few hundreds. On the other hand, inertia sensor-based algorithm reduced the localization error to a median of 47mm even with less number of particles. The results showed that our proposed 3D MCL method outperforms the previous one in accuracy and efficiency.

  14. Parametric subharmonic imaging using a commercial intravascular ultrasound scanner: an in vivo feasibility study.

    Science.gov (United States)

    Eisenbrey, John R; Sridharan, Anush; deMuinck, Ebo D; Doyley, Marvin M; Forsberg, Flemming

    2012-03-01

    The feasibility of visualizing atherosclerotic plaque using parametric subharmonic intravascular ultrasound (IVUS) was investigated in vivo. Atherosclerosis was induced in the aorta of 2 rabbits. Following injection of Definity (Lantheus Medical Imaging, North Billerica, MA), radiofrequency IVUS signals were acquired at 40 MHz with a Galaxy IVUS scanner (Boston Scientific/Scimed, Natick, MA). Subharmonic imaging (SHI; receiving at 20 MHz) was performed offline by applying an 8-order equalization filter. Contrast-to-tissue ratios (CTRs) were computed for the vessel relative to the plaque area over 4 time points. Contrast-to-tissue ratios were also calculated for the plaque-tissue and vessel-tissue from 4 tissue regions of interest at 4 time points. Finally, parametric images showing the cumulative maximum intensity (CMI), time to peak, perfusion (PER), and time-integrated intensity (TII) were generated for the fundamental and subharmonic data sets, and CTR measurements were repeated. Injection of the contrast agent resulted in improved delineation between plaque and the vessel lumen. Subharmonic imaging resulted in noticeable tissue suppression, although the intensity from the contrast agent was reduced. No significant improvement in the plaque to vessel lumen CTR was observed between the subharmonic and fundamental IVUS (2.1 ± 3.64 versus 2.2 ± 4.20; P = .5). However, the CTR for plaque-tissue was improved (11.8 ± 7.32 versus 9.9 ± 7.06; P < .0001) for SHI relative to fundamental imaging. Cumulative-maximum-intensity and TII maps of both fundamental and subharmonic data provided increased CTRs relative to nonparametric data sets (P < .002). Additionally, the CMI, PER, and TII of SHI IVUS showed significantly improved vessel-plaque CTRs for SHI relative to the fundamental (P < .04). Parametric SHI IVUS of atherosclerotic plaque is feasible and improves the visualization of the plaque.

  15. Parametric Subharmonic Imaging Using a Commercial Intravascular Ultrasound Scanner An In Vivo Feasibility Study

    Science.gov (United States)

    Eisenbrey, John R.; Sridharan, Anush; deMuinck, Ebo D.; Doyley, Marvin M.; Forsberg, Flemming

    2013-01-01

    Objectives The feasibility of visualizing atherosclerotic plaque using parametric subharmonic intravascular ultrasound (IVUS) was investigated in vivo. Methods Atherosclerosis was induced in the aorta of 2 rabbits. Following injection of Definity (Lantheus Medical Imaging, North Billerica, MA), radiofrequency IVUS signals were acquired at 40 MHz with a Galaxy IVUS scanner (Boston Scientific/Scimed, Natick, MA). Subharmonic imaging (SHI; receiving at 20 MHz) was performed offline by applying an 8-order equalization filter. Contrast-to-tissue ratios (CTRs) were computed for the vessel relative to the plaque area over 4 time points. Contrast-to-tissue ratios were also calculated for the plaque-tissue and vessel-tissue from 4 tissue regions of interest at 4 time points. Finally, parametric images showing the cumulative maximum intensity (CMI), time to peak, perfusion (PER), and time-integrated intensity (TII) were generated for the fundamental and subharmonic data sets, and CTR measurements were repeated. Results Injection of the contrast agent resulted in improved delineation between plaque and the vessel lumen. Subharmonic imaging resulted in noticeable tissue suppression, although the intensity from the contrast agent was reduced. No significant improvement in the plaque to vessel lumen CTR was observed between the subharmonic and fundamental IVUS (2.1 ± 3.64 versus 2.2 ± 4.20; P = .5). However, the CTR for plaque-tissue was improved (11.8 ± 7.32 versus 9.9 ± 7.06; P < .0001) for SHI relative to fundamental imaging. Cumulative-maximum-intensity and TII maps of both fundamental and subharmonic data provided increased CTRs relative to nonparametric data sets (P< .002). Additionally, the CMI, PER, and TII of SHI IVUS showed significantly improved vessel-plaque CTRs for SHI relative to the fundamental (P < .04). Conclusions Parametric SHI IVUS of atherosclerotic plaque is feasible and improves the visualization of the plaque. PMID:22368126

  16. Measurement of scattered radiation in a volumetric 64-slice CT scanner using three experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Akbarzadeh, A; Ay, M R; Sarkar, S [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ghadiri, H [Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Zaidi, H [Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva (Switzerland)], E-mail: mohammadreza_ay@tums.ac.ir

    2010-04-21

    Compton scatter poses a significant threat to volumetric x-ray computed tomography, bringing cupping and streak artefacts thus impacting qualitative and quantitative imaging procedures. To perform appropriate scatter compensation, it is necessary to estimate the magnitude and spatial distribution of x-ray scatter. The aim of this study is to compare three experimental methods for measurement of the scattered radiation profile in a 64-slice CT scanner. The explored techniques involve the use of collimator shadow, a single blocker (a lead bar that suppresses the primary radiation) and an array blocker. The latter was recently proposed and validated by our group. The collimator shadow technique was used as reference for comparison since it established itself as the most accurate experimental procedure available today. The mean relative error of measurements in all tube voltages was 3.9 {+-} 5.5% (with a maximum value of 20%) for the single blocker method whereas it was 1.4 {+-} 1.1% (with a maximum value of 5%) for the proposed blocker array method. The calculated scatter-to-primary ratio (SPR) using the blocker array method for the tube voltages of 140 kVp and 80 kVp was 0.148 and 1.034, respectively. For a larger polypropylene phantom, the maximum SPR achieved was 0.803 and 6.458 at 140 kVp and 80 kVp, respectively. Although the three compared methods present a reasonable accuracy for calculation of the scattered profile in the region corresponding to the object, the collimator shadow method is by far the most accurate empirical technique. Nevertheless, the blocker array method is relatively straightforward for scatter estimation providing minor additional radiation exposure to the patient.

  17. Measurement properties and usability of non-contact scanners for measuring transtibial residual limb volume.

    Science.gov (United States)

    Kofman, Rianne; Beekman, Anna M; Emmelot, Cornelis H; Geertzen, Jan H B; Dijkstra, Pieter U

    2017-11-01

    Non-contact scanners may have potential for measurement of residual limb volume. Different non-contact scanners have been introduced during the last decades. Reliability and usability (practicality and user friendliness) should be assessed before introducing these systems in clinical practice. The aim of this study was to analyze the measurement properties and usability of four non-contact scanners (TT Design, Omega Scanner, BioSculptor Bioscanner, and Rodin4D Scanner). Quasi experimental. Nine (geometric and residual limb) models were measured on two occasions, each consisting of two sessions, thus in total 4 sessions. In each session, four observers used the four systems for volume measurement. Mean for each model, repeatability coefficients for each system, variance components, and their two-way interactions of measurement conditions were calculated. User satisfaction was evaluated with the Post-Study System Usability Questionnaire. Systematic differences between the systems were found in volume measurements. Most of the variances were explained by the model (97%), while error variance was 3%. Measurement system and the interaction between system and model explained 44% of the error variance. Repeatability coefficient of the systems ranged from 0.101 (Omega Scanner) to 0.131 L (Rodin4D). Differences in Post-Study System Usability Questionnaire scores between the systems were small and not significant. The systems were reliable in determining residual limb volume. Measurement systems and the interaction between system and residual limb model explained most of the error variances. The differences in repeatability coefficient and usability between the four CAD/CAM systems were small. Clinical relevance If accurate measurements of residual limb volume are required (in case of research), modern non-contact scanners should be taken in consideration nowadays.

  18. Automatic Channel Fault Detection on a Small Animal APD-Based Digital PET Scanner

    Science.gov (United States)

    Charest, Jonathan; Beaudoin, Jean-François; Cadorette, Jules; Lecomte, Roger; Brunet, Charles-Antoine; Fontaine, Réjean

    2014-10-01

    Avalanche photodiode (APD) based positron emission tomography (PET) scanners show enhanced imaging capabilities in terms of spatial resolution and contrast due to the one to one coupling and size of individual crystal-APD detectors. However, to ensure the maximal performance, these PET scanners require proper calibration by qualified scanner operators, which can become a cumbersome task because of the huge number of channels they are made of. An intelligent system (IS) intends to alleviate this workload by enabling a diagnosis of the observational errors of the scanner. The IS can be broken down into four hierarchical blocks: parameter extraction, channel fault detection, prioritization and diagnosis. One of the main activities of the IS consists in analyzing available channel data such as: normalization coincidence counts and single count rates, crystal identification classification data, energy histograms, APD bias and noise thresholds to establish the channel health status that will be used to detect channel faults. This paper focuses on the first two blocks of the IS: parameter extraction and channel fault detection. The purpose of the parameter extraction block is to process available data on individual channels into parameters that are subsequently used by the fault detection block to generate the channel health status. To ensure extensibility, the channel fault detection block is divided into indicators representing different aspects of PET scanner performance: sensitivity, timing, crystal identification and energy. Some experiments on a 8 cm axial length LabPET scanner located at the Sherbrooke Molecular Imaging Center demonstrated an erroneous channel fault detection rate of 10% (with a 95% confidence interval (CI) of [9, 11]) which is considered tolerable. Globally, the IS achieves a channel fault detection efficiency of 96% (CI: [95, 97]), which proves that many faults can be detected automatically. Increased fault detection efficiency would be

  19. RES-Scanner: a software package for genome-wide identification of RNA-editing sites.

    Science.gov (United States)

    Wang, Zongji; Lian, Jinmin; Li, Qiye; Zhang, Pei; Zhou, Yang; Zhan, Xiaoyu; Zhang, Guojie

    2016-08-18

    High-throughput sequencing (HTS) provides a powerful solution for the genome-wide identification of RNA-editing sites. However, it remains a great challenge to distinguish RNA-editing sites from genetic variants and technical artifacts caused by sequencing or read-mapping errors. Here we present RES-Scanner, a flexible and efficient software package that detects and annotates RNA-editing sites using matching RNA-seq and DNA-seq data from the same individuals or samples. RES-Scanner allows the use of both raw HTS reads and pre-aligned reads in BAM format as inputs. When inputs are HTS reads, RES-Scanner can invoke the BWA mapper to align reads to the reference genome automatically. To rigorously identify potential false positives resulting from genetic variants, we have equipped RES-Scanner with sophisticated statistical models to infer the reliability of homozygous genotypes called from DNA-seq data. These models are applicable to samples from either single individuals or a pool of multiple individuals if the ploidy information is known. In addition, RES-Scanner implements statistical tests to distinguish genuine RNA-editing sites from sequencing errors, and provides a series of sophisticated filtering options to remove false positives resulting from mapping errors. Finally, RES-Scanner can improve the completeness and accuracy of editing site identification when the data of multiple samples are available. RES-Scanner, as a software package written in the Perl programming language, provides a comprehensive solution that addresses read mapping, homozygous genotype calling, de novo RNA-editing site identification and annotation for any species with matching RNA-seq and DNA-seq data. The package is freely available.

  20. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... resulting in more detail and additional view capabilities. Modern CT scanners are so fast that they can ... to ensure that you are properly positioned. With modern CT scanners, you will hear only slight buzzing, ...

  1. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... resulting in more detail and additional view capabilities. Modern CT scanners are so fast that they can ... to ensure that you are properly positioned. With modern CT scanners, you will hear only slight buzzing, ...

  2. Development of CT scanner models for patient organ dose calculations using Monte Carlo methods

    Science.gov (United States)

    Gu, Jianwei

    There is a serious and growing concern about the CT dose delivered by diagnostic CT examinations or image-guided radiation therapy imaging procedures. To better understand and to accurately quantify radiation dose due to CT imaging, Monte Carlo based CT scanner models are needed. This dissertation describes the development, validation, and application of detailed CT scanner models including a GE LightSpeed 16 MDCT scanner and two image guided radiation therapy (IGRT) cone beam CT (CBCT) scanners, kV CBCT and MV CBCT. The modeling process considered the energy spectrum, beam geometry and movement, and bowtie filter (BTF). The methodology of validating the scanner models using reported CTDI values was also developed and implemented. Finally, the organ doses to different patients undergoing CT scan were obtained by integrating the CT scanner models with anatomically-realistic patient phantoms. The tube current modulation (TCM) technique was also investigated for dose reduction. It was found that for RPI-AM, thyroid, kidneys and thymus received largest dose of 13.05, 11.41 and 11.56 mGy/100 mAs from chest scan, abdomen-pelvis scan and CAP scan, respectively using 120 kVp protocols. For RPI-AF, thymus, small intestine and kidneys received largest dose of 10.28, 12.08 and 11.35 mGy/100 mAs from chest scan, abdomen-pelvis scan and CAP scan, respectively using 120 kVp protocols. The dose to the fetus of the 3 month pregnant patient phantom was 0.13 mGy/100 mAs and 0.57 mGy/100 mAs from the chest and kidney scan, respectively. For the chest scan of the 6 month patient phantom and the 9 month patient phantom, the fetal doses were 0.21 mGy/100 mAs and 0.26 mGy/100 mAs, respectively. For MDCT with TCM schemas, the fetal dose can be reduced with 14%-25%. To demonstrate the applicability of the method proposed in this dissertation for modeling the CT scanner, additional MDCT scanner was modeled and validated by using the measured CTDI values. These results demonstrated that the

  3. CT Angiography of Peripheral Arterial Disease by 256-Slice Scanner: Accuracy, Advantages and Disadvantages Compared to Digital Subtraction Angiography.

    Science.gov (United States)

    Mishra, Atul; Jain, Narendra; Bhagwat, Anand

    2017-07-01

    Peripheral arterial occlusive disease (PAOD) may cause disabling claudication or critical limb ischemia. Multidetector computed tomography (CT) technology has evolved to the level of 256-slice CT scanners which has significantly improved the spatial and temporal resolution of the images. This has provided the capability of chasing the contrast bolus at a fast speed enabling angiographic imaging of long segments of the body. These images can be reconstructed in various planes and various modes for detailed analysis of the peripheral vascular diseases which helps in making treatment decision. The aim of this retrospective study was to compare the CT angiograms (CTAs) of all cases of PAOD done by 256-slice CT scanner at a tertiary care vascular center and comparing these images with the digital subtraction angiograms (DSAs) of these patients. The retrospective study included 53 patients who underwent both CTA and DSA at our center over a period of 3 years from March 2013 to March 2016. The CTA showed high sensitivity (93%) and specificity (92.7%) for overall assessment of degree of stenosis in a vascular segment in cases of aortic and lower limb occlusive disease. The assessment of lesions of infrapopliteal segment was comparatively inferior (sensitivity 91.6%, accuracy 73.3%, and positive predictive value 78.5%), more so in the presence of significant calcification. The advantages of CTA were its noninvasive nature, ability to image large area of body, almost no adverse effects to the patients, and better assessment of vessel wall disease. However, the CTA assessment of collaterals was inferior with a sensitivity of only 62.7% as compared to DSA. Overall, 256-slice CTA provides fast and accurate imaging of vascular tree which can restrict DSA only in few selected cases as a problem-solving tool where clinico-radiological mismatch is present.

  4. A LabVIEW® based generic CT scanner control software platform.

    Science.gov (United States)

    Dierick, M; Van Loo, D; Masschaele, B; Boone, M; Van Hoorebeke, L

    2010-01-01

    UGCT, the Centre for X-ray tomography at Ghent University (Belgium) does research on X-ray tomography and its applications. This includes the development and construction of state-of-the-art CT scanners for scientific research. Because these scanners are built for very different purposes they differ considerably in their physical implementations. However, they all share common principle functionality. In this context a generic software platform was developed using LabVIEW® in order to provide the same interface and functionality on all scanners. This article describes the concept and features of this software, and its potential for tomography in a research setting. The core concept is to rigorously separate the abstract operation of a CT scanner from its actual physical configuration. This separation is achieved by implementing a sender-listener architecture. The advantages are that the resulting software platform is generic, scalable, highly efficient, easy to develop and to extend, and that it can be deployed on future scanners with minimal effort.

  5. An ethics of body scanners: requirements and future challenges from an ethical point of view

    Science.gov (United States)

    Rampp, Benjamin; Wolkenstein, Andreas F. X.; Ammicht Quinn, Regina

    2011-05-01

    At the moment, body scanners based on terahertz and millimeter-wave technologies are implemented at airports around the world. Thus, challenges of acceptance and acceptability become pressing. In this context, we present the results of an ethical research project on the development and implementation of body scanners. We will show which requirements concerning the system, its developers, and its users should be met in order that the scanners can be acceptable from an ethical point of view. These requirements involve, among others, questions of privacy, health, data protection, and security processes. A special ethical challenge for body scanners, however, still remains: Automatic anonymization processes are based on the assumption of "normal" bodies. Certain groups of persons with "deviant bodies" (e.g. persons with hidden disabilities, persons with aberrant sex characteristics, etc.) are affected in a special way: Their deviation from the standard (for instance their disability) is socially hidden, but eventually exposed by body scanners, even (and even more) if the produced pictures are anonymized. Here, we address the question how the possible discrimination against and exclusion of people with "deviant bodies" could be mitigated or prevented.

