WorldWideScience

Sample records for scanned imaging methodology

  1. A simple methodology for obtaining X-ray color images in scanning electron microscopy

    International Nuclear Information System (INIS)

    Veiga, M.M. da; Pietroluongo, L.R.V.

    1985-01-01

    A simple methodology for obtaining at least 3 elements X-ray images in only one photography is described. The fluorescent X-ray image is obtained from scanning electron microscopy with energy dispersion analysis system. The change of detector analytic channels, color cellophane foils and color films are used sequentially. (M.C.K.) [pt

  2. Methodology for converting CT medical images to MCNP input using the Scan2MCNP system

    International Nuclear Information System (INIS)

    Boia, L.S.; Silva, A.X.; Cardoso, S.C.; Castro, R.C.

    2009-01-01

    This paper develops a methodology for the application software Scan2MCNP, which converts medical images DICOM (Digital Imaging and Communications in Medicine) for MCNP input file. The Scan2MCNP handles, processes and executes the medical images generated by CT equipment, allowing the user to perform the selection and parameterization of the study area in question (tissues and organs). The details of these worked in medical imaging software, therefore, will be converted to equity to the process of language analysis of MCNP radiation transport, through the generation of a code input file. With this file, it is possible to simulate any situation/problem of the type and level of radiation to the proposed treatment chosen by the medical staff responsible for the patient. Within a computational process oriented, the Scan2MCNP can contribute along with other software that has been used recently in the area of medical physics, to improve the levels of quality and precision of radiotherapy treatments. In this work, medical images DICOM of the Anthropomorphic Rando Phantom were used in the process of analysis and development of computer software Scan2MCNP. However, it emphasized that the software is successful in certain situations, depending upon a number of auxiliary procedures and software that can help in the solution of certain problems in the natural radiation treatment or express agility by the team of medical physics. (author)

  3. PAVEMENT DISTRESS DETECTION WITH PICUCHA METHODOLOGY FOR AREA-SCAN CAMERAS AND DARK IMAGES

    Directory of Open Access Journals (Sweden)

    Reus Salini

    2017-04-01

    Full Text Available The PICture Unsupervised Classification with Human Analysis (PICUCHA refers to a hybrid human-artificial intelligence methodology for pavement distresses assessment. It combines the human flexibility to recognize patterns and features in images with the neural network ability to expand such recognition to large volumes of images. In this study, the PICUCHA performance was tested with images taken with area-scan cameras and flash light illumination over a pavement with dark textures. These images are particularly challenging for the analysis because of the lens distortion and non-homogeneous illumination, generating artificial joints that happened at random positions inside the image cells. The chosen images were previously analyzed by other software without success because of the dark coluor. The PICUCHA algorithms could analyze the images with no noticeable problem and without any image pre-processing, such as contrast or brightness adjustments. Because of the special procedure used by the pavement engineer for the key patterns description, the distresses detection accuracy of the PICUCHA for the particular image set could reach 100%.

  4. Scanning Tunneling Microscopy - image interpretation

    International Nuclear Information System (INIS)

    Maca, F.

    1998-01-01

    The basic ideas of image interpretation in Scanning Tunneling Microscopy are presented using simple quantum-mechanical models and supplied with examples of successful application. The importance is stressed of a correct interpretation of this brilliant experimental surface technique

  5. Linking world scan and image

    International Nuclear Information System (INIS)

    Timmer, H.; Alcamo, J.; Bollen, J.; Gielen, A.; Gerlach, R.; Den Ouden, A.; Zuidema, G.

    1995-01-01

    In march 1994 the Central Planning Bureau (CPB) in the Hague, the National Institute of Public Health and Environmental Protection (RIVM) in Bilthoven and the Institute of Environmental Studies (IES) in Amsterdam started the first phase of a joint research program aimed at creating integrated scenarios of the global economy, GHG emissions, and climate impacts. The goal of the first phase of this project was to design and test a linked version of the economic model WORLD SCAN of the former, and the climate model IMAGE 2 of the latter institute. This first phase has resulted in the planned test runs with an operational version of the linked models by May 1995. The experiences in the first year were encouraging, both in the scientific and the organizational sense. In a sense, a link was made between scientific disciplines: a coupling of disciplines concerning with global economic development and the global physical climate system is difficult and novel. The goal of the project was to integrate long-term economic developments and effects of climate change. Both the WORLD SCAN model and IMAGE 2 provide a consistent analysis of the global system, but from different perspectives. IMAGE 2 simulates climate change and its effects in a global context but treats the economic system as exogenous. WORLD SCAN covers the world economic system in a consistent manner but does not take into account the global environment. The links are constructed in the area of agriculture and energy. The basic idea is that WORLD SCAN determines demand and supply on economic principles, while IMAGE 2 provides information on changes of land area and average quality of productive land, and other damage costs based on its three sub-systems. The demand for energy is fed into IMAGE 2's Energy Industry subsystem (EIS), which in turn determines emissions of greenhouse gases. Furthermore, some additional output from WORLD SCAN on activity levels, prices and capital structure can be used to determine

  6. Scanning Terahertz Heterodyne Imaging Systems

    Science.gov (United States)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  7. Rapid-scan EPR imaging.

    Science.gov (United States)

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Fast-scan NMR imaging

    International Nuclear Information System (INIS)

    Iwaoka, Hideto; Matsuura, Hiroyuki; Sugiyama, Tadashi; Hirata, Takaaki

    1987-01-01

    This paper describes the Fast Recovery (FR) method for fast-scan Nuclear Magnetic Resonance imaging. The FR method uses a sequence of four radio frequency pulses - alternating selective 90 deg nutation pulses and nonselective 180 deg pulses. One free induction decay (FID) signal and one echo signal are detected and averaged to compute a 2-D image. In the modified FR method, extra 180 deg pulses are applied between 90 deg pulses to cause refocusing and the resultant spin echo signals are averaged to improve the signal to noise ratio. For the FR and modified FR sequences, the macroscopic magnetization is restored to equilibrium quickly and exactly; scan time can consequently be less than that for conventional pulse sequences, such as used in the saturation recovery method, without any penalty in signal to noise ratio. This paper derives expressions for the signal to noise ratio, scan time ratio and contrast noise ratio, compares the FR and modified FR methods with the saturation recovery method and presents experimental results for human body images. In theory and practice, the signal to noise ratio for the FR method is larger than that for the modified FR method. For a given signal to noise ratio the scan time is between one half and one fourth that for the saturation recovery method. The optimum repetition period, T r , is 0.07 ∼ 0.25 s for the FR method, and 0.1 ∼ 0.5 s for the modified FR method. Contrast noise ratio is low for high speed imaging, T r = 0.07 ∼ 0.25 s, but, high contrast noise ratio image is obtained for T r > 0.5 s. (author)

  9. Nonlinear Image Denoising Methodologies

    National Research Council Canada - National Science Library

    Yufang, Bao

    2002-01-01

    In this thesis, we propose a theoretical as well as practical framework to combine geometric prior information to a statistical/probabilistic methodology in the investigation of a denoising problem...

  10. Magnetic resonance imaging methodology

    International Nuclear Information System (INIS)

    Moser, Ewald; Stadlbauer, Andreas; Windischberger, Christian; Quick, Harald H.; Ladd, Mark E.

    2009-01-01

    Magnetic resonance (MR) methods are non-invasive techniques to provide detailed, multi-parametric information on human anatomy, function and metabolism. Sensitivity, specificity, spatial and temporal resolution may, however, vary depending on hardware (e.g., field strength, gradient strength and speed) and software (optimised measurement protocols and parameters for the various techniques). Furthermore, multi-modality imaging may enhance specificity to better characterise complex disease patterns. Positron emission tomography (PET) is an interesting, largely complementary modality, which might be combined with MR. Despite obvious advantages, combining these rather different physical methods may also pose challenging problems. At this early stage, it seems that PET quality may be preserved in the magnetic field and, if an adequate detector material is used for the PET, MR sensitivity should not be significantly degraded. Again, this may vary for the different MR techniques, whereby functional and metabolic MR is more susceptible than standard anatomical imaging. Here we provide a short introduction to MR basics and MR techniques, also discussing advantages, artefacts and problems when MR hardware and PET detectors are combined. In addition to references for more detailed descriptions of MR fundamentals and applications, we provide an early outlook on this novel and exciting multi-modality approach to PET/MR. (orig.)

  11. Multicolor Scanning Laser Imaging in Diabetic Retinopathy.

    Science.gov (United States)

    Ahmad, Mohammad S Z; Carrim, Zia Iqbal

    2017-11-01

    Diabetic retinopathy is a common cause of blindness in individuals younger than 60 years. Screening for retinopathy is undertaken using conventional color fundus photography and relies on the identification of hemorrhages, vascular abnormalities, exudates, and cotton-wool spots. These can sometimes be difficult to identify. Multicolor scanning laser imaging, a new imaging modality, may have a role in improving screening outcomes, as well as facilitating treatment decisions. Observational case series comprising two patients with known diabetes who were referred for further examination after color fundus photography revealed abnormal findings. Multicolor scanning laser imaging was undertaken. Features of retinal disease from each modality were compared. Multicolor scanning laser imaging provides superior visualization of retinal anatomy and pathology, thereby facilitating risk stratification and treatment decisions. Multicolor scanning laser imaging is a novel imaging technique offering the potential for improving the reliability of screening for diabetic retinopathy. Validation studies are warranted.

  12. Towards vortex imaging with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Fuchs, Dan T.

    1994-02-01

    A low temperature, Besocke beetle type scanning tunneling microscope, with a scan range of 10 by 10 microns was built. The scanning tunneling microscope was calibrates for various temperatures and tested on several samples. Gold monolayers evaporated at 400 deg C were resolved and their dynamic behavior observed. Atomic resolution images of graphite were obtained. The scanning tunneling microscope was designed for future applications of vortex imaging in superconductors. The special design considerations for this application are discussed and the physics underlying it reviewed. (author)

  13. Linking IMAGE 2 and WORLD SCAN

    International Nuclear Information System (INIS)

    Gelauff, G.; Geurts, B.; Gielen, A.; Den Ouden, A.; Alcamo, J.; Gerlagh, R.

    1995-01-01

    The links between the climate model IMAGE 2 and the economic model WORLD SCAN, which are set up to obtain an integrated scenario instrument for comprehensive and consistent climate-economy scenarios, are presented and discussed. The links are made with respect to energy (in WORLD SCAN) and agriculture (in IMAGE 2), thus providing a consistent linkage with feedbacks running both ways. 2 figs., 1 tab

  14. An image scanning device using radiating energy

    International Nuclear Information System (INIS)

    Jacob, Daniel.

    1976-01-01

    Said invention relates to an image scanning device using radiating energy. More particularly, it relates to a device for generating a scanning beam of rectangular cross section from a γ or X-ray source. Said invention can be applied to radiographic units of the 'microdose' type used by airline staffs and others for the fast efficient inspection of luggage and parcels in view of detecting hidden things [fr

  15. Scanning laser microscope for imaging nanostructured superconductors

    International Nuclear Information System (INIS)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-01-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  16. Scanning laser microscope for imaging nanostructured superconductors

    Science.gov (United States)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-10-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  17. Seamless stitching of tile scan microscope images.

    Science.gov (United States)

    Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R

    2015-06-01

    For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos. © 2015 The Authors Journal of Microscopy © 2015 Royal

  18. Demystifying autofluorescence with excitation scanning hyperspectral imaging

    Science.gov (United States)

    Deal, Joshua; Harris, Bradley; Martin, Will; Lall, Malvika; Lopez, Carmen; Rider, Paul; Boudreaux, Carole; Rich, Thomas; Leavesley, Silas J.

    2018-02-01

    Autofluorescence has historically been considered a nuisance in medical imaging. Many endogenous fluorophores, specifically, collagen, elastin, NADH, and FAD, are found throughout the human body. Diagnostically, these signals can be prohibitive since they can outcompete signals introduced for diagnostic purposes. Recent advances in hyperspectral imaging have allowed the acquisition of significantly more data in a shorter time period by scanning the excitation spectra of fluorophores. The reduced acquisition time and increased signal-to-noise ratio allow for separation of significantly more fluorophores than previously possible. Here, we propose to utilize excitation-scanning of autofluorescence to examine tissues and diagnose pathologies. Spectra of autofluorescent molecules were obtained using a custom inverted microscope (TE-2000, Nikon Instruments) with a Xe arc lamp and thin film tunable filter array (VersaChrome, Semrock, Inc.) Scans utilized excitation wavelengths from 360 nm to 550 nm in 5 nm increments. The resultant spectra were used to examine hyperspectral image stacks from various collaborative studies, including an atherosclerotic rat model and a colon cancer study. Hyperspectral images were analyzed with ENVI and custom Matlab scripts including linear spectral unmixing (LSU) and principal component analysis (PCA). Initial results suggest the ability to separate the signals of endogenous fluorophores and measure the relative concentrations of fluorophores among healthy and diseased states of similar tissues. These results suggest pathology-specific changes to endogenous fluorophores can be detected using excitationscanning hyperspectral imaging. Future work will expand the library of pure molecules and will examine more defined disease states.

  19. Quick-E-scan: A methodology for the energy scan of SMEs

    International Nuclear Information System (INIS)

    Cagno, E.; Trucco, P.; Trianni, A.; Sala, G.

    2010-01-01

    This paper introduces the Quick-E-Scan methodology that has been developed to achieve the operational energy efficiency of small and medium enterprises (SMEs), characterized by being scarcely disposed to long energy audits and by a limited budget for energy management programs. On one side, through dividing the firm into functional units - either service (lighting, HVAC, etc.) or production units - the main consuming areas are identified and a criticality index is defined; conversely, an enhancement index highlights the gap of each unit towards the best available techniques (BATs) in energy management programs. Finally, a priority index, created with the junction of the two indexes, points out the most profitable areas in which energy saving measures should be implemented. The methodology, particularly quick and simple, has been successfully tested in 38 SMEs in Northern Italy.

  20. Evaluation of processing methods for static radioisotope scan images

    International Nuclear Information System (INIS)

    Oakberg, J.A.

    1976-12-01

    Radioisotope scanning in the field of nuclear medicine provides a method for the mapping of a radioactive drug in the human body to produce maps (images) which prove useful in detecting abnormalities in vital organs. At best, radioisotope scanning methods produce images with poor counting statistics. One solution to improving the body scan images is using dedicated small computers with appropriate software to process the scan data. Eleven methods for processing image data are compared

  1. Destination image, image at destination. Methodological aspects

    Directory of Open Access Journals (Sweden)

    Pablo Díaz-Rodríguez

    2013-01-01

    Full Text Available Today, the part played by the image in the development of tourism, and, specially, as a diffe- rentiation element of a destination area is widely acknowledged. This is reflected to a great extent in the literature that focuses its interest on identifying the variables that motivate the purchase or stimulate the decision process. However, the reference to feedback processes or image control mechanisms as well as their creation, is surprising. An approach model to these processes will be exposed in this article.

  2. Method for Surface Scanning in Medical Imaging and Related Apparatus

    DEFF Research Database (Denmark)

    2015-01-01

    A method and apparatus for surface scanning in medical imaging is provided. The surface scanning apparatus comprises an image source, a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and a first optical coupler for coupling an image from the image...

  3. Scanned Image Projection System Employing Intermediate Image Plane

    Science.gov (United States)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  4. Reframing national image: A methodological framework

    Directory of Open Access Journals (Sweden)

    Xiufang Li (Leah

    2009-10-01

    Full Text Available The article addresses the role of national images in international relations and develops a methodological framework for its study. It concludes that national image study should comprise private frames associated with perceived images of other nations, and public frames referring to projected media images of other nations by drawing on framing theory. It suggests that in-depth interview with intermediate elites can be employed to explore private frames, and the inductive or the deductive approaches to public frames. There is recognition that inquiry is conducted in the shadow of a dynamic world politics and within a historical context, and public diplomacy can be used to build national reputation. To examine the associations between public and private frames of a given country will prepare the ways for the identification of alternative frames and framing devices that may result in variation in public opinion, contributing to national image building in the state under study, and promote understanding and relationships between countries.

  5. Transverse scan-field imaging apparatus

    International Nuclear Information System (INIS)

    Lyons, F.T.

    1978-01-01

    A description is given of an array of opposed pairs of radiation detectors which could be used in tomography or scintiscanning. The opposed detectors scan in opposite tangential directions in a pre-programmed fashion. The associated control system receives the detector outputs into a buffer store and also provides an address for each element of information detected. The addresses are such that information from one buffer store is read into the RAM of a central processing unit in the opposite direction to that from the store associated with the opposite detector, thus effectively reversing the scan direction of one detector of each pair. Also described are the detectors themselves with focussed collimators, the scan drive mechanism, and the method of calculating radioactive emission intensity at discrete points throughout the scan-field. (author)

  6. Dual scan CT image recovery from truncated projections

    Science.gov (United States)

    Sarkar, Shubhabrata; Wahi, Pankaj; Munshi, Prabhat

    2017-12-01

    There are computerized tomography (CT) scanners available commercially for imaging small objects and they are often categorized as mini-CT X-ray machines. One major limitation of these machines is their inability to scan large objects with good image quality because of the truncation of projection data. An algorithm is proposed in this work which enables such machines to scan large objects while maintaining the quality of the recovered image.

  7. Novel optical scanning cryptography using Fresnel telescope imaging.

    Science.gov (United States)

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren

    2015-07-13

    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.

  8. Characteristics of different frequency ranges in scanning electron microscope images

    International Nuclear Information System (INIS)

    Sim, K. S.; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S.

    2015-01-01

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement

  9. Characteristics of different frequency ranges in scanning electron microscope images

    Energy Technology Data Exchange (ETDEWEB)

    Sim, K. S., E-mail: kssim@mmu.edu.my; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S. [Faculty of Engineering and Technology, Multimedia University, 75450 Melaka (Malaysia)

    2015-07-22

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.

  10. Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.

    Science.gov (United States)

    Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth

    2018-01-01

    H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  11. Internal scanning method as unique imaging method of optical vortex scanning microscope

    Science.gov (United States)

    Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2018-06-01

    The internal scanning method is specific for the optical vortex microscope. It allows to move the vortex point inside the focused vortex beam with nanometer resolution while the whole beam stays in place. Thus the sample illuminated by the focused vortex beam can be scanned just by the vortex point. We show that this method enables high resolution imaging. The paper presents the preliminary experimental results obtained with the first basic image recovery procedure. A prospect of developing more powerful tools for topography recovery with the optical vortex scanning microscope is discussed shortly.

  12. Automated image quality assessment for chest CT scans.

    Science.gov (United States)

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  13. Retrospective study of renal images on whole bone scanning

    International Nuclear Information System (INIS)

    Yanagisawa, Munetoshi; Machida, Toyohei; Miki, Makoto; Ohishi, Yukihiko; Ueda, Masataka

    1978-01-01

    One hundred and twenty-seven cases were surveyed by sup(99m)Tc-pyrophosphate at Jikei hospital. Renal images on whole-bone scanning were observed in all cases; 75% of all renal images were normal and 25% were abnormal. Thirteen percent of these abnormal images were symmetric and 87% were asymmetric. Four of the symmetric renal images were bilaterally bad. Three of the four bilaterally bad renal images involved prostate carcinomas with general metastases and the last involved serious bilateral hydronephrosis. The reason for the high percentage of asymmetric renal images was that the materials involved many urogenital cases. Asymmetric renal images other than the urogenital cases, were recognised in 8% of all cases. This percentage is consistent with Hattner's report. Unilateral abnormal renal images involved 8 hydronephrosis cases, 2 unilateral nonfunctioning kidneys and one malrotation kidney. Among the hydronephrosis cases, serious cases gave low uptake and mild cases gave high uptake. The reason for this phenomenon was, presumably, that there were differences in renal uptake, renal excretion and renal pelvic accumulation. In nine cases, one kidney was not visualized on whole-bone scanning, 8 of them involved nephrectomy and the remainining one unilateral nonfunctioning kidney. Six cases presented locally abnormal renal images on whole-bone scanning, three of them suffered renal cell carcinomas and the rest renal solitary cyst. Eighty-eight percent of the abnormal renal images agreed with IVP findings. The renal images of whole-bone scanning faithfully reflected the original renal lesion. Two cases of renal carcinoma and renal solitary cyst recognized on whole-bone scanning are presented, to indicate the usefulness of renal images on whole-bone scanning. (auth.)

  14. A preprocessor for geotomographic imaging of irregular geometric scans

    International Nuclear Information System (INIS)

    Middleton, N.T.; Harman, M.T.

    1992-01-01

    Conventional tomographic image reconstruction algorithms that use algebraic methods are best suited to rectangular geometries. Although this is satisfactory for many rectangular cross-hole and in-seam geotomographic scans, difficulties arise in cases where the scanning geometry is nonrectangular. This paper describes a preprocessing algorithm that deals with nonrectangular geometries when merged with a conventional image reconstruction algorithm. The performance of the preprocessing algorithm is demonstrated with some simulation results

  15. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    Directory of Open Access Journals (Sweden)

    Yunhai Zhang

    2013-01-01

    Full Text Available We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments.

  16. The value of filtered planar images in pediatric DMSA scans

    International Nuclear Information System (INIS)

    Mohammed, A.M.; Naddaf, S.Y.; Elgazzar, A.H.; Al-Abdul Salam, A.A.; Omar, A.A.

    2006-01-01

    The study was designed to demonstrate the value of filtered planar images in paediatric DMSA scanning. One hundred and seventy three patients ranged in age from 15 days to 12 years (mean: 4.3 years) with urinary tract infection (UTI) and clinical and/or laboratory suspicion of acute pyelonephritis (APN) were retrospectively studied. Planar images were filtered using Butterworth filter. The scan findings were reported as positive, negative or equivocal for cortical defects. Each scan was read in a double-blind fashion by two nuclear medicine physicians to evaluate inter-observer variations. Each kidney was divided into three zones, upper, middle and lower, and each zone was graded as positive, negative or equivocal for the presence of renal defects. Renal cortical defects were found in 66 patients (91 kidneys and 186 zones) with filtered images, 58 patients (81 kidneys and 175 zones) with planar images, and 69 patients (87 kidneys and 180 zones) with SPECT images. McNemar's test revealed statistically significant difference between filtered and planar images (p=0.038 for patients, 0.021 for kidneys and 0.034 for number of zones). Inter-observer agreement was 0.877 for filtered images, 0.915 for planar images and 0.915 for SPECT images. It was concluded that filtered planar images of renal cortex are comparable to SPECT images and can be used effectively in place of SPECT, when required, to shorten imaging time and eliminate motion artifacts, especially in the paediatric population. (author)

  17. Scanning transmission electron microscopy imaging and analysis

    CERN Document Server

    Pennycook, Stephen J

    2011-01-01

    Provides the first comprehensive treatment of the physics and applications of this mainstream technique for imaging and analysis at the atomic level Presents applications of STEM in condensed matter physics, materials science, catalysis, and nanoscience Suitable for graduate students learning microscopy, researchers wishing to utilize STEM, as well as for specialists in other areas of microscopy Edited and written by leading researchers and practitioners

  18. Scanning tunneling microscopic images and scanning tunneling spectra for coupled rectangular quantum corrals

    International Nuclear Information System (INIS)

    Mitsuoka, Shigenori; Tamura, Akira

    2011-01-01

    Assuming that an electron confined by double δ-function barriers lies in a quasi-stationary state, we derived eigenstates and eigenenergies of the electron. Such an electron has a complex eigenenergy, and the imaginary part naturally leads to the lifetime of the electron associated with tunneling through barriers. We applied this point of view to the electron confined in a rectangular quantum corral (QC) on a noble metal surface, and obtained scanning tunneling microscopic images and a scanning tunneling spectrum consistent with experimental ones. We investigated the electron states confined in coupled QCs and obtained the coupled states constructed with bonding and anti-bonding states. Using those energy levels and wavefunctions we specified scanning tunneling microscope (STM) images and scanning tunneling spectra (STS) for the doubly and triply coupled QCs. In addition we pointed out the feature of resonant electron states associated with the same QCs at both ends of the triply coupled QCs.

  19. Translate rotate scanning method for X-ray imaging

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Kwog Cheong Tam.

    1990-01-01

    Rapid x-ray inspection of objects larger than an x-ray detector array is based on a translate rotate scanning motion of the object related to the fan beam source and detector. The scan for computerized tomography imaging is accomplished by rotating the object through 360 degrees at two or more positions relative to the source and detector array, in moving to another position the object is rotated and the object or source and detector are translated. A partial set of x-ray data is acquired at every position which are combined to obtain a full data set for complete image reconstruction. X-ray data for digital radiography imaging is acquired by scanning the object vertically at a first position at one view angle, rotating and translating the object relative to the source and detector to a second position, scanning vertically, and so on to cover the object field of view, and combining the partial data sets. (author)

  20. Colorectal cancer detection by hyperspectral imaging using fluorescence excitation scanning

    Science.gov (United States)

    Leavesley, Silas J.; Deal, Joshua; Hill, Shante; Martin, Will A.; Lall, Malvika; Lopez, Carmen; Rider, Paul F.; Rich, Thomas C.; Boudreaux, Carole W.

    2018-02-01

    Hyperspectral imaging technologies have shown great promise for biomedical applications. These techniques have been especially useful for detection of molecular events and characterization of cell, tissue, and biomaterial composition. Unfortunately, hyperspectral imaging technologies have been slow to translate to clinical devices - likely due to increased cost and complexity of the technology as well as long acquisition times often required to sample a spectral image. We have demonstrated that hyperspectral imaging approaches which scan the fluorescence excitation spectrum can provide increased signal strength and faster imaging, compared to traditional emission-scanning approaches. We have also demonstrated that excitation-scanning approaches may be able to detect spectral differences between colonic adenomas and adenocarcinomas and normal mucosa in flash-frozen tissues. Here, we report feasibility results from using excitation-scanning hyperspectral imaging to screen pairs of fresh tumoral and nontumoral colorectal tissues. Tissues were imaged using a novel hyperspectral imaging fluorescence excitation scanning microscope, sampling a wavelength range of 360-550 nm, at 5 nm increments. Image data were corrected to achieve a NIST-traceable flat spectral response. Image data were then analyzed using a range of supervised and unsupervised classification approaches within ENVI software (Harris Geospatial Solutions). Supervised classification resulted in >99% accuracy for single-patient image data, but only 64% accuracy for multi-patient classification (n=9 to date), with the drop in accuracy due to increased false-positive detection rates. Hence, initial data indicate that this approach may be a viable detection approach, but that larger patient sample sizes need to be evaluated and the effects of inter-patient variability studied.

  1. Big cat scan: magnetic resonance imaging of the tiger

    International Nuclear Information System (INIS)

    Snow, Thomas M.; Gregory, Richard J.W.; Litster, Annette L.; Hanger, Jonathan J.

    2004-01-01

    In August 2002, we performed MRI scans on a female juvenile Bengal tiger. We present the clinical course, imaging and autopsy findings, and some comparative anatomy of the tiger brain and skull. Magnetic resonance images of a tiger have not previously been published Copyright (2004) Blackwell Publishing Asia Pty Ltd

  2. Intrathoracic kidney. Diagnostic value of CT scan imaging

    International Nuclear Information System (INIS)

    Baillet, A.M.; Escure, M.N.

    1988-01-01

    Two cases are reported of an ectopic right kidney that was partially intrathoracic in position. Diagnosis was simple from CT scan imaging appearances, the examination being performed to investigate an intrathoracic mass. Images showed a tissular mass within a fatty zone in sections without contrast and the typical appearance of the kidney on sections with contrast [fr

  3. Imaging of the vertical particle tracks without any depth scanning

    International Nuclear Information System (INIS)

    Soroko, L.M.

    2001-01-01

    The principle of a new optical microscope which enables us to get the image of a vertical particle track without any depth scanning is described. This new optical microscope contains a spatial transformer which consists of mirror lamellar elements and which produces a secondary in focus image of the vertical particle track. Properties of such a system are presented. A longitudinal resolution is estimated

  4. Electronic structure classifications using scanning tunneling microscopy conductance imaging

    International Nuclear Information System (INIS)

    Horn, K.M.; Swartzentruber, B.S.; Osbourn, G.C.; Bouchard, A.; Bartholomew, J.W.

    1998-01-01

    The electronic structure of atomic surfaces is imaged by applying multivariate image classification techniques to multibias conductance data measured using scanning tunneling microscopy. Image pixels are grouped into classes according to shared conductance characteristics. The image pixels, when color coded by class, produce an image that chemically distinguishes surface electronic features over the entire area of a multibias conductance image. Such open-quotes classedclose quotes images reveal surface features not always evident in a topograph. This article describes the experimental technique used to record multibias conductance images, how image pixels are grouped in a mathematical, classification space, how a computed grouping algorithm can be employed to group pixels with similar conductance characteristics in any number of dimensions, and finally how the quality of the resulting classed images can be evaluated using a computed, combinatorial analysis of the full dimensional space in which the classification is performed. copyright 1998 American Institute of Physics

  5. Data compression of scanned halftone images

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Jensen, Kim S.

    1994-01-01

    with the halftone grid, and converted to a gray level representation. A new digital description of (halftone) grids has been developed for this purpose. The gray level values are coded according to a scheme based on states derived from a segmentation of gray values. To enable real-time processing of high resolution...... scanner output, the coding has been parallelized and implemented on a transputer system. For comparison, the test image was coded using existing (lossless) methods giving compression rates of 2-7. The best of these, a combination of predictive and binary arithmetic coding was modified and optimized...

  6. Fluorescence image excited by a scanning UV-LED light

    Science.gov (United States)

    Tsai, Hsin-Yi; Chen, Yi-Ju; Huang, Kuo-Cheng

    2013-03-01

    An optical scanning system using UV-LED light to induced fluorescence technology can enhance a fluorescence image significantly in a short period. It has several advantages such as lower power consumption, no scattering effect in skins, and multilayer images can be obtained to analyze skin disease. From the experiment results, the light intensity increases with increase spot size and decrease scanning speed, but the image resolution is oppositely. Moreover, the system could be widely used in clinical diagnosis and photodynamic therapy for skin disease because even the irradiated time of fluorescence substance is short but it will provide accurately positioning of fluorescence object.

  7. COMPARISON OF RETINAL PATHOLOGY VISUALIZATION IN MULTISPECTRAL SCANNING LASER IMAGING.

    Science.gov (United States)

    Meshi, Amit; Lin, Tiezhu; Dans, Kunny; Chen, Kevin C; Amador, Manuel; Hasenstab, Kyle; Muftuoglu, Ilkay Kilic; Nudleman, Eric; Chao, Daniel; Bartsch, Dirk-Uwe; Freeman, William R

    2018-03-16

    To compare retinal pathology visualization in multispectral scanning laser ophthalmoscope imaging between the Spectralis and Optos devices. This retrospective cross-sectional study included 42 eyes from 30 patients with age-related macular degeneration (19 eyes), diabetic retinopathy (10 eyes), and epiretinal membrane (13 eyes). All patients underwent retinal imaging with a color fundus camera (broad-spectrum white light), the Spectralis HRA-2 system (3-color monochromatic lasers), and the Optos P200 system (2-color monochromatic lasers). The Optos image was cropped to a similar size as the Spectralis image. Seven masked graders marked retinal pathologies in each image within a 5 × 5 grid that included the macula. The average area with detected retinal pathology in all eyes was larger in the Spectralis images compared with Optos images (32.4% larger, P < 0.0001), mainly because of better visualization of epiretinal membrane and retinal hemorrhage. The average detection rate of age-related macular degeneration and diabetic retinopathy pathologies was similar across the three modalities, whereas epiretinal membrane detection rate was significantly higher in the Spectralis images. Spectralis tricolor multispectral scanning laser ophthalmoscope imaging had higher rate of pathology detection primarily because of better epiretinal membrane and retinal hemorrhage visualization compared with Optos bicolor multispectral scanning laser ophthalmoscope imaging.

  8. Multiresolution 3-D reconstruction from side-scan sonar images.

    Science.gov (United States)

    Coiras, Enrique; Petillot, Yvan; Lane, David M

    2007-02-01

    In this paper, a new method for the estimation of seabed elevation maps from side-scan sonar images is presented. The side-scan image formation process is represented by a Lambertian diffuse model, which is then inverted by a multiresolution optimization procedure inspired by expectation-maximization to account for the characteristics of the imaged seafloor region. On convergence of the model, approximations for seabed reflectivity, side-scan beam pattern, and seabed altitude are obtained. The performance of the system is evaluated against a real structure of known dimensions. Reconstruction results for images acquired by different sonar sensors are presented. Applications to augmented reality for the simulation of targets in sonar imagery are also discussed.

  9. A new clustering algorithm for scanning electron microscope images

    Science.gov (United States)

    Yousef, Amr; Duraisamy, Prakash; Karim, Mohammad

    2016-04-01

    A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning it with a focused beam of electrons. The electrons interact with the sample atoms, producing various signals that are collected by detectors. The gathered signals contain information about the sample's surface topography and composition. The electron beam is generally scanned in a raster scan pattern, and the beam's position is combined with the detected signal to produce an image. The most common configuration for an SEM produces a single value per pixel, with the results usually rendered as grayscale images. The captured images may be produced with insufficient brightness, anomalous contrast, jagged edges, and poor quality due to low signal-to-noise ratio, grained topography and poor surface details. The segmentation of the SEM images is a tackling problems in the presence of the previously mentioned distortions. In this paper, we are stressing on the clustering of these type of images. In that sense, we evaluate the performance of the well-known unsupervised clustering and classification techniques such as connectivity based clustering (hierarchical clustering), centroid-based clustering, distribution-based clustering and density-based clustering. Furthermore, we propose a new spatial fuzzy clustering technique that works efficiently on this type of images and compare its results against these regular techniques in terms of clustering validation metrics.

  10. Angularly-selective transmission imaging in a scanning electron microscope.

    Science.gov (United States)

    Holm, Jason; Keller, Robert R

    2016-08-01

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.

  11. A Methodology for Anatomic Ultrasound Image Diagnostic Quality Assessment

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Lange, Theis; Brandt, Andreas Hjelm

    2017-01-01

    are presented. Earlier uses of the methodology has shown that it ensures validity of the assessment, as it separates the influences between developer, investigator, and assessor once a research protocol has been established. This separation reduces confounding influences on the result from the developer......This paper discusses methods for assessment of ultrasound image quality based on our experiences with evaluating new methods for anatomic imaging. It presents a methodology to ensure a fair assessment between competing imaging methods using clinically relevant evaluations. The methodology...... to properly reveal the clinical value. The paper exemplifies the methodology using recent studies of Synthetic Aperture Sequential Beamforming tissue harmonic imaging....

  12. Image mosaicing for automated pipe scanning

    International Nuclear Information System (INIS)

    Summan, Rahul; Dobie, Gordon; Guarato, Francesco; MacLeod, Charles; Marshall, Stephen; Pierce, Gareth; Forrester, Cailean; Bolton, Gary

    2015-01-01

    Remote visual inspection (RVI) is critical for the inspection of the interior condition of pipelines particularly in the nuclear and oil and gas industries. Conventional RVI equipment produces a video which is analysed online by a trained inspector employing expert knowledge. Due to the potentially disorientating nature of the footage, this is a time intensive and difficult activity. In this paper a new probe for such visual inspections is presented. The device employs a catadioptric lens coupled with feature based structure from motion to create a 3D model of the interior surface of a pipeline. Reliance upon the availability of image features is mitigated through orientation and distance estimates from an inertial measurement unit and encoder respectively. Such a model affords a global view of the data thus permitting a greater appreciation of the nature and extent of defects. Furthermore, the technique estimates the 3D position and orientation of the probe thus providing information to direct remedial action. Results are presented for both synthetic and real pipe sections. The former enables the accuracy of the generated model to be assessed while the latter demonstrates the efficacy of the technique in a practice

  13. Image mosaicing for automated pipe scanning

    Energy Technology Data Exchange (ETDEWEB)

    Summan, Rahul, E-mail: rahul.summan@strath.ac.uk; Dobie, Gordon, E-mail: rahul.summan@strath.ac.uk; Guarato, Francesco, E-mail: rahul.summan@strath.ac.uk; MacLeod, Charles, E-mail: rahul.summan@strath.ac.uk; Marshall, Stephen, E-mail: rahul.summan@strath.ac.uk; Pierce, Gareth [Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Forrester, Cailean [Inspectahire Instrument Company Ltd, Units 10 -12 Whitemyres Business Centre, Whitemyres Avenue, Aberdeen, AB16 6HQ (United Kingdom); Bolton, Gary [National Nuclear Laboratory, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE (United Kingdom)

    2015-03-31

    Remote visual inspection (RVI) is critical for the inspection of the interior condition of pipelines particularly in the nuclear and oil and gas industries. Conventional RVI equipment produces a video which is analysed online by a trained inspector employing expert knowledge. Due to the potentially disorientating nature of the footage, this is a time intensive and difficult activity. In this paper a new probe for such visual inspections is presented. The device employs a catadioptric lens coupled with feature based structure from motion to create a 3D model of the interior surface of a pipeline. Reliance upon the availability of image features is mitigated through orientation and distance estimates from an inertial measurement unit and encoder respectively. Such a model affords a global view of the data thus permitting a greater appreciation of the nature and extent of defects. Furthermore, the technique estimates the 3D position and orientation of the probe thus providing information to direct remedial action. Results are presented for both synthetic and real pipe sections. The former enables the accuracy of the generated model to be assessed while the latter demonstrates the efficacy of the technique in a practice.

  14. Imaging Anyons with Scanning Tunneling Microscopy

    Science.gov (United States)

    Papić, Zlatko; Mong, Roger S. K.; Yazdani, Ali; Zaletel, Michael P.

    2018-01-01

    Anyons are exotic quasiparticles with fractional charge that can emerge as fundamental excitations of strongly interacting topological quantum phases of matter. Unlike ordinary fermions and bosons, they may obey non-Abelian statistics—a property that would help realize fault-tolerant quantum computation. Non-Abelian anyons have long been predicted to occur in the fractional quantum Hall (FQH) phases that form in two-dimensional electron gases in the presence of a large magnetic field, such as the ν =5 /2 FQH state. However, direct experimental evidence of anyons and tests that can distinguish between Abelian and non-Abelian quantum ground states with such excitations have remained elusive. Here, we propose a new experimental approach to directly visualize the structure of interacting electronic states of FQH states with the STM. Our theoretical calculations show how spectroscopy mapping with the STM near individual impurity defects can be used to image fractional statistics in FQH states, identifying unique signatures in such measurements that can distinguish different proposed ground states. The presence of locally trapped anyons should leave distinct signatures in STM spectroscopic maps, and enables a new approach to directly detect—and perhaps ultimately manipulate—these exotic quasiparticles.

  15. A methodology of SiP testing based on boundary scan

    Science.gov (United States)

    Qin, He; Quan, Haiyang; Han, Yifei; Zhu, Tianrui; Zheng, Tuo

    2017-10-01

    System in Package (SiP) play an important role in portable, aerospace and military electronic with the microminiaturization, light weight, high density, and high reliability. At present, SiP system test has encountered the problem on system complexity and malfunction location with the system scale exponentially increase. For SiP system, this paper proposed a testing methodology and testing process based on the boundary scan technology. Combining the character of SiP system and referencing the boundary scan theory of PCB circuit and embedded core test, the specific testing methodology and process has been proposed. The hardware requirement of the under test SiP system has been provided, and the hardware platform of the testing has been constructed. The testing methodology has the character of high test efficiency and accurate malfunction location.

  16. MR imaging of brain surface structures: Surface anatomy scanning

    International Nuclear Information System (INIS)

    Katada, K.; Koga, S.; Asahina, M.; Kanno, T.; Asahina, K.

    1987-01-01

    Preoperative evaluation of brain surface anatomy, including cortical sulci and veins, relative to cerebral and cerebellar lesions is an important subject for surgeons. Until now, no imaging modality existed that allowed direct visualization of brain surface anatomy. A new MR imaging technique (surface anatomy scanning) was developed to visualize brain surface structures. The technique uses a spin-echo pulse sequence with long repetition and echo times, thick sections and a surface coil. Cortical sulci, fissures, veins, and intracranial lesions were clearly identified with this technique. Initial clinical results indicate that surface anatomy scanning is useful for lesion localization and for detailed evaluation of cortical and subcortical lesions

  17. Image scanning microscopy using a SPAD detector array (Conference Presentation)

    Science.gov (United States)

    Castello, Marco; Tortarolo, Giorgio; Buttafava, Mauro; Tosi, Alberto; Sheppard, Colin J. R.; Diaspro, Alberto; Vicidomini, Giuseppe

    2017-02-01

    The use of an array of detectors can help overcoming the traditional limitation of confocal microscopy: the compromise between signal and theoretical resolution. Each element independently records a view of the sample and the final image can be reconstructed by pixel reassignment or by inverse filtering (e.g. deconvolution). In this work, we used a SPAD array of 25 detectors specifically designed for this goal and our scanning microscopy control system (Carma) to acquire the partial images and to perform online image processing. Further work will be devoted to optimize the image reconstruction step and to improve the fill-factor of the detector.

  18. Near-infrared dental imaging using scanning fiber endoscope

    Science.gov (United States)

    Zhou, Yaxuan; Lee, Robert; Sadr, Alireza; Seibel, Eric J.

    2018-02-01

    Near-infrared (NIR) wavelength range of 1300-1500nm has the potential to outperform or augment other dental imaging modalities such as fluorescence imaging, owing to its lower scattering coefficient in enamel and trans- parency on stains and non-cariogenic plaque. However, cameras in this wavelength range are bulky and expensive, which lead to difficulties for in-vivo use and commercialization. Thus, we have proposed a new imaging device combining the scanning fiber endoscopy (SFE) and NIR imaging technology. The NIR SFE system has the advantage of miniature size (1.6 mm), flexible shaft, video frame rate (7Hz) and expandable wide field-of-view (60 degrees). Eleven extracted human teeth with or without occlusal caries were scanned by micro-computed X-ray tomography (micro-CT) to obtain 3D micro-CT images, which serve as the standard for comparison. NIR images in reflection mode were then taken on all the occlusal surfaces, using 1310nm super luminescent diode and 1460nm laser diode respectively. Qualitative comparison was performed between near-infrared im- ages and micro-CT images. Enamel demineralization in NIR appeared as areas of increased reflectivity, and distinguished from non-carious staining at the base of occlusal fissures or developmental defects on cusps. This preliminary work presented proof for practicability of combining NIR imaging technology with SFE for reliable and noninvasive dental imaging with miniaturization and low cost.

  19. Technique for evaluation of spatial resolution and microcalcifications in digital and scanned images of a standard breast phantom

    International Nuclear Information System (INIS)

    Santana, Priscila do C.; Gomes, Danielle S.; Oliveira, Marcio A.; Oliveira, Paulo Marcio C. de; Meira-Belo, Luiz C.; Nogueira-Tavares, Maria S.

    2011-01-01

    In this work, an automated methodology to evaluate digital and scanned images of a standard phantom (Phantom Mama) was studied. The Phantom Mama was used as an important tool to check the quality of mammographs. The scanned images were digitized using a ScanMaker 9800XL, with resolution of 900 dpi. The aim of this work is to test an automatic methodology for evaluation of spatial resolution and microcalcifications group of phantom mama images acquired with the same parameters in the same equipment. In order to analyze the images we have used the ImageJ software (in Java) which is public domain. We have used the Fast Fourier transform technique to evaluate the spatial resolution and used the ImageJ function Subtract Background and the Light Background plus Sliding Paraboloid on the evaluation of the five groups of microcalcifications on the breast phantom to assess the viability of using automated methods for both types of images. The methodology was adequate for evaluated the microcalcifications group and the spatial resolution in scanned and digital images, but the Phantom Mama doesn't provide sufficient parameters to evaluate the spatial resolution in this images. (author)

  20. Imaging ballistic carrier trajectories in graphene using scanning gate microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Sei; Masubuchi, Satoru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Dou, Ziwei; Wang, Shu-Wei; Smith, Charles G.; Connolly, Malcolm R., E-mail: mrc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Machida, Tomoki, E-mail: tmachida@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2015-12-14

    We use scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and subject to a weak magnetic field. We employ a magnetic focusing geometry to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local electric field generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector.

  1. Scanning tunneling microscope for magneto-optical imaging

    NARCIS (Netherlands)

    Prins, M.W.J.; Groeneveld, R.H.M.; Abraham, D.L.; Schad, R.; Kempen, van H.; Kesteren, van H.W.

    1996-01-01

    Images of magnetic bits written in a Pt/Co multilayer are presented. Using photosensitive semiconducting tips in a scanning tunneling microscope the surface topography as well as the polarization-dependent optical transmission are measured. Magnetic contrast is achieved by detection of the Faraday

  2. Modelling of thermal conductance during microthermal machining with scanning thermal microscope using an inverse methodology

    International Nuclear Information System (INIS)

    Yang Yuching; Chang Winjin; Fang Tehua; Fang Shihchung

    2008-01-01

    In this study, a general methodology for determining the thermal conductance between the probe tip and the workpiece during microthermal machining using Scanning Thermal Microscopy (SThM) has been proposed. The processing system was considered as an inverse heat conduction problem with an unknown thermal conductance. Temperature dependence for the material properties and thermal conductance in the analysis of heat conduction is taken into account. The conjugate gradient method is used to solve the inverse problem. Furthermore, this methodology can also be applied to estimate the thermal contact conductance in other transient heat conduction problems, like metal casting process, injection molding process, and electronic circuit systems

  3. Hyperspectral imaging system for disease scanning on banana plants

    Science.gov (United States)

    Ochoa, Daniel; Cevallos, Juan; Vargas, German; Criollo, Ronald; Romero, Dennis; Castro, Rodrigo; Bayona, Oswaldo

    2016-05-01

    Black Sigatoka (BS) is a banana plant disease caused by the fungus Mycosphaerella fijiensis. BS symptoms can be observed at late infection stages. By that time, BS has probably spread to other plants. In this paper, we present our current work on building an hyper-spectral (HS) imaging system aimed at in-vivo detection of BS pre-symptomatic responses in banana leaves. The proposed imaging system comprises a motorized stage, a high-sensitivity VIS-NIR camera and an optical spectrograph. To capture images of the banana leaf, the stage's speed and camera's frame rate must be computed to reduce motion blur and to obtain the same resolution along both spatial dimensions of the resulting HS cube. Our continuous leaf scanning approach allows imaging leaves of arbitrary length with minimum frame loss. Once the images are captured, a denoising step is performed to improve HS image quality and spectral profile extraction.

  4. Electric field effects in scanning tunneling microscope imaging

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Quaade, Ulrich; Grey, Francois

    1998-01-01

    We present a high-voltage extension of the Tersoff-Hamann theory of scanning tunneling microscope (STM) images, which includes the effect of the electric field between the tip and the sample. The theoretical model is based on first-principles electronic structure calculations and has no adjustable...... parameters. We use the method to calculate theoretical STM images of the monohydrate Si(100)-H(2x1) surface with missing hydrogen defects at -2V and find an enhanced corrugation due to the electric field, in good agreement with experimental images....

  5. An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large scale imaging.

    Science.gov (United States)

    Diaconescu, Bogdan; Nenchev, Georgi; de la Figuera, Juan; Pohl, Karsten

    2007-10-01

    We describe the design and performance of a fast-scanning, variable temperature scanning tunneling microscope (STM) operating from 80 to 700 K in ultrahigh vacuum (UHV), which routinely achieves large scale atomically resolved imaging of compact metallic surfaces. An efficient in-vacuum vibration isolation and cryogenic system allows for no external vibration isolation of the UHV chamber. The design of the sample holder and STM head permits imaging of the same nanometer-size area of the sample before and after sample preparation outside the STM base. Refractory metal samples are frequently annealed up to 2000 K and their cooldown time from room temperature to 80 K is 15 min. The vertical resolution of the instrument was found to be about 2 pm at room temperature. The coarse motor design allows both translation and rotation of the scanner tube. The total scanning area is about 8 x 8 microm(2). The sample temperature can be adjusted by a few tens of degrees while scanning over the same sample area.

  6. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    Science.gov (United States)

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  7. Effects of megavoltage computed tomographic scan methodology on setup verification and adaptive dose calculation in helical TomoTherapy.

    Science.gov (United States)

    Zhu, Jian; Bai, Tong; Gu, Jiabing; Sun, Ziwen; Wei, Yumei; Li, Baosheng; Yin, Yong

    2018-04-27

    To evaluate the effect of pretreatment megavoltage computed tomographic (MVCT) scan methodology on setup verification and adaptive dose calculation in helical TomoTherapy. Both anthropomorphic heterogeneous chest and pelvic phantoms were planned with virtual targets by TomoTherapy Physicist Station and were scanned with TomoTherapy megavoltage image-guided radiotherapy (IGRT) system consisted of six groups of options: three different acquisition pitches (APs) of 'fine', 'normal' and 'coarse' were implemented by multiplying 2 different corresponding reconstruction intervals (RIs). In order to mimic patient setup variations, each phantom was shifted 5 mm away manually in three orthogonal directions respectively. The effect of MVCT scan options was analyzed in image quality (CT number and noise), adaptive dose calculation deviations and positional correction variations. MVCT scanning time with pitch of 'fine' was approximately twice of 'normal' and 3 times more than 'coarse' setting, all which will not be affected by different RIs. MVCT with different APs delivered almost identical CT numbers and image noise inside 7 selected regions with various densities. DVH curves from adaptive dose calculation with serial MVCT images acquired by varied pitches overlapped together, where as there are no significant difference in all p values of intercept & slope of emulational spinal cord (p = 0.761 & 0.277), heart (p = 0.984 & 0.978), lungs (p = 0.992 & 0.980), soft tissue (p = 0.319 & 0.951) and bony structures (p = 0.960 & 0.929) between the most elaborated and the roughest serials of MVCT. Furthermore, gamma index analysis shown that, compared to the dose distribution calculated on MVCT of 'fine', only 0.2% or 1.1% of the points analyzed on MVCT of 'normal' or 'coarse' do not meet the defined gamma criterion. On chest phantom, all registration errors larger than 1 mm appeared at superior-inferior axis, which cannot be avoided with the smallest AP and RI

  8. Probing superconductors. Spectroscopic-imaging scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Hanaguri, Tetsuo

    2011-01-01

    Discovery of high-temperature superconductivity in a cuprate triggered developments of various spectroscopic tools which have been utilized to elucidate electronic states of this mysterious compound. Particularly, angle-resolved photoemission spectroscopy and scanning-tunneling microscopy/spectroscopy are improved considerably. It is now possible to map the superconducting gap in both momentum and real spaces using these two techniques. Here we review spectroscopic-imaging scanning tunneling microscopy which is able to explore momentum-space phase structure of the superconducting gap, as well as real-space structure. Applications of this technique to a cuprate and an iron-based superconductor are discussed. (author)

  9. Developing optimized CT scan protocols: Phantom measurements of image quality

    International Nuclear Information System (INIS)

    Zarb, Francis; Rainford, Louise; McEntee, Mark F.

    2011-01-01

    Purpose: The increasing frequency of computerized tomography (CT) examinations is well documented, leading to concern about potential radiation risks for patients. However, the consequences of not performing the CT examination and missing injuries and disease are potentially serious, impacting upon correct patient management. The ALARA principle of dose optimization must be employed for all justified CT examinations. Dose indicators displayed on the CT console as either CT dose index (CTDI) and/or dose length product (DLP), are used to indicate dose and can quantify improvements achieved through optimization. Key scan parameters contributing to dose have been identified in previous literature and in previous work by our group. The aim of this study was to optimize the scan parameters of mA; kV and pitch, whilst maintaining image quality and reducing dose. This research was conducted using psychophysical image quality measurements on a CT quality assurance (QA) phantom establishing the impact of dose optimization on image quality parameters. Method: Current CT scan parameters for head (posterior fossa and cerebrum), abdomen and chest examinations were collected from 57% of CT suites available nationally in Malta (n = 4). Current scan protocols were used to image a Catphan 600 CT QA phantom whereby image quality was assessed. Each scan parameter: mA; kV and pitch were systematically reduced until the contrast resolution (CR), spatial resolution (SR) and noise were significantly lowered. The Catphan 600 images, produced by the range of protocols, were evaluated by 2 expert observers assessing CR, SR and noise. The protocol considered as the optimization threshold was just above the setting that resulted in a significant reduction in CR and noise but not affecting SR at the 95% confidence interval. Results: The limit of optimization threshold was determined for each CT suite. Employing optimized parameters, CTDI and DLP were both significantly reduced (p ≤ 0.001) by

  10. Comparison of CT scanning and radionuclide imaging in liver disease

    International Nuclear Information System (INIS)

    Friedman, M.L.; Esposito, F.S.

    1980-01-01

    Early experience with body CT suggested its usefulness in many diagnostic problems; jaundice, renal and pancreatic masses, and in the evaluation of relatively inaccessible parts of the body, such as the retroperitineum, mediastinum, and pelvis. Investigation of hepatic disease by CT was not unexpectedly compared to radionuclide liver scanning, the major preexisting modality for imaging the liver. In the evaluation of the jaundiced patient, CT rapidly assumed a major role, providing more specific information about the liver than the RN liver scan, as well as demonstrating adjacent organs. CT differentiate obstructive from non-obstructive jaundice. With respect to mass lesions of the liver, the RN liver scan is more sensitive than CT but less specific. The abnormalities on an isotope image of the liver consist of normal variants in configuration, extrinsic compression by adjacent structures, cysts, hemangiomata, abscesses, and neoplasms. These suspected lesions may then be better delineated by the CT image, and a more precise diagnosis made. The physiologic information provided by the RN liver scan is an added facet which is helpful in the patient with diffuse hepatic disease. The CT image will be normal in many of these patients, however, hemochromatosis and fatty infiltration lend themselves especially to density evaluation by CT. The evaluation of lymphoma is more thorough with CT. Structures other than the liver, such as lymph nodes, are visualized. Gallium, however, provides additional isotopic information in patients with lymphoma, and in addition, is known to be useful in the investigation of a febrile patient with an abscess. Newer isotopic agents expand hepatic imaging in other directions, visualizing the biliary tree and evaluating the jaundiced patient

  11. Humidity effects on scanning polarization force microscopy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yue, E-mail: shenyue@isl.ac.cn [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); Key Laboratory of Interfacial Physics and Technology of Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhou, Yuan, E-mail: zhouy@isl.ac.cn [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); Sun, Yanxia; Zhang, Lijuan [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Ying; Hu, Jun; Zhang, Yi [Key Laboratory of Interfacial Physics and Technology of Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2017-08-01

    Highlights: • The humidity dramatically affects the contrast of scanning polarization force microscopy (SPFM) imaging on mica surface. • This influence roots in the sensitive dielectric constant of mica surface to the humidity change. • A strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM is proposed. - Abstract: Scanning polarization force microscopy (SPFM) is a useful surface characterization technique to visually characterize and distinguish nanomaterial with different local dielectric properties at nanometer scale. In this paper, taking the individual one-atom-thick graphene oxide (GO) and reduced graphene oxide (rGO) sheets on mica as examples, we described the influences of environmental humidity on SPFM imaging. We found that the apparent heights (AHs) or contrast of SPFM imaging was influenced significantly by relative humidity (RH) at a response time of a few seconds. And this influence rooted in the sensitive dielectric constant of mica surface to the RH change. While dielectric properties of GO and rGO sheets were almost immune to the humidity change. In addition, we gave the method to determine the critical humidity at which the contrast conversion happened under different conditions. And this is important to the contrast control and repeatable imaging of SPFM through RH adjusting. These findings suggest a strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM, which is critically important for further distinguishment, manipulation, electronic applications, etc.

  12. Space Radar Image of West Texas - SAR scan

    Science.gov (United States)

    1999-01-01

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by 'scanning' the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the

  13. Optimal scanning and image processing with the STEM

    International Nuclear Information System (INIS)

    Crewe, A.V.; Ohtsuki, M.

    1981-01-01

    We have recently published a theory of an optimal scanning system which is particularly suited for the STEM. One concludes from the theory that the diffraction limit of the electron probe should be a fixed fraction of the full-scale deflection in order to avoid scanning artifacts. More recently, we have confirmed the value of this technique by direct experiments. Our program now is to combine the use of optimal scanning with the use of a programmable digital refresh memory for image analysis. Limited experience to date indicates that false color conversion is probably more useful than histogram equalization in black and white and that this system is particularly valuable for rotational averaging and selected area Fourier transforms. (orig.)

  14. Simulation study of secondary electron images in scanning ion microscopy

    CERN Document Server

    Ohya, K

    2003-01-01

    The target atomic number, Z sub 2 , dependence of secondary electron yield is simulated by applying a Monte Carlo code for 17 species of metals bombarded by Ga ions and electrons in order to study the contrast difference between scanning ion microscopes (SIM) and scanning electron microscopes (SEM). In addition to the remarkable reversal of the Z sub 2 dependence between the Ga ion and electron bombardment, a fine structure, which is correlated to the density of the conduction band electrons in the metal, is calculated for both. The brightness changes of the secondary electron images in SIM and SEM are simulated using Au and Al surfaces adjacent to each other. The results indicate that the image contrast in SIM is much more sensitive to the material species and is clearer than that for SEM. The origin of the difference between SIM and SEM comes from the difference in the lateral distribution of secondary electrons excited within the escape depth.

  15. Local crystallography analysis for atomically resolved scanning tunneling microscopy images

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Li, Qing; Belianinov, Alexei; Gai, Zheng; Baddorf, Arthur P; Pan, Minghu; Jesse, Stephen; Kalinin, Sergei V; Sales, Brian C; Sefat, Athena

    2013-01-01

    Scanning probe microscopy has emerged as a powerful and flexible tool for atomically resolved imaging of surface structures. However, due to the amount of information extracted, in many cases the interpretation of such data is limited to being qualitative and semi-quantitative in nature. At the same time, much can be learned from local atom parameters, such as distances and angles, that can be analyzed and interpreted as variations of local chemical bonding, or order parameter fields. Here, we demonstrate an iterative algorithm for indexing and determining atomic positions that allows the analysis of inhomogeneous surfaces. This approach is further illustrated by local crystallographic analysis of several real surfaces, including highly ordered pyrolytic graphite and an Fe-based superconductor FeTe 0.55 Se 0.45 . This study provides a new pathway to extract and quantify local properties for scanning probe microscopy images. (paper)

  16. Modifying a Rodenstock scanning laser ophthalmoscope for imaging densitometry.

    Science.gov (United States)

    Tornow, R P; Beuel, S; Zrenner, E

    1997-08-01

    The necessary modifications and technical requirements are described for using a commercially available scanning laser ophthalmoscope (Rodenstock Model 101 SLO) as an imaging densitometer to assess human photopigment distribution. The main requirements are a linear detector amplifier, fast shutters for the laser beams, and a trigger unit. Images must be compensated for varying laser intensity. Both rod and cone photopigments are measured with the 514-nm argon laser of the SLO. Discrimination is possible owing to the different spatial distribution. The cone pigment density peaks in the foveal center (D = 0.40) with a steep decrease with increasing eccentricity E (full width at half-maximum, 2.5 degrees ). Rod photopigment increases with increasing eccentricity (D = 0.23 for E = 11 degrees ). These values are in agreement with previous reported results obtained with scanning laser ophthalmoscopes specially designed for retinal densitometry and high stability.

  17. Images of a poe(rotic body scanned

    Directory of Open Access Journals (Sweden)

    Adriana Carolina Hipólito de Assis

    2014-04-01

    This study aims to determine how the poetic eroticized body is evident in the visual images of some works of the poet, translator and literary critic Brazilian Décio Pignatari, as well as put on the reintegration of this debate in the media desiring body from the critical explained by the Mexican poet and essayist Octávio Paz is work Conjunções e Disjunções (1979. To address this body lov(erotic as cut corpus study of the work: Poesia Pois é Poesia, of Décio Pignatari (2004. Poetry expressing the brand and put in concrete dialogue resulting images of translating a digital body that extends (McLuhan while communication apparatus, media convergence in the conception of art as scanned image, such as sensory, tactile, eroticized body. Attendance plastic, tangible reflecting a face that survives own image: a concrete icon.

  18. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Directory of Open Access Journals (Sweden)

    Merino D

    2016-04-01

    Full Text Available David Merino, Pablo Loza-Alvarez The Institute of Photonic Sciences (ICFO, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain Abstract: Adaptive optics (AO retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. Keywords: high-resolution, in vivo retinal imaging, AOSLO

  19. Quality Assurance By Laser Scanning And Imaging Techniques

    Science.gov (United States)

    SchmalfuB, Harald J.; Schinner, Karl Ludwig

    1989-03-01

    Laser scanning systems are well established in the world of fast industrial in-process quality inspection systems. The materials inspected by laser scanning systems are e.g. "endless" sheets of steel, paper, textile, film or foils. The web width varies from 50 mm up to 5000 mm or more. The web speed depends strongly on the production process and can reach several hundred meters per minute. The continuous data flow in one of different channels of the optical receiving system exceeds ten Megapixels/sec. Therefore it is clear that the electronic evaluation system has to process these data streams in real time and no image storage is possible. But sometimes (e.g. first installation of the system, change of the defect classification) it would be very helpful to have the possibility for a visual look on the original, i.e. not processed sensor data. At first we show the principle set up of a standard laser scanning system. Then we will introduce a large image memory especially designed for the needs of high-speed inspection sensors. This image memory co-operates with the standard on-line evaluation electronics and provides therefore an easy comparison between processed and non-processed data. We will discuss the basic system structure and we will show the first industrial results.

  20. High-resolution imaging in the scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Pennycook, S.J.; Jesson, D.E.

    1992-03-01

    The high-resolution imaging of crystalline materials in the scanning transmission electron microscopy (STEM) is reviewed with particular emphasis on the conditions under which an incoherent image can be obtained. It is shown that a high-angle annular detector can be used to break the coherence of the imaging process, in the transverse plane through the geometry of the detector, or in three dimensions if multiphonon diffuse scattering is detected. In the latter case, each atom can be treated as a highly independent source of high-angle scattering. The most effective fast electron states are therefore tightly bound s-type Bloch states. Furthermore, they add constructively for each incident angle in the coherent STEM probe, so that s states are responsible for practically the entire image contrast. Dynamical effects are largely removed, and almost perfect incoherent imaging is achieved. s states are relatively insensitive to neighboring strings, so that incoherent imaging is maintained for superlattice and interfaces, and supercell calculations are unnecessary. With an optimum probe profile, the incoherent image represents a direct image of the crystal projection, with compositional sensitivity built in through the strong dependence of the scattering cross sections on atomic number Z

  1. Effects of scanning resolution and digital image magnification on photostimulable phosphor imaging system

    International Nuclear Information System (INIS)

    Sakurai, Takashi; Inagaki, Masafumi; Asai, Hideomi; Koyama, Atsushi; Kashima, Isamu

    2000-01-01

    The purpose of this study is to examine the effects of changes in scanning resolution and digital magnification on the image quality and diagnostic ability of the photostimulable phosphor imaging system. Using a photostimulable phosphor imaging system, images of a human adult dried mandible phantom embedded in a 25 mm-thick epoxy resin block were made. The latent images on the photostimulable phosphor imaging plate were scanned using four different pixel sizes as follows: 25 μm x 25 μm, 50 μm x 50 μm, 100 μm x 100 μm and 200 μm x 200 μm. A primary image was produced for each pixel size. These images were also digitally magnified at powers of 2, 4 and 8 times. The gradient range, brightness and contrast of each image were adjusted to optimum levels on a cathode ray tube display, and hard copies were produced with a writing pixel size of 60 μm x 60 μm. The granularity, sharpness and anatomical diagnostic ability of the images were assessed subjectively by eight dentists. Increasing the scanning resolution tended to generally improve image quality and diagnostic ability. Visual image quality was maintained up to a pixel size of 50 μm, and diagnostic ability was maintained up to a pixel size of 100 μm. Digital image magnification degraded image quality, and more than 2-times magnification degraded diagnostic ability. Under the present experimental conditions, increasing the scanning resolution did not always lead to an improvement in image quality or diagnostic ability, and digital image magnification degraded image quality and diagnostic ability. (author)

  2. METHODOLOGY FOR DETERMINING OPTIMAL EXPOSURE PARAMETERS OF A HYPERSPECTRAL SCANNING SENSOR

    Directory of Open Access Journals (Sweden)

    P. Walczykowski

    2016-06-01

    Full Text Available The purpose of the presented research was to establish a methodology that would allow the registration of hyperspectral images with a defined spatial resolution on a horizontal plane. The results obtained within this research could then be used to establish the optimum sensor and flight parameters for collecting aerial imagery data using an UAV or other aerial system. The methodology is based on an user-selected optimal camera exposure parameters (i.e. time, gain value and flight parameters (i.e. altitude, velocity. A push-broom hyperspectral imager- the Headwall MicroHyperspec A-series VNIR was used to conduct this research. The measurement station consisted of the following equipment: a hyperspectral camera MicroHyperspec A-series VNIR, a personal computer with HyperSpec III software, a slider system which guaranteed the stable motion of the sensor system, a white reference panel and a Siemens star, which was used to evaluate the spatial resolution. Hyperspectral images were recorded at different distances between the sensor and the target- from 5m to 100m. During the registration process of each acquired image, many exposure parameters were changed, such as: the aperture value, exposure time and speed of the camera’s movement on the slider. Based on all of the registered hyperspectral images, some dependencies between chosen parameters had been developed: - the Ground Sampling Distance – GSD and the distance between the sensor and the target, - the speed of the camera and the distance between the sensor and the target, - the exposure time and the gain value, - the Density Number and the gain value. The developed methodology allowed us to determine the speed and the altitude of an unmanned aerial vehicle on which the sensor would be mounted, ensuring that the registered hyperspectral images have the required spatial resolution.

  3. Cardiac imaging systems and methods employing computerized tomographic scanning

    International Nuclear Information System (INIS)

    Richey, J.B.; Wake, R.H.; Walters, R.G.; Hunt, W.F.; Cool, S.L.

    1980-01-01

    The invention relates to cardiac imaging systems and methods employing computerised tomographic scanning. Apparatus is described which allows an image of the radiation attenuation of the heart at a desired phase of the cardiac cycle. The patients ECG signal can be used in a transverse-and-rotate type CT scanner as a time base, so that the beam reaches the heart at a desired phase of the cardiac cycle, or, in a purely rotational-type CT scanner continuously generated scan data is only stored for corresponding phases of successive cardiac cycles. Alternatively, gating of the beams themselves by shuttering or switching the power supply can be controlled by the ECG signal. A pacemaker is used to stabilize the cardiac period. Also used is a system for recognising unacceptable variations in the cardiac period and discarding corresponding scan data. In a transverse-and-rotate type fan-beam CT scanner, the effective beam width is narrowed to reduce the duration of the traverse of the heart. (U.K.)

  4. Non-invasive cardiac imaging. Spectrum, methodology, indication and interpretation

    International Nuclear Information System (INIS)

    Schaefers, Michael; Flachskampf, Frank; Sechtem, Udo; Achenbach, Stephan; Krause, Bernd J.; Schwaiger, Markus; Breithardt, Guenter

    2008-01-01

    The book contains 13 contributions concerning the following chapters: (1)methodology: echo cardiography; NMR imaging; nuclear medicine; computer tomography, (2) clinical protocols: contraction; cardiac valve function; perfusion and perfusion reserve; vitality; corona imaging; transmitters, receptors, enzymes; (3) clinic: coronary heart diseases; non-ischemic heart diseases. The appendix contains two contributions on future developments and certification/standardization

  5. Quantitative phase imaging with scanning holographic microscopy: an experimental assesment

    Directory of Open Access Journals (Sweden)

    Tada Yoshitaka

    2006-11-01

    Full Text Available Abstract This paper demonstrates experimentally how quantitative phase information can be obtained in scanning holographic microscopy. Scanning holography can operate in both coherent and incoherent modes, simultaneously if desired, with different detector geometries. A spatially integrating detector provides an incoherent hologram of the object's intensity distribution (absorption and/or fluorescence, for example, while a point detector in a conjugate plane of the pupil provides a coherent hologram of the object's complex amplitude, from which a quantitative measure of its phase distribution can be extracted. The possibility of capturing simultaneously holograms of three-dimensional specimens, leading to three-dimensional reconstructions with absorption contrast, reflectance contrast, fluorescence contrast, as was previously demonstrated, and quantitative phase contrast, as shown here for the first time, opens up new avenues for multimodal imaging in biological studies.

  6. New methodologies for living material imaging. Compilation of summaries

    International Nuclear Information System (INIS)

    Barabino, Gabriele; Beaurepaire, Emmanuel; Betrouni, Nacim; Montagnat, Johan; Moonen, Chrit; Olivo-Marin, Jean-Christophe; Paul-Gilloteaux, Perrine; Tillement, Olivier; Barbier, Emmanuel; Beuf, Olivier; Chamot, Christophe; Clarysse, Patrick; Coll, Jean-Luc; Dojat, Michel; Lartizien, Carole; Peyrin, Francoise; Ratiney, Helene; Texier-Nogues, Isabelle; Usson, Yves; Vial, Jean-Claude; Gaillard, Sophie; Aubry, Jean-Francois; Barillot, Christian; Betrouni, Nacim; Beloeil, Jean-Claude; Bernard, Monique; Bridal, Lori; Coll, Jean-Luc; Cozzone, Patrick; Cuenod, Charles-Andre; Darrasse, Luc; Franconi, Jean-Michel; Frapart, Yves-Michel; Grenier, Nicolas; Guilloteau, Denis; Laniece, Philippe; Guilloteau, Denis; Laniece, Philippe; Lethimonnier, Franck; Moonen, Chrit; Pain, Frederic; Patat, Frederic; Tanter, Mickael; Trebossen, Regine; Van Beers, Bernard; Visvikis, Dimitris; Buvat, Irene; Carrault, Guy; Frouin, Frederique; Kouame, Denis; Meste, Olivier; Peyrin, Francoise; Brasse, David; Buvat, Irene; Dauvergne, Denis; Haddad, Ferid; Menard, Laurent; Ouadi, Ali; Olivo-Marin, Jean-Christophe; Pansu, Robert; Peyrieras, Nadine; Salamero, Jean; Usson, Yves; Werts, Martin; Beaurepaire, Emmanuel; Blanchoin, Laurent; Boltze, Frederic; Cavalli, Giacomo; Choquet, Daniel; Coppey, Maite; Dahan, Maxime; Dieterlen, Alain; Ducommun, Bernard; Favard, Cyril; Fort, Emmanuel; Gadal, Olivier; Heliot, Laurent; Hofflack, Bernard; Kervrann, Charles; Langowski, Jorg; LeBivic, Andre; Leveque-Fort, Sandrine; Matthews, Cedric; Monneret, Serge; Mordon, Serge; Mely, Yves

    2012-12-01

    Living material imaging, which is essential to medical diagnosis and therapy methods as well as fundamental and applied biology, is necessarily pluri-disciplinary, at the intersection of physics, (bio)chemistry and pharmacy, and requests mathematical and computer processing of signals and images. Image processing techniques may be applied at different levels (molecular, cellular or tissue level) or using various modes (optics, X rays, NMR, PET, US). This conference therefore presents recent methodological developments addressing the study of living material. The program of the conference started with a plenary session (multimode non linear microscopy of tissues and embryonary morphogenesis) followed by 6 sessions which titles are: (1) new microscopies applied to living materials), (2) agents for molecular and functional imaging), (3) recent developments in methodologies and instrumentations, (4) image processing methods and techniques, (5) image aided diagnosis, therapy and medical surveillance, (6) heterogenous data bases and distributed computations

  7. Neural Network for Nanoscience Scanning Electron Microscope Image Recognition.

    Science.gov (United States)

    Modarres, Mohammad Hadi; Aversa, Rossella; Cozzini, Stefano; Ciancio, Regina; Leto, Angelo; Brandino, Giuseppe Piero

    2017-10-16

    In this paper we applied transfer learning techniques for image recognition, automatic categorization, and labeling of nanoscience images obtained by scanning electron microscope (SEM). Roughly 20,000 SEM images were manually classified into 10 categories to form a labeled training set, which can be used as a reference set for future applications of deep learning enhanced algorithms in the nanoscience domain. The categories chosen spanned the range of 0-Dimensional (0D) objects such as particles, 1D nanowires and fibres, 2D films and coated surfaces, and 3D patterned surfaces such as pillars. The training set was used to retrain on the SEM dataset and to compare many convolutional neural network models (Inception-v3, Inception-v4, ResNet). We obtained compatible results by performing a feature extraction of the different models on the same dataset. We performed additional analysis of the classifier on a second test set to further investigate the results both on particular cases and from a statistical point of view. Our algorithm was able to successfully classify around 90% of a test dataset consisting of SEM images, while reduced accuracy was found in the case of images at the boundary between two categories or containing elements of multiple categories. In these cases, the image classification did not identify a predominant category with a high score. We used the statistical outcomes from testing to deploy a semi-automatic workflow able to classify and label images generated by the SEM. Finally, a separate training was performed to determine the volume fraction of coherently aligned nanowires in SEM images. The results were compared with what was obtained using the Local Gradient Orientation method. This example demonstrates the versatility and the potential of transfer learning to address specific tasks of interest in nanoscience applications.

  8. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) MC3E dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  9. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) GCPEx dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  10. Vortex imaging in superconducting films by scanning Hall probe microscopy

    International Nuclear Information System (INIS)

    Oral, A.; Bending, S.J.; Humphreys, R.G.

    1996-01-01

    The authors have used a low noise Scanning Hall Probe Microscope (SHPM) to study vortex structures in superconducting films. The microscope has high magnetic field (∼2.9 x 10 -8 T/√Hz at 77K) and spatial resolution, ∼0.85 μm. Magnetic field profiles of single vortices in High T c YBa 2 Cu 3 O 7-δ thin films have been successfully measured and the microscopic penetration depth of the superconductor has been extracted as a function of temperature. Flux penetration into the superconductor has been imaged in real time (∼8s/frame)

  11. Fundamental studies of superconductors using scanning magnetic imaging

    Science.gov (United States)

    Kirtley, J. R.

    2010-12-01

    In this review I discuss the application of scanning magnetic imaging to fundamental studies of superconductors, concentrating on three scanning magnetic microscopies—scanning SQUID microscopy (SSM), scanning Hall bar microscopy (SHM) and magnetic force microscopy (MFM). I briefly discuss the history, sensitivity, spatial resolution, invasiveness and potential future developments of each technique. I then discuss a selection of applications of these microscopies. I start with static imaging of magnetic flux: an SSM study provides deeper understanding of vortex trapping in narrow strips, which are used to reduce noise in superconducting circuitry. Studies of vortex trapping in wire lattices, clusters and arrays of rings and nanoholes show fascinating ordering effects. The cuprate high-Tc superconductors are shown to have predominantly d-wave pairing symmetry by magnetic imaging of the half-integer flux quantum effect. Arrays of superconducting rings act as a physical analog for the Ising spin model, with the half-integer flux quantum effect helping to eliminate one source of disorder in antiferromagnetic arrangements of the ring moments. Tests of the interlayer tunneling model show that the condensation energy available from this mechanism cannot account for the high critical temperatures observed in the cuprates. The strong divergence in the magnetic fields of Pearl vortices allows them to be imaged using SSM, even for penetration depths of a millimeter. Unusual vortex arrangements occur in samples comparable in size to the coherence length. Spontaneous magnetization is not observed in Sr2RuO4, which is believed to have px ± ipy pairing symmetry, although effects hundreds of times bigger than the sensitivity limits had been predicted. However, unusual flux trapping is observed in this superconductor. Finally, unusual flux arrangements are also observed in magnetic superconductors. I then turn to vortex dynamics: imaging of vortices in rings of highly underdoped

  12. Fundamental studies of superconductors using scanning magnetic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, J R [Center for Probing the Nanoscale, Stanford University, Stanford, CA (United States)

    2010-12-01

    In this review I discuss the application of scanning magnetic imaging to fundamental studies of superconductors, concentrating on three scanning magnetic microscopies-scanning SQUID microscopy (SSM), scanning Hall bar microscopy (SHM) and magnetic force microscopy (MFM). I briefly discuss the history, sensitivity, spatial resolution, invasiveness and potential future developments of each technique. I then discuss a selection of applications of these microscopies. I start with static imaging of magnetic flux: an SSM study provides deeper understanding of vortex trapping in narrow strips, which are used to reduce noise in superconducting circuitry. Studies of vortex trapping in wire lattices, clusters and arrays of rings and nanoholes show fascinating ordering effects. The cuprate high-T{sub c} superconductors are shown to have predominantly d-wave pairing symmetry by magnetic imaging of the half-integer flux quantum effect. Arrays of superconducting rings act as a physical analog for the Ising spin model, with the half-integer flux quantum effect helping to eliminate one source of disorder in antiferromagnetic arrangements of the ring moments. Tests of the interlayer tunneling model show that the condensation energy available from this mechanism cannot account for the high critical temperatures observed in the cuprates. The strong divergence in the magnetic fields of Pearl vortices allows them to be imaged using SSM, even for penetration depths of a millimeter. Unusual vortex arrangements occur in samples comparable in size to the coherence length. Spontaneous magnetization is not observed in Sr{sub 2}RuO{sub 4}, which is believed to have p{sub x} {+-} ip{sub y} pairing symmetry, although effects hundreds of times bigger than the sensitivity limits had been predicted. However, unusual flux trapping is observed in this superconductor. Finally, unusual flux arrangements are also observed in magnetic superconductors. I then turn to vortex dynamics: imaging of vortices

  13. Imaging properties and its improvements of scanning/imaging x-ray microscope

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with the linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination

  14. Scanning tomographic particle image velocimetry applied to a turbulent jet

    KAUST Repository

    Casey, T. A.

    2013-02-21

    We introduce a modified tomographic PIV technique using four high-speed video cameras and a scanning pulsed laser-volume. By rapidly illuminating adjacent subvolumes onto separate video frames, we can resolve a larger total volume of velocity vectors, while retaining good spatial resolution. We demonstrate this technique by performing time-resolved measurements of the turbulent structure of a round jet, using up to 9 adjacent volume slices. In essence this technique resolves more velocity planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise image planes, showing time-resolved evolution of the large-scale vortical structures for a turbulent jet of Re up to 10 000.

  15. Pavement cracking measurements using 3D laser-scan images

    International Nuclear Information System (INIS)

    Ouyang, W; Xu, B

    2013-01-01

    Pavement condition surveying is vital for pavement maintenance programs that ensure ride quality and traffic safety. This paper first introduces an automated pavement inspection system which uses a three-dimensional (3D) camera and a structured laser light to acquire dense transverse profiles of a pavement lane surface when it carries a moving vehicle. After the calibration, the 3D system can yield a depth resolution of 0.5 mm and a transverse resolution of 1.56 mm pixel −1 at 1.4 m camera height from the ground. The scanning rate of the camera can be set to its maximum at 5000 lines s −1 , allowing the density of scanned profiles to vary with the vehicle's speed. The paper then illustrates the algorithms that utilize 3D information to detect pavement distress, such as transverse, longitudinal and alligator cracking, and presents the field tests on the system's repeatability when scanning a sample pavement in multiple runs at the same vehicle speed, at different vehicle speeds and under different weather conditions. The results show that this dedicated 3D system can capture accurate pavement images that detail surface distress, and obtain consistent crack measurements in repeated tests and under different driving and lighting conditions. (paper)

  16. A statistical pixel intensity model for segmentation of confocal laser scanning microscopy images.

    Science.gov (United States)

    Calapez, Alexandre; Rosa, Agostinho

    2010-09-01

    Confocal laser scanning microscopy (CLSM) has been widely used in the life sciences for the characterization of cell processes because it allows the recording of the distribution of fluorescence-tagged macromolecules on a section of the living cell. It is in fact the cornerstone of many molecular transport and interaction quantification techniques where the identification of regions of interest through image segmentation is usually a required step. In many situations, because of the complexity of the recorded cellular structures or because of the amounts of data involved, image segmentation either is too difficult or inefficient to be done by hand and automated segmentation procedures have to be considered. Given the nature of CLSM images, statistical segmentation methodologies appear as natural candidates. In this work we propose a model to be used for statistical unsupervised CLSM image segmentation. The model is derived from the CLSM image formation mechanics and its performance is compared to the existing alternatives. Results show that it provides a much better description of the data on classes characterized by their mean intensity, making it suitable not only for segmentation methodologies with known number of classes but also for use with schemes aiming at the estimation of the number of classes through the application of cluster selection criteria.

  17. New methodology developed for the differential scanning calorimetry analysis of polymeric matrixes incorporating phase change materials

    International Nuclear Information System (INIS)

    Barreneche, Camila; Solé, Aran; Miró, Laia; Martorell, Ingrid; Cabeza, Luisa F; Fernández, A Inés

    2012-01-01

    Nowadays, thermal comfort needs in buildings have led to an increase in energy consumption of the residential and service sectors. For this reason, thermal energy storage is shown as an alternative to achieve reduction of this high consumption. Phase change materials (PCM) have been studied to store energy due to their high storage capacity. A polymeric material capable of macroencapsulating PCM was developed by the authors of this paper. However, difficulties were found while measuring the thermal properties of these materials by differential scanning calorimetry (DSC). The polymeric matrix interferes in the detection of PCM properties by DSC. To remove this interfering effect, a new methodology which replaces the conventional empty crucible used as a reference in the DSC analysis by crucibles composed of the polymeric matrix was developed. Thus, a clear signal from the PCM is obtained by subtracting the new full crucible signal from the sample signal. (paper)

  18. Image processing based detection of lung cancer on CT scan images

    Science.gov (United States)

    Abdillah, Bariqi; Bustamam, Alhadi; Sarwinda, Devvi

    2017-10-01

    In this paper, we implement and analyze the image processing method for detection of lung cancer. Image processing techniques are widely used in several medical problems for picture enhancement in the detection phase to support the early medical treatment. In this research we proposed a detection method of lung cancer based on image segmentation. Image segmentation is one of intermediate level in image processing. Marker control watershed and region growing approach are used to segment of CT scan image. Detection phases are followed by image enhancement using Gabor filter, image segmentation, and features extraction. From the experimental results, we found the effectiveness of our approach. The results show that the best approach for main features detection is watershed with masking method which has high accuracy and robust.

  19. Scanning electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1985-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions, imaging modes, the interpretation of micrographs and the use of quantitative modes "in scanning electron microscopy (SEM). lt forms a counterpart to Transmission Electron Microscopy (Vol. 36 of this Springer Series in Optical Sciences) . The book evolved from lectures delivered at the University of Münster and from a German text entitled Raster-Elektronenmikroskopie (Springer-Verlag), published in collaboration with my colleague Gerhard Pfefferkorn. In the introductory chapter, the principles of the SEM and of electron­ specimen interactions are described, the most important imaging modes and their associated contrast are summarized, and general aspects of eiemental analysis by x-ray and Auger electron emission are discussed. The electron gun and electron optics are discussed in Chap. 2 in order to show how an electron probe of small diameter can be formed, how the elec­ tron beam can be blanked at high fre...

  20. Efficient testing methodologies for microcameras in a gigapixel imaging system

    Science.gov (United States)

    Youn, Seo Ho; Marks, Daniel L.; McLaughlin, Paul O.; Brady, David J.; Kim, Jungsang

    2013-04-01

    Multiscale parallel imaging--based on a monocentric optical design--promises revolutionary advances in diverse imaging applications by enabling high resolution, real-time image capture over a wide field-of-view (FOV), including sport broadcast, wide-field microscopy, astronomy, and security surveillance. Recently demonstrated AWARE-2 is a gigapixel camera consisting of an objective lens and 98 microcameras spherically arranged to capture an image over FOV of 120° by 50°, using computational image processing to form a composite image of 0.96 gigapixels. Since microcameras are capable of individually adjusting exposure, gain, and focus, true parallel imaging is achieved with a high dynamic range. From the integration perspective, manufacturing and verifying consistent quality of microcameras is a key to successful realization of AWARE cameras. We have developed an efficient testing methodology that utilizes a precisely fabricated dot grid chart as a calibration target to extract critical optical properties such as optical distortion, veiling glare index, and modulation transfer function to validate imaging performance of microcameras. This approach utilizes an AWARE objective lens simulator which mimics the actual objective lens but operates with a short object distance, suitable for a laboratory environment. Here we describe the principles of the methodologies developed for AWARE microcameras and discuss the experimental results with our prototype microcameras. Reference Brady, D. J., Gehm, M. E., Stack, R. A., Marks, D. L., Kittle, D. S., Golish, D. R., Vera, E. M., and Feller, S. D., "Multiscale gigapixel photography," Nature 486, 386--389 (2012).

  1. Scanner image methodology (SIM) to measure dimensions of leaves ...

    African Journals Online (AJOL)

    A scanner image methodology was used to determine plant dimensions, such as leaf area, length and width. The values obtained using SIM were compared with those recorded by the LI-COR leaf area meter. Bias, linearity, reproducibility and repeatability (R&R) were evaluated for SIM. Different groups of leaves were ...

  2. Image-scanning measurement using video dissection cameras

    International Nuclear Information System (INIS)

    Carson, J.S.

    1978-01-01

    A high speed dimensional measuring system capable of scanning a thin film network, and determining if there are conductor widths, resistor widths, or spaces not typical of the design for this product is described. The eye of the system is a conventional TV camera, although such devices as image dissector cameras or solid-state scanners may be used more often in the future. The analog signal from the TV camera is digitized for processing by the computer and is presented to the TV monitor to assist the operator in monitoring the system's operation. Movable stages are required when the field of view of the scanner is less than the size of the object. A minicomputer controls the movement of the stage, and communicates with the digitizer to select picture points that are to be processed. Communications with the system are maintained through a teletype or CRT terminal

  3. Digital processing methodology applied to exploring of radiological images

    International Nuclear Information System (INIS)

    Oliveira, Cristiane de Queiroz

    2004-01-01

    In this work, digital image processing is applied as a automatic computational method, aimed for exploring of radiological images. It was developed an automatic routine, from the segmentation and post-processing techniques to the radiology images acquired from an arrangement, consisting of a X-ray tube, target and filter of molybdenum, of 0.4 mm and 0.03 mm, respectively, and CCD detector. The efficiency of the methodology developed is showed in this work, through a case study, where internal injuries in mangoes are automatically detected and monitored. This methodology is a possible tool to be introduced in the post-harvest process in packing houses. A dichotomic test was applied to evaluate a efficiency of the method. The results show a success of 87.7% to correct diagnosis and 12.3% to failures to correct diagnosis with a sensibility of 93% and specificity of 80%. (author)

  4. Development of techniques and methods for evaluation of quality of scanned image in mammography

    International Nuclear Information System (INIS)

    Carmo Santana, P. do; Nogueira, M.S.

    2008-01-01

    Cancer is the second cause of death in the Brazilian female population and breast cancer is the most frequent neoplasm amongst women. Mammography is an essential tool for diagnosis and early detection of this disease. In order to be effective, the mammography must be of good quality. The Brazilian College of Radiology (CBR), the National Agency for Health Surveillance (ANVISA) and international bodies recommend standards of practice for mammography. Due to the risk of ionizing radiation, techniques that minimize dose and optimize image quality are essential to ensure that all women are submitted to mammography procedures of high quality for the detection of breast cancer. In this research were analyzed components of the image treatment via digital and developed methods and techniques of analysis aiming the detection of structures for medical diagnosis, decreasing variations due to subjectivity. It used free software Image J, to make the evaluations of the information contained in the scanned images. We use the scanned images of calibration of a simulated breast to calibrate the program Image J. Thus, it was able to correctly convert the values of the scale of shades of gray in optical density values of presenting the standard deviation for each measure held. Applying the test t-student noticed that the values obtained with the digital system to the level of contrast and spatial resolution are consistent with the results obtained so subjective, since there was no significant difference (p <0.05) for all comparisons evaluated. Since then, this methodology is recommended in routine evaluations of services of mammography. (author)

  5. Element distribution imaging in rat kidney using a 2 D rapid scan EDXRF device

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, R. G. [Universidad de la Frontera, Departamento de Ciencias Fisicas, Av. Francisco Salazar 1145, Temuco 4811230, Araucania (Chile); Lozano, E. [Instituto Nacional del Cancer, Unidad de Fisica Medica, Av. Profesor Zanartu 1010, Santiago (Chile); Bongiovanni, G., E-mail: figueror@ufro.cl [IDEPA-CONICET, Instituto Multidisciplinario de Investigacion y Desarrollo de la Patagonia Norte, Buenos Aires 1400, 8300 Neuquen (Argentina)

    2013-08-01

    Visualization of elemental distributions of biological tissue is gaining importance in many disciplines of biological, forensic and medical research. Furthermore, the maps of elements have wide application in archaeology for the understanding of the pigments, modes of preservation and environmental context. Since major advances in relation to collimators and detectors have yielded micro scale images, the chemical mapping via synchrotron scanning micro-X-ray fluorescence spectrometry (SR-{mu}X RF) is widely used as microanalytical techniques. However, the acquisition time is a limitation of current SR-{mu}X RF imaging protocols, doing tedious micro analysis of samples of more than 1 cm and very difficult to study of larger samples such as animal organ, whole organisms, work or art, etc. Recently we have developed a robotic system to image the chemistry of large specimens rapidly ar concentration levels of parts per million. Multiple images of distribution of elements can be obtained on surfaces of 100 x 100 mm and a spatial resolution of up to 0.2 mm{sup 2} per pixel, with a spectral capture time up to 1 ms per point. This system has proven to be highly efficient for the X RF mapping of elements in large biological samples, achieving comparable s results to those obtained by SR-{mu}X RF. Thus, images of As and Cu accumulation in renal cortex of arsenic-exposed rats were obtained by both methodologies. However, the new imaging system enables the X RF scanning in few minutes, whereas SR-{mu}X RF required several hours. These and other advantages as well as the potential applications of this system, will be discussed. (Author)

  6. New approach towards imaging -DNA using scanning tunneling

    Indian Academy of Sciences (India)

    DNA; scanning tunneling microscopy; Langmuir Blodget technique; silanization. ... Scanning tunneling spectroscopy (STS) at different stages depict a broad distribution of defect states in the bandgap region of -Si(111) which ... Current Issue

  7. Magnetic imaging of unconventional superconductors by scanning SQUID microscopy

    International Nuclear Information System (INIS)

    Hykel, D.

    2011-01-01

    We present the development of a scanning SQUID/AFM microscope and measurements performed on different samples. The microscope can take topographic and magnetic images simultaneously. The magnetic resolution is of the order of 10 -4 Φ 0 √Hz and the spatial resolution of the SQUIDs used in this thesis goes up to 600 nm. The scanning range is 70 μm * 85 μm. The temperature range accessible is between 200 mK and 10 K at the time of writing. Measurements on a thin rhenium film (80 nm) give an estimate of the minimal pinning force of a vortex of about 3.9 * 10 -16 N. Furthermore, the penetration depth λ on this sample was determined as a function of temperature. For T → 0, λ →79 nm. We have for the first time shown local measurements of the domain structure of the superconducting ferromagnet UCoGe and determined the average domain size in the virgin state (10 μm). By magnetic imaging we were capable of determining the magnetic field difference above opposite domains along the c-axis to be 45 G and 16 G along the b-axis. Due to these magnetic field measurements we were able to give an upper limit for the domain wall width (∼ 1μm) and domain reconstruction depth (100 nm). This is supported by simple calculations leading to a domain wall width of several angstroms. Thus UCoGe can be considered an ideal Ising ferromagnet. Different possible domain structures for an Ising ferromagnet have been discussed. The complicated domain structure found in the zero field cooled virgin state corresponds to up domains embedded in larger down domains and vice versa. We have shown evidence for coexistence of superconductivity and ferromagnetism. The weak Meissner effect can be explained by a spontaneous vortex state, put forward by other groups. Numerical simulations suggest that the strong magnetic background signal and the limited spatial and magnetic resolution of the used SQUID made it difficult to resolve the expected spontaneous vortex state. The relaxation of the

  8. Laser scanning endoscope via an imaging fiber bundle for fluorescence imaging

    Science.gov (United States)

    Yeboah, Lorenz D.; Nestler, Dirk; Steiner, Rudolf W.

    1994-12-01

    Based on a laser scanning endoscope via an imaging fiber bundle, a new approach for a tumor diagnostic system has been developed to assist physicians in the diagnosis before the actual PDT is carried out. Laser induced, spatially resolved fluorescence images of diseased tissue can be compared with images received by video endoscopy using a white light source. The set- up is required to produce a better contrast between infected and healthy tissue and might serve as a constructive diagnostic help for surgeons. The fundamental idea is to scan a low-power laser beam on an imaging fiber bundle and to achieve a spatially resolved projection on the tissue surface. A sufficiently high laser intensity from the diode laser is concentrated on each single spot of the tissue exciting fluorescence when a dye has previously been accumulated. Subsequently, video image of the tissue is recorded and stored. With an image processing unit, video and fluorescence images are overlaid producing a picture of the fluorescence intensity in the environment of the observed tissue.

  9. Methodology to evaluation of the density in radiographic image

    International Nuclear Information System (INIS)

    Louzada, M.J.Q.; Pela, C.A.; Belangero, W.D.; Santos-Pinto, R.

    1998-01-01

    This study was designed in order to optimize the optical densitometry technique in radiographic images by the setorization of the characteristic curves of the radiographic films. We used 24 radiographs of a stepped aluminium wedge that were taken without rigorous control development and manually revealed. The densitometric values of the steps images and its thickness, for each radiographic, was utilized to generate its particular mathematics expressions that represent its characteristic densitometric curves and then it were used for setorization. The densitometric values were obtained by a Macbeth TD528 densitometer. The study showed an optimization in the representation of the relationship between the optical density of the steps images of the wedge and its correspondent thickness, provided by the setorization, with mean square error around 10 -5 . This optimization will allow the use of this methodology in quantitative evaluations of bone mass, by radiographic images. (author)

  10. Contribution of brain imaging techniques: CT-scan and magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Pasco-Papon, A.; Gourdier, A.L.; Papon, X.; Caron-Poitreau, C.

    1996-01-01

    In light of the current lack of consensus on the benefit of carotid artery surgery to treat asymptomatic carotid artery stenosis, the decision to operate on a patient depends on individual evaluation and characterization of risk factors on carotid artery stenosis greater than 70 %. The assessment of such risk factors is based especially on non-invasive brain imaging techniques.Computed tomography scanning (CT-scan) and magnetic resonance imaging (MRI) enable two types of stenosis to be differentiated, i.e. stenoses which are symptomatic and those that are radiologically proven versus those which are clinically and radiologically silent. CT-scan investigation (with and without injection of iodinated contrast media) still continues to be a common routine test in 1996 whenever a surgical revascularization procedure is planned. The presence of deep lacunar infarcts ipsilateral to the carotid artery stenosis generally evidence the reality of stenosis and thus are useful to the surgeon in establishing whether surgery is indicated. In the absence a consensus on indications for surgical management, the surgeon could use the CT-scan and MRI as medicolegal records which could be compared to a subsequent postoperative CT-scan in case of ischemic complications associated with the surgical procedure. Furthermore, recent cerebral ischemia as evidenced by filling with contrast material, will call for postponing treatment by a few weeks. Although conventional MRI is more contributive than brain CT-scan in terms of sensibility and specificity, its indications are narrower because of its limited availability and cost constraints. But, development of angio-MRI and functional imaging promise that its future is assured and even perhaps as the sole diagnostic method if its indications are expanded to include preoperative angiographic evaluation of atheromatous lesions of supra-aortic trunks. (authors). 37 refs

  11. Intravenous dipyridamole thallium-201 SPECT imaging methodology, applications, and interpretations

    International Nuclear Information System (INIS)

    Rockett, J.F.; Magill, H.L.; Loveless, V.S.; Murray, G.L.

    1990-01-01

    Dipyridamole TI-201 imaging is an ideal alternative to exercise TI-201 scintigraphy in patients who are unwilling or unable to perform maximum exercise stress. The use of intravenous dipyridamole, alone or in combination with exercise, has not been approved for clinical practice by the Food and Drug Administration. Once approval is granted, the test will become a widely used and important component of the cardiac work-up. The indications, methodology, side effects, and utility of dipyridamole cardiac imaging in the clinical setting are discussed and a variety of examples presented.59 references

  12. 3D change detection at street level using mobile laser scanning point clouds and terrestrial images

    Science.gov (United States)

    Qin, Rongjun; Gruen, Armin

    2014-04-01

    Automatic change detection and geo-database updating in the urban environment are difficult tasks. There has been much research on detecting changes with satellite and aerial images, but studies have rarely been performed at the street level, which is complex in its 3D geometry. Contemporary geo-databases include 3D street-level objects, which demand frequent data updating. Terrestrial images provides rich texture information for change detection, but the change detection with terrestrial images from different epochs sometimes faces problems with illumination changes, perspective distortions and unreliable 3D geometry caused by the lack of performance of automatic image matchers, while mobile laser scanning (MLS) data acquired from different epochs provides accurate 3D geometry for change detection, but is very expensive for periodical acquisition. This paper proposes a new method for change detection at street level by using combination of MLS point clouds and terrestrial images: the accurate but expensive MLS data acquired from an early epoch serves as the reference, and terrestrial images or photogrammetric images captured from an image-based mobile mapping system (MMS) at a later epoch are used to detect the geometrical changes between different epochs. The method will automatically mark the possible changes in each view, which provides a cost-efficient method for frequent data updating. The methodology is divided into several steps. In the first step, the point clouds are recorded by the MLS system and processed, with data cleaned and classified by semi-automatic means. In the second step, terrestrial images or mobile mapping images at a later epoch are taken and registered to the point cloud, and then point clouds are projected on each image by a weighted window based z-buffering method for view dependent 2D triangulation. In the next step, stereo pairs of the terrestrial images are rectified and re-projected between each other to check the geometrical

  13. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    Science.gov (United States)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  14. High contrast imaging and flexible photomanipulation for quantitative in vivo multiphoton imaging with polygon scanning microscope.

    Science.gov (United States)

    Li, Yongxiao; Montague, Samantha J; Brüstle, Anne; He, Xuefei; Gillespie, Cathy; Gaus, Katharina; Gardiner, Elizabeth E; Lee, Woei Ming

    2018-02-28

    In this study, we introduce two key improvements that overcome limitations of existing polygon scanning microscopes while maintaining high spatial and temporal imaging resolution over large field of view (FOV). First, we proposed a simple and straightforward means to control the scanning angle of the polygon mirror to carry out photomanipulation without resorting to high speed optical modulators. Second, we devised a flexible data sampling method directly leading to higher image contrast by over 2-fold and digital images with 100 megapixels (10 240 × 10 240) per frame at 0.25 Hz. This generates sub-diffraction limited pixels (60 nm per pixels over the FOV of 512 μm) which increases the degrees of freedom to extract signals computationally. The unique combined optical and digital control recorded fine fluorescence recovery after localized photobleaching (r ~10 μm) within fluorescent giant unilamellar vesicles and micro-vascular dynamics after laser-induced injury during thrombus formation in vivo. These new improvements expand the quantitative biological-imaging capacity of any polygon scanning microscope system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Confocal scanning microscopy with multiple optical probes for high speed measurements and better imaging

    Science.gov (United States)

    Chun, Wanhee; Lee, SeungWoo; Gweon, Dae-Gab

    2008-02-01

    Confocal scanning microscopy (CSM) needs a scanning mechanism because only one point information of specimen can be obtained. Therefore the speed of the confocal scanning microscopy is limited by the speed of the scanning tool. To overcome this limitation from scanning tool we propose another scanning mechanism. We make three optical probes in the specimen under confocal condition of each point. Three optical probes are moved by beam scanning mechanism with shared resonant scanning mirror (RM) and galvanometer driven mirror (GM). As each optical probe scan allocated region of the specimen, information from three points is obtained simultaneously and image acquisition time is reduced. Therefore confocal scanning microscopy with multiple optical probes is expected to have three times faster speed of the image acquisition than conventional one. And as another use, multiple optical probes to which different light wavelength is applied can scan whole same region respectively. It helps to obtain better contrast image in case of specimens having different optical characteristics for specific light wavelength. In conclusion confocal scanning microscopy with multiple optical probes is useful technique for views of image acquisition speed and image quality.

  16. A study of metal artifacts on MR imaging. Evaluation of scanning parameters

    International Nuclear Information System (INIS)

    Yamashiro, Mitsuaki

    1999-01-01

    The purpose of this study was to evaluate scanning parameters on MR imaging for reducing metal artifacts using phantom study. Metal artifacts on sagittal images, perpendicular to static magnetic direction showed round shape in the relationship between shape of metal artifacts on MR images and scanning direction. Metal artifacts on both axial and coronal images, parallel to static magnetic direction showed oval shape in the direction of X-axis. In spin echo sequences, the largest dimension of metal artifacts was coronal image, followed by axial image and then sagittal image. In gradient echo sequences, the largest dimension of metal artifacts was axial image, followed by coronal image and then sagittal image. The best scanning plane for reducing metal artifacts was perpendicular to static magnetic direction. In scanning sequences, the largest dimensions of metal artifacts were gradient echo sequences, followed by T2-weighted spin echo sequence and then proton density-weighted and T1-weighted spin echo sequences. Large flip angle increased much metal artifacts on both axial and coronal images in gradient echo sequences. Small flip angle was useful for reducing metal artifacts on both axial and coronal images. The influence of flip angle on metal artifacts in sagittal images perpendicular static magnetic direction was less than for images in coronal and axial planes on gradient echo sequences. These results suggested that a study of metal artifacts on MR imaging about evaluation of scanning parameters was useful to reduce metal artifacts on MR images. (K.H.)

  17. An image-processing methodology for extracting bloodstain pattern features.

    Science.gov (United States)

    Arthur, Ravishka M; Humburg, Philomena J; Hoogenboom, Jerry; Baiker, Martin; Taylor, Michael C; de Bruin, Karla G

    2017-08-01

    There is a growing trend in forensic science to develop methods to make forensic pattern comparison tasks more objective. This has generally involved the application of suitable image-processing methods to provide numerical data for identification or comparison. This paper outlines a unique image-processing methodology that can be utilised by analysts to generate reliable pattern data that will assist them in forming objective conclusions about a pattern. A range of features were defined and extracted from a laboratory-generated impact spatter pattern. These features were based in part on bloodstain properties commonly used in the analysis of spatter bloodstain patterns. The values of these features were consistent with properties reported qualitatively for such patterns. The image-processing method developed shows considerable promise as a way to establish measurable discriminating pattern criteria that are lacking in current bloodstain pattern taxonomies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Performance evaluation methodology for historical document image binarization.

    Science.gov (United States)

    Ntirogiannis, Konstantinos; Gatos, Basilis; Pratikakis, Ioannis

    2013-02-01

    Document image binarization is of great importance in the document image analysis and recognition pipeline since it affects further stages of the recognition process. The evaluation of a binarization method aids in studying its algorithmic behavior, as well as verifying its effectiveness, by providing qualitative and quantitative indication of its performance. This paper addresses a pixel-based binarization evaluation methodology for historical handwritten/machine-printed document images. In the proposed evaluation scheme, the recall and precision evaluation measures are properly modified using a weighting scheme that diminishes any potential evaluation bias. Additional performance metrics of the proposed evaluation scheme consist of the percentage rates of broken and missed text, false alarms, background noise, character enlargement, and merging. Several experiments conducted in comparison with other pixel-based evaluation measures demonstrate the validity of the proposed evaluation scheme.

  19. Scanning high-Tc SQUID imaging system for magnetocardiography

    International Nuclear Information System (INIS)

    Yang, H-C; Wu, T-Y; Horng, H-E; Wu, C-C; Yang, S Y; Liao, S-H; Wu, C-H; Jeng, J T; Chen, J C; Chen, Kuen-Lin; Chen, M J

    2006-01-01

    A scanning magnetocardiography (MCG) system constructed from SQUID sensors offers potential to basic or clinical research in biomagnetism. In this work, we study a first order scanning electronic high-T c (HTS) SQUID MCG system for biomagnetic signals. The scanning MCG system was equipped with an x-y translation bed powered by step motors. Using noise cancellation and μ-metal shielding, we reduced the noise level substantially. The established scanning HTS MCG system was used to study the magnetophysiology of hypercholesterolaemic (HC) rabbits. The MCG data of HC rabbits were analysed. The MCG contour map of HC rabbits provides experimental models for the interpretation of human cardiac patterns

  20. Microscopic image processing system for measuring nonuniform film thickness profiles: Image scanning ellipsometry

    International Nuclear Information System (INIS)

    Liu, A.H.; Plawsky, J.L.; Wayner, P.C. Jr.

    1993-01-01

    The long-term objective of this research program is to determine the stability and heat transfer characteristics of evaporating thin films. The current objective is to develop and use a microscopic image-processing system (IPS) which has two parts: an image analyzing interferometer (IAI) and an image scanning ellipsometer (ISE). The primary purpose of this paper is to present the basic concept of ISE, which is a novel technique to measure the two dimensional thickness profile of a non-uniform, thin film, from several nm up to several μm, in a steady state as well as in a transient state. It is a full-field imaging technique which can study every point on the surface simultaneously with high spatial resolution and thickness sensitivity, i.e., it can measure and map the 2-D film thickness profile. The ISE was tested by measuring the thickness profile and the refractive index of a nonuniform solid film

  1. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera

    Science.gov (United States)

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning

    2017-12-01

    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  2. Clean Up Your Image: A Beginner's Guide to Scanning and Photoshop

    Science.gov (United States)

    Stitzer, Michael S.

    2005-01-01

    In this article, the author addresses the key steps of scanning and illustrates the process with screen shots taken from a Macintosh G4 Powerbook computer running OSX and Adobe Photoshop 7.0. After reviewing scanning procedures, the author describes how to use Photoshop 7.0 to manipulate a scanned image. This activity gives students a good general…

  3. Statistical image reconstruction methods for simultaneous emission/transmission PET scans

    International Nuclear Information System (INIS)

    Erdogan, H.; Fessler, J.A.

    1996-01-01

    Transmission scans are necessary for estimating the attenuation correction factors (ACFs) to yield quantitatively accurate PET emission images. To reduce the total scan time, post-injection transmission scans have been proposed in which one can simultaneously acquire emission and transmission data using rod sources and sinogram windowing. However, since the post-injection transmission scans are corrupted by emission coincidences, accurate correction for attenuation becomes more challenging. Conventional methods (emission subtraction) for ACF computation from post-injection scans are suboptimal and require relatively long scan times. We introduce statistical methods based on penalized-likelihood objectives to compute ACFs and then use them to reconstruct lower noise PET emission images from simultaneous transmission/emission scans. Simulations show the efficacy of the proposed methods. These methods improve image quality and SNR of the estimates as compared to conventional methods

  4. New approach towards imaging λ-DNA using scanning tunneling ...

    Indian Academy of Sciences (India)

    Wintec

    spectroscopy (STS) at different stages depict a broad distribution of defect states in the bandgap ... DNA; scanning tunneling microscopy; Langmuir Blodget technique; silanization. 1. ... assembled monolayer (SAM) of C-8 silane gave stable.

  5. Application of Six Sigma methodology to a diagnostic imaging process.

    Science.gov (United States)

    Taner, Mehmet Tolga; Sezen, Bulent; Atwat, Kamal M

    2012-01-01

    This paper aims to apply the Six Sigma methodology to improve workflow by eliminating the causes of failure in the medical imaging department of a private Turkish hospital. Implementation of the design, measure, analyse, improve and control (DMAIC) improvement cycle, workflow chart, fishbone diagrams and Pareto charts were employed, together with rigorous data collection in the department. The identification of root causes of repeat sessions and delays was followed by failure, mode and effect analysis, hazard analysis and decision tree analysis. The most frequent causes of failure were malfunction of the RIS/PACS system and improper positioning of patients. Subsequent to extensive training of professionals, the sigma level was increased from 3.5 to 4.2. The data were collected over only four months. Six Sigma's data measurement and process improvement methodology is the impetus for health care organisations to rethink their workflow and reduce malpractice. It involves measuring, recording and reporting data on a regular basis. This enables the administration to monitor workflow continuously. The improvements in the workflow under study, made by determining the failures and potential risks associated with radiologic care, will have a positive impact on society in terms of patient safety. Having eliminated repeat examinations, the risk of being exposed to more radiation was also minimised. This paper supports the need to apply Six Sigma and present an evaluation of the process in an imaging department.

  6. A methodology for texture feature-based quality assessment in nucleus segmentation of histopathology image

    Directory of Open Access Journals (Sweden)

    Si Wen

    2017-01-01

    's label. Results: The proposed methodology has been evaluated by assessing the segmentation quality of a segmentation method applied to images from two cancer types in The Cancer Genome Atlas; WHO Grade II lower grade glioma (LGG and lung adenocarcinoma (LUAD. The results show that our method performs well in predicting patches with good-quality segmentations and achieves F1 scores 84.7% for LGG and 75.43% for LUAD. Conclusions: As image scanning technologies advance, large volumes of whole-slide tissue images will be available for research and clinical use. Efficient approaches for the assessment of quality and robustness of output from computerized image analysis workflows will become increasingly critical to extracting useful quantitative information from tissue images. Our work demonstrates the feasibility of machine-learning-based semi-automated techniques to assist researchers and algorithm developers in this process.

  7. Intrasubject correlation between static scan and distribution volume images for [11C]flumazenil PET

    International Nuclear Information System (INIS)

    Mishina, Masahiro; Senda, Michio; Kimura, Yuichi

    2000-01-01

    Accumulation of [ 11 C]flumazenil (FMZ) reflects central nervous system benzodiazepine receptor (BZR). We searched for the optimal time for a static PET scan with FMZ as semi-quantitative imaging of BZR distribution. In 10 normal subjects, a dynamic series of decay-corrected PET scans was performed for 60 minutes, and the arterial blood was sampled during the scan to measure radioactivity and labeled metabolites. We generated 13 kinds of ''static scan'' images from the dynamic scan in each subject, and analyzed the pixel correlation for these images versus distribution volume (DV) images. We also analyzed the time for the [ 11 C]FMZ in plasma and tissue to reach the equilibrium. The intra-subject pixel correlation demonstrated that the static scan'' images for the period centering around 30 minutes post-injection had the strongest linear correlation with the DV image. The ratio of radioactivity in the cortex to that in the plasma reached a peak at 40 minutes after injection. Considering the physical decay and patient burden, we conclude that the decay corrected static scan for [ 11 C]FMZ PET as semi-quantitative imaging of BZR distribution is to be optimally acquired from 20 to 40 minutes after injection. (author)

  8. Monuments deterioration evaluation, using digited images. A methodology

    Directory of Open Access Journals (Sweden)

    Ángel, María C.

    1995-12-01

    Full Text Available In this work a methodology is proposed for data processing, integrating the techniques of digital images processing and the analytical capacity of graphical referencing systems and relational databases, in relation with the monuments. The images are generated using the digital image processing and they are included into a graphical data processing systems associated with a database containing the characteristics of the ashars or constituent elements. By combination of the images with the database induced properties the information is processed. The results are thematic maps that we save such as images. These maps are layers of new information (deduced levels. The elaboration of these maps allows attacking the problems of the restoration, renovation or treatment of the different monumental spaces on a global way, paying special attention on the most gravely affected areas.

    En este trabajo se propone una metodología para el tratamiento de la información, integrando las técnicas de proceso digital de imágenes, la capacidad de análisis de los sistemas de referenciación gráfica y las bases de datos relacionales, referidas a monumentos. Para ello se elaboran las imágenes base por algoritmos propios del proceso digital, incluyendo aquellas en una aplicación especifica que asocia cada capa a una base de datos con las propiedades petrofísicas, hídricas, etc., o bien entre si, dando lugar a mapas temáticos. La generación de estos mapas permite abordar los problemas de restauración, rehabilitación o tratamiento de los diferentes espacios monumentales de forma global, con incidencia especial en las zonas más afectadas.

  9. Sequential {sup 123}I-iododexetimide scans in temporal lobe epilepsy: comparison with neuroimaging scans (MR imaging and {sup 18}F-FDG PET imaging)

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Armin [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); Royal Prince Alfred Hospital, Comprehensive Epilepsy Service, Camperdown, NSW (Australia); University of Sydney, Faculty of Medicine, Sydney, NSW (Australia); Eberl, Stefan; Henderson, David; Beveridge, Scott; Constable, Chris [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); Fulham, Michael J. [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); Kassiou, Michael [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); University of Sydney, Department of Pharmacology, Sydney, NSW (Australia); Zaman, Aysha [University of Sydney, Faculty of Medicine, Sydney, NSW (Australia); Lo, Sing Kai [University of Sydney, Institute of International Health, Sydney, NSW (Australia)

    2005-02-01

    Muscarinic acetylcholine receptors (mAChRs) play an important role in the generation of seizures. Single-photon emission computed tomography (SPECT) with {sup 123}I-iododexetimide (IDEX) depicts tracer uptake by mAChRs. Our aims were to: (a) determine the optimum time for interictal IDEX SPECT imaging; (b) determine the accuracy of IDEX scans in the localisation of seizure foci when compared with video EEG and MR imaging in patients with temporal lobe epilepsy (TLE); (c) characterise the distribution of IDEX binding in the temporal lobes and (d) compare IDEX SPECT and {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in identifying seizure foci. We performed sequential scans using IDEX SPECT imaging at 0, 3, 6 and 24 h in 12 consecutive patients with refractory TLE undergoing assessment for epilepsy surgery. Visual and region of interest analyses of the mesial, lateral and polar regions of the temporal lobes were used to compare IDEX SPECT, FDG PET and MR imaging in seizure onset localisation. The 6-h IDEX scan (92%; {kappa}=0.83, p=0.003) was superior to the 0-h (36%; {kappa}=0.01, p>0.05), 3-h (55%; {kappa}=0.13, p>0.05) and 24-h IDEX scans in identifying the temporal lobe of seizure origin. The 6-h IDEX scan correctly predicted the temporal lobe of seizure origin in two patients who required intracranial EEG recordings to define the seizure onset. Reduced ligand binding was most marked at the temporal pole and mesial temporal structures. IDEX SPECT was superior to interictal FDG PET (75%; {kappa}=0.66, p=0.023) in seizure onset localisation. MR imaging was non-localising in two patients in whom it was normal and in another patient in whom there was bilateral symmetrical hippocampal atrophy. The 6-h IDEX SPECT scan is a viable alternative to FDG PET imaging in seizure onset localisation in TLE. (orig.)