  6. TIMESTAMP OFFSET DETERMINATION BETWEEN AN ACTUATED LASER SCANNER AND ITS CORRESPONDING MOTOR

    Directory of Open Access Journals (Sweden)

    R. Voges

    2017-05-01

    Full Text Available Motor actuated 2D laser scanners are key sensors for many robotics applications that need wide ranging but low cost 3D data. There exist many approaches on how to build a 3D laser scanner using this technique, but they often lack proper synchronization for the timestamps of the actuator and the laser scanner. However, to transform the measurement points into three-dimensional space an appropriate synchronization is mandatory. Thus, we propose two different approaches to accomplish the goal of calculating timestamp offsets between laser scanner and motor prior to and after data acquisition. Both approaches use parts of a SLAM algorithm but apply different criteria to find an appropriate solution. While the approach for offset calculation prior to data acquisition exploits the fact that the SLAM algorithm should not register motion for a stationary system, the approach for offset calculation after data acquisition evaluates the perceived clarity of a point cloud created by the SLAM algorithm. Our experiments show that both approaches yield the same results although operating independently on different data, which demonstrates that the results reflect reality with a high probability. Furthermore, our experiments exhibit the significance of a proper synchronization between laser scanner and actuator.

  7. Timestamp Offset Determination Between AN Actuated Laser Scanner and its Corresponding Motor

    Science.gov (United States)

    Voges, R.; Wieghardt, C. S.; Wagner, B.

    2017-05-01

    Motor actuated 2D laser scanners are key sensors for many robotics applications that need wide ranging but low cost 3D data. There exist many approaches on how to build a 3D laser scanner using this technique, but they often lack proper synchronization for the timestamps of the actuator and the laser scanner. However, to transform the measurement points into three-dimensional space an appropriate synchronization is mandatory. Thus, we propose two different approaches to accomplish the goal of calculating timestamp offsets between laser scanner and motor prior to and after data acquisition. Both approaches use parts of a SLAM algorithm but apply different criteria to find an appropriate solution. While the approach for offset calculation prior to data acquisition exploits the fact that the SLAM algorithm should not register motion for a stationary system, the approach for offset calculation after data acquisition evaluates the perceived clarity of a point cloud created by the SLAM algorithm. Our experiments show that both approaches yield the same results although operating independently on different data, which demonstrates that the results reflect reality with a high probability. Furthermore, our experiments exhibit the significance of a proper synchronization between laser scanner and actuator.

  8. Analysis of the Performance of a Laser Scanner for Predictive Automotive Applications

    Science.gov (United States)

    Zeisler, J.; Maas, H.-G.

    2015-08-01

    In this paper we evaluate the use of a laser scanner for future advanced driver assistance systems. We focus on the important task of predicting the target vehicle for longitudinal ego vehicle control. Our motivation is to decrease the reaction time of existing systems during cut-in maneuvers of other traffic participants. A state-of-the-art laser scanner, the Ibeo Scala B2 R , is presented, providing its sensing characteristics and the subsequent high level object data output. We evaluate the performance of the scanner towards object tracking with the help of a GPS real time kinematics system on a test track. Two designed scenarios show phases with constant distance and velocity as well as dynamic motion of the vehicles. We provide the results for the error in position and velocity of the scanner and furthermore, review our algorithm for target vehicle prediction. Finally we show the potential of the laser scanner with the estimated error, that leads to a decrease of up to 40% in reaction time with best conditions.

  9. Characterization of avalanche photodiode arrays for the ClearPEM and ClearPEM-Sonic scanners

    Science.gov (United States)

    Bugalho, R.; Carriço, B.; Ferreira, C. S.; Frade, M.; Ferreira, M.; Moura, R.; Neves, J.; Ortigão, C.; Pinheiro, J. F.; Rodrigues, P.; Rolo, I.; Silva, J. C.; Silva, R.; Trindade, A.; Varela, J.

    2009-09-01

    The ClearPEM scanner is a high-resolution Positron Emission Mammography prototype, developed by the Portuguese PET Consortium in the framework of the Crystal Clear Collaboration at the European Organization for Nuclear Research (CERN). The scanner is based on a novel readout scheme which uses fine-pitch scintillator crystals, avalanche photodiodes, low-noise high-gain integrated electronics and a fast reconfigurable digital data acquisition system. The scanner uses two planar detector heads each composed of 96 detector modules. The detector module is composed of a matrix of 32 identical 2 × 2 × 20 mm3 LYSO:Ce scintillator crystals, coupled at both ends to Hamamatsu S8550 APD arrays for Depth-of-Interaction (DOI) measurements. More recently, a new scanner named ClearPEM-Sonic which combines the ClearPEM technology with an Ultrasound apparatus, is being produced. A set of 984 APD arrays used in both scanner assemblies followed a quality control protocol and a characterization procedure. This paper describes the methods used in these measurements and the results obtained with the full APD production batch.

  10. A novel shoe scanner using an open-access quadrupole resonance and metal sensor

    Science.gov (United States)

    Crowley, C.; Petrov, T.; Mitchell, O.; Shelby, R.; Ficke, L.; Kumar, S.; Prado, P.

    2007-04-01

    Airport security and efficiency are both compromised by the process of requiring passengers to remove their shoe. A novel shoe scanner developed at the GE Security San Diego Center of Excellence uses both Quadrupole Resonance (QR) and configuration-sensitive metal detection to identify threats hidden in shoes. The shoe scanner was developed with an open-access chassis and scanning chamber that allows passengers to stand in the system in a natural position during the scanning process. More traditional magnetic resonance systems are closed or partially closed and cannot be used for screening personnel because the scanning chambers confine the object in question. The shoe scanner's novelty lies in a particular chassis geometry that allows both QR and metal screening. The resulting scanning system achieves the same level of performance as a more confining system. The shoe scanner is small enough to allow integration with other sensors such as the GE Itemizer FX TM trace detection system. In fact, the first application of the novel shoe scanner is expected to be as a component in a multi-sensor verification and security system known as the Secure Registered Traveler (SRT) Kiosk. The SRT kiosk is designed to be used as part of the TSA's Registered Traveler Program.

  11. Multipurpose Pressure Vessel Scanner and Photon Doppler Velocimetry

    Science.gov (United States)

    Ellis, Tayera

    2015-01-01

    Critical flight hardware typically undergoes a series of nondestructive evaluation methods to screen for defects before it is integrated into the flight system. Conventionally, pressure vessels have been inspected for flaws using a technique known as fluorescent dye penetrant, which is biased to inspector interpretation. An alternate method known as eddy current is automated and can detect small cracks better than dye penetrant. A new multipurpose pressure vessel scanner has been developed to perform internal and external eddy current scanning, laser profilometry, and thickness mapping on pressure vessels. Before this system can be implemented throughout industry, a probability of detection (POD) study needs to be performed to validate the system’s eddy current crack/flaw capabilities. The POD sample set will consist of 6 flight-like metal pressure vessel liners with defects of known size. Preparation for the POD includes sample set fabrication, system operation, procedure development, and eddy current settings optimization. For this, collaborating with subject matter experts was required. This technical paper details the preparation activities leading up to the POD study currently scheduled for winter 2015/2016. Once validated, this system will be a proven innovation for increasing the safety and reliability of necessary flight hardware.Additionally, testing of frangible joint requires Photon Doppler Velocimetry (PDV) and Digital Image Correlation instrumentation. There is often noise associated with PDV data, which necessitates a frequency modulation (FM) signal-to-noise pre-test. Generally, FM radio works by varying the carrier frequency and mixing it with a fixed frequency source, creating a beat frequency which is represented by audio frequency that can be heard between about 20 to 20,000 Hz. Similarly, PDV reflects a shifted frequency (a phenomenon known as the Doppler Effect) from a moving source and mixes it with a fixed source frequency, which results in

  12. A Wire Scanner Design for Electron Beam Profile Measurement in the Linac Coherent Light Source Undulator

    CERN Document Server

    Bailey, James L; Yang Bing Xin

    2005-01-01

    The Linac Coherent Light Source (LCLS), currently under design, requires beam diagnostic instruments between the magnets in the beam undulator section. Ten wire scanners are planned as one of the primary instruments to characterize electron beam properties. The development of these wire scanners presents several design challenges due to the need for high accuracy and resolution of the wire motion (3 microns tolerance, typical) and the high intensity of the beam (3400 A over an area of 30 micron rms radius). In this paper, we present the technical specification and design criteria for the scanners. We will also present the mechanical design of the UHV-compatible drive and its engineering analysis. Lastly, we present the wire card design and discuss associated thermal and mechanical issues originating from the highly intense x-ray and electron beams.

  13. Pixelated scintillator-based compact radio thin layer chromatography scanner for radiopharmaceuticals quality control

    Science.gov (United States)

    Jeon, S. J.; Kim, K. M.; Lim, I.; Song, K.; Kim, J. G.

    2017-11-01

    We evaluated a compact and cost-effective radio thin-layer chromatography (radio-TLC) scanner for the quality control (QC) of radiopharmaceuticals. We adapted a scintillation detector, which is a Gd3Al2Ga3O12 (GAGG:Ce) scintillation crystal array coupled with a photodiode array. The performance of the scintillator array-based radio-TLC was compared with that of a commercial device. We scanned 1 μCi/μL of Tc-99m and F-18 with each device. The difference between the ROI count ratios of the developed and commercial scanners was less than 1.2%. Our scanner is sensitive enough to take measurements for a radiochemical purity test.

  14. Measurement of MRI scanner noise; Schalldruckpegelmessungen an einer MRT-Anlage

    Energy Technology Data Exchange (ETDEWEB)

    Knoergen, M.; Spielmann, R.P.; Melkus, G. [Klinik fuer Diagnostische Radiologie, Klinikum der Martin-Luther-Univ. Halle-Wittenberg (Germany); Haberland, E.J. [Klinik fuer Hals-, Nasen-, Ohrenheilkunde, Kopf- und Halschirurgie, Klinikum der Martin-Luther-Univ. Halle-Wittenberg (Germany)

    2004-07-01

    The present paper describes a simple method for the analysis of MRI scanner noise. Besides the heating of body tissue by strong RF radiation and the formation of circular currents in the body induced bey switching field gradients, a noise level of more than 100 dB(A) during the measurement belongs to the potential risks of MRI [1,2]. This risk is of particular concern for staff and accompanying persons who remain close to the scanner for different reasons (e.g., monitoring of anesthetized patients, reassuring of children). For this reason, and given the scanty information on noise provided in the manuals of the scanners, it is useful to quantify the noise level more exactly. This applies also to the evaluation of different sound-reducing methods for the patient. This presents the results of noise level measurements in the tomograph and in its surrounding, with and without noise reduction by headphones. (orig.)

  15. A wire scanner system for characterizing the BNL energy recovery LINAC beam position monitor system

    Energy Technology Data Exchange (ETDEWEB)

    Michnoff R.; Biscardi, C.; Cerniglia, P.; Degen, C.; Gassner, D.; Hoff, L.; Hulsart, R.

    2012-04-15

    A stepper motor controlled wire scanner system has recently been modified to support testing of the Brookhaven National Laboratory (BNL) Collider-Accelerator department's Energy Recovery Linac (ERL) beam position monitor (BPM) system. The ERL BPM consists of four 9.33 mm diameter buttons mounted at 90 degree spacing in a cube with 1.875 inch inside diameter. The buttons were designed by BNL and fabricated by Times Microwave Systems. Libera brilliance single pass BPM electronic modules with 700 MHz bandpass filter, manufactured by Instrumentation Technologies, will be used to measure the transverse beam positions at 14 locations around the ERL. The wire scanner assembly provides the ability to measure the BPM button response to a pulsed wire, and evaluate and calibrate the Libera position measurement electronics. A description of the wire scanner system and test result data will be presented.

  16. Minimisation of the wire position uncertainties of the new CERN vacuum wire scanner

    CERN Document Server

    AUTHOR|(CDS)2069346; Barjau Condomines, A

    In the next years the luminosity of the LHC will be significantly increased. This will require a much higher accuracy of beam profile measurement than actually achievable by the current wire scanner. The new fast wire scanner is foreseen to measure small emittance beams throughout the LHC injector chain, which demands a wire travelling speed up to 20 ms-1 and position measurement accuracy of the order of a few microns. The vibrations of the mechanical parts of the system, and particularly the vibrations of the thin carbon wire, were identified as the major error sources of wire position uncertainty. Therefore the understanding of the wire vibrations is a high priority for the design and operation of the new device. This document presents the work performed to understand the main causes of the wire vibrations observed in one of the existing wire scanner and the new proposed design.

  17. Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Nikolov, Svetoslav Ivanov; Pedersen, Mads Møller

    2012-01-01

    This paper describes the design and implementation of a versatile, open-architecture research data acquisition system using a commercially available medical ultrasound scanner. The open architecture will allow researchers and clinicians to rapidly develop applications and move them relatively easy...... to the clinic. The system consists of a standard PC equipped with a camera link and an ultrasound scanner equipped with a research interface. The ultrasound scanner is an easy-to-use imaging device that is capable of generating high-quality images. In addition to supporting the acquisition of multiple data...... to give researchers and clinicians the ability to utilize third-party software for data analysis and flexible manipulation of control parameters. Because of the advantages of speed of acquisition and clinical benefit, research projects have successfully used the system to test and implement...

  18. ON GROUND SURFACE EXTRACTION USING FULL-WAVEFORM AIRBORNE LASER SCANNER FOR CIM

    Directory of Open Access Journals (Sweden)

    K. Nakano

    2015-05-01

    Full Text Available Satellite positioning systems such as GPS and GLONASS have created significant changes not only in terms of spatial information but also in the construction industry. It is possible to execute a suitable construction plan by using a computerized intelligent construction. Therefore, an accurate estimate of the amount of earthwork is important for operating heavy equipment, and measurement of ground surface with high accuracy is required. A full-waveform airborne laser scanner is expected to be capable of improving the accuracy of ground surface extraction for forested areas, in contrast to discrete airborne laser scanners, as technological innovation. For forested areas, fundamental studies for construction information management (CIM were conducted to extract ground surface using full-waveform airborne laser scanners based on waveform information.

  19. On Ground Surface Extraction Using Full-Waveform Airborne Laser Scanner for Cim

    Science.gov (United States)

    Nakano, K.; Chikatsu, H.

    2015-05-01

    Satellite positioning systems such as GPS and GLONASS have created significant changes not only in terms of spatial information but also in the construction industry. It is possible to execute a suitable construction plan by using a computerized intelligent construction. Therefore, an accurate estimate of the amount of earthwork is important for operating heavy equipment, and measurement of ground surface with high accuracy is required. A full-waveform airborne laser scanner is expected to be capable of improving the accuracy of ground surface extraction for forested areas, in contrast to discrete airborne laser scanners, as technological innovation. For forested areas, fundamental studies for construction information management (CIM) were conducted to extract ground surface using full-waveform airborne laser scanners based on waveform information.

  20. An Enhanced Rule-Based Web Scanner Based on Similarity Score

    Directory of Open Access Journals (Sweden)

    LEE, M.

    2016-08-01

    Full Text Available This paper proposes an enhanced rule-based web scanner in order to get better accuracy in detecting web vulnerabilities than the existing tools, which have relatively high false alarm rate when the web pages are installed in unconventional directory paths. Using the proposed matching method based on similarity score, the proposed scheme can determine whether two pages have the same vulnerabilities or not. With this method, the proposed scheme is able to figure out the target web pages are vulnerable by comparing them to the web pages that are known to have vulnerabilities. We show the proposed scanner reduces 12% false alarm rate compared to the existing well-known scanner through the performance evaluation via various experiments. The proposed scheme is especially helpful in detecting vulnerabilities of the web applications which come from well-known open-source web applications after small customization, which happens frequently in many small-sized companies.

  1. First Experimental Results And Improvements On Profile Measurements With The Vibrating Wire Scanner

    CERN Document Server

    Arutunian, S G; Dobrovolski, N M; Mailian, M R; Soghoyan, H E; Vasiniuk, I E

    2003-01-01

    The paper presents the first experimental results of transverse profile scans using a wire scanner based on a vibrating wire (vibrating wire scanner - VWS). The measurements were performed at the injector electron beam (6 nA) of the Yerevan synchrotron. The beam profile information is obtained by measuring the wire natural oscillations that depend on the wire temperature. This first experiments on weak electron beam proved this new method as a very sensitive tool, even suitable for tail measurements. Additional, improvements were tested to overcome some problems connected with signal conditioning and signal transfer in the presence of electromagnetic noise. As a result the noises were neatly separated and reduced. A mathematical method for rejection of distorted data was developed. Experiments with the scanner at the PETRA accelerator at DESY are planned for measurements of beam tails.