  10. Sequential 123I-iododexetimide scans in temporal lobe epilepsy: comparison with neuroimaging scans (MR imaging and 18F-FDG PET imaging)

    International Nuclear Information System (INIS)

    Mohamed, Armin; Eberl, Stefan; Henderson, David; Beveridge, Scott; Constable, Chris; Fulham, Michael J.; Kassiou, Michael; Zaman, Aysha; Lo, Sing Kai

    2005-01-01

    Muscarinic acetylcholine receptors (mAChRs) play an important role in the generation of seizures. Single-photon emission computed tomography (SPECT) with 123 I-iododexetimide (IDEX) depicts tracer uptake by mAChRs. Our aims were to: (a) determine the optimum time for interictal IDEX SPECT imaging; (b) determine the accuracy of IDEX scans in the localisation of seizure foci when compared with video EEG and MR imaging in patients with temporal lobe epilepsy (TLE); (c) characterise the distribution of IDEX binding in the temporal lobes and (d) compare IDEX SPECT and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in identifying seizure foci. We performed sequential scans using IDEX SPECT imaging at 0, 3, 6 and 24 h in 12 consecutive patients with refractory TLE undergoing assessment for epilepsy surgery. Visual and region of interest analyses of the mesial, lateral and polar regions of the temporal lobes were used to compare IDEX SPECT, FDG PET and MR imaging in seizure onset localisation. The 6-h IDEX scan (92%; κ=0.83, p=0.003) was superior to the 0-h (36%; κ=0.01, p>0.05), 3-h (55%; κ=0.13, p>0.05) and 24-h IDEX scans in identifying the temporal lobe of seizure origin. The 6-h IDEX scan correctly predicted the temporal lobe of seizure origin in two patients who required intracranial EEG recordings to define the seizure onset. Reduced ligand binding was most marked at the temporal pole and mesial temporal structures. IDEX SPECT was superior to interictal FDG PET (75%; κ=0.66, p=0.023) in seizure onset localisation. MR imaging was non-localising in two patients in whom it was normal and in another patient in whom there was bilateral symmetrical hippocampal atrophy. The 6-h IDEX SPECT scan is a viable alternative to FDG PET imaging in seizure onset localisation in TLE. (orig.)

  11. Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control

    DEFF Research Database (Denmark)

    Frimmer, Martin; Chen, Yuntian; Koenderink, A. Femius

    2011-01-01

    We report an experimental technique to map and exploit the local density of optical states of arbitrary planar nanophotonic structures. The method relies on positioning a spontaneous emitter attached to a scanning probe deterministically and reversibly with respect to its photonic environment while...

  12. Metastatic calcification of the stomach imaged on a bone scan

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.; Ryo, U.Y.; Pinsky, S.M.

    1984-10-01

    A whole body bone scan obtained on a 21-year-old woman with sickle cell disease and chronic renal failure showed localization of the radionuclide diffusely in the stomach. The localization of the radionuclide represented metastatic calcification of the stomach caused by secondary hyperparathyroidism.

  13. Mathematical models for correction of images, obtained at radioisotope scan

    International Nuclear Information System (INIS)

    Glaz, A.; Lubans, A.

    2002-01-01

    The images, which obtained at radioisotope scintigraphy, contain distortions. Distortions appear as a result of absorption of radiation by patient's body's tissues. Two mathematical models for reducing of such distortions are proposed. Image obtained by only one gamma camera is used in the first mathematical model. Unfortunately, this model allows processing of the images only in case, when it can be assumed, that the investigated organ has a symmetric form. The images obtained by two gamma cameras are used in the second model. It gives possibility to assume that the investigated organ has non-symmetric form and to acquire more precise results. (authors)

  14. Benefits and unexpected artifacts of biplanar digital slot-scanning imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Blumer, Steven L. [Nemours/A.I duPont Hospital for Children, Department of Medical Imaging, Wilmington, DE (United States); Dinan, David [Nemours Children' s Hospital, Orlando, FL (United States); Grissom, Leslie E. [Nemours/Alfred I. duPont Hospital for Children, Department of Radiology, Wilmington, DE (United States)

    2014-07-15

    Biplanar digital slot-scanning allows for relatively low-dose orthopedic imaging, an advantage in imaging children given the growing concerns regarding radiosensitivity. We have used this system for approximately 1 year for orthopedic imaging of the spine and lower extremities. We have noted advantages of using the digital slot-scanning system when compared with computed radiographic and standard digital radiographic imaging systems, but we also found unexpected but common imaging artifacts that are the direct result of the imaging method and that have not been reported. This pictorial essay serves to familiarize radiologists with the advantages of the digital slot-scanning system as well as imaging artifacts common with this new technology. (orig.)

  15. Real-time scanning charged-particle microscope image composition with correction of drift.

    Science.gov (United States)

    Cizmar, Petr; Vladár, András E; Postek, Michael T

    2011-04-01

    In this article, a new scanning electron microscopy (SEM) image composition technique is described, which can significantly reduce drift related image corruptions. Drift distortion commonly causes blur and distortions in the SEM images. Such corruption ordinarily appears when conventional image-acquisition methods, i.e., "slow scan" and "fast scan," are applied. The damage is often very significant; it may render images unusable for metrology applications, especially where subnanometer accuracy is required. The described correction technique works with a large number of quickly taken frames, which are properly aligned and then composed into a single image. Such image contains much less noise than the individual frames, while the blur and deformation is minimized. This technique also provides useful information about changes of the sample position in time, which may be applied to investigate the drift properties of the instrument without a need of additional equipment.

  16. Assessment of hybrid rotation-translation scan schemes for in vivo animal SPECT imaging

    International Nuclear Information System (INIS)

    Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Yao Rutao; Deng Xiao

    2013-01-01

    To perform in vivo animal single photon emission computed tomography imaging on a stationary detector gantry, we introduced a hybrid rotation-translation (HRT) tomographic scan, a combination of translational and limited angle rotational movements of the image object, to minimize gravity-induced animal motion. To quantitatively assess the performance of ten HRT scan schemes and the conventional rotation-only scan scheme, two simulated phantoms were first scanned with each scheme to derive the corresponding image resolution (IR) in the image field of view. The IR results of all the scan schemes were visually assessed and compared with corresponding outputs of four scan scheme evaluation indices, i.e. sampling completeness (SC), sensitivity (S), conventional system resolution (SR), and a newly devised directional spatial resolution (DR) that measures the resolution in any specified orientation. A representative HRT scheme was tested with an experimental phantom study. Eight of the ten HRT scan schemes evaluated achieved a superior performance compared to two other HRT schemes and the rotation-only scheme in terms of phantom image resolution. The same eight HRT scan schemes also achieved equivalent or better performance in terms of the four quantitative indices than the conventional rotation-only scheme. As compared to the conventional index SR, the new index DR appears to be a more relevant indicator of system resolution performance. The experimental phantom image obtained from the selected HRT scheme was satisfactory. We conclude that it is feasible to perform in vivo animal imaging with a HRT scan scheme and SC and DR are useful predictors for quantitatively assessing the performance of a scan scheme. (paper)

  17. Tip-Dependent Scanning Tunneling Microscopy Imaging of Ultrathin FeO Films on Pt(111)

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Grabow, Lars C.; Peng, Guowen

    2011-01-01

    High-resolution scanning tunneling microscope (STM) images of moiré-structured FeO films on Pt(111) were obtained in a number of different tip-dependent imaging modes. For the first time, the STM images are distinguished and interpreted unambiguously with the help of distinct oxygen...

  18. Three-dimensional imaging and scanning: Current and future applications for pathology

    Directory of Open Access Journals (Sweden)

    Navid Farahani

    2017-01-01

    Full Text Available Imaging is vital for the assessment of physiologic and phenotypic details. In the past, biomedical imaging was heavily reliant on analog, low-throughput methods, which would produce two-dimensional images. However, newer, digital, and high-throughput three-dimensional (3D imaging methods, which rely on computer vision and computer graphics, are transforming the way biomedical professionals practice. 3D imaging has been useful in diagnostic, prognostic, and therapeutic decision-making for the medical and biomedical professions. Herein, we summarize current imaging methods that enable optimal 3D histopathologic reconstruction: Scanning, 3D scanning, and whole slide imaging. Briefly mentioned are emerging platforms, which combine robotics, sectioning, and imaging in their pursuit to digitize and automate the entire microscopy workflow. Finally, both current and emerging 3D imaging methods are discussed in relation to current and future applications within the context of pathology.

  19. Hyperparathyroidism: comparison of MR imaging with radionuclide scanning

    International Nuclear Information System (INIS)

    Peck, W.W.; Higgins, C.B.; Fisher, M.R.; Ling, M.; Okerlund, M.D.; Clark, O.H.

    1987-01-01

    Twenty-three patients with hyperparathyroidism were evaluated preoperatively with magnetic resonance (MR) imaging. Twenty patients also underwent thallium-201/technetium-99m scintigraphy. Of 22 patients with primary hyperparathyroidism, 12 had persistent or recurrent disease. One had secondary hyperparathyroidism due to end-stage renal disease. MR imaging allowed accurate localization of abnormal parathyroid glands in 64% evaluated prospectively and 82% evaluated retrospectively. Scintigraphy allowed localization of 60% evaluated prospectively and 70% retrospectively. The two imaging modalities together allowed detection of 68% evaluated prospectively and 91% retrospectively. MR imaging allowed detection of two of five mediastinal adenomas evaluated prospectively and four of five retrospectively. In patients who underwent both imaging studies, MR was more successful in those with previous neck surgery (73% evaluated prospectively and 91% retrospectively) than in those with no prior surgery (57% prospectively and 71% retrospectively). Scintigraphy allowed accurate localization in 64% evaluated prospectively and 64% retrospectively in patients with previous surgery versus 57% prospectively and 86% retrospectively in patients with no prior neck surgery. Four false-positive results were obtained with MR imaging and three with scintigraphy. MR imaging was useful for parathyroid localization in patients with hyperparathyroidism, particularly in patients requiring additional surgery

  20. CLOSE RANGE HYPERSPECTRAL IMAGING INTEGRATED WITH TERRESTRIAL LIDAR SCANNING APPLIED TO ROCK CHARACTERISATION AT CENTIMETRE SCALE

    Directory of Open Access Journals (Sweden)

    T. H. Kurz

    2012-07-01

    Full Text Available Compact and lightweight hyperspectral imagers allow the application of close range hyperspectral imaging with a ground based scanning setup for geological fieldwork. Using such a scanning setup, steep cliff sections and quarry walls can be scanned with a more appropriate viewing direction and a higher image resolution than from airborne and spaceborne platforms. Integration of the hyperspectral imagery with terrestrial lidar scanning provides the hyperspectral information in a georeferenced framework and enables measurement at centimetre scale. In this paper, three geological case studies are used to demonstrate the potential of this method for rock characterisation. Two case studies are applied to carbonate quarries where mapping of different limestone and dolomite types was required, as well as measurements of faults and layer thicknesses from inaccessible parts of the quarries. The third case study demonstrates the method using artificial lighting, applied in a subsurface scanning scenario where solar radiation cannot be utilised.

  1. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.

    Science.gov (United States)

    Lee, Dong-Ryoung; Kim, Young-Duk; Gweon, Dae-Gab; Yoo, Hongki

    2013-07-29

    We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.

  2. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  3. Scanning tomographic particle image velocimetry applied to a turbulent jet

    KAUST Repository

    Casey, T. A.; Sakakibara, J.; Thoroddsen, Sigurdur T

    2013-01-01

    planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise

  4. Imaging by Electrochemical Scanning Tunneling Microscopy and Deconvolution Resolving More Details of Surfaces Nanomorphology

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    observed in high-resolution images of metallic nanocrystallites may be effectively deconvoluted, as to resolve more details of the crystalline morphology (see figure). Images of surface-crystalline metals indicate that more than a single atomic layer is involved in mediating the tunneling current......Upon imaging, electrochemical scanning tunneling microscopy (ESTM), scanning electrochemical micro-scopy (SECM) and in situ STM resolve information on electronic structures and on surface topography. At very high resolution, imaging processing is required, as to obtain information that relates...... to crystallographic-surface structures. Within the wide range of new technologies, those images surface features, the electrochemical scanning tunneling microscope (ESTM) provides means of atomic resolution where the tip participates actively in the process of imaging. Two metallic surfaces influence ions trapped...

  5. Scanning electron microscopy of dentition: methodology and ultrastructural morphology of tooth wear.

    Science.gov (United States)

    Shkurkin, G V; Almquist, A J; Pfeihofer, A A; Stoddard, E L

    1975-01-01

    Scanning electron micrographs were taken of sets of human molars-those of paleo-Indians used in mastication of, ostensibly, a highly abrasive diet, and those of contemporary Americans. Different ultrastructural patterns of enamel wear were observed between the groups.

  6. Parallel-scanning tomosynthesis using a slot scanning technique: Fixed-focus reconstruction and the resulting image quality

    International Nuclear Information System (INIS)

    Shibata, Koichi; Notohara, Daisuke; Sakai, Takihito

    2014-01-01

    Purpose: Parallel-scanning tomosynthesis (PS-TS) is a novel technique that fuses the slot scanning technique and the conventional tomosynthesis (TS) technique. This approach allows one to obtain long-view tomosynthesis images in addition to normally sized tomosynthesis images, even when using a system that has no linear tomographic scanning function. The reconstruction technique and an evaluation of the resulting image quality for PS-TS are described in this paper. Methods: The PS-TS image-reconstruction technique consists of several steps (1) the projection images are divided into strips, (2) the strips are stitched together to construct images corresponding to the reconstruction plane, (3) the stitched images are filtered, and (4) the filtered stitched images are back-projected. In the case of PS-TS using the fixed-focus reconstruction method (PS-TS-F), one set of stitched images is used for the reconstruction planes at all heights, thus avoiding the necessity of repeating steps (1)–(3). A physical evaluation of the image quality of PS-TS-F compared with that of the conventional linear TS was performed using a R/F table (Sonialvision safire, Shimadzu Corp., Kyoto, Japan). The tomographic plane with the best theoretical spatial resolution (the in-focus plane, IFP) was set at a height of 100 mm from the table top by adjusting the reconstruction program. First, the spatial frequency response was evaluated at heights of −100, −50, 0, 50, 100, and 150 mm from the IFP using the edge of a 0.3-mm-thick copper plate. Second, the spatial resolution at each height was visually evaluated using an x-ray test pattern (Model No. 38, PTW Freiburg, Germany). Third, the slice sensitivity at each height was evaluated via the wire method using a 0.1-mm-diameter tungsten wire. Phantom studies using a knee phantom and a whole-body phantom were also performed. Results: The spatial frequency response of PS-TS-F yielded the best results at the IFP and degraded slightly as the

  7. Parallel-scanning tomosynthesis using a slot scanning technique: fixed-focus reconstruction and the resulting image quality.

    Science.gov (United States)

    Shibata, Koichi; Notohara, Daisuke; Sakai, Takihito

    2014-11-01

    Parallel-scanning tomosynthesis (PS-TS) is a novel technique that fuses the slot scanning technique and the conventional tomosynthesis (TS) technique. This approach allows one to obtain long-view tomosynthesis images in addition to normally sized tomosynthesis images, even when using a system that has no linear tomographic scanning function. The reconstruction technique and an evaluation of the resulting image quality for PS-TS are described in this paper. The PS-TS image-reconstruction technique consists of several steps (1) the projection images are divided into strips, (2) the strips are stitched together to construct images corresponding to the reconstruction plane, (3) the stitched images are filtered, and (4) the filtered stitched images are back-projected. In the case of PS-TS using the fixed-focus reconstruction method (PS-TS-F), one set of stitched images is used for the reconstruction planes at all heights, thus avoiding the necessity of repeating steps (1)-(3). A physical evaluation of the image quality of PS-TS-F compared with that of the conventional linear TS was performed using a R/F table (Sonialvision safire, Shimadzu Corp., Kyoto, Japan). The tomographic plane with the best theoretical spatial resolution (the in-focus plane, IFP) was set at a height of 100 mm from the table top by adjusting the reconstruction program. First, the spatial frequency response was evaluated at heights of -100, -50, 0, 50, 100, and 150 mm from the IFP using the edge of a 0.3-mm-thick copper plate. Second, the spatial resolution at each height was visually evaluated using an x-ray test pattern (Model No. 38, PTW Freiburg, Germany). Third, the slice sensitivity at each height was evaluated via the wire method using a 0.1-mm-diameter tungsten wire. Phantom studies using a knee phantom and a whole-body phantom were also performed. The spatial frequency response of PS-TS-F yielded the best results at the IFP and degraded slightly as the distance from the IFP increased. A

  8. Parallel-scanning tomosynthesis using a slot scanning technique: Fixed-focus reconstruction and the resulting image quality

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Koichi, E-mail: shibatak@suzuka-u.ac.jp [Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science 1001-1, Kishioka-cho, Suzuka 510-0293 (Japan); Notohara, Daisuke; Sakai, Takihito [R and D Department, Medical Systems Division, Shimadzu Corporation 1, Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511 (Japan)

    2014-11-01

    Purpose: Parallel-scanning tomosynthesis (PS-TS) is a novel technique that fuses the slot scanning technique and the conventional tomosynthesis (TS) technique. This approach allows one to obtain long-view tomosynthesis images in addition to normally sized tomosynthesis images, even when using a system that has no linear tomographic scanning function. The reconstruction technique and an evaluation of the resulting image quality for PS-TS are described in this paper. Methods: The PS-TS image-reconstruction technique consists of several steps (1) the projection images are divided into strips, (2) the strips are stitched together to construct images corresponding to the reconstruction plane, (3) the stitched images are filtered, and (4) the filtered stitched images are back-projected. In the case of PS-TS using the fixed-focus reconstruction method (PS-TS-F), one set of stitched images is used for the reconstruction planes at all heights, thus avoiding the necessity of repeating steps (1)–(3). A physical evaluation of the image quality of PS-TS-F compared with that of the conventional linear TS was performed using a R/F table (Sonialvision safire, Shimadzu Corp., Kyoto, Japan). The tomographic plane with the best theoretical spatial resolution (the in-focus plane, IFP) was set at a height of 100 mm from the table top by adjusting the reconstruction program. First, the spatial frequency response was evaluated at heights of −100, −50, 0, 50, 100, and 150 mm from the IFP using the edge of a 0.3-mm-thick copper plate. Second, the spatial resolution at each height was visually evaluated using an x-ray test pattern (Model No. 38, PTW Freiburg, Germany). Third, the slice sensitivity at each height was evaluated via the wire method using a 0.1-mm-diameter tungsten wire. Phantom studies using a knee phantom and a whole-body phantom were also performed. Results: The spatial frequency response of PS-TS-F yielded the best results at the IFP and degraded slightly as the

  9. Spatio-temporal imaging of voltage pulses with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Keil, Ulrich Dieter Felix; Hvam, Jørn Märcher

    1997-01-01

    Measurements on an ultrafast scanning tunneling microscope with simultaneous spatial and temporal resolution are presented. We show images of picosecond pulses propagating on a coplanar waveguide and resolve their mode structures. The influence of transmission line discontinuities on the mode...

  10. Single-photon compressive imaging with some performance benefits over raster scanning

    International Nuclear Information System (INIS)

    Yu, Wen-Kai; Liu, Xue-Feng; Yao, Xu-Ri; Wang, Chao; Zhai, Guang-Jie; Zhao, Qing

    2014-01-01

    A single-photon imaging system based on compressed sensing has been developed to image objects under ultra-low illumination. With this system, we have successfully realized imaging at the single-photon level with a single-pixel avalanche photodiode without point-by-point raster scanning. From analysis of the signal-to-noise ratio in the measurement we find that our system has much higher sensitivity than conventional ones based on point-by-point raster scanning, while the measurement time is also reduced. - Highlights: • We design a single photon imaging system with compressed sensing. • A single point avalanche photodiode is used without raster scanning. • The Poisson shot noise in the measurement is analyzed. • The sensitivity of our system is proved to be higher than that of raster scanning

  11. A semi-automatic procedure for texturing of laser scanning point clouds with google streetview images

    NARCIS (Netherlands)

    Lichtenauer, J.F.; Sirmacek, B.

    2015-01-01

    We introduce a method to texture 3D urban models with photographs that even works for Google Streetview images and can be done with currently available free software. This allows realistic texturing, even when it is not possible or cost-effective to (re)visit a scanned site to take textured scans or

  12. Defect imaging and channeling studies using channeling scanning transmission ion microscopy

    NARCIS (Netherlands)

    King, PJC; Breese, MBH; Smulders, PJM; Wilshaw, PR; Grime, GW

    The technique of channeling scanning transmission ion microscopy (CSTIM) can be used to produce images of individual crystal defects (such as dislocations and stacking faults) using the scanned, focused ion beam from a nuclear microprobe. As well as offering a new method for studies of crystal

  13. Experimental design and methodology for a new Moessbauer scan experiment: absorption line tracking

    International Nuclear Information System (INIS)

    Veiga, A.; Pasquevich, G. A.; Zelis, P. Mendoza; Sanchez, F. H.; Fernandez van Raap, M. B.; Martinez, N.

    2009-01-01

    A new experimental setup and methodology that allows the automatic tracking of a Moessbauer absorption line as its energy position varies during the experiment is introduced. As a test the sixth spectral line of FeSn 2 was tracked while temperature was varied between room temperature and a value slightly above its Neel temperature.

  14. Hybrid imaging with contrast enhanced CT scan: A nuclear physician's point of view

    International Nuclear Information System (INIS)

    Houzard, C.; Tychyj-Pinel, C.; Defez, D.; Valette, P.J.; Giammarile, F.; Houzard, C.; Valette, P.J.; Giammarile, F.

    2010-01-01

    The ongoing development of hybrid imaging, with physical association of CT scan and PET or SPECT scan, allows integrating morphological and functional information on a single exam. This important technological evolution changes diagnostic and therapeutic strategy in a major manner, essentially in oncology. The possibility to inject intravenously iodinated contrast media in order to enhance CT image contrast is still a controversial question in France. We present our experience in this domain by approaching technical problems and diagnostic advantages. (authors)

  15. Three dimensional phase imaging using a scanning optical fiber interferometer

    International Nuclear Information System (INIS)

    Walford, J.N.; Nugent, K.A.; Roberts, A.; Scholten, R.E.

    1998-01-01

    A quantitative method for measuring phase in three dimensions using a scanning optical fiber interferometer is described. By exploiting phase modulation in the reference arm, this technique is insensitive to large variations in the intensity of the field being studied, and is therefore highly suitable for measurement of phase within spatially confined optical beams. It uses only a single detector, and is not reliant on lock-in electronics. The technique is applied to the measurement of the near field of a cleaved optical fiber and shown to produce results in good agreement with theory. (authors)

  16. Unsynchronized scanning with a low-cost laser range finder for real-time range imaging

    Science.gov (United States)

    Hatipoglu, Isa; Nakhmani, Arie

    2017-06-01

    Range imaging plays an essential role in many fields: 3D modeling, robotics, heritage, agriculture, forestry, reverse engineering. One of the most popular range-measuring technologies is laser scanner due to its several advantages: long range, high precision, real-time measurement capabilities, and no dependence on lighting conditions. However, laser scanners are very costly. Their high cost prevents widespread use in applications. Due to the latest developments in technology, now, low-cost, reliable, faster, and light-weight 1D laser range finders (LRFs) are available. A low-cost 1D LRF with a scanning mechanism, providing the ability of laser beam steering for additional dimensions, enables to capture a depth map. In this work, we present an unsynchronized scanning with a low-cost LRF to decrease scanning period and reduce vibrations caused by stop-scan in synchronized scanning. Moreover, we developed an algorithm for alignment of unsynchronized raw data and proposed range image post-processing framework. The proposed technique enables to have a range imaging system for a fraction of the price of its counterparts. The results prove that the proposed method can fulfill the need for a low-cost laser scanning for range imaging for static environments because the most significant limitation of the method is the scanning period which is about 2 minutes for 55,000 range points (resolution of 250x220 image). In contrast, scanning the same image takes around 4 minutes in synchronized scanning. Once faster, longer range, and narrow beam LRFs are available, the methods proposed in this work can produce better results.

  17. Scanning laser topography and scanning laser polarimetry: comparing both imaging methods at same distances from the optic nerve head.

    Science.gov (United States)

    Kremmer, Stephan; Keienburg, Marcus; Anastassiou, Gerasimos; Schallenberg, Maurice; Steuhl, Klaus-Peter; Selbach, J Michael

    2012-01-01

    To compare the performance of scanning laser topography (SLT) and scanning laser polarimetry (SLP) on the rim of the optic nerve head and its surrounding area and thereby to evaluate whether these imaging technologies are influenced by other factors beyond the thickness of the retinal nerve fiber layer (RNFL). A total of 154 eyes from 5 different groups were examined: young healthy subjects (YNorm), old healthy subjects (ONorm), patients with normal tension glaucoma (NTG), patients with open-angle glaucoma and early glaucomatous damage (OAGE) and patients with open-angle glaucoma and advanced glaucomatous damage (OAGA). SLT and SLP measurements were taken. Four concentric circles were superimposed on each of the images: the first one measuring at the rim of the optic nerve head (1.0 ONHD), the next measuring at 1.25 optic nerve head diameters (ONHD), at 1.5 ONHD and at 1.75 ONHD. The aligned images were analyzed using GDx/NFA software. Both methods showed peaks of RNFL thickness in the superior and inferior segments of the ONH. The maximum thickness, registered by the SLT device was at the ONH rim where the SLP device tended to measure the lowest values. SLT measurements at the ONH were influenced by other tissues besides the RNFL like blood vessels and glial tissues. SLT and SLP were most strongly correlated at distances of 1.25 and 1.5 ONHD. While both imaging technologies are valuable tools in detecting glaucoma, measurements at the ONH rim should be interpreted critically since both methods might provide misleading results. For the assessment of the retinal nerve fiber layer we would like to recommend for both imaging technologies, SLT and SLP, measurements in 1.25 and 1.5 ONHD distance of the rim of the optic nerve head.

  18. Mechanical scanning in intravascular ultrasound imaging: Artifacts and driving mechanisms

    NARCIS (Netherlands)

    H. ten Hoff (H.); E.J. Gussenhoven (Elma); C.M. Korbijn (Carin); F. Mastik (Frits); C.T. Lancée (Charles); N. Bom (Klaas)

    1995-01-01

    textabstractObjective: Currently, intravascular ultrasound (US) imaging catheters are developed and produced to provide a complementary diagnostic method in the treatment of blood vessel obstructive disease. Typical catheter dimensions are a diameter of 1–2.5 mm and a length of 1–1.5 m. A real-time

  19. Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer

    International Nuclear Information System (INIS)

    Sohn, H; Yang, J Y; Dutta, D; DeSimio, M; Olson, S; Swenson, E

    2011-01-01

    The paper presents signal and image processing algorithms to automatically detect delamination and disbond in composite plates from wavefield images obtained using a scanning laser Doppler vibrometer (LDV). Lamb waves are excited by a lead zirconate titanate transducer (PZT) mounted on the surface of a composite plate, and the out-of-plane velocity field is measured using an LDV. From the scanned time signals, wavefield images are constructed and processed to study the interaction of Lamb waves with hidden delaminations and disbonds. In particular, the frequency–wavenumber (f–k) domain filter and the Laplacian image filter are used to enhance the visibility of defects in the scanned images. Thereafter, a statistical cluster detection algorithm is used to identify the defect location and distinguish damaged specimens from undamaged ones

  20. Technical considerations on scanning and image analysis for amyloid PET in dementia

    International Nuclear Information System (INIS)

    Akamatsu, Go; Ohnishi, Akihito; Aita, Kazuki; Ikari, Yasuhiko; Senda, Michio; Yamamoto, Yasuji

    2017-01-01

    Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice. (author)

  1. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  2. Technical Considerations on Scanning and Image Analysis for Amyloid PET in Dementia.

    Science.gov (United States)

    Akamatsu, Go; Ohnishi, Akihito; Aita, Kazuki; Ikari, Yasuhiko; Yamamoto, Yasuji; Senda, Michio

    2017-01-01

    Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice.

  3. Quick Green Scan: A Methodology for Improving Green Performance in Terms of Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Aldona Kluczek

    2017-01-01

    Full Text Available The heating sector has begun implementing technologies and practices to tackle the environmental and social–economic problems caused by their production process. The purpose of this paper is to develop a methodology, “the Quick-Green-Scan”, that caters for the need of quick assessment decision-makers to improve green manufacturing performance in companies that produce heating devices. The study uses a structured approach that integrates Life Cycle Assessment-based indicators, framework and linguistic scales (fuzzy numbers to evaluate the extent of greening of the enterprise. The evaluation criteria and indicators are closely related to the current state of technology, which can be improved. The proposed methodology has been created to answer the question whether a company acts on the opportunity to be green and whether these actions are contributing towards greening, maintaining the status quo or moving away from a green outcome. Results show that applying the proposed improvements in processes helps move the facility towards being a green enterprise. Moreover, the methodology, being particularly quick and simple, is a practical tool for benchmarking, not only in the heating industry, but also proves useful in providing comparisons for facility performance in other manufacturing sectors.

  4. Adaptive and robust statistical methods for processing near-field scanning microwave microscopy images.

    Science.gov (United States)

    Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P

    2015-03-01

    Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. Published by Elsevier B.V.

  5. Optimization of the imaging response of scanning microwave microscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sardi, G. M.; Lucibello, A.; Proietti, E.; Marcelli, R., E-mail: romolo.marcelli@imm.cnr.it [National Research Council, Institute for Microelectronics and Microsystems, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Kasper, M.; Gramse, G. [Biophysics Institute, Johannes Kepler University, Gruberstrasse 40, 4020 Linz (Austria); Kienberger, F. [Keysight Technologies Austria GmbH, Gruberstrasse 40, 4020 Linz (Austria)

    2015-07-20

    In this work, we present the analytical modeling and preliminary experimental results for the choice of the optimal frequencies when performing amplitude and phase measurements with a scanning microwave microscope. In particular, the analysis is related to the reflection mode operation of the instrument, i.e., the acquisition of the complex reflection coefficient data, usually referred as S{sub 11}. The studied configuration is composed of an atomic force microscope with a microwave matched nanometric cantilever probe tip, connected by a λ/2 coaxial cable resonator to a vector network analyzer. The set-up is provided by Keysight Technologies. As a peculiar result, the optimal frequencies, where the maximum sensitivity is achieved, are different for the amplitude and for the phase signals. The analysis is focused on measurements of dielectric samples, like semiconductor devices, textile pieces, and biological specimens.

  6. Effect of blood glucose levels on image quality in 18F fluorodeoxyglucose scanning - a case report

    International Nuclear Information System (INIS)

    Szeto, E.; Keane, J.

    2000-01-01

    Full text: In December last year, a 71-year-old gentleman presented to the Nuclear Medicine Department at St Vincent's Hospital, Sydney for an FDG coincidence detection positron emission scan. The patient had cancer of the lung with a large lesion in the left upper lobe and a small lesion in the right middle lobe. On initial investigation, this patient had a blood sugar level of 17mmol/L which was eventually reduced to 6.7mmol/L just prior to scanning. The patient was then asked to return to be rescanned without his blood sugar levels being adjusted. Just prior to his second scan, his blood sugar level was 15.4mmollL. The aim of the initial scan being repeated was to see just how important a role blood sugar levels play in the quality of a Co Pet scan. The first scan showed excellent image quality while the repeated scan showed markedly inferior image quality due to unwanted soft tissue FDG uptake. In conclusion, blood sugar levels play a significant role in output image quality in FDG coincidence detection positron emission scanning. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  7. Low-dose computed tomography image restoration using previous normal-dose scan

    International Nuclear Information System (INIS)

    Ma, Jianhua; Huang, Jing; Feng, Qianjin; Zhang, Hua; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan

    2011-01-01

    Purpose: In current computed tomography (CT) examinations, the associated x-ray radiation dose is of a significant concern to patients and operators. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) or kVp parameter (or delivering less x-ray energy to the body) as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and the noise would propagate into the CT image if no adequate noise control is applied during image reconstruction. Since a normal-dose high diagnostic CT image scanned previously may be available in some clinical applications, such as CT perfusion imaging and CT angiography (CTA), this paper presents an innovative way to utilize the normal-dose scan as a priori information to induce signal restoration of the current low-dose CT image series. Methods: Unlike conventional local operations on neighboring image voxels, nonlocal means (NLM) algorithm utilizes the redundancy of information across the whole image. This paper adapts the NLM to utilize the redundancy of information in the previous normal-dose scan and further exploits ways to optimize the nonlocal weights for low-dose image restoration in the NLM framework. The resulting algorithm is called the previous normal-dose scan induced nonlocal means (ndiNLM). Because of the optimized nature of nonlocal weights calculation, the ndiNLM algorithm does not depend heavily on image registration between the current low-dose and the previous normal-dose CT scans. Furthermore, the smoothing parameter involved in the ndiNLM algorithm can be adaptively estimated based on the image noise relationship between the current low-dose and the previous normal-dose scanning protocols. Results: Qualitative and quantitative evaluations were carried out on a physical phantom as well as clinical abdominal and brain perfusion CT scans in terms of accuracy and resolution properties. The gain by the use

  8. Scanning ion images; analysis of pharmaceutical drugs at organelle levels

    Science.gov (United States)

    Larras-Regard, E.; Mony, M.-C.

    1995-05-01

    With the ion analyser IMS 4F used in microprobe mode, it is possible to obtain images of fields of 10 × 10 [mu]m2, corresponding to an effective magnification of 7000 with lateral resolution of 250 nm, technical characteristics that are appropriate for the size of cell organelles. It is possible to characterize organelles by their relative CN-, P- and S- intensities when the tissues are prepared by freeze fixation and freeze substitution. The recognition of organelles enables correlation of the tissue distribution of ebselen, a pharmaceutical drug containing selenium. The various metabolites characterized in plasma, bile and urine during biotransformation of ebselen all contain selenium, so the presence of the drug and its metabolites can be followed by images of Se. We were also able to detect the endogenous content of Se in tissue, due to the increased sensitivity of ion analysis in microprobe mode. Our results show a natural occurrence of Se in the border corresponding to the basal lamina of cells of proximal but not distal tubules of the kidney. After treatment of rats with ebselen, an additional site of Se is found in the lysosomes. We suggest that in addition to direct elimination of ebselen and its metabolites by glomerular filtration and urinary elimination, a second process of elimination may occur: Se compounds reaching the epithelial cells via the basal lamina accumulate in lysosomes prior to excretion into the tubular fluid. The technical developments of using the IMS 4F instrument in the microprobe mode and the improvement in preparation of samples by freeze fixation and substitution further extend the limit of ion analysis in biology. Direct imaging of trace elements and molecules marked with a tracer make it possible to determine their targets by comparison with images of subcellular structures. This is a promising advance in the study of pathways of compounds within tissues, cells and the whole organism.

  9. MIMIC: An Innovative Methodology for Determining Mobile Laser Scanning System Point Density

    Directory of Open Access Journals (Sweden)

    Conor Cahalane

    2014-08-01

    Full Text Available Understanding how various Mobile Mapping System (MMS laser hardware configurations and operating parameters exercise different influence on point density is important for assessing system performance, which in turn facilitates system design and MMS benchmarking. Point density also influences data processing, as objects that can be recognised using automated algorithms generally require a minimum point density. Although obtaining the necessary point density impacts on hardware costs, survey time and data storage requirements, a method for accurately and rapidly assessing MMS performance is lacking for generic MMSs. We have developed a method for quantifying point clouds collected by an MMS with respect to known objects at specified distances using 3D surface normals, 2D geometric formulae and line drawing algorithms. These algorithms were combined in a system called the Mobile Mapping Point Density Calculator (MIMIC and were validated using point clouds captured by both a single scanner and a dual scanner MMS. Results from MIMIC were promising: when considering the number of scan profiles striking the target, the average error equated to less than 1 point per scan profile. These tests highlight that MIMIC is capable of accurately calculating point density for both single and dual scanner MMSs.

  10. Background Noise Removal in Ultrasonic B-scan Images Using Iterative Statistical Techniques

    NARCIS (Netherlands)

    Wells, I.; Charlton, P. C.; Mosey, S.; Donne, K. E.

    2008-01-01

    The interpretation of ultrasonic B-scan images can be a time-consuming process and its success depends on operator skills and experience. Removal of the image background will potentially improve its quality and hence improve operator diagnosis. An automatic background noise removal algorithm is

  11. A robust method for processing scanning probe microscopy images and determining nanoobject position and dimensions

    NARCIS (Netherlands)

    Silly, F.

    2009-01-01

    P>Processing of scanning probe microscopy (SPM) images is essential to explore nanoscale phenomena. Image processing and pattern recognition techniques are developed to improve the accuracy and consistency of nanoobject and surface characterization. We present a robust and versatile method to

  12. Line-Scan Hyperspectral Imaging Techniques for Food Safety and Quality Applications

    Directory of Open Access Journals (Sweden)

    Jianwei Qin

    2017-01-01

    Full Text Available Hyperspectral imaging technologies in the food and agricultural area have been evolving rapidly over the past 15 years owing to tremendous interest from both academic and industrial fields. Line-scan hyperspectral imaging is a major method that has been intensively researched and developed using different physical principles (e.g., reflectance, transmittance, fluorescence, Raman, and spatially resolved spectroscopy and wavelength regions (e.g., visible (VIS, near infrared (NIR, and short-wavelength infrared (SWIR. Line-scan hyperspectral imaging systems are mainly developed and used for surface inspection of food and agricultural products using area or line light sources. Some of these systems can also be configured to conduct spatially resolved spectroscopy measurements for internal or subsurface food inspection using point light sources. This paper reviews line-scan hyperspectral imaging techniques, with introduction, demonstration, and summarization of existing and emerging techniques for food and agricultural applications. The main topics include related spectroscopy techniques, line-scan measurement methods, hardware components and systems, system calibration methods, and spectral and image analysis techniques. Applications in food safety and quality are also presented to reveal current practices and future trends of line-scan hyperspectral imaging techniques.

  13. Improving image quality by accounting for changes in water temperature during a photoacoustic tomography scan.

    Directory of Open Access Journals (Sweden)

    Dominique Van de Sompel

    Full Text Available The emerging field of photoacoustic tomography is rapidly evolving with many new system designs and reconstruction algorithms being published. Many systems use water as a coupling medium between the scanned object and the ultrasound transducers. Prior to a scan, the water is heated to body temperature to enable small animal imaging. During the scan, the water heating system of some systems is switched off to minimize the risk of bubble formation, which leads to a gradual decrease in water temperature and hence the speed of sound. In this work, we use a commercially available scanner that follows this procedure, and show that a failure to model intra-scan temperature decreases as small as 1.5°C leads to image artifacts that may be difficult to distinguish from true structures, particularly in complex scenes. We then improve image quality by continuously monitoring the water temperature during the scan and applying variable speed of sound corrections in the image reconstruction algorithm. While upgrading to an air bubble-free heating pump and keeping it running during the scan could also solve the changing temperature problem, we show that a software correction for the temperature changes provides a cost-effective alternative to a hardware upgrade. The efficacy of the software corrections was shown to be consistent across objects of widely varying appearances, namely physical phantoms, ex vivo tissue, and in vivo mouse imaging. To the best of our knowledge, this is the first study to demonstrate the efficacy of modeling temporal variations in the speed of sound during photoacoustic scans, as opposed to spatial variations as focused on by previous studies. Since air bubbles pose a common problem in ultrasonic and photoacoustic imaging systems, our results will be useful to future small animal imaging studies that use scanners with similarly limited heating units.

  14. Correlation between image quality of CT scan and amount of intravenous contrast media

    International Nuclear Information System (INIS)

    Yoon, Dae Young; Choi, Dae Seob; Kim, Seung Hyup; Han, Joon Koo; Choi, Byung Ihn; Im, Jung Gi; Han, Moon Hee; Chang, Kee Hyun; Kim, Jong Hyo; Han, Man Chung

    1993-01-01

    A blind, comparative clinical study was performed prospectively to examine the correlation between image quality of CT scan in terms of contrast enhancement effect and amount of intravenous contrast media. A total of 357 patients were randomized into two groups. Ionic high-osmolality contrast media (68% meglumine ioglicate) was administered intravenously as 100 ml bolus in one group and as 50 ml bolus in the other group. Statistically significant differences of image quality were found in CT scans of the brain, head and neck, chest and abdomen (p 0.05). We suggest that amount of contrast media may be reduced in pelvis CT without significant degradation of image quality

  15. Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, Lars [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); TOTAL Marketing Services, New Energies, La Défense 10, 92069 Paris La Défense Cedex (France); Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Schofield, Steven R. [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom); Curson, Neil J., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, UCL, London WC1E 7JE (United Kingdom)

    2014-06-23

    We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

  16. Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Oberbeck, Lars; Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y.; Schofield, Steven R.; Curson, Neil J.

    2014-01-01

    We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

  17. Dental image replacement on cone beam computed tomography with three-dimensional optical scanning of a dental cast, occlusal bite, or bite tray impression.

    Science.gov (United States)

    Kang, S-H; Lee, J-W; Lim, S-H; Kim, Y-H; Kim, M-K

    2014-10-01

    The goal of the present study was to compare the accuracy of dental image replacement on a cone beam computed tomography (CBCT) image using digital image data from three-dimensional (3D) optical scanning of a dental cast, occlusal bite, and bite tray impression. A Bracket Typodont dental model was used. CBCT of the dental model was performed and the data were converted to stereolithography (STL) format. Three experimental materials, a dental cast, occlusal bite, and bite tray impression, were optically scanned in 3D. STL files converted from the CBCT of the Typodont model and the 3D optical-scanned STL files of the study materials were image-registered. The error range of each methodology was measured and compared with a 3D optical scan of the Typodont. For the three materials, the smallest error observed was 0.099±0.114mm (mean error±standard deviation) for registering the 3D optical scan image of the dental cast onto the CBCT dental image. Although producing a dental cast can be laborious, the study results indicate that it is the preferred method. In addition, an occlusal bite is recommended when bite impression materials are used. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Research on Radar Cross Section Measurement Based on Near-field Imaging of Cylindrical Scanning

    Directory of Open Access Journals (Sweden)

    Xing Shu-guang

    2015-04-01

    Full Text Available A new method of Radar Cross Section (RCS measurement based on near-field imaging of cylindrical scanning surface is proposed. The method is based on the core assumption that the target consists of ideal isotropic scattered centers. Three-dimensional radar scattered images are obtained by using the proposed method, and then to obtain the RCS of the target, the scattered far field is calculated by summing the fields generated by the equivalent scattered centers. Not only three dimensional radar reflectivity images but also the RCS of targets in certain three dimensional angle areas can be obtained. Compared with circular scanning that can only obtain twodimensional radar reflectivity images and RCS results in two-dimensional angle areas, cylindrical scanning can provide more information about the scattering properties of the targets. The method has strong practicability and its validity is verified by simulations.

  19. Ultrasonic signal processing and B-SCAN imaging for nondestructive testing. Application to under - cladding - cracks

    International Nuclear Information System (INIS)

    Theron, G.

    1988-02-01

    Crack propagation under the stainless steel cladding of nuclear reactor vessels is monitored by ultrasonic testing. This work study signal processing to improve detection and sizing of defects. Two possibilities are examined: processing of each individual signal and simultaneous processing of all the signals giving a B-SCAN image. The bibliographic study of time-frequency methods shows that they are not suitable for pulses. Then decomposition in instantaneous frequency and envelope is used. Effect of interference of 2 close echoes on instantaneous frequency is studies. The deconvolution of B-SCAN images is obtained by the transducer field. A point-by-point deconvolution method, less noise sensitive, is developed. B-SCAN images are processed in 2 phases: interface signal processing and deconvolution. These calculations improve image accuracy and dynamics. Water-stell interface and ferritic-austenitic interface are separated. Echoes of crack top are visualized and crack-hole differentiation is improved [fr

  20. Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer

    Science.gov (United States)

    2014-01-01

    This review article is meant to help biomedical engineers and nonphysical scientists better understand the principles of, and the main trends in modern scanning and imaging modalities used in ophthalmology. It is intended to ease the communication between physicists, medical doctors and engineers, and hopefully encourage “classical” biomedical engineers to generate new ideas and to initiate projects in an area which has traditionally been dominated by optical physics. Most of the methods involved are applicable to other areas of biomedical optics and optoelectronics, such as microscopic imaging, spectroscopy, spectral imaging, opto-acoustic tomography, fluorescence imaging etc., all of which are with potential biomedical application. Although all described methods are novel and important, the emphasis of this review has been placed on three technologies introduced in the 1990’s and still undergoing vigorous development: Confocal Scanning Laser Ophthalmoscopy, Optical Coherence Tomography, and polarization-sensitive retinal scanning. PMID:24779618

  1. Gills scanning images of the seawater fish Eugerres brasilianus (Gerreidae

    Directory of Open Access Journals (Sweden)

    Daura Regina Eiras-Stofella

    2000-01-01

    Full Text Available The gills of the adult fish, Eugerres brasilianus (Gerreidae were analyzed in a scanning electron microscope. The stratified epithelium was uniform on all parts of the branchial arch. Concentric microridges were present on cells that form this epithelium and were mainly observed in the primary lamellae and pharyngeal region where mucous cells were also abundant. The ultrastructural features of E. brasilianus gills indicated that this was not a filtering species, and that the feeding habit included mainly the intake of small organisms. The results presently obtained agreed with other literature data which determined the feeding habit of this species by means of stomach content analysis and other aspects.Peixes adultos da espécie Eugerres brasilianus (Gerreidae tiveram suas brânquias analisadas em microscópio eletrônico de varredura. O epitélio de revestimento é uniforme em todas as porções dos arcos. É formado por células com micropregas concêntricas principalmente nas lamelas primárias e na região faríngea, locais onde são abundantes as células que secretam muco. A caracterização ultra-estrutural das brânquias de E. brasilianus indica que a espécie não é filtradora e que em sua alimentação deve predominar a ingestão de pequenos organismos. Esses resultados estão de acordo com os dados da literatura que determinam o hábito alimentar da espécie através de análises de conteúdo estomacal e outros aspectos.

  2. Evaluation of Yogurt Microstructure Using Confocal Laser Scanning Microscopy and Image Analysis

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Ghita, Ovidiu; Whelan, Paul F.

    2015-01-01

    The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermented...... to image texture description. Here, CSLM images from a yogurt fermentation study are investigated, where production factors including fat content, protein content, heat treatment, and incubation temperature are varied. The descriptors are evaluated through nearest neighbor classification, variance analysis...... scanning microscopy images can be used to provide information on the protein microstructure in yogurt products. For large numbers of microscopy images, subjective evaluation becomes a difficult or even impossible approach, if the images should be incorporated in any form of statistical analysis alongside...

  3. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    Science.gov (United States)

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  4. Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI

    Science.gov (United States)

    Lee, D.; Greer, P. B.; Arm, J.; Keall, P.; Kim, T.

    2014-03-01

    The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.

  5. In vivo integrated photoacoustic ophthalmoscopy, optical coherence tomography, and scanning laser ophthalmoscopy for retinal imaging

    Science.gov (United States)

    Song, Wei; Zhang, Rui; Zhang, Hao F.; Wei, Qing; Cao, Wenwu

    2012-12-01

    The physiological and pathological properties of retina are closely associated with various optical contrasts. Hence, integrating different ophthalmic imaging technologies is more beneficial in both fundamental investigation and clinical diagnosis of several blinding diseases. Recently, photoacoustic ophthalmoscopy (PAOM) was developed for in vivo retinal imaging in small animals, which demonstrated the capability of imaging retinal vascular networks and retinal pigment epithelium (RPE) at high sensitivity. We combined PAOM with traditional imaging modalities, such as fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and auto-fluorescence scanning laser ophthalmoscopy (AF-SLO), for imaging rats and mice. The multimodal imaging system provided more comprehensive evaluation of the retina based on the complementary imaging contrast mechanisms. The high-quality retinal images show that the integrated ophthalmic imaging system has great potential in the investigation of blinding disorders.

  6. A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan

    Science.gov (United States)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-10-01

    A two-dimensional (2D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric wafer mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region in the vicinity of the PZT to capture the scattered wavefield. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, a reflectivity coefficients of the delamination is calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2D areal scans and 1D line scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  7. Automated detection of analyzable metaphase chromosome cells depicted on scanned digital microscopic images

    Science.gov (United States)

    Qiu, Yuchen; Wang, Xingwei; Chen, Xiaodong; Li, Yuhua; Liu, Hong; Li, Shibo; Zheng, Bin

    2010-02-01

    Visually searching for analyzable metaphase chromosome cells under microscopes is quite time-consuming and difficult. To improve detection efficiency, consistency, and diagnostic accuracy, an automated microscopic image scanning system was developed and tested to directly acquire digital images with sufficient spatial resolution for clinical diagnosis. A computer-aided detection (CAD) scheme was also developed and integrated into the image scanning system to search for and detect the regions of interest (ROI) that contain analyzable metaphase chromosome cells in the large volume of scanned images acquired from one specimen. Thus, the cytogeneticists only need to observe and interpret the limited number of ROIs. In this study, the high-resolution microscopic image scanning and CAD performance was investigated and evaluated using nine sets of images scanned from either bone marrow (three) or blood (six) specimens for diagnosis of leukemia. The automated CAD-selection results were compared with the visual selection. In the experiment, the cytogeneticists first visually searched for the analyzable metaphase chromosome cells from specimens under microscopes. The specimens were also automated scanned and followed by applying the CAD scheme to detect and save ROIs containing analyzable cells while deleting the others. The automated selected ROIs were then examined by a panel of three cytogeneticists. From the scanned images, CAD selected more analyzable cells than initially visual examinations of the cytogeneticists in both blood and bone marrow specimens. In general, CAD had higher performance in analyzing blood specimens. Even in three bone marrow specimens, CAD selected 50, 22, 9 ROIs, respectively. Except matching with the initially visual selection of 9, 7, and 5 analyzable cells in these three specimens, the cytogeneticists also selected 41, 15 and 4 new analyzable cells, which were missed in initially visual searching. This experiment showed the feasibility of

  8. Multimodal backside imaging of a microcontroller using confocal laser scanning and optical-beam-induced current imaging

    Science.gov (United States)

    Finkeldey, Markus; Göring, Lena; Schellenberg, Falk; Brenner, Carsten; Gerhardt, Nils C.; Hofmann, Martin

    2017-02-01

    Microscopy imaging with a single technology is usually restricted to a single contrast mechanism. Multimodal imaging is a promising technique to improve the structural information that could be obtained about a device under test (DUT). Due to the different contrast mechanisms of laser scanning microscopy (LSM), confocal laser scanning microscopy (CLSM) and optical beam induced current microscopy (OBICM), a combination could improve the detection of structures in integrated circuits (ICs) and helps to reveal their layout. While OBIC imaging is sensitive to the changes between differently doped areas and to semiconductor-metal transitions, CLSM imaging is mostly sensitive to changes in absorption and reflection. In this work we present the implementation of OBIC imaging into a CLSM. We show first results using industry standard Atmel microcontrollers (MCUs) with a feature size of about 250nm as DUTs. Analyzing these types of microcontrollers helps to improve in the field of side-channel attacks to find hardware Trojans, possible spots for laser fault attacks and for reverse engineering. For the experimental results the DUT is placed on a custom circuit board that allows us to measure the current while imaging it in our in-house built stage scanning microscope using a near infrared (NIR) laser diode as light source. The DUT is thinned and polished, allowing backside imaging through the Si-substrate. We demonstrate the possibilities using this optical setup by evaluating OBIC, LSM and CLSM images above and below the threshold of the laser source.

  9. Novel low-dose imaging technique for characterizing atomic structures through scanning transmission electron microscope

    Science.gov (United States)

    Su, Chia-Ping; Syu, Wei-Jhe; Hsiao, Chien-Nan; Lai, Ping-Shan; Chen, Chien-Chun

    2017-08-01

    To investigate dislocations or heterostructures across interfaces is now of great interest to condensed matter and materials scientists. With the advances in aberration-corrected electron optics, the scanning transmission electron microscope has demonstrated its excellent capability of characterizing atomic structures within nanomaterials, and well-resolved atomic-resolution images can be obtained through long-exposure data acquisition. However, the sample drifting, carbon contamination, and radiation damage hinder further analysis, such as deriving three-dimensional (3D) structures from a series of images. In this study, a method for obtaining atomic-resolution images with significantly reduced exposure time was developed, using which an original high-resolution image with approximately one tenth the electron dose can be obtained by combining a fast-scan high-magnification image and a slow-scan low-magnification image. The feasibility of obtaining 3D atomic structures using the proposed approach was demonstrated through multislice simulation. Finally, the feasibility and accuracy of image restoration were experimentally verified. This general method cannot only apply to electron microscopy but also benefit to image radiation-sensitive materials using various light sources.

  10. Real-Time Imaging with Frequency Scanning Array Antenna for Industrial Inspection Applications at W band

    Science.gov (United States)

    Larumbe, Belen; Laviada, Jaime; Ibáñez-Loinaz, Asier; Teniente, Jorge

    2018-01-01

    A real-time imaging system based on a frequency scanning antenna for conveyor belt setups is presented in this paper. The frequency scanning antenna together with an inexpensive parabolic reflector operates at the W band enabling the detection of details with dimensions in the order of 2 mm. In addition, a low level of sidelobes is achieved by optimizing unequal dividers to window the power distribution for sidelobe reduction. Furthermore, the quality of the images is enhanced by the radiation pattern properties. The performance of the system is validated by showing simulation as well as experimental results obtained in real time, proving the feasibility of these kinds of frequency scanning antennas for cost-effective imaging applications.

  11. A multiphoton laser scanning microscope setup for transcranial in vivo brain imaging on mice

    Science.gov (United States)

    Nase, Gabriele; Helm, P. Johannes; Reppen, Trond; Ottersen, Ole Petter

    2005-12-01

    We describe a multiphoton laser scanning microscope setup for transcranial in vivo brain imaging in mice. The modular system is based on a modified industrial standard Confocal Scanning Laser Microscope (CSLM) and is assembled mainly from commercially available components. A special multifunctional stage, which is optimized for both laser scanning microscopic observation and preparative animal surgery, has been developed and built. The detection unit includes a highly efficient photomultiplier tube installed in a Peltier-cooled thermal box shielding the detector from changes in room temperature and from distortions caused by external electromagnetic fields. The images are recorded using a 12-bit analog-to-digital converter. Depending on the characteristics of the staining, individual nerve cells can be imaged down to at least 100μm below the intact cranium and down to at least 200μm below the opened cranium.

  12. Increased Sensitivity to Pathological Brain Changes Using Co-registration of Magnetic Resonance Imaging Scans

    Energy Technology Data Exchange (ETDEWEB)

    Burdett, J.; Stevens, J.; Flugel, D.; Williams, E.; Duncan, J.S.; Lemieux, L. [National Society for Epilepsy, Chalfont St Peter (United Kingdom). The MRI Unit

    2006-12-15

    Purpose: To compare automatic software-based co-registration of serial magnetic resonance imaging (MRI) scans with conventional visual comparison, by expert neuroradiologists.Material and Methods: Sixty-four patients who were referred to our epilepsy MRI unit for cerebral imaging were identified as having potentially, non- or slow-growing lesions or cerebral atrophy and followed with sequential scans over a period of up to 8 years, resulting in a total of 92 pairs of scans. Scans were categorized as showing either lesions or atrophy. Each pair of scans was reviewed twice for the presence of change, with and without co-registration, performed using automated software. Results: Co-registration and visual reporting without co-registration were discordant in the lesions group in nine out of 69 datasets (13%), and in 16 out of 23 pairs of scans in the atrophy group (69%). The most common cause of discordance was visual reporting not detecting changes apparent by co-registration. In three cases, changes detected visually were not detected following co-registration. Conclusion: In the group of patients studied, co-registration was more sensitive for detecting changes than visual comparison, particularly with respect to atrophic changes of the brain. With the increasing availability of sophisticated independent consoles attached to MRI scanners that may be used for image co-registration, we propose that serial T1-weighted volumetric MRI brain co-registration should be considered for integration into routine clinical practice to assess patients with suspected progressive disease.

  13. Increased Sensitivity to Pathological Brain Changes Using Co-registration of Magnetic Resonance Imaging Scans

    International Nuclear Information System (INIS)

    Burdett, J.; Stevens, J.; Flugel, D.; Williams, E.; Duncan, J.S.; Lemieux, L.

    2006-01-01

    Purpose: To compare automatic software-based co-registration of serial magnetic resonance imaging (MRI) scans with conventional visual comparison, by expert neuroradiologists.Material and Methods: Sixty-four patients who were referred to our epilepsy MRI unit for cerebral imaging were identified as having potentially, non- or slow-growing lesions or cerebral atrophy and followed with sequential scans over a period of up to 8 years, resulting in a total of 92 pairs of scans. Scans were categorized as showing either lesions or atrophy. Each pair of scans was reviewed twice for the presence of change, with and without co-registration, performed using automated software. Results: Co-registration and visual reporting without co-registration were discordant in the lesions group in nine out of 69 datasets (13%), and in 16 out of 23 pairs of scans in the atrophy group (69%). The most common cause of discordance was visual reporting not detecting changes apparent by co-registration. In three cases, changes detected visually were not detected following co-registration. Conclusion: In the group of patients studied, co-registration was more sensitive for detecting changes than visual comparison, particularly with respect to atrophic changes of the brain. With the increasing availability of sophisticated independent consoles attached to MRI scanners that may be used for image co-registration, we propose that serial T1-weighted volumetric MRI brain co-registration should be considered for integration into routine clinical practice to assess patients with suspected progressive disease

  14. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    Science.gov (United States)

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  15. Reducing task-based fMRI scanning time using simultaneous multislice echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Mate [Hungarian Academy of Sciences, Brain Imaging Centre, Research Centre for Natural Sciences, Budapest (Hungary); Janos Szentagothai PhD School, MR Research Centre, Budapest (Hungary); National Institute of Clinical Neuroscience, Department of Neuroradiology, Budapest (Hungary); Hermann, Petra; Vidnyanszky, Zoltan; Gal, Viktor [Hungarian Academy of Sciences, Brain Imaging Centre, Research Centre for Natural Sciences, Budapest (Hungary)

    2018-03-15

    To maintain alertness and to remain motionless during scanning represent a substantial challenge for patients/subjects involved in both clinical and research functional magnetic resonance imaging (fMRI) examinations. Therefore, availability and application of new data acquisition protocols allowing the shortening of scan time without compromising the data quality and statistical power are of major importance. Higher order category-selective visual cortical areas were identified individually, and rapid event-related fMRI design was used to compare three different sampling rates (TR = 2000, 1000, and 410 ms, using state-of-the-art simultaneous multislice imaging) and four different scanning lengths to match the statistical power of the traditional scanning methods to high sampling-rate design. The results revealed that ∝ 4 min of the scan time with 1 Hz (TR = 1000 ms) sampling rate and ∝ 2 min scanning at ∝ 2.5 Hz (TR = 410 ms) sampling rate provide similar localization sensitivity and selectivity to that obtained with 11-min session at conventional, 0.5 Hz (TR = 2000 ms) sampling rate. Our findings suggest that task-based fMRI examination of clinical population prone to distress such as presurgical mapping experiments might substantially benefit from the reduced (20-40%) scanning time that can be achieved by the application of simultaneous multislice sequences. (orig.)

  16. Usefulness of 3D-image of ossicles with helical scanning

    International Nuclear Information System (INIS)

    Makihata, Hiroshi; Kimura, Hideaki; Hanaguri, Katsurou; Fukushima, Noriyuki; Oda, Yukari

    1995-01-01

    It is important to understand the abnormalities of ossicles (continuity, destruction and malformation) in clinical practice of middle ear diseases. Multidirection exposures were needed to visualize ossicles with the conventional CT scanning, because they are visualized in 2D images. It was difficult to make patients hold the posture and to settle the problems such as an increase in X-ray dose. We created 3D images of ossicles with a helical scanning, and examined the visualization of the normal and abnormal ear (otitis media cholesteatoma) especially in terms of continuity in each of 20 patients. We would here like to report the favorable results together with some literature review. (author)

  17. Evaluation of /sup 201/TlCl and delayed scan for thyroid imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Tatsuyoshi; Harada, Taneichi; Takahashi, Tatsuo; Senoo, Tsuneaki; Ohtsuka, Nobuaki; Ito, Yasuhiko [Kawasaki Medical School, Kurashiki, Okayama (Japan)

    1982-11-01

    The results of 189 patients with nodular goiter by imaging with /sup 201/TlCl following with sup(99m)TcO/sub 4//sup -/ was presented. Accumulation of /sup 201/TlCl to the corresponding area was observed in 85.5% of cancer, 62.2% of adenoma, 42.5% of adenomatous goiter, and the usefulness of /sup 201/TlCl (early scan) for thyroid imaging agent was recognized. On the other hand, delayed scan for purpose of differentiation from benign to malignant was also performed. However, no significant differences were obtained.

  18. Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy

    International Nuclear Information System (INIS)

    Smitsmans, Monique H.P.; Bois, Josien de; Sonke, Jan-Jakob; Betgen, Anja; Zijp, Lambert J.; Jaffray, David A.; Lebesque, Joos V.; Herk, Marcel van

    2005-01-01

    Purpose: Previously, we developed an automatic three-dimensional gray-value registration (GR) method for fast prostate localization that could be used during online or offline image-guided radiotherapy. The method was tested on conventional computed tomography (CT) scans. In this study, the performance of the algorithm to localize the prostate on cone-beam CT (CBCT) scans acquired on the treatment machine was evaluated. Methods and Materials: Five to 17 CBCT scans of 32 prostate cancer patients (332 scans in total) were used. For 18 patients (190 CBCT scans), the CBCT scans were acquired with a collimated field of view (FOV) (craniocaudal). This procedure improved the image quality considerably. The prostate (i.e., prostate plus seminal vesicles) in each CBCT scan was registered to the prostate in the planning CT scan by automatic 3D gray-value registration (normal GR) starting from a registration on the bony anatomy. When these failed, registrations were repeated with a fixed rotation point locked at the prostate apex (fixed apex GR). Registrations were visually assessed in 3D by one observer with the help of an expansion (by 3.6 mm) of the delineated prostate contours of the planning CT scan. The percentage of successfully registered cases was determined from the combined normal and fixed apex GR assessment results. The error in gray-value registration for both registration methods was determined from the position of one clearly defined calcification in the prostate gland (9 patients, 71 successful registrations). Results: The percentage of successfully registered CBCT scans that were acquired with a collimated FOV was about 10% higher than for CBCT scans that were acquired with an uncollimated FOV. For CBCT scans that were acquired with a collimated FOV, the percentage of successfully registered cases improved from 65%, when only normal GR was applied, to 83% when the results of normal and fixed apex GR were combined. Gray-value registration mainly failed (or

  19. Excitation-scanning hyperspectral imaging system for microscopic and endoscopic applications

    Science.gov (United States)

    Mayes, Sam A.; Leavesley, Silas J.; Rich, Thomas C.

    2016-04-01

    Current microscopic and endoscopic technologies for cancer screening utilize white-light illumination sources. Hyper-spectral imaging has been shown to improve sensitivity while retaining specificity when compared to white-light imaging in both microscopy and in vivo imaging. However, hyperspectral imaging methods have historically suffered from slow acquisition times due to the narrow bandwidth of spectral filters. Often minutes are required to gather a full image stack. We have developed a novel approach called excitation-scanning hyperspectral imaging that provides 2-3 orders of magnitude increased signal strength. This reduces acquisition times significantly, allowing for live video acquisition. Here, we describe a preliminary prototype excitation-scanning hyperspectral imaging system that can be coupled with endoscopes or microscopes for hyperspectral imaging of tissues and cells. Our system is comprised of three subsystems: illumination, transmission, and imaging. The illumination subsystem employs light-emitting diode arrays to illuminate at different wavelengths. The transmission subsystem utilizes a unique geometry of optics and a liquid light guide. Software controls allow us to interface with and control the subsystems and components. Digital and analog signals are used to coordinate wavelength intensity, cycling and camera triggering. Testing of the system shows it can cycle 16 wavelengths at as fast as 1 ms per cycle. Additionally, more than 18% of the light transmits through the system. Our setup should allow for hyperspectral imaging of tissue and cells in real time.

  20. New approaches in intelligent image analysis techniques, methodologies and applications

    CERN Document Server

    Nakamatsu, Kazumi

    2016-01-01

    This book presents an Introduction and 11 independent chapters, which are devoted to various new approaches of intelligent image processing and analysis. The book also presents new methods, algorithms and applied systems for intelligent image processing, on the following basic topics: Methods for Hierarchical Image Decomposition; Intelligent Digital Signal Processing and Feature Extraction; Data Clustering and Visualization via Echo State Networks; Clustering of Natural Images in Automatic Image Annotation Systems; Control System for Remote Sensing Image Processing; Tissue Segmentation of MR Brain Images Sequence; Kidney Cysts Segmentation in CT Images; Audio Visual Attention Models in Mobile Robots Navigation; Local Adaptive Image Processing; Learning Techniques for Intelligent Access Control; Resolution Improvement in Acoustic Maps. Each chapter is self-contained with its own references. Some of the chapters are devoted to the theoretical aspects while the others are presenting the practical aspects and the...

  1. Scanning technology selection impacts acceptability and usefulness of image-rich content

    Directory of Open Access Journals (Sweden)

    Kristine M. Alpi

    2016-01-01

    Full Text Available Objective: Clinical and research usefulness of articles can depend on image quality. This study addressed whether scans of figures in black and white (B&W, grayscale, or color, or portable document format (PDF to tagged image file format (TIFF conversions as provided by interlibrary loan or document delivery were viewed as acceptable or useful by radiologists or pathologists. Methods: Residency coordinators selected eighteen figures from studies from radiology, clinical pathology, and anatomic pathology journals.With original PDF controls, each figure was prepared in three or four experimental conditions: PDF conversion to TIFF, and scans from print in B&W, grayscale, and color. Twelve independent observers indicated whether they could identify the features and whether the image quality was acceptable. They also ranked all the experimental conditions of each figure in terms of usefulness. Results: Of 982 assessments of 87 anatomic pathology, 83 clinical pathology, and 77 radiology images, 471 (48% were unidentifiable. Unidentifiability of originals (4% and conversions (10% was low. For scans, unidentifiability ranged from 53% for color, to 74% for grayscale, to 97% for B&W. Of 987 responses about acceptability (n¼405, 41% were said to be unacceptable, 97% of B&W, 66% of grayscale, 41% of color, and 1% of conversions. Hypothesized order (original, conversion, color, grayscale, B&W matched 67% of rankings (n¼215. Conclusions: PDF to TIFF conversion provided acceptable content. Color images are rarely useful in grayscale (12% or B&W (less than 1%. Acceptability of grayscale scans of noncolor originals was 52%. Digital originals are needed for most images. Print images in color or grayscale should be scanned using those modalities.

  2. Cine viability magnetic resonance imaging of the heart without increased scan time.

    Science.gov (United States)

    Hassanein, Azza S; Khalifa, Ayman M; Ibrahim, El-Sayed H

    2016-02-01

    Cardiac magnetic resonance imaging (MRI) provides information about myocardial morphology, function, and viability from cine, tagged, and late gadolinium enhancement (LGE) images, respectively. While the cine and tagged images are acquired in a time-resolved fashion, the LGE images are acquired at a single timeframe. The purpose of this work is to develop a method for generating cine LGE images without additional scan time. The motion field is extracted from the tagged images, and is then used to guide the deformation of the infarcted region from the acquired LGE image at the acquired timeframe to any other timeframe. Major techniques for motion estimation, including harmonic phase (HARP) and optical flow analysis, are tested in this work for motion estimation. The proposed method is tested on numerical phantom and images from four human subjects. The generated cine LGE images showed both viability and wall motion information in the same set of images without additional scan time or image misregistration problems. The band-pass optical flow analysis resulted in the most accurate motion estimation compared to other methods, especially HARP, which fails to track points at the myocardial boundary. Infarct transmurality from the generated images showed good agreement with myocardial strain, and wall thickening showed good agreement with that measured from conventional cine images. In conclusion, the developed technique allows for generating cine LGE images that enable simultaneous display of wall motion and viability information. The generated images could be useful for estimating myocardial contractility reserve and for treatment prognosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Superresolution upgrade for confocal spinning disk systems using image scanning microscopy (Conference Presentation)

    Science.gov (United States)

    Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg

    2017-02-01

    Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).

  4. Evaluation of the image quality of chest CT scans: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Martins N, P. I.; Prata M, A., E-mail: priscillainglid@gmail.com [Centro Federal de Educacao Tecnologica de Minas Gerais, Centro de Engenharia Biomedica, Av. Amazonas 5253, 30421-169 Nova Suica, Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    Computed tomography (CT) is considered one of the most important methods of medical imaging employed nowadays, due to its non-invasiveness and the high quality of the images it is able to generate. However, the diagnostic radiation dose received by an individual over the year often exceeds the dose received on account of background radiation. Therefore, it is important to know and to control the dose distribution in the patient by varying the image acquisition parameters. The aim of this study is to evaluate the variation of the image quality of chest CT scans performed by two phantoms. In this paper, a cylindrical Polymethyl Methacrylate (PMMA) chest phantom was used and a second PMMA phantom has been developed with the same volume but an oblong shape, based on the actual dimensions of a male human thorax, in the axillary region. Ten-centimeter scans of the central area of each phantom were performed by a 16-channel Toshiba CT scanner, model Alexion. The scanning protocol employed was the radiology service protocol for chest scans. The noise survey was conducted within the image of the center slice, in five regions: one central and four peripheral areas close to the edge of the object (anterior, posterior, left and right). The recorded values showed that the oblong phantom, with a shape that is more similar to the actual human chest, has a considerably smaller noise, especially in the anterior, posterior and central regions. (Author)

  5. Evaluation of the image quality of chest CT scans: a phantom study

    International Nuclear Information System (INIS)

    Martins N, P. I.; Prata M, A.

    2016-10-01

    Computed tomography (CT) is considered one of the most important methods of medical imaging employed nowadays, due to its non-invasiveness and the high quality of the images it is able to generate. However, the diagnostic radiation dose received by an individual over the year often exceeds the dose received on account of background radiation. Therefore, it is important to know and to control the dose distribution in the patient by varying the image acquisition parameters. The aim of this study is to evaluate the variation of the image quality of chest CT scans performed by two phantoms. In this paper, a cylindrical Polymethyl Methacrylate (PMMA) chest phantom was used and a second PMMA phantom has been developed with the same volume but an oblong shape, based on the actual dimensions of a male human thorax, in the axillary region. Ten-centimeter scans of the central area of each phantom were performed by a 16-channel Toshiba CT scanner, model Alexion. The scanning protocol employed was the radiology service protocol for chest scans. The noise survey was conducted within the image of the center slice, in five regions: one central and four peripheral areas close to the edge of the object (anterior, posterior, left and right). The recorded values showed that the oblong phantom, with a shape that is more similar to the actual human chest, has a considerably smaller noise, especially in the anterior, posterior and central regions. (Author)

  6. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  7. Dental-CT: image quality and absorbed radiation dose of different scan protocols

    International Nuclear Information System (INIS)

    Schorn, C.; Alamo, L.; Funke, M.; Grabbe, E.; Visser, H.; Hermann, K.P.

    1999-01-01

    Purpose: To develop a scan protocol for dental-CT which guarantees good image quality at the lowest possible radiation dose. Methods: In an experimental investigation Dental-CT (HSA, GE, Milwaukee, USA) of the mandible of two human skeletons positioned in a water tank were performed in order to define the most advantageous scan protocol. Tube currents ranged from 40 to 200 mA and the scan technique was modified (axial mode or helical mode with pitches of 1 to 3 and corresponding increments of 0.4 to 1.0 mm). 39 patients underwent a dental-CT with decreased current (80 mA) in the helical scan mode (pitch 2, slice thickness 1 mm). Dose measurements were performed for two different scan protocols (A: axial, 130 mAs, B: helical, 80 mA, pitch 2). Results: The preliminary investigations of image quality showed only a minor effect of the applied current. For the helical scan mode, pitches of more than 2 impaired image quality. A low increment had no advantages. There were no disadvantages in clinical practice using protocol B with decreased tube current. Absorbed radiation dose of dental CT performed with protocol B was decreased to one third in comparison to protocol A. Conclusions: A scan protocol with a low tube current (e.g., 80 mA, for a rotation time of 1 s) and a helical scan mode (e.g., for a slice thickness of 1 mm with a pitch of 2 and an increment of 1 mm) is recommended for performing dental-CT. (orig.) [de

  8. Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis

    OpenAIRE

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué

    2015-01-01

    In this paper a new methodology for the diagnosing of skin cancer on images of dermatologic spots using image processing is presented. Currently skin cancer is one of the most frequent diseases in humans. This methodology is based on Fourier spectral analysis by using filters such as the classic, inverse and k-law nonlinear. The sample images were obtained by a medical specialist and a new spectral technique is developed to obtain a quantitative measurement of the complex pattern found in can...

  9. Design of a cathodoluminescence image generator using a Raspberry Pi coupled to a scanning electron microscope

    Science.gov (United States)

    Benítez, Alfredo; Santiago, Ulises; Sanchez, John E.; Ponce, Arturo

    2018-01-01

    In this work, an innovative cathodoluminescence (CL) system is coupled to a scanning electron microscope and synchronized with a Raspberry Pi computer integrated with an innovative processing signal. The post-processing signal is based on a Python algorithm that correlates the CL and secondary electron (SE) images with a precise dwell time correction. For CL imaging, the emission signal is collected through an optical fiber and transduced to an electrical signal via a photomultiplier tube (PMT). CL Images are registered in a panchromatic mode and can be filtered using a monochromator connected between the optical fiber and the PMT to produce monochromatic CL images. The designed system has been employed to study ZnO samples prepared by electrical arc discharge and microwave methods. CL images are compared with SE images and chemical elemental mapping images to correlate the emission regions of the sample.

  10. Use of multimedia messaging system (MMS) by junior doctors for scan image transmission in neurosurgery.

    Science.gov (United States)

    Ling, Ji Min; Lim, Kim Zhuan; Ng, Wai Hoe

    2012-02-01

    Multimedia Messaging Service (MMS) is used by neurosurgical residents to transmit scan images to the attending neurosurgeon in conjunction with telephone consultation. This service has been well received by the attending neurosurgeons, who felt that after viewing scan images on their phones, they felt increased confidence in clinical decision making and that it reduced the need for recall to the hospital. The use of MMS can be extended to junior doctors making referrals from regional hospitals with no neurosurgical cover. This study aims to validate the competency of non-neurosurgically trained junior doctors in selecting optimal images to transmit via MMS to the attending neurosurgeon on call. Ten junior doctors with no formal neurosurgical training and five neurosurgical residents were interviewed. They were shown the full complement of images together with relevant clinical history and assessment. They were then asked to make the radiological diagnosis and then select two images for MMS transmission to the attending neurosurgeon that they thought would best aid the neurosurgeon in clinical decision making. The attending neurosurgeon was asked to comment, on each image, whether his management plan would differ if he was shown the entire series of the images. All the images chosen are deemed appropriate, and the decision made based on the MMS images would be similar if the entire series of images were available to the neurosurgeon. However, 7 of 10 junior doctors were unable to read magnetic resonance images of lumbar spine. There was no significant difference in the images chosen by the neurosurgical residents and the junior doctors. It is feasible and safe for junior doctors to utilize MMS to transmit computed tomographic images to a neurosurgeon while making an urgent referral. The images selected are representative of the disease pathology and facilitate clinical decision making. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Dynamic autofocus for continuous-scanning time-delay-and-integration image acquisition in automated microscopy.

    Science.gov (United States)

    Bravo-Zanoguera, Miguel E; Laris, Casey A; Nguyen, Lam K; Oliva, Mike; Price, Jeffrey H

    2007-01-01

    Efficient image cytometry of a conventional microscope slide means rapid acquisition and analysis of 20 gigapixels of image data (at 0.3-microm sampling). The voluminous data motivate increased acquisition speed to enable many biomedical applications. Continuous-motion time-delay-and-integrate (TDI) scanning has the potential to speed image acquisition while retaining sensitivity, but the challenge of implementing high-resolution autofocus operating simultaneously with acquisition has limited its adoption. We develop a dynamic autofocus system for this need using: 1. a "volume camera," consisting of nine fiber optic imaging conduits to charge-coupled device (CCD) sensors, that acquires images in parallel from different focal planes, 2. an array of mixed analog-digital processing circuits that measure the high spatial frequencies of the multiple image streams to create focus indices, and 3. a software system that reads and analyzes the focus data streams and calculates best focus for closed feedback loop control. Our system updates autofocus at 56 Hz (or once every 21 microm of stage travel) to collect sharply focused images sampled at 0.3x0.3 microm(2)/pixel at a stage speed of 2.3 mms. The system, tested by focusing in phase contrast and imaging long fluorescence strips, achieves high-performance closed-loop image-content-based autofocus in continuous scanning for the first time.

  12. Lumbar spine joint synovial cysts of intraspinal development. CT scan imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, C.; Chevrot, A.; Benhamouda, M. and others

    CT scan imaging findings are described in 22 patients with lumbar spine joint synovial cysts, of intraspinal development, provoking sciatica or lumbosciatica from nerve compression in spinal canal. Diagnosis was suggested by a mass at the posterior joint level, of variable density, sometimes with peripheral calcification, presenting a vacuum appearance on occasions, and with enhanced image with contrast. Differential diagnosis is from excluded hernia and postoperative fibrosis. Posterior intra-articular arthrography can confirm diagnosis and allow treatment with prolonged action corticoid infiltrations.

  13. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update

    OpenAIRE

    Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming

    2017-01-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherenc...

  14. Excitation-scanning hyperspectral imaging as a means to discriminate various tissues types

    Science.gov (United States)

    Deal, Joshua; Favreau, Peter F.; Lopez, Carmen; Lall, Malvika; Weber, David S.; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    Little is currently known about the fluorescence excitation spectra of disparate tissues and how these spectra change with pathological state. Current imaging diagnostic techniques have limited capacity to investigate fluorescence excitation spectral characteristics. This study utilized excitation-scanning hyperspectral imaging to perform a comprehensive assessment of fluorescence spectral signatures of various tissues. Immediately following tissue harvest, a custom inverted microscope (TE-2000, Nikon Instruments) with Xe arc lamp and thin film tunable filter array (VersaChrome, Semrock, Inc.) were used to acquire hyperspectral image data from each sample. Scans utilized excitation wavelengths from 340 nm to 550 nm in 5 nm increments. Hyperspectral images were analyzed with custom Matlab scripts including linear spectral unmixing (LSU), principal component analysis (PCA), and Gaussian mixture modeling (GMM). Spectra were examined for potential characteristic features such as consistent intensity peaks at specific wavelengths or intensity ratios among significant wavelengths. The resultant spectral features were conserved among tissues of similar molecular composition. Additionally, excitation spectra appear to be a mixture of pure endmembers with commonalities across tissues of varied molecular composition, potentially identifiable through GMM. These results suggest the presence of common autofluorescent molecules in most tissues and that excitationscanning hyperspectral imaging may serve as an approach for characterizing tissue composition as well as pathologic state. Future work will test the feasibility of excitation-scanning hyperspectral imaging as a contrast mode for discriminating normal and pathological tissues.

  15. Reduction of motion artifacts for PET imaging by respiratory correlated dynamic scanning

    International Nuclear Information System (INIS)

    Chuang, K.-S.; Chen, T.-J.; Chang, C.-C.; Wu, J.; Chen, S.; Wu, L.-C.; Liu, R.-S.

    2006-01-01

    Organ motion caused by respiration is a major challenge in positron emission tomography (PET) imaging. This work proposes a technique to reduce smearing in PET imaging caused by respiratory motion. Dynamic scanning at 1 frame/s is used. A point source, used as a marker, is attached to the object's abdomen during the scan. The source position in the projection view moves with respiratory motion and can be used to represent the respiratory phase within the time interval in which each frame data are acquired. One hundred and twenty frames are obtained for each study. The range of the positions of the marker is divided into four groups, representing different respiratory phases. The frames in which the organ positions (phases) are the same summed to produce a static sub-sinogram. Each sub-sinogram then undergoes regular image reconstruction to yield a motion-free image. The technique is applied to one volunteer under both free and coached breathing conditions. A parameter called the volume reduction factor is adopted to evaluate the effectiveness of this motion-reduction technique. The preliminary results indicate that the proposed technique effectively reduces motion artifacts in the image. Coached breathing yields better results than free breathing condition. The advantages of this method are that (1) the scanning time remains the same; (2) free breathing is allowed during the acquisition of the image; and (3) no user intervention is required

  16. Imaging optical fields below metal films and metal-dielectric waveguides by a scanning microscope

    Science.gov (United States)

    Zhu, Liangfu; Wang, Yong; Zhang, Douguo; Wang, Ruxue; Qiu, Dong; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Rosenfeld, Mary; Lakowicz, Joseph R.

    2017-09-01

    Laser scanning confocal fluorescence microscopy (LSCM) is now an important method for tissue and cell imaging when the samples are located on the surfaces of glass slides. In the past decade, there has been extensive development of nano-optical structures that display unique effects on incident and transmitted light, which will be used with novel configurations for medical and consumer products. For these applications, it is necessary to characterize the light distribution within short distances from the structures for efficient detection and elimination of bulky optical components. These devices will minimize or possibly eliminate the need for free-space light propagation outside of the device itself. We describe the use of the scanning function of a LSCM to obtain 3D images of the light intensities below the surface of nano-optical structures. More specifically, we image the spatial distributions inside the substrate of fluorescence emission coupled to waveguide modes after it leaks through thin metal films or dielectric-coated metal films. The observed spatial distribution were in general agreement with far-field calculations, but the scanning images also revealed light intensities at angles not observed with classical back focal plane imaging. Knowledge of the subsurface optical intensities will be crucial in the combination of nano-optical structures with rapidly evolving imaging detectors.

  17. Multimodal scanning laser ophthalmoscopy for image guided treatment of age-related macular degeneration

    Science.gov (United States)

    Hammer, Daniel X.; Ferguson, R. D.; Patel, Ankit H.; Iftimia, Nicusor V.; Mujat, Mircea; Husain, Deeba

    2009-02-01

    Subretinal neovascular membranes (SRNM) are a deleterious complication of laser eye injury and retinal diseases such as age-related macular degeneration (AMD), choroiditis, and myopic retinopathy. Photodynamic therapy (PDT) and anti-vascular endothelial growth factor (VEGF) drugs are approved treatment methods. PDT acts by selective dye accumulation, activation by laser light, and disruption and clotting of the new leaky vessels. However, PDT surgery is currently not image-guided, nor does it proceed in an efficient or automated manner. This may contribute to the high rate of re-treatment. We have developed a multimodal scanning laser ophthalmoscope (SLO) for automated diagnosis and image-guided treatment of SRNMs associated with AMD. The system combines line scanning laser ophthalmoscopy (LSLO), fluorescein angiography (FA), indocyanine green angiography (ICGA), PDT laser delivery, and retinal tracking in a compact, efficient platform. This paper describes the system hardware and software design, performance characterization, and automated patient imaging and treatment session procedures and algorithms. Also, we present initial imaging and tracking measurements on normal subjects and automated lesion demarcation and sizing analysis of previously acquired angiograms. Future pre-clinical testing includes line scanning angiography and PDT treatment of AMD subjects. The automated acquisition procedure, enhanced and expedited data post-processing, and innovative image visualization and interpretation tools provided by the multimodal retinal imager may eventually aid in the diagnosis, treatment, and prognosis of AMD and other retinal diseases.

  18. MO-FG-204-02: Reference Image Selection in the Presence of Multiple Scan Realizations

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, D; Dou, T; Thomas, D; Low, D [Deparment of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States)

    2015-06-15

    Purpose: Fusing information from multiple correlated realizations (e.g., 4DCT) can improve image quality. This process often involves ill-conditioned and asymmetric nonlinear registration and the proper selection of a reference image is important. This work proposes to examine post-registration variation indirectly for such selection, and develops further insights to reduce the number of cross-registrations needed. Methods: We consider each individual scan as a noisy point in the vicinity of an image manifold, related by motion. Nonrigid registration “transports” a scan along the manifold to the reference neighborhood, and the residual is a surrogate for local variation. To test this conjecture, 10 thoracic scans from the same session were reconstructed from a recently developed low-dose helical 4DCT protocol. Pairwise registration was repeated bi-directionally (81 times) and fusion was performed with each candidate reference. The fused image quality was assessed with SNR and CNR. Registration residuals in SSD, harmonic energy, and deformation Jacobian behavior were examined. The semi-symmetry is further utilized to reduce the number of registration needed. Results: The comparison of image quality between single image and fused ones identified reduction of local intensity variance as the major contributor of image quality, boosting SNR and CNR by 5 to 7 folds. This observation further suggests the criticality of good agreement across post-registration images. Triangle inequality on the SSD metric provides a proficient upper-bound and surrogate on such disagreement. Empirical observation also confirms that fused images with high residual SSD have lower SNR and CNR than the ones with low or intermediate SSDs. Registration SSD is structurally close enough to symmetry for reduced computation. Conclusion: Registration residual is shown to be a good predictor of post-fusion image quality and can be used to identify good reference centers. Semi-symmetry of the

  19. Data Based Parameter Estimation Method for Circular-scanning SAR Imaging

    Directory of Open Access Journals (Sweden)

    Chen Gong-bo

    2013-06-01

    Full Text Available The circular-scanning Synthetic Aperture Radar (SAR is a novel working mode and its image quality is closely related to the accuracy of the imaging parameters, especially considering the inaccuracy of the real speed of the motion. According to the characteristics of the circular-scanning mode, a new data based method for estimating the velocities of the radar platform and the scanning-angle of the radar antenna is proposed in this paper. By referring to the basic conception of the Doppler navigation technique, the mathematic model and formulations for the parameter estimation are firstly improved. The optimal parameter approximation based on the least square criterion is then realized in solving those equations derived from the data processing. The simulation results verified the validity of the proposed scheme.

  20. Determination of line edge roughness in low-dose top-down scanning electron microscopy images

    NARCIS (Netherlands)

    Verduin, T.; Kruit, P.; Hagen, C.W.

    2014-01-01

    We investigated the off-line metrology for line edge roughness (LER) determination by using the discrete power spectral density (PSD). The study specifically addresses low-dose scanning electron microscopy (SEM) images in order to reduce the acquisition time and the risk of resist shrinkage. The

  1. Registration accuracy and image quality of time averaged mid-position CT scans for liver SBRT

    NARCIS (Netherlands)

    Kruis, Matthijs F.; van de Kamer, Jeroen B.; Sonke, Jan-Jakob; Jansen, Edwin P. M.; van Herk, Marcel

    2013-01-01

    The purpose was to validate the accuracy of motion models derived from deformable registration from four-dimensional computed tomography (4DCT) and breath-hold contrast enhanced computed tomography (BHCCT) scans for liver SBRT. Additionally, the image quality of the time averaged mid-position (MidP)

  2. Ionic channels in Langmuir-Blodgett films imaged by a scanning tunneling microscope.

    Science.gov (United States)

    Kolomytkin, O V; Golubok, A O; Davydov, D N; Timofeev, V A; Vinogradova, S A; Tipisev SYa

    1991-01-01

    The molecular structure of channels formed by gramicidin A in a lipid membrane was imaged by a scanning tunneling microscope operating in air. The mono- and bimolecular films of lipid with gramicidin A were deposited onto a highly oriented pyrolitic graphite substrate by the Langmuir-Blodgett technique. It has been shown that under high concentration gramicidin A molecules can form in lipid films a quasi-regular, densely packed structure. Single gramicidin A molecules were imaged for the first time as well. The cavity of 0.4 +/- 0.05 nm in halfwidth was found on the scanning tunneling microscopy image of the gramicidin A molecule. The results of direct observation obtained by means of scanning tunneling microscope are in good agreement with the known molecular model of gramicidin A. It was shown that gramicidin A molecules can exist in a lipid monolayer as individual molecules or combined into clusters. The results demonstrate that scanning tunneling microscope can be used for high spatial resolution study of ionic channel structure. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 PMID:1712239

  3. Imaging of surface plasmon polariton interference using phase-sensitive scanning tunneling microscope

    NARCIS (Netherlands)

    Jose, J.; Segerink, Franciscus B.; Korterik, Jeroen P.; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2011-01-01

    We report the surface plasmon polariton interference, generated via a ‘buried’ gold grating, and imaged using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM). The phase-resolved PSTM measurement unravels the complex surface plasmon polariton interference fields at the gold-air

  4. A non-contact time-domain scanning brain imaging system: first in-vivo results

    Science.gov (United States)

    Mazurenka, M.; Di Sieno, L.; Boso, G.; Contini, D.; Pifferi, A.; Dalla Mora, A.; Tosi, A.; Wabnitz, H.; Macdonald, R.

    2013-06-01

    We present results of first in-vivo tests of an optical non-contact scanning imaging system, intended to study oxidative metabolism related processes in biological tissue by means of time-resolved near-infrared spectroscopy. Our method is a novel realization of the short source-detector separation approach and based on a fast-gated single-photon avalanche diode to detect late photons only. The scanning system is built in quasi-confocal configuration and utilizes polarizationsensitive detection. It scans an area of 4×4 cm2, recording images with 32×32 pixels, thus creating a high density of source-detector pairs. To test the system we performed a range of in vivo measurements of hemodynamic changes in several types of biological tissues, i.e. skin (Valsalva maneuver), muscle (venous and arterial occlusions) and brain (motor and cognitive tasks). Task-related changes in hemoglobin concentrations were clearly detected in skin and muscle. The brain activation shows weaker, but yet detectable changes. These changes were localized in pixels near the motor cortex area (C3). However, it was found that even very short hair substantially impairs the measurement. Thus the applicability of the scanner is limited to hairless parts of body. The results of our first in-vivo tests prove the feasibility of non-contact scanning imaging as a first step towards development of a prototype for biological tissue imaging for various medical applications.

  5. Line-scan macro-scale Raman chemical imaging for authentication of powdered foods and ingredients

    Science.gov (United States)

    Adulteration and fraud for powdered foods and ingredients are rising food safety risks that threaten consumers’ health. In this study, a newly developed line-scan macro-scale Raman imaging system using a 5 W 785 nm line laser as excitation source was used to authenticate the food powders. The system...

  6. Covalently Immobilised Cytochrome C Imaged by In Situ Scanning Tunnelling Microscopy

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Olesen, Klaus G.; Danilov, Alexey I.

    1997-01-01

    In situ scanning tunnelling microscopy (STM) imaging of cytochrome c (cyt c) on polycrystalline Pt surfaces and on Au(lll) was achieved first by covalent immobilisation of 3-aminopropyltriethoxysilane (3-APTS) brought to react with oxide present on the Pt surfaces. Covalently bound 3-APTS forms...

  7. Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy

    NARCIS (Netherlands)

    Smitsmans, Monique H. P.; de Bois, Josien; Sonke, Jan-Jakob; Betgen, Anja; Zijp, Lambert J.; Jaffray, David A.; Lebesque, Joos V.; van Herk, Marcel

    2005-01-01

    PURPOSE: Previously, we developed an automatic three-dimensional gray-value registration (GR) method for fast prostate localization that could be used during online or offline image-guided radiotherapy. The method was tested on conventional computed tomography (CT) scans. In this study, the

  8. Experimental investigation on the caries characteristic of dental tissues by photothermal radiometry scanning imaging

    Science.gov (United States)

    Wang, Fei; Liu, Jun-yan; Wang, Xiao-chun; Wang, Yang

    2018-03-01

    In this paper, a one-dimensional (1D) thermal-wave model coupled diffuse-photon-density-wave for three-layer dental tissues using modulated laser stimulation was employed to illustrate the relationship between dental caries characteristic (i.e. caries layer thickness, optical absorption coefficient and optical scattering coefficient) and photothermal radiometry (PTR) signal. Experimental investigation of artificial caries was carried out using PTR scanning imaging. The PTR amplitude and phase delay were increased with dental demineralized treatment. The local caries characteristic parameters were obtained by the best-fitting method based on the 1D thermal-wave model. The PTR scanning imaging measurements illustrated that the optical absorption coefficient and scattering coefficient of caries region were much higher than those of the healthy enamel area. The demineralization thickness of caries region was measured by PTR scanning imaging and its average value shows in good agreement with the digital microscope. Experimental results show that PTR scanning imaging has the merits of high contrast for local inhomogeneity of dental caries; furthermore, this method is an allowance to provide a flexibility for non-contact quantitative evaluation of dental caries.

  9. A storage and display method for radioisotope imaging using scan conversion memory

    International Nuclear Information System (INIS)

    Takizawa, Masaomi; Kobayashi, Toshio; Nakanishi, Fumiko; Suzuki, Shigeo; Miyabayashi, Hiroyasu

    1975-01-01

    The scan conversion memory (SCM) has been applied to a method for the storage and display of radioisotope images. Scan data were fed into SCM as pulse signals with X and Y axis from the scinti-scanner or the scinti-camera. The electric charge on the SCM target is directly proportional to the pulse density. A TV display was executed immediately after the recording of a radioisotope image. If necessary, a seven additive color display to the image density could be obtained by a simple color slicer, and the image could be hard-copied by a video hard-copy printer. Characteristics of the SCM were experimentally clarified as follows: the practical resolution was 700 line/TV; ten levels gray scale were discriminated on the video monitor, the uniformity, measured by an oscilloscope was less than 20%, and dead time of the pulse interval at full scale signal was 5 μ sec. In their representation, the SCM scintigrams were observed as closely resembling conventional film scintigrams. Superimposed imaging of an X-ray picture and a radioisotope image can be realized by using the SCM, for an increase in anatomical localization on reading images. The SCM scintigram can be applied rapidly and can be the viewer of radioisotope imaging. (auth.)

  10. Study of CT head scans using different voltages: image quality evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco de Freitas C, I.; Prata M, A. [Centro Federal de Educacao Tecnologica de Minas Gerais, Centro de Engenharia Biomedica, Av. Amazonas 5253, 30421-169 Nova Suica, Belo Horizonte, Minas Gerais (Brazil); Alonso, T. C. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil); Santana, P., E-mail: iarapfcorrea@gmail.com [Universidade Federal de Minas Gerais, Departamento de Anatomia e Imagem, Av. Prof. Alfredo Balena 190, 30130-100 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    Computed tomography (CT) was introduced to medical practice in 1972. It generates images recognized by high diagnostic potential. CT allows investigation of structures in the human body inaccessible by conventional image methods, replacing invasive methods in many cases. Noise is a kind of variation of brightness observed on CT images, and it is inherent to this method. The magnitude of the noise is determined by the standard deviation of CT numbers of a region of interest in a homogeneous material. The aim of this study is to analyze the noise in head CT images generated by different acquisition protocols using four voltage values. Five different scans were performed using a female Alderson phantom and their images were analyzed with the RadiAnt software. With the average HU values and standard deviation of each scan, the values of noise were calculated in some region of interest. The obtained noise values were compared and it was observed that the 140 kV voltage promotes the in the lower noise in the image, resulting in better image quality. The results also show that the parameters, such as voltage and current, can be adjusted so that the noise can be decreased. Thus, acquisition protocols may be adapted to produce images with diagnostic quality and lower doses in patient. (Author)

  11. Study of CT head scans using different voltages: image quality evaluation

    International Nuclear Information System (INIS)

    Pacheco de Freitas C, I.; Prata M, A.; Alonso, T. C.; Santana, P.

    2016-10-01

    Computed tomography (CT) was introduced to medical practice in 1972. It generates images recognized by high diagnostic potential. CT allows investigation of structures in the human body inaccessible by conventional image methods, replacing invasive methods in many cases. Noise is a kind of variation of brightness observed on CT images, and it is inherent to this method. The magnitude of the noise is determined by the standard deviation of CT numbers of a region of interest in a homogeneous material. The aim of this study is to analyze the noise in head CT images generated by different acquisition protocols using four voltage values. Five different scans were performed using a female Alderson phantom and their images were analyzed with the RadiAnt software. With the average HU values and standard deviation of each scan, the values of noise were calculated in some region of interest. The obtained noise values were compared and it was observed that the 140 kV voltage promotes the in the lower noise in the image, resulting in better image quality. The results also show that the parameters, such as voltage and current, can be adjusted so that the noise can be decreased. Thus, acquisition protocols may be adapted to produce images with diagnostic quality and lower doses in patient. (Author)

  12. Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI

    International Nuclear Information System (INIS)

    Lee, D; Keall, P; Kim, T; Greer, P B; Arm, J

    2014-01-01

    The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement <0.01 and p-value of period 0.12). This study demonstrated that audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.

  13. Evaluation of Image Quality in Low Tube-Voltage Chest CT Scan

    International Nuclear Information System (INIS)

    Kim, Hyun Ju; Cho, Jae Hwan; Park, Cheol Soo

    2010-01-01

    The patients who visited this department for pulmonary disease and need CT scans for Follow-up to observe change of CT value, evaluation of image quality and decrease of radiation dose as change of kVp. Subjects were the patients of 20 persons visited this department for pulmonary disease and Somatom Sensation 16(Semens, Enlarge, Germany) was used. Measurement of CT value as change of kVp was done by setting up ROI diameter of 1cm at the height of thyroid, aortic arch, right pulmonary artery in arterial phase image using 100 kVp, measuring 3 times, and recorded the average. CT value of phantom was measured by scanning phantoms which means contrast media diluted by normal saline by various ratio with tube voltage of 80 kVp, 100 kVp, 120 kVp, 140 kVp and recorded the average of 3 CT values of center of phantom image. In analysing radiation dose, CTDIVOL values of the latest arterial phase image of 120 kVp and as this research set that of 100 kVp were analyzed comparatively. 2 observers graded quality of chest images by 5 degrees (Unacceptable, Suboptimal, Adequate, Good, Excellent). CT value of chest image increased at 100 kVp by 14.06%∼27.26% in each ROI than 120 kVp. CT value of phantom increased as tube voltage lowered at various concentration of contrast media. CTDIVOL decreased at 100 kVp(5.00 mGy) by 36% than 120 kVp(7.80 mGy) in radiation dose analysis. here were 0 Unacceptable, 1 Suboptimal, 3 Adequate, 10 Good, 6 Excellent in totally 20 persons. Chest CT scanning with low kilo-voltage for patients who need CT scan repeatedly can bring images valuable for diagnose, and decrease radiation dose against patients

  14. Scanning multiple mice in a small-animal PET scanner: Influence on image quality

    International Nuclear Information System (INIS)

    Siepel, Francoise J.; Lier, Monique G.J.T.B. van; Chen Mu; Disselhorst, Jonathan A.; Meeuwis, Antoi P.W.; Oyen, Wim J.G.; Boerman, Otto C.; Visser, Eric P.

    2010-01-01

    To achieve high throughput in small-animal positron emission tomography (PET), it may be advantageous to scan more than one animal in the scanner's field of view (FOV) at the same time. However, due to the additional activity and increase of Poisson noise, additional attenuating mass, extra photon scattering, and radial or axial displacement of the animals, a deterioration of image quality can be expected. In this study, the NEMA NU 4-2008 image quality (NU4IQ) phantom and up to three FDG-filled cylindrical 'mouse phantoms' were positioned in the FOV of the Siemens Inveon small-animal PET scanner to simulate scans with multiple mice. Five geometrical configurations were examined. In one configuration, the NU4IQ phantom was scanned separately and placed in the center of the FOV (1C). In two configurations, a mouse phantom was added with both phantoms displaced radially (2R) or axially (2A). In two other configurations, the NU4IQ phantom was scanned along with three mouse phantoms with all phantoms displaced radially (4R), or in a combination of radial and axial displacement (2R2A). Images were reconstructed using ordered subset expectation maximization in 2 dimensions (OSEM2D) and maximum a posteriori (MAP) reconstruction. Image quality parameters were obtained according to the NEMA NU 4-2008 guidelines. Optimum image quality was obtained for the 1C geometry. Image noise increased by the addition of phantoms and was the largest for the 4R configuration. Spatial resolution, reflected in the recovery coefficients for the FDG-filled rods, deteriorated by radial displacement of the NU4IQ phantom (2R, 2R2A, and 4R), most strongly for OSEM2D, and to a smaller extent for MAP reconstructions. Photon scatter, as indicated by the spill-over ratios in the non-radioactive water- and air-filled compartments, increased by the addition of phantoms, most strongly for the 4R configuration. Application of scatter correction substantially lowered the spill-over ratios, but caused an

  15. Microcomputer-based image processing system for CT/MRI scans II

    International Nuclear Information System (INIS)

    Kwok, J.C.K.; Yu, P.K.N.; Cheng, A.Y.S.; Ho, W.C.

    1991-01-01

    This paper reports that a microcomputer-based image processing system is used to digitize and process serial sections of CT/MRI scan and reconstruct three-dimensional images of brain structures and brain lesions. The images grabbed also serve as templates and different vital regions with different risk values are also traced out for 3D reconstruction. A knowledge-based system employing rule-based programming has been built to help identifying brain lesions and to help planning trajectory for operations. The volumes of the lesions are also automatically determined. Such system is very useful for medical skills archival, tumor size monitoring, survival and outcome forecasting, and consistent neurosurgical planning

  16. Fermi surface contours obtained from scanning tunneling microscope images around surface point defects

    International Nuclear Information System (INIS)

    Khotkevych-Sanina, N V; Kolesnichenko, Yu A; Van Ruitenbeek, J M

    2013-01-01

    We present a theoretical analysis of the standing wave patterns in scanning tunneling microscope (STM) images, which occur around surface point defects. We consider arbitrary dispersion relations for the surface states and calculate the conductance for a system containing a small-size tunnel contact and a surface impurity. We find rigorous theoretical relations between the interference patterns in the real-space STM images, their Fourier transforms and the Fermi contours of two-dimensional electrons. We propose a new method for reconstructing Fermi contours of surface electron states, directly from the real-space STM images around isolated surface defects. (paper)

  17. Dynamics of annular bright field imaging in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Findlay, S.D.; Shibata, N.; Sawada, H.; Okunishi, E.; Kondo, Y.; Ikuhara, Y.

    2010-01-01

    We explore the dynamics of image formation in the so-called annular bright field mode in scanning transmission electron microscopy, whereby an annular detector is used with detector collection range lying within the cone of illumination, i.e. the bright field region. We show that this imaging mode allows us to reliably image both light and heavy columns over a range of thickness and defocus values, and we explain the contrast mechanisms involved. The role of probe and detector aperture sizes is considered, as is the sensitivity of the method to intercolumn spacing and local disorder.

  18. Functions of the digital image in Education: A methodological proposal for reading and writing the digital image on instructional screens

    Directory of Open Access Journals (Sweden)

    Mariella Milagros Azzato

    2011-07-01

    Full Text Available This research goes through the instructional possibilities that reading and writing the digital image have in Education. Along these lines, we are presenting this research that looks for, on one hand, to develop a methodological proposal for reading and writing the digital image, and on the other, to implement these methodologies in a course used as a study case and whose objective was to evaluate students' performance when writing screens for a learning object using the methodologies for reading and writing the digital image. The process for compiling date was based on the questionnaire technique, individual interviews and the analysis of course proposed activities. The application of the first questionnaire allowed us to determine students' knowledge level about the digital image before starting the course. The individual interview allowed us to determine the students' reading criteria gained after using the reading methodology for the digital image to analyse educational materials (Galavis, 2008; Azzato, 2009. The proposed activities for the course permitted us to value students' performance when reading and writing the digital image of a learning object. Finally, after course completion, the second questionnaire was applied in order to determine the students' acquired knowledge level about reading and writing an image on digital screens. The results obtained in each of the analysis allowed us to establish that the proposed methodologies were highly useful to write the educational image for the screens of each one of the learning objects created in the course.

  19. Image quality of high-resolution CT with 16-channel multidetector-row CT. Comparison between helical scan and conventional step-shoot scan

    International Nuclear Information System (INIS)

    Sumikawa, Hiromitsu; Johkoh, Takeshi; Koyama, Mitsuhiro

    2005-01-01

    The aim of this study was to evaluate the image quality of high-resolution CT (HRCT) reconstructed from volumetric data with 16-channel multidetector-row CT (MDCT). Eleven autopsy lungs that were diagnosed histopathologically were scanned by 16-channel MDCT with the step-and-shoot scan mode and three helical scan modes. Each helical mode had each size of focal spot, pitch, and time of gantry rotation. HRCT images were reconstructed from the volumetric data with each helical mode and axial sequence data. Two observers evaluated the image quality and noted the most appropriate diagnosis for each imaging. Visualization of abnormal structures with one helical mode was equal to those with axial mode, whereas those with the other two helical modes were inferior to those with axial mode (Wilcoxon signed rank test; p<0.0001). There was no significant difference in diagnostic efficacy between modes. The image quality of HRCT with appropriate helical mode is equal to that with axial mode and diagnostic efficacy is equal among all modes. These results may indicate that sufficient HRCT images can be obtained by only one helical scan without the addition of conventional axial scans. (author)

  20. Validation of phalanx bone three-dimensional surface segmentation from computed tomography images using laser scanning

    Energy Technology Data Exchange (ETDEWEB)

    DeVries, Nicole A.; Gassman, Esther E.; Kallemeyn, Nicole A. [The University of Iowa, Department of Biomedical Engineering, Center for Computer Aided Design, Iowa City, IA (United States); Shivanna, Kiran H. [The University of Iowa, Center for Computer Aided Design, Iowa City, IA (United States); Magnotta, Vincent A. [The University of Iowa, Department of Biomedical Engineering, Department of Radiology, Center for Computer Aided Design, Iowa City, IA (United States); Grosland, Nicole M. [The University of Iowa, Department of Biomedical Engineering, Department of Orthopaedics and Rehabilitation, Center for Computer Aided Design, Iowa City, IA (United States)

    2008-01-15

    To examine the validity of manually defined bony regions of interest from computed tomography (CT) scans. Segmentation measurements were performed on the coronal reformatted CT images of the three phalanx bones of the index finger from five cadaveric specimens. Two smoothing algorithms (image-based and Laplacian surface-based) were evaluated to determine their ability to represent accurately the anatomic surface. The resulting surfaces were compared with laser surface scans of the corresponding cadaveric specimen. The average relative overlap between two tracers was 0.91 for all bones. The overall mean difference between the manual unsmoothed surface and the laser surface scan was 0.20 mm. Both image-based and Laplacian surface-based smoothing were compared; the overall mean difference for image-based smoothing was 0.21 mm and 0.20 mm for Laplacian smoothing. This study showed that manual segmentation of high-contrast, coronal, reformatted, CT datasets can accurately represent the true surface geometry of bones. Additionally, smoothing techniques did not significantly alter the surface representations. This validation technique should be extended to other bones, image segmentation and spatial filtering techniques. (orig.)

  1. Validation of phalanx bone three-dimensional surface segmentation from computed tomography images using laser scanning

    International Nuclear Information System (INIS)

    DeVries, Nicole A.; Gassman, Esther E.; Kallemeyn, Nicole A.; Shivanna, Kiran H.; Magnotta, Vincent A.; Grosland, Nicole M.

    2008-01-01

    To examine the validity of manually defined bony regions of interest from computed tomography (CT) scans. Segmentation measurements were performed on the coronal reformatted CT images of the three phalanx bones of the index finger from five cadaveric specimens. Two smoothing algorithms (image-based and Laplacian surface-based) were evaluated to determine their ability to represent accurately the anatomic surface. The resulting surfaces were compared with laser surface scans of the corresponding cadaveric specimen. The average relative overlap between two tracers was 0.91 for all bones. The overall mean difference between the manual unsmoothed surface and the laser surface scan was 0.20 mm. Both image-based and Laplacian surface-based smoothing were compared; the overall mean difference for image-based smoothing was 0.21 mm and 0.20 mm for Laplacian smoothing. This study showed that manual segmentation of high-contrast, coronal, reformatted, CT datasets can accurately represent the true surface geometry of bones. Additionally, smoothing techniques did not significantly alter the surface representations. This validation technique should be extended to other bones, image segmentation and spatial filtering techniques. (orig.)

  2. High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jonathan D.; Nievergelt, Adrian; Erickson, Blake W.; Yang, Chen; Dukic, Maja; Fantner, Georg E., E-mail: georg.fantner@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2014-09-15

    We present an atomic force microscope (AFM) head for optical beam deflection on small cantilevers. Our AFM head is designed to be small in size, easily integrated into a commercial AFM system, and has a modular architecture facilitating exchange of the optical and electronic assemblies. We present two different designs for both the optical beam deflection and the electronic readout systems, and evaluate their performance. Using small cantilevers with our AFM head on an otherwise unmodified commercial AFM system, we are able to take tapping mode images approximately 5–10 times faster compared to the same AFM system using large cantilevers. By using additional scanner turnaround resonance compensation and a controller designed for high-speed AFM imaging, we show tapping mode imaging of lipid bilayers at line scan rates of 100–500 Hz for scan areas of several micrometers in size.

  3. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    Full Text Available Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  4. Evaluation of Yogurt Microstructure Using Confocal Laser Scanning Microscopy and Image Analysis.

    Science.gov (United States)

    Skytte, Jacob L; Ghita, Ovidiu; Whelan, Paul F; Andersen, Ulf; Møller, Flemming; Dahl, Anders B; Larsen, Rasmus

    2015-06-01

    The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermented dairy products. When studying such networks, hundreds of images can be obtained, and here image analysis methods are essential for using the images in statistical analysis. Previously, methods including gray level co-occurrence matrix analysis and fractal analysis have been used with success. However, a range of other image texture characterization methods exists. These methods describe an image by a frequency distribution of predefined image features (denoted textons). Our contribution is an investigation of the choice of image analysis methods by performing a comparative study of 7 major approaches to image texture description. Here, CSLM images from a yogurt fermentation study are investigated, where production factors including fat content, protein content, heat treatment, and incubation temperature are varied. The descriptors are evaluated through nearest neighbor classification, variance analysis, and cluster analysis. Our investigation suggests that the texton-based descriptors provide a fuller description of the images compared to gray-level co-occurrence matrix descriptors and fractal analysis, while still being as applicable and in some cases as easy to tune. © 2015 Institute of Food Technologists®

  5. SmartScan: a robust pushbroom imaging concept for moderate spacecraft attitude stability

    Science.gov (United States)

    Janschek, K.; Tchernykh, V.; Dyblenko, S.; Harnisch, B.

    2017-11-01

    Pushbroom scan cameras with linear image sensors, commonly used for Earth observation from satellites, require high attitude stability during the image acquisition. Especially noticeable are the effects of high frequency attitude variations originating from micro shocks and vibrations, produced by momentum and reaction wheels, mechanically activated coolers, steering and deployment mechanics and other reasons. The SMARTSCAN imaging concept offers high quality imaging even with moderate satellite attitude stability on a sole opto-electronic basis without any moving parts. It uses real-time recording of the actual image motion in the focal plane of the remote sensing camera during the frame acquisition and a posteriori correction of the obtained image distortions on base of the image motion record. Exceptional real-time performances with subpixel accuracy image motion measurement are provided by an innovative high-speed onboard optoelectronic correlation processor. SMARTSCAN allows therefore using smart pushbroom cameras for hyper-spectral imagers on satellites and platforms which are not specially intended for imaging missions, e.g. micro satellites. The paper gives an overview on the system concept and main technologies used (advanced optical correlator for ultra high-speed image motion tracking), it discusses the conceptual design for a smart compact space camera and it reports on airborne test results of a functional breadboard model.

  6. Quantitative sub-surface and non-contact imaging using scanning microwave microscopy

    International Nuclear Information System (INIS)

    Gramse, Georg; Kasper, Manuel; Hinterdorfer, Peter; Brinciotti, Enrico; Rankl, Christian; Kienberger, Ferry; Lucibello, Andrea; Marcelli, Romolo; Patil, Samadhan B.; Giridharagopal, Rajiv

    2015-01-01

    The capability of scanning microwave microscopy for calibrated sub-surface and non-contact capacitance imaging of silicon (Si) samples is quantitatively studied at broadband frequencies ranging from 1 to 20 GHz. Calibrated capacitance images of flat Si test samples with varying dopant density (10 15 –10 19 atoms cm −3 ) and covered with dielectric thin films of SiO 2 (100–400 nm thickness) are measured to demonstrate the sensitivity of scanning microwave microscopy (SMM) for sub-surface imaging. Using standard SMM imaging conditions the dopant areas could still be sensed under a 400 nm thick oxide layer. Non-contact SMM imaging in lift-mode and constant height mode is quantitatively demonstrated on a 50 nm thick SiO 2 test pad. The differences between non-contact and contact mode capacitances are studied with respect to the main parameters influencing the imaging contrast, namely the probe tip diameter and the tip–sample distance. Finite element modelling was used to further analyse the influence of the tip radius and the tip–sample distance on the SMM sensitivity. The understanding of how the two key parameters determine the SMM sensitivity and quantitative capacitances represents an important step towards its routine application for non-contact and sub-surface imaging. (paper)

  7. ANALYSIS OF MOBILE LASER SCANNING DATA AND MULTI-VIEW IMAGE RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    C. Briese

    2012-07-01

    Full Text Available The combination of laser scanning (LS, active, direct 3D measurement of the object surface and photogrammetry (high geometric and radiometric resolution is widely applied for object reconstruction (e.g. architecture, topography, monitoring, archaeology. Usually the results are a coloured point cloud or a textured mesh. The geometry is typically generated from the laser scanning point cloud and the radiometric information is the result of image acquisition. In the last years, next to significant developments in static (terrestrial LS and kinematic LS (airborne and mobile LS hardware and software, research in computer vision and photogrammetry lead to advanced automated procedures in image orientation and image matching. These methods allow a highly automated generation of 3D geometry just based on image data. Founded on advanced feature detector techniques (like SIFT (Scale Invariant Feature Transform very robust techniques for image orientation were established (cf. Bundler. In a subsequent step, dense multi-view stereo reconstruction algorithms allow the generation of very dense 3D point clouds that represent the scene geometry (cf. Patch-based Multi-View Stereo (PMVS2. Within this paper the usage of mobile laser scanning (MLS and simultaneously acquired image data for an advanced integrated scene reconstruction is studied. For the analysis the geometry of a scene is generated by both techniques independently. Then, the paper focuses on the quality assessment of both techniques. This includes a quality analysis of the individual surface models and a comparison of the direct georeferencing of the images using positional and orientation data of the on board GNSS-INS system and the indirect georeferencing of the imagery by automatic image orientation. For the practical evaluation a dataset from an archaeological monument is utilised. Based on the gained knowledge a discussion of the results is provided and a future strategy for the integration of

  8. X-CT imaging method for large objects using double offset scan mode

    International Nuclear Information System (INIS)

    Fu Jian; Lu Hongnian; Li Bing; Zhang Lei; Sun Jingjing

    2007-01-01

    In X-ray computed tomography (X-CT) inspection, rotate-only scanner is commonly used because this configuration offers the highest imaging speed and best utilization of X-ray dose. But it requires that the imaging region of the scanned object must fit within the X-ray beam. Another configuration, transverse-rotate scanner, has a bigger field of view, but it is much more time consuming. In this paper, a two-dimensional X-CT imaging method for large objects is proposed to overcome the existing disadvantages. The scan principle of this method has been described and the reconstruction algorithm has been deduced. The results of the computer simulation and the experiments show the validity of the new method. Analysis shows that the scan field of view of this method is 1.8 times larger than that of rotate-only X-CT. The scan speed of this method is also much quicker than transverse-rotate X-CT

  9. STUDY OF AUTOMATIC IMAGE RECTIFICATION AND REGISTRATION OF SCANNED HISTORICAL AERIAL PHOTOGRAPHS

    Directory of Open Access Journals (Sweden)

    H. R. Chen

    2016-06-01

    Full Text Available Historical aerial photographs directly provide good evidences of past times. The Research Center for Humanities and Social Sciences (RCHSS of Taiwan Academia Sinica has collected and scanned numerous historical maps and aerial images of Taiwan and China. Some maps or images have been geo-referenced manually, but most of historical aerial images have not been registered since there are no GPS or IMU data for orientation assisting in the past. In our research, we developed an automatic process of matching historical aerial images by SIFT (Scale Invariant Feature Transform for handling the great quantity of images by computer vision. SIFT is one of the most popular method of image feature extracting and matching. This algorithm extracts extreme values in scale space into invariant image features, which are robust to changing in rotation scale, noise, and illumination. We also use RANSAC (Random sample consensus to remove outliers, and obtain good conjugated points between photographs. Finally, we manually add control points for registration through least square adjustment based on collinear equation. In the future, we can use image feature points of more photographs to build control image database. Every new image will be treated as query image. If feature points of query image match the features in database, it means that the query image probably is overlapped with control images.With the updating of database, more and more query image can be matched and aligned automatically. Other research about multi-time period environmental changes can be investigated with those geo-referenced temporal spatial data.