  2. Risks of exposure to ionizing and millimeter-wave radiation from airport whole-body scanners.

    Science.gov (United States)

    Moulder, John E

    2012-06-01

    Considerable public concern has been expressed around the world about the radiation risks posed by the backscatter (ionizing radiation) and millimeter-wave (nonionizing radiation) whole-body scanners that have been deployed at many airports. The backscatter and millimeter-wave scanners currently deployed in the U.S. almost certainly pose negligible radiation risks if used as intended, but their safety is difficult-to-impossible to prove using publicly accessible data. The scanners are widely disliked and often feared, which is a problem made worse by what appears to be a veil of secrecy that covers their specifications and dosimetry. Therefore, for these and future similar technologies to gain wide acceptance, more openness is needed, as is independent review and regulation. Publicly accessible, and preferably peer-reviewed evidence is needed that the deployed units (not just the prototypes) meet widely-accepted safety standards. It is also critical that risk-perception issues be handled more competently.

  3. Detection of analyte binding to microarrays using gold nanoparticle labels and a desktop scanner

    DEFF Research Database (Denmark)

    Han, Anpan; Dufva, Martin; Belleville, Erik

    2003-01-01

    six attomoles of antibody-gold conjugates. This detection system was used in a competitive immunoassay to measure the concentration of the pesticide metabolite 2,6-dichlorobenzamide (BAM) in water samples. The results showed that the gold labeled antibodies functioned comparably with a fluorescent...... on gold nanoparticle labeled antibodies visualized by a commercial, office desktop flatbed scanner. Scanning electron microscopy studies showed that the signal from the flatbed scanner was proportional to the surface density of the bound antibody-gold conjugates, and that the flatbed scanner could detect...... based immunoassay for detecting BAM in water. A qualitative immunoassay based on gold-labeled antibodies could determineif a water sample contained BAM above and below 60-70 ng L(-1), which is below the maximum allowed BAM concentration for drinking water (100 ng L(-1)) according to European Union...

  4. Conceptual study of Earth observation missions with a space-borne laser scanner

    Science.gov (United States)

    Kobayashi, Takashi; Sato, Yohei; Yamakawa, Shiro

    2017-11-01

    The Japan Aerospace Exploration Agency (JAXA) has started a conceptual study of earth observation missions with a space-borne laser scanner (GLS, as Global Laser Scanner). Laser scanners are systems which transmit intense pulsed laser light to the ground from an airplane or a satellite, receive the scattered light, and measure the distance to the surface from the round-trip delay time of the pulse. With scanning mechanisms, GLS can obtain high-accuracy three-dimensional (3D) information from all over the world. High-accuracy 3D information is quite useful in various areas. Currently, following applications are considered. 1. Observation of tree heights to estimate the biomass quantity. 2. Making the global elevation map with high resolution. 3. Observation of ice-sheets. This paper aims at reporting the present state of our conceptual study of the GLS. A prospective performance of the GLS for earth observation missions mentioned above.

  5. Static field influences on transcranial magnetic stimulation: considerations for TMS in the scanner environment.

    Science.gov (United States)

    Yau, Jeffrey M; Jalinous, Reza; Cantarero, Gabriela L; Desmond, John E

    2014-01-01

    Transcranial magnetic stimulation (TMS) can be combined with functional magnetic resonance imaging (fMRI) to simultaneously manipulate and monitor human cortical responses. Although tremendous efforts have been directed at characterizing the impact of TMS on image acquisition, the influence of the scanner's static field on the TMS coil has received limited attention. The aim of this study was to characterize the influence of the scanner's static field on TMS. We hypothesized that spatial variations in the static field could account for TMS field variations in the scanner environment. Using an MRI-compatible TMS coil, we estimated TMS field strengths based on TMS-induced voltage changes measured in a search coil. We compared peak field strengths obtained with the TMS coil positioned at different locations (B0 field vs fringe field) and orientations in the static field. We also measured the scanner's static field to derive a field map to account for TMS field variations. TMS field strength scaled depending on coil location and orientation with respect to the static field. Larger TMS field variations were observed in fringe field regions near the gantry as compared to regions inside the bore or further removed from the bore. The scanner's static field also exhibited the greatest spatial variations in fringe field regions near the gantry. The scanner's static field influences TMS fields and spatial variations in the static field correlate with TMS field variations. Coil orientation changes in the B0 field did not result in substantial TMS field variations. TMS field variations can be minimized by delivering TMS in the bore or outside of the 0-70 cm region from the bore entrance. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Motion Tracking Of A Handheld Scanner With An Infrared Vision System

    Energy Technology Data Exchange (ETDEWEB)

    Seppi, Jeremy H.; Hatchell, Brian K.; McMakin, Douglas L.

    2011-08-07

    Handheld scanners are used in a large number of applications to inspect walls, floors, tanks, and other large structures. Measurements are made to characterize physical properties, uncover defects, detect evidence of tampering, quantify surface contamination, and so forth. Handheld scanning suffers from a number of drawbacks. The relationship between the data collected and scanned location is difficult or impossible to track. Humans using handheld scanners can unintentionally scan the same area multiple times or entirely overlook an area of interest. An automated scanner tracking system could improve upon current inspection practices with a handheld scanner in terms of efficiency, accuracy, and quality. The authors have developed a handheld scanner tracking system that will allow users to visualize previously scanned areas, highlight areas where important or unusual data are acquired, and store scanning location with acquired data. The scanned regions are saved in real time and projected back on the scanned area using a projector. The system currently utilizes the Smoothboard software, which has already been designed to interpret the location of a captured infrared source from a Wii Remote controller to create an interactive whiteboard. This software takes advantage of the Wii Remote’s ability to track the location of an infrared source, and when proper calibration of the Wii Remote orientation is complete, any surface can become a virtual whiteboard. In addition to recording and projecting scan pathways, the system developed by the authors can be used to make notes on the scanning process and project acquired data on top of the scanned area. This latter capability can be used to guide sample acquisition or demolition activities. This paper discusses development of the system and potential benefits to wall scanning with handheld scanners.

  7. Using of scanner on the evaluation of pesticides mobility by thin-layer chromatography; Utilizacao do scanner na avaliacao da mobilidade de agrotoxicos por cromatografia de camada delgada

    Energy Technology Data Exchange (ETDEWEB)

    Tornisielo, V.L.; Costa, M.A.; Furlan, G.R. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)

    1995-12-31

    Knowledge of pesticide leaching potential is an essential information to preview environmental fate. The experiment confirms the possibility of using radiochromatogram scanning as a substitute for X-ray autoradiography, when Thin Layer Chromatografy (TLC) methodogy is used to determine mobility of a pesticide. Three types of soil from Sao Paulo state and five herbicides (metolachlor, asulan, simazing, 2,4-D and trifluralin), labeled with {sup 14} C, were used. The radiochromatogram scanners permits a quick detection of the position of the radioactive spots to determine the Rf for each pesticide, while X-ray film has to be placed on the plate on the dark room for several days or weeks and then developed to detect spots, subsequently measure and calculate Rf. The results showed that the evaluation by scanner and X-ray were similar. Hence we conclude that the use of the scanner should be considered since this methodology is faster and as accurate as the X-ray methodology. (author). 4 refs, 1 fig, 2 tabs.

  8. Improvement of 200 kHz optical beam scanner performance with multiple internal reflection

    Directory of Open Access Journals (Sweden)

    Seiji Toyoda

    2014-01-01

    Full Text Available The authors have realised a KTa(xNb(1−(xO(3-based optical beam scanner that has three- and five-pass configurations with internal reflection whose scanning angle is exactly proportional to the optical path length. They successfully increased the scanning angle to about 140 mrad with a 200 kHz modulation using a five-pass configuration. This beam scanner will provide an optical coherence tomography (OCT system with a spatial resolution of 7 μm and advantages over other OCT systems.

  9. First CT using Medipix3 and the MARS-CT-3 spectral scanner

    OpenAIRE

    Walsh, M F; Butler, P H; Doesburg, R M N; Ballabriga, R; Butler, A. P. H.; Opie, A M T; Mohr, J L; Ronaldson, J P; Nik, S J

    2011-01-01

    The MARS research group has created a new version of their scanner for taking improved spectral CT datasets. This version of the scanner (MARS-CT-3) has taken the first Medipix3 CT images of a phantom. MARS-CT-3 incorporates a new gantry, new x-ray sources and the new MARS readout board, as well as the ability to connect gas lines to the specimen. The new gantry has improved mechanical rigidity and can perform scans faster. Magnification can be controlled by moving the detector and the x-ray ...

  10. Assessment of the impact of the scanner-related factors on brain morphometry analysis with Brainvisa

    Directory of Open Access Journals (Sweden)

    Shokouhi Mahsa

    2011-12-01

    Full Text Available Abstract Background Brain morphometry is extensively used in cross-sectional studies. However, the difference in the estimated values of the morphometric measures between patients and healthy subjects may be small and hence overshadowed by the scanner-related variability, especially with multicentre and longitudinal studies. It is important therefore to investigate the variability and reliability of morphometric measurements between different scanners and different sessions of the same scanner. Methods We assessed the variability and reliability for the grey matter, white matter, cerebrospinal fluid and cerebral hemisphere volumes as well as the global sulcal index, sulcal surface and mean geodesic depth using Brainvisa. We used datasets obtained across multiple MR scanners at 1.5 T and 3 T from the same groups of 13 and 11 healthy volunteers, respectively. For each morphometric measure, we conducted ANOVA analysis and verified whether the estimated values were significantly different across different scanners or different sessions of the same scanner. The between-centre and between-visit reliabilities were estimated from their contribution to the total variance, using a random-effects ANOVA model. To estimate the main processes responsible for low reliability, the results of brain segmentation were compared to those obtained using FAST within FSL. Results In a considerable number of cases, the main effects of both centre and visit factors were found to be significant. Moreover, both between-centre and between-visit reliabilities ranged from poor to excellent for most morphometric measures. A comparison between segmentation using Brainvisa and FAST revealed that FAST improved the reliabilities for most cases, suggesting that morphometry could benefit from improving the bias correction. However, the results were still significantly different across different scanners or different visits. Conclusions Our results confirm that for morphometry

  11. Comparison of Single and Dual Polarized Envisat Asar Data with Laser Scanner Data of Saa Ice Freeboard in Fram Strait

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Kloster, Kjell; Hvidegaard, Sine Munk

    2005-01-01

    In this project we have produced co-registered datasets of laser scanner and ENVISAT ASAR AP data. A comparison of ENVISAT ASAR Alternate Polarization (AP) mode (HH+VV) backscatter coefficient values and polarization ratios with ice freeboard height measured with the KMS laser scanner is made. Th...

  12. Improving CT scan capabilities with a new trauma workflow concept: simulation of hospital logistics using different CT scanner scenarios

    NARCIS (Netherlands)

    Fung Kon Jin, P. H. P.; Dijkgraaf, M. G. W.; Alons, C. L.; van Kuijk, C.; Beenen, L. F. M.; Koole, G. M.; Goslings, J. C.

    2011-01-01

    The Amsterdam Trauma Workflow (ATW) concept includes a sliding gantry CT scanner serving two mirrored (trauma) rooms. In this study, several predefined scenarios with a varying number of CT scanners and CT locations are analyzed to identify the best performing patient flow management strategy from

  13. Comparison of H-infinity control and generalized predictive control for a laser scanner system

    DEFF Research Database (Denmark)

    Ordys, A.W.; Stoustrup, Jakob; Smillie, I.

    2000-01-01

    This paper describes tests performed on a laser scanner system to assess the feasibility of H-infinity control and generalized predictive control design techniques in achieving a required performance in a trajectory folowing problem. The two methods are compared with respect to achieved scan times...

  14. Reliability and validity of measurements of facial swelling with a stereophotogrammetry optical three-dimensional scanner

    NARCIS (Netherlands)

    van der Meer, Wicher J.; Dijkstra, Pieter U.; Visser, Anita; Vissink, Arjan; Ren, Yijin

    2014-01-01

    Volume changes in facial morphology can be assessed using the 3dMD DSP400 stereo-optical 3-dimensional scanner, which uses visible light and has a short scanning time. Its reliability and validity have not to our knowledge been investigated for the assessment of facial swelling. Our aim therefore

  15. Robustness of intrinsic connectivity networks in the human brain to the presence of acoustic scanner noise

    NARCIS (Netherlands)

    Langers, Dave R. M.; van Dijk, Pim

    2011-01-01

    Evoked responses in functional magnetic resonance imaging (fMRI) are affected by the presence of acoustic scanner noise (ASN). Particularly, stimulus-related activation of the auditory system and deactivation of the default mode network have repeatedly been shown to diminish. In contrast, little is

  16. 2D X-ray scanner and its uses in laboratory reservoir characterization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.; Doggett, K.

    1997-08-01

    X-ray techniques are used in petroleum laboratories for a variety of reservoir characterization measurements. This paper describes the configuration of a 2D X-ray scanner and many of the ways in which it simplifies and improves accuracy`s of laboratory measurements. Linear X-ray scanners are most often used to provide descriptions of fluid saturations within core plugs during flow tests. We configured our linear scanner for both horizontal and vertical movement. Samples can be scanned horizontally, vertically, or according to horizontal and vertical grids. X-ray measurements are fast, allowing measurements of two- and three-phase fluid saturations during both steady- and unsteady-state flow processes. Rock samples can be scanned while they are subjected to stress, pore pressure, and temperature conditions simulating those of a petroleum reservoir. Many types of measurements are possible by selecting appropriate X-ray power settings, dopes, filters, and collimator configurations. The scanner has been used for a variety of applications besides fluid saturation measurements. It is useful for measuring porosity distributions in rocks, concentrations of X-ray dopes within flow streams during tracer tests, gap widths in fracture flow cells, fluid interface levels in PVT cells and fluid separators, and other features and phenomena.

  17. Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners

    DEFF Research Database (Denmark)

    Berg, Jacob; Vasiljevic, Nikola; Kelly, Mark C.

    2015-01-01

    This paper presents an analysis of mean wind measurements from a coordinated system of long-range WindScanners. From individual scan patterns the mean wind field was reconstructed over a large area, and hence it highlights the spatial variability. From comparison with sonic anemometers, the quality...

  18. Rapid, high-accuracy detection of strabismus and amblyopia using the pediatric vision scanner

    NARCIS (Netherlands)

    S.E. Loudon (Sjoukje); C.A. Rook (Caitlin); D.S. Nassif (Deborah); N.V. Piskun (Nadya); D.G. Hunter (David)

    2011-01-01

    textabstractPurpose. The Pediatric Vision Scanner (PVS) detects strabismus by identifying ocular fixation in both eyes simultaneously. This study was undertaken to assess the ability of the PVS to identify patients with amblyopia or strabismus, particularly anisometropic amblyopia with no measurable

  19. Performance evaluation of ASICs for CMUT-based portable ultrasound scanners

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Diederichsen, Søren Elmin; Jensen, Jørgen Arendt

    2017-01-01

    . For the purpose of implementing compact probes, CMUTs are used due to their highly compatible integration with ASIC fabrication processes. The goal of this work is to assess the impact of the area and power consumption reduction on the acoustic performance of the scanner. For this purpose, a comparison between...

  20. Measuring Short- and Long-run Promotional Effectiveness on Scanner Data Using Persistence Modeling

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); D.M. Hanssens (Dominique); V.R. Nijs; J-B.E.M. Steenkamp (Jan-Benedict)

    2003-01-01

    textabstractThe use of price promotions to stimulate brand and firm performance is increasing. We discuss how (i) the availability of longer scanner data time series, and (ii) persistence modeling, have lead to greater insights into the dynamic effects of price promotions, as one can now quantify

  1. NREL Develops High-Speed Scanner to Monitor Fuel Cell Material Defects

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    This highlight describes results of recent work in which polymer electrolyte membrane fuel cell electrodes with intentionally introduced known defects were imaged and analyzed using a fuel cell scanner recently developed at NREL. The highlight is being developed for the September 2015 Alliance S&T Board meeting.

  2. Rock-type discrimination from ratioed infrared scanner images of Pisgah Crater, California.

    Science.gov (United States)

    Vincent, R. K.; Thomson, F. J.

    1972-01-01

    The radiances in two thermal infrared channels of an airborne scanner system were ratioed to produce images that recorded compositionally diagnostic emittance variations for several silicate rock types near Pisgah Crater, California. The images demonstrate that the ratio method is capable of enhancing emittance variations in the presence of temperature extremes that differ by no more than 25 C, with no temperature corrections.

  3. TOF-PET scanner configurations for quality assurance in proton therapy: a patient case study

    NARCIS (Netherlands)

    Dendooven, Peter; Diblen, Faruk; Buitenhuis, H.J.T.; Oxley, D.C.; Biegun, A.K.; van der Borden, A.J.; Brandenburg, Sijtze; Cambraia Lopes, P.; van der Schaaf, A.; Schaart, D.R.; Vandenberghe, S.; van 't Veld, A.A.