  10. A scanning point source for quality control of FOV uniformity in GC-PET imaging

    International Nuclear Information System (INIS)

    Bergmann, H.; Minear, G.; Dobrozemsky, G.; Nowotny, R.; Koenig, B.

    2002-01-01

    Aim: PET imaging with coincidence cameras (GC-PET) requires additional quality control procedures to check the function of coincidence circuitry and detector zoning. In particular, the uniformity response over the field of view needs special attention since it is known that coincidence counting mode may suffer from non-uniformity effects not present in single photon mode. Materials and methods: An inexpensive linear scanner with a stepper motor and a digital interface to a PC with software allowing versatile scanning modes was developed. The scanner is used with a source holder containing a Sodium-22 point source. While moving the source along the axis of rotation of the GC-PET system, a tomographic acquisition takes place. The scan covers the full axial field of view of the 2-D or 3-D scatter frame. Depending on the acquisition software, point source scanning takes place continuously while only one projection is acquired or is done in step-and-shoot mode with the number of positions equal to the number of gantry steps. Special software was developed to analyse the resulting list mode acquisition files and to produce an image of the recorded coincidence events of each head. Results: Uniformity images of coincidence events were obtained after further correction for systematic sensitivity variations caused by acquisition geometry. The resulting images are analysed visually and by calculating NEMA uniformity indices as for a planar flood field. The method has been applied successfully to two different brands of GC-PET capable gamma cameras. Conclusion: Uniformity of GC-PET can be tested quickly and accurately with a routine QC procedure, using a Sodium-22 scanning point source and an inexpensive mechanical scanning device. The method can be used for both 2-D and 3-D acquisition modes and fills an important gap in the quality control system for GC-PET

  11. Cat-Scan and nuclear magnetic resonance imaging in abnormalities of neuronal migration

    International Nuclear Information System (INIS)

    Wilms, G.; Marchal, G.; Decrop, E.; Van Hecke, P.; Baert, A.L.; Casaer, P.

    1989-01-01

    This is a report of the CAT-scan and MRI characteristics in 14 patients with anomalies of neuronal migration. There were 3 cases of heterotopia of the gray matter, 2 cases of agyria, 3 cases of pachygyria, 2 cases of schizencephaly and 4 cases of hemimegalencephaly. The primary advantages of MRI in comparison with CAT-scanning, are better contrast between the white and gray matter; better delineation of the cerebral cortex and the possibility of direct mutiplanar imaging. NMRI will become the investigation of choice in children with epilepsy or psychomotor retardation [fr

  12. Subperiosteal chondroma. Diagnostic value of CT scan imaging in two cases

    International Nuclear Information System (INIS)

    Lerais, J.M.; Auquier, F.; Baudrillard, J.C.; Durot, J.F.; Laugareil, P.; Wallays, C.; Lefort, G.; Daoud, S.; Gaillard, D.

    1988-01-01

    Results of CT scan exploration are reported in two cases of subperiosteal chondroma, one in a 4 year old child affecting the anterior tibial tuberosity the other in a 9 year old child involving the upper end of humerus. Data from CT scan imaging were undoubtedly superior to those of conventional radiography and appear to be characteristic of this benign cartilaginous tumor, greatly facilitating correlation between clinical, radiological and pathologic findings. The scanner should allow certain situations to be dedramatized and the surgical attitude adapted when the functional prognosis is involved [fr

  13. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS).

    Science.gov (United States)

    Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y

    2011-01-01

    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.

  14. Side-Scan Sonar Image Mosaic Using Couple Feature Points with Constraint of Track Line Positions

    Directory of Open Access Journals (Sweden)

    Jianhu Zhao

    2018-06-01

    Full Text Available To obtain large-scale seabed surface image, this paper proposes a side-scan sonar (SSS image mosaic method using couple feature points (CFPs with constraint of track line positions. The SSS geocoded images are firstly used to form a coarsely mosaicked one and the overlapping areas between adjacent strip images can be determined based on geographic information. Inside the overlapping areas, the feature point (FP detection and registration operation are adopted for both strips. According to the detected CFPs and track line positions, an adjustment model is established to accommodate complex local distortions as well as ensure the global stability. This proposed method effectively solves the problem of target ghosting or dislocation and no accumulated errors arise in the mosaicking process. Experimental results show that the finally mosaicked image correctly reflects the object distribution, which is meaningful for understanding and interpreting seabed topography.

  15. Image quality characteristics of a novel colour scanning digital ophthalmoscope (SDO) compared with fundus photography.

    Science.gov (United States)

    Strauss, Rupert W; Krieglstein, Tina R; Priglinger, Siegfried G; Reis, Werner; Ulbig, Michael W; Kampik, Anselm; Neubauer, Aljoscha S

    2007-11-01

    To establish a set of quality parameters for grading image quality and apply those to evaluate the fundus image quality obtained by a new scanning digital ophthalmoscope (SDO) compared with standard slide photography. On visual analogue scales a total of eight image characteristics were defined: overall quality, contrast, colour brilliance, focus (sharpness), resolution and details, noise, artefacts and validity of clinical assessment. Grading was repeated after 4 months to assess repeatability. Fundus images of 23 patients imaged digitally by SDO and by Zeiss 450FF fundus camera using Kodak film were graded side-by-side by three graders. Lens opacity was quantified with the Interzeag Lens Opacity Meter 701. For all of the eight scales of image quality, good repeatability within the graders (mean Kendall's W 0.69) was obtained after 4 months. Inter-grader agreement ranged between 0.31 and 0.66. Despite the SDO's limited nominal image resolution of 720 x 576 pixels, the Zeiss FF 450 camera performed better in only two of the subscales - noise (p = 0.001) and artefacts (p = 0.01). Lens opacities significantly influenced only the two subscales 'resolution' and 'details', which deteriorated with increasing media opacities for both imaging systems. Distinct scales to grade image characteristics of different origin were developed and validated. Overall SDO digital imaging was found to provide fundus pictures of a similarly high level of quality as expert photography on slides.

  16. Methodology for quantitative evaluation of diagnostic medical imaging

    International Nuclear Information System (INIS)

    Metz, C.

    1980-01-01

    This report deals with the evaluation of the performance of diagnostic medical imaging procedures using the Receiver Operating Characteristic or ROC analysis. The development of new tests for the statistical significance of apparent differences between ROC curves is discussed

  17. Practical implementation of a methodology for digital images authentication using forensics techniques

    OpenAIRE

    Francisco Rodríguez-Santos; Guillermo Delgado-Gutierréz; Leonardo Palacios-Luengas; Rubén Vázquez Medina

    2015-01-01

    This work presents a forensics analysis methodology implemented to detect modifications in JPEG digital images by analyzing the image’s metadata, thumbnail, camera traces and compression signatures. Best practices related with digital evidence and forensics analysis are considered to determine if the technical attributes and the qualities of an image are consistent with each other. This methodology is defined according to the recommendations of the Good Practice Guide for Computer-Based Elect...

  18. Towards simultaneous Talbot bands based optical coherence tomography and scanning laser ophthalmoscopy imaging.

    Science.gov (United States)

    Marques, Manuel J; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-05-01

    We report a Talbot bands-based optical coherence tomography (OCT) system capable of producing longitudinal B-scan OCT images and en-face scanning laser ophthalmoscopy (SLO) images of the human retina in-vivo. The OCT channel employs a broadband optical source and a spectrometer. A gap is created between the sample and reference beams while on their way towards the spectrometer's dispersive element to create Talbot bands. The spatial separation of the two beams facilitates collection by an SLO channel of optical power originating exclusively from the retina, deprived from any contribution from the reference beam. Three different modes of operation are presented, constrained by the minimum integration time of the camera used in the spectrometer and by the galvo-scanners' scanning rate: (i) a simultaneous acquisition mode over the two channels, useful for small size imaging, that conserves the pixel-to-pixel correspondence between them; (ii) a hybrid sequential mode, where the system switches itself between the two regimes and (iii) a sequential "on-demand" mode, where the system can be used in either OCT or SLO regimes for as long as required. The two sequential modes present varying degrees of trade-off between pixel-to-pixel correspondence and independent full control of parameters within each channel. Images of the optic nerve and fovea regions obtained in the simultaneous (i) and in the hybrid sequential mode (ii) are presented.

  19. Non-scanning x-ray fluorescence microscope: application to real time micro-imaging

    International Nuclear Information System (INIS)

    Sakurai, K.; Eba, H.

    2000-01-01

    So far, x-ray fluorescence (XRF) micro-imaging has been performed by a 2D positional scan of a sample against a collimated beam. Obtaining information on specific elements in a nondestructive manner is an attractive prospect for many scientific applications. Furthermore, a synchrotron micro-beam can enhance the spatial resolution down to 0.1 μm. However, the total measuring time becomes quite long (a few hours to a half day), since one needs a number of scanning points in order to obtain a high-quality image. It is possible to obtain an x-ray image with 1 M pixels and with 20 μm resolution in a very short time of 20 sec - 3 min using a non-scanning XRF microscope, which is based on completely different concept. In the present report, we discuss the application of this technique to real time micro-imaging. The experiments were carried out at BL-4A, Photon Factory, Tsukuba, Japan. We employed a grazing-incidence arrangement to make primary x-rays illuminate the whole sample surface. We adopted parallel-beam optics and extremely-close-geometry in order to detect x-ray fluorescence with a CCD camera. The selective-excitation capability of tunable monochromatic synchrotron radiation is a feasible method for distinguishing the elements of interest. One can obtain an image of each element by differentiating the images obtained above and below the absorption edges of interest. The growth of metallic dendrites from a solution dropped on a substrate was studied successfully. Several different growth patterns, corresponding to concentration and other conditions for diffusion, were observed as x-ray images. Since the present technique requires only 40 sec for each shot, it is possible to record a growing process through repeated exposures like a movie. The authors would like to thank Prof. A. Iida (Photon Factory) for his valuable comments. (author)

  20. Widely-targeted quantitative lipidomics methodology by supercritical fluid chromatography coupled with fast-scanning triple quadrupole mass spectrometry.

    Science.gov (United States)

    Takeda, Hiroaki; Izumi, Yoshihiro; Takahashi, Masatomo; Paxton, Thanai; Tamura, Shohei; Koike, Tomonari; Yu, Ying; Kato, Noriko; Nagase, Katsutoshi; Shiomi, Masashi; Bamba, Takeshi

    2018-05-03

    Lipidomics, the mass spectrometry-based comprehensive analysis of lipids, has attracted attention as an analytical approach to provide novel insight into lipid metabolism and to search for biomarkers. However, an ideal method for both comprehensive and quantitative analysis of lipids has not been fully developed. Herein, we have proposed a practical methodology for widely-targeted quantitative lipidome analysis using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry (SFC/QqQMS) and theoretically calculated a comprehensive lipid multiple reaction monitoring (MRM) library. Lipid classes can be separated by SFC with a normal phase diethylamine-bonded silica column with high-resolution, high-throughput, and good repeatability. Structural isomers of phospholipids can be monitored by mass spectrometric separation with fatty acyl-based MRM transitions. SFC/QqQMS analysis with an internal standard-dilution method offers quantitative information for both lipid class and individual lipid molecular species in the same lipid class. Additionally, data acquired using this method has advantages including reduction of misidentification and acceleration of data analysis. Using the SFC/QqQMS system, alteration of plasma lipid levels in myocardial infarction-prone rabbits to the supplementation of eicosapentaenoic acid was first observed. Our developed SFC/QqQMS method represents a potentially useful tool for in-depth studies focused on complex lipid metabolism and biomarker discovery. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid.

    Science.gov (United States)

    Stankovic, Uros; van Herk, Marcel; Ploeger, Lennert S; Sonke, Jan-Jakob

    2014-06-01

    Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different acquisition

  2. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid

    International Nuclear Information System (INIS)

    Stankovic, Uros; Herk, Marcel van; Ploeger, Lennert S.; Sonke, Jan-Jakob

    2014-01-01

    Purpose: Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. Methods: The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different

  3. An evaluation of the regional cerebral blood flow (rCBF) measurement by xenon-enhanced dynamic CT with helical scanning technique and the functional imaging by multiplanar reconstruction (MPR). Fundamental study and clinical application

    International Nuclear Information System (INIS)

    Watanabe, Kenichi

    1997-01-01

    We evaluated the quantitative rCBF by xenon-enhanced dynamic CT with helical scanning technique on all brain regions, and also examined clinical usefulness of coronal and sagittal section images which are similar to SPECT images obtained by the functional multiplanar reconstitution (MPR) imaging of many successive flow maps. We used 14 clinical cases. The conventional xenon-enhanced CT was simple and ideal method to measure rCBF, however, it had disadvantages; it gives a few laminagraphical images or only the axial directional images, compared to SPECT or PET. There is a risk to overlook lesions out of the image or not to obtain the whole images of the lesion. Although the helical scanning technique has a methodological characteristics to use adjacent data for the image reconstitution, it is by no means inferior to the conventional method in the contrast resolution or the image resolution when the co-helical function and an appropriate reconstituted function were used. It has an advantage to scan all brain regions by only one cycle of scanning. Furthermore on making good use of the property that the helical scanning technique can give the successive data, we can observe rCBF by coronal and sagittal images when many flow maps were made up by reconstituted images of the narrow steps. This shows the clinical usefulness of this technique. One of the future problem to be solved is to decrease the exposure dose. (K.H.)

  4. Efficient Imaging and Real-Time Display of Scanning Ion Conductance Microscopy Based on Block Compressive Sensing

    Science.gov (United States)

    Li, Gongxin; Li, Peng; Wang, Yuechao; Wang, Wenxue; Xi, Ning; Liu, Lianqing

    2014-07-01

    Scanning Ion Conductance Microscopy (SICM) is one kind of Scanning Probe Microscopies (SPMs), and it is widely used in imaging soft samples for many distinctive advantages. However, the scanning speed of SICM is much slower than other SPMs. Compressive sensing (CS) could improve scanning speed tremendously by breaking through the Shannon sampling theorem, but it still requires too much time in image reconstruction. Block compressive sensing can be applied to SICM imaging to further reduce the reconstruction time of sparse signals, and it has another unique application that it can achieve the function of image real-time display in SICM imaging. In this article, a new method of dividing blocks and a new matrix arithmetic operation were proposed to build the block compressive sensing model, and several experiments were carried out to verify the superiority of block compressive sensing in reducing imaging time and real-time display in SICM imaging.

  5. Surface scanning through a cylindrical tank of coupling fluid for clinical microwave breast imaging exams

    International Nuclear Information System (INIS)

    Pallone, Matthew J.; Meaney, Paul M.; Paulsen, Keith D.

    2012-01-01

    Purpose: Microwave tomographic image quality can be improved significantly with prior knowledge of the breast surface geometry. The authors have developed a novel laser scanning system capable of accurately recovering surface renderings of breast-shaped phantoms immersed within a cylindrical tank of coupling fluid which resides completely external to the tank (and the aqueous environment) and overcomes the challenges associated with the optical distortions caused by refraction from the air, tank wall, and liquid bath interfaces. Methods: The scanner utilizes two laser line generators and a small CCD camera mounted concentrically on a rotating gantry about the microwave imaging tank. Various calibration methods were considered for optimizing the accuracy of the scanner in the presence of the optical distortions including traditional ray tracing and image registration approaches. In this paper, the authors describe the construction and operation of the laser scanner, compare the efficacy of several calibration methods—including analytical ray tracing and piecewise linear, polynomial, locally weighted mean, and thin-plate-spline (TPS) image registrations—and report outcomes from preliminary phantom experiments. Results: The results show that errors in calibrating camera angles and position prevented analytical ray tracing from achieving submillimeter accuracy in the surface renderings obtained from our scanner configuration. Conversely, calibration by image registration reliably attained mean surface errors of less than 0.5 mm depending on the geometric complexity of the object scanned. While each of the image registration approaches outperformed the ray tracing strategy, the authors found global polynomial methods produced the best compromise between average surface error and scanner robustness. Conclusions: The laser scanning system provides a fast and accurate method of three dimensional surface capture in the aqueous environment commonly found in microwave

  6. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    Science.gov (United States)

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  7. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    International Nuclear Information System (INIS)

    Lima, E A; Weiss, B P; Bruno, A C; Carvalho, H R

    2014-01-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x–y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz 1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10 –14  A m 2 , a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays. (paper)

  8. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    Science.gov (United States)

    Lima, E. A.; Bruno, A. C.; Carvalho, H. R.; Weiss, B. P.

    2014-10-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x-y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10-14 A m2, a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays.

  9. Multidirectional Scanning Model, MUSCLE, to Vectorize Raster Images with Straight Lines

    Directory of Open Access Journals (Sweden)

    Ibrahim Baz

    2008-04-01

    Full Text Available This paper presents a new model, MUSCLE (Multidirectional Scanning for Line Extraction, for automatic vectorization of raster images with straight lines. The algorithm of the model implements the line thinning and the simple neighborhood methods to perform vectorization. The model allows users to define specified criteria which are crucial for acquiring the vectorization process. In this model, various raster images can be vectorized such as township plans, maps, architectural drawings, and machine plans. The algorithm of the model was developed by implementing an appropriate computer programming and tested on a basic application. Results, verified by using two well known vectorization programs (WinTopo and Scan2CAD, indicated that the model can successfully vectorize the specified raster data quickly and accurately.

  10. Gastric visualization and image quality in radionuclide bone scanning: concise communication

    International Nuclear Information System (INIS)

    Wilson, M.A.; Pollack, M.J.

    1981-01-01

    In a 12-mo study period, there were 14 days identified when the stomach was visualized in routine bone imaging. On these days, 44% of the 110 patients imaged demonstrated this effect. Only the quality control, binding efficiency, and scan quality differed (p less than 0.005) when the study population was compared with a reference population of 162 patients. However, on the days when this effect was noted, there was a significant (p less than 0.001) linear correlation between the presence and degree of gastric visualization and the radiopharmaceutical incubation and quality control parameters. The study suggests a sporadic phenomenon that appears to result from partial oxidation of the agent during incubation, producing (a) different species of labeled diphosphonate that display altered affinity for bone (scan quality) and (b) free pertechnetate

  11. Collagen imaged by Coherent X-ray Diffraction: towards a complementary tool to conventional scanning SAXS

    International Nuclear Information System (INIS)

    Berenguer de la Cuesta, Felisa; Bean, Richard J; Bozec, Laurent; Robinson, Ian K; McCallion, Catriona; Wallace, Kris; Hiller, Jen C; Terrill, Nicholas J

    2010-01-01

    Third generation x-ray sources offer unique possibilities for exploiting coherence in the study of materials. New insights in the structure and dynamics of soft condensed matter and biological samples can be obtained by coherent x-ray diffraction (CXD). However, the experimental procedures for applying these methods to collagen tissues are still under development. We present here an investigation for the optimal procedure in order to obtain high quality CXD data from collagen tissues. Sample handling and preparation and adequate coherence defining apertures are among the more relevant factors to take into account. The impact of the results is also discussed, in particular in comparison with the information that can be extracted from conventional scanning small angle x-ray scattering (SAXS). Images of collagen tissues obtained by CXD reconstructions will give additional information about the local structure with higher resolution and will complement scanning SAXS images.

  12. Collagen imaged by Coherent X-ray Diffraction: towards a complementary tool to conventional scanning SAXS

    Energy Technology Data Exchange (ETDEWEB)

    Berenguer de la Cuesta, Felisa; Bean, Richard J; Bozec, Laurent; Robinson, Ian K [London Centre for Nanotechnology (LCN), University College London (UCL), London WC1H 0AH (United Kingdom); McCallion, Catriona; Wallace, Kris [Department of Physics and Astronomy, University College London (UCL), London WC1E 6BT (United Kingdom); Hiller, Jen C; Terrill, Nicholas J, E-mail: f.berenguer@ucl.ac.u [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2010-10-01

    Third generation x-ray sources offer unique possibilities for exploiting coherence in the study of materials. New insights in the structure and dynamics of soft condensed matter and biological samples can be obtained by coherent x-ray diffraction (CXD). However, the experimental procedures for applying these methods to collagen tissues are still under development. We present here an investigation for the optimal procedure in order to obtain high quality CXD data from collagen tissues. Sample handling and preparation and adequate coherence defining apertures are among the more relevant factors to take into account. The impact of the results is also discussed, in particular in comparison with the information that can be extracted from conventional scanning small angle x-ray scattering (SAXS). Images of collagen tissues obtained by CXD reconstructions will give additional information about the local structure with higher resolution and will complement scanning SAXS images.

  13. Structural brain imaging in diabetes : A methodological perspective

    NARCIS (Netherlands)

    Jongen, Cynthia; Biessels, Geert Jan

    2008-01-01

    Brain imaging provides information on brain anatomy and function and progression of cerebral abnormalities can be monitored. This may provide insight into the aetiology of diabetes related cerebral disorders. This paper focuses on the methods for the assessment of white matter hyperintensities and

  14. Procedure for physicist's scanning in the image processing system of bubble chambers

    International Nuclear Information System (INIS)

    Gritsaenko, I.A.; Petrovykh, L.P.; Petrovykh, Yu.L.; Fenyuk, A.B.

    1984-01-01

    The algorithm of the program of physicist's scanning for data processing from photo images in experiments using bubble chambers is described. The program allows one to perform sorting or selection of specific events for subsequent processing and identification of separate particles by bubble density along the track or by the character of the decay. The fraction of protons separated automatically constituted 97%. The program has been used for processing 50 thousand events at the BEBC chamber

  15. RGB color coded images in scanning electron microscopy of biological surfaces

    Czech Academy of Sciences Publication Activity Database

    Kofroňová, Olga; Benada, Oldřich

    2017-01-01

    Roč. 61, č. 3 (2017), s. 349-352 ISSN 0001-723X R&D Projects: GA MŠk(CZ) LO1509; GA ČR(CZ) GA16-20229S Institutional support: RVO:61388971 Keywords : Biological surfaces * Color image s * Scanning electron microscopy Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 0.673, year: 2016

  16. Development of fast parallel multi-technique scanning X-ray imaging at Synchrotron Soleil

    Science.gov (United States)

    Medjoubi, K.; Leclercq, N.; Langlois, F.; Buteau, A.; Lé, S.; Poirier, S.; Mercère, P.; Kewish, C. M.; Somogyi, A.

    2013-10-01

    A fast multimodal scanning X-ray imaging scheme is prototyped at Soleil Synchrotron. It permits the simultaneous acquisition of complementary information on the sample structure, composition and chemistry by measuring transmission, differential phase contrast, small-angle scattering, and X-ray fluorescence by dedicated detectors with ms dwell time per pixel. The results of the proof of principle experiments are presented in this paper.

  17. Automated Detection of Healthy and Diseased Aortae from Images Obtained by Contrast-Enhanced CT Scan

    Directory of Open Access Journals (Sweden)

    Michael Gayhart

    2013-01-01

    Full Text Available Purpose. We developed the next stage of our computer assisted diagnosis (CAD system to aid radiologists in evaluating CT images for aortic disease by removing innocuous images and highlighting signs of aortic disease. Materials and Methods. Segmented data of patient’s contrast-enhanced CT scan was analyzed for aortic dissection and penetrating aortic ulcer (PAU. Aortic dissection was detected by checking for an abnormal shape of the aorta using edge oriented methods. PAU was recognized through abnormally high intensities with interest point operators. Results. The aortic dissection detection process had a sensitivity of 0.8218 and a specificity of 0.9907. The PAU detection process scored a sensitivity of 0.7587 and a specificity of 0.9700. Conclusion. The aortic dissection detection process and the PAU detection process were successful in removing innocuous images, but additional methods are necessary for improving recognition of images with aortic disease.

  18. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy.

    Science.gov (United States)

    Schulz, Olaf; Pieper, Christoph; Clever, Michaela; Pfaff, Janine; Ruhlandt, Aike; Kehlenbach, Ralph H; Wouters, Fred S; Großhans, Jörg; Bunt, Gertrude; Enderlein, Jörg

    2013-12-24

    We demonstrate how a conventional confocal spinning-disk (CSD) microscope can be converted into a doubly resolving image scanning microscopy (ISM) system without changing any part of its optical or mechanical elements. Making use of the intrinsic properties of a CSD microscope, we illuminate stroboscopically, generating an array of excitation foci that are moved across the sample by varying the phase between stroboscopic excitation and rotation of the spinning disk. ISM then generates an image with nearly doubled resolution. Using conventional fluorophores, we have imaged single nuclear pore complexes in the nuclear membrane and aggregates of GFP-conjugated Tau protein in three dimensions. Multicolor ISM was shown on cytoskeletal-associated structural proteins and on 3D four-color images including MitoTracker and Hoechst staining. The simple adaptation of conventional CSD equipment allows superresolution investigations of a broad variety of cell biological questions.

  19. Gastric visualization and image quality in radionuclide bone scanning: concise communication

    International Nuclear Information System (INIS)

    Wilson, M.A.; Pollack, M.J.

    1981-01-01

    In a 12-mo study period, there were 14 days identified when the stomach was visualized in routine bone imaging. On these days, 44% of the 110 patients imaged demonstrated this effect. There was a significant linear correlation between the presence and degree of gastric visualization and the radiopharmaceutical incubation and quality control parameters. The study suggests a sporadic phenomenon that appears to result from partial oxidation of the agent during incubation, producing (a) different species of labeled diphosphonate that display altered affinity for bone (scan quality) and (b) free pertechnetate

  20. Cancer cell imaging by stable wet near-field scanning optical microscope with resonance tracking method

    International Nuclear Information System (INIS)

    Park, Kyoung-Duck; Park, Doo-Jae; Jeong, Mun-Seok; Choi, Geun-Chang; Lee, Seung-Gol; Byeon, Clare-Chisu; Choi, Soo-Bong

    2014-01-01

    We report on a successful topographical and optical imaging of various cancer cells in liquid and in air by using a stable wet near-field scanning optical microscope that utilizes a resonance tracking method. We observed a clear dehydration which gives rise to a decrease in the cell volume down to 51%. In addition, a micro-ball lens effect due to the round-shaped young cancer cells was observed from near-field imaging, where the refractive index of young cancer cells was deduced.

  1. Device for the track useful signal discrimination during the image scanning form bubble chambers

    International Nuclear Information System (INIS)

    Osipov, E.A.; Uvarov, V.A.

    1976-01-01

    A device for the image processing from the bubble chambers, developed to increase the reliability of the track useful signal discrimination at the image scanning from the background component is described. The device consists of a low-pass filter, repetition and memory circuit and subtraction circuit. Besides a delay line and extra channel consisting of a differentiating circuit in series with the selective shaping circuit are introduced into the device. The output signal of the selective shaping is the controlling signal of the repetition and memory circuit, at the output of which a signal corresponding the background component is formed. The functional diagram of the device operation is presented

  2. Cancer cell imaging by stable wet near-field scanning optical microscope with resonance tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyoung-Duck [Sungkyunkwan University, Suwon (Korea, Republic of); Inha University, Incheon (Korea, Republic of); Park, Doo-Jae; Jeong, Mun-Seok [Sungkyunkwan University, Suwon (Korea, Republic of); Choi, Geun-Chang [Seoul National University, Seoul (Korea, Republic of); Lee, Seung-Gol [Inha University, Incheon (Korea, Republic of); Byeon, Clare-Chisu [Kyungpook National University, Daegu (Korea, Republic of); Choi, Soo-Bong [Incheon National University, Incheon (Korea, Republic of)

    2014-05-15

    We report on a successful topographical and optical imaging of various cancer cells in liquid and in air by using a stable wet near-field scanning optical microscope that utilizes a resonance tracking method. We observed a clear dehydration which gives rise to a decrease in the cell volume down to 51%. In addition, a micro-ball lens effect due to the round-shaped young cancer cells was observed from near-field imaging, where the refractive index of young cancer cells was deduced.

  3. Parallel scan hyperspectral fluorescence imaging system and biomedical application for microarrays

    International Nuclear Information System (INIS)

    Liu Zhiyi; Ma Suihua; Liu Le; Guo Jihua; He Yonghong; Ji Yanhong

    2011-01-01

    Microarray research offers great potential for analysis of gene expression profile and leads to greatly improved experimental throughput. A number of instruments have been reported for microarray detection, such as chemiluminescence, surface plasmon resonance, and fluorescence markers. Fluorescence imaging is popular for the readout of microarrays. In this paper we develop a quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging system for microarray research. Hyperspectral imaging records the entire emission spectrum for every voxel within the imaged area in contrast to recording only fluorescence intensities of filter-based scanners. Coupled with data analysis, the recorded spectral information allows for quantitative identification of the contributions of multiple, spectrally overlapping fluorescent dyes and elimination of unwanted artifacts. The mechanism of quasi-confocal imaging provides a high signal-to-noise ratio, and parallel scan makes this approach a high throughput technique for microarray analysis. This system is improved with a specifically designed spectrometer which can offer a spectral resolution of 0.2 nm, and operates with spatial resolutions ranging from 2 to 30 μm . Finally, the application of the system is demonstrated by reading out microarrays for identification of bacteria.

  4. Large Scale Textured Mesh Reconstruction from Mobile Mapping Images and LIDAR Scans

    Science.gov (United States)

    Boussaha, M.; Vallet, B.; Rives, P.

    2018-05-01

    The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for 3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping System (MMS). First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency between geometry (points) and photometry (images). Then, a simple, fast and scalable 3D surface reconstruction relying on the sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans. Finally, the algorithm proposed in (Waechter et al., 2014) is adapted to texture the reconstructed surface with the images acquired simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed independently in a separate thread or computer.

  5. LARGE SCALE TEXTURED MESH RECONSTRUCTION FROM MOBILE MAPPING IMAGES AND LIDAR SCANS

    Directory of Open Access Journals (Sweden)

    M. Boussaha

    2018-05-01

    Full Text Available The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for 3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping System (MMS. First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency between geometry (points and photometry (images. Then, a simple, fast and scalable 3D surface reconstruction relying on the sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans. Finally, the algorithm proposed in (Waechter et al., 2014 is adapted to texture the reconstructed surface with the images acquired simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed independently in a separate thread or computer.

  6. D Model of AL Zubarah Fortress in Qatar - Terrestrial Laser Scanning VS. Dense Image Matching

    Science.gov (United States)

    Kersten, T.; Mechelke, K.; Maziull, L.

    2015-02-01

    In September 2011 the fortress Al Zubarah, built in 1938 as a typical Arabic fortress and restored in 1987 as a museum, was recorded by the HafenCity University Hamburg using terrestrial laser scanning with the IMAGER 5006h and digital photogrammetry for the Qatar Museum Authority within the framework of the Qatar Islamic Archaeology and Heritage Project. One goal of the object recording was to provide detailed 2D/3D documentation of the fortress. This was used to complete specific detailed restoration work in the recent years. From the registered laser scanning point clouds several cuttings and 2D plans were generated as well as a 3D surface model by triangle meshing. Additionally, point clouds and surface models were automatically generated from digital imagery from a Nikon D70 using the open-source software Bundler/PMVS2, free software VisualSFM, Autodesk Web Service 123D Catch beta, and low-cost software Agisoft PhotoScan. These outputs were compared with the results from terrestrial laser scanning. The point clouds and surface models derived from imagery could not achieve the same quality of geometrical accuracy as laser scanning (i.e. 1-2 cm).

  7. Macro-SICM: A Scanning Ion Conductance Microscope for Large-Range Imaging.

    Science.gov (United States)

    Schierbaum, Nicolas; Hack, Martin; Betz, Oliver; Schäffer, Tilman E

    2018-04-17

    The scanning ion conductance microscope (SICM) is a versatile, high-resolution imaging technique that uses an electrolyte-filled nanopipet as a probe. Its noncontact imaging principle makes the SICM uniquely suited for the investigation of soft and delicate surface structures in a liquid environment. The SICM has found an ever-increasing number of applications in chemistry, physics, and biology. However, a drawback of conventional SICMs is their relatively small scan range (typically 100 μm × 100 μm in the lateral and 10 μm in the vertical direction). We have developed a Macro-SICM with an exceedingly large scan range of 25 mm × 25 mm in the lateral and 0.25 mm in the vertical direction. We demonstrate the high versatility of the Macro-SICM by imaging at different length scales: from centimeters (fingerprint, coin) to millimeters (bovine tongue tissue, insect wing) to micrometers (cellular extensions). We applied the Macro-SICM to the study of collective cell migration in epithelial wound healing.

  8. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    Science.gov (United States)

    Wouterlood, Floris G

    2014-04-10

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible. Copyright © 2014 John Wiley & Sons, Inc.

  9. Tree-structured vector quantization of CT chest scans: Image quality and diagnostic accuracy

    International Nuclear Information System (INIS)

    Cosman, P.C.; Tseng, C.; Gray, R.M.; Olshen, R.A.; Moses, L.E.; Davidson, H.C.; Bergin, C.J.; Riskin, E.A.

    1993-01-01

    The quality of lossy compressed images is often characterized by signal-to-noise ratios, informal tests of subjective quality, or receiver operating characteristic (ROC) curves that include subjective appraisals of the value of an image for a particular application. The authors believe that for medical applications, lossy compressed images should be judged by a more natural and fundamental aspect of relative image quality: their use in making accurate diagnoses. They apply a lossy compression algorithm to medical images, and quantify the quality of the images by the diagnostic performance of radiologists, as well as by traditional signal-to-noise ratios and subjective ratings. The study is unlike previous studies of the effects of lossy compression in that they consider non-binary detection tasks, simulate actual diagnostic practice instead of using paired tests or confidence rankings, use statistical methods that are more appropriate for non-binary clinical data than are the popular ROC curves, and use low-complexity predictive tree-structured vector quantization for compression rather than DCT-based transform codes combined with entropy coding. Their diagnostic tasks are the identification of nodules (tumors) in the lungs and lymphadenopathy in the mediastinum from computerized tomography (CT) chest scans. For the image modality, compression algorithm, and diagnostic tasks they consider, the original 12 bit per pixel (bpp) CT image can be compressed to between 1 bpp and 2 bpp with no significant changes in diagnostic accuracy

  10. Fully time-resolved near-field scanning optical microscopy fluorescence imaging

    International Nuclear Information System (INIS)

    Kwak, Eun-Soo; Vanden Bout, David A.

    2003-01-01

    Time-correlated single photon counting has been coupled with near-field scanning optical microscopy (NSOM) to record complete fluorescence lifetime decays at each pixel in an NSOM image. The resulting three-dimensional data sets can be binned in the time dimension to create images of photons at particular time delays or images of the fluorescence lifetime. Alternatively, regions of interest identified in the topography and fluorescence images can be used to bin the data in the spatial dimensions resulting in high signal to noise fluorescence decays of particular regions of the sample. The technique has been demonstrated on films of poly(vinylalcohol), doped with the fluorescent dye, cascade blue (CB). The CB segregates into small circular regions of high concentration within the films during the drying process. The lifetime imaging shows that the spots have slightly faster excited state decays due to quenching of the luminescence as a result of the higher concentration. The technique is also used to image the fluorescence lifetime of an annealed film of poly(dihexylfluorene). The samples show high contrast in the total intensity fluorescence image, but the lifetime image reveals the sample to be extremely uniform

  11. Spectrally enhanced imaging of occlusal surfaces and artificial shallow enamel erosions with a scanning fiber endoscope

    Science.gov (United States)

    Zhang, Liang; Nelson, Leonard Y.; Seibel, Eric J.

    2012-07-01

    An ultrathin scanning fiber endoscope, originally developed for cancer diagnosis, was used to image dental occlusal surfaces as well as shallow artificially induced enamel erosions from human extracted teeth (n=40). Enhanced image resolution of occlusal surfaces was obtained using a short-wavelength 405-nm illumination laser. In addition, artificial erosions of varying depths were also imaged with 405-, 404-, 532-, and 635-nm illumination lasers. Laser-induced autofluorescence images of the teeth using 405-nm illumination were also obtained. Contrast between sound and eroded enamel was quantitatively computed for each imaging modality. For shallow erosions, the image contrast with respect to sound enamel was greatest for the 405-nm reflected image. It was also determined that the increased contrast was in large part due to volume scattering with a smaller component from surface scattering. Furthermore, images obtained with a shallow penetration depth illumination laser (405 nm) provided the greatest detail of surface enamel topography since the reflected light does not contain contributions from light reflected from greater depths within the enamel tissue. Multilayered Monte Carlo simulations were also performed to confirm the experimental results.

  12. Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis.

    Science.gov (United States)

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué

    2015-10-01

    In this paper a new methodology for the diagnosing of skin cancer on images of dermatologic spots using image processing is presented. Currently skin cancer is one of the most frequent diseases in humans. This methodology is based on Fourier spectral analysis by using filters such as the classic, inverse and k-law nonlinear. The sample images were obtained by a medical specialist and a new spectral technique is developed to obtain a quantitative measurement of the complex pattern found in cancerous skin spots. Finally a spectral index is calculated to obtain a range of spectral indices defined for skin cancer. Our results show a confidence level of 95.4%.

  13. Development and Current Status of Skull-Image Superimposition - Methodology and Instrumentation.

    Science.gov (United States)

    Lan, Y

    1992-12-01

    This article presents a review of the literature and an evaluation on the development and application of skull-image superimposition technology - both instrumentation and methodology - contributed by a number of scholars since 1935. Along with a comparison of the methodologies involved in the two superimposition techniques - photographic and video - the author characterized the techniques in action and the recent advances in computer image superimposition processing technology. The major disadvantage of conventional approaches is its relying on subjective interpretation. Through painstaking comparison and analysis, computer image processing technology can make more conclusive identifications by direct testing and evaluating the various programmed indices. Copyright © 1992 Central Police University.

  14. Hemispherical Scanning Imaging DOAS: Resolving nitrogen dioxide in the urban environment

    Science.gov (United States)

    Leigh, R. J.; Graves, R. R.; Lawrence, J.; Faloon, K.; Monks, P. S.

    2012-12-01

    Imaging DOAS techniques have been used for nitrogen dioxide and sulfer dioxide for a number of years. This presentation describes a novel system which images concentrations of nitrogen dioxide by scanning an imaging spectrometer 360 degrees azimuthally, covering a region from 5 degrees below the horizon, to the zenith. The instrument has been built at the University of Leicester (UK), on optical designs by Surrey Satellite Technologies Ltd, and incorporates an Offner relay with Schwarzchild fore-optics, in a rotating mount. The spectrometer offers high fidelity spectroscopic retrievals of nitrogen dioxide as a result of a reliable Gaussian line shape, zero smile and low chromatic aberration. The full hemispherical scanning provides complete coverage of nitrogen dioxide concentrations above approximately 5 ppbv in urban environments. Through the use of multiple instruments, the three-dimensional structure of nitrogen dioxide can be sampled and tomographically reconstructed, providing valuable information on nitrogen dioxide emissions and downwind exposure, in addition to new understanding of boundary layer dynamics through the use of nitrogen dioxide as a tracer. Furthermore, certain aerosol information can be retrieved through absolute intensity measurements in each azimuthal direction supplemented by traditional techniques of O4 spectroscopy. Such measurements provide a new tool for boundary layer measurement and monitoring at a time when air quality implications on human health and climate are under significant scrutiny. This presentation will describe the instrument and tomographic potential of this technique. First measurements were taken as part of the international PEGASOS campaign in Bologna, Italy. Results from these measurements will be shown, including imaging of enhanced NO2 in the Bologna urban boundary layer during a severe thunderstorm. A Hemispherical Scanning Imaging DOAS instrument operating in Bologna, Italy in June 2012. Visible in the background

  15. Displaced dual-mode imaging with desorption electrospray ionization for simultaneous mass spectrometry imaging in both polarities and with several scan modes

    DEFF Research Database (Denmark)

    Janfelt, Christian; Wellner, Niels; Hansen, Harald S

    2013-01-01

    only. Simultaneous full-scan and MS/MS imaging was demonstrated on the same mouse kidney, as the mouse had been given a relatively low dose of the antidepressive drug amitriptyline. While the full-scan data allowed imaging of the endogenous phospholipids, the drug and its metabolites were only visible...

  16. Derivation of the scan time requirement for maintaining a consistent PET image quality

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Jae Sung; Kim, Seok-Ki

    2015-01-01

    Objectives: the image quality of PET for larger patients is relatively poor, even though the injection dose is optimized considering the NECR characteristics of the PET scanner. This poor image quality is due to the lower level of maximum NECR that can be achieved in these large patients. The aim of this study was to optimize the PET scan time to obtain a consistent PET image quality regardless of the body size, based on the relationship between the patient specific NECR (pNECR) and body weight. Methods: eighty patients (M/F=53/27, body weight: 059 ± 1 kg) underwent whole-body FDG PET scans using a Philips GEMINI GS PET/CT scanner after an injection of 0.14 mCi/kg FDG. The relationship between the scatter fraction (SF) and body weight was determined by repeated Monte Carlo simulations using a NEMA scatter phantom, the size of which varied according to the relationship between the abdominal circumference and body weight. Using this information, the pNECR was calculated from the prompt and delayed PET sinograms to obtain the prediction equation of NECR vs. body weight. The time scaling factor (F TS ) for the scan duration was finally derived to make PET images with equivalent SNR levels. Results: the SF and NECR had the following nonlinear relationships with the body weight: SF=0.15 ⋅ body weight 0.3 and NECR = 421.36 (body weight) −0.84 . The equation derived for F TS was 0.01⋅ body weight + 0.2, which means that, for example, a 120-kg person should be scanned 1.8 times longer than a 70 kg person, or the scan time for a 40-kg person can be reduced by 30%. Conclusion: the equation of the relative time demand derived in this study will be useful for maintaining consistent PET image quality in clinics

  17. Analytical and Methodological Dilemmas of the Construction of Images

    DEFF Research Database (Denmark)

    Kristensen, Niels Nørgaard

    How should we study and conceptualize political identity and behaviour in post modern society? How do people understand and experience power, and from where do people acquire the elements that impact the formation of the individuals "cognitive map" or political image of society? How do individuals...... as a method of the study of perceptions. It is suggested that individual perception of power and mass mediated politics is related to personal ‘first hand' experience, and that social distance and scepticism co-exist with political engagement and knowledge....

  18. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope

    Science.gov (United States)

    Dubra, Alfredo; Sulai, Yusufu; Norris, Jennifer L.; Cooper, Robert F.; Dubis, Adam M.; Williams, David R.; Carroll, Joseph

    2011-01-01

    The rod photoreceptors are implicated in a number of devastating retinal diseases. However, routine imaging of these cells has remained elusive, even with the advent of adaptive optics imaging. Here, we present the first in vivo images of the contiguous rod photoreceptor mosaic in nine healthy human subjects. The images were collected with three different confocal adaptive optics scanning ophthalmoscopes at two different institutions, using 680 and 775 nm superluminescent diodes for illumination. Estimates of photoreceptor density and rod:cone ratios in the 5°–15° retinal eccentricity range are consistent with histological findings, confirming our ability to resolve the rod mosaic by averaging multiple registered images, without the need for additional image processing. In one subject, we were able to identify the emergence of the first rods at approximately 190 μm from the foveal center, in agreement with previous histological studies. The rod and cone photoreceptor mosaics appear in focus at different retinal depths, with the rod mosaic best focus (i.e., brightest and sharpest) being at least 10 μm shallower than the cones at retinal eccentricities larger than 8°. This study represents an important step in bringing high-resolution imaging to bear on the study of rod disorders. PMID:21750765

  19. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    Science.gov (United States)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  20. Determination of tire cross-sectional geometric characteristics from a digitally scanned image

    Science.gov (United States)

    Danielson, Kent T.

    1995-08-01

    A semi-automated procedure is described for the accurate determination of geometrical characteristics using a scanned image of the tire cross-section. The procedure can be useful for cases when CAD drawings are not available or when a description of the actual cured tire is desired. Curves representing the perimeter of the tire cross-section are determined by an edge tracing scheme, and the plyline and cord-end positions are determined by locations of color intensities. The procedure provides an accurate description of the perimeter of the tire cross-section and the locations of plylines and cord-ends. The position, normals, and curvatures of the cross-sectional surface are included in this description. The locations of the plylines provide the necessary information for determining the ply thicknesses and relative position to a reference surface. Finally, the locations of the cord-ends provide a means to calculate the cord-ends per inch (epi). Menu driven software has been developed to facilitate the procedure using the commercial code, PV-Wave by Visual Numerics, Inc., to display the images. From a single user interface, separate modules are executed for image enhancement, curve fitting the edge trace of the cross-sectional perimeter, and determining the plyline and cord-end locations. The code can run on SUN or SGI workstations and requires the use of a mouse to specify options or identify items on the scanned image.

  1. The impact of the depth of field on cytogenetic image quality in scanning microscopy

    Science.gov (United States)

    Qiu, Yuchen; Chen, Xiaodong; Li, Yuhua; Zheng, Bin; Li, Shibo; Zhang, Roy R.; Chen, Wei R.; Liu, Hong

    2011-03-01

    The purpose of this study is to investigate the impact of the depth of field (DOF) of microscopic systems on cytogenetic image qualities. Due to the narrow DOF of high magnification, large numerical aperture (N.A.) objective lenses, random vibrations of even high precision scanning stages may result in large amount of off focused images. In this study, the DOF of microscopic systems with various objective magnifications/numerical apertures (N.A.) is first measured using standard resolution targets. The impact of DOF on cytogenetic image qualities is then subjectively evaluated with clinical samples, by comparing the band shape and sharpness of analyzable chromosomes. For a specific digital microscopic system with 100× objective lens (N.A. = 1.25), the results of observational studies revealed that chromosomal bands are still recognizable when the images are obtained approximately +/- 1 μm from the focusing plane. The chromosomal bands become fuzzy and unrecognizable when the system is 1.5 μm away from the focusing position. The results of this preliminary experimental study may provide useful design trade-off parameters for developing optimal scanning microscopic systems for cytogenetic applications.

  2. Energy minimization in medical image analysis: Methodologies and applications.

    Science.gov (United States)

    Zhao, Feng; Xie, Xianghua

    2016-02-01

    Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety of optimization schemes have been developed. In this paper, we present a comprehensive survey of the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories: continuous method and discrete method. The former includes Newton-Raphson method, gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-reweighted message passing method, linear programming method, maximum margin learning method, simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface method, primal-dual method, and the multi-objective optimization method. In addition, we review several comparative studies that evaluate the performance of different minimization techniques in terms of accuracy, efficiency, or complexity. These optimization techniques are widely used in many medical applications, for example, image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an overview on those applications as well. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Renal scan

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003790.htm Renal scan To use the sharing features on this ... anaphylaxis . Alternative Names Renogram; Kidney scan Images Kidney anatomy Kidney - blood and urine flow References Chernecky CC, ...

  4. Coherent x-ray diffraction imaging of paint pigment particles by scanning a phase plate modulator

    International Nuclear Information System (INIS)

    Chu, Y.S.; Chen, B.; Zhang, F.; Berenguer, F.; Bean, R.; Kewish, C.; Vila-Comamala, J.; Rodenburg, J.; Robinson, I.

    2011-01-01

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  5. Imaging of surface spin textures on bulk crystals by scanning electron microscopy

    Science.gov (United States)

    Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru

    2016-11-01

    Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.

  6. Remote defect imaging for plate-like structures based on the scanning laser source technique

    Science.gov (United States)

    Hayashi, Takahiro; Maeda, Atsuya; Nakao, Shogo

    2018-04-01

    In defect imaging with a scanning laser source technique, the use of a fixed receiver realizes stable measurements of flexural waves generated by laser at multiple rastering points. This study discussed the defect imaging by remote measurements using a laser Doppler vibrometer as a receiver. Narrow-band burst waves were generated by modulating laser pulse trains of a fiber laser to enhance signal to noise ratio in frequency domain. Averaging three images obtained at three different frequencies suppressed spurious distributions due to resonance. The experimental system equipped with these newly-devised means enabled us to visualize defects and adhesive objects in plate-like structures such as a plate with complex geometries and a branch pipe.

  7. Classification of underground pipe scanned images using feature extraction and neuro-fuzzy algorithm.

    Science.gov (United States)

    Sinha, S K; Karray, F

    2002-01-01

    Pipeline surface defects such as holes and cracks cause major problems for utility managers, particularly when the pipeline is buried under the ground. Manual inspection for surface defects in the pipeline has a number of drawbacks, including subjectivity, varying standards, and high costs. Automatic inspection system using image processing and artificial intelligence techniques can overcome many of these disadvantages and offer utility managers an opportunity to significantly improve quality and reduce costs. A recognition and classification of pipe cracks using images analysis and neuro-fuzzy algorithm is proposed. In the preprocessing step the scanned images of pipe are analyzed and crack features are extracted. In the classification step the neuro-fuzzy algorithm is developed that employs a fuzzy membership function and error backpropagation algorithm. The idea behind the proposed approach is that the fuzzy membership function will absorb variation of feature values and the backpropagation network, with its learning ability, will show good classification efficiency.

  8. Phase-selective staining of metal salt for scanning electron microscopy imaging of block copolymer film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing Ze, E-mail: Lijinge@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronic and Solid-state Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China); State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610054 (China); Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumuqi 830011 (China); Wang, Ying; Hong Wang, Zhi; Mei, Di; Zou, Wei [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronic and Solid-state Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China); Min Chang, Ai [State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610054 (China); Wang, Qi [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumuqi 830011 (China); Komura, Motonori; Ito, Kaori [Division of Integrated Molecular Engineering, Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Iyoda, Tomokazu, E-mail: Iyoda.t.aa@m.titech.ac.jp [Division of Integrated Molecular Engineering, Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2010-09-15

    Three metal salts, i.e., AgNO{sub 3}, HAuCl{sub 4}, and KCl, were proposed as novel staining reagents instead of traditional RuO{sub 4} and OsO{sub 4} labeled with expensive price and extreme toxicity for scanning electron microscopy (SEM) imaging of microphase separated block copolymer film. A simple and costless aqueous solution immersion procedure could ensure selective staining of the metal slat in specific phase of the nanostructured copolymer film, leading to a clear phase contrasted SEM image. The heavy metal salt has better staining effect, demonstrating stable and high signal-to-noise SEM image even at an acceleration voltage as high as 30 kV and magnification up to 250,000 times.

  9. Advances in imaging and electron physics the scanning transmission electron microscope

    CERN Document Server

    Hawkes, Peter W

    2009-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.  This particular volume presents several timely articles on the scanning transmission electron microscope. Updated with contributions from leading international scholars and industry experts Discusses hot topic areas and presents current and future research trends Provides an invaluable reference and guide for physicists, engineers and mathematicians.

  10. Image interpolation allows accurate quantitative bone morphometry in registered micro-computed tomography scans.

    Science.gov (United States)

    Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph

    2014-04-01

    Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.

  11. Fundamental imaging characteristics of a slot-scan digital chest radiographic system

    International Nuclear Information System (INIS)

    Samei, Ehsan; Saunders, Robert S.; Lo, Joseph Y.; Dobbins, James T. III; Jesneck, Jonathan L.; Floyd, Carey E.; Ravin, Carl E.

    2004-01-01

    Our purpose in this study was to evaluate the fundamental image quality characteristics of a new slot-scan digital chest radiography system (ThoraScan, Delft Imaging Systems/Nucletron, Veenendaal, The Netherlands). The linearity of the system was measured over a wide exposure range at 90, 117, and 140 kVp with added Al filtration. System uniformity and reproducibility were established with an analysis of images from repeated exposures. The modulation transfer function (MTF) was evaluated using an established edge method. The noise power spectrum (NPS) and the detective quantum efficiency (DQE) of the system were evaluated at the three kilo-voltages over a range of exposures. Scatter fraction (SF) measurements were made using a posterior beam stop method and a geometrical chest phantom. The system demonstrated excellent linearity, but some structured nonuniformities. The 0.1 MTF values occurred between 3.3-3.5 mm -1 . The DQE(0.15) and DQE(2.5) were 0.21 and 0.07 at 90 kVp, 0.18 and 0.05 at 117 kVp, and 0.16 and 0.03 at 140 kVp, respectively. The system exhibited remarkably lower SFs compared to conventional full-field systems with anti-scatter grid, measuring 0.13 in the lungs and 0.43 in the mediastinum. The findings indicated that the slot-scan design provides marked scatter reduction leading to high effective DQE (DQE eff ) of the system and reduced patient dose required to achieve high image quality

  12. Relative location prediction in CT scan images using convolutional neural networks.

    Science.gov (United States)

    Guo, Jiajia; Du, Hongwei; Zhu, Jianyue; Yan, Ting; Qiu, Bensheng

    2018-07-01

    Relative location prediction in computed tomography (CT) scan images is a challenging problem. Many traditional machine learning methods have been applied in attempts to alleviate this problem. However, the accuracy and speed of these methods cannot meet the requirement of medical scenario. In this paper, we propose a regression model based on one-dimensional convolutional neural networks (CNN) to determine the relative location of a CT scan image both quickly and precisely. In contrast to other common CNN models that use a two-dimensional image as an input, the input of this CNN model is a feature vector extracted by a shape context algorithm with spatial correlation. Normalization via z-score is first applied as a pre-processing step. Then, in order to prevent overfitting and improve model's performance, 20% of the elements of the feature vectors are randomly set to zero. This CNN model consists primarily of three one-dimensional convolutional layers, three dropout layers and two fully-connected layers with appropriate loss functions. A public dataset is employed to validate the performance of the proposed model using a 5-fold cross validation. Experimental results demonstrate an excellent performance of the proposed model when compared with contemporary techniques, achieving a median absolute error of 1.04 cm and mean absolute error of 1.69 cm. The time taken for each relative location prediction is approximately 2 ms. Results indicate that the proposed CNN method can contribute to a quick and accurate relative location prediction in CT scan images, which can improve efficiency of the medical picture archiving and communication system in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Role of radioisotope scanning in the coordinated imaging of urinary tract disease

    International Nuclear Information System (INIS)

    Rosenfield, A.T.; Bird, K.I.; Zeman, R.K.

    1988-01-01

    In this chapter, the authors consider approaches to several commonly encountered urinary tract problems. Until recently, the safety and efficacy of a diagnostic study has been the major determinant of its role. Radioisotope imaging of the urinary tract, an extremely safe technique, was generally recommended for any situation in which it was applicable. There are now new factors, cost and speed, that have come to the forefront. Ultrasonagraphy is a technique that is rapid, safe, and for many indications less expensive than scintigraphy. Computed tomography, although less safe than radioisotope scanning, is extremely accurate, relatively rapid, and provides reliable guidance for interventional procedures. In an era of DRGs with extreme pressure on hospitals to make an exact diagnosis early in the patient's stay in order to limit hospitalization time, CT and sonography have become widely used for many applications for isotope scanning. Thus, economics rather than patient comfort and safety may restrict the role of isotope scanning in future patient management. Magnetic resonance imaging, with spectroscopy having the potential to evaluate physiologic parameters, will also compete with scintigraphy in many situations

  14. RAPTOR-scan: Identifying and Tracking Objects Through Thousands of Sky Images

    International Nuclear Information System (INIS)

    Davidoff, Sherri; Wozniak, Przemyslaw

    2004-01-01

    The RAPTOR-scan system mines data for optical transients associated with gamma-ray bursts and is used to create a catalog for the RAPTOR telescope system. RAPTOR-scan can detect and track individual astronomical objects across data sets containing millions of observed points.Accurately identifying a real object over many optical images (clustering the individual appearances) is necessary in order to analyze object light curves. To achieve this, RAPTOR telescope observations are sent in real time to a database. Each morning, a program based on the DBSCAN algorithm clusters the observations and labels each one with an object identifier. Once clustering is complete, the analysis program may be used to query the database and produce light curves, maps of the sky field, or other informative displays.Although RAPTOR-scan was designed for the RAPTOR optical telescope system, it is a general tool designed to identify objects in a collection of astronomical data and facilitate quick data analysis. RAPTOR-scan will be released as free software under the GNU General Public License

  15. Multimodal ophthalmic imaging using spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    Science.gov (United States)

    El-Haddad, Mohamed T.; Malone, Joseph D.; Li, Jianwei D.; Bozic, Ivan; Arquitola, Amber M.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-08-01

    Ophthalmic surgery involves manipulation of delicate, layered tissue structures on milli- to micrometer scales. Traditional surgical microscopes provide an inherently two-dimensional view of the surgical field with limited depth perception which precludes accurate depth-resolved visualization of these tissue layers, and limits the development of novel surgical techniques. We demonstrate multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) to address current limitations of image-guided ophthalmic microsurgery. SS-SESLO-OCT provides inherently co-registered en face and cross-sectional field-of-views (FOVs) at a line rate of 400 kHz and >2 GPix/s throughput. We show in vivo imaging of the anterior segment and retinal fundus of a healthy volunteer, and preliminary results of multi-volumetric mosaicking for ultrawide-field retinal imaging with 90° FOV. Additionally, a scan-head was rapid-prototyped with a modular architecture which enabled integration of SS-SESLO-OCT with traditional surgical microscope and slit-lamp imaging optics. Ex vivo surgical maneuvers were simulated in cadaveric porcine eyes. The system throughput enabled volumetric acquisition at 10 volumes-per-second (vps) and allowed visualization of surgical dynamics in corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations. SESLO en face images enabled simple real-time co-registration with the surgical microscope FOV, and OCT cross-sections provided depth-resolved visualization of instrument-tissue interactions. Finally, we demonstrate novel augmented-reality integration with the surgical view using segmentation overlays to aid surgical guidance. SS-SESLO-OCT may benefit clinical diagnostics by enabling aiming, registration, and mosaicking; and intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted biomarkers of disease.

  16. New Insights on Subsurface Imaging of Carbon Nanotubes in Polymer Composites via Scanning Electron Microscopy

    Science.gov (United States)

    Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladar, Andras E.; hide

    2015-01-01

    Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by threedimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.

  17. Image quality of multiplanar reconstruction of pulmonary CT scans using adaptive statistical iterative reconstruction.

    Science.gov (United States)

    Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N

    2011-04-01

    We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (pASIR did not suppress the severe artefacts of contrast medium. In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode.

  18. Multimodal imaging of heterogeneous polymers at the nanoscale by AFM and scanning near-field ellipsometric microscopy

    NARCIS (Netherlands)

    Cumurcu, Aysegul; Duvigneau, Joost; Lindsay, I.D.; Schön, Peter Manfred; Vancso, Gyula J.

    2013-01-01

    Scanning near field ellipsometric microscopy (SNEM) was used to simultaneously obtain optical images and tapping mode topography images of the microphase separated morphology of PS-b-P2VP block copolymer thin films. Optical images revealed a spatial resolution well below the diffraction limit. The

  19. First test model of the optical microscope which images the whole vertical particle tracks without any depth scanning

    International Nuclear Information System (INIS)

    Soroko, L.M.

    2001-01-01

    The first test model of the optical microscope which produces the in focus image of the whole vertical particle track without depth scanning is described. The in focus image of the object consisting of the linear array of the point-like elements was obtained. A comparison with primary out of focus image of such an object has been made

  20. CHARACTERIZATION OF DIESEL SPRAY IMAGES USING A SHAPE PROCESSING METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cecile Petit

    2011-05-01

    Full Text Available In Diesel engines, a key element in achieving a clean and efficient combustion process is a proper fuel-air mixing, which is a consequence of the fuel spray development and fuel-air interaction inside the engine combustion chamber. The spray structure and behavior are classically described by the length (penetration and width (angle of the spray plume but these parameters do not give any clue on the geometrical injection center and on the spray symmetry. The purpose of this paper is to find out original tools to characterize the Diesel spray: the virtual spray origin is the geometrical injection center, which may (or may not coincide with the injector axis. Another interesting point is the description of the Diesel spray in terms of symmetry: the spray plume internal and external symmetry characterize the spray and the injector performance. Our approach is first to find out the virtual spray origin: after the image segmentation, the spray is coded with the Freeman code and with an original shape coding from which the moments are derived. The symmetry axes are then computed and the spray plumes are discarded (or not for the virtual spray origin computation, which is derived from a Voronoi diagram. The last step is the internal and external spray plume symmetry characterization thanks to correlation and mathematical distances.

  1. Scanning Electron Microscope Calibration Using a Multi-Image Non-Linear Minimization Process

    Science.gov (United States)

    Cui, Le; Marchand, Éric

    2015-04-01

    A scanning electron microscope (SEM) calibrating approach based on non-linear minimization procedure is presented in this article. A part of this article has been published in IEEE International Conference on Robotics and Automation (ICRA), 2014. . Both the intrinsic parameters and the extrinsic parameters estimations are achieved simultaneously by minimizing the registration error. The proposed approach considers multi-images of a multi-scale calibration pattern view from different positions and orientations. Since the projection geometry of the scanning electron microscope is different from that of a classical optical sensor, the perspective projection model and the parallel projection model are considered and compared with distortion models. Experiments are realized by varying the position and the orientation of a multi-scale chessboard calibration pattern from 300× to 10,000×. The experimental results show the efficiency and the accuracy of this approach.

  2. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    Science.gov (United States)

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-10-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.

  3. Comparative evaluation of coronal images of the middle ear visualized by CT scan and polytomography

    International Nuclear Information System (INIS)

    Sugiyama, Masao; Nakai, Yoshiaki; Cho, Kansei; Tanabe, Kyoji; Inoue, Yuichi; Onoyama, Yasuto

    1982-01-01

    We retrospectively analysed the coronal images of the middle ear obtained by multidirectional tomography (polytomography) and computed tomography (CT) in 40 patients. Although CT was capable of demonstrating water density in the middle ear more clearly than polytomography and of delineating a lesion extending even outside of the petrous bone, the diagnostic capability was not much different between the two tomographic techniques. On the other hand, coronal CT scan has a disadvantage in that it usually has to be performed during hyperextension of the neck or while patients are in an uncomfortable hanging head position. We think that CT scan should be utilized only in case with a lesion extending beyond the petrous bone and/or is not well visualized by polytomography. (author)

  4. Methodology for attainment of density and effective atomic number through dual energy technique using microtomographic images

    International Nuclear Information System (INIS)

    Alves, H.; Lima, I.; Lopes, R.T.

    2014-01-01

    Dual energy technique for computerized microtomography shows itself as a promising method for identification of mineralogy on geological samples of heterogeneous composition. It can also assist with differentiating very similar objects regarding the attenuation coefficient, which are usually not separable during image processing and analysis of microtomographic data. Therefore, the development of a feasible and applicable methodology of dual energy in the analysis of microtomographic images was sought. - Highlights: • Dual energy technique is promising for identification of distribution of minerals. • A feasible methodology of dual energy in analysis of tomographic images was sought. • The dual energy technique is efficient for density and atomic number identification. • Simulation showed that the proposed methodology agrees with theoretical data. • Nondestructive characterization of distribution of density and chemical composition

  5. HIGH RESOLUTION AIRBORNE LASER SCANNING AND HYPERSPECTRAL IMAGING WITH A SMALL UAV PLATFORM

    Directory of Open Access Journals (Sweden)

    M. Gallay

    2016-06-01

    Full Text Available The capabilities of unmanned airborne systems (UAS have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology in high spectral and spatial resolution.

  6. Muscle metastases: ultrasound and CT scan imaging in nine cases. Report on 9 cases

    International Nuclear Information System (INIS)

    Folinais, D.; Cluzel, Ph.; Blangy, S.; Sibert, A.; David, M.; Benacerraf, R.

    1988-01-01

    Clinical, ultrasound and CT scan examinations were carried out in 9 patients with secondary muscle lesions. All muscles can be affected but there was a marked predominance of psoas lesions (6 of the 9 cases). Two contrasting clinical pictures are seen. Secondary muscle tumors can occur during evolution of a known treated cancer (5 of the 9 cases), revealed usually by large, rarely painful, mass. CT scan imaging shows an heterogeneous mass taking up contrast and often partially necrotic, the lesions appearing hypoechogenic or heterogeneous on ultrasound exmination. Certain lesions can be totally necrotic. In some cases (4 of the 9 patients) the muscle metastases revealed the presence of a tumor. Symptomatology may be atypical and lead to a delay in diagnosis. Fine needle puncture biopsy can detect the secondary origin of the muscle lesion and also the primary tumor site (4 out of 9 cases), bronchopulmonary and colon cancer predominating. Images are however non-specific and in the absence of NMR imaging the muscle or lymph node metastases can be confused, although this has no practic consequences since treatment is identical [fr

  7. Scanning laser optical tomography for in toto imaging of the murine cochlea.

    Directory of Open Access Journals (Sweden)

    Lena Nolte

    Full Text Available The mammalian cochlea is a complex macroscopic structure due to its helical shape and the microscopic arrangements of the individual layers of cells. To improve the outcomes of hearing restoration in deaf patients, it is important to understand the anatomic structure and composition of the cochlea ex vivo. Hitherto, only one histological technique based on confocal laser scanning microscopy and optical clearing has been developed for in toto optical imaging of the murine cochlea. However, with a growing size of the specimen, e.g., human cochlea, this technique reaches its limitations. Here, we demonstrate scanning laser optical tomography (SLOT as a valuable imaging technique to visualize the murine cochlea in toto without any physical slicing. This technique can also be applied in larger specimens up to cm3 such as the human cochlea. Furthermore, immunolabeling allows visualization of inner hair cells (otoferlin or spiral ganglion cells (neurofilament within the whole cochlea. After image reconstruction, the 3D dataset was used for digital segmentation of the labeled region. As a result, quantitative analysis of position, length and curvature of the labeled region was possible. This is of high interest in order to understand the interaction of cochlear implants (CI and cells in more detail.

  8. The fusion of large scale classified side-scan sonar image mosaics.

    Science.gov (United States)

    Reed, Scott; Tena, Ruiz Ioseba; Capus, Chris; Petillot, Yvan

    2006-07-01

    This paper presents a unified framework for the creation of classified maps of the seafloor from sonar imagery. Significant challenges in photometric correction, classification, navigation and registration, and image fusion are addressed. The techniques described are directly applicable to a range of remote sensing problems. Recent advances in side-scan data correction are incorporated to compensate for the sonar beam pattern and motion of the acquisition platform. The corrected images are segmented using pixel-based textural features and standard classifiers. In parallel, the navigation of the sonar device is processed using Kalman filtering techniques. A simultaneous localization and mapping framework is adopted to improve the navigation accuracy and produce georeferenced mosaics of the segmented side-scan data. These are fused within a Markovian framework and two fusion models are presented. The first uses a voting scheme regularized by an isotropic Markov random field and is applicable when the reliability of each information source is unknown. The Markov model is also used to inpaint regions where no final classification decision can be reached using pixel level fusion. The second model formally introduces the reliability of each information source into a probabilistic model. Evaluation of the two models using both synthetic images and real data from a large scale survey shows significant quantitative and qualitative improvement using the fusion approach.

  9. Methodological NMR imaging developments to measure cerebral perfusion

    International Nuclear Information System (INIS)

    Pannetier, N.

    2010-12-01

    This work focuses on acquisition techniques and physiological models that allow characterization of cerebral perfusion by MRI. The arterial input function (AIF), on which many models are based, is measured by a technique of optical imaging at the carotid artery in rats. The reproducibility and repeatability of the AIF are discussed and a model function is proposed. Then we compare two techniques for measuring the vessel size index (VSI) in rats bearing a glioma. The reference technique, using a USPIO contrast agent (CA), faces the dynamic approach that estimates this parameter during the passage of a bolus of Gd. This last technique has the advantage of being used clinically. The results obtained at 4.7 T by both approaches are similar and use of VSI in clinical protocols is strongly encouraged at high field. The mechanisms involved (R1 and R2* relaxivities) were then studied using a multi gradient -echoes approach. A multi-echoes spiral sequence is developed and a method that allows the refocusing between each echo is presented. This sequence is used to characterize the impact of R1 effects during the passage of two successive injections of Gd. Finally, we developed a tool for simulating the NMR signal on a 2D geometry taking into account the permeability of the BBB and the CA diffusion in the interstitial space. At short TE, the effect of diffusion on the signal is negligible. In contrast, the effects of diffusion and permeability may be separated at long echo time. Finally we show that during the extravasation of the CA, the local magnetic field homogenization due to the decrease of the magnetic susceptibility difference at vascular interfaces is quickly balanced by the perturbations induced by the increase of the magnetic susceptibility difference at the cellular interfaces in the extravascular compartment. (author)

  10. Dose reduction for CT in children with cystic fibrosis: is it feasible to reduce the number of images per scan?

    International Nuclear Information System (INIS)

    Jong, Pim A. de; Tiddens, Harm A.W.M.; Nakano, Yasutaka; Lequin, Maarten H.

    2006-01-01

    Reducing the dose for each CT scan is important for children with cystic fibrosis (CF). To determine whether the number of CT images and therefore the dose per CT scan could be reduced without any significant loss of information in children with CF. A cohort of children with CF was followed with biennial surveillance CT scans, obtained in inspiration after a voluntary breath-hold as 1-mm thick images at 10-mm intervals from lung apex to base. A random set of 20 baseline CT scans and 10 follow-up CT scans were blinded. Sets of every image (10-mm intervals), every second image (20-mm intervals), every third image (30-mm intervals) and a selection of three and five images were scored randomly using a published CT scoring system by one experienced observer. The 20 subjects were 10 years of age with a range of 3.7-17.6 years at baseline. Fewer CT images resulted in a significantly lower (less abnormal) CT score and the number of patients positive for abnormalities decreased subsequently. At intervals greater than 20 mm no significant change in CT score over 2 years could be detected, while the CT scores at 10-mm (P=0.02) and 20-mm (P=0.02) intervals worsened significantly. A reduction in the number of inspiratory CT images by increasing the interval between images to greater than 10 mm is not a valid option for radiation dose reduction in children with CF. (orig.)

  11. Role of Early Postradiation Magnetic Resonance Imaging Scans in Children With Diffuse Intrinsic Pontine Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Christine [Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Kaushal, Aradhana, E-mail: kaushala@mail.nih.gov [Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Hammoud, Dima A. [Radiology and Imaging Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Steffen-Smith, Emilie A.; Bent, Robyn [Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Citrin, Deborah; Camphausen, Kevin [Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Warren, Katherine E. [Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States)

    2012-07-15

    Purpose: To determine optimal timing of assessing postradiation radiographic response on magnetic resonance imaging (MRI) scans in pediatric patients with diffuse intrinsic pontine glioma (DIPG). Methods and Materials: Patients were treated on a prospective study at the National Cancer Institute (Protocol no. 06-C-0219) evaluating the effects of radiotherapy (RT). Standard RT was administered in standard fractionation over 6 weeks. Postradiation MRI scans were performed at 2 and 6-8 weeks. Results: Eleven patients with DIPG were evaluated. Median age was 6 years (range, 4-13 years). Patients were treated with external-beam RT to 55.8 Gy (n = 10) or 54 Gy (n = 1), with a gross tumor volume to planning target volume expansion of 1.8-2.0 cm. All patients received prescribed dose and underwent posttreatment MRI scans at 2 and 6-8 weeks. Pretreatment imaging revealed compression of fourth ventricle (n = 11); basilar artery encasement (n = 9); tumor extension outside the pons (n = 11); and tumor hemorrhage (n = 2). At the 2-week scan, basilar artery encasement improved in 7 of 9 patients, and extent of tumor was reduced in 5 of 11 patients. Fourth ventricle compression improved in 6 of 11 patients but worsened in 3 of 11 patients. Presumed necrosis was observed in 5 of 11 patients at 2 weeks and in 1 additional patient at 6-8 weeks. There was no significant difference in mean anteroposterior and transverse diameters of tumor between the 2- and 6-8-week time points. Six of 11 patients had increasing ventricular size, with no evidence of obstruction. Conclusions: There is no significant difference in tumor size of DIPG patients who have received standard RT when measured at 2 weeks vs. 6-8 weeks after RT. The majority of patients had the largest change in tumor size at the 2-week post-RT scan, with evolving changes documented on the 6-8-week scan. Six of 11 patients had progressive ventriculomegaly without obstruction, suggestive of communicating hydrocephalus. To the best

  12. Variations in PET/CT methodology for oncologic imaging at U.S. academic medical centers: an imaging response assessment team survey.

    Science.gov (United States)

    Graham, Michael M; Badawi, Ramsey D; Wahl, Richard L

    2011-02-01

    In 2005, 8 Imaging Response Assessment Teams (IRATs) were funded by the National Cancer Institute (NCI) as supplemental grants to existing NCI Cancer Centers. After discussion among the IRATs regarding the need for increased standardization of clinical and research PET/CT methodology, it became apparent that data acquisition and processing approaches differ considerably among centers. To determine the variability in detail, a survey of IRAT sites and IRAT affiliates was performed. A 34-question instrument evaluating patient preparation, scanner type, performance approach, display, and analysis was developed. Fifteen institutions, including the 8 original IRATs and 7 institutions that had developed affiliate IRATs, were surveyed. The major areas of variation were (18)F-FDG dose (259-740 MBq [7-20 mCi]) uptake time (45-90 min), sedation (never to frequently), handling of diabetic patients, imaging time (2-7 min/bed position), performance of diagnostic CT scans as a part of PET/CT, type of acquisition (2-dimensional vs. 3-dimensional), CT technique, duration of fasting (4 or 6 h), and (varying widely) acquisition, processing, display, and PACS software--with 4 sites stating that poor-quality images appear on PACS. There is considerable variability in the way PET/CT scans are performed at academic institutions that are part of the IRAT network. This variability likely makes it difficult to quantitatively compare studies performed at different centers. These data suggest that additional standardization in methodology will be required so that PET/CT studies, especially those performed quantitatively, are more comparable across sites.

  13. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement.

    Science.gov (United States)

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    99m Technetium-methylene diphosphonate ( 99m Tc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99m Tc-MDP-bone scan images. A set of 89 low contrast 99m Tc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t -test was applied, and a statistically significant difference in the input and processed image quality was found at P histogram equalization technique in combination with some other postprocessing technique is useful.

  14. Functional brain imaging with SPECT in normal again and dementia. Methodological, pathophysiological, and diagnostic aspects

    International Nuclear Information System (INIS)

    Waldemar, G.

    1996-03-01

    New developments in instrumentation, radiochemistry, and data analysis, particularly the introduction of 99m Tc-labeled brain-retained tracers for perfusion studies, have opened up a new era of single photon emission computed tomography (SPECT). In this review critical methodological issues relating to the SPECT instrument, the radioactive tracers, the scanning procedure, the data analysis and interpretation of data, and subject selection are discussed together with the changes in regional cerebral blood flow (rCBF) observed in normal aging. An overview is given of the topography and the pathophysiological and diagnostic significance of focal rCBF deficits in Alzheimer's disease and in other dementia disorders, in which SPECT is capable of early or preclinical disease detection. In Alzheimer's disease, the diagnostic sensitivity and specificity of focal rCBF deficits measured with SPECT and brain-retained tracers are very high, in particular when combined with medial temporal lob atrophy on CT. Together with neuropsychological testing, SPECT serves to map the topography of brain dysfunction. Thus, in the clinical setting, SPECT provides information that is supplemental to that obtained in other studies. Future applications include neuroreceptor studies and treatment studies, in which SPECT may serve as a diagnostic aid in the selection of patients and as a potential mean for monitoring treatment effects. Although positron emission tomography is the best characterized tool for addressing some of these clinical and research issues in dementia, only the less expensive and technically simpler SPECT technique will have the potential of being available as a screening diagnostic instrument in the clinical setting. It is concluded that, properly approached, functional brain imaging with SPECT represents an important tool in the diagnosis, management, and research of dementia disorders. (au) 251 refs

  15. The quality of reconstructed 3D images in multidetector-row helical CT: experimental study involving scan parameters

    International Nuclear Information System (INIS)

    Shin, Ji Hoon; Lee, Ho Kyu; Choi, Choong Gon; Suh, Dae Chul; Lim, Tae Hwan; Kang, Weechang

    2002-01-01

    To determine which multidetector-row helical CT scanning technique provides the best-quality reconstructed 3D images, and to assess differences in image quality according to the levels of the scanning parameters used. Four objects with different surfaces and contours were scanned using multidetector-row helical CT at three detector-row collimations (1.25, 2.50, 5.00 mm), two pitches (3.0, 6.0), and three different degrees of overlap between the reconstructed slices (0%, 25%, 50%). Reconstructed 3D images of the resulting 72 sets of data were produced using volumetric rendering. The 72 images were graded on a scale from 1 (worst) to 5 (best) for each of four rating criteria, giving a mean score for each criterion and an overall mean score. Statistical analysis was used to assess differences in image quality according to scanning parameter levels. The mean score for each rating criterion, and the overall mean score, varied significantly according to the scanning parameter levels used. With regard to detector-row collimation and pitch, all levels of scanning parameters gave rise to significant differences, while in the degree of overlap of reconstructed slices, there were significant differences between overlap of 0% and of 50% in all levels of scanning parameters, and between overlap of 25% and of 50% in overall accuracy and overall mean score. Among the 18 scanning sequences, the highest score (4.94) was achieved with 1.25 mm detector-row collimation, 3.0 pitch, and 50% overlap between reconstructed slices. Comparison of the quality of reconstructed 3D images obtained using multidetector-row helical CT and various scanning techniques indicated that the 1.25 mm, 3.0, 50% scanning sequence was best. Quality improved as detector-row collimation decreased; as pitch was reduced from 6.0 to 3.0; and as overlap between reconstructed slices increased

  16. Scanning tunnelling microscope imaging of nanoscale electron density gradients on the surface of GaAs

    International Nuclear Information System (INIS)

    Hamilton, B; Jacobs, J; Missous, M

    2003-01-01

    This paper is concerned with the scanning tunnelling microscope tunnelling conditions needed to produce constant current images dominated either by surface topology or by electronic effects. A model experimental structure was produced by cleaving a GaAs multiδ-doped layer in UHV and so projecting a spatially varying electron gas density onto the (110) surface. This cross sectional electron density varies on a nanometre scale in the [100] growth direction. The electronic structure and tunnelling properties of this system were modelled, and the tunnelling conditions favouring sensitivity to the surface electron gas density determined

  17. Colour measurements of pigmented rice grain using flatbed scanning and image analysis

    Science.gov (United States)

    Kaisaat, Khotchakorn; Keawdonree, Nuttapong; Chomkokard, Sakchai; Jinuntuya, Noparit; Pattanasiri, Busara

    2017-09-01

    Recently, the National Bureau of Agricultural Commodity and Food Standards (ACFS) have drafted a manual of Thai colour rice standards. However, there are no quantitative descriptions of rice colour and its measurement method. These drawbacks might lead to misunderstanding for people who use the manual. In this work, we proposed an inexpensive method, using flatbed scanning together with image analysis, to quantitatively measure rice colour and colour uniformity. To demonstrate its general applicability for colour differentiation of rice, we applied it to different kinds of pigmented rice, including Riceberry rice with and without uniform colour and Chinese black rice.

  18. Documenting Bronze Age Akrotiri on Thera Using Laser Scanning, Image-Based Modelling and Geophysical Prospection

    Science.gov (United States)

    Trinks, I.; Wallner, M.; Kucera, M.; Verhoeven, G.; Torrejón Valdelomar, J.; Löcker, K.; Nau, E.; Sevara, C.; Aldrian, L.; Neubauer, E.; Klein, M.

    2017-02-01

    The excavated architecture of the exceptional prehistoric site of Akrotiri on the Greek island of Thera/Santorini is endangered by gradual decay, damage due to accidents, and seismic shocks, being located on an active volcano in an earthquake-prone area. Therefore, in 2013 and 2014 a digital documentation project has been conducted with support of the National Geographic Society in order to generate a detailed digital model of Akrotiri's architecture using terrestrial laser scanning and image-based modeling. Additionally, non-invasive geophysical prospection has been tested in order to investigate its potential to explore and map yet buried archaeological remains. This article describes the project and the generated results.

  19. Automatic registration of panoramic image sequence and mobile laser scanning data using semantic features

    Science.gov (United States)

    Li, Jianping; Yang, Bisheng; Chen, Chi; Huang, Ronggang; Dong, Zhen; Xiao, Wen

    2018-02-01

    Inaccurate exterior orientation parameters (EoPs) between sensors obtained by pre-calibration leads to failure of registration between panoramic image sequence and mobile laser scanning data. To address this challenge, this paper proposes an automatic registration method based on semantic features extracted from panoramic images and point clouds. Firstly, accurate rotation parameters between the panoramic camera and the laser scanner are estimated using GPS and IMU aided structure from motion (SfM). The initial EoPs of panoramic images are obtained at the same time. Secondly, vehicles in panoramic images are extracted by the Faster-RCNN as candidate primitives to be matched with potential corresponding primitives in point clouds according to the initial EoPs. Finally, translation between the panoramic camera and the laser scanner is refined by maximizing the overlapping area of corresponding primitive pairs based on the Particle Swarm Optimization (PSO), resulting in a finer registration between panoramic image sequences and point clouds. Two challenging urban scenes were experimented to assess the proposed method, and the final registration errors of these two scenes were both less than three pixels, which demonstrates a high level of automation, robustness and accuracy.

  20. Three-dimensional imaging of porous media using confocal laser scanning microscopy.

    Science.gov (United States)

    Shah, S M; Crawshaw, J P; Boek, E S

    2017-02-01

    In the last decade, imaging techniques capable of reconstructing three-dimensional (3-D) pore-scale model have played a pivotal role in the study of fluid flow through complex porous media. In this study, we present advances in the application of confocal laser scanning microscopy (CLSM) to image, reconstruct and characterize complex porous geological materials with hydrocarbon reservoir and CO 2 storage potential. CLSM has a unique capability of producing 3-D thin optical sections of a material, with a wide field of view and submicron resolution in the lateral and axial planes. However, CLSM is limited in the depth (z-dimension) that can be imaged in porous materials. In this study, we introduce a 'grind and slice' technique to overcome this limitation. We discuss the practical and technical aspects of the confocal imaging technique with application to complex rock samples including Mt. Gambier and Ketton carbonates. We then describe the complete workflow of image processing to filtering and segmenting the raw 3-D confocal volumetric data into pores and grains. Finally, we use the resulting 3-D pore-scale binarized confocal data obtained to quantitatively determine petrophysical pore-scale properties such as total porosity, macro- and microporosity and single-phase permeability using lattice Boltzmann (LB) simulations, validated by experiments. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  1. Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks.

    Science.gov (United States)

    Eppenhof, Koen A J; Pluim, Josien P W

    2018-04-01

    Error estimation in nonlinear medical image registration is a nontrivial problem that is important for validation of registration methods. We propose a supervised method for estimation of registration errors in nonlinear registration of three-dimensional (3-D) images. The method is based on a 3-D convolutional neural network that learns to estimate registration errors from a pair of image patches. By applying the network to patches centered around every voxel, we construct registration error maps. The network is trained using a set of representative images that have been synthetically transformed to construct a set of image pairs with known deformations. The method is evaluated on deformable registrations of inhale-exhale pairs of thoracic CT scans. Using ground truth target registration errors on manually annotated landmarks, we evaluate the method's ability to estimate local registration errors. Estimation of full domain error maps is evaluated using a gold standard approach. The two evaluation approaches show that we can train the network to robustly estimate registration errors in a predetermined range, with subvoxel accuracy. We achieved a root-mean-square deviation of 0.51 mm from gold standard registration errors and of 0.66 mm from ground truth landmark registration errors.

  2. A system architecture for sharing de-identified, research-ready brain scans and health information across clinical imaging centers.

    Science.gov (United States)

    Chervenak, Ann L; van Erp, Theo G M; Kesselman, Carl; D'Arcy, Mike; Sobell, Janet; Keator, David; Dahm, Lisa; Murry, Jim; Law, Meng; Hasso, Anton; Ames, Joseph; Macciardi, Fabio; Potkin, Steven G

    2012-01-01

    Progress in our understanding of brain disorders increasingly relies on the costly collection of large standardized brain magnetic resonance imaging (MRI) data sets. Moreover, the clinical interpretation of brain scans benefits from compare and contrast analyses of scans from patients with similar, and sometimes rare, demographic, diagnostic, and treatment status. A solution to both needs is to acquire standardized, research-ready clinical brain scans and to build the information technology infrastructure to share such scans, along with other pertinent information, across hospitals. This paper describes the design, deployment, and operation of a federated imaging system that captures and shares standardized, de-identified clinical brain images in a federation across multiple institutions. In addition to describing innovative aspects of the system architecture and our initial testing of the deployed infrastructure, we also describe the Standardized Imaging Protocol (SIP) developed for the project and our interactions with the Institutional Review Board (IRB) regarding handling patient data in the federated environment.

  3. Development of Scanning-Imaging X-Ray Microscope for Quantitative Three-Dimensional Phase Contrast Microimaging

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Suzuki, Yoshio; Uesugi, Kentaro

    2013-01-01

    A novel x-ray microscope system has been developed for the purpose of quantitative and sensitive three-dimensional (3D) phase-contrast x-ray microimaging. The optical system is a hybrid that consists of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. These two optics are orthogonally arranged regarding their common optical axis. Each is used for forming each dimension of two-dimensional (2D) image. The same data acquisition process as that of the scanning microscope system enables quantitative and sensitive x-ray imaging such as phase contrast and absorption contrast. Because a 2D image is measured with only 1D translation scan, much shorter measurement time than that of conventional scanning optics has been realized. By combining a computed tomography (CT) technique, some 3D CT application examples are demonstrated

  4. Frequent Computed Tomography Scanning Due to Incomplete Three-View X-Ray Imaging of the Cervical Spine

    NARCIS (Netherlands)

    Saltzherr, Teun Peter; Beenen, Ludo F. M.; Reitsma, Johannes B.; Luitse, Jan S. K.; Vandertop, W. Peter; Goslings, J. Carel

    2010-01-01

    Background: Conventional C-spine imaging (3-view series) is still widely used in trauma patients, although the utilization of computed tomography (CT) scanning is increasing. The aim of this study was to analyze the value of conventional radiography and the frequency of subsequent CT scanning due to

  5. Reduction of Cone-Beam CT scan time without compromising the accuracy of the image registration in IGRT

    DEFF Research Database (Denmark)

    Westberg, Jonas; Jensen, Henrik R; Bertelsen, Anders

    2010-01-01

    In modern radiotherapy accelerators are equipped with 3D cone-beam CT (CBCT) which is used to verify patient position before treatment. The verification is based on an image registration between the CBCT acquired just before treatment and the CT scan made for the treatment planning. The purpose...... of this study is to minimise the scan time of the CBCT without compromising the accuracy of the image registration in IGRT....

  6. Imaging sequential dehydrogenation of methanol on Cu(110) with a scanning tunneling microscope.

    Science.gov (United States)

    Kitaguchi, Y; Shiotari, A; Okuyama, H; Hatta, S; Aruga, T

    2011-05-07

    Adsorption of methanol and its dehydrogenation on Cu(110) were studied by using a scanning tunneling microscope (STM). Upon adsorption at 12 K, methanol preferentially forms clusters on the surface. The STM could induce dehydrogenation of methanol sequentially to methoxy and formaldehyde. This enabled us to study the binding structures of these products in a single-molecule limit. Methoxy was imaged as a pair of protrusion and depression along the [001] direction. This feature is fully consistent with the previous result that it adsorbs on the short-bridge site with the C-O axis tilted along the [001] direction. The axis was induced to flip back and forth by vibrational excitations with the STM. Two configurations were observed for formaldehyde, whose structures were proposed based on their characteristic images and motions.

  7. Large area strain analysis using scanning transmission electron microscopy across multiple images

    International Nuclear Information System (INIS)

    Oni, A. A.; Sang, X.; LeBeau, J. M.; Raju, S. V.; Saxena, S.; Dumpala, S.; Broderick, S.; Rajan, K.; Kumar, A.; Sinnott, S.

    2015-01-01

    Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show that it is possible to use strain reference areas elsewhere in the sample, thereby enabling reliable strain mapping across large areas. As a prototypical example, we determine the strain present within the microstructure of a Ni-based superalloy directly from atom column positions as well as geometric phase analysis. While maintaining atomic resolution, we quantify strain within nanoscale regions and demonstrate that large, unit-cell level strain fluctuations are present within the intermetallic phase

  8. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2017-11-01

    Full Text Available Adaptive optics scanning laser ophthalmoscopy (AO-SLO has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography. Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods, fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.

  9. Scanning electron microscope cathodoluminescence imaging of subgrain boundaries, twins and planar deformation features in quartz

    Science.gov (United States)

    Hamers, M. F.; Pennock, G. M.; Drury, M. R.

    2017-04-01

    The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.

  10. Improved image quality and radiation dose reduction in liver dynamic CT scan with the protocol change

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yu Jin; Cho, Pyong Kon [Radiological Science, Catholic University of Daegu, Daegu (Korea, Republic of)

    2015-06-15

    The purpose is reducing radiation dose while maintaining of image quality in liver dynamic CT(LDCT) scan, by protocols generally used and the tube voltage set at a low level protocol compared to the radiation dose and image quality. The target is body mass index, 18.5-24 patients out of 40 patients who underwent the ACT(abdominal CT). Group A(tube voltage : 120 kVp, SAFIRE strength 1) of 20 people among 40 people, to apply the general abdominal CT scan protocol, group B(tube voltage : 100 kVp, apply SAFIRE strength 0-5) was 20 people, set a lower tube voltage. Image quality evaluation was setting a region of interest(ROI) in the liver parenchyma, aorta, superior mesenteric artery (SMA), celiac trunk, visceral fat of arterial phase. In the ROI were compared by measuring the noise, signal to noise ratio(SNR), contrast to noise ratio(CNR), CT number. In addition, qualitative assessments to evaluate two people in the rich professional experience in Radiology by 0-3 points. We compared the total radiation dose, dose length product(DLP) and effective dose, volume computed tomography dose index(CTDIvol). The higher SAFIRE in the tube voltage 100 kVp, noise is reduced, CT number was increased. Thus, SNR and CNR was increased higher the SAFIRE step. Compared with the tube voltage 120 kVp, noise, SNR, CNR was most similar in SAFIRE strength 2 and 3. Qualitative assessment SAFIRE strength 2 is the most common SAFIRE strength 2 the most common qualitative assessment, if the tube voltage of 100 kVp when the quality of the images better evaluated was SAFIRE strength 1. Dose was reduced from 21.69%, in 100 kVp than 120 kVp. In the case of a relatively high BMI is not LDCT scan, When it is shipped from the factory tube voltage is set higher, unnecessary radiation exposure when considering the reality that is concerned, when according to the results of this study, set a lower tube voltage and adjust the SAFIRE strength to 1 or 2, the radiation without compromising image quality

  11. Three-dimensional-CT imaging of colorectal disease with thin collimation helical CT scanning

    International Nuclear Information System (INIS)

    Ogura, Toshihiro; Koizumi, Koichi; Sakai, Tatsuya; Kai, Shunkichi; Takatsu, Kazuaki; Maruyama, Masakazu

    1998-01-01

    We have conducted research on three-dimensional (3D)-CT-colonoscopy with thin collimation helical CT scanning over the past three years. This has lately become a subject of special interest. 3D-CT-colonoscopy has three kinds of visualizing methods depending on the threshold setting of CT values. The first one is the virtual endoscopy method which is displayed in a similar fashion to colonoscopic images. The second one is the air image method using the air in the digestive tract as a contrast medium. The third one is the pseudo-tract method which has characteristics of both virtual endoscopy and the air image method and visualizes in a shape of the digestive tract. The image visualized by 3D-CT-colonoscopy is similar to that of conventional colonoscopy and barium enema study, which is obtained with minimal invasion to patients. Obvious advanced carcinomas were easily visualized, and even a small flat polyp measuring 5 mm in size, was able to be observed retrospectively. The characteristics of our method are that we can easily make an examination in a short time and with little dependence on expert technique. Also patients have little discomfort compared to that experienced during colonoscopy and barium enema study. Important features are as follows; long calculation time, insufficient air insufflation, fecal material in the patient''s bowel, whole abdominal scan, and spatial resolution. In the near future, a multislice CT scanner system will have ability to overcome these problems. Therefore, 3D-CT-colonoscopy might be applied in the future for first line examination as a mass screening for colorectal carcinoma. (author)

  12. Applying deep learning technology to automatically identify metaphase chromosomes using scanning microscopic images: an initial investigation

    Science.gov (United States)

    Qiu, Yuchen; Lu, Xianglan; Yan, Shiju; Tan, Maxine; Cheng, Samuel; Li, Shibo; Liu, Hong; Zheng, Bin

    2016-03-01

    Automated high throughput scanning microscopy is a fast developing screening technology used in cytogenetic laboratories for the diagnosis of leukemia or other genetic diseases. However, one of the major challenges of using this new technology is how to efficiently detect the analyzable metaphase chromosomes during the scanning process. The purpose of this investigation is to develop a computer aided detection (CAD) scheme based on deep learning technology, which can identify the metaphase chromosomes with high accuracy. The CAD scheme includes an eight layer neural network. The first six layers compose of an automatic feature extraction module, which has an architecture of three convolution-max-pooling layer pairs. The 1st, 2nd and 3rd pair contains 30, 20, 20 feature maps, respectively. The seventh and eighth layers compose of a multiple layer perception (MLP) based classifier, which is used to identify the analyzable metaphase chromosomes. The performance of new CAD scheme was assessed by receiver operation characteristic (ROC) method. A number of 150 regions of interest (ROIs) were selected to test the performance of our new CAD scheme. Each ROI contains either interphase cell or metaphase chromosomes. The results indicate that new scheme is able to achieve an area under the ROC curve (AUC) of 0.886+/-0.043. This investigation demonstrates that applying a deep learning technique may enable to significantly improve the accuracy of the metaphase chromosome detection using a scanning microscopic imaging technology in the future.

  13. A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK

    International Nuclear Information System (INIS)

    Khotkevych, V. V.; Bending, S. J.; Milosevic, M. V.

    2008-01-01

    We present the design, construction, and performance of a low-temperature scanning Hall probe microscope with submicron lateral resolution and a large scanning range. The detachable microscope head is mounted on the cold flange of a commercial 3 He-refrigerator (Oxford Instruments, Heliox VT-50) and operates between room temperature and 300 mK. It is fitted with a three-axis slip-stick nanopositioner that enables precise in situ adjustment of the probe location within a 6x6x7 mm 3 space. The local magnetic induction at the sample surface is mapped with an easily changeable microfabricated Hall probe [typically GsAs/AlGaAs or AlGaAs/InGaAs/GaAs Hall sensors with integrated scanning tunnel microscopy (STM) tunneling tips] and can achieve minimum detectable fields ≥10 mG/Hz 1/2 . The Hall probe is brought into very close proximity to the sample surface by sensing and controlling tunnel currents at the integrated STM tip. The instrument is capable of simultaneous tunneling and Hall signal acquisition in surface-tracking mode. We illustrate the potential of the system with images of superconducting vortices at the surface of a Nb thin film down to 372 mK, and also of labyrinth magnetic-domain patterns of an yttrium iron garnet film captured at room temperature.

  14. Scan time reduction in {sup 23}Na-Magnetic Resonance Imaging using the chemical shift imaging sequence. Evaluation of an iterative reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Weingaertner, Sebastian; Konstandin, Simon; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Wetterling, Friedrich [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Dublin Univ. (Ireland) Trinity Inst. of Neuroscience; Fatar, Marc [Heidelberg Univ., Mannheim (Germany). Dept. of Neurology; Neumaier-Probst, Eva [Heidelberg Univ., Mannheim (Germany). Dept. of Neuroradiology

    2015-07-01

    To evaluate potential scan time reduction in {sup 23}Na-Magnetic Resonance Imaging with the chemical shift imaging sequence (CSI) using undersampled data of high-quality datasets, reconstructed with an iterative constrained reconstruction, compared to reduced resolution or reduced signal-to-noise ratio. CSI {sup 23}Na-images were retrospectively undersampled and reconstructed with a constrained reconstruction scheme. The results were compared to conventional methods of scan time reduction. The constrained reconstruction scheme used a phase constraint and a finite object support, which was extracted from a spatially registered {sup 1}H-image acquired with a double-tuned coil. The methods were evaluated using numerical simulations, phantom images and in-vivo images of a healthy volunteer and a patient who suffered from cerebral ischemic stroke. The constrained reconstruction scheme showed improved image quality compared to a decreased number of averages, images with decreased resolution or circular undersampling with weighted averaging for any undersampling factor. Brain images of a stroke patient, which were reconstructed from three-fold undersampled k-space data, resulted in only minor differences from the original image (normalized root means square error < 12%) and an almost identical delineation of the stroke region (mismatch < 6%). The acquisition of undersampled {sup 23}Na-CSI images enables up to three-fold scan time reduction with improved image quality compared to conventional methods of scan time saving.

  15. Development of a methodology for automated assessment of the quality of digitized images in mammography

    International Nuclear Information System (INIS)

    Santana, Priscila do Carmo

    2010-01-01

    The process of evaluating the quality of radiographic images in general, and mammography in particular, can be much more accurate, practical and fast with the help of computer analysis tools. The purpose of this study is to develop a computational methodology to automate the process of assessing the quality of mammography images through techniques of digital imaging processing (PDI), using an existing image processing environment (ImageJ). With the application of PDI techniques was possible to extract geometric and radiometric characteristics of the images evaluated. The evaluated parameters include spatial resolution, high-contrast detail, low contrast threshold, linear detail of low contrast, tumor masses, contrast ratio and background optical density. The results obtained by this method were compared with the results presented in the visual evaluations performed by the Health Surveillance of Minas Gerais. Through this comparison was possible to demonstrate that the automated methodology is presented as a promising alternative for the reduction or elimination of existing subjectivity in the visual assessment methodology currently in use. (author)

  16. Simultaneous monitoring of ice accretion and thermography of an airfoil: an IR imaging methodology

    International Nuclear Information System (INIS)

    Mohseni, M; Frioult, M; Amirfazli, A

    2012-01-01

    A novel image analysis methodology based on infrared (IR) imaging was developed for simultaneous monitoring of ice accretion and thermography of airfoils. In this study, an IR camera was calibrated and used to measure the surface temperature of the energized airfoils, and monitor the ice accretion and growth pattern on the airfoils’ surfaces. The methodology comprises the automatic processing of a series of IR video frames with the purpose of detecting ice pattern evolution during the icing test period. A specially developed MATLAB code was used to detect the iced areas in the IR images, and simultaneously monitor surface temperature evolution of the airfoil during an icing test. Knowing the correlation between the icing pattern and surface temperature changes during an icing test is essential for energy efficient design of thermal icing mitigation systems. Processed IR images were also used to determine the ice accumulation rate on the airfoil's surface in a given icing test. The proposed methodology has been demonstrated to work successfully, since the optical images taken at the end of icing tests from the airfoils’ surfaces compared well with the processed IR images detecting the ice grown outward from the airfoils’ leading edge area. (paper)

  17. Terrestrial scanning or digital images in inventory of monumental objects? - case study

    Science.gov (United States)

    Markiewicz, J. S.; Zawieska, D.

    2014-06-01

    Cultural heritage is the evidence of the past; monumental objects create the important part of the cultural heritage. Selection of a method to be applied depends on many factors, which include: the objectives of inventory, the object's volume, sumptuousness of architectural design, accessibility to the object, required terms and accuracy of works. The paper presents research and experimental works, which have been performed in the course of development of architectural documentation of elements of the external facades and interiors of the Wilanów Palace Museum in Warszawa. Point clouds, acquired from terrestrial laser scanning (Z+F 5003h) and digital images taken with Nikon D3X and Hasselblad H4D cameras were used. Advantages and disadvantages of utilisation of these technologies of measurements have been analysed with consideration of the influence of the structure and reflectance of investigated monumental surfaces on the quality of generation of photogrammetric products. The geometric quality of surfaces obtained from terrestrial laser scanning data and from point clouds resulting from digital images, have been compared.

  18. Automatic segmentation of cell nuclei from confocal laser scanning microscopy images

    International Nuclear Information System (INIS)

    Kelemen, A.; Reist, H.W.

    1997-01-01

    A newly developed experimental method combines the possibility of irradiating more than a thousand cells simultaneous with an efficient colony-forming ability and with the capability of localizing a particle track through a cell nucleus together with the assessment of the energy transfer by digital superposition of the image containing the track with that of the cells. To assess the amount of energy deposition by particles traversing the cell nucleus the intersection lengths of the particle tracks have to be known. Intersection lengths can be obtained by determining the 3D surface contours of the irradiated cell nuclei. Confocal laser scanning microscopy using specific DNA fluorescent dye offers a possible way for the determination of the 3D shape of individual nuclei. Unfortunately, such experiments cannot be performed on living cells. One solution to this problem can be provided by building a statistical model of the shape of the nuclei of the exposed cells. In order to build such a statistical model, a large number of cell nuclei have to be identified and segmented from confocal laser scanning microscopy images. The present paper describes a method to perform this 3D segmentation in an automatic manner in order to create a solid basis for the statistical model. (author) 2 figs., 4 refs

  19. Examination of Scanning Electron Microscope and Computed Tomography Images of PICA

    Science.gov (United States)

    Lawson, John W.; Stackpoole, Margaret M.; Shklover, Valery

    2010-01-01

    Micrographs of PICA (Phenolic Impregnated Carbon Ablator) taken using a Scanning Electron Microscope (SEM) and 3D images taken with a Computed Tomography (CT) system are examined. PICA is a carbon fiber based composite (Fiberform ) with a phenolic polymer matrix. The micrographs are taken at different surface depths and at different magnifications in a sample after arc jet testing and show different levels of oxidative removal of the charred matrix (Figs 1 though 13). CT scans, courtesy of Xradia, Inc. of Concord CA, were captured for samples of virgin PICA, charred PICA and raw Fiberform (Fig. 14). We use these images to calculate the thermal conductivity (TC) of these materials using correlation function (CF) methods. CF methods give a mathematical description of how one material is embedded in another and is thus ideally suited for modeling composites like PICA. We will evaluate how the TC of the materials changes as a function of surface depth. This work is in collaboration with ETH-Zurich, which has expertise in high temperature materials and TC modeling (including CF methods).

  20. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy.

    Science.gov (United States)

    Hashimoto, Teruo; Thompson, George E; Zhou, Xiaorong; Withers, Philip J

    2016-04-01

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. An inverse method for crack characterization from ultrasonic B-Scan images

    International Nuclear Information System (INIS)

    Faur, M.; Roy, O.; Benoist, PH.; Morisseau, PH.

    1996-01-01

    Concern has been expressed about the capabilities of performing non destructive evaluation (NDE) of flaws located near to the outer surface in nuclear pressurized water reactor (PWR) vessels. The ultrasonic examination of PWR is accomplished from the inside with ultrasonic focused transducers working in the pulse echo mode. By recording the echoes as a function of time, the Ascan representation may be obtained. Many ultrasonic flaw detectors used for NDE are based on the simple Ascan concept involving measuring a time interval called 'time of flight'. By combining the Ascan concept synchronized transducer scanning, one can produce Bscan images that are two dimensional descriptions of the flaw interaction with the ultrasonic field. In the following, the flaw is assumed to be an axially oriented crack (the most serious flaw to be found in a pressurized component). In the case of the outer surface cracks (OSC's), analyzing and interpreting ultrasonic Ascan images become difficult because of the various reflections of the ultrasonic beam on the crack and on the outer surface (the so-called corner effect). Methods for automatic interpretation of ultrasonic experimental data are currently under investigation. In this paper, we present an inverse method for determining the geometrical characteristics of OSC's from ultrasonic Bscan images. The direct model used for the inversion procedure predicts synthetic Bscan images of ultrasonic examination of blocks containing planar defects interrogated by focused probes. (authors)

  2. Composition quantification of electron-transparent samples by backscattered electron imaging in scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Müller, E., E-mail: erich.mueller@kit.edu; Gerthsen, D.

    2017-02-15

    The contrast of backscattered electron (BSE) images in scanning electron microscopy (SEM) depends on material parameters which can be exploited for composition quantification if some information on the material system is available. As an example, the In-concentration in thin In{sub x}Ga{sub 1−x}As layers embedded in a GaAs matrix is analyzed in this work. The spatial resolution of the technique is improved by using thin electron-transparent specimens instead of bulk samples. Although the BSEs are detected in a comparably small angular range by an annular semiconductor detector, the image intensity can be evaluated to determine the composition and local thickness of the specimen. The measured intensities are calibrated within one single image to eliminate the influence of the detection and amplification system. Quantification is performed by comparison of experimental and calculated data. Instead of using time-consuming Monte-Carlo simulations, an analytical model is applied for BSE-intensity calculations which considers single electron scattering and electron diffusion. - Highlights: • Sample thickness and composition are quantified by backscattered electron imaging. • A thin sample is used to achieve spatial resolution of few nanometers. • Calculations are carried out with a time-saving electron diffusion model. • Small differences in atomic number and density detected at low electron energies.

  3. Specimen preparation, imaging, and analysis protocols for knife-edge scanning microscopy.

    Science.gov (United States)

    Choe, Yoonsuck; Mayerich, David; Kwon, Jaerock; Miller, Daniel E; Sung, Chul; Chung, Ji Ryang; Huffman, Todd; Keyser, John; Abbott, Louise C

    2011-12-09

    Major advances in high-throughput, high-resolution, 3D microscopy techniques have enabled the acquisition of large volumes of neuroanatomical data at submicrometer resolution. One of the first such instruments producing whole-brain-scale data is the Knife-Edge Scanning Microscope (KESM), developed and hosted in the authors' lab. KESM has been used to section and image whole mouse brains at submicrometer resolution, revealing the intricate details of the neuronal networks (Golgi), vascular networks (India ink), and cell body distribution (Nissl). The use of KESM is not restricted to the mouse nor the brain. We have successfully imaged the octopus brain, mouse lung, and rat brain. We are currently working on whole zebra fish embryos. Data like these can greatly contribute to connectomics research; to microcirculation and hemodynamic research; and to stereology research by providing an exact ground-truth. In this article, we will describe the pipeline, including specimen preparation (fixing, staining, and embedding), KESM configuration and setup, sectioning and imaging with the KESM, image processing, data preparation, and data visualization and analysis. The emphasis will be on specimen preparation and visualization/analysis of obtained KESM data. We expect the detailed protocol presented in this article to help broaden the access to KESM and increase its utilization.

  4. Theoretical and experimental study of image formation in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Prunier epouse Mory, Claudie

    1985-01-01

    This thesis contains a theoretical and experimental study of image formation in a dedicated scanning transmission electron microscope (STEM). Using a detailed description of the different optical elements between the field emission source and the specimen, one calculates the shape and size of the primary probe of electrons impinging on the sample. This modelization enables to estimate the spatial resolution in the different imaging or microanalytical modes. The influence of the specimen and the role of the various detectors are taken into account to calculate the point spread function of the instrument in STEM imaging modes. An experimental study of the characteristic properties of phase contrast bright field micrographs and incoherent dark field ones is performed by comparison of digitally recorded images in similar conditions. Spatial resolution, contrast and signal/noise ratio are assessed by correlation methods, Fourier analysis and statistical considerations; one can deduce the optimum focusing conditions. Limits such as the point resolution on quasi-atomic metallic clusters are determined and an analysis of the capabilities of signal mixing concludes this work. Applications are offered in various domains such as the visualisation of small metallic particles, biomolecules and unstained biological sections. (author) [fr

  5. Scanning thin-sheet laser imaging microscopy (sTSLIM) with structured illumination and HiLo background rejection.

    Science.gov (United States)

    Schröter, Tobias J; Johnson, Shane B; John, Kerstin; Santi, Peter A

    2012-01-01

    We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. 2011 Optical Society of America

  6. Cemento-Osseous Dysplasias: Imaging Features Based on Cone Beam Computed Tomography Scans.

    Science.gov (United States)

    Cavalcanti, Paulo Henrique Pereira; Nascimento, Eduarda Helena Leandro; Pontual, Maria Luiza Dos Anjos; Pontual, Andréa Dos Anjos; Marcelos, Priscylla Gonçalves Correia Leite de; Perez, Danyel Elias da Cruz; Ramos-Perez, Flávia Maria de Moraes

    2018-01-01

    Imaging exams have important role in diagnosis of cemento-osseous dysplasia (COD). Cone beam computed tomography (CBCT) stands out for allowing three-dimensional image evaluation. This study aimed to assess the prevalence of cases diagnosed as COD on CBCT scans, as well identify the main imaging features related to these lesions. An analysis was performed in a database containing 22,400 radiological reports, in which all cases showing some type of COD were initially selected. These CBCT exams were reevaluated to confirm the radiographic diagnosis and determine the prevalence and distribution of the types of COD with regard to gender, age and preferred location, while describing its most common imaging aspects. Data were presented using descriptive analyses. There were 82 cases diagnosed as COD in the CBCT images (prevalence of 0.4%). The distribution of patients was 11 (13.4%) male and 71 (86.6%) female, with a mean age of 49.8 years (age-range 17-85 years). There were 47 (57.3%) cases of periapical COD, 23 (28%) of focal COD and 12 (14.6%) of florid COD. The mandible was more affected than the maxilla. In most cases, the lesions were mixed or hyperdense. All COD had well-defined limits and there were no cases of tooth displacement. In conclusion, periapical COD was the most common type and the most affected bone was the mandible. Imaging evaluation is critical for diagnosis and dentists should bear in mind all possible radiographic presentations of COD in order to prevent misleading diagnoses and consequently, inadequate treatments.

  7. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide

    KAUST Repository

    Rodighiero, Simona

    2015-03-22

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  8. Combined endeavor of Neutrosophic Set and Chan-Vese model to extract accurate liver image from CT scan.

    Science.gov (United States)

    Siri, Sangeeta K; Latte, Mrityunjaya V

    2017-11-01

    Many different diseases can occur in the liver, including infections such as hepatitis, cirrhosis, cancer and over effect of medication or toxins. The foremost stage for computer-aided diagnosis of liver is the identification of liver region. Liver segmentation algorithms extract liver image from scan images which helps in virtual surgery simulation, speedup the diagnosis, accurate investigation and surgery planning. The existing liver segmentation algorithms try to extort exact liver image from abdominal Computed Tomography (CT) scan images. It is an open problem because of ambiguous boundaries, large variation in intensity distribution, variability of liver geometry from patient to patient and presence of noise. A novel approach is proposed to meet challenges in extracting the exact liver image from abdominal CT scan images. The proposed approach consists of three phases: (1) Pre-processing (2) CT scan image transformation to Neutrosophic Set (NS) and (3) Post-processing. In pre-processing, the noise is removed by median filter. The "new structure" is designed to transform a CT scan image into neutrosophic domain which is expressed using three membership subset: True subset (T), False subset (F) and Indeterminacy subset (I). This transform approximately extracts the liver image structure. In post processing phase, morphological operation is performed on indeterminacy subset (I) and apply Chan-Vese (C-V) model with detection of initial contour within liver without user intervention. This resulted in liver boundary identification with high accuracy. Experiments show that, the proposed method is effective, robust and comparable with existing algorithm for liver segmentation of CT scan images. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Methodological development of topographic correction in 2D/3D ToF-SIMS images using AFM images

    Science.gov (United States)

    Jung, Seokwon; Lee, Nodo; Choi, Myungshin; Lee, Jungmin; Cho, Eunkyunng; Joo, Minho

    2018-02-01

    Time-of-flight secondary-ion mass spectrometry (ToF-SIMS) is an emerging technique that provides chemical information directly from the surface of electronic materials, e.g. OLED and solar cell. It is very versatile and highly sensitive mass spectrometric technique that provides surface molecular information with their lateral distribution as a two-dimensional (2D) molecular image. Extending the usefulness of ToF-SIMS, a 3D molecular image can be generated by acquiring multiple 2D images in a stack. These imaging techniques by ToF-SIMS provide an insight into understanding the complex structures of unknown composition in electronic material. However, one drawback in ToF-SIMS is not able to represent topographical information in 2D and 3D mapping images. To overcome this technical limitation, topographic information by ex-situ technique such as atomic force microscopy (AFM) has been combined with chemical information from SIMS that provides both chemical and physical information in one image. The key to combine two different images obtained from ToF-SIMS and AFM techniques is to develop the image processing algorithm, which performs resize and alignment by comparing the specific pixel information of each image. In this work, we present methodological development of the semiautomatic alignment and the 3D structure interpolation system for the combination of 2D/3D images obtained by ToF-SIMS and AFM measurements, which allows providing useful analytical information in a single representation.