    2014-01-01

    In order to determine the clinical benefit of positron emission tomography (PET) for dose delivery verification in proton therapy, we performed a patient case study comparing in-situ with in-room time-of-flight (TOF) PET. For the in-situ option, we consider both a (limited-angle) clinical scanner

  4. Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner

    Science.gov (United States)

    Kim, Jin Young; Lee, Changho; Park, Kyungjin; Lim, Geunbae; Kim, Chulhong

    2015-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is a novel label-free microscopic imaging tool to provide in vivo optical absorbing contrasts. Specially, it is crucial to equip a real-time imaging capability without sacrificing high signal-to-noise ratios (SNRs) for identifying and tracking specific diseases in OR-PAM. Herein we demonstrate a 2-axis water-proofing MEMS scanner made of flexible PDMS. This flexible scanner results in a wide scanning range (9 × 4 mm2 in a transverse plane) and a fast imaging speed (5 B-scan images per second). Further, the MEMS scanner is fabricated in a compact footprint with a size of 15 × 15 × 15 mm3. More importantly, the scanning ability in water makes the MEMS scanner possible to confocally and simultaneously reflect both ultrasound and laser, and consequently we can maintain high SNRs. The lateral and axial resolutions of the OR-PAM system are 3.6 and 27.7 μm, respectively. We have successfully monitored the flow of carbon particles in vitro with a volumetric display frame rate of 0.14 Hz. Finally, we have successfully obtained in vivo PA images of microvasculatures in a mouse ear. It is expected that our compact and fast OR-PAM system can be significantly useful in both preclinical and clinical applications. PMID:25604654

  5. Radiation exposure and privacy concerns surrounding full-body scanners in airports

    Directory of Open Access Journals (Sweden)

    Julie Accardo

    2014-04-01

    Full Text Available Millions of people filter through airport security check points in the United States every year. These security checks, in response to the post 9/11 and 2009 “Underwear Bomber” terrorist threats, have become increasingly burdensome to the general public due to the wide spread deployment of “enhanced screening systems.” The enhanced screening systems that have generated the most controversy are the passenger “full-body scanners.” These systems enable airport security personnel to effectively detect contraband (often concealed under clothing without the physical contact necessitated by a strip search. The two types of full-body scanners (also known as Advanced Imaging Technology systems, used in airports in the United States and around the world are referred to as backscatter technology units and millimeter-wave technology units. Although their respective radiation emissions vary, both scanners serve the same purpose; that is, the detection of concealed metallic and non-metallic threats in the form of liquids, gels, plastics, etc. Although enhanced screening systems were deployed to further public safety efforts, they have also generated wide spread public concern. Specifically, these concerns address the potential of adverse health and privacy issues that may result from continued public exposure to full-body scanner systems.

  6. Novel Aerial 3D Mapping System Based on UAV Platforms and 2D Laser Scanners

    National Research Council Canada - National Science Library

    Roca, David; Martínez-Sánchez, Joaquín; Lagüela, Susana; Arias, Pedro

    2016-01-01

    .... This paper presents a novel Aerial 3D Mapping System based on a copter-type platform, where a 2D laser scanner is integrated with a GNSS sensor and an IMU for the generation of georeferenced 3D point clouds...

  7. Automated post-hoc noise cancellation tool for audio recordings acquired in an MRI scanner

    NARCIS (Netherlands)

    Cusack, R.; Cumming, N.; Bor, D.; Norris, D.; Lijzenga, J.

    2005-01-01

    There are several types of experiment in which it is useful to have subjects speak overtly in a magnetic resonance imaging (MRI) scanner, including those studying the articulatory apparatus and the neural basis of speech production, and fMRI experiments in which speech is used as a response

  8. Work-related factors associated with occupational exposure to static magnetic stray fields from MRI scanners

    NARCIS (Netherlands)

    Schaap, Kristel|info:eu-repo/dai/nl/323043216; Christopher-De Vries, Yvette; Cambron-Goulet, Évelyne; Kromhout, Hans|info:eu-repo/dai/nl/074385224

    2016-01-01

    PURPOSE: This study aims to identify work-related and personal factors associated with workers' exposure to static magnetic fields (SMF) and motion-induced time-varying magnetic fields (TVMF) from MRI scanners. METHODS: Measurements of personal exposure to SMF and TVMF were performed among MRI staff

  9. A Continuous-Time Delta-Sigma ADC for Portable Ultrasound Scanners

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger; Bruun, Erik

    2017-01-01

    A fully differential fourth-order 1-bit continuous-time delta-sigma ADC designed in a 65nm process for portable ultrasound scanners is presented in this paper. The circuit design, implementation and measurements on the fabricated die are shown. The loop filter consists of RC-integrators, programmable...

  10. A 10 MHz Bandwidth Continuous-Time Delta-Sigma Modulator for Portable Ultrasound Scanners

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger; Bruun, Erik

    2016-01-01

    A fourth-order 1-bit continuous-time delta-sigma modulator designed in a 65 nm process for portable ultrasound scanners is presented in this paper. The loop filter consists of RCintegrators, with programmable capacitor arrays and resistors, and the quantizer is implemented with a high-speed clocked...

  11. Spatial resolution and sensitivity of the Inveon small-animal PET scanner.

    NARCIS (Netherlands)

    Visser, E.P.; Disselhorst, J.; Brom, M.; Laverman, P.; Gotthardt, M.; Oyen, W.J.G.; Boerman, O.C.

    2009-01-01

    The Inveon small-animal PET scanner is characterized by a large, 127-mm axial length and a 161-mm crystal ring diameter. The associated high sensitivity is obtained by using all lines of response (LORs) up to the maximum ring difference (MRD) of 79, for which the most oblique LORs form acceptance

  12. Step-height measurements on sand surfaces: A comparison between optical scanner and coordinate measuring machine

    DEFF Research Database (Denmark)

    Mohaghegh, Kamran; Yazdanbakhsh, Seyed Alireza; Tiedje, Niels Skat

    2016-01-01

    the same routine to touch the different positions on the polygonised mesh. Each measurement was repeated 5 times. The results of step height measurements on sand surfaces showed a maximum error of ± 12 µm for CMM, while scanner shows only ± 4 µm. Generally speaking, optical step height values were measured...

  13. A portable optical waveguide resonance light-scattering scanner for microarray detection.

    Science.gov (United States)

    Xing, Xuefeng; Liu, Wanyao; Li, Tao; Xing, Shu; Fu, Xueqi; Wu, Dongyang; Liu, Dianjun; Wang, Zhenxin

    2016-01-07

    In the present work, a portable and low-cost planar waveguide based resonance light scattering (RLS) scanner (termed as: PW-RLS scanner) has been developed for microarray detection. The PW-RLS scanner employs a 2 × 4 white light emitting diode array (WLEDA) as the excitation light source, a folded optical path with a complementary metal oxide semiconductor (CMOS) as the signal/image acquisition device and stepper motors with gear drives as the mechanical drive system. The biological binding/recognizing events on the microarray can be detected with an evanescent waveguide-directed illumination and light-scattering label (e.g., nanoparticles) while the microarray slide acts as an evanescent waveguide substrate. The performance of the as-developed PW-RLS scanner has been evaluated by analyzing type 2 diabetes mellitus (T2DM) risk genes. Highly selective and sensitive (less than 1% allele frequency at the attomole-level) T2DM risk gene detection is achieved using single-stranded DNA functionalized gold nanoparticles (ssDNA-GNPs) as detection probes. Additionally, the successful simultaneous analysis of 15 T2DM patient genotypes suggests that the device has great potential for the realization of a personalized diagnostic test for a given disease or patient follow-up.

  14. A framework for large scale use of scanner data in the Dutch CPI

    NARCIS (Netherlands)

    De Haan, J.

    2015-01-01

    Statistics Netherlands is planning to use scanner data on a large scale for the compilation of the CPI, covering supermarkets, department stores, do-it-yourself stores, etc. Ideally, to make the production process as efficient as possible, a limited number of fully or semi-automated methods would be

  15. Spatial resolution of the HRRT PET scanner using 3D-OSEM PSF reconstruction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sibomana, Merence; Keller, Sune Høgild

    2009-01-01

    The spatial resolution of the Siemens High Resolution Research Tomograph (HRRT) dedicated brain PET scanner installed at Copenhagen University Hospital (Rigshospitalet) was measured using a point-source phantom with high statistics. Further, it was demonstrated how the newly developed 3D-OSEM PSF...

  16. Computerized tomography (the EMI Scanner): a comparison with pneumoencephalography and ventriculography.

    Science.gov (United States)

    Gawler, J; Du Boulay, G H; Bull, J W; Marshall, J

    1976-01-01

    Computerized tomography, using the EMI Scanner, allows the diagnosis of cerebral atrophy or hydrocephalus to be made with the same degree of accuracy as conventional neuroradiological methods. Ventricular measurements made on EMI scans have been compared with those from pneumoencephalograms and ventriculograms. A range of normal ventricular measurements for the EMI scan is suggested. Images PMID:1084413

  17. Vibration Measurements of the Wire Scanner for the SwissFEL

    Science.gov (United States)

    Mohanmurthy, Prajwal; Orlandi, Gian Luca; Ischebeck, Rasmus

    2012-10-01

    The SwissFEL is an X-Ray (0.1nm-7nm) Free Electron Laser user facility which is being planned for the Paul Scherrer Institute in Switzerland. At the SwissFEL, view screens will be used to monitor the transverse profile of the electron beam. Wire scanners are also to be employed as the high beam densities of the electron beam will hamper the standard diagnostics. Wire scanners will be tested on the 250MeV SwissFEL Injector Test Facility with a 200pC electron beam whose transverse diameter is typically about 100 μm. The portion of the electron beam that is unscattered from the wire will be measured to determine the beam loss. The wire scanner is driven by a stepper motor and the wire position is obtained using a digital encoder. The wire scanner may be susceptible to vibrations which may lead to erroneous encoder positions. The variation in position of the wire, with the motor being driven at a number of different speeds, was studied using a concentrator back-light and a 1MPixel high speed camera. The camera was triggered using the 10Hz SwissFEL Injector Test Facility timing signal. A typical vibration with an amplitude of about 0.5μm was observed. Dependence of vibration of the wire on the motor driving speed and ways of optimizing the operational parameters.

  18. Diagnostic Accuracy of Digitized Conventional Radiographs by Camera and Scanner in Detection of Proximal Caries

    Directory of Open Access Journals (Sweden)

    Solmaz Valizadeh

    2009-12-01

    Full Text Available Background and aims. Digital radiographs have some advantages over conventional ones. Application of digital receptors is not routine yet. Therefore, there is a need for digitizing conventional radiographs. The aim of the present study was to compare the diagnostic accuracy of digitized conventional radiographs by scanner and camera in detection of proximal caries. Material and methods. Three hundred and sixteen surfaces of 158 extracted posterior teeth were radiographed. The radiographs were digitized using a digital camera and a scanner. Five observers scored the images for the presence and depth of caries. Histopathologic sections were the gold standard. Kappa agreement coefficient was used for statistical analysis. Results. Kappa agreement coefficients between the camera and the scanner and also between each one with the gold standard in detecting the depth of caries were 0.504, 0.557 and 0.454, respectively. In detection of caries, the indexes were 0.571, 0.553 and 0.527, respectively. Conclusion. Diagnostic accuracy of camera images in caries detection was more than that of scanned images, but there was also a moderate consistency between them. The consistency of detecting the presence of caries was more than that of detecting their depths. It seems that both digital cameras and scanners can be used interchangeably.

  19. How Much Is the Dose Varying between Follow-Up CT-Examinations Performed on the Same Scanner with the Same Imaging Protocol?

    Directory of Open Access Journals (Sweden)

    Saravanabavaan Suntharalingam

    Full Text Available To investigate the dose variation between follow-up CT examinations, when a patient is examined several times on the same scanner with the identical scan protocol which comprised automated exposure control.This retrospective study was approved by the local ethics committee. The volume computed tomography dose index (CTDIvol and the dose-length-product (DLP were recorded for 60 cancer patients (29 male, 31 female, mean age 60.1 years, who received 3 follow-up CT examinations each composed of a non-enhanced scan of the liver (LI-CT and a contrast-enhanced scan of chest (CH-CT and abdomen (AB-CT. Each examination was performed on the same scanner (Siemens Definition FLASH equipped with automated exposure control (CARE Dose 4D and CARE KV using the identical scan protocol.The median percentage difference in DLP between follow-up examinations was 9.6% for CH-CT, 10.3% for LI-CT, and 10.1% for AB-CT; the median percentage difference in CTDIvol 8.3% for CH-CT, 7.4% for LI-CT and 7.7% for AB-CT (p<0.0001 for all values. The maximum difference in DLP between follow-up examinations was 67.5% for CH-CT, 50.8% for LI-CT and 74.3% for AB-CT; the maximum difference in CTDIvol 62.9% for CH-CT, 47.2% for LI-CT, and 49% for AB-CT.A significant variance in the radiation dose occurs between follow-up CT examinations when the same CT scanner and the identical imaging protocol are used in combination with automated exposure control.

  20. How Much Is the Dose Varying between Follow-Up CT-Examinations Performed on the Same Scanner with the Same Imaging Protocol?

    Science.gov (United States)

    Suntharalingam, Saravanabavaan; Stecker, Franz Ferdinand; Guberina, Nika; Ringelstein, Adrian; Schlosser, Thomas; Theysohn, Jens Matthias; Forsting, Michael; Nassenstein, Kai

    2016-01-01

    To investigate the dose variation between follow-up CT examinations, when a patient is examined several times on the same scanner with the identical scan protocol which comprised automated exposure control. This retrospective study was approved by the local ethics committee. The volume computed tomography dose index (CTDIvol) and the dose-length-product (DLP) were recorded for 60 cancer patients (29 male, 31 female, mean age 60.1 years), who received 3 follow-up CT examinations each composed of a non-enhanced scan of the liver (LI-CT) and a contrast-enhanced scan of chest (CH-CT) and abdomen (AB-CT). Each examination was performed on the same scanner (Siemens Definition FLASH) equipped with automated exposure control (CARE Dose 4D and CARE KV) using the identical scan protocol. The median percentage difference in DLP between follow-up examinations was 9.6% for CH-CT, 10.3% for LI-CT, and 10.1% for AB-CT; the median percentage difference in CTDIvol 8.3% for CH-CT, 7.4% for LI-CT and 7.7% for AB-CT (p<0.0001 for all values). The maximum difference in DLP between follow-up examinations was 67.5% for CH-CT, 50.8% for LI-CT and 74.3% for AB-CT; the maximum difference in CTDIvol 62.9% for CH-CT, 47.2% for LI-CT, and 49% for AB-CT. A significant variance in the radiation dose occurs between follow-up CT examinations when the same CT scanner and the identical imaging protocol are used in combination with automated exposure control.

  1. Improved CT-based estimate of pulmonary gas trapping accounting for scanner and lung-volume variations in a multicenter asthmatic study.

    Science.gov (United States)

    Choi, Sanghun; Hoffman, Eric A; Wenzel, Sally E; Castro, Mario; Lin, Ching-Long

    2014-09-15

    Lung air trapping is estimated via quantitative computed tomography (CT) using density threshold-based measures on an expiration scan. However, the effects of scanner differences and imaging protocol adherence on quantitative assessment are known to be problematic. This study investigates the effects of protocol differences, such as using different CT scanners and breath-hold coaches in a multicenter asthmatic study, and proposes new methods that can adjust intersite and intersubject variations. CT images of 50 healthy subjects and 42 nonsevere and 52 severe asthmatics at total lung capacity (TLC) and functional residual capacity (FRC) were acquired using three different scanners and two different coaching methods at three institutions. A fraction threshold-based approach based on the corrected Hounsfield unit of air with tracheal density was applied to quantify air trapping at FRC. The new air-trapping method was enhanced by adding a lung-shaped metric at TLC and the lobar ratio of air-volume change between TLC and FRC. The fraction-based air-trapping method is able to collapse air-trapping data of respective populations into distinct regression lines. Relative to a constant value-based clustering scheme, the slope-based clustering scheme shows the improved performance and reduced misclassification rate of healthy subjects. Furthermore, both lung shape and air-volume change are found to be discriminant variables for differentiating among three populations of healthy subjects and nonsevere and severe asthmatics. In conjunction with the lung shape and air-volume change, the fraction-based measure of air trapping enables differentiation of severe asthmatics from nonsevere asthmatics and nonsevere asthmatics from healthy subjects, critical for the development and evaluation of new therapeutic interventions. Copyright © 2014 the American Physiological Society.