  10. METHODOLOGICAL DEVELOPMENTS IN 3D SCANNING AND MODELLING OF ARCHAEOLOGICAL FRENCH HERITAGE SITE : THE BRONZE AGE PAINTED CAVE OF "LES FRAUX", DORDOGNE (FRANCE

    Directory of Open Access Journals (Sweden)

    A. Burens

    2013-07-01

    Full Text Available For six years, an interdisciplinary team of archaeologists, surveyors, environmentalists and archaeometrists have jointly carried out the study of a Bronze Age painted cave, registrered in the French Historical Monuments. The archaeological cave of Les Fraux (Saint-Martin-de-Fressengeas, Dordogne forms a wide network of galleries, characterized by the exceptional richness of its archaeological remains such as ceramic and metal deposits, parietal representation and about domestic fireplaces. This cave is the only protohistorical site in Europe wherein are gathered testimonies of domestic, spiritual and artistic activities. Fortunately, the cave was closed at the end of the Bronze Age, following to the collapse of its entrance. The site was re-discovered in 1989 and its study started in 2007. The study in progress takes place in a new kind of tool founded by the CNRS's Institute of Ecology and Environment. The purpose of this observatory is the promotion of new methodologies and experimental studies in Global Ecology. In that framework, 3D models of the cave constitute the common work support and the best way for scientific communication for the various studies conducted on the site by nearly forty researchers. In this specific context, a partnership among archaeologists and surveyors from INSA Strasbourg allows the team to develop, in an interdisciplinary way, new methods of data acquiring based on contact-free measurements techniques in order to acquire a full 3D-documentation. This work is conducted in compliance with the integrity of the site. Different techniques based on Terrestrial Laser Scanning, Digital Photogrammetry and Spatial Imaging System have been used in order to generate a geometric and photorealistic 3D model from the combination of point clouds and photogrammetric images, for both visualization and accurate documentation purposes. Various scales of acquiring and diverse resolutions have been applied according to the subject

  11. The Desired Image of the Future Economy of the Industrial Region: Development Trends and Evaluation Methodology

    Directory of Open Access Journals (Sweden)

    Olga Aleksandrovna Romanova

    2017-09-01

    Full Text Available In the article, the authors emphasize that industrial regions play an important role in the increasing of technological independence of Russia. We show that the decline in the share of processing industries in the gross regional product can not be treated as a negative de-industrialization of the economy. The article proves that the increase in the speed of changements, instability of socio-economic systems, the diverse risks predetermine the need to develop new methodological approaches to predictive research. The studies aimed at developing a technology for the design of the desired image of the future and the methodology for its evaluation are of high importance. For the initial stage of the research, the authors propose the methodological approach for assessing the desired image of the future of metallurgy as one of the most important industry of the region. We propose the term of «technological image of the regional metallurgy». We show that repositioning the image of the regional metallurgical complex is quite a long process. This have determined the need to define the stages of repositioning. The proposed methodology of the evaluation of desired future includes the methodological provisions to quantify the characteristics of goals achieved at the respective stages of the repositioning of the metallurgy. The methodological approach to the design of the desired image of the future implies the following stages: the identification of the priority areas of the technological development of regional metallurgy on the basis of bibliometric and patent analysis; the evaluation of dynamics of the development of the structure of metal products domestic consumption based on comparative analysis and relevant analytical methods as well as its forecasting; the design of the factor model, allowing to identify the parameters quantifying the technological image of the regional metallurgy based on the principal components method,; systematization of

  12. Diagnosis of vertebral artery dissection with basiparallel anatomical scanning magnetic resonance imaging

    International Nuclear Information System (INIS)

    Katsuno, Makoto; Kobayashi, Shiro

    2011-01-01

    There is no consensus regarding the optimal method for diagnosing the dissection of intracranial arteries. We have developed a rapid and accurate examination method to diagnose vertebral artery dissection in the acute stage of cerebral infarction. Twenty-two patients with severe headache and neck pain and/or symptoms of brain stem or cerebellar ischemia underwent magnetic resonance imaging (MRI) with a 1.5-T scanner. Our protocol generated 3 contrast-weighted scans (T2-weighted, diffusion-weighted, and basi-parallel anatomical scanning [BPAS]-MRI) and conventional angiographs within 3 hours of the onset of symptoms. Then, we retrospectively analyzed the findings to identify the most reliable imaging method for diagnosing vertebral artery dissection in the acute stage of cerebral infarction. Based on the symptoms and the findings of T2-weighted imaging and conventional angiography, the initial diagnosis was dissection in 17 patients, lacunar infarction in 3 patients, and atherothrombosis in 2 patients. After follow-up studies the diagnosis was changed in 7 patients. The diagnosis based on symptoms and the findings of T2-weighted MRI and BPAS-MRI was dissection in 13 patients, atherothrombosis in 6 patients, and lacunar infarction in 3 patients. In 3 patients the diagnosis was changed during the follow-up phase. The diagnostic accuracy rate was higher with T2-weighted MRI and BPAS-MRI than with T2-weighted MRI and conventional angiography. We suggest that when intracranial vascular dissection is suspected, both the inner and outer contours of vessels must be inspected and that BPAS-MRI should be performed instead of conventional angiography to establish the definite diagnosis. (author)

  13. Whole-heart 3D late gadolinium-enhanced MR imaging. Investigation of optimal scan parameters and clinical usefulness

    International Nuclear Information System (INIS)

    Yorimitsu, Misako; Yokoyama, Kenichi; Nitatori, Toshiaki; Yoshino, Hideaki; Isono, Sachiko; Kuhara, Shigehide

    2012-01-01

    Whole-heart 3-dimensional (3D) late-gadolinium-enhanced magnetic resonance (MR) imaging (WH-LGE) uses respiratory gating combined with acquisition of 3D data for the entire heart in a single scan, which permits reconstruction of any plane with high resolution. We investigated the optimal scan parameters and compared WH-LGE with the conventional scanning method. We employed inversion recovery 3D fast field echo using a 1.5-tesla system and scan parameters: repetition time (TR), 6.6 ms; echo time (TE), 2.5 ms; number of segments, 2; parallel imaging factor, 1.8; matrix size, 128 x 256; field of view (FOV), 320 x 320 mm; and acquisition slice thickness, 3 mm (reconstruction slice thickness, 1.5 mm). Five healthy volunteers underwent scanning during free breathing with real-time motion correction, from which we determined optimal scan parameters. We then used those parameters to scan 25 patients with myocardial infarction to compare scan time and image quality between the WH-LGE and conventional 3D breath-holding methods (slice thickness, 10 mm; matrix size, 128 x 256). Results in volunteers showed optimal scan parameters of 12deg flip angle, fat suppression turned off in combination, and interleaved ordering. In clinical cases, scan times did not differ significantly. Sharpness of the margins of normal myocardium at the apex of the heart and contrast between enhanced and nonenhanced myocardium improved significantly with WH-LGE. WH-LGE yields high resolution images during free breathing and is considered useful for accurately estimating the area and transmural extent of myocardial infarction. (author)

  14. Survey of the prevalence and methodology of quality assurance for B-mode ultrasound image quality among veterinary sonographers.

    Science.gov (United States)

    Hoscheit, Larry P; Heng, Hock Gan; Lim, Chee Kin; Weng, Hsin-Yi

    2018-05-01

    Image quality in B-mode ultrasound is important as it reflects the diagnostic accuracy and diagnostic information provided during clinical scanning. Quality assurance programs for B-mode ultrasound systems/components are comprised of initial quality acceptance testing and subsequent regularly scheduled quality control testing. The importance of quality assurance programs for B-mode ultrasound image quality using ultrasound phantoms is well documented in the human medical and medical physics literature. The purpose of this prospective, cross-sectional, survey study was to determine the prevalence and methodology of quality acceptance testing and quality control testing of image quality for ultrasound system/components among veterinary sonographers. An online electronic survey was sent to 1497 members of veterinary imaging organizations: the American College of Veterinary Radiology, the Veterinary Ultrasound Society, and the European Association of Veterinary Diagnostic Imaging, and a total of 167 responses were received. The results showed that the percentages of veterinary sonographers performing quality acceptance testing and quality control testing are 42% (64/151; 95% confidence interval 34-52%) and 26% (40/156: 95% confidence interval 19-33%) respectively. Of the respondents who claimed to have quality acceptance testing or quality control testing of image quality in place for their ultrasound system/components, 0% have performed quality acceptance testing or quality control testing correctly (quality acceptance testing 95% confidence interval: 0-6%, quality control testing 95% confidence interval: 0-11%). Further education and guidelines are recommended for veterinary sonographers in the area of quality acceptance testing and quality control testing for B-mode ultrasound equipment/components. © 2018 American College of Veterinary Radiology.

  15. Currently available methodologies for the processing of intravascular ultrasound and optical coherence tomography images.

    Science.gov (United States)

    Athanasiou, Lambros; Sakellarios, Antonis I; Bourantas, Christos V; Tsirka, Georgia; Siogkas, Panagiotis; Exarchos, Themis P; Naka, Katerina K; Michalis, Lampros K; Fotiadis, Dimitrios I

    2014-07-01

    Optical coherence tomography and intravascular ultrasound are the most widely used methodologies in clinical practice as they provide high resolution cross-sectional images that allow comprehensive visualization of the lumen and plaque morphology. Several methods have been developed in recent years to process the output of these imaging modalities, which allow fast, reliable and reproducible detection of the luminal borders and characterization of plaque composition. These methods have proven useful in the study of the atherosclerotic process as they have facilitated analysis of a vast amount of data. This review presents currently available intravascular ultrasound and optical coherence tomography processing methodologies for segmenting and characterizing the plaque area, highlighting their advantages and disadvantages, and discusses the future trends in intravascular imaging.

  16. Line-scanning confocal microscopy for high-resolution imaging of upconverting rare-earth-based contrast agents

    Science.gov (United States)

    Higgins, Laura M.; Zevon, Margot; Ganapathy, Vidya; Sheng, Yang; Tan, Mei Chee; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-01-01

    Abstract. Rare-earth (RE) doped nanocomposites emit visible luminescence when illuminated with continuous wave near-infrared light, making them appealing candidates for use as contrast agents in biomedical imaging. However, the emission lifetime of these materials is much longer than the pixel dwell times used in scanning intravital microscopy. To overcome this limitation, we have developed a line-scanning confocal microscope for high-resolution, optically sectioned imaging of samples labeled with RE-based nanomaterials. Instrument performance is quantified using calibrated test objects. NaYF4:Er,Yb nanocomposites are imaged in vitro, and in ex vivo tissue specimens, with direct comparison to point-scanning confocal microscopy. We demonstrate that the extended pixel dwell time of line-scanning confocal microscopy enables subcellular-level imaging of these nanomaterials while maintaining optical sectioning. The line-scanning approach thus enables microscopic imaging of this emerging class of contrast agents for preclinical studies, with the potential to be adapted for real-time in vivo imaging in the clinic. PMID:26603495

  17. Multiscale characterization of pore spaces using multifractals analysis of scanning electronic microscopy images of carbonates

    Directory of Open Access Journals (Sweden)

    M. S. Jouini

    2011-12-01

    Full Text Available Pore spaces heterogeneity in carbonates rocks has long been identified as an important factor impacting reservoir productivity. In this paper, we study the heterogeneity of carbonate rocks pore spaces based on the image analysis of scanning electron microscopy (SEM data acquired at various magnifications. Sixty images of twelve carbonate samples from a reservoir in the Middle East were analyzed. First, pore spaces were extracted from SEM images using a segmentation technique based on watershed algorithm. Pores geometries revealed a multifractal behavior at various magnifications from 800x to 12 000x. In addition, the singularity spectrum provided quantitative values that describe the degree of heterogeneity in the carbonates samples. Moreover, for the majority of the analyzed samples, we found low variations (around 5% in the multifractal dimensions for magnifications between 1700x and 12 000x. Finally, these results demonstrate that multifractal analysis could be an appropriate tool for characterizing quantitatively the heterogeneity of carbonate pore spaces geometries. However, our findings show that magnification has an impact on multifractal dimensions, revealing the limit of applicability of multifractal descriptions for these natural structures.

  18. Miniature Variable Pressure Scanning Electron Microscope for In-Situ Imaging and Chemical Analysis

    Science.gov (United States)

    Gaskin, Jessica A.; Jerman, Gregory; Gregory, Don; Sampson, Allen R.

    2012-01-01

    NASA Marshall Space Flight Center (MSFC) is leading an effort to develop a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for in-situ imaging and chemical analysis of uncoated samples. This instrument development will be geared towards operation on Mars and builds on a previous MSFC design of a mini-SEM for the moon (funded through the NASA Planetary Instrument Definition and Development Program). Because Mars has a dramatically different environment than the moon, modifications to the MSFC lunar mini-SEM are necessary. Mainly, the higher atmospheric pressure calls for the use of an electron gun that can operate at High Vacuum, rather than Ultra-High Vacuum. The presence of a CO2-rich atmosphere also allows for the incorporation of a variable pressure system that enables the in-situ analysis of nonconductive geological specimens. Preliminary testing of Mars meteorites in a commercial Environmental SEM(Tradmark) (FEI) confirms the usefulness of lowcurrent/low-accelerating voltage imaging and highlights the advantages of using the Mars atmosphere for environmental imaging. The unique capabilities of the MVP-SEM make it an ideal tool for pursuing key scientific goals of NASA's Flagship Mission Max-C; to perform in-situ science and collect and cache samples in preparation for sample return from Mars.

  19. A study on the influence of surface active agent molecules on the AFM scanning and imaging of SWCNTs

    Energy Technology Data Exchange (ETDEWEB)

    Xu Ke; Yu Haibo; Tian Xiaojun; Dong Zaili [State Key Laboratory of Robotics, Shenyang Institute of Automation, CAS, Shenyang 110016 (China); Wu Chengdong [Northeastern University, Shenyang 110004 (China)], E-mail: xuke08@sia.cn

    2009-09-01

    The paper proposed a preprocessing method for scanning samples based on rinsing technology, and solved the effective fabrication problem of AFM scanning samples based on facilitated dispersing SWCNTs with SDS surface active agents. First, the ultrasonication oscillation method was applied, and the uniform alignment of SWCNTs in SDS was realized. Then, SDS solution of different concentrations was scanned and imaged with AFM, the influence of SDS solution on the imaging quality of SWCNTs was analyzed, and the method to effectively fabricate scanning samples after dispersing SWCNTs was found. The results of the experiments showed that the preprocessing of the SWCNTs solution scanning samples was the decisive factor to influence SWCNTs imaging quality, that the result of rinsing SWCNTs scanning samples for 5s at 0.1ml/s with di-ionized water was the best, and that with the same rinsing rate and angle, the rinsing di-ionized water quantity would influence the alignment degree of SWCNTs on the substrates and SDS macromolecules' residual quantity on SWCNTs scanning samples.

  20. Impact of liberalization on private financed energy research. From scan to image. Final report

    International Nuclear Information System (INIS)

    De Graaff, R.J.; Dullens, M.; Benner, J.H.B.; Klaassen, M.A.W.; Schneider, H.C.

    2000-01-01

    The consequences of the liberalization process in the market for research and development in the Dutch electricity and natural gas sector are discussed. The main questions of the study are (1) what are the developments in those sectors, and (2) what can be learned from the experiences of liberalized energy markets in other countries and existing commercial petroleum and natural gas companies. The results are based on a literature study and interviews by telephone with experts in the field in seven countries (the 'scan-phase'). The results of the seven countries (Denmark, United Kingdom, Sweden, Germany, Norway, USA, Netherlands, and the European Union as a whole) are presented in the form of fact sheets. The most important leads and subjects were explored in detail by means of personal interviews with representatives from the energy sector in Sweden and England (the 'image-phase'). 52 refs

  1. Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope

    Energy Technology Data Exchange (ETDEWEB)

    Imtiaz, Atif [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Wallis, Thomas M.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel, E-mail: kabos@boulder.nist.gov [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Weber, Joel C. [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Coakley, Kevin J. [Information Technology Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2014-06-30

    We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S{sub 11}{sup ′}, which is the derivative of the RF reflection coefficient S{sub 11} with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S{sub 11}{sup ′}  effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S{sub 11}{sup ′} images.

  2. Construction and performance of a dilution-refrigerator based spectroscopic-imaging scanning tunneling microscope.

    Science.gov (United States)

    Singh, U R; Enayat, M; White, S C; Wahl, P

    2013-01-01

    We report on the set-up and performance of a dilution-refrigerator based spectroscopic imaging scanning tunneling microscope. It operates at temperatures below 10 mK and in magnetic fields up to 14T. The system allows for sample transfer and in situ cleavage. We present first-results demonstrating atomic resolution and the multi-gap structure of the superconducting gap of NbSe(2) at base temperature. To determine the energy resolution of our system we have measured a normal metal/vacuum/superconductor tunneling junction consisting of an aluminum tip on a gold sample. Our system allows for continuous measurements at base temperature on time scales of up to ≈170 h.

  3. Imaging of topological magnetic pinning in superconductor-ferrimagnet bilayer with scanning Hall microscopy

    International Nuclear Information System (INIS)

    Marchevsky, M; Higgins, M J; Bhattacharya, S; Fratello, V J

    2011-01-01

    In a superconducting film deposited on ferromagnetic substrate with perpendicular magnetic anisotropy, vortex matter is confined by the magnetic potential landscape. Using scanning Hall microscopy we visualize flux accumulation and removal in a superconductor-ferrimagnet (S/F) bilayer prepared by rf sputtering of thin niobium film on bismuth-doped rare-earth iron garnet. Penetration of the perpendicular magnetic field in the S/F bilayer follows magnetic domain boundaries and is laterally guided by the garnet magnetization component along the field direction. Upon field removal, localization of the remnant flux at the disclination points of the labyrinthine domain pattern is observed. Our experiments show evidence for strong vortex pinning due the special topology of the domain pattern. Ac magnetic imaging of the transport current distribution in the bilayer reveals complex flow paths commensurate with the magnetic domain boundaries. Topological magnetic pinning can be a useful tool for enhancement and control of critical current in thin film superconductors.

  4. A simple way to obtain backscattered electron images in a scanning transmission electron microscope.

    Science.gov (United States)

    Tsuruta, Hiroki; Tanaka, Shigeyasu; Tanji, Takayoshi; Morita, Chiaki

    2014-08-01

    We have fabricated a simple detector for backscattered electrons (BSEs) and incorporated the detector into a scanning transmission electron microscope (STEM) sample holder. Our detector was made from a 4-mm(2) Si chip. The fabrication procedure was easy, and similar to a standard transmission electron microscopy (TEM) sample thinning process based on ion milling. A TEM grid containing particle objects was fixed to the detector with a silver paste. Observations were carried out using samples of Au and latex particles at 75 and 200 kV. Such a detector provides an easy way to obtain BSE images in an STEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. First images from the Stanford tabletop scanning soft x-ray microscope

    International Nuclear Information System (INIS)

    Trail, J.A.; Byer, R.L.

    1988-01-01

    The authors have constructed a scanning soft x-ray microscope which uses a laser-produced plasma as the soft x-ray source and normal incidence multilayer coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 140 angstrom, has a spatial resolution of 0.5 μm, and has a soft x-ray photon flux through the focus of 10 4 s -1 when operated with only 170 mW of average laser power. The microscope is compact; the complete system, including the laser, fits on a single optical table. In this paper they describe the microscope and present images of metallic microstructures

  6. Imaging of topological magnetic pinning in superconductor-ferrimagnet bilayer with scanning Hall microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Marchevsky, M [Department of Physics, Syracuse University, Syracuse, NY 12344 (United States); Higgins, M J [Princeton High School, Princeton, NJ 08540 (United States); Bhattacharya, S [Tata Institute of Fundamental Research, Mumbai 400 005 (India); Fratello, V J, E-mail: mmartchevskii@lbl.gov [Integrated Photonics, Inc., Hillsborough, NJ 08844 (United States)

    2011-02-15

    In a superconducting film deposited on ferromagnetic substrate with perpendicular magnetic anisotropy, vortex matter is confined by the magnetic potential landscape. Using scanning Hall microscopy we visualize flux accumulation and removal in a superconductor-ferrimagnet (S/F) bilayer prepared by rf sputtering of thin niobium film on bismuth-doped rare-earth iron garnet. Penetration of the perpendicular magnetic field in the S/F bilayer follows magnetic domain boundaries and is laterally guided by the garnet magnetization component along the field direction. Upon field removal, localization of the remnant flux at the disclination points of the labyrinthine domain pattern is observed. Our experiments show evidence for strong vortex pinning due the special topology of the domain pattern. Ac magnetic imaging of the transport current distribution in the bilayer reveals complex flow paths commensurate with the magnetic domain boundaries. Topological magnetic pinning can be a useful tool for enhancement and control of critical current in thin film superconductors.

  7. Scanning laser Doppler imaging may predict disease progression of localized scleroderma in children and young adults.

    Science.gov (United States)

    Shaw, L J; Shipley, J; Newell, E L; Harris, N; Clinch, J G; Lovell, C R

    2013-07-01

    Localized scleroderma is a rare but potentially disfiguring and disabling condition. Systemic treatment should be started early in those with active disease in key functional and cosmetic sites, but disease activity is difficult to determine clinically. Superficial blood flow has been shown to correlate with disease activity in localized scleroderma. To examine whether superficial blood flow measured by laser Doppler imaging (LDI) has the potential to predict disease progression and therefore select patients for early systemic treatment. A group of 20 individuals had clinical assessment and scanning LDI blood-flow measurements of 32 affected body sites. After a mean follow-up of 8.7 months their clinical outcome was compared with the results of the initial LDI assessment. Eleven out of 15 patients with an assessment of active LDI had progressed clinically, and 16 out of the 17 scans with inactive LDI assessment had not progressed, giving a positive predictive value of 73% and a negative predictive value of 94%. We believe that LDI can be a useful tool in predicting disease progression in localized scleroderma, and it may help clinicians to decide which patients to treat early. © 2013 The Authors BJD © 2013 British Association of Dermatologists.

  8. Registration area and accuracy when integrating laser-scanned and maxillofacial cone-beam computed tomography images.

    Science.gov (United States)

    Sun, LiJun; Hwang, Hyeon-Shik; Lee, Kyung-Min

    2018-03-01

    The purpose of this study was to examine changes in registration accuracy after including occlusal surface and incisal edge areas in addition to the buccal surface when integrating laser-scanned and maxillofacial cone-beam computed tomography (CBCT) dental images. CBCT scans and maxillary dental casts were obtained from 30 patients. Three methods were used to integrate the images: R1, only the buccal and labial surfaces were used; R2, the incisal edges of the anterior teeth and the buccal and distal marginal ridges of the second molars were used; and R3, labial surfaces, including incisal edges of anterior teeth, and buccal surfaces, including buccal and distal marginal ridges of the second molars, were used. Differences between the 2 images were evaluated by color-mapping methods and average surface distances by measuring the 3-dimensional Euclidean distances between the surface points on the 2 images. The R1 method showed more discrepancies between the laser-scanned and CBCT images than did the other methods. The R2 method did not show a significant difference in registration accuracy compared with the R3 method. The results of this study indicate that accuracy when integrating laser-scanned dental images into maxillofacial CBCT images can be increased by including occlusal surface and incisal edge areas as registration areas. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  9. A methodology for automated CPA extraction using liver biopsy image analysis and machine learning techniques.

    Science.gov (United States)

    Tsipouras, Markos G; Giannakeas, Nikolaos; Tzallas, Alexandros T; Tsianou, Zoe E; Manousou, Pinelopi; Hall, Andrew; Tsoulos, Ioannis; Tsianos, Epameinondas

    2017-03-01

    Collagen proportional area (CPA) extraction in liver biopsy images provides the degree of fibrosis expansion in liver tissue, which is the most characteristic histological alteration in hepatitis C virus (HCV). Assessment of the fibrotic tissue is currently based on semiquantitative staging scores such as Ishak and Metavir. Since its introduction as a fibrotic tissue assessment technique, CPA calculation based on image analysis techniques has proven to be more accurate than semiquantitative scores. However, CPA has yet to reach everyday clinical practice, since the lack of standardized and robust methods for computerized image analysis for CPA assessment have proven to be a major limitation. The current work introduces a three-stage fully automated methodology for CPA extraction based on machine learning techniques. Specifically, clustering algorithms have been employed for background-tissue separation, as well as for fibrosis detection in liver tissue regions, in the first and the third stage of the methodology, respectively. Due to the existence of several types of tissue regions in the image (such as blood clots, muscle tissue, structural collagen, etc.), classification algorithms have been employed to identify liver tissue regions and exclude all other non-liver tissue regions from CPA computation. For the evaluation of the methodology, 79 liver biopsy images have been employed, obtaining 1.31% mean absolute CPA error, with 0.923 concordance correlation coefficient. The proposed methodology is designed to (i) avoid manual threshold-based and region selection processes, widely used in similar approaches presented in the literature, and (ii) minimize CPA calculation time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. REGISTRATION OF LASER SCANNING POINT CLOUDS AND AERIAL IMAGES USING EITHER ARTIFICIAL OR NATURAL TIE FEATURES

    Directory of Open Access Journals (Sweden)

    P. Rönnholm

    2012-07-01

    Full Text Available Integration of laser scanning data and photographs is an excellent combination regarding both redundancy and complementary. Applications of integration vary from sensor and data calibration to advanced classification and scene understanding. In this research, only airborne laser scanning and aerial images are considered. Currently, the initial registration is solved using direct orientation sensors GPS and inertial measurements. However, the accuracy is not usually sufficient for reliable integration of data sets, and thus the initial registration needs to be improved. A registration of data from different sources requires searching and measuring of accurate tie features. Usually, points, lines or planes are preferred as tie features. Therefore, the majority of resent methods rely highly on artificial objects, such as buildings, targets or road paintings. However, in many areas no such objects are available. For example in forestry areas, it would be advantageous to be able to improve registration between laser data and images without making additional ground measurements. Therefore, there is a need to solve registration using only natural features, such as vegetation and ground surfaces. Using vegetation as tie features is challenging, because the shape and even location of vegetation can change because of wind, for example. The aim of this article was to compare registration accuracies derived by using either artificial or natural tie features. The test area included urban objects as well as trees and other vegetation. In this area, two registrations were performed, firstly, using mainly built objects and, secondly, using only vegetation and ground surface. The registrations were solved applying the interactive orientation method. As a result, using artificial tie features leaded to a successful registration in all directions of the coordinate system axes. In the case of using natural tie features, however, the detection of correct heights was

  11. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Teruo, E-mail: t.hashimoto@manchester.ac.uk; Thompson, George E.; Zhou, Xiaorong; Withers, Philip J.

    2016-04-15

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. - Highlights: • The roughness of the ultramicrotomed block face of AA2024 in Al area was 1.2 nm. • Surface texture associated with chattering was evident in grains with 45° diamond knife. • A 76° rake angle minimises the stress on the block face. • Using the oscillating knife with a cutting speed of 0.04 mms{sup −1} minimised the surface texture. • A variety of material applications were presented.

  12. De-warping of images and improved eye tracking for the scanning laser ophthalmoscope.

    Directory of Open Access Journals (Sweden)

    Phillip Bedggood

    Full Text Available A limitation of scanning laser ophthalmoscopy (SLO is that eye movements during the capture of each frame distort the retinal image. Various sophisticated strategies have been devised to ensure that each acquired frame can be mapped quickly and accurately onto a chosen reference frame, but such methods are blind to distortions in the reference frame itself. Here we explore a method to address this limitation in software, and demonstrate its accuracy. We used high-speed (200 fps, high-resolution (~1 μm, flood-based imaging of the human retina with adaptive optics to obtain "ground truth" information on the retinal image and motion of the eye. This information was used to simulate SLO video sequences at 20 fps, allowing us to compare various methods for eye-motion recovery and subsequent minimization of intra-frame distortion. We show that a a single frame can be near-perfectly recovered with perfect knowledge of intra-frame eye motion; b eye motion at a given time point within a frame can be accurately recovered by tracking the same strip of tissue across many frames, due to the stochastic symmetry of fixational eye movements. This approach is similar to, and easily adapted from, previously suggested strip-registration approaches; c quality of frame recovery decreases with amplitude of eye movements, however, the proposed method is affected less by this than other state-of-the-art methods and so offers even greater advantages when fixation is poor. The new method could easily be integrated into existing image processing software, and we provide an example implementation written in Matlab.

  13. An enhanced CCRTM (E-CCRTM) damage imaging technique using a 2D areal scan for composite plates

    Science.gov (United States)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-04-01

    A two-dimensional (2-D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric actuator mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region to capture the scattered wavefield in the vicinity of the PZT. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, the reflectivity coefficients of the delamination can be calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2-D areal scans and linear scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2-D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  14. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    International Nuclear Information System (INIS)

    Wang, Qi; Wang, Junting; Lu, Qingyou; Hou, Yubin

    2013-01-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d 31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices

  15. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability.

    Science.gov (United States)

    Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou

    2013-11-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  16. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    Science.gov (United States)

    Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou

    2013-11-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  17. Effect of imaging parameters of spiral CT scanning on image quality for the dental implants. Visual evaluation using a semi-anthropomorphic mandible phantom

    International Nuclear Information System (INIS)

    Morita, Yasuhiko; Indou, Hiroko; Honda Eiichi

    2002-01-01

    The purpose of this study was to evaluate the effect of parameters of spiral CT scanning on the image quality required for the planning of dental implants operations. A semi-anthropomorphic mandible phantom which has artificial mandibular canals and teeth roots was used as a standard object for imaging. Spiral CT scans for the phantom settled in water phantom with diameters of 20 and 16 cm were performed. Visibility of the artificial mandibular canal made of a Teflon tube and gaps between tooth apex and canal in the mandibular phantom was evaluated for various combinations of the slice thickness, tables speeds, angles to the canal, and x-ray tube currents. Teeth roots were made of PVC (poly vinyl chloride). The artificial mandibular canal was clearly observed on the images of 1 mm slice thickness. At the same table speed of 2 mm /rotation, the images of thin slice (1 mm) were superior to that of thick slice (2 mm). The gap between teeth apex and canal was erroneously diagnosed on the images with table speeds of 3 mm/rotation. Horizontal scanning in parallel to the canal result in poor image quality for observation of mandibular canals because of the partial volume effect. A relatively high x-ray tube current (125 mA) at thin slice (1 mm) scanning was required for scanning the mandibular phantom in 20 cm water vessel. Spiral scanning with slice thickness of 1 mm and table speeds of 1 of 2 mm/rotation seemed to be suitable for dental implants. The result of this study suggested that diagnosis from two independent spiral scans with a different angle to the object was more accurate and more efficient than single spiral scanning. (author)

  18. Efficient methodologies for system matrix modelling in iterative image reconstruction for rotating high-resolution PET

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno, J E; Kontaxakis, G; Rubio, J L; Santos, A [Departamento de Ingenieria Electronica (DIE), Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Guerra, P [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain)], E-mail: juanen@die.upm.es

    2010-04-07

    A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.

  19. A Low-Complexity UEP Methodology Demonstrated on a Turbo-Encoded Wavelet Image Satellite Downlink

    Directory of Open Access Journals (Sweden)

    Salemi Eric

    2008-01-01

    Full Text Available Realizing high-quality digital image transmission via a satellite link, while optimizing resource distribution and minimizing battery consumption, is a challenging task. This paper describes a methodology to optimize a turbo-encoded wavelet-based satellite downlink progressive image transmission system with unequal error protection (UEP techniques. To achieve that goal, we instantiate a generic UEP methodology onto the system, and demonstrate that the proposed solution has little impact on the average performance, while greatly reducing the run-time complexity. Based on a simple design-time distortion model and a low-complexity run-time algorithm, the provided solution can dynamically tune the system's configuration to any bitrate constraint or channel condition. The resulting system outperforms in terms of peak signal-to-noise ratio (PSNR, a state-of-the-art, fine-tuned equal error protection (EEP solution by as much as 2 dB.

  20. A Low-Complexity UEP Methodology Demonstrated on a Turbo-Encoded Wavelet Image Satellite Downlink

    Directory of Open Access Journals (Sweden)

    Eric Salemi

    2008-01-01

    Full Text Available Realizing high-quality digital image transmission via a satellite link, while optimizing resource distribution and minimizing battery consumption, is a challenging task. This paper describes a methodology to optimize a turbo-encoded wavelet-based satellite downlink progressive image transmission system with unequal error protection (UEP techniques. To achieve that goal, we instantiate a generic UEP methodology onto the system, and demonstrate that the proposed solution has little impact on the average performance, while greatly reducing the run-time complexity. Based on a simple design-time distortion model and a low-complexity run-time algorithm, the provided solution can dynamically tune the system's configuration to any bitrate constraint or channel condition. The resulting system outperforms in terms of peak signal-to-noise ratio (PSNR, a state-of-the-art, fine-tuned equal error protection (EEP solution by as much as 2 dB.

  1. Multimodal sensing and imaging technology by integrated scanning electron, force, and nearfield microwave microscopy and its application to submicrometer studies

    OpenAIRE

    Hänßler, Olaf C.

    2018-01-01

    The work covers a multimodal microscope technology for the analysis, manipulation and transfer of materials and objects in the submicrometer range. An atomic force microscope (AFM) allows imaging of the surface topography and a Scanning Microwave Microscope (SMM) detects electromagnetic properties, both operating in a Scanning Electron Microscope (SEM). The described technology demonstrator allows to observe the region-of-interest live with the SEM, while at the same time a characterization w...

  2. Ultrasonic particle image velocimetry for improved flow gradient imaging: algorithms, methodology and validation

    International Nuclear Information System (INIS)

    Niu Lili; Qian Ming; Yu Wentao; Jin Qiaofeng; Ling Tao; Zheng Hairong; Wan Kun; Gao Shen

    2010-01-01

    This paper presents a new algorithm for ultrasonic particle image velocimetry (Echo PIV) for improving the flow velocity measurement accuracy and efficiency in regions with high velocity gradients. The conventional Echo PIV algorithm has been modified by incorporating a multiple iterative algorithm, sub-pixel method, filter and interpolation method, and spurious vector elimination algorithm. The new algorithms' performance is assessed by analyzing simulated images with known displacements, and ultrasonic B-mode images of in vitro laminar pipe flow, rotational flow and in vivo rat carotid arterial flow. Results of the simulated images show that the new algorithm produces much smaller bias from the known displacements. For laminar flow, the new algorithm results in 1.1% deviation from the analytically derived value, and 8.8% for the conventional algorithm. The vector quality evaluation for the rotational flow imaging shows that the new algorithm produces better velocity vectors. For in vivo rat carotid arterial flow imaging, the results from the new algorithm deviate 6.6% from the Doppler-measured peak velocities averagely compared to 15% of that from the conventional algorithm. The new Echo PIV algorithm is able to effectively improve the measurement accuracy in imaging flow fields with high velocity gradients.

  3. Precision scan-imaging for paperboard quality inspection utilizing X-ray fluorescence

    Science.gov (United States)

    Norlin, B.; Reza, S.; Fröjdh, C.; Nordin, T.

    2018-01-01

    Paperboard is typically made up of a core of cellulose fibers [C6H10O5] and a coating layer of [CaCO3]. The uniformity of these layers is a critical parameter for the printing quality. Current quality control methods include chemistry based visual inspection methods as well as X-ray based methods to measure the coating thickness. In this work we combine the X-ray fluorescence signals from the Ca atoms (3.7 keV) in the coating and from a Cu target (8.0 keV) placed behind the paper to simultaneously measure both the coating and the fibers. Cu was selected as the target material since its fluorescence signal is well separated from the Ca signal while its fluorescence's still are absorbed sufficiently in the paper. A laboratory scale setup is built using stepper motors, a silicon drift detector based spectrometer and a collimated X-ray beam. The spectroscopic image is retrieved by scanning the paperboard surface and registering the fluorescence signals from Ca and Cu. The exposure time for this type of setups can be significantly improved by implementing spectroscopic imaging sensors. The material contents in the layers can then be retrieved from the absolute and relative intensities of these two signals.

  4. A Review on Migration Methods in B-Scan Ground Penetrating Radar Imaging

    Directory of Open Access Journals (Sweden)

    Caner Özdemir

    2014-01-01

    Full Text Available Even though ground penetrating radar has been well studied and applied by many researchers for the last couple of decades, the focusing problem in the measured GPR images is still a challenging task. Although there are many methods offered by different scientists, there is not any complete migration/focusing method that works perfectly for all scenarios. This paper reviews the popular migration methods of the B-scan GPR imaging that have been widely accepted and applied by various researchers. The brief formulation and the algorithm steps for the hyperbolic summation, the Kirchhoff migration, the back-projection focusing, the phase-shift migration, and the ω-k migration are presented. The main aim of the paper is to evaluate and compare the migration algorithms over different focusing methods such that the reader can decide which algorithm to use for a particular application of GPR. Both the simulated and the measured examples that are used for the performance comparison of the presented algorithms are provided. Other emerging migration methods are also pointed out.

  5. Image grating metrology using phase-stepping interferometry in scanning beam interference lithography

    Science.gov (United States)

    Li, Minkang; Zhou, Changhe; Wei, Chunlong; Jia, Wei; Lu, Yancong; Xiang, Changcheng; Xiang, XianSong

    2016-10-01

    Large-sized gratings are essential optical elements in laser fusion and space astronomy facilities. Scanning beam interference lithography is an effective method to fabricate large-sized gratings. To minimize the nonlinear phase written into the photo-resist, the image grating must be measured to adjust the left and right beams to interfere at their waists. In this paper, we propose a new method to conduct wavefront metrology based on phase-stepping interferometry. Firstly, a transmission grating is used to combine the two beams to form an interferogram which is recorded by a charge coupled device(CCD). Phase steps are introduced by moving the grating with a linear stage monitored by a laser interferometer. A series of interferograms are recorded as the displacement is measured by the laser interferometer. Secondly, to eliminate the tilt and piston error during the phase stepping, the iterative least square phase shift method is implemented to obtain the wrapped phase. Thirdly, we use the discrete cosine transform least square method to unwrap the phase map. Experiment results indicate that the measured wavefront has a nonlinear phase around 0.05 λ@404.7nm. Finally, as the image grating is acquired, we simulate the print-error written into the photo-resist.

  6. Transition between scanning tunneling microscopy images of alkane derivatives on graphite

    International Nuclear Information System (INIS)

    Hibino, Masahiro; Tsuchiya, Hiroshi

    2015-01-01

    Graphical abstract: - Highlights: • SAMs of dialkyl sulfides form at the liquid–graphite interface. • STM contrast of molecules change reversibly between zigzag and aligned bright spot patterns. • The free energy for contrast change is smaller than the thermal energy (RT). • STM contrast change is caused by electronic effects and registry of the alkyl chains. - Abstract: Self-assembled monolayers of alkylated sulfides containing two alkyl chains and a sulfur atom positioned at the center of the molecules were studied on a graphite surface using scanning tunneling microscopy (STM). STM images of the closed-packed alkyl chains that extend linearly from the sulfur atoms change reversibly between a zigzag pattern and an aligned bright spot pattern on a time scale of minutes. The observation times of the zigzag and aligned bright spot patterns indicate that the difference between the free energies of these two stable molecular configurations with respect to the graphite surface is smaller than their thermal energies in the presence of a solvent, and 10 times smaller than the theoretical free energy between parallel and perpendicular configurations of the alkyl chains on graphite under vacuum. The change in the contrast of the STM images occurred owing to the electronic effects that depend on the registry of the alkyl chains on the graphite surface, and not by the classical observation of transfer between parallel and perpendicular orientations of alkyl chains on the surface.

  7. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish [U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States); Minniti, Ronaldo [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 (United States); Parry, Marie I. [Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, Maryland 20889 (United States); Skopec, Marlene [National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892 (United States)

    2013-08-15

    Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reed National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 m

  8. The effect, identification and correction of misalignment between PET transmission and emission scans on brain PET imaging

    International Nuclear Information System (INIS)

    Zhang Xiangsong; He Zuoxiang; Tang Anwu; Qiao Suixian

    2004-01-01

    Objectives: To study the effect of misalignment between PET transmission and emission scans of brain on brain PET imaging, and the Methods to identify and correct it. Methods: 18F-FDG PET imaging was performed on 8 volunteers. The emission images were reconstructed with attenuation correction after some translations and rotations in the x-axis and transverse plane were given, 1 mm and 1 degree each step, respectively. The 3-D volume fusion of PET emission and transmission scans was used to identify the suspected misalignment on 10 18F-FDG PET brain imaging. Three Methods were used to correct the misalignment. First, to quantitate the amount of the misalignment by 3-D volume registration of PET emission and transmission scans, the emission images were reconstructed with corrected translations and rotations in x-direction and transverse plane. Second, the emission images were reconstructed with mathematic calculation of brain attenuation. Third, 18F-FDG PET brain imaging was redone with careful application of laser alignment. Results: The translations greater than 3 mm in x-direction and the rotations greater than 8 degrees in transverse plane could lead to visible artifacts, which were presented with decreasing radioactivity uptake in the cortex of half cerebrum and in the frontal cortex at the side in the translating or rotating direction, respectively. The 3-D volume fusion of PET emission and transmission scans could identify and quantitate the amount of misalignment between PET emission and transmission scans of brain. The PET emission images reconstructed with corrected misalignment and mathematic calculation of brain attenuation were consistent with redone PET brain imaging. Conclusions: The misalignment between PET transmission and emission scans of brain can lead to visible artifacts. The 3-D volume fusion of PET emission and transmission scans can identify and quantitate the amount of the misalignment. The visible artifacts caused by the misalignment can be

  9. Review: two-photon scanning systems for clinical high resolution in vivo tissue imaging

    Science.gov (United States)

    König, K.; Müller, J.; Höfer, M.; Müller, C.; Weinigel, M.; Bückle, R.; Elsner, P.; Kaatz, M.; Messerschmidt, B.

    2008-02-01

    The femtosecond laser multiphoton tomograph DermaInspect as well as high NA two-photon GRIN microendoscopes for in vivo tomography of human skin have been used to detect malignant melanoma as well as to study the diffusion and intradermal accumulation of topically applied cosmetical and pharmaceutical components. So far, more than 500 patients and volunteers in Europe, Australia, and Asia have been investigated with this unique tomograph. Near infrared 80 MHz picojoule femtosecond laser pulses were employed to excite endogenous fluorophores such as NAD(P)H, flavoproteins, melanin, and elastin as well as fluorescent components of a variety of ointments via a twophoton excitation process. In addition, collagen has been imaged by second harmonic generation. Using a two-PMT detection system, the ratio of elastin to collagen was determined during optical sectioning. A high submicron spatial resolution and 50 picosecond temporal resolution was achieved using galvoscan mirrors and piezodriven focusing optics as well as a time-correlated single photon counting module with a fast microchannel plate detector and fast photomultipliers. Individual intratissue cells, mitochondria, melanosomes, and the morphology of the nuclei as well as extracellular matrix elements could be clearly visualized due to molecular imaging and the calculation of fluorescence lifetime images. Nanoparticles and intratissue drugs have been detected non-invasively, in situ and over a period of up to 3 months. In addition, hydration effects and UV effects were studied by monitoring modifications of cellular morphology and autofluorescence. The system was used to observe the diffusion through the stratum corneum and the accumulation and release of functionalized nanoparticles along hair shafts and epidermal ridges. The DermaInspect been also employed to gain information on skin age and wound healing in patients with ulcers. Novel developments include a galvo/piezo-scan driven flexible articulated arm as

  10. Intermittent-contact scanning capacitance microscopy imaging and modeling for overlay metrology

    International Nuclear Information System (INIS)

    Mayo, S.; Kopanski, J. J.; Guthrie, W. F.

    1998-01-01

    Overlay measurements of the relative alignment between sequential layers are one of the most critical issues for integrated circuit (IC) lithography. We have implemented on an AFM platform a new intermittent-contact scanning capacitance microscopy (IC-SCM) mode that is sensitive to the tip proximity to an IC interconnect, thus making it possible to image conductive structures buried under planarized dielectric layers. Such measurements can be used to measure IC metal-to-resist lithography overlay. The AFM conductive cantilever probe oscillating in a vertical plane was driven at frequency ω, below resonance. By measuring the tip-to-sample capacitance, the SCM signal is obtained as the difference in capacitance, ΔC(ω), at the amplitude extremes. Imaging of metallization structures was obtained with a bars-in-bars aluminum structure embedded in a planarized dielectric layer 1 μm thick. We have also modeled, with a two-dimensional (2D) electrostatic field simulator, IC-SCM overlay data of a metallization structure buried under a planarized dielectric having a patterned photoresist layer deposited on it. This structure, which simulates the metal-to-resist overlay between sequential IC levels, allows characterization of the technique sensitivity. The capacitance profile across identical size electrically isolated or grounded metal lines embedded in a dielectric was shown to be different. The floating line shows capacitance enhancement at the line edges, with a minimum at the line center. The grounded line shows a single capacitance maximum located at the line center, with no edge enhancement. For identical line dimensions, the capacitance is significantly larger for grounded lines making them easier to image. A nonlinear regression algorithm was developed to extract line center and overlay parameters with approximately 3 nm resolution at the 95% confidence level, showing the potential of this technique for sub-micrometer critical dimension metrology. Symmetric test

  11. COMPARISON OF POINT CLOUDS DERIVED FROM AERIAL IMAGE MATCHING WITH DATA FROM AIRBORNE LASER SCANNING

    Directory of Open Access Journals (Sweden)

    Dominik Wojciech

    2017-04-01

    Full Text Available The aim of this study was to invest igate the properties of point clouds derived from aerial image matching and to compare them with point clouds from airborne laser scanning. A set of aerial images acquired in years 2010 - 2013 over the city of Elblag were used for the analysis. Images were acquired with the use of three digital cameras: DMC II 230, DMC I and DigiCAM60 with a GSD varying from 4.5 cm to 15 cm. Eight sets of images that were used in the study were acquired at different stages of the growing season – from March to December. Two L iDAR point clouds were used for the comparison – one with a density of 1.3 p/m 2 and a second with a density of 10 p/m 2 . Based on the input images point clouds were created with the use of the semi - global matching method. The properties of the obtained poi nt clouds were analyzed in three ways: – b y the comparison of the vertical accuracy of point clouds with reference to a terrain profile surveyed on bare ground with GPS - RTK method – b y visual assessment of point cloud profiles generated both from SGM and LiDAR point clouds – b y visual assessment of a digital surface model generated from a SGM point cloud with reference to a digital surface model generated from a LiDAR point cloud. The conducted studies allowed a number of observations about the quality o f SGM point clouds to be formulated with respect to different factors. The main factors having influence on the quality of SGM point clouds are GSD and base/height ratio. The essential problem related to SGM point clouds are areas covered with vegetation w here SGM point clouds are visibly worse in terms of both accuracy and the representation of terrain surface. It is difficult to expect that in these areas SG M point clouds could replace LiDAR point clouds. This leads to a general conclusion that SGM point clouds are less reliable, more unpredictable and are dependent on more factors than LiDAR point clouds. Nevertheless, SGM point

  12. Immediate total-body CT scanning versus conventional imaging and selective CT scanning in patients with severe trauma (REACT-2): a randomised controlled trial.

    Science.gov (United States)

    Sierink, Joanne C; Treskes, Kaij; Edwards, Michael J R; Beuker, Benn J A; den Hartog, Dennis; Hohmann, Joachim; Dijkgraaf, Marcel G W; Luitse, Jan S K; Beenen, Ludo F M; Hollmann, Markus W; Goslings, J Carel

    2016-08-13

    Published work suggests a survival benefit for patients with trauma who undergo total-body CT scanning during the initial trauma assessment; however, level 1 evidence is absent. We aimed to assess the effect of total-body CT scanning compared with the standard work-up on in-hospital mortality in patients with trauma. We undertook an international, multicentre, randomised controlled trial at four hospitals in the Netherlands and one in Switzerland. Patients aged 18 years or older with trauma with compromised vital parameters, clinical suspicion of life-threatening injuries, or severe injury were randomly assigned (1:1) by ALEA randomisation to immediate total-body CT scanning or to a standard work-up with conventional imaging supplemented with selective CT scanning. Neither doctors nor patients were masked to treatment allocation. The primary endpoint was in-hospital mortality, analysed in the intention-to-treat population and in subgroups of patients with polytrauma and those with traumatic brain injury. The χ(2) test was used to assess differences in mortality. This trial is registered with ClinicalTrials.gov, number NCT01523626. Between April 22, 2011, and Jan 1, 2014, 5475 patients were assessed for eligibility, 1403 of whom were randomly assigned: 702 to immediate total-body CT scanning and 701 to the standard work-up. 541 patients in the immediate total-body CT scanning group and 542 in the standard work-up group were included in the primary analysis. In-hospital mortality did not differ between groups (total-body CT 86 [16%] of 541 vs standard work-up 85 [16%] of 542; p=0.92). In-hospital mortality also did not differ between groups in subgroup analyses in patients with polytrauma (total-body CT 81 [22%] of 362 vs standard work-up 82 [25%] of 331; p=0.46) and traumatic brain injury (68 [38%] of 178 vs 66 [44%] of 151; p=0.31). Three serious adverse events were reported in patients in the total-body CT group (1%), one in the standard work-up group (<1%), and

  13. A new CT scan methodology to characterize a small aggregation gravel clast contained in a soft sediment matrix

    Science.gov (United States)

    Fouinat, Laurent; Sabatier, Pierre; Poulenard, Jérôme; Reyss, Jean-Louis; Montet, Xavier; Arnaud, Fabien

    2017-03-01

    Over the past decades, X-ray computed tomography (CT) has been increasingly applied in the geosciences community. CT scanning is a rapid, non-destructive method allowing the assessment of relative density of clasts in natural archives samples. This study focuses on the use of this method to explore instantaneous deposits as major contributors to sedimentation of high-elevation lakes in the Alps, such as the Lake Lauvitel system (western French Alps). This lake is located within a very steep valley prone to episodic flooding and features gullies ending in the lake. This variety of erosion processes leads to deposition of sedimentary layers with distinct clastic properties. We identified 18 turbidites and 15 layers of poorly sorted fine sediment associated with the presence of gravels since AD 1880. These deposits are respectively interpreted as being induced by flood and wet avalanche. This constitutes a valuable record from a region where few historical records exist. This CT scan approach is suitable for instantaneous deposit identification to reconstruct past evolution and may be applicable to a wider variety of sedimentary archives alongside existing approaches.

  14. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution.

    Science.gov (United States)

    Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T

    2018-02-08

    Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text

  15. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images

    Science.gov (United States)

    Yothers, Mitchell P.; Browder, Aaron E.; Bumm, Lloyd A.

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  16. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images.

    Science.gov (United States)

    Yothers, Mitchell P; Browder, Aaron E; Bumm, Lloyd A

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  17. Novel Infiltration Diagnostics based on Laser-line Scanning and Infrared Temperature Field Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinwei [Iowa State Univ., Ames, IA (United States)

    2017-12-08

    This project targets the building energy efficiency problems induced by building infiltration/leaks. The current infiltration inspection techniques often require extensive visual inspection and/or whole building pressure test. These current techniques cannot meet more than three of the below five criteria of ideal infiltration diagnostics: 1. location and extent diagnostics, 2. building-level application, 3. least surface preparation, 4. weather-proof, and 5. non-disruption to building occupants. These techniques are either too expensive or time consuming, and often lack accuracy and repeatability. They are hardly applicable to facades/facades section. The goal of the project was to develop a novel infiltration diagnostics technology based on laser line-scanning and simultaneous infrared temperature imaging. A laboratory scale experimental setup was designed to mimic a model house of well-defined pressure difference below or above the outside pressure. Algorithms and Matlab-based programs had been developed for recognition of the hole location in infrared images. Our experiment based on laser wavelengths of 450 and 1550 nm and laser beam diameters of 4-25 mm showed that the location of the holes could be identified using laser heating; the diagnostic approach however could not readily distinguish between infiltration and non-infiltration points. To significantly improve the scanning throughput and recognition accuracy, a second approach was explored, developed, and extensively tested. It incorporates a liquid spray on the surface to induce extra phase change cooling effect. In this spray method, we termed it as PECIT (Phase-change Enhanced Cooling Infrared Thermography), phase-change enhanced cooling was used, which significantly amplifies the effect of air flow (infiltration and exfiltration). This heat transfer method worked extremely well to identify infiltration and exfiltration locations with high accuracy and increased throughput. The PECIT technique was

  18. A methodology for the extraction of quantitative information from electron microscopy images at the atomic level

    International Nuclear Information System (INIS)

    Galindo, P L; Pizarro, J; Guerrero, E; Guerrero-Lebrero, M P; Scavello, G; Yáñez, A; Sales, D L; Herrera, M; Molina, S I; Núñez-Moraleda, B M; Maestre, J M

    2014-01-01

    In this paper we describe a methodology developed at the University of Cadiz (Spain) in the past few years for the extraction of quantitative information from electron microscopy images at the atomic level. This work is based on a coordinated and synergic activity of several research groups that have been working together over the last decade in two different and complementary fields: Materials Science and Computer Science. The aim of our joint research has been to develop innovative high-performance computing techniques and simulation methods in order to address computationally challenging problems in the analysis, modelling and simulation of materials at the atomic scale, providing significant advances with respect to existing techniques. The methodology involves several fundamental areas of research including the analysis of high resolution electron microscopy images, materials modelling, image simulation and 3D reconstruction using quantitative information from experimental images. These techniques for the analysis, modelling and simulation allow optimizing the control and functionality of devices developed using materials under study, and have been tested using data obtained from experimental samples

  19. Rethinking Over Textuality of Digital Image: A Methodological Proposal for Pleasant Reading on Digital Screens

    Directory of Open Access Journals (Sweden)

    Cristian Álvarez

    2009-12-01

    Full Text Available It sets out the necessity about thinking over the instructional function of image in digital world under the light of the new opportunities of a methodological proposal to read as a game. First, for this reason it exams the perceptions of García Canclini about the reading of university students, and its problems on the context of new technologies: accumulation of information versus weakening of reflection. To this situation it adds the no appreciation of visual images. Faced with this problematic situation, and with the aim of sketching out options, it analyzes two experiences about books: the “tasty” reading of texts (the “good reading”, and the potentialities presented in the essential characteristics of playing. So, it proposes a methodology shaped for five steps to read images on digital screen. Its aim is seizing the possibilities of “good reading” to expand the comprehension of the visual information perceived through the screen. The proposal puts the accent in the textuality of representational surface of an image. Also it brings the attentive visual route about in order to enable to identify both significant forms and spaces. This proposal is illustrated with examples.

  20. High-resolution imaging of magnetic fields using scanning superconducting quantum interference device (SQUID) microscopy

    Science.gov (United States)

    Fong de Los Santos, Luis E.

    Development of a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with sub-millimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensor is mounted in the tip of a sapphire rod and thermally anchored to the cryostat helium reservoir. A 25 mum sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows adjusting the sample-to-sensor spacing from the top of the Dewar. I have achieved a sensor-to-sample spacing of 100 mum, which could be maintained for periods of up to 4 weeks. Different SQUID sensor configurations are necessary to achieve the best combination of spatial resolution and field sensitivity for a given magnetic source. For imaging thin sections of geological samples, I used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80 mum, and achieved a field sensitivity of 1.5 pT/Hz1/2 and a magnetic moment sensitivity of 5.4 x 10-18 Am2/Hz1/2 at a sensor-to-sample spacing of 100 mum in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires higher field sensitivity, which can only be achieved by compromising spatial resolution. I developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250 mum to 1 mm, and achieved sensitivities of 480 - 180 fT/Hz1/2 in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of

  1. Scan-Less Line Field Optical Coherence Tomography, with Automatic Image Segmentation, as a Measurement Tool for Automotive Coatings

    Directory of Open Access Journals (Sweden)

    Samuel Lawman

    2017-04-01

    Full Text Available The measurement of the thicknesses of layers is important for the quality assurance of industrial coating systems. Current measurement techniques only provide a limited amount of information. Here, we show that spectral domain Line Field (LF Optical Coherence Tomography (OCT is able to return to the user a cross sectional B-Scan image in a single shot with no mechanical moving parts. To reliably extract layer thicknesses from such images of automotive paint systems, we present an automatic graph search image segmentation algorithm. To show that the algorithm works independently of the OCT device, the measurements are repeated with a separate time domain Full Field (FF OCT system. This gives matching mean thickness values within the standard deviations of the measured thicknesses across each B-Scan image. The combination of an LF-OCT with graph search segmentation is potentially a powerful technique for the quality assurance of non-opaque industrial coating layers.

  2. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, South Korea, 500-712 (Korea, Republic of)

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  3. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    Directory of Open Access Journals (Sweden)

    Kalle Eerikäinen

    2008-08-01

    Full Text Available The aim was to use high resolution Aerial Laser Scanning (ALS data and aerial images to detect European aspen (Populus tremula L. from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species.

  4. PINPIN a-Si:H based structures for X-ray image detection using the laser scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, M., E-mail: mfernandes@isel.pt [Electronics Telecommunication and Computer Dept., ISEL, R.Conselheiro Emídio Navarro, 1959-007 Lisboa (Portugal); CTS-UNINOVA Quinta da Torre, Monte da Caparica, 2829-516 Caparica (Portugal); Vygranenko, Y.; Vieira, M. [Electronics Telecommunication and Computer Dept., ISEL, R.Conselheiro Emídio Navarro, 1959-007 Lisboa (Portugal); CTS-UNINOVA Quinta da Torre, Monte da Caparica, 2829-516 Caparica (Portugal)

    2015-05-01

    Highlights: • We present novel structure for X-ray image sensor based on the laser scanned technique. • Amorphous silicon based tandem structure characterization results are presented and discussed. • Results from preliminary tests of the imaging application are promising for very large area image sensing. - Abstract: Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented.

  5. A portable confocal hyperspectral microscope without any scan or tube lens and its application in fluorescence and Raman spectral imaging

    Science.gov (United States)

    Li, Jingwei; Cai, Fuhong; Dong, Yongjiang; Zhu, Zhenfeng; Sun, Xianhe; Zhang, Hequn; He, Sailing

    2017-06-01

    In this study, a portable confocal hyperspectral microscope is developed. In traditional confocal laser scanning microscopes, scan lens and tube lens are utilized to achieve a conjugate relationship between the galvanometer and the back focal plane of the objective, in order to achieve a better resolution. However, these lenses make it difficult to scale down the volume of the system. In our portable confocal hyperspectral microscope (PCHM), the objective is placed directly next to the galvomirror. Thus, scan lens and tube lens are not included in our system and the size of this system is greatly reduced. Furthermore, the resolution is also acceptable in many biomedical and food-safety applications. Through reducing the optical length of the system, the signal detection efficiency is enhanced. This is conducive to realizing both the fluorescence and Raman hyperspectral imaging. With a multimode fiber as a pinhole, an improved image contrast is also achieved. Fluorescent spectral images for HeLa cells/fingers and Raman spectral images of kumquat pericarp are present. The spectral resolution and spatial resolutions are about 0.4 nm and 2.19 μm, respectively. These results demonstrate that this portable hyperspectral microscope can be used in in-vivo fluorescence imaging and in situ Raman spectral imaging.

  6. 3D Body Scanning Measurement System Associated with RF Imaging, Zero-padding and Parallel Processing

    Directory of Open Access Journals (Sweden)

    Kim Hyung Tae

    2016-04-01

    Full Text Available This work presents a novel signal processing method for high-speed 3D body measurements using millimeter waves with a general processing unit (GPU and zero-padding fast Fourier transform (ZPFFT. The proposed measurement system consists of a radio-frequency (RF antenna array for a penetrable measurement, a high-speed analog-to-digital converter (ADC for significant data acquisition, and a general processing unit for fast signal processing. The RF waves of the transmitter and the receiver are converted to real and imaginary signals that are sampled by a high-speed ADC and synchronized with the kinematic positions of the scanner. Because the distance between the surface and the antenna is related to the peak frequency of the conjugate signals, a fast Fourier transform (FFT is applied to the signal processing after the sampling. The sampling time is finite owing to a short scanning time, and the physical resolution needs to be increased; further, zero-padding is applied to interpolate the spectra of the sampled signals to consider a 1/m floating point frequency. The GPU and parallel algorithm are applied to accelerate the speed of the ZPFFT because of the large number of additional mathematical operations of the ZPFFT. 3D body images are finally obtained by spectrograms that are the arrangement of the ZPFFT in a 3D space.