  2. Improved CT-based estimate of pulmonary gas trapping accounting for scanner and lung-volume variations in a multicenter asthmatic study

    Science.gov (United States)

    Choi, Sanghun; Hoffman, Eric A.; Wenzel, Sally E.; Castro, Mario

    2014-01-01

    Lung air trapping is estimated via quantitative computed tomography (CT) using density threshold-based measures on an expiration scan. However, the effects of scanner differences and imaging protocol adherence on quantitative assessment are known to be problematic. This study investigates the effects of protocol differences, such as using different CT scanners and breath-hold coaches in a multicenter asthmatic study, and proposes new methods that can adjust intersite and intersubject variations. CT images of 50 healthy subjects and 42 nonsevere and 52 severe asthmatics at total lung capacity (TLC) and functional residual capacity (FRC) were acquired using three different scanners and two different coaching methods at three institutions. A fraction threshold-based approach based on the corrected Hounsfield unit of air with tracheal density was applied to quantify air trapping at FRC. The new air-trapping method was enhanced by adding a lung-shaped metric at TLC and the lobar ratio of air-volume change between TLC and FRC. The fraction-based air-trapping method is able to collapse air-trapping data of respective populations into distinct regression lines. Relative to a constant value-based clustering scheme, the slope-based clustering scheme shows the improved performance and reduced misclassification rate of healthy subjects. Furthermore, both lung shape and air-volume change are found to be discriminant variables for differentiating among three populations of healthy subjects and nonsevere and severe asthmatics. In conjunction with the lung shape and air-volume change, the fraction-based measure of air trapping enables differentiation of severe asthmatics from nonsevere asthmatics and nonsevere asthmatics from healthy subjects, critical for the development and evaluation of new therapeutic interventions. PMID:25103972

  3. Sensitivity booster for DOI-PET scanner by utilizing Compton scattering events between detector blocks

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Yamaya, Taiga

    2014-11-01

    In a conventional PET scanner, coincidence events are measured with a limited energy window for detection of photoelectric events in order to reject Compton scatter events that occur in a patient, but Compton scatter events caused in detector crystals are also rejected. Scatter events within the patient causes scatter coincidences, but inter crystal scattering (ICS) events have useful information for determining an activity distribution. Some researchers have reported the feasibility of PET scanners based on a Compton camera for tracing ICS into the detector. However, these scanners require expensive semiconductor detectors for high-energy resolution. In the Anger-type block detector, single photons interacting with multiple detectors can be obtained for each interacting position and complete information can be gotten just as for photoelectric events in the single detector. ICS events in the single detector have been used to get coincidence, but single photons interacting with multiple detectors have not been used to get coincidence. In this work, we evaluated effect of sensitivity improvement using Compton kinetics in several types of DOI-PET scanners. The proposed method promises to improve the sensitivity using coincidence events of single photons interacting with multiple detectors, which are identified as the first interaction (FI). FI estimation accuracy can be improved to determine FI validity from the correlation between Compton scatter angles calculated on the coincidence line-of-response. We simulated an animal PET scanner consisting of 42 detectors. Each detector block consists of three types of scintillator crystals (LSO, GSO and GAGG). After the simulation, coincidence events are added as information for several depth-of-interaction (DOI) resolutions. From the simulation results, we concluded the proposed method promises to improve the sensitivity considerably when effective atomic number of a scintillator is low. Also, we showed that FI estimate

  4. Application of intra-oral dental scanners in the digital workflow of implantology.

    Directory of Open Access Journals (Sweden)

    Wicher J van der Meer

    Full Text Available Intra-oral scanners will play a central role in digital dentistry in the near future. In this study the accuracy of three intra-oral scanners was compared.A master model made of stone was fitted with three high precision manufactured PEEK cylinders and scanned with three intra-oral scanners: the CEREC (Sirona, the iTero (Cadent and the Lava COS (3M. In software the digital files were imported and the distance between the centres of the cylinders and the angulation between the cylinders was assessed. These values were compared to the measurements made on a high accuracy 3D scan of the master model.The distance errors were the smallest and most consistent for the Lava COS. The distance errors for the Cerec were the largest and least consistent. All the angulation errors were small.The Lava COS in combination with a high accuracy scanning protocol resulted in the smallest and most consistent errors of all three scanners tested when considering mean distance errors in full arch impressions both in absolute values and in consistency for both measured distances. For the mean angulation errors, the Lava COS had the smallest errors between cylinders 1-2 and the largest errors between cylinders 1-3, although the absolute difference with the smallest mean value (iTero was very small (0,0529°. An expected increase in distance and/or angular errors over the length of the arch due to an accumulation of registration errors of the patched 3D surfaces could be observed in this study design, but the effects were statistically not significant.For making impressions of implant cases for digital workflows, the most accurate scanner with the scanning protocol that will ensure the most accurate digital impression should be used. In our study model that was the Lava COS with the high accuracy scanning protocol.

  5. Design and experimental validation of novel 3D optical scanner with zoom lens unit

    Science.gov (United States)

    Huang, Jyun-Cheng; Liu, Chien-Sheng; Chiang, Pei-Ju; Hsu, Wei-Yan; Liu, Jian-Liang; Huang, Bai-Hao; Lin, Shao-Ru

    2017-10-01

    Optical scanners play a key role in many three-dimensional (3D) printing and CAD/CAM applications. However, existing optical scanners are generally designed to provide either a wide scanning area or a high 3D reconstruction accuracy from a lens with a fixed focal length. In the former case, the scanning area is increased at the expense of the reconstruction accuracy, while in the latter case, the reconstruction performance is improved at the expense of a more limited scanning range. In other words, existing optical scanners compromise between the scanning area and the reconstruction accuracy. Accordingly, the present study proposes a new scanning system including a zoom-lens unit, which combines both a wide scanning area and a high 3D reconstruction accuracy. In the proposed approach, the object is scanned initially under a suitable low-magnification setting for the object size (setting 1), resulting in a wide scanning area but a poor reconstruction resolution in complicated regions of the object. The complicated regions of the object are then rescanned under a high-magnification setting (setting 2) in order to improve the accuracy of the original reconstruction results. Finally, the models reconstructed after each scanning pass are combined to obtain the final reconstructed 3D shape of the object. The feasibility of the proposed method is demonstrated experimentally using a laboratory-built prototype. It is shown that the scanner has a high reconstruction accuracy over a large scanning area. In other words, the proposed optical scanner has significant potential for 3D engineering applications.

  6. A Deformed Shape Monitoring Model for Building Structures Based on a 2D Laser Scanner

    Directory of Open Access Journals (Sweden)

    Hyo Seon Park

    2013-05-01

    Full Text Available High-rise buildings subjected to lateral loads such as wind and earthquake loads must be checked not to exceed the limits on the maximum lateral displacement or the maximum inter-story drift ratios. In this paper, a sensing model for deformed shapes of a building structure in motion is presented. The deformed shape sensing model based on a 2D scanner consists of five modules: (1 module for acquiring coordinate information of a point in a building; (2 module for coordinate transformation and data arrangement for generation of time history of the point; (3 module for smoothing by adjacent averaging technique; (4 module for generation of the displacement history for each story and deformed shape of a building, and (5 module for evaluation of the serviceability of a building. The feasibility of the sensing model based on a 2D laser scanner is tested through free vibration tests of a three-story steel frame structure with a relatively high slenderness ratio of 5.0. Free vibration responses measured from both laser displacement sensors and a 2D laser scanner are compared. In the experimentation, the deformed shapes were obtained from three different methods: the model based on the 2D laser scanner, the direct measurement based on laser displacement sensors, and the numerical method using acceleration data and the displacements from GPS. As a result, it is confirmed that the deformed shape measurement model based on a 2D laser scanner can be a promising alternative for high-rise buildings where installation of laser displacement sensors is impossible.

  7. PC-SEAPAK - ANALYSIS OF COASTAL ZONE COLOR SCANNER AND ADVANCED VERY HIGH RESOLUTION RADIOMETER DATA

    Science.gov (United States)

    Mcclain, C. R.

    1994-01-01

    PC-SEAPAK is a user-interactive satellite data analysis software package specifically developed for oceanographic research. The program is used to process and interpret data obtained from the Nimbus-7/Coastal Zone Color Scanner (CZCS), and the NOAA Advanced Very High Resolution Radiometer (AVHRR). PC-SEAPAK is a set of independent microcomputer-based image analysis programs that provide the user with a flexible, user-friendly, standardized interface, and facilitates relatively low-cost analysis of oceanographic satellite data. Version 4.0 includes 114 programs. PC-SEAPAK programs are organized into categories which include CZCS and AVHRR level-1 ingest, level-2 analyses, statistical analyses, data extraction, remapping to standard projections, graphics manipulation, image board memory manipulation, hardcopy output support and general utilities. Most programs allow user interaction through menu and command modes and also by the use of a mouse. Most programs also provide for ASCII file generation for further analysis in spreadsheets, graphics packages, etc. The CZCS scanning radiometer aboard the NIMBUS-7 satellite was designed to measure the concentration of photosynthetic pigments and their degradation products in the ocean. AVHRR data is used to compute sea surface temperatures and is supported for the NOAA 6, 7, 8, 9, 10, 11, and 12 satellites. The CZCS operated from November 1978 to June 1986. CZCS data may be obtained free of charge from the CZCS archive at NASA/Goddard Space Flight Center. AVHRR data may be purchased through NOAA's Satellite Data Service Division. Ordering information is included in the PC-SEAPAK documentation. Although PC-SEAPAK was developed on a COMPAQ Deskpro 386/20, it can be run on most 386-compatible computers with an AT bus, EGA controller, Intel 80387 coprocessor, and MS-DOS 3.3 or higher. A Matrox MVP-AT image board with appropriate monitor and cables is also required. Note that the authors have received some reports of

  8. Measurements agreement between low-cost and high-level handheld 3D scanners to scan the knee for designing a 3D printed knee brace

    National Research Council Canada - National Science Library

    Yoann Dessery; Jari Pallari

    2018-01-01

    .... However, little information is available about scanners and 3D scans. The aim of this study is to look at the agreement between manual measurements, high-level and low-cost handheld 3D scanners...

  9. Water calibration for CT scanners with tube voltage modulation

    Science.gov (United States)

    Ritschl, Ludwig; Bergner, Frank; Fleischmann, Christof; Kachelrieß, Marc

    2010-07-01

    X-ray CT measures the attenuation of polychromatic x-rays through an object of interest. The CT data acquired are the negative logarithm of the relative x-ray intensity after absorption. These data must undergo water precorrection to linearize the measured data and convert them into line integrals through the patient that can be reconstructed to yield the final CT image. The function to linearize the measured projection data depends on the tube voltage U. In most circumstances, CT scans are carried out with a constant tube voltage. For those cases there are dozens of different techniques to carry out water precorrection. In our case the tube voltage is rather modulated as a function of the object. We propose an empirical cupping correction (ECCU) algorithm to correct for CT cupping artifacts that are induced by nonlinearities in the projection data. The method is rawdata based, empirical and requires neither knowledge of the x-ray spectrum nor of the attenuation coefficients. It aims at linearizing the attenuation data using a precorrection function of polynomial form in the polychromatic attenuation data q and in the tube voltage U. The coefficients of the polynomial are determined once using a calibration scan of a homogeneous phantom. The coefficients are computed in the image domain by fitting a series of basis images to a template image. The template image is obtained directly from the uncorrected phantom image and no assumptions on the phantom size or of its positioning are made. Rawdata are precorrected by passing them through the once-determined polynomial. Numerical examples are shown to demonstrate the quality of the precorrection. ECCU is achieved to remove the cupping artifacts and to obtain well-calibrated CT values. A combination of ECCU with analytical techniques yielding a hybrid cupping correction method is possible and allows for channel-dependent correction functions.

  10. Water calibration for CT scanners with tube voltage modulation

    Energy Technology Data Exchange (ETDEWEB)

    Ritschl, Ludwig; Bergner, Frank; Kachelriess, Marc [Institute of Medical Physics (IMP), University of Erlangen-Nuernberg, Henkestr. 91, 91052 Erlangen (Germany); Fleischmann, Christof, E-mail: ludwig.ritschl@imp.uni-erlangen.d [Ziehm Imaging GmbH, Donaustrasse 31, 90451 Nuernberg (Germany)

    2010-07-21

    X-ray CT measures the attenuation of polychromatic x-rays through an object of interest. The CT data acquired are the negative logarithm of the relative x-ray intensity after absorption. These data must undergo water precorrection to linearize the measured data and convert them into line integrals through the patient that can be reconstructed to yield the final CT image. The function to linearize the measured projection data depends on the tube voltage U. In most circumstances, CT scans are carried out with a constant tube voltage. For those cases there are dozens of different techniques to carry out water precorrection. In our case the tube voltage is rather modulated as a function of the object. We propose an empirical cupping correction (ECCU) algorithm to correct for CT cupping artifacts that are induced by nonlinearities in the projection data. The method is rawdata based, empirical and requires neither knowledge of the x-ray spectrum nor of the attenuation coefficients. It aims at linearizing the attenuation data using a precorrection function of polynomial form in the polychromatic attenuation data q and in the tube voltage U. The coefficients of the polynomial are determined once using a calibration scan of a homogeneous phantom. The coefficients are computed in the image domain by fitting a series of basis images to a template image. The template image is obtained directly from the uncorrected phantom image and no assumptions on the phantom size or of its positioning are made. Rawdata are precorrected by passing them through the once-determined polynomial. Numerical examples are shown to demonstrate the quality of the precorrection. ECCU is achieved to remove the cupping artifacts and to obtain well-calibrated CT values. A combination of ECCU with analytical techniques yielding a hybrid cupping correction method is possible and allows for channel-dependent correction functions.

  11. Virtualization and cloud computing in dentistry.

    Science.gov (United States)

    Chow, Frank; Muftu, Ali; Shorter, Richard

    2014-01-01

    The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.

  12. Laboratory measurements to determine the grain size distribution of a sand-gravel bed surface and substrate: image analysis and CT scanner analysis

    Science.gov (United States)

    Orru, C.; Blom, A.; Uijttewaal, W.

    2012-12-01

    Spatial and temporal changes in the grain size distribution are crucial to describe sediment transport and the related grain size selective processes. Two complimentary laboratory techniques are presented to determine such variations of the grain size distribution of the bed surface and substrate: (1) particle coloring in combination with photogrammetric analysis, and (2) core sampling combined with three-dimensional imaging. The two techniques will be used in later flume experiments that are aimed at studying the response of the river bed to nonsteady boundary conditions. In these flume experiments, the bed surface and substrate grain size distribution needs to be measured using reliable and preferentially rapid techniques. The techniques were evaluated conducting an experiment that partially reproduced the conditions of the later flume experiments. Three nonoverlapping grain size fractions (i.e. within the range of coarse sand to fine gravel) were used and they were painted in different colors. Various mixtures of the three grain size fractions were composed of various color combinations. Patches of the mixtures were installed in a pool. Images were taken of the bed surface and the images were analyzed using an algorithm based on color segmentation. The algorithm provides values of the surface fraction of the bed covered by a certain color (i.e. a size fraction). The influence of water depth on the results of the image analysis was studied. To this end pictures were taken without water and for three water depths. The image analysis results shows that the technique can be used effectively for images of the bed in a flume filled with water. This is beneficiary in applying the technique in the later flume experiments. The second technique comprises core sampling in combination with three-dimensional imaging. Samples taken with tube cores were fixed with wallpaper glue and analyzed using a micro computed tomography scanner (micro CT scanner). The scans provide a

  13. Daily quality controls analysis of a CT scanner simulator; Analise dos testes diarios de controle de qualidade de um tomografo simulador

    Energy Technology Data Exchange (ETDEWEB)

    Vasques, Maira Milanelo; Santos, Gabriela R.; Furnari, Laura, E-mail: maira.vasques@hc.fmusp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina

    2016-07-01

    With the increasing technological developments, radiotherapy practices, which allow for better involvement of the tumor with the required therapeutic dose and minimize the complications of normal tissues, have become reality in several Radiotherapy services. The use of these resources in turn, was only possible due to the progress made in planning based on digital volumetric images of good quality, such as computed tomography (CT), which allow the correct delimitation of the tumor volume and critical structures. Specific tests for quality control in a CT scanner used in radiotherapy, named CT simulator, should be applied as part of the institutional Quality Assurance Program. This study presents the methodology used in the Instituto de Radiologia do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP) for daily testing of the CT scanner simulator and the results obtained throughout more than two years. The experience gained in the period conducted showed that the tests are easy to perform and can be done in a few minutes by a trained professional. Data analysis showed good reproducibility, which allowed the tests could be performed less frequently, after 16 months of data collection. (author)

  14. A study of the dose modulation systems in two multislice CT scanners; Estudio de los sistemas de modulacion de dosis en dos equipos de tomografia computarizada multicorte

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Giron, I.; Valverde Moran, J.; Mendez Fernandez, R.; Aramburu Nunez, D.; Nunez Villavicencio, C.; Calzado Cantera, A.

    2009-07-01

    Multislice computed tomography (TCMC) is a technique that for its gradual introduction and the spectacular increase in its indications in clinical practice represents the main contribution to the collective dose in diagnostic radiology. It is essential to optimize the protocols maintaining doses as low as possible without affecting the diagnostic quality of images. Automatic tube current modulation systems are a tool currently available in all CT scanners. They adapt the tube current to morphological characteristics of the patient and the anatomical area under study. The aim of this work has been to analyze two scanners from the same manufacturer and featuring similar geometry by assessing the relative dose differences and image quality. Modulation systems of general use can decrease the dose in a 20-60% with a reduction in the signal to noise ratio between 6% and 37%. Dedicated cardiac-CT modulation system gave rise to high relative differences (36-40%) even when varying the heart rate. Significant changes in image quality were not appreciated though the motion of the heart has not been simulated in this study. (Author) 14 refs.