  7. Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning.

    Science.gov (United States)

    Kunst, P W; Vonk Noordegraaf, A; Hoekstra, O S; Postmus, P E; de Vries, P M

    1998-11-01

    Electrical impedance tomography (EIT) is a technique that makes it possible to measure ventilation and pulmonary perfusion in a volume that approximates to a 2D plane. The possibility of using EIT for measuring the left-right division of ventilation and perfusion was compared with that of radionuclide imaging. Following routine ventilation (81mKr) and perfusion scanning (99mTc-MAA), EIT measurements were performed at the third and the sixth intercostal level in 14 patients with lung cancer. A correlation (r = 0.98, p RC) was calculated for estimating the left-right division with EIT. The RC for the ventilation measurements was 94% and 96% for the perfusion measurements. The correlation analysis for reproducibility of the EIT measurements was 0.95 (p < 0.001) for the ventilation and 0.93 (p < 0.001) for the perfusion measurements. In conclusion, EIT can be regarded as a promising technique to estimate the left-right division of pulmonary perfusion and ventilation.

  8. A study on the inclusion sizing using immersion ultrasonic C-scan imaging

    International Nuclear Information System (INIS)

    Chen, D; Xiao, H F; Li, M; Xu, J W

    2017-01-01

    Inclusion sizing, especially for large inclusions greater than 30μm provides important reference for metallurgical process control and fatigue life assessment of steel. Ultrasonic non-destructive testing (NDT) shows great advantages in detecting infrequently occurred large inclusions than eddy current, magnetic particle, microscopic or macroscopic examination procedures. In this paper, the performance of inclusion sizing by immersion ultrasonic C-scan imaging is studied numerically. A two-dimensional model that consists of spherically focused transducer, water couplant and steel with embedded inclusion is established and solved numerically by the finite element method. The signal intensity distributions of inclusion with different sizes are acquired and the effects of inclusion type, shape, orientation on signal intensity distribution are analysed. The results show that the 6dB-drop threshold has the smallest relative error compared with the 12dB-drop threshold and the full-drop threshold, which is better for determining inclusion size larger than 100μm. Experiment is also performed to validate the simulated results. (paper)

  9. Sex determination from scapular length measurements by CT scans images in a Caucasian population.

    Science.gov (United States)

    Giurazza, F; Schena, E; Del Vescovo, R; Cazzato, R L; Mortato, L; Saccomandi, P; Paternostro, F; Onofri, L; Zobel, B Beomonte

    2013-01-01

    Together with race, stature and age, sex is a main component of the biological identity. Thanks to its proportional correlation with parts of the human body, sex can be evaluated form the skeleton. The most accurate approach to determine sex by bone size is based on os coxae or skull. After natural disaster their presence can never be guaranteed, therefore the development of methods of sex determination using other skeletal elements can result crucial. Herein, sexual dimorphism in the human scapula is used to develop a two-variable discriminant function for sex estimation. We have enrolled 100 males and 100 females who underwent thoracic CT scan evaluation and we have estimated two scapular diameters. The estimation has been carried out by analyzing images of the scapulae of each patient after three dimensional post-processing reconstructions. The two-variable function allows to obtain an overall accuracy of 88% on the calibration sample. Furthermore, we have employed the mentioned function on a collection of 10 individual test sample from the collection of the "Museo di Anatomia Umana di Firenze" of the Università degli Studi di Firenze; sex has been correctly predicted on 9 skeletons.

  10. Fast Focal Point Correction in Prism-Coupled Total Internal Reflection Scanning Imager Using an Electronically Tunable Lens

    Directory of Open Access Journals (Sweden)

    Chenggang Zhu

    2018-02-01

    Full Text Available Total internal reflection (TIR is useful for interrogating physical and chemical processes that occur at the interface between two transparent media. Yet prism-coupled TIR imaging microscopes suffer from limited sensing areas due to the fact that the interface (the object plane is not perpendicular to the optical axis of the microscope. In this paper, we show that an electrically tunable lens can be used to rapidly and reproducibly correct the focal length of an oblique-incidence scanning microscope (OI-RD in a prism-coupled TIR geometry. We demonstrate the performance of such a correction by acquiring an image of a protein microarray over a scan area of 4 cm2 with an effective resolution of less than 20 microns. The electronic focal length tuning eliminates the mechanical movement of the illumination lens in the scanning microscope and in turn the noise and background drift associated with the motion.

  11. RESEARCH ON COORDINATE TRANSFORMATION METHOD OF GB-SAR IMAGE SUPPORTED BY 3D LASER SCANNING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    P. Wang

    2018-04-01

    Full Text Available In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D plane coordinate system with the common three-dimensional (3D terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  12. Research on Coordinate Transformation Method of Gb-Sar Image Supported by 3d Laser Scanning Technology

    Science.gov (United States)

    Wang, P.; Xing, C.

    2018-04-01

    In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D) plane coordinate system with the common three-dimensional (3D) terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  13. THE USE OF MOBILE LASER SCANNING DATA AND UNMANNED AERIAL VEHICLE IMAGES FOR 3D MODEL RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2013-08-01

    Full Text Available The increasing availability in multiple data sources acquired by different sensor platforms has provided the great advantages for desired result achievement. This paper proposes the use of both mobile laser scanning (MLS data and Unmanned Aerial Vehicle (UAV images for 3D model reconstruction. Due to no available exterior orientation parameters for UAV images, the first task is to georeference these images to 3D points. In order to fast and accurate acquire 3D points which are also easy to be found the corresponding locations on UAV images, automated pole extraction from MLS was developed. After georeferencing UAV images, building roofs are acquired from those images and building walls are extracted from MLS data. The roofs and the walls are combined to achieve the complete building models.

  14. Confocal Adaptive Optics Imaging of Peripapillary Nerve Fiber Bundles: Implications for Glaucomatous Damage Seen on Circumpapillary OCT Scans.

    Science.gov (United States)

    Hood, Donald C; Chen, Monica F; Lee, Dongwon; Epstein, Benjamin; Alhadeff, Paula; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Chui, Toco Y P

    2015-04-01

    To improve our understanding of glaucomatous damage as seen on circumpapillary disc scans obtained with frequency-domain optical coherence tomography (fdOCT), fdOCT scans were compared to images of the peripapillary retinal nerve fiber (RNF) bundles obtained with an adaptive optics-scanning light ophthalmoscope (AO-SLO). The AO-SLO images and fdOCT scans were obtained on 6 eyes of 6 patients with deep arcuate defects (5 points ≤-15 db) on 10-2 visual fields. The AO-SLO images were montaged and aligned with the fdOCT images to compare the RNF bundles seen with AO-SLO to the RNF layer thickness measured with fdOCT. All 6 eyes had an abnormally thin (1% confidence limit) RNF layer (RNFL) on fdOCT and abnormal (hyporeflective) regions of RNF bundles on AO-SLO in corresponding regions. However, regions of abnormal, but equal, RNFL thickness on fdOCT scans varied in appearance on AO-SLO images. These regions could be largely devoid of RNF bundles (5 eyes), have abnormal-appearing bundles of lower contrast (6 eyes), or have isolated areas with a few relatively normal-appearing bundles (2 eyes). There also were local variations in reflectivity of the fdOCT RNFL that corresponded to the variations in AO-SLO RNF bundle appearance. Relatively similar 10-2 defects with similar fdOCT RNFL thickness profiles can have very different degrees of RNF bundle damage as seen on fdOCT and AO-SLO. While the results point to limitations of fdOCT RNFL thickness as typically analyzed, they also illustrate the potential for improving fdOCT by attending to variations in local intensity.

  15. Analysis of photon-scanning tunneling microscope images of inhomogeneous samples: Determination of the local refractive index of channel waveguides

    International Nuclear Information System (INIS)

    Bourillot, E.; Fornel, F. de.; Goudonnet, J.P.

    1995-01-01

    Channel waveguides are imaged by a photon-scanning tunneling microscope (PSTM). The polarization of the light and its orientation with respect to the guide aids are shown to be very important parameters in the analysis of the images of such samples. We simulated image formation for the plane of incidence parallel to the axis of the guide. Our theoretical results are qualitatively in agreement with our measurements. These results show the ability of the PSTM to give information about the local refractive-index variations of a sample. 21 refs., 14 figs

  16. The development of a line-scan imaging algorithm for the detection of fecal contamination on leafy geens

    Science.gov (United States)

    Yang, Chun-Chieh; Kim, Moon S.; Chuang, Yung-Kun; Lee, Hoyoung

    2013-05-01

    This paper reports the development of a multispectral algorithm, using the line-scan hyperspectral imaging system, to detect fecal contamination on leafy greens. Fresh bovine feces were applied to the surfaces of washed loose baby spinach leaves. A hyperspectral line-scan imaging system was used to acquire hyperspectral fluorescence images of the contaminated leaves. Hyperspectral image analysis resulted in the selection of the 666 nm and 688 nm wavebands for a multispectral algorithm to rapidly detect feces on leafy greens, by use of the ratio of fluorescence intensities measured at those two wavebands (666 nm over 688 nm). The algorithm successfully distinguished most of the lowly diluted fecal spots (0.05 g feces/ml water and 0.025 g feces/ml water) and some of the highly diluted spots (0.0125 g feces/ml water and 0.00625 g feces/ml water) from the clean spinach leaves. The results showed the potential of the multispectral algorithm with line-scan imaging system for application to automated food processing lines for food safety inspection of leafy green vegetables.

  17. Evaluation on the influence of electrocardiograph modulated milliampere on image quality and exposure dosage of volume CT heart scan

    International Nuclear Information System (INIS)

    Zhang Sen; Du Xiangke; Li Jianyin

    2006-01-01

    Objective: To find out whether the use of ECG modulated current (mA) will influence image quality and to decide whether the electrocardiograph (ECG) modulated mA will effectively reduce the exposure dosage. Methods: The cardiac pulsating phantom was set at three speed levels, i.e. high, medium, and low speed so as to simulate different heart rates. The phantom was scanned with ECG modulated mA turned on and off, and the exposure dosage of each scan sequence was documented. The images were reconstructed with reconstruction algorithm that matched the different levels of heart rate. CT values and their corresponding standard deviations at uniform areas on the images and the variation of the CT values at different locations were measured. The results from the two groups with and without ECG modulated mA were analyzed. Results: Under the same level of heart rate, the exposure dosage was remarkably reduced when the ECG modulated mA was on than when it was off. Statistical analysis showed no significant difference (P>0.05) between the images from the two groups. Conclusion: When scanning the heart with volume CT (VCT), the application of ECG modulated mA can effectively reduce the exposure dosage without sacrificing the image quality. (authors)

  18. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens

    International Nuclear Information System (INIS)

    Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D.; Volz, Kerstin

    2017-01-01

    Highlights: • We present STEMsalabim, a modern implementation of the multislice algorithm for simulation of STEM images. • Our package is highly parallelizable on high-performance computing clusters, combining shared and distributed memory architectures. • With STEMsalabim, computationally and memory expensive STEM image simulations can be carried out within reasonable time. - Abstract: We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space.

  19. Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy.

    Science.gov (United States)

    Masters, Robert C; Pearson, Andrew J; Glen, Tom S; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M; Lidzey, David G; Rodenburg, Cornelia

    2015-04-24

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials.

  20. Sub-nanometre resolution imaging of polymer–fullerene photovoltaic blends using energy-filtered scanning electron microscopy

    Science.gov (United States)

    Masters, Robert C.; Pearson, Andrew J.; Glen, Tom S.; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M.; Lidzey, David G.; Rodenburg, Cornelia

    2015-01-01

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials. PMID:25906738

  1. Reconstructing 3D profiles of flux distribution in array of unshunted Josephson junctions from 2D scanning SQUID microscope images

    International Nuclear Information System (INIS)

    Nascimento, F.M.; Sergeenkov, S.; Araujo-Moreira, F.M.

    2012-01-01

    By using a specially designed algorithm (based on utilizing the so-called Hierarchical Data Format), we report on successful reconstruction of 3D profiles of local flux distribution within artificially prepared arrays of unshunted Nb-AlO x -Nb Josephson junctions from 2D surface images obtained via the scanning SQUID microscope. The analysis of the obtained results suggest that for large sweep areas, the local flux distribution significantly deviates from the conventional picture and exhibits a more complicated avalanche-type behavior with a prominent dendritic structure. -- Highlights: ► The penetration of external magnetic field into an array of Nb-AlO x -Nb Josephson junctions is studied. ► Using Scanning SQUID Microscope, 2D images of local flux distribution within array are obtained. ► Using specially designed pattern recognition algorithm, 3D flux profiles are reconstructed from 2D images.

  2. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens

    Energy Technology Data Exchange (ETDEWEB)

    Oelerich, Jan Oliver, E-mail: jan.oliver.oelerich@physik.uni-marburg.de; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D.; Volz, Kerstin

    2017-06-15

    Highlights: • We present STEMsalabim, a modern implementation of the multislice algorithm for simulation of STEM images. • Our package is highly parallelizable on high-performance computing clusters, combining shared and distributed memory architectures. • With STEMsalabim, computationally and memory expensive STEM image simulations can be carried out within reasonable time. - Abstract: We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space.

  3. A Classification-oriented Method of Feature Image Generation for Vehicle-borne Laser Scanning Point Clouds

    Directory of Open Access Journals (Sweden)

    YANG Bisheng

    2016-02-01

    Full Text Available An efficient method of feature image generation of point clouds to automatically classify dense point clouds into different categories is proposed, such as terrain points, building points. The method first uses planar projection to sort points into different grids, then calculates the weights and feature values of grids according to the distribution of laser scanning points, and finally generates the feature image of point clouds. Thus, the proposed method adopts contour extraction and tracing means to extract the boundaries and point clouds of man-made objects (e.g. buildings and trees in 3D based on the image generated. Experiments show that the proposed method provides a promising solution for classifying and extracting man-made objects from vehicle-borne laser scanning point clouds.

  4. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    Science.gov (United States)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  5. Geodetic Imaging for Rapid Assessment of Earthquakes: Airborne Laser Scanning (ALS)

    Science.gov (United States)

    Carter, W. E.; Shrestha, R. L.; Glennie, C. L.; Sartori, M.; Fernandez-Diaz, J.; National CenterAirborne Laser Mapping Operational Center

    2010-12-01

    northwest, from the epicenter in Baja California through the US-Mexico border. The ALS observations were collected from an aircraft altitude of 600 m, flying at approximately 80 m/sec, using an Optech Inc. Gemini sensor, operating at 100 kHz, a scanning angle plus/minus 14 degrees and scan rate of 60 Hz. Some 24 lines, comprising a corridor 3 km wide and 106 km in length, were mapped, with a nominal point density of just over 10 points/m2. Total flight time for the project was just under 21 hours, but the laser on time was only 13 hours and 21 minutes. Preliminary versions of the observational data were delivered to the PIs (Michael Oskin, UC Davis, and Ramon Arrowsmith, ASU) within a few days of their collection. Geodetic imaging is still in its early stages of development, and ALS technology is progressing rapidly. The use of multiple channel (based on multiple lasers of the same or different colors and/or receivers operating in parallel) ALS units will result in contiguous sub-decimeter coverage, and deployment of ALS units in UAVs, with data transmitted to the operators in real time, will further reduce the turn-around time and enable more rapid assessment of earthquakes within the next decade.

  6. Acquiring a 2D rolled equivalent fingerprint image from a non-contact 3D finger scan

    Science.gov (United States)

    Fatehpuria, Abhishika; Lau, Daniel L.; Hassebrook, Laurence G.

    2006-04-01

    The use of fingerprints as a biometric is both the oldest mode of computer aided personal identification and the most relied-upon technology in use today. But current fingerprint scanning systems have some challenging and peculiar difficulties. Often skin conditions and imperfect acquisition circumstances cause the captured fingerprint image to be far from ideal. Also some of the acquisition techniques can be slow and cumbersome to use and may not provide the complete information required for reliable feature extraction and fingerprint matching. Most of the difficulties arise due to the contact of the fingerprint surface with the sensor platen. To attain a fast-capture, non-contact, fingerprint scanning technology, we are developing a scanning system that employs structured light illumination as a means for acquiring a 3-D scan of the finger with sufficiently high resolution to record ridge-level details. In this paper, we describe the postprocessing steps used for converting the acquired 3-D scan of the subject's finger into a 2-D rolled equivalent image.

  7. A Methodology and Implementation for Annotating Digital Images for Context-appropriate Use in an Academic Health Care Environment

    Science.gov (United States)

    Goede, Patricia A.; Lauman, Jason R.; Cochella, Christopher; Katzman, Gregory L.; Morton, David A.; Albertine, Kurt H.

    2004-01-01

    Use of digital medical images has become common over the last several years, coincident with the release of inexpensive, mega-pixel quality digital cameras and the transition to digital radiology operation by hospitals. One problem that clinicians, medical educators, and basic scientists encounter when handling images is the difficulty of using business and graphic arts commercial-off-the-shelf (COTS) software in multicontext authoring and interactive teaching environments. The authors investigated and developed software-supported methodologies to help clinicians, medical educators, and basic scientists become more efficient and effective in their digital imaging environments. The software that the authors developed provides the ability to annotate images based on a multispecialty methodology for annotation and visual knowledge representation. This annotation methodology is designed by consensus, with contributions from the authors and physicians, medical educators, and basic scientists in the Departments of Radiology, Neurobiology and Anatomy, Dermatology, and Ophthalmology at the University of Utah. The annotation methodology functions as a foundation for creating, using, reusing, and extending dynamic annotations in a context-appropriate, interactive digital environment. The annotation methodology supports the authoring process as well as output and presentation mechanisms. The annotation methodology is the foundation for a Windows implementation that allows annotated elements to be represented as structured eXtensible Markup Language and stored separate from the image(s). PMID:14527971

  8. Reduction of Cone-Beam CT scan time without compromising the accuracy of the image registration in IGRT

    International Nuclear Information System (INIS)

    Westberg, Jonas; Jensen, Henrik R.; Bertelsen, Anders; Brink, Carsten

    2010-01-01

    Background. In modern radiotherapy accelerators are equipped with 3D cone-beam CT (CBCT) which is used to verify patient position before treatment. The verification is based on an image registration between the CBCT acquired just before treatment and the CT scan made for the treatment planning. The purpose of this study is to minimise the scan time of the CBCT without compromising the accuracy of the image registration in IGRT. Material and methods. Fast scans were simulated by reducing the number of acquired projection images, i.e. new reconstructions based on a subset of the original projections were made. The deviation between the registrations of these new reconstructions and the original registration was measured as function of the amount of reduction. Results and Discussion. Twenty nine head and neck (HandN) and 11 stereotactic lung patients were included in the study. The mean of the registration deviation did not differ significantly from zero independently of the number of projections included in the reconstruction. Except for the smallest subset of reconstructions (10% and 25% of the original projection for the lung and HandN patients, respectively) the standard deviation of the registration differences was constant. The standard deviations were approximately 0.1 mm and 0.2 mm for the HandN and lung group, respectively. Based on these results an in-house developed solution, able to reduce the Cone-Beam CT scan time, has been implemented clinically

  9. PINPIN a-Si:H based structures for X-ray image detection using the laser scanning technique

    Science.gov (United States)

    Fernandes, M.; Vygranenko, Y.; Vieira, M.

    2015-05-01

    Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented.

  10. A scanning tunneling microscope capable of imaging specified micron-scale small samples.

    Science.gov (United States)

    Tao, Wei; Cao, Yufei; Wang, Huafeng; Wang, Kaiyou; Lu, Qingyou

    2012-12-01

    We present a home-built scanning tunneling microscope (STM) which allows us to precisely position the tip on any specified small sample or sample feature of micron scale. The core structure is a stand-alone soft junction mechanical loop (SJML), in which a small piezoelectric tube scanner is mounted on a sliding piece and a "U"-like soft spring strip has its one end fixed to the sliding piece and its opposite end holding the tip pointing to the sample on the scanner. Here, the tip can be precisely aligned to a specified small sample of micron scale by adjusting the position of the spring-clamped sample on the scanner in the field of view of an optical microscope. The aligned SJML can be transferred to a piezoelectric inertial motor for coarse approach, during which the U-spring is pushed towards the sample, causing the tip to approach the pre-aligned small sample. We have successfully approached a hand cut tip that was made from 0.1 mm thin Pt∕Ir wire to an isolated individual 32.5 × 32.5 μm(2) graphite flake. Good atomic resolution images and high quality tunneling current spectra for that specified tiny flake are obtained in ambient conditions with high repeatability within one month showing high and long term stability of the new STM structure. In addition, frequency spectra of the tunneling current signals do not show outstanding tip mount related resonant frequency (low frequency), which further confirms the stability of the STM structure.

  11. A scanning tunneling microscope capable of imaging specified micron-scale small samples

    Science.gov (United States)

    Tao, Wei; Cao, Yufei; Wang, Huafeng; Wang, Kaiyou; Lu, Qingyou

    2012-12-01

    We present a home-built scanning tunneling microscope (STM) which allows us to precisely position the tip on any specified small sample or sample feature of micron scale. The core structure is a stand-alone soft junction mechanical loop (SJML), in which a small piezoelectric tube scanner is mounted on a sliding piece and a "U"-like soft spring strip has its one end fixed to the sliding piece and its opposite end holding the tip pointing to the sample on the scanner. Here, the tip can be precisely aligned to a specified small sample of micron scale by adjusting the position of the spring-clamped sample on the scanner in the field of view of an optical microscope. The aligned SJML can be transferred to a piezoelectric inertial motor for coarse approach, during which the U-spring is pushed towards the sample, causing the tip to approach the pre-aligned small sample. We have successfully approached a hand cut tip that was made from 0.1 mm thin Pt/Ir wire to an isolated individual 32.5 × 32.5 μm2 graphite flake. Good atomic resolution images and high quality tunneling current spectra for that specified tiny flake are obtained in ambient conditions with high repeatability within one month showing high and long term stability of the new STM structure. In addition, frequency spectra of the tunneling current signals do not show outstanding tip mount related resonant frequency (low frequency), which further confirms the stability of the STM structure.

  12. Three-dimensional image analysis of the skull using variable CT scanning protocols-effect of slice thickness on measurement in the three-dimensional CT images

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho Gul; Kim, Kee Deog; Park, Hyok; Kim, Dong Ook; Jeong, Hai Jo; Kim, Hee Joung; Yoo, Sun Kook; Kim, Yong Oock; Park, Chang Seo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2004-07-15

    To evaluate the quantitative accuracy of three-dimensional (3D) images by mean of comparing distance measurements on the 3D images with direct measurements of dry human skull according to slice thickness and scanning modes. An observer directly measured the distance of 21 line items between 12 orthodontic landmarks on the skull surface using a digital vernier caliper and each was repeated five times. The dry human skull was scanned with a Helical CT with various slice thickness (3, 5, 7 mm) and acquisition modes (Conventional and Helical). The same observer measured corresponding distance of the same items on reconstructed 3D images with the internal program of V-works 4.0 (Cybermed Inc., Seoul, Korea). The quantitative accuracy of distance measurements were statistically evaluated with Wilcoxons' two-sample test. 11 line items in Conventional 3 mm, 8 in Helical 3 mm, 11 in Conventional 5 mm, 10 in Helical 5 mm, 5 in Conventional 7 mm and 9 in Helical 7 mm showed no statistically significant difference. Average difference between direct measurements and measurements on 3D CT images was within 2 mm in 19 line items of Conventional 3 mm. 20 of Helical 3 mm, 15 of Conventional 5 mm, 18 of Helical 5 mm, 11 of Conventional 7 mm and 16 of Helical 7 mm. Considering image quality and patient's exposure time, scanning protocol of Helical 5 mm is recommended for 3D image analysis of the skull in CT.

  13. AFM-based nanolithography : manipulating poly(dimethylsiloxane) : loading force, scan speed and image resolution dependence on stick-slip outcomes in the slow and fast scan directions

    International Nuclear Information System (INIS)

    Watson, J.A.; Brown, C.L.; Myhra, S.; Watson, G.S.

    2005-01-01

    The various properties of a polymer will affect its functionality in a wide range of applications including biosensors, tissue engineering and biomaterials technology. Some of those require precise manipulation of laterally differentiated regions, currently taking place on the μm-scale. It is now apparent that this need must now be driven into the nm-regime. Using the AFM, the principal objective is to explore and investigate lithographic outcomes during tip-induced manipulation with the aid of work on poly(dimethylsiloxane), (PDMS). The frictional effects (including any in-plane relaxation), and their dependence on the loading force, scan speed and image resolution are examined. (author). 3 refs., 5 figs

  14. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    Directory of Open Access Journals (Sweden)

    Taekjun Oh

    2015-07-01

    Full Text Available Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

  15. Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration.

    Science.gov (United States)

    Zayit-Soudry, Shiri; Duncan, Jacque L; Syed, Reema; Menghini, Moreno; Roorda, Austin J

    2013-11-15

    To evaluate cone spacing using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with nonneovascular AMD, and to correlate progression of AOSLO-derived cone measures with standard measures of macular structure. Adaptive optics scanning laser ophthalmoscopy images were obtained over 12 to 21 months from seven patients with AMD including four eyes with geographic atrophy (GA) and four eyes with drusen. Adaptive optics scanning laser ophthalmoscopy images were overlaid with color, infrared, and autofluorescence fundus photographs and spectral domain optical coherence tomography (SD-OCT) images to allow direct correlation of cone parameters with macular structure. Cone spacing was measured for each visit in selected regions including areas over drusen (n = 29), at GA margins (n = 14), and regions without drusen or GA (n = 13) and compared with normal, age-similar values. Adaptive optics scanning laser ophthalmoscopy imaging revealed continuous cone mosaics up to the GA edge and overlying drusen, although reduced cone reflectivity often resulted in hyporeflective AOSLO signals at these locations. Baseline cone spacing measures were normal in 13/13 unaffected regions, 26/28 drusen regions, and 12/14 GA margin regions. Although standard clinical measures showed progression of GA in all study eyes, cone spacing remained within normal ranges in most drusen regions and all GA margin regions. Adaptive optics scanning laser ophthalmoscopy provides adequate resolution for quantitative measurement of cone spacing at the margin of GA and over drusen in eyes with AMD. Although cone spacing was often normal at baseline and remained normal over time, these regions showed focal areas of decreased cone reflectivity. These findings may provide insight into the pathophysiology of AMD progression. (ClinicalTrials.gov number, NCT00254605).

  16. Analysis and Calibration of in situ scanning tunnelling microscopy Images with atomic Resolution Influenced by Surface Drift Phenomena

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per

    1994-01-01

    The influence of surface drift velocities on in situ scanning tunnelling microscopy (STM) experiments with atomic resolution is analysed experimentally and mathematically. Constant drift velocities much smaller than the speed of scanning can in many in situ STM experiments with atomic resolution ...... as well as the vectors of the non-distorted surface lattice can be determined. The calibration of distances can thus be carried out also when the image is influenced by drift. Results with gold surfaces and graphite surfaces are analysed and discussed....

  17. Hepatobiliary imaging: the use of 99Tcsup(m)-pyridoxylidene glutamate scanning in jaundiced adults and infants

    International Nuclear Information System (INIS)

    Jenner, R.E.; Howard, E.R.; Clarke, M.B.; Barrett, J.J.

    1978-01-01

    99 Tcsup(m)-pyridoxylidene glutamate ( 99 Tcsup(m)-PG) scans have been carried out in 24 jaundiced adults (mean total bilirubin 255 μmol/1 and 11 infants with prolonged obstructive jaundice (mean total bilirubin 165 μmol/1). Absence of radioactivity in the gut was interpreted as complete biliary obstruction which was the cause of jaundice in ten adults and six infants. Using this criterion occlusion or patency of the bile ducts was correctly determined in 21 adults and eight infants. False-negative gut images found in one adult were and two infants, and three scans were inconclusive (two adults, one infant). The scan was unable to show details of the site of obstruction or pathology but the technique was simple and atraumatic and was safely performed in patients with serious complications, e.g. renal failure, coagulation defects, septicaemia. In infants the 99 Tcsup(m)-PG scan compared well with the 131 I rose bengal faecal excretion test and with liver biopsy in the investigation of prolonged obstructive jaundice. Repeat scans in infants with biliary atresia were used to assess post-operative bile drainage. It is suggested that 99 Tcsup(m)-PG scanning is a useful screening test in difficult cases of jaundice. It is especially useful in frail patients, and patients with complications. (author)

  18. Proposed alteration of images of molecular orbitals obtained using a scanning tunneling microscope as a probe of electron correlation.

    Science.gov (United States)

    Toroz, Dimitrios; Rontani, Massimo; Corni, Stefano

    2013-01-04

    Scanning tunneling spectroscopy (STS) allows us to image single molecules decoupled from the supporting substrate. The obtained images are routinely interpreted as the square moduli of molecular orbitals, dressed by the mean-field electron-electron interaction. Here we demonstrate that the effect of electron correlation beyond the mean field qualitatively alters the uncorrelated STS images. Our evidence is based on the ab initio many-body calculation of STS images of planar molecules with metal centers. We find that many-body correlations alter significantly the image spectral weight close to the metal center of the molecules. This change is large enough to be accessed experimentally, surviving to molecule-substrate interactions.

  19. A Resonant Scanning Dipole-Antenna Probe for Enhanced Nanoscale Imaging

    NARCIS (Netherlands)

    Neumann, L.; van 't Oever, Jan Joannes Frederik; van Hulst, N.F.

    2013-01-01

    We present a scanning antenna probe that provides 35 nm optical hotspots with a 16-fold excitation enhancement. A resonant optical antenna, tuned to operation in the visible, is carved into the aluminum-coated scanning probe. The antenna resonances, field localization, excitation, and polarization

  20. Fast-scan em with digital image processing for dynamic experiments

    Science.gov (United States)

    Charles W. McMillin; Fred C. Billingsley; Robert E. Frazer

    1973-01-01

    The recent introduction of accessory instrumentation capable of display at television scan rates suggests a broadened application for the scanning electron microscope - the direct observation of motion (dynamic events) at magnifactions otherwise unattainable. In one illustrative experiment, the transverse surface of southern pine was observed when subjected to large...

  1. Evaluation of the Effect of Light and Scanning Time Delay on The Image Quality of Intra Oral Photostimulable Phosphor Plates.

    Science.gov (United States)

    Eskandarloo, Amir; Yousefi, Arman; Soheili, Setareh; Ghazikhanloo, Karim; Amini, Payam; Mohammadpoor, Haniyeh

    2017-01-01

    Nowadays, digital radiography is widely used in dental practice. One of the most common types is Photo Stimulated Phosphor Plate (PSP). The aims of this experimental study were to evaluate the impacts of different combinations of storage conditions and varying delays in reading of digital images captured using PSPs. Standardized images of a step wedges were obtained using PSPs from the Digora digital systems. Plates were exposed and immediately scanned to produce the baseline gold standard. The plates were re-exposed and stored in four different storage conditions: white light, yellow light, natural light environment and dark room, then scanned after 10 and 30 minutes and 4 and 8 hours. Objective analysis was conducted by density measurements and the data were analyzed statistically using GEE test. Subjective analysis was performed by two oral and maxillofacial radiologists and the results were analyzed using McNemar's test. The results from GEE analysis show that in the natural light environment, the densities in 10 minutes did not differ from the baseline. The mean densities decreased significantly during the time in all environments. The mean densities in step 2 for the dark room environment decreased with a slighter slope in comparison to yellow environment significantly. PSP images showed significant decrease in the density in plates scanned for 10 minutes or longer after exposure which may not be detected clinically. The yellow light environment had a different impact on the quality of PSP images. The spatial resolution did not change significantly with time.

  2. Optimization of imaging parameters for SPECT scans of [99mTc]TRODAT-1 using Taguchi analysis.

    Directory of Open Access Journals (Sweden)

    Cheng-Kai Huang

    Full Text Available Parkinson's disease (PD is a neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the basal ganglia. Single photon emission computed tomography (SPECT scans using [99mTc]TRODAT-1 can image dopamine transporters and provide valuable diagnostic information of PD. In this study, we optimized the scanning parameters for [99mTc]TRODAT-1/SPECT using the Taguchi analysis to improve image quality. SPECT scans were performed on forty-five healthy volunteers according to an L9 orthogonal array. Three parameters were considered, including the injection activity, uptake duration, and acquisition time per projection. The signal-to-noise ratio (SNR was calculated from the striatum/occipital activity ratio as an image quality index. Ten healthy subjects and fifteen PD patients were used to verify the optimal parameters. The estimated optimal parameters were 962 MBq for [99mTc]TRODAT-1 injection, 260 min for uptake duration, and 60 s/projection for data acquisition. The uptake duration and time per projection were the two dominant factors which had an F-value of 18.638 (38% and 25.933 (53%, respectively. Strong cross interactions existed between the injection activity/uptake duration and injection activity/time per projection. Therefore, under the consideration of as low as reasonably achievable (ALARA for radiation protection, we can decrease the injection activity to 740 MBq. The image quality remains almost the same for clinical applications.

  3. Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging.

    Science.gov (United States)

    Thériault, Gabrielle; Cottet, Martin; Castonguay, Annie; McCarthy, Nathalie; De Koninck, Yves

    2014-01-01

    Two-photon microscopy has revolutionized functional cellular imaging in tissue, but although the highly confined depth of field (DOF) of standard set-ups yields great optical sectioning, it also limits imaging speed in volume samples and ease of use. For this reason, we recently presented a simple and retrofittable modification to the two-photon laser-scanning microscope which extends the DOF through the use of an axicon (conical lens). Here we demonstrate three significant benefits of this technique using biological samples commonly employed in the field of neuroscience. First, we use a sample of neurons grown in culture and move it along the z-axis, showing that a more stable focus is achieved without compromise on transverse resolution. Second, we monitor 3D population dynamics in an acute slice of live mouse cortex, demonstrating that faster volumetric scans can be conducted. Third, we acquire a stereoscopic image of neurons and their dendrites in a fixed sample of mouse cortex, using only two scans instead of the complete stack and calculations required by standard systems. Taken together, these advantages, combined with the ease of integration into pre-existing systems, make the extended depth-of-field imaging based on Bessel beams a strong asset for the field of microscopy and life sciences in general.

  4. Meta-analysis of the technical performance of an imaging procedure: guidelines and statistical methodology.

    Science.gov (United States)

    Huang, Erich P; Wang, Xiao-Feng; Choudhury, Kingshuk Roy; McShane, Lisa M; Gönen, Mithat; Ye, Jingjing; Buckler, Andrew J; Kinahan, Paul E; Reeves, Anthony P; Jackson, Edward F; Guimaraes, Alexander R; Zahlmann, Gudrun

    2015-02-01

    Medical imaging serves many roles in patient care and the drug approval process, including assessing treatment response and guiding treatment decisions. These roles often involve a quantitative imaging biomarker, an objectively measured characteristic of the underlying anatomic structure or biochemical process derived from medical images. Before a quantitative imaging biomarker is accepted for use in such roles, the imaging procedure to acquire it must undergo evaluation of its technical performance, which entails assessment of performance metrics such as repeatability and reproducibility of the quantitative imaging biomarker. Ideally, this evaluation will involve quantitative summaries of results from multiple studies to overcome limitations due to the typically small sample sizes of technical performance studies and/or to include a broader range of clinical settings and patient populations. This paper is a review of meta-analysis procedures for such an evaluation, including identification of suitable studies, statistical methodology to evaluate and summarize the performance metrics, and complete and transparent reporting of the results. This review addresses challenges typical of meta-analyses of technical performance, particularly small study sizes, which often causes violations of assumptions underlying standard meta-analysis techniques. Alternative approaches to address these difficulties are also presented; simulation studies indicate that they outperform standard techniques when some studies are small. The meta-analysis procedures presented are also applied to actual [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) test-retest repeatability data for illustrative purposes. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. Evaluation of image quality with different field of view in CT scan of the body in children

    International Nuclear Information System (INIS)

    Gao Dechun; Wu Tai; Mao Dingli; Weng Zhigao

    2005-01-01

    Objective: To evaluate the relationship between field of view (FOV) and quality of CT images. Methods: Scanning of the phantoms of spatial resolution and density resolution was performed with FOVs of 25 cm x 25 cm, 35 cm x 35 cm, and 42 cm x 42 cm, respectively, and the spatial resolution and density resolution of CT images with different FOVs were measured. 20 patients underwent CT scanning using 25 cm x 25 cm and 35 cm x 35 cm FOVs, respectively. The images were evaluated by 3 qualified CT doctors by using a double-blind reading. Results: As FOVs changed, the spatial resolution and density resolution were different. The best spatial resolution and density resolution were obtained on 25 cm x 25 cm FOV images. The best spatial resolution could distinguish four 0.6 mm-diameter eyelets, and the best density resolution could distinguish five 2.5 mm-diameter eyelets. The CT images with 25 cm x 25 cm FOV were obviously better than those with 35 cm x 35 cm FOV (P<0.05). Conclusion: On the range of conventional FOV of CT, the spatial resolution and density resolution of CT images are the best when 25 cm x 25 cm FOV is used. (authors)

  6. SU-G-IeP3-08: Image Reconstruction for Scanning Imaging System Based On Shape-Modulated Point Spreading Function

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixing; Yang, LV [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan (China); Xu, Kele [College of Electronical Science and Engineering, National University of Defense Technology, Changsha, Hunan (China); Zhu, Li [Institute of Electrostatic and Electromagnetic Protection, Mechanical Engineering College, Shijiazhuang, Hebei (China)

    2016-06-15

    Purpose: Deconvolution is a widely used tool in the field of image reconstruction algorithm when the linear imaging system has been blurred by the imperfect system transfer function. However, due to the nature of Gaussian-liked distribution for point spread function (PSF), the components with coherent high frequency in the image are hard to restored in most of the previous scanning imaging system, even the relatively accurate PSF is acquired. We propose a novel method for deconvolution of images which are obtained by using shape-modulated PSF. Methods: We use two different types of PSF - Gaussian shape and donut shape - to convolute the original image in order to simulate the process of scanning imaging. By employing deconvolution of the two images with corresponding given priors, the image quality of the deblurred images are compared. Then we find the critical size of the donut shape compared with the Gaussian shape which has similar deconvolution results. Through calculation of tightened focusing process using radially polarized beam, such size of donut is achievable under same conditions. Results: The effects of different relative size of donut and Gaussian shapes are investigated. When the full width at half maximum (FWHM) ratio of donut and Gaussian shape is set about 1.83, similar resolution results are obtained through our deconvolution method. Decreasing the size of donut will favor the deconvolution method. A mask with both amplitude and phase modulation is used to create a donut-shaped PSF compared with the non-modulated Gaussian PSF. Donut with size smaller than our critical value is obtained. Conclusion: The utility of donutshaped PSF are proved useful and achievable in the imaging and deconvolution processing, which is expected to have potential practical applications in high resolution imaging for biological samples.

  7. Development of an image intensifier-TV digital imaging system with a multiple-slit scanning x-ray beam

    International Nuclear Information System (INIS)

    Kume, Y.; Doi, K.

    1986-01-01

    The authors are developing a new digital x-ray imaging system employing a multiple-slit assembly (MSA) and an image intensifier (II)-TV digital system. The final image consisting of primary radiation is digitally reconstructed from multiple slit images obtained with the MSA. This system can significantly reduce the scattered radiation from an object and the veiling glare from II-TV system. The quality of the reconstructed image is related to many parameters, such as slit width, the number of image frames, and the image reconstruction algorithm. They present the effect of these various parameters on basic imaging properties and the practicability of the method in comparison with conventional wide beam imaging

  8. Lecithin-coated gold nanoflowers (GNFs) for CT scan imaging applications and biochemical parameters; in vitro and in vivo studies.

    Science.gov (United States)

    Aziz, Farooq; Bano, Khizra; Siddique, Ahmad Hassan; Bajwa, Sadia Zafar; Nazir, Aalia; Munawar, Anam; Shaheen, Ayesha; Saeed, Madiha; Afzal, Muhammad; Iqbal, M Zubair; Wu, Aiguo; Khan, Waheed S

    2018-01-09

    We report a novel strategy for the fabrication of lecithin-coated gold nanoflowers (GNFs) via single-step design for CT imaging application. Field-emission electron microscope confirmed flowers like morphology of the as-synthesized nanostructures. Furthermore, these show absorption peak in near-infrared (NIR) region at λ max 690 nm Different concentrations of GNFs are tested as a contrast agent in CT scans at tube voltage 135 kV and tube current 350 mA. These results are compared with same amount of iodine at same CT scan parameters. The results of in vitro CT scan study show that GNFs have good contrast enhancement properties, whereas in vivo study of rabbits CT scan shows that GNFs enhance the CT image clearly at 135 kV as compared to that of iodine. Cytotoxicity was studied and blood profile show minor increase of white blood cells and haemoglobin, whereas decrease of red blood cells and platelets.

  9. Non-invasive retinal imaging in mice with fluorescent Scanning Laser Ophthalmoscopy and Fourier Domain Optical Coherence Tomography

    OpenAIRE

    Hossein-Javaheri, Nima

    2010-01-01

    Visualization of the internal structures of the retina is critical for clinical diagnosis and monitoring of pathology as well as for medical research investigating the root causes of retinal degeneration. The aim of this thesis is to develop multi-modal non-invasive imaging technology for studying retinal degeneration and gene therapy in mice. We have constructed a FD-OCT prototype and combined it with a Scanning Laser Ophthalmoscope (SLO) to permit real time alignment of the retinal field of...

  10. Scanning electron-acoustic imaging of residual stress distributions in aluminum metal and ZrSiO4 multiphase ceramics

    International Nuclear Information System (INIS)

    Zhang, B.Y.; Jiang, F.M.; Shi, Y.; Yin, Q.R.; Qian, M.L.

    1997-01-01

    The scanning electron-acoustic imaging technique has been used in the characterization of the residual stress field distributions existing in the subsurface in aluminum disks and 20 vol% SiC ( w)/ZrSiO 4 multiphase ceramics left by Vicker close-quote s indentation. The experimental results reveal that the distribution areas are the plastic-elastic interchange zones. The electron-acoustic signal generation mechanism in the samples are discussed. copyright 1997 American Institute of Physics

  11. Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning

    International Nuclear Information System (INIS)

    Wang, Ruikang K

    2007-01-01

    The author describes a Fourier domain optical coherence tomography (FDOCT) system that is capable of full range complex imaging in vivo. This is achieved by introducing a constant carrier frequency into the OCT spectral interferograms at the time when imaging is performed. The complex functions of the spatial interferograms formed by each single wavelength are constructed before performing the Fourier transformation to localize the scatters within a sample. Two algorithms, based on Fourier filtering and Hilbert transformation, respectively, are described to achieve the full range complex FDOCT imaging. It is shown that the Hilbert transformation approach delivers better performance than the Fourier filtering method does in terms of tolerating the sample movement in vivo. The author finally demonstrates experimentally the system and algorithms for true in vivo imaging at a rate of 20 000 axial scans per second

  12. Determination of the cork bark porosity through the gamma ray transmission technology and electronic scanning microscopy image analysis

    International Nuclear Information System (INIS)

    Moraes, Antonio M.C.; Moreira, Anderson C.; Appoloni, Carlos R.

    2007-01-01

    This work applies the gamma transmission techniques (GTR) and imaging by scanning electron microscopy (SEM) for determination of porosity in the sparkling wine bottle corks. The gamma transmission experimental apparatus consists of a micrometric table (ZX) of sample movement automated, a Am-241 source (59,53 keV, 100 mCi), lead collimators, sample-holder, Na I(Tl) detector and appropriated electronics. For the microscopic images an FEI (Quanta 200), electronic microscope with associated electronics was used, and the image analysis was performed with IMAGO software. The average porosity for 22 samples analysed by GTR was of φ=58 +- 4.6 percent. By the imaging technique the found average porosity was φ=60.0 +- 6.2 percent. (author)

  13. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Pia C. Lansåker

    2014-10-01

    Full Text Available Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness dg—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM combined with image analysis as well as by atomic force microscopy (AFM. The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for dg were obtained by SEM with image analysis and by AFM.

  14. Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey

    Science.gov (United States)

    Almazroa, Ahmed; Burman, Ritambhar; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2015-01-01

    Glaucoma is the second leading cause of loss of vision in the world. Examining the head of optic nerve (cup-to-disc ratio) is very important for diagnosing glaucoma and for patient monitoring after diagnosis. Images of optic disc and optic cup are acquired by fundus camera as well as Optical Coherence Tomography. The optic disc and optic cup segmentation techniques are used to isolate the relevant parts of the retinal image and to calculate the cup-to-disc ratio. The main objective of this paper is to review segmentation methodologies and techniques for the disc and cup boundaries which are utilized to calculate the disc and cup geometrical parameters automatically and accurately to help the professionals in the glaucoma to have a wide view and more details about the optic nerve head structure using retinal fundus images. We provide a brief description of each technique, highlighting its classification and performance metrics. The current and future research directions are summarized and discussed. PMID:26688751

  15. Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis

    Science.gov (United States)

    Zheng, Jing-gao; Huo, Tiancheng; Tian, Ning; Chen, Tianyuan; Wang, Chengming; Zhang, Ning; Zhao, Fengying; Lu, Danyu; Chen, Dieyan; Ma, Wanyun; Sun, Jia-lin; Xue, Ping

    2013-05-01

    The spindle plays a crucial role in normal chromosome alignment and segregation during meiosis and mitosis. Studying spindles in living cells noninvasively is of great value in assisted reproduction technology (ART). Here, we present a novel spindle imaging methodology, full-field optical coherence tomography (FF-OCT). Without any dye labeling and fixation, we demonstrate the first successful application of FF-OCT to noninvasive three-dimensional (3-D) live imaging of the meiotic spindles within the mouse living oocytes at metaphase II as well as the mitotic spindles in the living zygotes at metaphase and telophase. By post-processing of the 3-D dataset obtained with FF-OCT, the important morphological and spatial parameters of the spindles, such as short and long axes, spatial localization, and the angle of meiotic spindle deviation from the first polar body in the oocyte were precisely measured with the spatial resolution of 0.7 μm. Our results reveal the potential of FF-OCT as an imaging tool capable of noninvasive 3-D live morphological analysis for spindles, which might be useful to ART related procedures and many other spindle related studies.

  16. Body image in Brazil: recent advances in the state of knowledge and methodological issues

    Science.gov (United States)

    Laus, Maria Fernanda; Kakeshita, Idalina Shiraishi; Costa, Telma Maria Braga; Ferreira, Maria Elisa Caputo; Fortes, Leonardo de Sousa; Almeida, Sebastião Sousa

    2014-01-01

    OBJECTIVE To analyze Brazilian literature on body image and the theoretical and methodological advances that have been made. METHODS A detailed review was undertaken of the Brazilian literature on body image, selecting published articles, dissertations and theses from the SciELO, SCOPUS, LILACS and PubMed databases and the CAPES thesis database. Google Scholar was also used. There was no start date for the search, which used the following search terms: “body image” AND “Brazil” AND “scale(s)”; “body image” AND “Brazil” AND “questionnaire(s)”; “body image” AND “Brazil” AND “instrument(s)”; “body image” limited to Brazil and “body image”. RESULTS The majority of measures available were intended to be used in college students, with half of them evaluating satisfaction/dissatisfaction with the body. Females and adolescents of both sexes were the most studied population. There has been a significant increase in the number of available instruments. Nevertheless, numerous published studies have used non-validated instruments, with much confusion in the use of the appropriate terms (e.g., perception, dissatisfaction, distortion). CONCLUSIONS Much more is needed to understand body image within the Brazilian population, especially in terms of evaluating different age groups and diversifying the components/dimensions assessed. However, interest in this theme is increasing, and important steps have been taken in a short space of time. PMID:24897056

  17. Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey

    Directory of Open Access Journals (Sweden)

    Ahmed Almazroa

    2015-01-01

    Full Text Available Glaucoma is the second leading cause of loss of vision in the world. Examining the head of optic nerve (cup-to-disc ratio is very important for diagnosing glaucoma and for patient monitoring after diagnosis. Images of optic disc and optic cup are acquired by fundus camera as well as Optical Coherence Tomography. The optic disc and optic cup segmentation techniques are used to isolate the relevant parts of the retinal image and to calculate the cup-to-disc ratio. The main objective of this paper is to review segmentation methodologies and techniques for the disc and cup boundaries which are utilized to calculate the disc and cup geometrical parameters automatically and accurately to help the professionals in the glaucoma to have a wide view and more details about the optic nerve head structure using retinal fundus images. We provide a brief description of each technique, highlighting its classification and performance metrics. The current and future research directions are summarized and discussed.

  18. Diagnostic Performance of Three Phase Bone Scan for Complex Regional Pain Syndrome Type 1 with Optimally Modified Image Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyun Woo; Paeng, Jin Chul; Nahm, Francins Sahngun; Kim, Seog Gyun; Zehra, Tanzeel; Oh, So Won; Lee, Hyo Sang; Kang, Keon Wook; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2011-12-15

    Although the three phase bone scan (TBPS) is one of the widely used imaging studies for diagnosing complex regional pain syndrome type 1 (CRPS 1), there is some controversy regarding the TPBS image criteria for CRPS 1. In this study, we modified the image criteria using image pattern and quantitative analysis in the patients diagnosed using the most recent consensus clinical diagnostic criteria. The study included 140 patients with suspected CRPS 1 (CRPS 1, n=79; non CRPS, n=61; mean age 39{+-}15 years) who underwent TPBS. The clinical diagnostic criteria for CRPS 1 revised by the Budapest consensus group were used for confirmative diagnosis. Patients were classified according to flow/pool and delayed uptake (DU) image patterns, and the time interval between the initiating event and TPBS (TI{sup eventscan)}. Quantitative analysis for lesion to contralateral ratio (LCR) was performed. Modified TPBS image criteria were created and evaluated for optimal diagnostic performance. Both increased and decreased periarticular DU were significant image findings for CRPS 1 (CRPS 1 positive rate=73% in the increased DU group, 75% in the decreased DU group). The TI{sup eventscand}id not differ significantly between the different image pattern groups. Quantitative analysis revealed an LCR of 1.43 was the optimal cutoff value for CRPS 1 and diagnostic performance was significantly improved in the increased DU group (area under the curve=0.732). Given the modified image criteria, the sensitivity and specificity of TPBS for diagnosing CRPS 1 were 80% and 72%, respectively. Optimally modified TPBS image criteria for CRPS 1 were suggested using image pattern and quantitative analysis. With the criteria, TPBS is an effective imaging study for CRPS 1 even with the most recent consensus clinical diagnostic criteria.

  19. Diagnostic Performance of Three Phase Bone Scan for Complex Regional Pain Syndrome Type 1 with Optimally Modified Image Criteria

    International Nuclear Information System (INIS)

    Kwon, Hyun Woo; Paeng, Jin Chul; Nahm, Francins Sahngun; Kim, Seog Gyun; Zehra, Tanzeel; Oh, So Won; Lee, Hyo Sang; Kang, Keon Wook; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo

    2011-01-01

    Although the three phase bone scan (TBPS) is one of the widely used imaging studies for diagnosing complex regional pain syndrome type 1 (CRPS 1), there is some controversy regarding the TPBS image criteria for CRPS 1. In this study, we modified the image criteria using image pattern and quantitative analysis in the patients diagnosed using the most recent consensus clinical diagnostic criteria. The study included 140 patients with suspected CRPS 1 (CRPS 1, n=79; non CRPS, n=61; mean age 39±15 years) who underwent TPBS. The clinical diagnostic criteria for CRPS 1 revised by the Budapest consensus group were used for confirmative diagnosis. Patients were classified according to flow/pool and delayed uptake (DU) image patterns, and the time interval between the initiating event and TPBS (TI eventscan) . Quantitative analysis for lesion to contralateral ratio (LCR) was performed. Modified TPBS image criteria were created and evaluated for optimal diagnostic performance. Both increased and decreased periarticular DU were significant image findings for CRPS 1 (CRPS 1 positive rate=73% in the increased DU group, 75% in the decreased DU group). The TI eventscand id not differ significantly between the different image pattern groups. Quantitative analysis revealed an LCR of 1.43 was the optimal cutoff value for CRPS 1 and diagnostic performance was significantly improved in the increased DU group (area under the curve=0.732). Given the modified image criteria, the sensitivity and specificity of TPBS for diagnosing CRPS 1 were 80% and 72%, respectively. Optimally modified TPBS image criteria for CRPS 1 were suggested using image pattern and quantitative analysis. With the criteria, TPBS is an effective imaging study for CRPS 1 even with the most recent consensus clinical diagnostic criteria.

  20. Thresholding: A Pixel-Level Image Processing Methodology Preprocessing Technique for an OCR System for the Brahmi Script

    Directory of Open Access Journals (Sweden)

    H. K. Anasuya Devi

    2006-12-01

    Full Text Available In this paper we study the methodology employed for preprocessing the archaeological images. We present the various algorithms used in the low-level processing stage of image analysis for Optical Character Recognition System for Brahmi Script. The image preprocessing technique covered in this paper is thresholding. We also try to analyze the results obtained by the pixel-level processing algorithms.

  1. Comparative study between fundus autofluorescence and red reflectance imaging of choroidal nevi using ultra-wide-field scanning laser ophthalmoscopy.

    Science.gov (United States)

    Zapata, Miguel Angel; Leila, Mahmoud; Teixidor, Teresa; Garcia-Arumi, Jose

    2015-06-01

    To explore the utility of fundus autofluorescence (FAF) and red reflectance (RR) imaging using ultra-wide-field scanning laser ophthalmoscope in choroidal nevi. Retrospective observational case study reviewing clinical data, color, FAF, and RR images of patients with choroidal nevi and comparing the findings. The ultra-wide-field scanning laser ophthalmoscope uses green laser 532 nm and red laser 633 nm that enabled FAF and RR imaging, respectively in separate channels. Superimposition of both images yielded a composite color image. The study included 46 eyes of 45 patients. Nevi were unilateral in 44 patients (98%). Forty-one nevi (89.1%) were located temporally between the macula and the equator. All nevi (100%) were deeply pigmented. The most frequent surface changes were lipofuscin pigments, zones of retinal pigment epithelium atrophy, and retinal pigment epithelium pigment clumps in 31 (67.3%), 18 (39.1%), and 8 eyes (17.3%), respectively. Color photographs were superior to FAF in detecting nevus boundaries and surface changes. Red reflectance correlated strongly with color images, although the nevus boundaries and surface changes were better delineated in RR mode. Red reflectance was superior to FAF in delineating the boundaries and surface changes of the nevus; clear visibility (3+) for RR versus no or poor visibility (0/1+) for FAF. Nevertheless, the areas of retinal pigment epithelium atrophy were better delineated in FAF mode; clear visibility (3+) for FAF versus poor visibility (1+) for FAF. Red reflectance imaging is more sensitive than conventional photography for follow-up of choroidal nevi. Fundus autofluorescence should be considered only as a complementary tool to RR imaging.

  2. Discrimination between Newly Formed and Aged Thrombi Using Empirical Mode Decomposition of Ultrasound B-Scan Image

    Directory of Open Access Journals (Sweden)

    Jui Fang

    2015-01-01

    Full Text Available Ultrasound imaging is a first-line diagnostic method for screening the thrombus. During thrombus aging, the proportion of red blood cells (RBCs in the thrombus decreases and therefore the signal intensity of B-scan can be used to detect the thrombus age. To avoid the effect of system gain on the measurements, this study proposed using the empirical mode decomposition (EMD of ultrasound image as a strategy to classify newly formed and aged thrombi. Porcine blood samples were used for the in vitro induction of fresh and aged thrombi (at hematocrits of 40%. Each thrombus was imaged using an ultrasound scanner at different gains (15, 20, and 30 dB. Then, EMD of ultrasound signals was performed to obtain the first and second intrinsic mode functions (IMFs, which were further used to calculate the IMF-based echogenicity ratio (IER. The results showed that the performance of using signal amplitude of B-scan to reflect the thrombus age depends on gain. However, the IER is less affected by the gain in discriminating between fresh and aged thrombi. In the future, ultrasound B-scan combined with the EMD may be used to identify the thrombus age for the establishment of thrombolytic treatment planning.

  3. Value of a probabilistic atlas in medical image segmentation regarding non-rigid registration of abdominal CT scans

    Science.gov (United States)

    Park, Hyunjin; Meyer, Charles R.

    2012-10-01

    A probabilistic atlas provides important information to help segmentation and registration applications in medical image analysis. We construct a probabilistic atlas by picking a target geometry and mapping other training scans onto that target and then summing the results into one probabilistic atlas. By choosing an atlas space close to the desired target, we construct an atlas that represents the population well. Image registration used to map one image geometry onto another is a primary task in atlas building. One of the main parameters of registration is the choice of degrees of freedom (DOFs) of the geometric transform. Herein, we measure the effect of the registration's DOFs on the segmentation performance of the resulting probabilistic atlas. Twenty-three normal abdominal CT scans were used, and four organs (liver, spinal cord, left and right kidneys) were segmented for each scan. A well-known manifold learning method, ISOMAP, was used to find the best target space to build an atlas. In summary, segmentation performance was high for high DOF registrations regardless of the chosen target space, while segmentation performance was lowered for low DOF registrations if a target space was far from the best target space. At the 0.05 level of statistical significance, there were no significant differences at high DOF registrations while there were significant differences at low DOF registrations when choosing different targets.

  4. Optical CT