  15. Daily quality controls analysis of a CT scanner simulator; Analise dos testes diarios de controle de qualidade de um tomografo simulador

    Energy Technology Data Exchange (ETDEWEB)

    Vasques, Maira Milanelo, E-mail: maira.vasques@hc.fmusp.br [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina; Santos, Gabriela R.; Furnari, Laura [Universidade de Sao Paulo (HC/FM/USP), SP (Brazil). Instituto de Radiologia. Setor de Radioterapia

    2016-07-01

    With the increasing technological developments radiotherapy practices which minimize the complications of normal tissues and allow better involvement of the tumor with the therapeutic dose have become reality in several Radiotherapy services. The use of these resources in turn, was only possible due to the progress made in planning based on digital volumetric images of good quality, such as computed tomography (CT) which allow the correct delimitation of the tumor volume and critical structures. Specific tests for quality control in a CT scanner used in radiotherapy, named CT simulator should be applied as part of the institutional Quality Assurance Program. This study presents the methodology used in the Instituto de Radiologia do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP) for daily testing of the CT scanner simulator and the results obtained throughout more than two years. The experience gained in the period conducted showed that the tests are easy to perform and can be done in a few minutes by a trained professional. Data analysis showed good reproducibility, which allowed the tests could be performed less frequently, after 16 months of data collection. (author)

  16. Exposure to static and time-varying magnetic fields from working in the static magnetic stray fields of MRI scanners : A comprehensive survey in the Netherlands

    NARCIS (Netherlands)

    Schaap, Kristel|info:eu-repo/dai/nl/323043216; Christopher-De Vries, Yvette; Crozier, Stuart; Vocht, Frank De; Kromhout, Hans|info:eu-repo/dai/nl/074385224

    2014-01-01

    Clinical and research staff who work around magnetic resonance imaging (MRI) scanners are exposed to the static magnetic stray fields of these scanners. Although the past decade has seen strong developments in the assessment of occupational exposure to electromagnetic fields from MRI scanners, there

  17. A NEW APPROACH FOR THE SEMI-AUTOMATIC TEXTURE GENERATION OF THE BUILDINGS FACADES, FROM TERRESTRIAL LASER SCANNER DATA

    Directory of Open Access Journals (Sweden)

    E. Oniga

    2012-07-01

    Full Text Available The result of the terrestrial laser scanning is an impressive number of spatial points, each of them being characterized as position by the X, Y and Z co-ordinates, by the value of the laser reflectance and their real color, expressed as RGB (Red, Green, Blue values. The color code for each LIDAR point is taken from the georeferenced digital images, taken with a high resolution panoramic camera incorporated in the scanner system. In this article I propose a new algorithm for the semiautomatic texture generation, using the color information, the RGB values of every point that has been taken by terrestrial laser scanning technology and the 3D surfaces defining the buildings facades, generated with the Leica Cyclone software. The first step is when the operator defines the limiting value, i.e. the minimum distance between a point and the closest surface. The second step consists in calculating the distances, or the perpendiculars drawn from each point to the closest surface. In the third step we associate the points whose 3D coordinates are known, to every surface, depending on the limiting value. The fourth step consists in computing the Voronoi diagram for the points that belong to a surface. The final step brings automatic association between the RGB value of the color code and the corresponding polygon of the Voronoi diagram. The advantage of using this algorithm is that we can obtain, in a semi-automatic manner, a photorealistic 3D model of the building.

  18. Remote sensing of volcanic terrains by terrestrial laser scanner: preliminary reflectance and RGB implications for studying Vesuvius crater (Italy

    Directory of Open Access Journals (Sweden)

    G. Ventura

    2008-06-01

    Full Text Available This work focuses on the use of terrestrial laser scanner (TLS in the characterization of volcanic environments. A TLS survey of the Vesuvius crater (Somma-Vesuvius volcano, Italy allows the construction of an accurate, georeferenced digital model of different sectors of the crater. In each sector, the intensity is computed for each point as the ratio between the emitted amplitude and the received one, normalized to the maximum signal, providing the radiometric information. Moreover, the RGB colours of the observed surfaces can be captured by means of a calibrated camera mounted on the TLS instrument. In this way, multi-band information is given, since a long range TLS operates in the near infrared band. The reflectance and RGB data are compared in order to verify if they are independent enough to be complementary for model analysis and inspection. Results show that the integration of RGB and intensity data can fully characterize this volcanic environment. The collected data are able to discriminate different volcanic deposits and to detect their stratigraphic features. In addition, our results shed light on the spatial extension of landslides and on the dimensions of rock fall/flow deposits affecting the inner walls of the crater. The remotely acquired TLS information from the Vesuvius crater is compared with that from a sedimentary terrain (coal-shale quarry to detect possible similarities/differences between these two geological environments.

  19. Performance evaluation of the Ingenuity TF PET/CT scanner with a focus on high count-rate conditions

    Science.gov (United States)

    Kolthammer, Jeffrey A.; Su, Kuan-Hao; Grover, Anu; Narayanan, Manoj; Jordan, David W.; Muzic, Raymond F.

    2014-07-01

    This study evaluated the positron emission tomography (PET) imaging performance of the Ingenuity TF 128 PET/computed tomography (CT) scanner which has a PET component that was designed to support a wider radioactivity range than is possible with those of Gemini TF PET/CT and Ingenuity TF PET/MR. Spatial resolution, sensitivity, count rate characteristics and image quality were evaluated according to the NEMA NU 2-2007 standard and ACR phantom accreditation procedures; these were supplemented by additional measurements intended to characterize the system under conditions that would be encountered during quantitative cardiac imaging with 82Rb. Image quality was evaluated using a hot spheres phantom, and various contrast recovery and noise measurements were made from replicated images. Timing and energy resolution, dead time, and the linearity of the image activity concentration, were all measured over a wide range of count rates. Spatial resolution (4.8-5.1 mm FWHM), sensitivity (7.3 cps kBq-1), peak noise-equivalent count rate (124 kcps), and peak trues rate (365 kcps) were similar to those of the Gemini TF PET/CT. Contrast recovery was higher with a 2 mm, body-detail reconstruction than with a 4 mm, body reconstruction, although the precision was reduced. The noise equivalent count rate peak was broad (within 10% of peak from 241-609 MBq). The activity measured in phantom images was within 10% of the true activity for count rates up to those observed in 82Rb cardiac PET studies.

  20. Automated detection of masses on whole breast volume ultrasound scanner: false positive reduction using deep convolutional neural network

    Science.gov (United States)

    Hiramatsu, Yuya; Muramatsu, Chisako; Kobayashi, Hironobu; Hara, Takeshi; Fujita, Hiroshi

    2017-03-01

    Breast cancer screening with mammography and ultrasonography is expected to improve sensitivity compared with mammography alone, especially for women with dense breast. An automated breast volume scanner (ABVS) provides the operator-independent whole breast data which facilitate double reading and comparison with past exams, contralateral breast, and multimodality images. However, large volumetric data in screening practice increase radiologists' workload. Therefore, our goal is to develop a computer-aided detection scheme of breast masses in ABVS data for assisting radiologists' diagnosis and comparison with mammographic findings. In this study, false positive (FP) reduction scheme using deep convolutional neural network (DCNN) was investigated. For training DCNN, true positive and FP samples were obtained from the result of our initial mass detection scheme using the vector convergence filter. Regions of interest including the detected regions were extracted from the multiplanar reconstraction slices. We investigated methods to select effective FP samples for training the DCNN. Based on the free response receiver operating characteristic analysis, simple random sampling from the entire candidates was most effective in this study. Using DCNN, the number of FPs could be reduced by 60%, while retaining 90% of true masses. The result indicates the potential usefulness of DCNN for FP reduction in automated mass detection on ABVS images.

  1. 8051 microcontroller to FPGA and ADC interface design for high speed parallel processing systems – Application in ultrasound scanners

    Directory of Open Access Journals (Sweden)

    J. Jean Rossario Raj

    2016-09-01

    Full Text Available Microcontrollers perform the hardware control in many instruments. Instruments requiring huge data throughput and parallel computing use FPGA’s for data processing. The microcontroller in turn configures the application hardware devices such as FPGA’s, ADC’s and Ethernet chips etc. The interfacing of these devices uses address/data bus interface, serial interface or serial peripheral interface. The choice of the interface depends upon the input/output pins available with different devices, programming ease and proprietary interfaces supported by devices such as ADC’s. The novelty of this paper is to describe the programming logic used for various types of interface scenarios from microcontroller to different programmable devices. The study presented describes the methods and logic flowcharts for different interfaces. The implementation of the interface logics were in prototype hardware for ultrasound scanner. The internal devices were controlled from the graphical user interface in a laptop and the scan results are taken. It is seen that the optimum solution of the hardware design can be achieved by using a common serial interface towards all the devices.

  2. a New Approach for the Semi-Automatic Texture Generation of the Buildings Facades, from Terrestrial Laser Scanner Data

    Science.gov (United States)

    Oniga, E.

    2012-07-01

    The result of the terrestrial laser scanning is an impressive number of spatial points, each of them being characterized as position by the X, Y and Z co-ordinates, by the value of the laser reflectance and their real color, expressed as RGB (Red, Green, Blue) values. The color code for each LIDAR point is taken from the georeferenced digital images, taken with a high resolution panoramic camera incorporated in the scanner system. In this article I propose a new algorithm for the semiautomatic texture generation, using the color information, the RGB values of every point that has been taken by terrestrial laser scanning technology and the 3D surfaces defining the buildings facades, generated with the Leica Cyclone software. The first step is when the operator defines the limiting value, i.e. the minimum distance between a point and the closest surface. The second step consists in calculating the distances, or the perpendiculars drawn from each point to the closest surface. In the third step we associate the points whose 3D coordinates are known, to every surface, depending on the limiting value. The fourth step consists in computing the Voronoi diagram for the points that belong to a surface. The final step brings automatic association between the RGB value of the color code and the corresponding polygon of the Voronoi diagram. The advantage of using this algorithm is that we can obtain, in a semi-automatic manner, a photorealistic 3D model of the building.

  3. Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner

    Science.gov (United States)

    Taschereau, R.; Silverman, R. W.; Chatziioannou, A. F.

    2010-02-01

    Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a μ-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.

  4. Point-based and plane-based deformation monitoring of indoor environments using terrestrial laser scanners

    Science.gov (United States)

    Chow, Jacky C. K.; Ebeling, Axel; Teskey, William F.

    2012-11-01

    Terrestrial laser scanners are high-accuracy 3D imaging instruments that are capable of measuring deformations with sub-millimetre level accuracy in most close-range applications. Traditionally, deformation monitoring via laser scanning is performed by measuring distinct signalised targets. In this case, the centroid of these targets must be determined with great accuracy for optimum detectability. To achieve this, a least-squares target centroid extraction algorithm suitable for planar checkerboard-type targets is proposed for irregularly organised laser scanner data. These target centroids are then used in a free-station network adjustment for performing deformation analysis with no a priori assumptions about the deformation pattern. To ensure the optimum measurement accuracy, all systematic errors inherent to the instrument at the time of data acquisition needs to be removed. One of the methods for reducing these systematic errors is by performing self-calibration of terrestrial laser scanners. In this paper, this was performed on-site to model the systematic errors of the scanner. It is demonstrated that the accuracy of the recovered translational movements were improved by an order of magnitude from the millimetre level to the sub-millimetre level using this approach. Despite the success of using laser scanners with signalised targets in deformation analysis, the main benefit of active sensors like terrestrial laser scanning systems is their ability to capture 3D information of the entire scene without installing markers. A new markerless deformation analysis technique that utilises intersection points derived from planar-features is proposed and tested in this paper. The extraction and intersection of planes in each point cloud can be performed semi-automatically or automatically. This new method is based on free-stationing and does not require a priori knowledge about stable control points or movement patterns. It can detect and measure both translational

  5. Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner

    Science.gov (United States)

    Delso, G.; Martinez-Möller, A.; Bundschuh, R. A.; Ladebeck, R.; Candidus, Y.; Faul, D.; Ziegler, S. I.

    2010-08-01

    The combination of magnetic resonance imaging (MR) and positron emission tomography (PET) scanners can provide a powerful tool for clinical diagnosis and investigation. Among the challenges of developing a combined scanner, obtaining attenuation maps for PET reconstruction is of critical importance. This requires accounting for the presence of MR hardware in the field of view. The attenuation introduced by this hardware cannot be obtained from MR data. We propose the creation of attenuation models of MR hardware, to be registered into the MR-based attenuation map prior to PET reconstruction. Two steps were followed to assess the viability of this method. First, transmission and emission measurements were performed on MR components (RF coils and medical probes). The severity of the artifacts in the reconstructed PET images was evaluated. Secondly, a high-exposure computed tomography (CT) scan was used to obtain a model of a head coil. This model was registered into the attenuation map of PET/CT scans of a uniform phantom fitted with the coil. The resulting PET images were compared to the PET/CT reconstruction in the absence of coils. The artifacts introduced by misregistration of the model were studied. The transmission scans revealed 17% count loss due to the presence of head and neck coils in the field of view. Important sources of attenuation were found in the lock, signal cables and connectors. However, the worst source of attenuation was the casing between both coils. None of the measured medical probes introduced a significant amount of attenuation. Concerning the attenuation model of the head coil, reconstructed PET images with model-based correction were comparable to the reference PET/CT reconstruction. However, inaccuracies greater than 1-2 mm in the axial positioning of the model led to important artifacts. In conclusion, the results show that model-based attenuation correction is possible. Using a high-exposure scan to create an attenuation model of the

  6. Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner

    Energy Technology Data Exchange (ETDEWEB)

    Delso, G; Martinez-Moeller, A; Bundschuh, R A; Ziegler, S I [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Munich (Germany); Ladebeck, R; Candidus, Y [Siemens Healthcare, Magnetic Resonance, Erlangen (Germany); Faul, D, E-mail: gaspar.delso@tum.d [Siemens Healthcare, Molecular Imaging, Knoxville, TN (United States)

    2010-08-07

    The combination of magnetic resonance imaging (MR) and positron emission tomography (PET) scanners can provide a powerful tool for clinical diagnosis and investigation. Among the challenges of developing a combined scanner, obtaining attenuation maps for PET reconstruction is of critical importance. This requires accounting for the presence of MR hardware in the field of view. The attenuation introduced by this hardware cannot be obtained from MR data. We propose the creation of attenuation models of MR hardware, to be registered into the MR-based attenuation map prior to PET reconstruction. Two steps were followed to assess the viability of this method. First, transmission and emission measurements were performed on MR components (RF coils and medical probes). The severity of the artifacts in the reconstructed PET images was evaluated. Secondly, a high-exposure computed tomography (CT) scan was used to obtain a model of a head coil. This model was registered into the attenuation map of PET/CT scans of a uniform phantom fitted with the coil. The resulting PET images were compared to the PET/CT reconstruction in the absence of coils. The artifacts introduced by misregistration of the model were studied. The transmission scans revealed 17% count loss due to the presence of head and neck coils in the field of view. Important sources of attenuation were found in the lock, signal cables and connectors. However, the worst source of attenuation was the casing between both coils. None of the measured medical probes introduced a significant amount of attenuation. Concerning the attenuation model of the head coil, reconstructed PET images with model-based correction were comparable to the reference PET/CT reconstruction. However, inaccuracies greater than 1-2 mm in the axial positioning of the model led to important artifacts. In conclusion, the results show that model-based attenuation correction is possible. Using a high-exposure scan to create an attenuation model of the

  7. Low-dose CT pulmonary angiography on a 15-year-old CT scanner: a feasibility study

    Directory of Open Access Journals (Sweden)

    Moritz Kaup

    2016-12-01

    Full Text Available Background Computed tomography (CT low-dose (LD imaging is used to lower radiation exposure, especially in vascular imaging; in current literature, this is mostly on latest generation high-end CT systems. Purpose To evaluate the effects of reduced tube current on objective and subjective image quality of a 15-year-old 16-slice CT system for pulmonary angiography (CTPA. Material and Methods CTPA scans from 60 prospectively randomized patients (28 men, 32 women were examined in this study on a 15-year-old 16-slice CT scanner system. Standard CT (SD settings were 100 kV and 150 mAs, LD settings were 100 kV and 50 mAs. Attenuation of the pulmonary trunk, various anatomic landmarks, and image noise were quantitatively measured; contrast-to-noise ratios (CNR and signal-to-noise ratios (SNR were calculated. Three independent blinded radiologists subjectively rated each image series using a 5-point grading scale. Results CT dose index (CTDI in the LD series was 66.46% lower compared to the SD settings (2.49 ± 0.55 mGy versus 7.42 ± 1.17 mGy. Attenuation of the pulmonary trunk showed similar results for both series (SD 409.55 ± 91.04 HU; LD 380.43 HU ± 93.11 HU; P = 0.768. Subjective image analysis showed no significant differences between SD and LD settings regarding the suitability for detection of central and peripheral PE (central SD/LD, 4.88; intra-class correlation coefficients [ICC], 0.894/4.83; ICC, 0.745; peripheral SD/LD, 4.70; ICC, 0.943/4.57; ICC, 0.919; all P > 0.4. Conclusion The LD protocol, on a 15-year-old CT scanner system without current high-end hardware or post-processing tools, led to a dose reduction of approximately 67% with similar subjective image quality and delineation of central and peripheral pulmonary arteries.

  8. Three-Dimensional Accuracy of Facial Scan for Facial Deformities in Clinics: A New Evaluation Method for Facial Scanner Accuracy

    OpenAIRE

    Zhao, Yi-jiao; Xiong, Yu-xue; Wang, Yong

    2017-01-01

    In this study, the practical accuracy (PA) of optical facial scanners for facial deformity patients in oral clinic was evaluated. Ten patients with a variety of facial deformities from oral clinical were included in the study. For each patient, a three-dimensional (3D) face model was acquired, via a high-accuracy industrial ?line-laser? scanner (Faro), as the reference model and two test models were obtained, via a ?stereophotography? (3dMD) and a ?structured light? facial scanner (FaceScan) ...

  9. The application of a 3D laser scanner in contemporary education of civil engineering students

    Science.gov (United States)

    Szafranko, E.; Pawłowicz, J. A.

    2017-10-01

    The programs of study in field of civil engineering include a number of objects, which concern with details of the planning, design and realization of buildings. These are buildings and structures such as, roads, bridges, tunnels, viaducts. Most of these objects are located far from university and it was difficult to show them on the lessons. Discussing the structure based on the description of the object, photographs or drawings do not always allow to imagine the actual shapes and sizes of buildings, roads, bridges and viaducts. In such a situation, terrestrial photogrammetric technology could be helpful. One of them is 3D laser scanning technology Measurements performed with a laser scanner allows to introduce selected objects in the form of spatial models. They give you the ability to rotate and zoom them in order to know the details of construction of the object. The article presents the possibility of using a 3D laser scanner in teaching.

  10. Method for reducing Newton's rings pattern in the scanned image reproduced with film scanners

    Science.gov (United States)

    Lu, Ming-feng; Ni, Guo-qiang; Wang, Tao; Zhang, Feng; Tao, Ran; Yuan, Jun

    2013-12-01

    Newton's rings pattern always blurs the scanned image when scanning a film using a film scanner. Such phenomenon is a kind of equal thickness interference, which is caused by the air layer between the film and the glass of the scanner. A lot of methods were proposed to prevent the interference, such as film holder, anti-Newton's rings glass and emulsion direct imaging technology, etc. Those methods are expensive and lack of flexibility. In this paper, Newton's rings pattern is proved to be a 2-D chirp signal. Then, the fractional Fourier transform, which can be understood as the chirp-based decomposition, is introduced to process Newton's rings pattern. A digital filtering method in the fractional Fourier domain is proposed to reduce the Newton's rings pattern. The effectiveness of the proposed method is verified by simulation. Compared with the traditional optical method, the proposed method is more flexible and low cost.

  11. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller

    CERN Document Server

    Jofre, M; Steinlechner, F; Oliverio, N; Torres, J P; Pruneri, V; Mitchell, M W; 10.1364/OE.20.012247

    2012-01-01

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than $\\sim 20$ ms. Given the unification of components to fully cont...

  12. Using a terrestrial laser scanner to characterize vegetation-induced flow resistance in a controlled channel

    CERN Document Server

    Vinatier, Fabrice; Belaud, Gilles; Combemale, David

    2016-01-01

    Vegetation characteristics providing spatial heterogeneity at the channel reach scale can produce complex flow patterns and the relationship between plant patterns morphology and flow resistance is still an open question (Nepf 2012). Unlike experiments in laboratory, measuring the vegetation characteristics related to flow resistance on open channel in situ is difficult. Thanks to its high resolution and light weight, scanner lasers allow now to collect in situ 3D vegetation characteristics. In this study we used a 1064 nm usual Terrestrial Laser Scanner (TLS) located 5 meters at nadir above a 8 meters long equipped channel in order to both i) characterize the vegetation structure heterogeneity within the channel form a single scan (blockage factor, canopy height) and ii) to measure the 2D water level all over the channel during steady flow within a few seconds scan. This latter measuring system was possible thanks to an additive dispersive product sprinkled at the water surface. Vegetation characteristics an...

  13. Active/passive scanning. [airborne multispectral laser scanners for agricultural and water resources applications

    Science.gov (United States)

    Woodfill, J. R.; Thomson, F. J.

    1979-01-01

    The paper deals with the design, construction, and applications of an active/passive multispectral scanner combining lasers with conventional passive remote sensors. An application investigation was first undertaken to identify remote sensing applications where active/passive scanners (APS) would provide improvement over current means. Calibration techniques and instrument sensitivity are evaluated to provide predictions of the APS's capability to meet user needs. A preliminary instrument design was developed from the initial conceptual scheme. A design review settled the issues of worthwhile applications, calibration approach, hardware design, and laser complement. Next, a detailed mechanical design was drafted and construction of the APS commenced. The completed APS was tested and calibrated in the laboratory, then installed in a C-47 aircraft and ground tested. Several flight tests completed the test program.

  14. X-ray micro-CT scanner for small animal imaging based on Timepix detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Dudak, Jan, E-mail: jan.dudak@utef.cvut.cz [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Faculty of Biomedical Engineering, Czech Technical University in Prague, Nam. Sitna 3105, 272 00 Kladno (Czech Republic); Zemlicka, Jan; Krejci, Frantisek; Polansky, Stepan; Jakubek, Jan [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Mrzilkova, Jana; Patzelt, Matej; Trnka, Jan [Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00 Prague (Czech Republic)

    2015-02-11

    We describe a newly developed compact micro-CT scanner with rotating gantry equipped with a Timepix Quad hybrid pixel semiconductor detector and a micro-focus X-ray tube providing spatial resolution down to 30 µm. The resolving power of the device in relation to soft tissue sensitivity is demonstrated using a tissue-equivalent phantom and different types of biological samples. The results demonstrate that the use of noiseless particle counting detectors is a promising way to achieve sufficient soft tissue contrast even without any contrast agents. - Highlights: • We developed a new micro-CT scanner for small animal imaging. • Application of Timepix technology to obtain enhanced soft tissue contrast. • Spatial resolution below 30 µm achieved. • Performance demonstrated using a tissue equivalent phantom and biological samples.

  15. Weighting training images by maximizing distribution similarity for supervised segmentation across scanners

    DEFF Research Database (Denmark)

    van Opbroek, Annegreet; Vernooij, Meike W; Ikram, M.Arfan

    2015-01-01

    Many automatic segmentation methods are based on supervised machine learning. Such methods have proven to perform well, on the condition that they are trained on a sufficiently large manually labeled training set that is representative of the images to segment. However, due to differences between...... scanners, scanning parameters, and patients such a training set may be difficult to obtain. We present a transfer-learning approach to segmentation by multi-feature voxelwise classification. The presented method can be trained using a heterogeneous set of training images that may be obtained with different...... scanners than the target image. In our approach each training image is given a weight based on the distribution of its voxels in the feature space. These image weights are chosen as to minimize the difference between the weighted probability density function (PDF) of the voxels of the training images...

  16. Secondary particle acquisition system for the CERN beam wire scanners upgrade

    CERN Document Server

    Sirvent, J L; Emery, J; Diéguez, A

    2015-01-01

    The increasing requirements of CERN experiments make essential the upgrade of beam instrumentation in general, and high accuracy beam profile monitors in particular. The CERN Beam Instrumentation Group has been working during the last years on the Wire Scanners upgrade. These systems cross a thin wire through a circulating beam, the resulting secondary particles produced from beam/wire interaction are detected to reconstruct the beam profile. For the new secondary shower acquisition system, it is necessary to perform very low noise measurements with high dynamic range coverage. The aim is to design a system without tuneable parameters and compatible for any beam wire scanner location at the CERN complex. Polycrystalline chemical vapour deposition diamond detectors (pCVD) are proposed as new detectors for this application because of their radiation hardness, fast response and linearity over a high dynamic range. For the detector readout, the acquisition electronics must be designed to exploit the detector capa...

  17. Development of an inexpensive, low attenuation styrofoam primate chair for use in a PET scanner.

    Science.gov (United States)

    Kortekaas, R; van Waarde, A; Maguire, R P; Leenders, K L; Elsinga, P H

    2004-04-01

    Pharmacokinetic modelling of radiotracers for positron emission tomography (PET) imaging of neuroreceptors can be performed with time-activity data for brain and blood. We aimed to develop an alternative to withdrawal of arterial blood samples for acquisition of a blood curve. A supportive primate chair was constructed out of styrofoam and fixed to the head portion of the bed of a PET scanner. A lightly anaesthetised rhesus monkey was positioned in the chair in a sitting position and injected with the radiotracer. The styrofoam chair provided sufficient support for the monkey. The presence of the chair in the PET scanner caused negligible attenuation of radiation, allowing simultaneous acquisition of dynamic data from the subject's brain and heart. We conclude that a styrofoam primate chair is an ideal tool to measure blood and brain data from a rhesus monkey with PET. Invasiveness to the animal is reduced, as well as experimenter time.

  18. Microstructure-dependent dynamic stability analysis of torsional NEMS scanner in van der Waals regime

    Science.gov (United States)

    Abdi, Javad; Keivani, Maryam; Abadyan, Mohamadreza

    2016-06-01

    The physico-mechanical behavior of nanoscale devices might be microstructure dependent. However, the classical continuum theory cannot correctly predict the microstructure dependency. In this paper, the strain gradient theory is employed to examine the instability characteristics of a nanoscanner with circular geometry. The governing equation of the scanner is derived incorporating the Coulomb and van der Waals (vdW) forces. The influences of applied voltage, squeeze damping and microstructure parameters on the dynamic instability of equilibrium points are studied by plotting the phase portrait and bifurcation diagrams. In the presence of the applied voltage, the phase portrait shows the saddle-node bifurcation while for freestanding scanner a subcritical pitchfork bifurcation is observed. It is concluded that the microstructure parameter enhances the torsional stability.

  19. Numerical and experimental study of the characteristic functions of polygon scanners

    Science.gov (United States)

    Duma, Virgil-Florin; Nicolov, Mirela

    2009-06-01

    A MathCad analysis of the mathematical functions and parameters of polygonal scanning heads is achieved. The results of a previous, rigorous analytical study we have performed are used. A scanning system for dimensional measurements has been considered. However, most of the results obtained are valid for any application of polygon mirror (PM) scanners. The characteristic functions and parameters of the PM scanner in the dimensional measurements setup, i.e. i.e. scanning function and velocity, characteristic angles and duty cycle are discussed. The analysis is performed with regard to the constructive parameters of the polygonal scanning system. An experimental stall is designed and constructed, and some of the experimental results concerning the scanning function, relevant for the analysis performed are presented.

  20. Recent advances in dental optics - Part I: 3D intraoral scanners for restorative dentistry

    Science.gov (United States)

    Logozzo, Silvia; Zanetti, Elisabetta M.; Franceschini, Giordano; Kilpelä, Ari; Mäkynen, Anssi

    2014-03-01

    Intra-oral scanning technology is a very fast-growing field in dentistry since it responds to the need of an accurate three-dimensional mapping of the mouth, as required in a large number of procedures such as restorative dentistry and orthodontics. Nowadays, more than 10 intra-oral scanning devices for restorative dentistry have been developed all over the world even if only some of those devices are currently available on the market. All the existing intraoral scanners try to face with problems and disadvantages of traditional impression fabrication process and are based on different non-contact optical technologies and principles. The aim of this publication is to provide an extensive review of existing intraoral scanners for restorative dentistry evaluating their working principles, features and performances.

  1. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors

    Science.gov (United States)

    Watanabe, Mitsuo; Saito, Akinori; Isobe, Takashi; Ote, Kibo; Yamada, Ryoko; Moriya, Takahiro; Omura, Tomohide

    2017-09-01

    A high-resolution positron emission tomography (PET) scanner, dedicated to brain studies, was developed and its performance was evaluated. A four-layer depth of interaction detector was designed containing five detector units axially lined up per layer board. Each of the detector units consists of a finely segmented (1.2 mm) LYSO scintillator array and an 8  ×  8 array of multi-pixel photon counters. Each detector layer has independent front-end and signal processing circuits, and the four detector layers are assembled as a detector module. The new scanner was designed to form a detector ring of 430 mm diameter with 32 detector modules and 168 detector rings with a 1.2 mm pitch. The total crystal number is 655 360. The transaxial and axial field of views (FOVs) are 330 mm in diameter and 201.6 mm, respectively, which are sufficient to measure a whole human brain. The single-event data generated at each detector module were transferred to the data acquisition servers through optical fiber cables. The single-event data from all detector modules were merged and processed to create coincidence event data in on-the-fly software in the data acquisition servers. For image reconstruction, the high-resolution mode (HR-mode) used a 1.2 mm2 crystal segment size and the high-speed mode (HS-mode) used a 4.8 mm2 size by collecting 16 crystal segments of 1.2 mm each to reduce the computational cost. The performance of the brain PET scanner was evaluated. For the intrinsic spatial resolution of the detector module, coincidence response functions of the detector module pair, which faced each other at various angles, were measured by scanning a 0.25 mm diameter 22Na point source. The intrinsic resolutions were obtained with 1.08 mm full width at half-maximum (FWHM) and 1.25 mm FWHM on average at 0 and 22.5 degrees in the first layer pair, respectively. The system spatial resolutions were less than 1.0 mm FWHM throughout the whole FOV, using a

  2. A modified commercial scanner as an image plate for table-top optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Casado-Rojo, S; Lorenzana, H E; Baonza, V G

    2008-12-09

    A reliable, accurate, and inexpensive optical detector for table-top applications is described here. Based on a commercial high resolution office scanner coupled to a projection on plate, it enables a large image plate surface, allowing recording of large images without systematic errors associated to coupling optics' aberrations. Several tests on distance-dependent and steady interference patterns will be presented and discussed. The extension to other types of optical measurement by substituting the projection on plate is proposed.

  3. A New Generation of X-ray Baggage Scanners Based on a Different Physical Principle

    Directory of Open Access Journals (Sweden)

    Robert D. Speller

    2011-10-01

    Full Text Available X-ray baggage scanners play a basic role in the protection of airports, customs, and other strategically important buildings and infrastructures. The current technology of baggage scanners is based on x-ray attenuation, meaning that the detection of threat objects relies on how various objects differently attenuate the x-ray beams going through them. This capability is enhanced by the use of dual-energy x-ray scanners, which make the determination of the x-ray attenuation characteristics of a material more precise by taking images with different x-ray spectra, and combining the information appropriately. However, this still has limitations whenever objects with similar attenuation characteristics have to be distinguished. We describe an alternative approach based on a different x-ray interaction phenomenon, x-ray refraction. Refraction is a familiar phenomenon in visible light (e.g., what makes a straw half immersed in a glass of water appear bent, which also takes place in the x-ray regime, only causing deviations at much smaller angles. Typically, these deviations occur at the boundaries of all objects. We have developed a system that, like other “phase contrast” based instruments, is capable of detecting such deviations, and therefore of creating precise images of the contours of all objects. This complements the material-related information provided by x-ray attenuation, and helps contextualizing the nature of the individual objects, therefore resulting in an increase of both sensitivity (increased detection rate and specificity (reduced rate of false positives of baggage scanners.

  4. Characteristics of active and passive 2-D holographic scanner imaging systems for the middle infrared.

    Science.gov (United States)

    Ih, C S; Kopeika, N S; Ledet, E

    1980-06-15

    Holographic scanners are suggested for imaging in the 8-13-Mm spectral region. Advantages in refrigeration and reliability are pointed out. The narrow linewidth of received irradiance may limit passive systems to applications such as thermography, where multispectral imaging should be a useful diagnostic tool. Active systems, which do not suffer from this range limitation, offer inherent advantages with regard to resolution improvement via background discrimination and also with respect to countermeasures.

  5. Environmental Mapping by a HERO-1 Robot Using Sonar and a Laser Barcode Scanner.

    Science.gov (United States)

    1983-12-01

    of the scanner. symbols. The module incorporates advanced state-of-the- art designs and micorcir- The system is configured at the factory cuitry that...results include a sonar map of a test environment made by the rover. (Paolu3 viva u-W)0Wd SIH.L JO NOIIVWOUI$SVI All1in S % V. Reply To 9 Feb 84 Attu of

  6. Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner.

    Science.gov (United States)

    Hemmsen, Martin Christian; Nikolov, Svetoslav Ivanov; Pedersen, Mads Møller; Pihl, Michael Johannes; Enevoldsen, Marie Sand; Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-07-01

    This paper describes the design and implementation of a versatile, open-architecture research data acquisition system using a commercially available medical ultrasound scanner. The open architecture will allow researchers and clinicians to rapidly develop applications and move them relatively easy to the clinic. The system consists of a standard PC equipped with a camera link and an ultrasound scanner equipped with a research interface. The ultrasound scanner is an easy-to-use imaging device that is capable of generating high-quality images. In addition to supporting the acquisition of multiple data types, such as B-mode, M-mode, pulsed Doppler, and color flow imaging, the machine provides users with full control over imaging parameters such as transmit level, excitation waveform, beam angle, and focal depth. Beamformed RF data can be acquired from regions of interest throughout the image plane and stored to a file with a simple button press. For clinical trials and investigational purposes, when an identical image plane is desired for both an experimental and a reference data set, interleaved data can be captured. This form of data acquisition allows switching between multiple setups while maintaining identical transducer, scanner, region of interest, and recording time. Data acquisition is controlled through a graphical user interface running on the PC. This program implements an interface for third-party software to interact with the application. A software development toolkit is developed to give researchers and clinicians the ability to utilize third-party software for data analysis and flexible manipulation of control parameters. Because of the advantages of speed of acquisition and clinical benefit, research projects have successfully used the system to test and implement their customized solutions for different applications. Three examples of system use are presented in this paper: evaluation of synthetic aperture sequential beamformation, transverse

  7. Looking for Loss Aversion in Scanner Panel Data: The Confounding Effect of Price Response Heterogeneity

    OpenAIRE

    Bell, David R; James M. Lattin

    2000-01-01

    Recent work in marketing has drawn on behavioral decision theory to advance the notion that consumers evaluate attributes (and therefore choice alternatives) not only in absolute terms, but as from a reference point. The theory has important substantive and practical implications for the timing and execution of price promotions and other marketing activities. Choice modelers using scanner panel data have tested for the presence of these “reference effects” in consumer response to an attribute...

  8. Calculation of the Scattered Radiation Profile in 64 Slice CT Scanners Using Experimental Measurement

    Directory of Open Access Journals (Sweden)

    Afshin Akbarzadeh

    2009-06-01

    Full Text Available Introduction: One of the most important parameters in x-ray CT imaging is the noise induced by detected scattered radiation. The detected scattered radiation is completely dependent on the scanner geometry as well as size, shape and material of the scanned object. The magnitude and spatial distribution of the scattered radiation in x-ray CT should be quantified for development of robust scatter correction techniques. Empirical methods based on blocking the primary photons in a small region are not able to extract scatter in all elements of the detector array while the scatter profile is required for a scatter correction procedure. In this study, we measured scatter profiles in 64 slice CT scanners using a new experimental measurement. Material and Methods: To measure the scatter profile, a lead block array was inserted under the collimator and the phantom was exposed at the isocenter. The raw data file, which contained detector array readouts, was transferred to a PC and was read using a dedicated GUI running under MatLab 7.5. The scatter profile was extracted by interpolating the shadowed area. Results: The scatter and SPR profiles were measured. Increasing the tube voltage from 80 to 140 kVp resulted in an 80% fall off in SPR for a water phantom (d=210 mm and 86% for a polypropylene phantom (d = 350 mm. Increasing the air gap to 20.9 cm caused a 30% decrease in SPR. Conclusion: In this study, we presented a novel approach for measurement of scattered radiation distribution and SPR in a CT scanner with 64-slice capability using a lead block array. The method can also be used on other multi-slice CT scanners. The proposed technique can accurately estimate scatter profiles. It is relatively straightforward, easy to use, and can be used for any related measurement.

  9. Development of a 3D optical scanner for evaluating patient-specific dose distributions.

    Science.gov (United States)

    Chang, Kyung Hwan; Lee, Suk; Jung, Hong; Choo, Yeon-Wook; Cao, Yuan Jie; Shim, Jang Bo; Kim, Kwang Hyeon; Lee, Nam Kwon; Park, Young Je; Kim, Chul Yong; Cho, Sam Ju; Lee, Sang Hoon; Min, Chul Kee; Kim, Woo Chul; Cho, Kwang Hwan; Huh, Hyun Do; Lim, Sangwook

    2015-07-01

    This paper describes the hardware and software characteristics of a 3D optical scanner (P3DS) developed in-house. The P3DS consists of an LED light source, diffuse screen, step motor, CCD camera, and scanner management software with 3D reconstructed software. We performed optical simulation, 2D and 3D reconstruction image testing, and pre-clinical testing for the P3DS. We developed the optical scanner with three key characteristics in mind. First, we developed a continuous scanning method to expand possible clinical applications. Second, we manufactured a collimator to improve image quality by reducing scattering from the light source. Third, we developed an optical scanner with changeable camera positioning to enable acquisition of optimal images according to the size of the gel dosimeter. We confirmed ray-tracing in P3DS with optic simulation and found that 2D projection and 3D reconstructed images were qualitatively similar to the phantom images. For pre-clinical tests, the dose distribution and profile showed good agreement among RTP, optical CT, and external beam radiotherapy film data for the axial and coronal views. The P3DS has shown that it can scan and reconstruct for evaluation of the gel dosimeter within 1 min. We confirmed that the P3DS system is a useful tool for the measurement of 3D dose distributions for 3D radiation therapy QA. Further experiments are needed to investigate quantitative analysis for 3D dose distribution. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Diagnostic Accuracy of Digitized Conventional Radiographs by Camera and Scanner in Detection of Proximal Caries

    OpenAIRE

    Solmaz Valizadeh; Mohammad Amin Tavakoli; Tara Zarabian; Farzad Esmaeili

    2009-01-01

    Background and aims Digital radiographs have some advantages over conventional ones. Application of digital recep-tors is not routine yet. Therefore, there is a need for digitizing conventional radiographs. The aim of the present study was to compare the diagnostic accuracy of digitized conventional radiographs by scanner and camera in detection of proximal car-ies. Materials and methods Three hundred and sixteen surfaces of 158 extracted posterior teeth were radiographed. The radiographs wer...

  11. Mapping Vineyard Leaf Area Using Mobile Terrestrial Laser Scanners: Should Rows be Scanned On-the-Go or Discontinuously Sampled?

    Directory of Open Access Journals (Sweden)

    Ignacio del-Moral-Martínez

    2016-01-01

    Full Text Available The leaf area index (LAI is defined as the one-side leaf area per unit ground area, and is probably the most widely used index to characterize grapevine vigor. However, LAI varies spatially within vineyard plots. Mapping and quantifying this variability is very important for improving management decisions and agricultural practices. In this study, a mobile terrestrial laser scanner (MTLS was used to map the LAI of a vineyard, and then to examine how different scanning methods (on-the-go or discontinuous systematic sampling may affect the reliability of the resulting raster maps. The use of the MTLS allows calculating the enveloping vegetative area of the canopy, which is the sum of the leaf wall areas for both sides of the row (excluding gaps and the projected upper area. Obtaining the enveloping areas requires scanning from both sides one meter length section along the row at each systematic sampling point. By converting the enveloping areas into LAI values, a raster map of the latter can be obtained by spatial interpolation (kriging. However, the user can opt for scanning on-the-go in a continuous way and compute 1-m LAI values along the rows, or instead, perform the scanning at discontinuous systematic sampling within the plot. An analysis of correlation between maps indicated that MTLS can be used discontinuously in specific sampling sections separated by up to 15 m along the rows. This capability significantly reduces the amount of data to be acquired at field level, the data storage capacity and the processing power of computers.

  12. Mapping Vineyard Leaf Area Using Mobile Terrestrial Laser Scanners: Should Rows be Scanned On-the-Go or Discontinuously Sampled?

    Science.gov (United States)

    del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R; Company, Joaquim; Sanz, Ricardo; Escolà, Alexandre; Masip, Joan; Martínez-Casasnovas, José A; Arnó, Jaume

    2016-01-19

    The leaf area index (LAI) is defined as the one-side leaf area per unit ground area, and is probably the most widely used index to characterize grapevine vigor. However, LAI varies spatially within vineyard plots. Mapping and quantifying this variability is very important for improving management decisions and agricultural practices. In this study, a mobile terrestrial laser scanner (MTLS) was used to map the LAI of a vineyard, and then to examine how different scanning methods (on-the-go or discontinuous systematic sampling) may affect the reliability of the resulting raster maps. The use of the MTLS allows calculating the enveloping vegetative area of the canopy, which is the sum of the leaf wall areas for both sides of the row (excluding gaps) and the projected upper area. Obtaining the enveloping areas requires scanning from both sides one meter length section along the row at each systematic sampling point. By converting the enveloping areas into LAI values, a raster map of the latter can be obtained by spatial interpolation (kriging). However, the user can opt for scanning on-the-go in a continuous way and compute 1-m LAI values along the rows, or instead, perform the scanning at discontinuous systematic sampling within the plot. An analysis of correlation between maps indicated that MTLS can be used discontinuously in specific sampling sections separated by up to 15 m along the rows. This capability significantly reduces the amount of data to be acquired at field level, the data storage capacity and the processing power of computers.

  13. Design and fabrication of mechanical-resonance-based optical scanner using push-pull actuator

    Science.gov (United States)

    Gu, Kebin; Tsui, Chi Leung; Ho, Joe; Wang, Wei-Chih

    2012-04-01

    Here we present the current status of our microfabricated SU-8 cantilever beam scanner for endoscopic examination. The current design has improved performance with the implementation of a MEMS based push-pull actuator. Fabrication of the SU-8 rib waveguide was measured to be ~5.0μm as compared to ~50μm in the previous design, further improves our spatial resolution. We have made it easier to couple an optical fiber into the device and achieved ~98% coupling efficiency by altering the system geometry. The proposed rib waveguide design also allows a relatively large waveguide cross section (4μm in height and 55μm in width) and broader band single mode operation (λ= 0.7μm to 1.3μm) with a minimum transmission loss (85% output transmission efficiency with Gaussian beam profile input). Our design provides a new means to create a 2-D raster scanning pattern, verified by transient finite element analysis (FEA). The scanner's line resolution and field of view (FOV) have been optimized through a parametric study using modal and harmonic analyses. This paper describes the fabrication and testing of our optical scanner, which may find application in the area of endoscopy, where there is a need for a minimally invasive device that reduces patient discomfort.

  14. Flying spot laser triangulation scanner using lateral synchronization for surface profile precision measurement.

    Science.gov (United States)

    Zhang, Hanlin; Ren, Yongjie; Liu, Changjie; Zhu, Jigui

    2014-07-10

    High-speed surface profile measurement with high precision is crucial for target inspection and quality control. In this study, a laser scanner based on a single point laser triangulation displacement sensor and a high-speed rotating polygon mirror is proposed. The autosynchronized scanning scheme is introduced to alleviate the trade-off between the field of view and the range precision, which is the inherent deficiency of the conventional triangulation. The lateral synchronized flying spot technology has excellent characteristics, such as programmable and larger field of view, high immunity to ambient light or secondary reflections, high optical signal-to-noise ratio, and minimum shadow effect. Owing to automatic point-to-point laser power control, high accuracy and superior data quality are possible when measuring objects featuring varying surface characteristics even in demanding applications. The proposed laser triangulation scanner is validated using a laboratory-built prototype and practical considerations for design and implementation of the system are described, including speckle noise reduction method and real-time signal processing. A method for rapid and accurate calibration of the laser triangulation scanner using lookup tables is also devised, and the system calibration accuracy is generally smaller than ±0.025  mm. Experimental results are presented and show a broad application prospect for fast surface profile precision measurement.

  15. Frequency Mixing Magnetic Detection Scanner for Imaging Magnetic Particles in Planar Samples.

    Science.gov (United States)

    Hong, Hyobong; Lim, Eul-Gyoon; Jeong, Jae-Chan; Chang, Jiho; Shin, Sung-Woong; Krause, Hans-Joachim

    2016-06-09

    The setup of a planar Frequency Mixing Magnetic Detection (p-FMMD) scanner for performing Magnetic Particles Imaging (MPI) of flat samples is presented. It consists of two magnetic measurement heads on both sides of the sample mounted on the legs of a u-shaped support. The sample is locally exposed to a magnetic excitation field consisting of two distinct frequencies, a stronger component at about 77 kHz and a weaker field at 61 Hz. The nonlinear magnetization characteristics of superparamagnetic particles give rise to the generation of intermodulation products. A selected sum-frequency component of the high and low frequency magnetic field incident on the magnetically nonlinear particles is recorded by a demodulation electronics. In contrast to a conventional MPI scanner, p-FMMD does not require the application of a strong magnetic field to the whole sample because mixing of the two frequencies occurs locally. Thus, the lateral dimensions of the sample are just limited by the scanning range and the supports. However, the sample height determines the spatial resolution. In the current setup it is limited to 2 mm. As examples, we present two 20 mm × 25 mm p-FMMD images acquired from samples with 1 µm diameter maghemite particles in silanol matrix and with 50 nm magnetite particles in aminosilane matrix. The results show that the novel MPI scanner can be applied for analysis of thin biological samples and for medical diagnostic purposes.

  16. Utilizzo di laser scanner e camera digitale aviotrasportati nella progettazione di impianti fotovoltaici

    Directory of Open Access Journals (Sweden)

    Nicola Santomauro

    2012-04-01

    Full Text Available La normativa nazionale nel perseguire le direttive impartite dalla CEE in materia di energia, hai ncentivato fin dal 2007 lo sviluppo delle energie rinnovabili e di conseguenza il sorgere della cosiddetta green-economy ove la Geocart ha deciso di investire nella progettazione di impianti fotovoltaici di microgenerazione, con potenza installata inferiore ad 1 MW. Di particolare rilevanza nella fase di progettazione è risultato un laser scanner ed una camera digitaleintegrati nella piattaforma aviotrasportata MAPPING nel processo di rilievo dei siti individuati come idonei alla installazione di impianti fotovoltaici. Using airborne laser scanner and digital camera in the design of photovoltaic power plants The design of ground-mounted photovoltaic power plants re-quires a deep knowledge of the territory where people work, mainly if the area of interest has a wide coverage and the survey is not smooth. In this article, it is described the experience gained by Geo-cart in the design of 4-MW photovoltaic solar power plants of micro-generation, developed also by means of airborne laser scanner and digital camera for aerial survey of large scale areas within the Matera and Oppido Lucano’s municipalities in Basilicata.

  17. Utilization of a Terrestrial Laser Scanner for the Calibration of Mobile Mapping Systems

    Directory of Open Access Journals (Sweden)

    Seunghwan Hong

    2017-02-01

    Full Text Available This paper proposes a practical calibration solution for estimating the boresight and lever-arm parameters of the sensors mounted on a Mobile Mapping System (MMS. On our MMS devised for conducting the calibration experiment, three network video cameras, one mobile laser scanner, and one Global Navigation Satellite System (GNSS/Inertial Navigation System (INS were mounted. The geometric relationships between three sensors were solved by the proposed calibration, considering the GNSS/INS as one unit sensor. Our solution basically uses the point cloud generated by a 3-dimensional (3D terrestrial laser scanner rather than using conventionally obtained 3D ground control features. With the terrestrial laser scanner, accurate and precise reference data could be produced and the plane features corresponding with the sparse mobile laser scanning data could be determined with high precision. Furthermore, corresponding point features could be extracted from the dense terrestrial laser scanning data and the images captured by the video cameras. The parameters of the boresight and the lever-arm were calculated based on the least squares approach and the precision of the boresight and lever-arm could be achieved by 0.1 degrees and 10 mm, respectively.

  18. Utilizzo di laser scanner e camera digitale aviotrasportati nella progettazione di impianti fotovoltaici

    Directory of Open Access Journals (Sweden)

    Nicola Santomauro

    2012-04-01

    Full Text Available La normativa nazionale nel perseguire le direttive impartite dalla CEE in materia di energia, hai ncentivato fin dal 2007 lo sviluppo delle energie rinnovabili e di conseguenza il sorgere della cosiddetta green-economy ove la Geocart ha deciso di investire nella progettazione di impianti fotovoltaici di microgenerazione, con potenza installata inferiore ad 1 MW. Di particolare rilevanza nella fase di progettazione è risultato un laser scanner ed una camera digitaleintegrati nella piattaforma aviotrasportata MAPPING nel processo di rilievo dei siti individuati come idonei alla installazione di impianti fotovoltaici.Using airborne laser scanner and digital camera in the design of photovoltaic power plantsThe design of ground-mounted photovoltaic power plants re-quires a deep knowledge of the territory where people work, mainly if the area of interest has a wide coverage and the survey is not smooth. In this article, it is described the experience gained by Geo-cart in the design of 4-MW photovoltaic solar power plants of micro-generation, developed also by means of airborne laser scanner and digital camera for aerial survey of large scale areas within the Matera and Oppido Lucano’s municipalities in Basilicata.

  19. Monitor hemoglobin concentration and oxygen saturation in living mouse tail using photoacoustic CT scanner

    Science.gov (United States)

    Liu, Bo; Kruger, Robert; Reinecke, Daniel; Stantz, Keith M.

    2010-02-01

    Purpose: The purpose of this study is to use PCT spectroscopy scanner to monitor the hemoglobin concentration and oxygen saturation change of living mouse by imaging the artery and veins in a mouse tail. Materials and Methods: One mouse tail was scanned using the PCT small animal scanner at the isosbestic wavelength (796nm) to obtain its hemoglobin concentration. Immediately after the scan, the mouse was euthanized and its blood was extracted from the heart. The true hemoglobin concentration was measured using a co-oximeter. Reconstruction correction algorithm to compensate the acoustic signal loss due to the existence of bone structure in the mouse tail was developed. After the correction, the hemoglobin concentration was calculated from the PCT images and compared with co-oximeter result. Next, one mouse were immobilized in the PCT scanner. Gas with different concentrations of oxygen was given to mouse to change the oxygen saturation. PCT tail vessel spectroscopy scans were performed 15 minutes after the introduction of gas. The oxygen saturation values were then calculated to monitor the oxygen saturation change of mouse. Results: The systematic error for hemoglobin concentration measurement was less than 5% based on preliminary analysis. Same correction technique was used for oxygen saturation calculation. After correction, the oxygen saturation level change matches the oxygen volume ratio change of the introduced gas. Conclusion: This living mouse tail experiment has shown that NIR PCT-spectroscopy can be used to monitor the oxygen saturation status in living small animals.

  20. High-resolution mobile optical 3D scanner with color mapping

    Science.gov (United States)

    Ramm, Roland; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Notni, Gunther

    2017-07-01

    A high-resolution mobile handheld scanning device suitable for 3D data acquisition and analysis for forensic investigations, rapid prototyping, design, quality management, and archaeology with a measurement volume of approximately 325 mm x 200 mm x 100mm and a lateral object resolution of 170 µm developed at our institute is introduced. The scanners weight is 4.4 kg with an optional color DLSR camera. The PC for measurement control and point calculation is included inside the housing. Power supply is realized by rechargeable batteries. Possible operation time is between 30 and 60 minutes. The object distance is between 400 and 500 mm, and the scan time for one 3D shot may vary between 0.1 and 0.5 seconds. The complete 3D result is obtained a few seconds after starting the scan. For higher quality 3D and color images the scanner is attachable to tripod use. Measurement objects larger than the measurement volume must be acquired partly. The different resulting datasets are merged using a suitable software module. The scanner has been successfully used in various applications.